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1 Introduction and preliminaries

The purpose of this paper is to generalize the celebrated L2 extension theorem of Ohsawa and

Takegoshi [18] under the weakest possible hypotheses, along the lines of [5, 16]. Especially, the ambi-

ent complex manifold X is a Kähler manifold that is only assumed to be holomorphically convex, and is

not necessarily compact; by the Remmert reduction theorem, this is the same as a Kähler manifold X

that admits a proper holomorphic map π : X → S onto a Stein complex space S. This allows in particular

to consider relative situations over a Stein base. We consider a holomorphic line bundle E → X equipped

with a singular hermitian metric h, namely a metric which can be expressed locally as h = e−φ where φ is

a quasi-psh function, i.e., a function that is locally the sum φ = φ0+u of a plurisubharmonic function φ0

and of a smooth function u. Such a bundle admits a curvature current

ΘE,h := i∂∂φ = i∂∂φ0 + i∂∂u, (1.1)

which is locally the sum of a positive (1, 1)-current i∂∂φ0 and a smooth (1, 1)-form i∂∂u. Our goal is

to extend sections that are defined on a (non necessarily reduced) complex subspace Y ⊂ X, when the
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structure sheaf OY := OX/I(e−ψ) is given by the multiplier ideal sheaf of a quasi-psh function ψ with

neat analytic singularities, i.e., locally on a neighborhood V of an arbitrary point x0 ∈ X we have

ψ(z) = c log
∑

|gj(z)|2 + v(z), gj ∈ OX(V ), v ∈ C∞(V ). (1.2)

Let us recall that the multiplier ideal sheaf I(e−φ) of a quasi-psh function φ is defined by

I(e−φ)x0 =

{
f ∈ OX,x0 ; ∃U ∋ x0,

∫
U

|f |2e−φdλ < +∞
}

(1.3)

with respect to the Lebesgue measure λ in some local coordinates near x0. As usual, we also denote

by KX = ΛnT ∗
X the canonical bundle of an n-dimensional complex manifold X. As is well known,

I(e−φ) ⊂ OX is a coherent ideal sheaf (see [3]). Our main result is given by the following general

statement.

Theorem 1.1. Let E be a holomorphic line bundle over a holomorphically convex Kähler manifold X.

Let h be a possibly singular hermitian metric on E, ψ a quasi-psh function with neat analytic singularities

on X. Assume that there exists a positive continuous function δ > 0 on X such that

ΘE,h + (1 + αδ)i∂∂ψ > 0 in the sense of currents, for all α ∈ [0, 1]. (1.4)

Then the morphism induced by the natural inclusion I(he−ψ) → I(h),

Hq(X,KX ⊗ E ⊗ I(he−ψ)) → Hq(X,KX ⊗ E ⊗ I(h)) (1.5)

is injective for every q > 0. In other words, the morphism induced by the natural sheaf surjection

I(h) → I(h)/I(he−ψ),

Hq(X,KX ⊗ E ⊗ I(h)) → Hq(X,KX ⊗ E ⊗ I(h)/I(he−ψ)) (1.6)

is surjective for every q > 0.

Remark 1.2. If h is smooth, we have I(h) = OX and I(h)/I(he−ψ) = OX/I(e−ψ) := OY , where Y

is the zero subvariety of the ideal sheaf I(e−ψ). Then for q = 0, the surjectivity statement can be

interpreted as an extension theorem for holomorphic sections, with respect to the restriction morphism

H0(X,KX ⊗ E) → H0(Y, (KX ⊗ E) |Y ). (1.7)

In general, the quotient sheaf I(h)/I(he−ψ) is supported in an analytic subvariety Y ⊂ X, which is the

zero set of the quotient ideal

JY := I(he−ψ) : I(h) = {f ∈ OX ; f · I(h) ⊂ I(he−ψ)},

and (1.6) can be considered as a restriction morphism to Y .

The crucial idea of the proof is to prove the results (say, in the form of the surjectivity statement),

only up to approximation. This is done by solving a ∂-equation

∂uε + wε = v,

where the right-hand side v is given and wε is an error term such that ∥wε∥ = O(εa) as ε→ 0, for some

constant a > 0. A twisted Bochner-Kodaira-Nakano identity introduced by Donnelly and Fefferman [7],

and Ohsawa and Takegoshi [18] is used for that purpose, with an additional correction term. The version

we need can be stated as follows.

Proposition 1.3 (See [5, Proposition 3.12]). Let X be a complete Kähler manifold equipped with a

(non necessarily complete) Kähler metric ω, and let (E, h) be a Hermitian vector bundle over X. Assume

that there are smooth and bounded functions η, λ > 0 on X such that the curvature operator

B = Bn,qE,h,ω,η,λ = [ηΘE,h − i∂∂η − iλ−1d∂η ∧ ∂η,Λω] ∈ C∞(X,Herm(Λn,qT ∗
X ⊗ E))
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satisfies B + εI > 0 for some ε > 0 (so that B can be just semi-positive or even slightly negative; here I

is the identity endomorphism). Given a section v ∈ L2(X,Λn,qT ∗
X ⊗ E) such that ∂v = 0 and

M(ε) :=

∫
X

⟨(B + εI)−1v, v⟩ dVX,ω < +∞,

there exists an approximate solution fε ∈ L2(X,Λn,q−1T ∗
X ⊗ E) and a correction term wε ∈ L2(X,Λn,qT ∗

X

⊗ E) such that ∂uε = v − wε and∫
X

(η + λ)−1|uε|2 dVX,ω +
1

ε

∫
X

|wε|2 dVX,ω 6M(ε).

Moreover, if v is smooth, then uε and wε can be taken smooth.

In our situation, the main part of the solution, namely uε, may very well explode as ε → 0. In

order to show that the equation ∂u = v can be solved, it is therefore needed to check that the space of

coboundaries is closed in the space of cocycles in the Fréchet topology under consideration (here, the L2
loc

topology), in other words, that the related cohomology group Hq(X,F) is Hausdorff. In this respect, the

fact of considering ∂-cohomology of smooth forms equipped with the C∞ topology on the one hand, or

cohomology of forms u ∈ L2
loc with ∂u ∈ L2

loc on the other hand, yields the same topology on the resulting

cohomology group Hq(X,F). This comes from the fact that both complexes yield fine resolutions of the

same coherent sheaf F , and the topology of Hq(X,F) can also be obtained by using Čech cochains with

respect to a Stein covering U of X. The required Hausdorff property then comes from the following

well-known fact.

Lemma 1.4. Let X be a holomorphically convex complex space and F a coherent analytic sheaf over X.

Then all cohomology groups Hq(X,F) are Hausdorff with respect to their natural topology (induced by

the Fréchet topology of local uniform convergence of holomorphic cochains)1).

In fact, the Remmert reduction theorem implies that X admits a proper holomorphic map π : X → S

onto a Stein space S, and Grauert’s direct image theorem shows that all direct images Rqπ∗F are coherent

sheaves on S. Now, as S is Stein, Leray’s theorem combined with Cartan’s theorem B tells us that we

have an isomorphism Hq(X,F) ≃ H0(S,Rqπ∗F). More generally, if U ⊂ S is a Stein open subset, we

have

Hq(π−1(U),F) ≃ H0(U,Rqπ∗F) (1.8)

and when U b S is relatively compact, it is easily seen that this is a topological isomorphism of Fréchet

spaces since both sides are OS(U) modules of finite type and can be seen as a Fréchet quotient of

some direct sum OS(U)⊕N by looking at local generators and local relations of Rqπ∗F . Therefore,

Hq(X,F) ≃ H0(S,Rqπ∗F) is a topological isomorphism and the space of sections in the right-hand side

is a Fréchet space. In particular, Hq(X,F) is Hausdorff.

The isomorphism (1.8) shows that it is enough to prove Theorem 1.1 locally over X, i.e., we can

replace X by X ′ = π−1(S′) b X, where S′ b S. Therefore, we can assume that δ > 0 is a constant

rather than a continuous function.

2 Proof of the extension theorem

In this section, we give a proof of Theorem 1.1 based on a generalization of the arguments of [5, Theo-

rem 2.14]. We start by proving the special case of the extension result for holomorphic sections (q = 0).

Theorem 2.1. Let (X,ω) be a holomorphically convex Kähler manifold and ψ be a quasi-psh function

with neat analytic singularities. Let E be a line bundle with a possibly singular metric h, and Y the

1) It was pointed out to us by Professor Takeo Ohsawa that this result does not hold under the assumption that X is

weakly pseudoconvex, i.e., if we only assume that X admits a smooth psh exhaustion. A counter-example can be derived

from [13]. As a consequence, it is unclear whether the results of the present paper extend to the Kähler weakly pseudoconvex

case, although the main L2 estimates are still valid in that situation.
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support of the sheaf I(h)/I(he−ψ), along with the structure sheaf OY := I(he−ψ) : I(h). Assume that

there is a continuous function δ > 0 such that

iΘE,h + (1 + αδ)i∂∂ψ > 0 in the sense of currents, for all α ∈ [0, 1].

Then the restriction morphism

H0(X,OX(KX ⊗ E)⊗ I(h)) → H0(Y,OX(KX ⊗ E)⊗ I(h)/I(he−ψ) |Y )

is surjective.

Proof. (a) Let us first assume for simplicity that h is smooth. We will explain the general case later.

Then I(h) = OX and I(h)/I(he−ψ) = OY = OX/I(e−ψ). After possibly shrinking X into a relatively

compact holomorphically convex open subset X ′ = π−1(S′) b X, we can suppose that δ > 0 is a constant

and that ψ 6 0, after subtracting a large constant to ψ. Also, without loss of generality, we can assume

that ψ admits a discrete sequence of “jumping numbers”

0 = m0 < m1 < · · · < mp < · · · such that I(mψ) = I(mpψ) for m ∈ [mp,mp+1[. (2.1)

Since ψ is assumed to have analytic singularities, this follows from using a log resolution of singularities,

thanks to the Hironaka desingularization theorem (by the much deeper result of [11] on the strong

openness conjecture, one could even possibly eliminate the assumption that ψ has analytic singularities).

We fix here p such that mp 6 1 < mp+1, and in the notation of [5], we let Y = Y (mp) be defined by the

non necessarily reduced structure sheaf OY = OX/I(e−ψ) = OX/I(e−mpψ).

Step 1 (Construction of a smooth extension). Take

f ∈ H0(Y,OX(KX ⊗ E) |Y ) = H0(X,OX(KX ⊗ E)⊗OX/I(e−mpψ)).

Let U = (Ui) be a Stein covering of X and let (ρi) be a partition of unity subordinate to (Ui). Thanks

to the exact sequence

0 → I(e−ψ) → OX → OX/I(e−ψ) → 0, (2.2)

we can find an f̃i ∈ H0(Ui,OX(KX ⊗ E)) such that

f̃i |Y ∩Ui
= f |Y ∩Ui

.

Then (2.2) implies that

f̃i − f̃j ∈ H0(Ui ∩ Uj ,OX(KX ⊗ E)⊗ I(e−ψ)). (2.3)

As a consequence, the smooth section f̃ :=
∑
i ρi · f̃i is a smooth extension of f and satisfies ∂f̃ =∑

i(∂ρi) · (f̃i − f̃j) on Uj , hence∫
X

|∂f̃ |2ω,he−ψdVX,ω =

∫
X

∑
j

ρj

∣∣∣∣∑
i

(∂ρi) · (f̃i − f̃j)

∣∣∣∣2
ω,h

e−ψdVX,ω < +∞. (2.4)

Step 2 (L2-estimates). We follow here the arguments of [5, proof of Theorem 2.14, p. 217]. Let t ∈ Z−

and let χt be the negative convex increasing function defined in [5, (5.8∗), p. 211]. Put ηt := 1− δ ·χt(ψ)
and λt := 2δ

(χ2
t (ψ))

2

χ′′
t (ψ)

. We set

Rt := ηt(ΘE,h + i∂∂ψ)− i∂∂ηt − λ−1
t i∂ηt ∧ ∂ηt

= ηt(ΘE,h + (1 + δη−1
t χ′

t(ψ))i∂∂ψ) +
δ · χ′′

t (ψ)

2
i∂ψ ∧ ∂ψ.

Note that χ′′
t (ψ) > 1

8 on Wt = {t < ψ < t+ 1}. The curvature assumption (1.4) implies

ΘE,h + (1 + δη−1
t χ′

t(ψ)) i∂∂ψ > 0 on X.
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As in [5], we find

Rt > 0 on X (2.5)

and

Rt >
δ

16
i∂ψ ∧ ∂ψ on Wt = {t < ψ < t+ 1}. (2.6)

Let θ : [−∞,+∞[ → [0, 1] be a smooth non increasing real function satisfying θ(x) = 1 for x 6 0, θ(x) = 0

for x > 1 and |θ′| 6 2. By applying the L2 estimate (see Proposition 1.3), for every ε > 0 we can find

sections ut,ε and wt,ε satisfying

∂ut,ε + wt,ε = vt := ∂(θ(ψ − t) · f̃) (2.7)

and∫
X

(ηt + λt)
−1|ut,ε|2ω,he−ψdVX,ω +

1

ε

∫
X

|wt,ε|2ω,he−ψdVX,ω 6
∫
X

⟨(Rt + εI)−1vt, vt⟩e−ψdVX,ω, (2.8)

where

vt = ∂(θ(ψ − t)f̃) = θ′(ψ − t) ∂ψ ∧ f̃ + θ(ψ − t) ∂f̃ . (2.9)

Combining (2.5), (2.6), (2.8) and (2.9), we get
∫
X
|ut,ε|2ω,he−ψdVX,ω < +∞ and∫

X

|wt,ε|2ω,he−ψdVX,ω 6 128 ε

δ

∫
{t<ψ<t+1}

|f̃ |2ω,he−ψdVX,ω + 2

∫
{ψ<t+1}

|∂f̃ |2ω,he−ψdVX,ω. (2.10)

We now estimate the right-hand side of (2.10). Since f̃ is smooth, we have an obvious upper bound of

the first term ∫
{t<ψ<t+1}

|f̃ |2ω,he−ψdVX,ω 6 C1e
−t, (2.11)

where C1 is the C0 norm of f̃ . For the second term, thanks to (2.1), (2.3) and (2.4), we have∫
X

|∂f̃ |2ω,he−(1+α)ψdVX,ω < +∞ (2.12)

for any α ∈ ]0,mp+1 − 1[. As a consequence, we get∫
{ψ<t+1}

|∂f̃ |2ω,he−ψdVX,ω 6 C2e
αt (2.13)

for some constant C2 depending only on α. By taking ε = e(1+α)t, (2.10), (2.11) and (2.13) imply∫
X

|wt,ε|2ω,he−ψdVX,ω 6 C3e
αt = O(ε

α
1+α ), (2.14)

for some constant C3, whence the error tends to 0 as t→ −∞ and ε→ 0.

Step 3 (Final conclusion). Putting everything together and redefining ut = ut,ε and wt = wt,ε for

simplicity of notation, we get

∂(θ(ψ − t) · f̃ − ut) = wt,

∫
X

|ut|2he−ψdVX,ω < +∞ (2.15)

and

lim
t→−∞

∫
X

|wt|2ω,he−ψdVX,ω = 0. (2.16)

After shrinking X, we can assume that we have a finite Stein covering U = (Ui), where the Ui are bi-

holomorphic to bounded pseudoconvex domains. The standard Hörmander L2 estimates then provide L2

sections st,j on Uj such that ∂st,j = wt on Uj and

lim
t→−∞

∫
Uj

|st,j |2ω,he−ψdVX,ω = 0. (2.17)
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Then

∂

(
θ(ψ − t) · f̃ − ut −

∑
j

ρjst,j

)
= −

∑
j

(∂ρj) · st,j on X

= −
∑
j

(∂ρj) · (st,j − st,i) on Ui. (2.18)

As ∂(st,j − st,i) = 0 on Ui ∩Uj , the difference is holomorphic and the right-hand side of (2.18) is smooth.

Moreover, (2.17) shows that these differences converge uniformly to 0, hence the right-hand side of (2.18)

converges to 0 in C∞ topology. The left-hand side implies that this is a coboundary in the C∞ Dolbeault

resolution of OX(KX⊗E). By applying Lemma 1.4, we conclude that there is a C∞ section σt of KX⊗E
converging uniformly to 0 on compact subsets of X as t → −∞, such that ∂σt =

∑
j(∂ρj) · st,j on X.

This implies that

f̃t := θ(ψ − t) · f̃ − ut −
∑
j

ρjst,j + σt

is holomorphic on X. Hörmander’s L2 estimates also produce local smooth solutions σt,i on Ui with the

additional property that limt→−∞
∫
Ui

|σt,i|2ω,he−ψdVX,ω = 0. Therefore,

f̃t,i := θ(ψ − t) · f̃ − ut −
∑
j

ρjst,j + σt,i

is holomorphic on Ui and f̃t − f̃t,i converges uniformly to 0 on compact subsets of Ui. However, by

construction, f̃t,i − f̃i is a holomorphic section on Ui that satisfies the L2 estimate with respect to the

weight e−ψ, hence f̃t,i− f̃i is a section of OX(KX ⊗E)⊗I(e−ψ) on Ui, in other words the image of f̃t,i in

H0(Ui,OX(KX ⊗ E)⊗OX/I(e−ψ))

coincides with f |Ui
. As a consequence, the image of f̃t in

H0(X,OX(KX ⊗ E)⊗OX/I(e−ψ)) = H0(Y, (KX ⊗ E) |Y )

converges to f . By the direct image argument used in the preliminary section, this density property

implies the surjectivity of the restriction morphism to Y .

(b) We now prove the theorem for the general case when h = e−φ is not necessarily smooth. We can

reduce ourselves to the case when ψ has divisorial singularities (see [5] or the next section for a more

detailed argument). Let us pick a section

f ∈ H0(X,OX(KX ⊗ E)⊗ I(h)/I(he−ψ)).

By using the same reasoning as in Step 1, we can find a smooth extension f̃ ∈ C∞(X,KX ⊗E) of f such

that ∫
X

|∂f̃ |2ω,he−ψdVX,ω < +∞. (2.19)

For every t ∈ Z− fixed, as ψ has divisorial singularities, we still have

ΘE,h + (1 + δη−1
t χ′

t(ψ))(i∂∂ψ)ac > 0 on X,

where (i∂∂ψ)ac is the absolutely continuous part of i∂∂ψ. The regularization techniques of [6] and [4,

Theorem 1.7, Remark 1.11] (see also the next section) produce a family of singular metrics {ht,ε}+∞
k=1,

which are smooth in the complement X \ Zt,ε of an analytic set, such that I(ht,ε) = I(h), I(ht,εe−ψ) =
I(he−ψ) and

ΘE,ht,ε + (1 + δη−1
t χ′

t(ψ)) i∂∂ψ > −1

2
εω on X.

The additional error term − 1
2εω is irrelevant when we use Proposition 1.3, as it is absorbed by taking the

hermitian operator B + εI. Therefore for every t ∈ Z−, with the adjustment ε = eαt, α ∈ ]0,mk+1 − 1[,
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we can find a singular metric ht = ht,ε, which is smooth in the complement X \ Zt of an analytic set,

such that I(ht) = I(h), I(hte−ψ) = I(he−ψ) and ht ↑ h as t → −∞, and approximate solutions of the

∂-equation such that

∂(θ(ψ − t) · f̃ − ut) = wt,

∫
X

|ut|2ω,ht
e−ψdVX,ω < +∞

and

lim
t→−∞

∫
X

|wt|2ω,ht
e−ψdVX,ω = 0.

Proposition 1.3 can indeed be applied since X \ Zt is complete Kähler (at least after we shrink X a

little bit as X ′ = π−1(S′), see [1]). The theorem is then proved by using the same argument as in

Step 3; it is enough to notice that the holomorphic sections st,j − st,i and f̃t,i− f̃i satisfy the L2-estimate

with respect to (ht, ψ) (instead of the expected (h, ψ)), but the multiplier ideal sheaves involved are

unchanged. The Hausdorff property is applied to the cohomology group H1(X,OX(KX ⊗ E) ⊗ I(h))
instead of H1(X,KX ⊗ E), and the density property to the morphism of direct image sheaves

π∗(OX(KX ⊗ E)⊗ I(h)) → π∗(OX(KX ⊗ E)⊗ I(h)/I(he−ψ))

over the Stein space S.

Proof of the extension theorem for degree q cohomology classes. The reasoning is extremely similar, so

we only explain the few additional arguments needed. In fact, Proposition 1.3 can be applied right away

to arbitrary (n, q)-forms with q > 1, and the twisted Bochner-Kodaira-Nakano inequality yields exactly

the same estimates. Any cohomology class in

Hq(Y,OX(KX ⊗ E)⊗ I(h)/I(he−ψ))

is represented by a holomorphic Čech q-cocycle with respect to the Stein covering U = (Ui), say

(ci0···iq ), ci0···iq ∈ H0(Ui0 ∩ · · · ∩ Uiq ,OX(KX ⊗ E)⊗ I(h)/I(he−ψ)).

By the standard sheaf theoretic isomorphisms with Dolbeault cohomology (see [2]), this class is repre-

sented by a smooth (n, q)-form

f =
∑

i0,...,iq

ci0···iqρi0∂ρi1 ∧ · · · ∧ ∂ρiq

by means of a partition of unity (ρi) subordinate to (Ui). This form is to be interpreted as a form on

the (non reduced) analytic subvariety Y associated with the ideal sheaf J = I(he−ψ) : I(h) and the

structure sheaf OY = OX/J . We get an extension as a smooth (no longer ∂-closed) (n, q)-form on X by

taking

f̃ =
∑

i0,...,iq

c̃i0···iqρi0∂ρi1 ∧ · · · ∧ ∂ρiq ,

where c̃i0···iq is an extension of ci0···iq from Ui0 ∩ · · · ∩ Uiq ∩ Y to Ui0 ∩ · · · ∩ Uiq . Again, we can find

approximate L2 solutions of the ∂-equation such that

∂(θ(ψ − t) · f̃ − ut) = wt,

∫
X

|ut|2ω,ht
e−ψdVX,ω < +∞

and

lim
t→−∞

∫
X

|wt|2ω,ht
e−ψdVX,ω = 0.

The difficulty is that L2 sections cannot be restricted in a continuous way to a subvariety. In order to

overcome this problem, we play again the game of returning to Čech cohomology by solving inductively

∂-equations for wt on Ui0 ∩ · · · ∩ Uik , until we reach an equality

∂(θ(ψ − t) · f̃ − ũt) = w̃t := −
∑

i0,...,iq−1

st,i0···iq∂ρi0 ∧ ∂ρi1 ∧ · · · ∧ ∂ρiq (2.20)
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with holomorphic sections st,I = st,i0···iq on UI = Ui0 ∩ · · · ∩ Uiq , such that

lim
t→−∞

∫
UI

|st,I |2ω,ht
e−ψdVX,ω = 0.

Then the right-hand side of (2.20) is smooth, and more precisely has coefficients in the sheaf C∞ ⊗O
I(he−ψ), and w̃t → 0 in C∞ topology. A priori, ũt is an L2 (n, q)-form equal to ut plus a combination∑
ρist,i of the local solutions of ∂st,i = wt, plus

∑
ρist,i,j ∧ ∂ρj where ∂st,i,j = st,j − st,i, plus etc., and

is such that ∫
X

|ũt|2ω,ht
e−ψdVX,ω < +∞.

Since Hq(X,OX(KX ⊗ E) ⊗ I(he−ψ)) can be computed with the L2
loc resolution of the coherent sheaf,

or alternatively with the ∂-complex of (n, •)-forms with coefficients in C∞ ⊗O I(he−ψ), we may assume

that ũt ∈ C∞ ⊗O I(he−ψ), after playing again with Čech cohomology. Lemma 1.4 yields a sequence of

smooth (n, q)-forms σt with coefficients in C∞ ⊗O I(h), such that ∂σt = w̃t and σt → 0 in C∞-topology.

Then f̃t = θ(ψ− t) · f̃ − ũt−σt is a ∂-closed (n, q)-form on X with values in C∞⊗O I(h)⊗OX(E), whose

image in Hq(X,OX(KX ⊗ E)⊗ I(h)/I(he−ψ)) converges to {f} in C∞ Fréchet topology. We conclude

by a density argument on the Stein space S, by looking at the coherent sheaf morphism

Rqπ∗(OX(KX ⊗ E)⊗ I(h)) → Rqπ∗(OX(KX ⊗ E)⊗ I(h)/I(he−ψ)).

3 An alternative proof based on injectivity theorems

We give here an alternative proof based on injectivity theorems, in the case when X is compact Kähler.

The case of a holomorphically convex manifold is entirely similar, so we will content ourselves to indicate

the required additional arguments at the end.

Proof of Theorem 1.1. First of all, we reduce the proof of Theorem 1.1 to the case when ψ has divisorial

singularities. Since ψ has analytic singularities, there exists a modification π : X ′ → X such that the

pull-back π∗ψ has divisorial singularities. For the singular hermitian line bundle (E′, h′) := (π∗E, π∗h)

and the quasi-psh function ψ′ := π∗ψ, we can easily check that

π∗(KX′ ⊗ E′ ⊗ I(h′e−ψ
′
)) = KX ⊗ E ⊗ I(he−ψ),

π∗(KX′ ⊗ E′ ⊗ I(h′)) = KX ⊗ E ⊗ I(h).

Hence we obtain the following commutative diagram :

Hq(X,KX ⊗ E ⊗ I(he−ψ))

∼= π∗

��

f
//

	

Hq(X,KX ⊗ E ⊗ I(h))

π∗

��

Hq(X ′,KX′ ⊗ E′ ⊗ I(h′e−ψ′
))

g
// Hq(X ′,KX′ ⊗ E′ ⊗ I(h′)),

where f and g are the morphisms induced by the natural inclusions and π∗ is the natural edge morphism.

It follows that the left edge morphism π∗ is an isomorphism since the curvature of the singular hermitian

metric h′e−ψ
′
on E′ is semi-positive by the assumption. Indeed, even if h′ does not have analytic

singularities, we can see that

Rqπ∗(KX′ ⊗ E′ ⊗ I(h′e−ψ
′
)) = 0 for every q > 0

by [16, Corollary 1.5]. (In the case of X being a projective variety, a relatively easy proof can be found

in [10].) If Theorem 1.1 can be proven when ψ has divisorial singularities, it follows that the morphism g

in the above diagram is injective since (E′, h′) = (π∗E, π∗h) and ψ′ = π∗ψ satisfy the assumptions

in Theorem 1.1 and ψ′ has divisorial singularities. Therefore, the morphism f is also injective by the

commutative diagram.
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Now we explain the idea of the proof of Theorem 1.1. If we can obtain equisingular approximations hε
of h satisfying the following properties :

ΘE,hε + i∂∂ψ > −εω and ΘE,hε + (1 + δ)i∂∂ψ > −εω,

then a proof similar to [10] works, where ω is a fixed Kähler form on X. In the case when ψ has divisorial

singularities, we can attain either of the above curvature properties, but we do not know whether we can

attain them at the same time. For this reason, we look for an essential curvature condition arising from

the assumptions on the curvatures in Theorem 1.1, in order to use the “twisted” Bochner-Kodaira-Nakano

identity.

From now on, we consider a quasi-psh ψ with divisorial singularities. Then there exist an effective

R-divisor D and a smooth (1, 1)-form γ on X such that

i

2π
∂∂ψ = [D] +

1

2π
γ

in the sense of (1, 1)-currents, where [D] denotes the current of the integration over D. For the irreducible

decomposition D =
∑N
i=1 aiDi and the defining section ti of Di, we can take a smooth hermitian metric bi

on Di such that

eψ = |s|2b := |t1|2a1b1
|t2|2a2b2

· · · |tN |2aNbN
and − γ = Θb(D) :=

N∑
i=1

aiΘbi(Di).

For a positive number 0 < c≪ 1, we define the continuous functions σ and η on X by

σ = σc := log(|s|2b + c) and η = ηc :=
1

c
− χ(σ),

where χ(t) := t− log(−t).
Remark 3.1. (i) We may assume that |s|2b < 1/5 by subtracting a positive constant from ψ. Fur-

thermore, we may assume that σ < log(1/5) and 1 < χ′(σ) < 7/4 by choosing a sufficiently small

c > 0.

(ii) Furthermore, the function η is a continuous function on X with η > 1/c. The function η is smooth

on X \D, but it need not be smooth on X since |s|2b is not smooth in the case when 0 < ai < 1 for some i.

Throughout the proof, we fix a Kähler form ω on X. The following proposition gives a suitable

approximation of a singular hermitian metric h on E, which enables us to use the twisted Bochner-

Kodaira-Nakano identity. The proof is based on the argument in [9,17] and the equisingular approximation

theorem in [6, Theorem 2.3].

Proposition 3.2. There exist singular hermitian metrics {hε}0<ε≪1 on E with the following properties:

(a) hε is smooth on X \ Zε, where Zε is a proper subvariety on X.

(b) hε′ 6 hε′′ 6 h holds on X for ε′ > ε′′ > 0.

(c) I(h) = I(hε) and I(he−ψ) = I(hεe−ψ) on X.

(d) η(Θhε(E) + γ)− i∂∂η − η−2i∂η ∧ ∂η > −εω on X \D.

(e) For arbitrary t > 0, by taking a sufficiently small ε > 0, we have∫
e−tϕ − e−tϕε <∞,

where ϕ (resp. ϕε) is a local weight of h (resp. hε).

Proof. We fix a sufficiently small c with 7c/4 6 δ. Then, by Remark 3.1, we can easily check that

χ′(σ)|s|2b
η(|s|2b + c)

6 7

4η
6 7

4
c 6 δ.



958 Cao J Y et al. Sci China Math June 2017 Vol. 60 No. 6

In particular, it follows that

Θh +

(
1 +

χ′(σ)|s|2b
η(|s|2b + c)

)
γ > 0 on X

since ψ has divisorial singularities and satisfies the assumptions in Theorem 1.1. By applying the eq-

uisingular approximation theorem (see [6, Theorem 2.3]) to h, we can take singular hermitian metrics

{hε}0<ε≪1 on E satisfying Properties (a), (b), (e), the former conclusion of (c), and the following curva-

ture property:

Θhε +

(
1 +

χ′(σ)|s|2b
η(|s|2b + c)

)
γ > −εω on X.

Now we check Property (d) from the above curvature property. The function η may not be smooth

on X, but it is smooth on X \ D. Therefore the same computation as in [9, 17] works on X \ D. In

particular, from a complicated but straightforward computation, we obtain

−i∂∂η = −χ
′(σ)|s|2b
|s|2b + c

Θb(D) +

(
c

χ′(σ)|s|2b
+
χ′′(σ)

χ′(σ)2

)
i∂η ∧ ∂η

on X \D (see [9] for the precise computation). Then, by −γ = Θb(D) on X \D, we can see that

η(Θhε(E) + γ)− i∂∂η − 1

η2
i∂η ∧ ∂η

=

(
c

χ′(σ)|s|2b
+
χ′′(σ)

χ′(σ)2
− 1

η2

)
i∂η ∧ ∂η + η

(
Θhε(E) +

(
1 +

χ′(σ)|s|2b
η(|s|2b + c)

)
γ

)
>
(

c

χ′(σ)|s|2b
+
χ′′(σ)

χ′(σ)2
− 1

η2

)
i∂η ∧ ∂η − εηω

on X \ D. A straightforward computation yields that χ′′(σ)/χ′(σ)2 > 1/η2, and thus the first term is

semi-positive. Since η is bounded above, we infer that property (d) holds.

Finally, we check the last conclusion of Property (c) by proving the following lemma, which can be

obtained from the strong openness theorem (see [11,12,14]) and Property (e).

Lemma 3.3. For a quasi-psh function φ, we have I(he−φ) = I(hεe−φ). In particular, we obtain the

last conclusion of Property (c).

Proof. We have the inclusion I(he−φ) ⊂ I(hεe−φ) by hε 6 h. To get the converse inclusion, we

consider a local holomorphic function g such that |g|2e−φ−ϕε is integrable, where ϕε (resp. ϕ) is a local

weight of hε (resp. h). Then Hölder’s inequality yields∫
|g|2e−ϕ−φ =

∫
|g|2e−φ−ϕεe−ϕ+ϕε

6
(∫

|g|2pe−p(φ+ϕε)

)1/p

·
(∫

e−q(ϕ−ϕε)

)1/q

,

where p and q are real numbers such that 1/p+1/q = 1 and p > 1. By the strong openness theorem, the

function |g|2pe−p(φ+ϕε) is integrable when p is sufficiently close to one. On the other hand, we have∫
e−q(ϕ−ϕε) − 1 =

∫
eqϕε(e−qϕ − e−qϕε) 6 sup eqϕε

∫
(e−qϕ − e−qϕε).

The right-hand side is finite for a sufficiently small ε by Property (e).

This concludes the proof of Proposition 3.2.

From now on, we proceed to prove Theorem 1.1 by using Proposition 3.2. In the same way as in [10,

Section 5], one constructs a family of complete Kähler forms {ωε,δ}0<δ≪1 on Yε := X \ (Zε ∪D) with the

following properties :

(A) ωε,δ is a complete Kähler form on Yε := X \ (Zε ∪D) for every δ > 0.
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(B) ωε,δ > ω on Yε for every δ > 0.

(C) For every point p in X, there exists a bounded function Ψε,δ on an open neighborhood Bp such

that ωε,δ = i∂∂Ψε,δ on Bp and Ψε,δ converges uniformly to a bounded function that is independent of ε.

For simplicity, we put H := he−ψ and Hε := hεe
−ψ. We consider a cohomology class β ∈ Hq(X,KX

⊗ E ⊗ I(H)) such that β = 0 ∈ Hq(X,KX ⊗ E ⊗ I(h)). By the De Rham-Weil isomorphism

Hq(X,KX ⊗ E ⊗ I(H)) ∼=
Ker ∂ : Ln,q(2) (E)H,ω → Ln,q+1

(2) (E)H,ω

Im ∂ : Ln,q−1
(2) (E)H,ω → Ln,q(2) (E)H,ω

,

the cohomology class β can be represented by a ∂-closed E-valued (n, q)-form u with ∥u∥H,ω < ∞ (i.e.,

β = {u}). Here, Ln,•(2) (E)H,ω is the L2-space of E-valued (n, •)-forms on X with respect to the L2-norm

∥ • ∥H,ω defined by

∥ • ∥2H,ω :=

∫
X

| • |2H,ω dVω,

where dVω := ωn/n! and n := dimX. For the L2-norm ∥ • ∥Hε,ωε,δ
defined by

∥ • ∥2ε,δ := ∥ • ∥2Hε,ωε,δ
:=

∫
X

| • |2Hε,ωε,δ
dVωε,δ

,

one can easily check that

∥u∥ε,δ 6 ∥u∥H,ωε,δ
6 ∥u∥H,ω <∞. (3.1)

Indeed, the first inequality is obtained from Property (b), and the second inequality is obtained from

Property (B) for ωε,δ (for example see [10, Lemma 2,4]). In particular, we see that u belongs to the

L2-space

Ln,q(2) (E)ε,δ := Ln,q(2) (Yε, E)Hε,ωε,δ

of E-valued (n, q)-forms on Yε (not X) with respect to ∥ • ∥ε,δ. By the orthogonal decomposition (see for

example [15, Proposition 5.8])

Ln,q(2) (F )ε,δ = Im ∂ ⊕Hn,q
ε,δ (F ) ⊕ Im ∂

∗
ε,δ,

the E-valued form u can be decomposed as follows :

u = ∂wε,δ + uε,δ for some wε,δ ∈ Dom ∂ ⊂ Ln,q−1
(2) (E)ε,δ, and uε,δ ∈ Hn,q

ε,δ (E). (3.2)

Here, ∂
∗
ε,δ is (the maximal extension of) the formal adjoint of the ∂-operator and Hn,q

ε,δ (E) is the space of

harmonic forms on Yε, i.e.,

Hn,q
ε,δ (E) := {w ∈ Ln,q(2) (E)ε,δ | ∂w = 0 and ∂

∗
ε,δw = 0}.

Proposition 3.4 (resp. Proposition 3.5) can be proved by the same method as in [10, Propositions 5.4,

5.6 and 5.7] (resp. [10, Proposition 5.9, 5.10]), so we omit the proofs here.

Proposition 3.4. If we have

lim
ε→0

lim
δ→0

∥uε,δ∥K,hε,ωε,δ
= 0,

for every relatively compact set K b X\D, then the cohomology class β is zero in Hq(X,KX⊗E⊗I(H)).

Here, ∥ • ∥K,hε,ωε,δ
denotes the L2-norm on K with respect to hε (not Hε) and ωε,δ.

Proposition 3.5. There exists vε,δ ∈ Ln,q−1
(2) (E)hε,ωε,δ

satisfying the following properties:

∂vε,δ = uε,δ and lim
δ→0

∥vε,δ∥ε,δ is bounded by a constant independent of ε. (3.3)

Remark 3.6. In general, we have Ln,•(2) (E)ε,δ = Ln,•(2) (E)Hε,ωε,δ
$ Ln,•(2) (E)hε,ωε,δ

, and thus vε,δ may

not be L2-integrable with respect to Hε.



960 Cao J Y et al. Sci China Math June 2017 Vol. 60 No. 6

For the above solution vε,δ of the ∂-equation, by using the density lemma, we can take a family of

smooth E-valued forms {vε,δ,k}∞k=1 with the following properties :

vε,δ,k → vε,δ and ∂vε,δ,k → ∂vε,δ = uε,δ in Ln,•(2) (E)hε,ωε,δ
. (3.4)

Now we consider the level set Xc := {x ∈ X | − |s|2b < c} b X \D for a negative number c. The set of

the critical values of |s|2b is of Lebesgue measure zero from Sard’s theorem. Hence, for a given relatively

compact K b X \D, we can choose −1 ≪ c < 0 such that

K b Xc := {x ∈ X | − |s|2b < c} and d|s|2b ̸= 0 at every point in ∂Xc.

Then, by [16, Proposition 2.5 and Remark 2.6] (see also [8, Proposition (1.3.2)]), we obtain

⟨⟨∂vε,δ,k, uε,δ⟩⟩Xd,hε,ωε,δ
= ⟨⟨vε,δ,k, ∂

∗
hε,ωε,δ

uε,δ⟩⟩Xd,hε,ωε,δ
− ((vε,δ,k, (∂|s|2b)∗uε,δ))∂Xd,hε,ωε,δ

(3.5)

for almost all d ∈ ]c−a, c+a[, where a is a sufficiently small positive number. Here, ∂
∗
hε,ωε,δ

is the formal

adjoint of the ∂-operator in Ln,•(2) (E)hε,ωε,δ
and ((•, •))∂Xd,hε,ωε,δ

is the inner product on the boundary ∂Xd

defined by

((a, b))∂Xd,hε,ωε,δ
:=

∫
∂Xd

⟨a, b⟩hε,ωε,δ
dSε,δ,

for smooth E-valued forms a and b, where dSε,δ denotes the volume form on ∂Xd defined by dSε,δ :=

− ∗ d|s|2b/
∣∣d|s|2b∣∣hε,ωε.δ

and ∗ denotes the Hodge star operator with respect to ωε,δ. Note that dVε,δ =

dSε,δ ∧ d|s|2b . One can easily see that

lim
k→∞

⟨⟨∂vε,δ,k, uε,δ⟩⟩Xd,hε,ωε,δ
= ⟨⟨∂vε,δ, uε,δ⟩⟩Xd,hε,ωε,δ

= ⟨⟨uε,δ, uε,δ⟩⟩Xd,hε,ωε,δ

by (3.4), and thus it is sufficient to show that the right-hand side of (3.5) converges to zero. For this

purpose, we first prove the following proposition.

Proposition 3.7. The following holds:

lim
ε→0

lim
δ→0

∥(∂|s|2b)∗uε,δ∥ε,δ = 0.

Proof. By Properties (d) and (B), we have

η(Θhε(E) + γ)− i∂∂η > η−2i∂η ∧ ∂η − εω > η−2i∂η ∧ ∂η − εωε,δ.

Since uε,δ is harmonic with respect to Hε and ωε,δ, we have ∂
∗
ε,δuε,δ = 0 and ∂uε,δ = 0. Furthermore, we

have γ = i∂∂ψ on X \D. Therefore, we obtain

0 > −∥√ηD′∗uε,δ∥2ε,δ
= ∥√η∂uε,δ∥2ε,δ + ∥√η∂∗ε,δuε,δ∥2ε,δ − ∥√ηD′∗uε,δ∥2ε,δ
= ⟨⟨(ηΘHε − i∂∂η)Λuε,δ, uε,δ⟩⟩ε,δ + 2Re⟨⟨∂η ∧ ∂∗ε,δuε,δ, uε,δ⟩⟩ε,δ
= ⟨⟨(ηΘHε − i∂∂η)Λuε,δ, uε,δ⟩⟩ε,δ
> ⟨⟨(η−2i∂η ∧ ∂η)Λuε,δ, uε,δ⟩⟩ε,δ − εq∥uε,δ∥2ε,δ

from the twisted Bochner-Kodaira-Nakano identity (see [17, Lemma 2.1] or [9, Propositions 2.20 and 2.21]).

On the other hand, one can easily check that

⟨⟨(η−2i∂η ∧ ∂η)Λuε,δ, uε,δ⟩⟩ε,δ = ∥η−1(∂η)∗uε,δ∥2ε,δ = ∥η−1 ∗ ∂η ∗ uε,δ∥2ε,δ,

∂η = −χ′(σ)∂σ = − χ′(σ)

(|s|2b + c)
∂|s|2b .
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By the above arguments, we conclude that

εq∥uε,δ∥2ε,δ >
∥∥∥∥ χ′(σ)

η(|s|2b + c)
(∂|s|2b)∗uε,δ

∥∥∥∥2
ε,δ

.

It follows that the left-hand side converges to zero from ∥u∥H,ω > ∥uε,δ∥ε,δ. Furthermore, the function

χ′(σ)/η(|s|2b + c) is bounded below since we have

1

5
> |s|2b , C > η, χ′(σ) > 1

for some constant C. This completes the proof.

Finally, we prove the following proposition by using Proposition 3.7.

Proposition 3.8. (i) For a relatively compact set K b X \D, we have

lim
ε→0

lim
δ→0

lim
k→0

⟨⟨vε,δ,k, ∂
∗
hε,δuε,δ⟩⟩K,hε,ωε,δ

= 0.

(ii) For almost all d ∈ ]c− a, c+ a[, we have

lim
ε→0

lim
δ→0

lim
k→0

((vε,δ,k, (∂|s|2b)∗uε,δ))∂Xd,hε,ωε,δ
= 0.

Proof of Proposition 3.8. In general, we have the formula D′
gu = G−1∂(Gu) for a smooth hermitian

metric g, where G is a local function representing g. Let Gε be a local function representing hε. We

remark that Gεe
−ψ is a local function representing Hε. By the definition of ∂

∗
ε,δ = ∂

∗
Hε,ωε,δ

, we have

0 = ∂
∗
ε,δuε,δ = − ∗D′

Hε
∗ uε,δ = − ∗ (Gεe−ψ)−1∂(Gεe

−ψ ∗ uε,δ),

and thus we obtain ∂
∗
hε,ωε,δ

uε,δ = − ∗ (Gε)−1∂(eψGεe
−ψ ∗ uε,δ) = − ∗ ∂eψ ∗ uε,δe−ψ = −(∂|s|2b)∗uε,δe−ψ.

Now we have

lim
k→∞

|⟨⟨vε,δ,k, ∂
∗
hε,ωε,δ

uε,δ⟩⟩K,hε,ωε,δ
| 6 lim

k→∞
∥vε,δ,k∥K,hε,ωε,δ

∥∂∗hε,ωε,δ
uε,δ∥K,hε,ωε,δ

= ∥vε,δ∥K,hε,ωε,δ
∥∂∗hε,ωε,δ

uε,δ∥K,hε,ωε,δ
.

Since limδ→0 ∥vε,δ∥K,hε,ωε,δ
can be bounded by a constant, i.e., independent of ε, it is sufficient to show

that limε→0 limδ→0 ∥∂
∗
hε,ωε,δ

uε,δ∥K,hε,ωε,δ
= 0. We have e−ψ/2 = 1/|s|b < CK on K for some constants

CK > 0, since K is a relatively compact set in X \D. Hence, we see that

∥∂∗hε,ωε,δ
uε,δ∥K,hε,ωε,δ

= ∥ − (∂|s|2b)∗uε,δe−ψ∥K,hε,ωε,δ
6 CK∥(∂|s|2b)∗uε,δ∥K,ε,δ.

We obtain the first statement (i) since the right-hand side converges to zero by Proposition 3.7.

Now we prove the statement (ii). By Cauchy-Schwarz inequality, we have

|((vε,δ,k, (∂|s|2b)∗uε,δ))∂Xd,hε,ωε,δ
|2 6 ((vε,δ,k, vε,δ,k))∂Xd,hε,ωε,δ

(((∂|s|2b)∗uε,δ, (∂|s|2b)∗uε,δ))∂Xd,hε,ωε,δ
.

By Fubini’s theorem, we obtain∫
d∈]c−a,c+a[

((vε,δ,k, vε,δ,k))∂Xd,hε,ωε,δ
dSε,δ =

∫
c−a<−|s|2b<c+a

|vε,δ,k|2hε,ωε,δ
dVε,δ 6 ∥vε,δ∥2hε,δ.

By Fatou’s lemma, we see that∫
d∈]c−a,c+a[

lim
ε→0

lim
δ→0

lim
k→∞

((vε,δ,k, vε,δ,k))∂Xd,hε,ωε,δ
dSε,δ 6 lim

ε→0
lim
δ→0

∥vε,δ∥2hε,δ <∞.

Therefore, the integrand of the left-hand side is finite for almost all d ∈ (c−a, c+a). On the other hand,

by the same argument, we see that∫
d∈]c−a,c+a[

lim
ε→0

lim
δ→0

(((∂|s|2b)∗uε,δ, (∂|s|2b)∗uε,δ))∂Xd,hε,ωε,δ
dSε,δ 6 lim

ε→0
lim
δ→0

∥(∂|s|2b)∗uε,δ∥hε,ωε,δ
= 0.

Therefore, the integrand of the left-hand side is zero for almost all d ∈ (c− a, c+ a). This completes the

proof.
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Theorem 1.1 is now a consequence of Propositions 3.4, 3.8, and (3.5).

Remark 3.9. In the case of a holomorphically convex manifold, a proof based on injectivity theorems

can be obtained by a slight modification of the above proof. The only problem is that an E-valued

differential form u representing a given cohomology class is not necessarily L2-integrable but just locally

L2-integrable. Since X admits a holomorphic map π : X → S to a Stein space S, the form u is L2-

integrable with respect to the metric he−ψe−Φ for a suitable psh exhaustion function Φ on X. Then it is

not hard to check that our arguments still work by replacing h with he−Φ.

Remark 3.10. It would be interesting to know whether the hypothesis that ψ has analytic singularities

is really needed. The main statement still makes sense when ψ has arbitrary analytic singularities, and

one may thus guess that the result can be extended by performing a further regularization of ψ.
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