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ABSTRACT. The main purpose of this paper is to generalize the celebrated L? extension theorem
of Ohsawa-Takegoshi in several directions : the holomorphic sections to extend are taken in a
possibly singular hermitian line bundle, the subvariety from which the extension is performed
may be non reduced, the ambient manifold is Kéhler and holomorphically convex, but not
necessarily compact.

1. INTRODUCTION AND PRELIMINARIES

The purpose of this paper is to generalize the celebrated L? extension theorem of Ohsawa-
Takegoshi [OT87] under the weakest possible hypotheses, along the lines of [Dem15b] and
[Mat16b]. Especially, the ambient complex manifold X is a Kéhler manifold that is only assumed
to be holomorphically convez, and is not necessarily compact; by the Remmert reduction theo-
rem, this is the same as a Kéhler manifold X that admits a proper holomorphic map 7 : X — S
onto a Stein complex space S. This allows in particular to consider relative situations over a
Stein base. We consider a holomorphic line bundle £ — X equipped with a singular hermitian
metric h, namely a metric which can be expressed locally as h = e~ ¥ where ¢ is a quasi-psh
function, i.e. a function that is locally the sum ¢ = g + u of a plurisubharmonic function g
and of a smooth function . Such a bundle admits a curvature current

(1) Op,h = 100p = i0dpy + i00u

which is locally the sum of a positive (1, 1)-current i99p and a smooth (1, 1)-form i0du. Our
goal is to extend sections that are defined on a (non necessarily reduced) complex subspace
Y C X, when the structure sheaf Oy := Ox/Z(e™¥) is given by the multiplier ideal sheaf of
a quasi-psh function ¢ with neat analytic singularities, i.e. locally on a neighborhood V of an
arbitrary point xg € X we have

(2) (2) =clog |g;(2)? +v(z), g € Ox(V), veC®(V).
Let us recall that the multiplier ideal sheaf Z(e™%) of a quasi-psh function ¢ is defined by
(3) T(e #)ay = {f € Oxay: U 5 20, / F2edA < +00)

U

with respect to the Lebesgue measure A in some local coordinates near zy. As usual, we also
denote by Kx = A"T% the canonical bundle of an n-dimensional complex manifold X. As is
well known, Z(e™%) C Ox is a coherent ideal sheaf (see e.g. [Dem-book]). Our main result is
given by the following general statement.
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Theorem 1.1. Let E be a holomorphic line bundle over a holomorphically convex Kdhler mani-
fold X. Let h be a possibly singular hermitian metric on E, ¢ a quasi-psh function with neat
analytic singularities on X. Assume that there exists a positive continuous function 6 > 0 on X
such that

(4) Opn+ (1 +ad)iddy >0 in the sense of currents, for all « € [0,1].

Then the morphism induced by the natural inclusion Z(he™%) — Z(h)

(5) HY(X,Kx ® E@Z(he ™)) = HI(X,Kx ® E®Z(h))

is injective for every q > 0. In other words, the morphism induced by the natural sheaf surjection
T(h) — Z(h)/Z(he™")

(6) HY(X,Kx ® EQZ(h)) - H(X,Kx @ E®Z(h)/Z(he™?))

s surjective for every q > 0.

Remark 1.2. If h is smooth, we have Z(h) = Ox and Z(h)/Z(he™?) = Ox/Z(e7¥) := Oy
where Y is the zero subvariety of the ideal sheaf Z(e™%). Then for ¢ = 0, the surjectivity

statement can be interpreted an extension theorem for holomorphic sections, with respect to the
restriction morphism

(7) HY(X,Kx ® E) —» H(Y,(Kx ® E)}y).

In general, the quotient sheaf Z(h)/Z(he™%) is supported in an analytic subvariety ¥ C X,
which is the zero set of the quotient ideal

Jy =TI(he ™) : I(h) = {f € Ox; f-Z(h) C Z(he )},

and (6) can be considered as a restriction morphism to Y. O

The crucial idea of the proof is to prove the results (say, in the form of the surjectivity
statement), only up to approximation. This is done by solving a 0-equation

5u5+w5:fu

where the right hand side v is given and w; is an error term such that ||we|| = O(e®) as € — 0,
for some constant a > 0. A twisted Bochner-Kodaira-Nakano identity introduced by Donnelly
and Fefferman [DF83], and Ohsawa and Takegoshi [OT87] is used for that purpose, with an
additional correction term. The version we need can be stated as follows.

Proposition 1.3. (see [Deml15b, Prop. 3.12]) Let X be a complete Kdihler manifold equipped
with a (non necessarily complete) Kahler metric w, and let (E,h) be a Hermitian vector bundle
over X. Assume that there are smooth and bounded functions n, A > 0 on X such that the
curvature operator

B =By unr=[MOpn—i00n - iN"1dom A O, A,,] € C°°(X, Herm(A™T% @ E))

satisfies B+el > 0 for some € > 0 (so that B can be just semi-positive or even slightly negative;
here I is the identity endomorphism). Given a section v € L*(X,A™T% @ E) such that Ov =0
and

M(e) = /X<(B +el) o, 0) AV, < 400,

there exists an approzimate solution f. € L?(X, A”ﬁq_lT)*{ ® E) and a correction term w. €
L?(X, AT ® E) such that Ou. = v — w. and

1
/ (n+ A)fl\ua\QdVXW + / \w5|2dVX7w < M(e).
b'e €Jx

Moreover, if v is smooth, then u. and w. can be taken smooth.
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In our situation, the main part of the solution, namely u., may very well explode as € — 0.
In order to show that the equation Ou = v can be solved, it is therefore needed to check
that the space of coboundaries is closed in the space of cocycles in the Fréchet topology under
consideration (here, the L12OC topology), in other words, that the related cohomology group
HY(X,F) is Hausdorff. In this respect, the fact of considering 9-cohomology of smooth forms
equipped with the C* topology on the one hand, or cohomology of forms u € L120 . with ou € LIQO .
on the other hand, yields the same topology on the resulting cohomology group H4(X, F). This
comes from the fact that both complexes yield fine resolutions of the same coherent sheaf F,
and the topology of HY(X,F) can also be obtained by using Cech cochains with respect to a
Stein covering U of X. The required Hausdorff property then comes from the following well

known fact.

Lemma 1.4. Let X be a holomorphically convex compler space and F a coherent analytic
sheaf over X. Then all cohomology groups HY(X, F) are Hausdor(f with respect to their natural
topology (induced by the Fréchet topology of local uniform convergence of holomorphic cochains).!

In fact, the Remmert reduction theorem implies that X admits a proper holomorphic map
m: X — S onto a Stein space S, and Grauert’s direct image theorem shows that all direct
images Rim,F are coherent sheaves on S. Now, as S is Stein, Leray’s theorem combined with
Cartan’s theorem B tells us that we have an isomorphism HY9(X,F) ~ H°(S, Ri7,F). More
generally, if U C S is a Stein open subset, we have

(8) HY(x Y(U),F) ~ H U, R, F)

and when U &€ S is relatively compact, it is easily seen that this a topological isomorphism
of Fréchet spaces since both sides are Og(U) modules of finite type and can be seen as a
Fréchet quotient of some direct sum Og(U)®V by looking at local generators and local relations
of Rim,F. Therefore H4(X,F) ~ H%(S, Rim,F) is a topological isomorphism and the space of
sections in the right hand side is a Fréchet space. In particular, H?(X, F) is Hausdorff. U

The isomorphism (8) shows that it is enough to prove Theorem 1.1 locally over X i.e., we
can replace X by X' = 771(5’) € X where S’ € S. Therefore, we can assume that § > 0 is a
constant rather than a continuous function.

2. PROOF OF THE EXTENSION THEOREM

In this section, we give a proof of Theorem 1.1 based on a generalization of the arguments of
[Dem15b, Th. 2.14]. We start by proving the special case of the extension result for holomorphic
sections (¢ = 0).

Theorem 2.1. Let (X,w) be a holomorphically convexr Kdihler manifold and v be a quasi-
psh function with neat analytic singularities. Let E be a line bundle with a possibly singu-
lar metric h, and Y the support of the sheaf T(h)/Z(he™"), along with the structure sheaf
Oy :=Z(he %) : Z(h). Assume that there is a continuous function § > 0 such that

iOpn+ (1+ad)iddy >0 in the sense of currents, for all a € [0, 1].
Then the restriction morphism

H(X,0x(Kx ® E)® Z(h)) = H(Y,Ox(Kx ® E) ® Z(h)/Z(he”¥)y)
18 surjective.

Proof. (a) Let us first assume for simplicity that h is smooth. We will explain the general case
later. Then Z(h) = Ox and Z(h)/Z(he™%) = Oy = Ox/Z(e~¥). After possibly shrinking X into
a relatively compact holomorphically convex open subset X’ = 771(S’) € X, we can suppose

L1t was pointed out to us by Prof. Takeo Ohsawa that this result does not hold under the assumption that X
is weakly pseudoconvex, i.e., if we only assume that X admits a smooth psh exhaustion. A counter-example can
be derived from [Kaz84]. As a consequence, it is unclear whether the results of the present paper extend to the
Kéhler weakly pseudoconvex case, although the main L? estimates are still valid in that situation.
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that 0 > 0 is a constant and that 1) < 0, after subtracting a large constant to . Also, without
loss of generality, we can assume that ¢ admits a discrete sequence of “jumping numbers”

(9) 0=mog<mi<---<my<--- such that Z(my) = Z(my1)) for m € [my, mp11[.

Since v is assumed to have analytic singularities, this follows from using a log resolution of
singularities, thanks to the Hironaka desingularization theorem (by the much deeper result of
[GZ15] on the strong openness conjecture, one could even possibly eliminate the assumption
that ¢ has analytic singularities). We fix here p such that m, <1 < my1, and in the notation

of [Dem15b], we let Y = Y (™) be defined by the non necessarily reduced structure sheaf
Oy = (’)X/I(e_’vb) = Ox/I(e_mp¢).

Step 1 (Construction of a smooth extension). Take
f € HO(Y, Ox (Kx ® B)y) = H(X, Ox (Kx ® E) ® Ox /I(¢ ")),

Let U = (U;) be a Stein covering of X and let (p;) be a partition of unity subordinate to (U;).
Thanks to the exact sequence

(10) 0= Z(e %)= Ox = Ox/I(e™¥) =0,
we can find a f; € HO(U;, Ox(Kx ® E)) such that

filvru, = flvou,-
Then (10) implies that

(11) ﬁ—.]?] EHO(UiﬂUj,Ox(KX(X)E)®I(€7w)>.

As a consequence, the smooth section f = pi- f; is a smooth extension of f and satisfies

of = 2(5,0@-) (f; — f]) on Uj, hence
12 [ P e = [ S @0 - B¢ ViV <+
x w,h X,w . - Py i Pi [ j wh X,w .

Step 2 (L%-estimates). We follow here the arguments of [Dem15b, proof of th. 2.14, p. 217].
Let t € Z~ and let x; be the negative convex increasing function defined in [Dem15b, (5.8%),

p. 211]. Put g :=1 -9 - x¢(¢0) and N\ := 25(X?,(¢))2. We set

Xt/(@b)
Ry = n(Opy +i00p) —iddn, — N\, idn, A Ony
_ —1.7 N 0- X;/(@Z}) . 3
= M(Opn+ (14 dn, x;(¥))idoy) + Tza@b N O.

Note that x} (1)) > & on Wy = {t < ¢ <t + 1}. The curvature assumption (4) implies
Opn+ (1 + 6, X} ()10 >0 on X.
As in [Dem15b], we find

(13) R >0 on X
and
) _
Let 6 : [—00,+0oo[ — [0,1] be a smooth non increasing real function satisfying 6(z) = 1 for

r<0,0(z)=0for x> 1and |#| <2. By applying the L? estimate (Proposition 1.3), for every
€ > 0 we can find sections u; ¢, wy . satisfying

(15) gut@ + Wte = V¢ 1= 5(9(’9@ — t) . f )

and

1
1) [ () e Vet - [ Juncpe Vi < [ (RereD) o we vV,
X X X
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where
(17) o =0(0 —1)f ) =0'(¢— )Y A f+0(Y —1)0f.
Combining (13), (14), (16) and (17), we get [ |ut’5|i’h6_deX’w < 400 and

12 ~ o~
09) [ et ave, <555 [ TR k2 [T e Vi
X {t<p<t+1} {y<t+1}

We now estimate the right hand side of (18). Since ]7 is smooth, we have an obvious upper
bound of the first term

(19) / F2 e YdVin < Cre,
{t<yp<t+1} '

where C} is the C° norm of f. For the second term, thanks to (9), (11) and (12), we have
(20) / BF12 pe 0V, < +oo
for any a € |0, mp41 — 1. As a consequence, we get
(21) / D12 pe VdVy o < Coe
{<t+1}

for some constant Co depending only on a. By taking ¢ = e(1*®)¢ (18), (19) and (21) imply
(22) / wie|? pe VAV, < O3t = O(eT4a),

X

for some constant C'3, whence the error tends to 0 as t = —oo and € — 0.

Step 3 (Final conclusion). Putting everything together and redefining u; = w¢ ., wy = wy for
simplicity of notation, we get

(23) DO —1) - [ —u) = wy, / g2V dVy,, < 400
X

and

(24) t_l}r_n / |wt|i7h6_deX7w =0.

After shrinking X, we can assume that we have a finite Stein covering U = (U;) where the U;
are biholomorphic to bounded pseudoconvex domains. The standard Hormander L? estimates
then provide L? sections s¢,; on U; such that 0s; j = w; on U; and

t——c0 Jy,
Then
o000 =0) T == Dpms) = =30 s on X
(26) = —Z p;) - (st; — sti) on Uj.

As (st j — st) = 0 on U; N Uj, the difference is holomorph1c and the right hand side of (26) is
smooth. Moreover, (25) shows that these differences converge uniformly to 0, hence the right
hand side of (26) converges to 0 in C'*° topology. The left hand side implies that this is a
coboundary in the C* Dolbeault resolution of Ox(Kx ® F). By applying Lemma 1.4, we
conclude that there is a C'° section oy of Kx ® E converging uniformly to 0 on compact subsets
of X ast — —oo, such that doy = Y (dp;) - st; on X. This implies that

J

:9<T/f—t)']?— ut—ijst,j—i—at

J
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is holomorphic on X. Hormander’s L? estimates also produce local smooth solutions o¢; on U;
with the additional property that 1tlim fU_ ot e ¥dVx ., = 0. Therefore
——o00 v Vi )

Fri =0 —t)- F—u— Y pjse; + 0w
J
is holomorphic on U; and ﬁ — ﬁl converges uniformly to 0 on compact subsets of U;. However,
by construction, ﬁz —ﬁ is a holomorphic section on U; that satisfies the L? estimate with respect
to the weight e~%, hence ﬁ, — fi is a section of Ox(Kx ® E) ® Z(e™*) on U;, in other words
the image of ﬁl in
H(U;, Ox(Kx ® E) ® Ox/Z(e™"))
coincides with fiy,. As a consequence, the image of ﬁ in
HY(X,0x(Kx ® E) ® Ox /I(e”¥)) = H)(Y, (Kx ® E)}y)

converges to f. By the direct image argument used in the preliminary section, this density
property implies the surjectivity of the restriction morphism to Y.

(b) We now prove the theorem for the general case when h = e~ % is not necessarily smooth. We
can reduce ourselves to the case when ¢ has divisorial singularities (see [Dem15b] or the next
section for a more detailed argument). Let us pick a section

fe HY(X,O0x(Kx ® E) @ Z(h)/Z(he™)).

By using the same reasoning as in Step 1, we can find a smooth extension fe C(X,Kx ®F)
of f such that

(27) / B2 eV dVi, < +oo.
X

For every t € Z~ fixed, as v has divisorial singularities, we still have
Opn+ (1+00 x;(¥)(100¢)ac >0 on X,

where (i001)),. is the absolutely continuous part of i9dy. The regularization techniques of
[DPS01] and [Demlba, Th. 1.7, Remark 1.11] (cf. also the next section) produce a family of
singular metrics {htﬁ};:g which are smooth in the complement X \ Z; . of an analytic set, such
that Z(hie) = Z(h), Z(hice™¥) = Z(he™¥) and

— 1
@Evht,s + (1 =+ 57715_1962(1@) ia@iﬂ > _5500 on X.

The additional error term —%aw is irrelevant when we use Proposition 1.3, as it is absorbed by
taking the hermitian operator B + ¢I. Therefore for every t € Z~, with the adjustment ¢ = e,
a € 10, mp41 — 1], we can find a singular metric hy = hy which is smooth in the complement
X \ Z; of an analytic set, such that Z(h;) = Z(h), Z(hse %) = Z(he %) and hy T h as t — —oo,
and approximate solutions of the d-equation such that

OO —t) - f —uy) = wy , / |Ut‘i,ht€7¢dVX,w < +o00
b's
and
lim / ]wt]ihte_dex,w =0.
b's

t——00

Proposition 1.3 can indeed be applied since X \ Z; is complete Kéhler (at least after we shrink
X a little bit as X’ = 771(5’), cf. [Dem82]). The theorem is then proved by using the same
argument as in Step 3; it is enough to notice that the holomorphic sections s; j —s;; and f;; — f;
satisfy the L2-estimate with respect to (h¢, 1) [instead of the expected (h, )], but the multiplier
ideal sheaves involved are unchanged. The Hausdorff property is applied to the cohomology
group H(X,0x(Kx ® E) ® Z(h)) instead of H'(X, Kx ® E), and the density property to the
morphism of direct image sheaves

7 (Ox(Kx ® E) ® Z(h)) — m.(Ox(Kx ® E) ® Z(h)/Z(he™))
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over the Stein space S. O

Proof of the extension theorem for degree g cohomology classes. The reasoning is
extremely similar, so we only explain the few additional arguments needed. In fact, Proposition
1.3 can be applied right away to arbitrary (n,q)-forms with ¢ > 1, and the twisted Bochner-
Kodaira-Nakano inequality yields exactly the same estimates. Any cohomology class in

HIYY,O0x(Kx ® E) @ Z(h)/Z(he™?))
is represented by a holomorphic Cech g-cocycle with respect to the Stein covering U = (U;), say
(Cig..iy): Cig.ig € H'(Uiy N ...NU;,, Ox(Kx ® E) @ Z(h)/Z(he™")).

By the standard sheaf theoretic isomorphisms with Dolbeault cohomology (cf. e.g. [Dem-e-book]),
this class is represented by a smooth (n, g)-form

[ = Z Cio...iqpiogpil AR .gpiq

10yeemvig

by means of a partition of unity (p;) subordinate to (U;). This form is to be interpreted as a form
on the (non reduced) analytic subvariety Y associated with the ideal sheaf J = Z(he™?) : Z(h)
and the structure sheaf Oy = Ox/J. We get an extension as a smooth (no longer d-closed)
(n, q)-form on X by taking

f= Z Cig...igPicOpiy N - .. Opi,
7:01---7iq
where Eio...iq is an extension of ¢;,. ;, from U;y N...NU; NY to U, N...NU;,. Again, we can
find approximate L? solutions of the d-equation such that

OO —t)- f—u) =wy / |“t‘i,ht€7¢dVX,w < 400
X
and

; 2 _
t_l}{noo/xlwt]w’hte dVx . = 0.
The difficulty is that L? sections cannot be restricted in a continuous way to a subvariety. In
order to overcome this problem, we play again the game of returning to Cech cohomology by
solving inductively d-equations for w; on U;, N ... N U;,, until we reach an equality

(28) 5(9(@[) — t) . f— ﬂt) =Wy = — Z St7i0~~-iq5p’i0 A 5/32'1 JAYAN -5piq

7;07---7iq—1

with holomorphic sections sy ; = s 4.5, on Uy = Uy N ... NU;,, such that

t——o0

lim / \st,[]f)’hte*deXM:O.
Ur

Then the right hand side of (28) is smooth, and more precisely has coefficients in the sheaf
C>® ®p Z(he™¥), and w; — 0 in C* topology. A priori, @y is an L? (n,q)-form equal to wu;
plus a combination ) p;s¢; of the local solutions of 551571- = wy, plus > piseij A 5;)]- where
58“,]- = 84 — S¢,4, plus etc ... , and is such that

/ [T |2, e Y dVix e < +o00.
X

Since HY(X,Ox(Kx ® E) ® Z(he™¥)) can be computed with the L2 _ resolution of the coherent
sheaf, or alternatively with the d-complex of (n, s)-forms with coefficients in C* ®p Z(he™?), we
may assume that ; € C*° ®p Z(he™¥), after playing again with Cech cohomology. Lemma 1.4
yields a sequence of smooth (n, ¢)-forms o; with coefficients in C>° ®o Z(h), such that do; = w;
and oy — 0 in C®-topology. Then f; = (¢ —t) - f — T — oy is a O-closed (n, q)-form on X with
values in C*° ®p Z(h) ® Ox(E), whose image in H4(X, Ox(Kx ® E) @ Z(h)/Z(he™¥)) converges
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to {f} in C*° Fréchet topology. We conclude by a density argument on the Stein space S, by
looking at the coherent sheaf morphism

Rim, (Ox(Kx ® E) ® I(h)) — Rin. (Ox(Kx ® E) ® Z(h)/Z(he™)). O

3. AN ALTERNATIVE PROOF BASED ON INJECTIVITY THEOREMS

We give here an alternative proof based on injectivity theorems, in the case when X is compact
Kahler. The case of a holomorphically convex manifold is entirely similar, so we will content
ourselves to indicate the required additional arguments at the end.

Proof of Theorem 1.1. First of all, we reduce the proof of Theorem 1.1 to the case when v has
divisorial singularities. Since 1) has analytic singularities, there exists a modification 7: X’ — X
such that the pull-back 7% has divisorial singularities. For the singular hermitian line bundle
(E', 1) := (r*E,7*h) and the quasi-psh function ¢’ := 7*1), we can easily check that

m(Kx @ B @I(We ™)) = Kx ® E®ZI(he ),
m.(Kx @ ' @Z(h)) = Kx @ E®Z(h).
Hence we obtain the following commutative diagram :

HU(X,Kx ® E®I(he ™)) —— HU(X, Kx ® E®Z(h))

%lﬂ* O J(ﬂ'*

HYX' Kx @ E'@Z(We V) 21— H(X', Kx @ E' @ Z(})),

where f, g are the morphisms induced by the natural inclusions and 7* is the natural edge
morphism. It follows that the left edge morphism 7* is an isomorphism since the curvature of
the singular hermitian metric A’ e on E'is semi-positive by the assumption. Indeed, even if
I/ does not have analytic singularities, we can see that

Rir (Kx @ E' @ Z(We ")) = 0 for every ¢ > 0

by [Mat16b, Corollary 1.5]. (In the case of X being a projective variety, a relatively easy proof
can be found in [FM16].) If Theorem 1.1 can be proven when v has divisorial singularities, it
follows that the morphism ¢ in the above diagram is injective since (E',h’') = (7*E,7*h) and
' = 7w satisfy the assumptions in Theorem 1.1 and ¢’ has divisorial singularities. Therefore
the morphism f is also injective by the commutative diagram.

Now we explain the idea of the proof of Theorem 1.1. If we can obtain equisingular approxi-
mations h. of h satisfying the following properties:

Oph. + 00 > —ew and Opn +(1+ §)i00) > —ew,

then a proof similar to [FM16] works, where w is a fixed K&hler form on X. In the case when
1) has divisorial singularities, we can attain either of the above curvature properties, but we do
not know whether we can attain them at the same time. For this reason, we will look for an
essential curvature condition arising from the assumptions on the curvatures in Theorem 1.1, in
order to use the “twisted” Bochner-Kodaira-Nakano identity.

From now on, we consider a quasi-psh ¥ with divisorial singularities. Then there exist an
effective R-divisor D and a smooth (1, 1)-form v on X such that

- 1

%881# = [D] + by Y
in the sense of (1,1)-currents, where [D] denotes the current of the integration over D. For
the irreducible decomposition D = Zf\il a;D; and the defining section ¢; of D;, we can take a
smooth hermitian metric b; on D; such that

N
e’ = [slj == [talp [talpe® - [tnfpey  and  — vy = Oy(D) := Y @Oy, (Dy).
=1
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For a positive number 0 < ¢ < 1, we define the continuous functions ¢ and 1 on X by

1
o=o0.:=log(|s|} +¢) and n=rn.:= P x(o),

where x(t) :=t — log(—t).

Remark 3.1. (i) We may assume that |s|? < 1/5 by subtracting a positive constant from .
Further we may assume that o < log(1/5) and 1 < x/(¢) < 7/4 by choosing a sufficiently small
c>0.

(ii) Further, the function 7 is a continuous function on X with n > 1/c. The function 7 is
smooth on X \ D, but it need not be smooth on X since |s|? is not smooth in the case when
0 < a; < 1 for some 1.

Throughout the proof, we fix a Kéahler form w on X. The following proposition gives a
suitable approximation of a singular hermitian metric h on FE, which enables us to use the
twisted Bochner-Kodaira-Nakano identity. The proof is based on the argument in [Ohs04],
[Fuj13] and the equisingular approximation theorem in [DPS01, Theorem 2.3].

Proposition 3.2. There exist singular hermitian metrics {h:}o<e<1 on E with the following
properties:

(a) he is smooth on X \ Z., where Z. is a proper subvariety on X.
(b) her < hen < h holds on X for e’ >¢€" > 0.

(c) Z(h) = Z(h.) and Z(he™¥) = Z(h.e™¥) on X.

(d) n(On(E) +~) —i00n —n~2ion A dn > —ew on X \ D.

(e) For arbitrary t > 0, by taking a sufficiently small € > 0, we have

/e_t¢ — e < 00,

where ¢ (resp. ¢c) is a local weight of h (resp. he).

Proof. We fix a a sufficiently small ¢ with 7¢/4 < 4. Then, by Remark 3.1, we can easily check
that

(AN
>,

VOl 1 7,
77(!8!§+0) 4n 4

In particular, it follows that

/ 2
O + (1—}-@)720 on X
n(lsli +¢)

since 9 has divisorial singularities and satisfies the assumptions in Theorem 1.1. By applying
the equisingular approximation theorem ([DPS01, Theorem 2.3]) to h, we can take singular
hermitian metrics {h:}o<ew1 on E satisfying properties (a), (b), (e), the former conclusion
of (¢), and the following curvature property:

/ 2

X (J)‘S‘b

@hg + <1 + 7>’y > —esw on X.
n(]sl3 + ¢)

Now we check property (d) from the above curvature property. The function 7 may not be
smooth on X, but it is smooth on X \ D. Therefore the same computation as in [Ohs04] and
[Fuj13] works on X \ D. In particular, from a complicated but straightforward computation, we
obtain

c X"(o)

¥(0)]s]2
Y @)sE X (0)?

—i00n = —
K |s|2+ ¢

Oy(D) + ( )z’@n A On
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on X \ D (see [Fujl3] for the precise computation). Then, by —y = ©4(D) on X \ D, we can
see that

- 1. =
n(On. (E) + ) —i00n — ?1377 A On

e X Iy - Y (0)]sl2
~(SE * w0 )0 O+ n(Bn (B + (14 S )

c X"(o) 1y, —~
> + — —)iOn N On — enw
<x<a>|s|z X' (0)? n2> T En

on X \ D. A straightforward computation yields that x”(c)/x’(c)? > 1/5?, and thus the first
term is semi-positive. Since 7 is bounded above, we infer that property (d) holds.

Finally we check the last conclusion of property (c) by proving the following lemma, which can
be obtained from the strong openness theorem (see [GZ15], [Lem14], [Hiel4]) and property (e).

Lemma 3.3. For a quasi-psh function ¢, we have Z(he=%) = Z(h.e~%?). In particular, we obtain
the last conclusion of property (c).

Proof. We have the inclusion Z(he= %) C Z(h.e~¥) by he < h. To get the converse inclusion, we
consider a local holomorphic function g such that |g|2e~¥~% is integrable, where ¢. (resp. ¢) is
a local weight of h. (resp. h). Then Holder’s inequality yields

/\g|2 —¢— so_/‘g|2e p—te o =P+ 0:
( 9p — 1/p o 1/q
< /]g! Pe p(w+¢s)) .(/e a(¢ ¢s)) ’

where p, ¢ are real numbers such that 1/p+1/¢ = 1 and p > 1. By the strong openness theorem,
the function | g|2pe*p(9"+¢f) is integrable when p is sufficiently close to one. On the other hand,

we have
/e—q(¢—¢s) 1= /eq¢e (6—q¢ _ e—q¢a) < sup e?% / (e—q¢ _ e_qus)‘
The right hand side is finite for a sufficiently small ¢ by property (e). O
This concludes the proof of Proposition 3.2. g

From now on, we proceed to prove Theorem 1.1 by using Proposition 3.2. In the same
way as in [FM16, Section 5], one constructs a family of complete Kéhler forms {w: s}o<s<1 on
Y. := X \ (Z: U D) with the following properties:

(A) wes is a complete Kéhler form on Y, := X \ (Z. U D) for every § > 0.

(B) we5 > w on Y, for every § > 0.

(C) For every point p in X, there exists a bounded function ¥, s on an open neighborhood
B, such that w. 5 = i@g\lle’(; on B, and W, s converges uniformly to a bounded function
that is independent of €.

For simplicity, we put H := he % and H, := h.e”¥. We consider a cohomology class 3 €
HY(X,Ky ® E ® I(H)) such that 8 = 0 € HI(X,Kyx ® E ® Z(h)). By the De Rham-Weil
isomorphism

q+1
Kerd : L3l (B) e — Lig) " (B)pe
— T :
Imo: L?QSI (E)H,w — L&?(E)H,w
the cohomology class 8 can be represented by a 0-closed E-valued (n, ¢)-form u with ||u|| g, < o0
(that is, g = {u}). Here La)’(E)H,w is the L2-space of E-valued (n, e)-forms on X with respect
to the L%norm || ||z, defined by

o3 = /X o 2y Vi,

1

HY(X,Kx ® EQZ(H))

)
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where dV,, := w"/n! and n := dim X. For the L*-norm || e ||z, . ; defined by

o125 = s = [ 1@ B Vo
one can easily check that
(29) lulles < llullrw. s < llullaw < oo

Indeed, the first inequality is obtained from property (b), and the second inequality is obtained
from property (B) for w, s (for example see [FM16, Lemma 2,4]). In particular, we see that u
belongs to the L2-space

Lis{(E)es = L5y (Ye, E) e,

of E-valued (n, ¢)-forms on Y, (not X') with respect to ||e||. 5. By the orthogonal decomposition
(see for example [Mat16a, Proposition 5.8])

Lil(F)es =1md @ HI{(F) © Imd, 5,

the F-valued form u can be decomposed as follows:

(30) u=0w.s+u.s forsome w.s € Domd C L?Z’gl_l(E)E’g, and wucs € Hg’g(E).

Here 5;5 is (the maximal extension of) the formal adjoint of the d-operator and H_"{(E) is the
space of harmonic forms on Y, that is,

HIY(B) = {w € Li3](E)-5|dw =0 and J. 5w =0.}.
Proposition 3.4 (resp. Proposition 3.5) can be proved by the same method as in [FM16,
Proposition 5.4, 5.6, 5.7] (resp. [FM16, Proposition 5.9, 5.10]), so we omit the proofs here.

We 8§

Proposition 3.4. If we have

lim lim HUE,SHK,hs,we,a =0,
e—=086—0

for every relatively compact set K € X \ D, then the cohomology class (B is zero in H1(X, Kx ®
E®I(H)). Here || | f .. ; denotes the L*-norm on K with respect to he (not H) and w.s.

Proposition 3.5. There exists v, 5 € L?Q")z_l(E)hE’w&& satisfying the following properties:

(31) Ov-5 =u.s and ﬁ llveslle,s is bounded by a constant independent of €.
—

Remark 3.6. In general, we have
L?Q’).(E)Eyé = L?Q’;(E)Haaws,é ; L?é;(E)h57we,5’
and thus v, s may not be L?-integrable with respect to H..

For the above solution v, s of the O-equation, by using the density lemma, we can take a
family of smooth E-valued forms {v. 5 }72, with the following properties:

n,e

(32) Vesk — Ues and 51)575,;6 — 51)5’5 = Ug s In L(Q) (E)hg,ws,5~

Now we consider the level set X, := {z € X | —|s|? < ¢} € X \ D for a negative number c. The
set of the critical values of |s|? is of Lebesgue measure zero from Sard’s theorem. Hence, for a
given relatively compact K € X \ D, we can choose —1 < ¢ < 0 such that

KeX.:={xeX|—|s|f<c} and ds|} #0 at every point in X..
Then, by [Mat16b, Proposition 2.5, Remark 2.6] (see also [FK, (1.3.2) Proposition]), we obtain
(33) (B tesDxgnmn s = (s Do st xanosns s — (esis OISV et Voo s
for almost all d € |¢ — a,c+ a[, where a is a sufficiently small positive number. Here 526’%, 5 18

,®

the formal adjoint of the d-operator in L?Q) (E)he w5 and ((e, .))BXd7h57wa,§ is the inner product
on the boundary 90X, defined by

ORI / (@, D)., 5=,
’ 0Xy4
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for smooth E-valued forms a, b, where dS; s denotes the volume form on 90X, defined by dS; 5 :=
— % d\s|§/|d|8|§ hew. ; and x denotes the Hodge star operator with respect to wes. Note that

dVe5 = dS. s Nd|s|?. One can easily see that

kli;[{.lo «gveaévk’ u€,5>>Xd,h5,w575 = <<5'U€?§, u€,5>>Xd,h5,w575 = <<u€757 usyts»Xd,hg,wsﬁ

by (32), and thus it is sufficient to show that the right hand side of equality (33) converges to
zero. For this purpose, we first prove the following proposition.

Proposition 3.7.
B T [|(B]312) e .5 = 0.
Proof of Proposition 3.7. By property (d) and property (B), we have
n(On. (E) +~) —i00n > n~%0n A On — ew
> 020 A\ On — EWe 5.

Since u, s is harmonic with respect to H, and w, 5, we have 5:,5%75 =0 and 5%75 = 0. Further
we have v = i99¢y on X \ D. Therefore we obtain

0> —|v/nD"ue 5|12 5 = lV/nduc 5|25 + IV/n0z sue 5125 = V1D ue 412 5
= (n©m. — i00n) Aue 5, uc5). 5+ 2Re((n A 8. sue 5, ue5). 5
= ( (779Hs - i@gn)AuE,g,u&g»eﬁ
> (n%i0n A On)Aue s, ue 5)) . 5 — €qluc 5112 5-

from the twisted Bochner-Kodaira-Nakano identity (see [Ohs04, Lemma 2.1] or [Fuj13, Propo-
sition 2.20. 2.21]). On the other hand, one can easily check that

((n~%i0m N o) Aue 5,ue5)) . 5 = lIn~ " (On) uesll2 5 = In " * O = ue 512 5,
X/(U) 2
= —x'(0)90 = — 270542,
(olz + o) 1

By the above arguments, we conclude that

X'(0) 5
eqllucsll?s > !!77(7(3\8\5)*%,5 25

sl +¢)
It follows that the left hand side converges to zero from ||ul| g > ||ue sllc,5. Further the function
X (o) /n(]s|2 + ¢) is bounded below since we have
1
5> slf, C>n, X'(0)>1
for some constant C'. This completes the proof. O

Finally we prove the following proposition by using Proposition 3.7.
Proposition 3.8. (i) For a relatively compact set K € X \ D, we have

_— ok
lim lim lim (v 0y su =0
B T A « 6,k Uh 6 875»K,h5,w5,5

(ii) For almost all d € Jc — a,c + a[, we have

lim lim lim ((ve 5.5, (D]5]}) *ue.6)ox, . . 5 = 0-

e—+05—-0k—0 ’
Proof of Proposition 3.8. In general, we have the formula Dju = G~'9(Gu) for a smooth her-
mitian metric g, where G is a local function representing g. Let G. be a local function rep-
resenting h.. We remark that G.e™¥ is a local function representing H.. By the definition of
b =

*
Oc5 = On, .5 we have

%

0=0,sucs = —* Dl *ues = —* (Gee ™) 1O(Gee™ « Ue ),
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and thus we obtain
5;87% JUes = — % (GE)_18(6¢G56_¢ *Ug5) = — * e x u&ge_w = —(5|5|§)*u5756_¢.
Now we have

. —=* . =%
Jim | (Ve85 O o 526D Koo 5| < vz skl e he e 5 19 o, 5 e 6111 he o 5

=%
= HUE,6HK7h57ws,5||8h5,w5’5u5,6HKyhsyws,é'
Since limg_0 ||ve 5| K hew. 5 Can be bounded by a constant that is independent of ¢, it is sufficient

to show that lim._,olims_,0o ||525,w55u8,5”K,hg7w5,5 = 0. We have e %/2 = 1/|slp < Ck on K for
some constant Cx > 0, since K is a relatively compact set in X \ D. Hence we see that

10h. . stie sl Kohews = || = Ols[g) vese™ i s < Crcll@ls]h) e sl e 5-

We obtain the first statement (i) since the right hand side converges to zero by Proposition 3.7.
Now we prove statement (ii). By the Cauchy-Schwarz inequality, we have
Al e|2 2 Al e|2 Al el2
|(Ve.gies (O1515) e Do hewwns] < (Vesks VeskDoxyne . 5 (Ol5]p) ues (Ols[5) e 6) ox, he o 5

By Fubini’s theorem, we obtain

/ (Ve s Ve 51, o, S g = / skl AV < les
d€]c—a,c+a ’ c—a<—|s|Z<cta

2
s
By Fatou’s lemma, we see that

/ lim lim lm (2,5, Ve,6.%) 9 e . @926 < lim lim [vesl7. 5 < o0
d€lc—a,c+a] €050 k—oo ’ e—06—0

Therefore the integrand of the left hand side is finite for almost all d € (¢ — a,c+ a). On the
other hand, by the same argument, we see that

[t i (@19, FIS) D052 <l i D)
d€lc—a,c+al e—06—0 ’ e—05—0

’hsywe,(s =0.

Therefore the integrand of the left hand side is zero for almost all d € (¢ — a,c + a). This
completes the proof. O

Theorem 1.1 is now a consequence of Proposition 3.4, Proposition 3.8, and equation (33). O

Remark 3.9. In the case of a holomorphically convex manifold, a proof based on injectivity
theorems can be obtained by a slight modification of the above proof. The only problem is
that an E-valued differential form u representing a given cohomology class is not necessarily
L?-integrable but just locally L2-integrable. Since X admits a holomorphic map 7 : X — S to
a Stein space S, the form u is L?-integrable with respect to the metric he=¥e~® for a suitable
psh exhaustion function ® on X. Then it is not hard to check that our arguments still work by
replacing h with he™?.

Remark 3.10. It would be interesting to know whether the hypothesis that 1 has analytic
singularities is really needed. The main statement still makes sense when v has arbitrary
analytic singularities, and one may thus guess that the result can be extended by performing a
further regularization of .
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