Applications of Pluripotential Theory to
Algebraic Geometry
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Abstract. These lectures are devoted to the study of various conteanpprob-
lems of algebraic geometry, using fundamental tools frompex potential theory,
namely plurisubharmonic functions, positive currents 8whge-Ampére opera-
tors. Since their inception by Oka and Lelong in the mid 194plurisubharmonic
functions have been used extensively in many areas of agednd analytic geom-
etry, as they are the function theoretic counterpart of gseanvexity, the complex-
ified version of convexity. One such application is the tlyexfiL2 estimates via the
Bochner-Kodaira-Hormander technique, which providey g&rong existence the-
orems for sections of holomorphic vector bundles with pasiturvature. One can
mention here the foundational work achieved by Bochner,dad Nakano, Mor-
rey, Kohn, Andreotti-Vesentini, Grauert, Hormander, Boeni, Skoda and Ohsawa-
Takegoshi in the course of more than 4 decades. Anotherafaweint is the theory
of holomorphic Morse inequalities (1985), which relatetair curvature integrals
with the asymptotic cohomology of large tensor powers of kim vector bundles,
and bring a useful complement to the Riemann-Roch formula.

We describe here the main techniques involved in the prodiaddmorphic
Morse inequalities (chapter I) and their link with Monge-péme operators and in-
tersection theory. Chapter Il, especially, gives a fundaal@pproximation theorem
for closed(1, 1)-currents, using a Bergman kernel technique in combinatitnthe
Ohsawa-Takegoshitheorem. As an application, we studygbmgtric properties of
positives cones of an algebraic variety (nef and pseudsefe cone), and derive
from there some results about asymptotic cohomology fanats in chapter Ill.
The last chapter IV provides an application to the study ef@neen-Griffiths-Lang
conjecture. The latter conjecture asserts that everyesrititve drawn on a projective
variety of general type should satisfy a global algebraicatign; via a probabilistic
curvature estimate, holomorphic Morse inequalities intp8t entire curves must at
least satisfy a global algebraic differential equation.
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Part I. Holomorphic Morse inequalities

Holomorphic Morse inequalities provide asymptotic boufmisthe cohomology
of tensor powers of holomorphic line bundles. They are a ussful complement
to the Riemann-Roch formula in many circumstances. Theyeiest introduced
in [Dem85], and were largely motivated by Siu’s solution&, Siu85] of the
Grauert-Riemenschneider conjecture, which we reprove &gla special case of a
stronger statement. The basic tool is a spectral theorerchvd@scribes the eigen-
value distribution of complex Laplace-Beltrami operatorie original proof of
[Dem85] was based partly on Siu’s techniques and partly oexséension of Wit-
ten’s analytic proof of standard Morse inequalities [Wjt&omewhat later Bismut
[Bis87] and Getzler [Get89] gave new proofs, both relyingamnanalysis of the
heat kernel in the spirit of the Atiyah-Bott-Patodi prooftbke Atiyah-Singer in-
dex theorem [ABP73]. Although the basic idea is simple, Risosed deep results
arising from probability theory (the Malliavin calculusyhile Getzler relied on his
supersymmetric symbolic calculus for spin pseudodiffeadnperators [Get83].

We present here a slightly more elementary and self-cogdginoof which was
suggested to us by Mohan Ramachadran on the occasion oftaoviShicago
in 1989. The reader is referred to [Dem85, Dem91] for moraitket

0. Introduction

0.A. Real Morse inequalities

Let M be a compac€® manifold, dimkM = m, andh a Morse function, i.e. a
function such that all critical points are non degenerates Standard (real) Morse
inequalities relate the Betti numbeyg= dimHJ5(M,R) and the numbers

Sq = # critical points of indexy ,

where the index of a critical point is the number of negatiigervalues of the
Hessian form(d2h/dx; dx;). Specifically, the following “strong Morse inequalities”
hold:

(0'1> bq*bqflﬁL"'Jr(*l)qug%—%71+...+(,1>q%
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for each integeq > 0. As a consequence, one recovers the “weak Morse inequali-
ties” by < sq and the expression of the Euler-Poincaré characteristic

(0.2) XM)=bg—by+--+(-1)"om=s—s1+---+ (—1)"sn .

These results are purely topological. They are obtainechbying thatM can be
reconstructed from the structure of the Morse function lgcdting cells according
to the index of the critical points; real Morse inequalite® then obtained as a
consequence of the Mayer-Vietoris exact sequence (se63Mil

0.B. Dolbeault cohomology

Instead of looking at De Rham cohomology, we want to investidiere Dolbeault
cohomology, i.e. cohomology of thiecomplex. LetX be a compact complex man-
ifold, n = dimg X andE be a holomorphic vector bundle ov&rwith rankE =r.
Let us recall that there is a canonidabperator

(0.3) 0 :C*(X,APIT @ E) — C* (X, APHITY 9 E)

acting on spaces dfp, q)-forms with values irE. By the Dolbeault isomorphism
theorem, there is an isomorphism

(0.4) H2Y(X,E) := HA(C” (X, AP Ty ® E)) ~ HI(X, Q ® O(E))

from the cohomology of thé-complex onto the cohomology of the sheaf of holo-
morphicp-forms with values irE. In particular, we have

(0.5) H29(X, E) ~ HY(X, O(E)),

and we will denote as usubf(X,E) = dimH9(X,G(E)).

0.C. Connections and curvature

Leut us consider first@” complex vector bundl& — M on a real differential man-
ifold M (without necessarily any holomorphic structure at thisigoiA connection
D onE is a linear differential operator

(0.6) D :C*(M,ATy; ® E) — C*(M, A% T 9 E)
satisfying the Leibniz rule
(0.7) D(fAs)=dfAs+(—1)%9"f ADs

forall formsf € C*(X,APTy,), s€ C*(X, ATy, ® E). On an open séi C M where
Eis trivial, Ey ~U x C', the Leibniz rule shows that a connectidrcan be written
in a unique way
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(0.8) Ds~ds+T As

wherel" € C*(U, AT @ Hom(C",C")) is an arbitrary x r matrix of 1-forms and
d acts componentwise. It is then easy to check that

(0.9) D?s~ (dl +I AF)As  on U.

ThereforeD?s = 6p A s for some global 2-forn@p € C*(M,A2Ty; ® Hom(E, E)),
given by6p ~dry + 'y ATy on any trivializing open sed with a connection matrix
ru.

(0.10) Definition. The (normalized curvature tensor of D is defined to i@ =
5-6b, in other words
i
2m
for any section £ C*(M, AT @ E).

D’s=0OpAsS

The main reason for the introduction of the facgb[ris the well known formula
for the expression of the Chern classes in the ring of diffeaé forms of even
degree: one has

de(ld+A0p) =1+ Ay(D) +A%p(D) + ...+ A"y (D),

wherey; (D) is ad-closed differential form of degregj 2Moreover,y;j (D) has inte-
gral periods, i.e. the De Rham cohomology cléggD)} € H2/ (M, R) is the image
of an integral class, namely theth Chern class;(E) € H2I(M,Z).

0.D. Hermitian connections

Assume now that the fibers & are endowed with &° Hermitian metrich, and
that the isomorphisriy ~ U x C" is given by aC” frame (e, ). Then we have a
canonical sesquilinear pairing

C*(M,APTE ©E) x C*(M, AT @E)  —  C°(M,APIT})
(U,V) — {U,V}h

given by

{uvih=> wAvu(er.en  for u=Su e, v=> vioe..
A

The connectio® is said to beHermitian(or compatible with the Hermitian metric
h) if it satisfies the additional property

(0.11) d{u,v}p = {Du,v}p+ (—1)%9U{u, Dv}y,
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Assuming thate, ) is h-orthonormal, one easily checks thats Hermitian if and
only if the associated connection matfixs skew-symmetric, i.6-* = —I". In this
casefp =dI +I AT also satisfie§3 = —6p, thus

(0.12) @D:%TGDGCW(M,AZT,\}Q@Hem(E,E)).

(0.13) Special caselor a bundleE of rankr = 1, the connection matrik of a
Hermitian connectioD can be more conveniently writteéh = —iA whereA is a
real 1-form. Then we have
[ 1
Op=—dI = —dA
°~2n 2
Frequently, especially in physics, the real 2-fdBm:= dA = 2rOp € C*(M,A%Ty;)
is referred to as theagnetic fieldand the 1-fornA as its potential. A phase change
§(x) = s(x)€™ in the isomorphisnEy, ~ U x C replacesA with the new connec-
tion formA=A+da.

0.E. Connections on a Hermitian holomorphic vector bundle

If M = X is a complex manifold, every connecti@ncan be split in a unique way
as the sund = D’ + D” of a(1,0)-connectiorD’ and a(0, 1)-connectiorD”:

D' :C*(M,APIT{ ® E) — C*(M,APT T R E),
D" :C*(M,APITY @ E) — C°(M,APHIT 9 E).

In a local trivialization given by &€~ frame, one can write

Du=du+r'Au,
D'u=d"u+r"nau,

with =’ 47" andd’ = a9, d’ = 4. If (E,h) is aC® Hermitian structure, the
connection is Hermitian if and only if” = —(I"”)* in any h-orthonormal frame.
Thus there exists a unique Hermitian connection correspgrtd a prescribe(D, 1)
partD”.

Assume now that the Hermitian bundIg, h) has aholomorphicstructure. The
unique Hermitian connectiod for which D” = 4 is called theChern connection
of (E,h). In a local holomorphic framée, ) of Ey , the metrich is given by some
Hermitian matrixH = (h, ;) whereh, , = (e,,e,)n. Standard computations yield
the expression of the Chern connection:

D's=ds+H "9HAs,
D"s=ds,
6o As=D?s= (D'D"+D"D')s= —9(

I
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(0.14) Definition. The Chern curvature tensor (i, h) is the curvature tensor of its
Chern connection, denoted

6en=D'D"+D'D' = —a(H 'oH).

In the special case of a rank 1 bundiethe matrixH is simply a positive func-
tion, and it is convenient to introduce its weightsuch thatH = (e~¢) where
¢ € C*(U,R) depends on the given trivializatiday ~ U x C. We have in this
case

[ i =
0.15 =—0n=-=00 on U
(0.15) Oeh=5-Oen=5-000 ;

and therefor@®g j, is a closed rea(1,1)-form.

0.F. Fundamental facts of Hodge theory

Assume here thafl is a Riemannian manifold with metrge= ¥ gi;dx @ dx;. Given
g-formsu, v on M with values inE , we consider the globdl®> norm and inner
product

016 Ju?= [ uPdo(. ()= [ WV dox).

where|u| is the pointwise Hermitian norm ardb the Riemannian volume form.
The Laplace Beltrami operator associated with the conmeEtiis

A =DD*+D"D,
acting on any of the spac€s’(M,A9Ty; @ E); here
(0.17) D* : C*(M,A%Ty; ® E) — C*(M, ATy @ E)

is the (formal)L? adjoint of D. The complex Laplace operataté = D’'D’* + DD’
andA” =D"D"*+D"*D” are defined similarly whekl = X is a complex manifold.
In degree 0 we simply havk = D*D. A well-known calculation shows that the prin-
cipal symbol ofA is x (x, &) = —|&|21d (while 0/ (X, &) = Oar (X, &) = —3|&|21d).
As a consequencak, A’, A” are alway<=lliptic operators

WhenM is compactthe operatoA acting on any of the spaces of the complex
C*(M,A*Ty; ® E) has a discrete spectrum

/\1</\2<"'<)\j<"'

and corresponding eigenfunctiogg € C*(M,A%Ty; ® E), depending of course
ong.
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Our main goal is to obtain asymptotic formulas for the eigénes. For this, we
will make an essential use of tineat operator e'2. In the above setting, the heat
operator is the bounded Hermitian operator associatecktoetat kernel

+o00
(0.18) Kexy) = 5 e gu(x) @ gi(y),
v=1
ie.
(uety) = [ (u0.K(xy)-u(y) do( do(y).
Standard results of the theory of elliptic operators shaat th
K; € C*(]0, 40 x M x M,Hom(E,E))

and that; (x,y) is the solution of the differential equation

(0.19) %Kt(x, y) = —AxKi (X,Y), tir& Ki(x,y) = &(x) (Dirac aty),

as follows formally from the fact tha e 4 = —Ae'4 ande% = Id. The asymp-
totic distribution of eigenvalues can be recovered fromstin@ightforward formula

+o00 .
(0.20) Y eM= / treKe (x,X)da(x) .
v=1 IM
In the sequel, we are especially interested in the 0-eigeresp
(0.21) Definition. The space afA-harmonic forms is defined to be

H}(M,E) =KerA = {ue C*(M,AT} ®E); Au=0}.

WhenM is compact, an integration by part shows that
2 *00(12
{(Au,u)) = |[Dul|”+ D u]%,

henceu is A-harmonic if and only iDu = D*u = 0. Moreover, ag\ is a self-ajoint
operator, standard elliptic theory implies that

(0.22) C”(M,ATy, ®E) = KerA @ ImA = #3 (M,E) & 1mA,

and KeiA = %Z(M,E), ImA are orthogonal with respect to thé inner product.
Clearly ImA C ImD + ImD*, and both images I, ImD* are orthogonal to the
space of harmonic forms by what we have just seen. As a coaeeguwe have

(0.23) ImA = ImD + ImD*.
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(0.24) Hodge isomorphism theoremAssume thaM is compact and thdD is an
integrable connectiori.e.D? = 0 (or 6p = 0). ThenD defines on spaces of sections
C*(M,A9Ty; ® E) a differential complex which can be seen as a generalizafion
the De Rham complex. The conditid? = 0 immediately implies that b L
ImD* and we conclude from the above discussion that there is Bogwhal direct
sum

(0.25) C®(M,A9Ty ®E) = #3 (M,E) @ ImD & ImD*.

If we putu = h+ Dv-+ D*w according to this decomposition, thBxu = DD*w =0
if and only if | D*w|| = ((DD*w,w)) = 0, thus

KerD = #} (M, E) & ImD.
This implies theHodge isomorphism theorem
(0.26) Hor(M,E) := KerD/ImD ~ # (M, E).

In caseM = X is a compact complex manifoldE,h) a Hermitian holomorphic
vector bundle and = D’ + D" the Chern connection, the integrability condition
D2 = 9% = 0 is always satisfied. Thus we get an analogous isomorphism

(0.27)04 HY(X,6(E)) = HIY(X,E) ~ Hy (M, E),

and more generally

(0.27)pq HI(X, QR @ G(E)) ~ HP(X, E) ~ HLH (M, E),
Where?ifg,(,‘(M E) is the space ofA”-harmonic forms of typdp,q) with values
inE.

(0.28) Corollary (Hodge decomposition theorent) (X, w) is a compact hler
manifold and(E, h) is a flat Hermitian vector bundle over Xi.e. Déh =0), then
there is an isomorphism '

HER(M,E) =~ P HPI(X,E).
p+a=k

In fact, under the condition thab is Kahler, i.e.dw = 0, well-known identities of
Kahler geometry implyd’ = A” = 1A, and as a consequence

quE

HEM,E)= P #hX

p+o=k
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1. Holomorphic Morse inequalities

1.A. Main statements

Let X be a compact complex-dimensional manifoldl. — X a holomorphic line
bundle andE — X a holomorphic vector bundle of ramk= rankk. We assume that
L is equipped with a smooth Hermitian methicand denote accordingl@, p, its
curvature form; by definition this is a closed real1)-form and its cohomology
classci(L)r = {OLn} € H35(X,R) is the first Chern class df.

(1.1) g-index setsWe define the g-index sets afid g}-index sets ofL, h) to be
X(L,h,q) = {xe X; O n(x) has

X(Lh<g) = [J X(Lh,j).

1<j<q

g negative eigenvalugs
n—q positive eigenvalue

Clearly X(L,h,q) andX(L,h,< q) are open subsets of, and we have a partition
into “chambers’X = SU Upcq<n X (L, h,q) whereS= {x € X; O_n(x) =0} isthe
degeneration set. The following theorem was first prove®&ni85].

(1.2) Main Theorem. The cohomology groups of tensor powers EX satisfy the
following asymptotic estimates ask 4o :
(1.2)wm Weak Morse inequalities

n

hI(X,E® LX) < rk—/ (—1)967, + o(K") .
n' Jx(Lhaq) ’

(1.2)sm Strong Morse inequalities

. . n
(—1)%Ihi(X,Ex LY < rk—'/ (—1)900, +o(K") .
0dxq N> JX(Lh,<a) ’

(1.2)rr Asymptotic Riemann-Roch formula

. KN
XXEoL)= Y (fl)lhl(x,E@)Lk):rﬁfxo[{hm(k”).

0<J<n

The weak Morse forn{1.2)ym follows from strong Mors€1.2)sy by adding
consecutive inequalities for the indicgs- 1 andg, since the signg—1)4-1 and
(—1)9-1- are opposite. Also(1.2)rr is just a weaker formulation of the exis-
tence of the Hilbert polynomial, and as such, is a consequefthe Hirzebruch-
Riemann-Roch formula; it follows formally froifl.2)sy with g = nandq=n+1,
sinceh™1! = 0 identically and the signs are reversed. Now, by adding)sy for
the indices of opposite parity+ 1 andq— 2, we find
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kn
h+(X,E @ LK) — hA(.) + h92(..) < r—/ ~ )TN, 4 o(k"),
( ) ) S ey DO 00
whereX(L,h,{q—1,q,9+ 1}) is meant for the union of chambers of indices 1,
d, g+ 1. As a consequence, we get lower bounds for the cohomolagypgr
(1.3)
n

K
h9(X,E®@ LK) > hd—htl _pt1>r= —~1)99", — o(K").
( ) n! (L,h,{qfl,q,qul})( J"@n—olk)

Another important special case(is.2)sy for g = 1, which yields the lower bound

kn

(1.4) hOX,E@ LX) >h0—ht >

o'p —o(k").
As we will see later in the applications, this lower boundvides a very useful

criterion to prove the existence of sections of large tepsavrers of a line bundle.
(I

1.B. Heat kernel and eigenvalue distribution

We introduce here a basic heat equation technique, fromhadtli@symptotic eigen-
value estimates can be derived via an explicit formula, kmes/Mehler’s formula.

We start with a compact Riemannian manifoM, g) with dimg M = m, and de-
note bydo its Riemannian volume form. Lt h, ) (resp.(E, hg)) be a Hermitian
complex line (resp. vector bundle) dh, equipped with a Hermitian connectién
(resp.Dg).

We denote byDy = Dg, « the associated connection & LK, and byAy, =
D;Dy the Laplace-Beltrami operator acting on sectionsEab LK (i.e. forms of
degree 0). As in (0.13), we introduce the (local) connecfanm I = —iA of
L and the corresponding (global) curvature 2-foBm= dA € C*(M,A?Ty), i.e
the “magnetic field” (g and the corresponding curvature ten&yr of Dg will
not play a significant role here). Finally, we assume that dditnal section
V e C*(M,Herm(E,E)) is given (“electric field"); for simplicity of notation, we
still denote by the operatoV  Id, x acting onE ® Lk,

If Q C M is a smoothly bounded open subset\df we consider fowu in the
Sobolev spac#} (Q, E ® LX) the quadratic form

(L5) Qua()= [ TIDwiP -~ (Vuu).

HereWO (Q,E® LX) is the closure of the space of smooth sections with compact
support inQ, taken in the Hilbert spad6/|1 (M,E @ LX) of sections that havleIOC
coefficients as well as their first derivatives. In other vgonde consider the densily
defined self adjoint operator

1

(1'6) Ok = EDﬁDk—V
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acting in the Hilbert spacwol(Q, E® Lk), i.e. with Dirichlet boundary conditions.
Again,Jy acting orwol(Q, E® LK) has a discrete spectrum whenegis relatively
compact (and also sometimes wh@ns unbounded, according to the behavior of
B andV at infinity; except otherwise stated, we will assume that remthis case
later on). Then, there is an associated “localized” heatdder

(1.7) Kiko(Xy) = Z e MRl 0 () @ W oY)

whereyy ko € Wol(Q, E® Lk) are the eigenfunctions arid i o their eigenvalues.
We want to study the asymptotic eigenvalue distributioflgfask — -+, and

more precisely get an asymptotic formula for the correspuntieat kernee k.

The basic idea is to decompose the proof in three steps:

(a) convince ourselves that the asymptotic estimates can balifed”, up to lower
order error terms.

(B) show that the local estimates can be obtained by freezingoicients of the
operators involved at any given point.

(y) compute explicitly the heat kernel in the case of connestivith constant cur-
vature, assuming moreover th@at~ R™ with the flat Euclidean metric.

(a) In order to see that the situation can be localized, we fix titjpar of unity (7;)
relative to an arbitrarily fine finite covering2;) of Q, such thaty rz 1 nearQ.
We consider the continuous injection

lo.0, W (QExLY) - PW(QNQE®LY),  um (Tju)j,
j

the inverse of which iguj) — u= 3 1;uj. As y 1;d7; = 0 onQ, we find
18 ¥ Quay(0) - Qualu )= [ (3l < o ) uP

By the minimax principle, it follows that the eigenvalues@fQy Qj[Imlg 0. and
those ofQy o differ by at mostO(1/k) ask — +co. This explains why a loc alization
process is possible, at least as far as the eigenvaludbdisbmn is concerned. For the
related heat kernels on small geodesic balls, one can udelltwing localization
principle.

(1.9) Proposition.Let Q, = B(xX°, p) be a geodesic ball diM, g) of radiusp where

p < injectivity radius. Then there exist constants &d &; > 0 such that for all

t € ]0,min(ke, kp?/2m)] and every ¥ € M we have

m/2 kp?

— V).
a ARV

k
Kt kom (0, x0) — Kik.Qp (XO,XO)’ < Cl(f) exp( -

A proof of this technical result is given in Thierry Bouché®hD thesis (cf.
[Bou90]). It relies on a use of Kato’s inequality (cf. [HeSQB which amounts to
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say that we get an upper boundqj v in the case when the curvature is trivial; one
can then use the calculations given below to get the explaind, see e.d1.10).

(B) Now, letx’ € M be a given point. We choose coordinates .. ., xm) centered at
x?suchthatd/dxq, ..., /dxm) is orthonormal ax® with respect to the Riemannian
metricg. By changing the orthonormal framelo&s in (0.13), we can adjust the con-
nection form/_ = —iA of L to be given by any local potentidl(x) = 3 ; Aj(x) dx
such thaB = dA, and we can therefore arrange tA&x®) = 0. Similarly, we can fix

a unitary frame of such that'g (x°) = 0. Setx? = 0 for simplicity. The first term
of our Laplace operatadrl, = %D;;Dk —V is the square of the first order operator

k=Y2Dyu(x) = k™2 (du(x) +KIde @L(X) - u(x) + Id x @TE(X) - u(x))
- k*l/zz (5—): —ikY/2A; (x)u(x))dx,- +KY21d e BT (X) - u(X).

If we use a rescaling=k~%/2xand sefi(X) = u(x) = u(k-/2x), this operator takes
the form
~ Ju . _ _ _ -
Dl(®) = (a_i,- — ik2A; (kY2 8(%) ) dx; + O(k~Y/2) d(%) dx
]

As Aj(0) = 0, the termk¥/2A; (k~/2%) converges modul®(k~%/2|?) terms to the
linearized parﬁj (X)=73i; %—2\3(0)%. Observe also that the connection fofgmof E
only contributes for terms of the for@(k—%/2|]) (and thus will be negligible in the
end, together with the quadratic termsAgj. Our initial operatofy = %D;Dk -V
becomes L

Ok = DiDx—V
whereV (%) = V(k~1/2%) and where the ajoint is computed with respect to the
rescaled metrig(x) = ¥ gij (k~¥/2%) dx;dx; ; hereg — y (dX;j)? ask — +o thanks
to the assumption thagj (0) = &;. Modulo lower order term®(k~*/2[%|2), Dy is
given by a linear connection form

AR) =y Bij % dX;

assciated with the constant magnetic fB{e®) = 3; ; Bij dx A dx; frozen at® = 0.
We can moreover choose orthonormal coordinates scaBthd} takes the standard
form

s
B(XO) = Z B; de /\dxj+s
=1

where 2 < mis the rank of the alternate 2-forB(x°) andB; the curvature eigen-
values with respect tg(x°). The corresponding linearized potential is
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- S
A()?) = Z Bj Xj de+s-
=1

The intuition from Physics is that the eigenfunctions repré “waves” of heat prop-

agation of a certain typical wave lengthin the coordinateg, and of a correspond-

ing (much shorter) wave lengthk~1/2 in the original coordinates. At that scale,
our space behaves as if the metrics were flat and the cunainstant.

(y) Let us consider the operators obtained by “freezing” theffmdents at any

pointx%, as explained at stefB), although we will not perform the rescaling here.

More specifically, we assume that

e L has constant curvatuié= y§_; Bjdx; A dx;;s. Then there is a local trivial-
ization in which

S
DLu=du—iAAu, A= % Bixjdxjs.
=1

Q ~R™and the metrig is flat: g = ¥ dx; @ dx;.

E ~ Q x C" is a trivial (flat) Hermitian bundle.

the Hermitian formV is constant. We choose an orthonormal framé=ah
whichV is diagonal, i.e.

(Vu,u) = AN
1AL

In this ideal situation, the connecti@y onE © LX can be writterDyu = du—ikAAu
and the quadratic for@y o is given by

duy |2 du, N 2
Qo (u) / Z (’ % dXHSﬂkBJxJuA‘ ) +

1

duA ‘
de

H
n /'/T
/A /A

i>
1<A

/A [

Vy |y |2

AL

N
N

In this situationQ ¢ is a direct sum of quadratic forms acting on each component
u, and the computation &'k is reduced to the following model casék10),
(1.11) in dimension 1 or 2:

df2 d2f
(110 N=/[l& o= g

As is well known (and although the spectrum is not discretha case) the kernel
of the “elementary” heat operater' is given by

1 2
1.10 Kir(Xy) = ———e X ¥)7/4
(1.10) tR(XY) it

)
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as follows from solving equation (0.19). The second modséds:

) 2
|ax1f‘ .

(111) N =/,

dxl‘ +’dx2

A partial Fourier transfornf (xy, &) = \/_ [ T (X1, %) €282 dx, gives

AN =/,

and the change of variablgs= x; — &>/a, X, = &> leads (after dropping the second
variablex) to the so called “harmonic oscillator” energy functional

df
Xm

00,8+ (a— )| fo. )P

. dgi2 52 12 _ d? 2.2
112 9= [ |G +aReR. 0= -gp+ade

The heat kernel of this operator is givenlidghler's formula

(112) kr(xy) = ,/m xp( (cothmt)(x y) fa(tanfm)xy)

which actually reduces td.10) whena — 0. One way of obtaining this relation is
to observe that the unitary eigenfunctionsg bére

~1/2
(pr!\/g) Pp(Vax), p=0,12,...,

with associated eigenvalu¢gp + 1)a, where (@) is the sequence of functions
associated with Hermite polynomials:
dpP 2
Dp(x) = 12— (7).
p(x) = &°/2 5 ()
In fact, fora= 1, easy calculations bearing on derivative6f2 show that

d2 2 2/2 drhL 2/2 X2 2/2 dp _x2
(—W—i—x)@p(x):— o€ <) - 2xe dp+1(e G

We can now replace the first term by/z(f');ll (2x-e” %) and use the Leibniz for-

mula for the differentiation of the product to see tha®y(x) = (2p+ 1) Pp(X).

Therefore
+°o 72p+1 )at dar
(®+y?)/2 —ax ey
) = S e e ™)

The above summatioB(x,y) = . can be computed via its Fourier transform

pO



Applications of Pluripotential Theory to Algebraic Geomyet 15

- 1 & L e®Np o o g2 2
2 =gt 5 5 (S ) (6)7n)re e

I g 1 o 2 _2at
= e exp( - - (E2+ 07+ 267 n)),

thus
gt

Z(x,y) = io® exp( - m(xz+y2 - Zefzatxy))-

and Mehler’s formula1.12) follows. Through our change of variables, the heat
operator ofQ is given by

K&;f(xl,fz) = .é ke (Xl — %,yl - %2) f(y1,&)dys.

By an inverse partial Fourier transform left to the reader,abtain the desired heat
kernel expression

et &P~ 5(e0that (0 o) + (- y2)?))

(1.17) X eXp(iEa(X1+y1)(X2*y2)).

Ki g2 (X1,X2;Y1,Y2) =

The heat kernel associated with a sum of (pairwise commubipgratorsls, ..., O
acting on disjoint sets of variables is the product of theesponding heat kernels
e Ui, Let KtAkQ be the heat kernel of the component@fo acting on each sin-
gle entryu,. The factor in the heat kernel corresponding to each pairdhbles
(Xj,Xj+s), 1 < j <'s, is obtained by substitutingB; to a andt/k to t (the latter
rescaling comes from the initial facu%rin the expression oQy ). For the other
coordinates] > 2s whereB has no coefficients, the kernel falls back to the “el-
ementary” heat kerngll.10). Finally, the constant term-V, |u, |? contributes to
multiplying the heat kernel b2 . Therefore we get for the global heat kernel on

Q = R" the explicit formula

kB; kB;
Ktk]R” X y Wnl{]BteXp(—TJ(COttht)((ij,l—ygj, )2 (XZj y21) )

+ EkBj (X2j-1+Y2j-1) (%] *VZJ'))

(1.13) x @V x W;T‘ZS/ZGXP —k ; —Yj)?/4t).

On the diagonal oR" x R", the global heat kerné \ gn is thus given by the rather
simple (HerntE) @ Id, k)-valued tensor depending only &V andt/k:

K \m2 ., S Bit
1.14 K kR =\aq ' Bt
( ) t. k&N (X, X) (4m) ¢ DlSinhBJt
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(1.15) Theorem.Consider the generglvariable coefficientcase. Ford > 0 small,
the heat kernel aflx over M admits an asymptotic estimate

K\™2 v o Bitot _
Kejom (%, X) = (H) VI )Dm (14 Ok /2+0))

as k— +oo, where @k~%/2+9) is uniform with respect to x M and t in a bounded
interval]0, T] C ]0,+oo[ (moreover, for every open s&t C M, a similar estimate is
valid for K o on relatively compact subsets Q).

Proof. Notice first that(t, x) — [15_4 sifﬁé?&)t

on [0,+[ x M, equal to 1 whet = 0: this is in fact the inverse of the square root
of the determinant of the positive definite symmetric matrix

extends as a smooth positive function

sin(tb(x)) _ & t2P(=b(x)?)P
tb(x) *p; (2p+1)!

whereb(x) is the antisymmetric endomorphismT§ associated with the alternate
2-form B(x) and—b(x)2 = b(x)"b(x) > 0.

The only thing one has still to get convinced of is that thenkéof e Tk —
ek is (k/t)™20(k~%/2+3) uniformly along the diagonal at any poifi®,x°) €
M x M, whereDE is the operatof]y “freezed” atx’. We can do this in a canonical
way by using normal coordinates from the Riemannian expisienapping

> 1d,

expo i RM~Ty 0 = M,

and trivializations ofe andL produced by parallel transport along geodesics from
x° to any pointx € B(xX?, pg), wherepg = injectivity radius ofM. In this way, we
actually get automatically that (xX°) = e (x°) = 0. When Supp € Q, := B(x?, p),

a Taylor expansion yield®u — D%u = O(|x| +k|x|?) - u and we get the estimates

Quo, (W)~ Qg, W) = [ (D~ DRE) — (v ~VO)uu
=0( [ 2 ((p+koA)DRulul + (p+ko? ZIuP) + plul?)
k 2\2
:O(Aﬁﬁngu|2+((p+k£p ) +p)|U|2),

—0(eQg, -+ (LT o6 )

; _ O ptkp?)?
whenevek < 1, hence there is a constaly . = O(-22~- + p+ ¢) such that

(1- S)Qg,gp(u) —Cpxelu? < Qr,(U) < (1+ S)nggp(u) +Cpkelul?.
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From this, we conclude that '« is squeezed (as a positive bounded self-adjoint
operator) betweea Cokete t1+E)0; andeCoketet1-6% | By definition of the heat
kernel we have

Kiso, (x°.x°) = lim ‘ Kt .0, (% Y)Uy (X)uy (y) do(x) do(y)

vt QX Qp

H —t[]
= V'me«e kuy, uy))

whenu, - 00 (Dirac measure), thus
L

e CokeT K&“)tmp (%) =K, 0€,%°) < Keka, 00,%°) = Kby 0, 00 X°)
< eCp'k‘ETKE)l—a)t,k,Qp (%) =K, (0€,3°).
We take hergp = £ = k™ /279, so thatC, x . = O(k~¥/?*%). The expected uniform

bounds are then obtained by an application of Propositionvihere the choice
p =k /20 > k12 ensures that the relative errors

Kikm —Kiko, and Kopm— Kt(,)k,Qp
are very small, namely of the order of magnitu@i@xp(—k®/4T)). O

As a consequence, we obtain the following estimate for thergialues:

(1.16) Corollary. The eigenvalues, i o of Q o satisfy for every t> 0 the estimate

400 m S i
e K e

This result can be also interpreted in terms of the countimgtion
Neo(A) =#{Vv; Ayko <A}

and of the spectral density measure (a sum of Dirac measnrnbeaeal line)

d
=k™2_—Ngo(A).
Hk.0 W ka(A)
Notice that the measurgsg o are all supported in the fixed intervahvg, +oo],
wherevg is an upper bound for the eigenvalues/gk), x € M. In these notations,
Corollary 1.16 can be restated:

: to 1 S Bj(x)t
tA _ V(%) it RS/
kLlToo o © dHka(2) (4nt)m/2/gtr(et )JL! sinth(x)th(X)'
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We thus see that the sequence of measuggsconverges weakly to a measyrg
whose Laplace transform is given by the right hand side.rtmgthe formula, one
obtains:

(1.17) Corollary. For almost allA € R

138 Jim k0o 0) = ol —A]) = [ 5 e (Vi) + A)do
i=

k—+00

wherevgy (A ) is the function on M< R defined by

Zs—mrrm/z m_g

__B,---B. A =5 (2p;j+1)B;
r(Z-s+1) ' S(Pl,..-,zps)eNS[ Z( i+ J}

(119)  vg(A) = ?

Proof.We leave as an exercise to the reader to check that the Lapdanstorm
+o00 —+0o
/ e*t’\de(VJr/\):et"/ e dvg(A)

—o00 —o00

is actually equal to
ev S Bj(x)t

(4mt)m™/2 JI:Ilsinth (x)t

1.C. Proof of the holomorphic Morse inequalities

Let X be a compact complex manifold andE holomorphic Hermitian vector bun-
dles of rank 1 and over X. If X is endowed with a Hermitian metri@, Hodge
theory shows that the Dolbeault cohomology grédf(X, E @ L¥) can be identi-
fied with the space of harmoni{©, q)-forms with respect to the Laplace-Beltrami
operator! = 99y + 9,0 acting onE © LX. We thus have to estimate the zero-
eigenspace of\/.

In order to apply corollary 1.17, we first have to compafein terms of the
Hermitian connectiofil, on E ® LK © A%9Ty deduced from the Chern connections
of L,E, Tx. What plays now the role dEt is the (non holomorphic) bundlg ®
NOAT,

The relation betweed and [y is most easily obtained by means of the
Bochner-Kodaira-Nakano identity. In order to simplify teeposition, we assume
here that the metriow on X is K&hler. For any Hermitian holomorphic line bundle
G on X, the operatord’ andA” associated with the Chern connectldr= D¢ are
related by the B-K-N identity (cf. [Boc48], [Kod53], [AN54]Nak55])

(1.20) A" = A" +i66,A]

wherefg = D € C*(X,AL1T; @ Hom(G,G)) is the curvature tensor and= L*
is the adjoint of the Lefschetz operatar= w A u.
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The Leibniz rule impliedg ,, « = k6. @ Ide + 6 @1d, « (omitting the Hermitian
metrics for simplicity of notation), thus

A = O+ K[iO,A] +[i6,A].

At a given point € X , we can find a coordinate systefn,...,z,) such that
(0/dz;) is an orthonormal basis @k diagonalizing 6 (Z°), in such a way that

dzndz, 0P =5 Y adzady
1<

w(@®) = |§

1<7xn

whereas,. .., ap are the curvature eigenvaluesi@i(zo). A standard formula gives
the expression of the curvature teffid_,Au for any (p,q)-form u. In fact, for
u=yu j,dz Adz;®e,, we have

([i6L,Au,u) (a3 —ag)|uy gp [?
|J,)\

wherea; = ¥ jc; aj. In the case of &0, q)-formu = 3y u; ) dz; @ €, we simply have
Au=D¢Dyu= 0y Ouand

(1.27) A =080 — KV +[i6g, A,
(V'uu) = agsluga [ (herel =0).
Ay
This is not yet what was needed, since only thed) part [, appears. To get the

(0,1) component, we consideras a(n,q) form with values inE @ LK@ A"Tyx. We
then getd;u = D; D;*u where

Ku=— zau”)\/dzjdzl/\ d ~ANdHAdZ R e,
in normal coordinates. Thufu = 0;*0fu and
(1.21") A = 0P OF + KV + [iBeapnty Al
(V"u,u) ZUJ|uJ,\| (herel ={1,...,n}).
If the metricw is non Kahler, we get additional torsion terms, but thesmseare
independent ok. A combination of(1.21) and(1.21") yields

2 1, 1

whereW is a Hermitian form independent &fand

(Vu,u) =% (agy — as)|usx 2.
x
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Now apply Theorem 1.15 and observe til&does not give any significant contri-
bution to the heat kernel &s— +0. We write herezj = xj +iy; and the “magnetic
field”

B=i6 = Z C{jde /\dyj.

1<7<n

The curvature eigenvalues are givenBy= |a;|. We denotes = s(x) the rank of
B(x) and order the eigenvalues so that

|a1|>>|a5|>0:as+1::an

The eigenvalues 0¥ acting onE ® A"T; are the coefficientsig; — a3, counted
with multiplicity r. Therefore

(1.23) Theorem.The heat kernel associated with®4 in bidegreg(0, q) satisfies

knrzm:qet(am(x)*%(x)) s |aj X
(4m)ntn—s D,sinh|aj (x)Jt

Ktk (Xv X)

ask— +oo. In particular, if A; < Ax9 < --- are the eigenvalues ¢/ in bidegree
(0,q), we have

w : (agg(¥)—ay(x)) s :
Z eizm‘ijq ~ k! / & ntn—s I_l i |aJ (X)|
e f=q/X (4mnt [ sinhaj(x) [t

for every t> 0.

At this point, the main idea is to use the eigenspaces to rearis finite di-
mensional subcomplex of the Dolbeault complex posseskmgdme cohomology
groups. This was already the basic idea in Witten’s analytioof of the standard
Morse inequalities [Wit82]. We denote by

oK, q pK,Q
HM,  resp. H <A
the A -eigenspace oiA((’ acting onC*(X,A%9T ® E® LX), resp. the direct sum of
eigenspaces corresponding to all eigenvalaes As dy and4) commute, we see
thatﬁ(%';’q) C 7/’6';"“1, thus%ﬁ” and%g are finite dimensional subcomplexes of
the Dolbeault complex

0 : C°(X, AP TZE®LK).
Sinceddy + 9y dk = 4] = kA Id on #¥* , we see tha(s* has trivial cohomology
for A £ 0. Since%g” is the space of harmonic forms, we see tﬁfﬁ;\ has the

same cohomology as the Dolbeault complexXor 0. We will call this complex
the Wittend-complex. We need an elementary lemma of linear algebra.

(1.24) Lemma.Set if = dimH9(X,E ® L¥). Then for every t- 0
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q_ a1 WO« < 40w Ak
he—he "4+ (=1 hk</%(—1) >e i
= =1

Proof. The left hand side is the contribution of the 0 eigenvaluah@right hand
side. All we have to check is that the contribution of the othigenvalues is> 0.

The contribution of the eigenvalues such théf =A>0is
tA /i q-¢ k¢
e (=1 dim7,".

As 7/’6';' is exact, one easily sees that the last sum is equal to thendiore of
57(,";"‘ C 7(,";"“1, hence> 0. 0
Combining Theorem 1.23 with Lemma 1.24, we get

h—hd - (—1)9n0 < o(k")+

q . | . dlagy—as=3 lajl)
rk“;(,l)q% z/ Mi<slaj| - €921
=

£ Ix 2SSy (1 e )

This inequality is valid for any > 0, so we can let tend to+o. It is clear that
agy — a3 — Y |aj| is always< 0, thus the integrand tends to O at every point where
s < n. Whens= n, we haveog;(x) — a;x) — 3 |aj(x)| = 0 if and only if aj(x) > 0

for everyj € CJ andaj(x) < O for everyj € J. This impliesx € X(L,h,¢); in this
case there is only one multi-indésatisfying the above conditions and the limit is

2m)"ay -+ an| = (2m) " (i6Ln)" =[O,
aso = %TQL,h by definition. By the monotone convergence theorem, our sum o
integrals converges to
d q—/ n 1 aon
71’/ 2 "oy -0 da:—/ -14e,.
/;( ) X(LM)( ) "o o " X(L,h,gq)( R

The Main Theorem 1.2 follows. O

2. Applications to algebraic geometry

2.A. Solution of the Grauert-Riemenschneider conjecture

LetL be a holomorphic line bundle over a compact connected conmpdaifold X

of dimensiom andVy = HO(X, L¥). Denote byZ(Vy) the set of common zeroes of all
sections inv, and fix a basigoy, ..., 0n) of Vk. There is a canonical holomorphic
map
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(2.1) B - XN Z() — P(W), X+ [0o(X) i ...  on(X)]

sending a poink € X\ Z(V) to the hyperplankgl C Vi of sectionso = Ajoj € Vg
such thato(x) = S Ajoj(x) = 0; it is therefore given by +— [0p(X) : ... : On(X)]

in projective coordinates oR(Vk) ~ PN. The pull-back®;, @(d) can be identified
with the restriction ofLk? to X \. Z(V); indeed, to any homogeneous polynomial
P(Wo, ..., wn) € HO(PN, @(d)) of degreed, one can associate a section

(2.2) s=P(0p,...,0n) € HO(X, LK),

WhenL possesses a smooth Hermitian meftingith © 1, > 0, one can construct
many sections of high tensor powérs(e.g. by Hormander’s? estimates [HOr65],
[AV65] for 7). Fork > kg large enough, the “base locud{\Vy) is empty, the sections
in Vi separate any two points of and generate all 1-jets at any point. Thég
gives an embedding of in some projective spadg", for N = N(k) andk > k.

In this way, the theory of? estimates implies thKodaira embedding theorena
compact complex manifolX is projective algebraic if and only X possesses a
Hermitian line bundl€L, h) with C* positive curvature.

The Grauert-Riemenschneider conjecture [GR70] is an attéorcharacterize
the more general class of Moishezon varieties in terms of-pesitive line bundles.
Let us first recall a few definitions. The algebraic dimens¢X) is the transcen-
dence degree of the fieldl(X) of meromorphic functions oiX. A well-known
theorem of Siegel [Sie55] asserts thak@(X) < n (see Corollary 2.6 below). A
compact manifold or variet¥ is said to beMloishezorif a(X) = n.

By definition, theKodaira dimensiork (L) is the supremum of the dimension
of the imagesyi = @ (X~ Z(W)) C P(V) for all integersk > 0 [one defines
K(L) = —oo whenVy = 0O for all k, in which case we always haYg = 0]. Since the
field of meromorphic functions oX obtained by restriction of rational functions of
P(Vy) to Yy has transcendence degree at least equal tjdiwe infer that

(2.3) —oo < K(L) =supdimy, < a(X) <n.

(2.4) Definition. The line bundle L X is said to bebig if k(L) is maximal, i.e.
K(L) =n=dimX.

The following standard lemma is needed (cf. [Ser54], [SjE55

(2.5) Lemma (Serre-Siegel)For every line bundle - X, there exist constants
C > c> 0and ky € N* such that

dimHO(X, LK) <ck™  forallk > 1,

dimHO(X, LX) > c kW forall k > 1 multiple of k.

Proof. The lower bound is obtained by takirg such thatp := dimYy, = k(L).
Then, by the rank theorem, there exists a poiite X \ Z(V,) and a basis
(0o,...,0n) of HO(X, L") such thatog(xo) # 0 and
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(d(01/00) A...Ad(0p/00))(X0) #O.

Then by takings = P(0y,...,0p,0,...,0) in (2.2), we obtain an injection of the
space of homogeneous polynomials of degtéep+ 1 variables intdH?(X, L od),
whence

hO(X, L¥od) > (‘”p p) > dP/pl.

The proof of the upper bound proceeds as follows: select enkian metrich,
onL and a finite family of coordinate balBj = B(z;,r) such thaBj = B(zj,rj/2)
coverX, andL‘Bj is trivial for eachj. By moving a little bit the pointg;, we may
assume thath has maximal rank at all pointg for all k (the bad set is at most a
countable union of analytic sets, so it is nowhere densé) Has many sections,
one can solve a linear system in many unknowns to get a sextianishing at a
high ordem at all centerg;. Then the Schwarz lemma gives

ISl = suplisilng; <2 C(h)*suplsflng; <2 "C(N)"|s]lne
J J

whereC(h) is a bound for the oscillation of the metriton B;, which we may
assume to be finite after possibly shrinkiBg Thusm < klogC(h)/log2 if s# 0.
Since the sections &f are constant along the fibers@f, only mMY#{z } equa-
tions transversally to the fibers are needed to nmekanish at ordem. Therefore
we can choosm = (h0(X, LK) /#{z;})% 9™ and still get a non zero section, so that

hO(X, LK) ~ #{z;} - miimY < C <L), 0
(2.6) Corollary (Siegel) For every compact complex manifold X

a(X) :=trdeg- M (X) < n.

Proof. Fix s algebraically independent elemeriis. . ., fs € /((X) and letD be the
sup of the pole divisors of th§’s. To every polynomiaP(fy,..., fs) of degree< k
corresponds injectively a sectiap = P(fy,..., fs) € HO(X,@(kD)). A dimension
countimplies

kS

K< ("+S) <KD <o
sl S

by Lemma 2.5. Therefore< n. O

Now, the Grauert-Riemenschneider conjecture [GR70] castdied as follows.

(2.7) Grauert-Riemenschneider conjectureA compact complex variety Y is Moi-
shezon if and only if there is a proper non singular modifaatX — Y and a
Hermitian line bundlgL, h) over X such that the curvature for@_ is > 0 on a
dense open subset of X.
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Proof.WhenY is Moishezon, it is well known that there exists a projecélgebraic
modificationX ; therefore we can even taketo be ample and then there exists
such tha®, , > 0 everywhere oiX.

The converse statement was proved by Siu in [Siu84, Siu&Sjjraing only
OLh = 0 everywhere an®_, > 0 in at least one point. Morse inequalities provide
in fact a much stronger criterion, requiring only the pe#yi of some curvature
integral:

(2.8) Theorem.If a Hermitian line bundl€L, h) on X satisfies the integral condition

/ (@) >0,
. X(L,h,gl)

thenk (L) = n, in particular X is Moishezon.

In fact, the lower bound (1.4) applied with = @x implies immediately that
ho(X,L¥) > ck", hencex (L) = n. Now, if X is a modification o, we havef(Y) ~
M(X), soa(X) =a(Y), andY has to be Moishezon. O

2.B. Cohomology estimates for nef line bundles

On a projective algebraic manifold, a line bundle_ is said to benefif L-C > 0

for every algebraic curv€ C X. If wis a given Kahler or Hermitiaf, 1)-form on

X, it can be shown (cf. [Dem90]) th&tis nef if and only if for everye > 0 there
exists a smooth Hermitian metiiig such thatd, p, > —ew on X; in fact, the latter
property clearly implies

L-C:/@L,m)—e/w — L.C>0
C JC

for every curveC. Conversely, ifL-C > 0 for every curveC, the well-known
Kleiman criterion (cf. [Har70]) implies th&tlL + A is ample for every ample divisor
A. Hence there exists a smooth Hermitian metgon L such that

1
Oxia=KOLh +Oan, >0 = OLp > wa, where w= Opp, > 0.

Therefore, one can introduce the followidgfinition of nefnessn an arbitrary com-
pact complex manifold.

(2.9) Definition. Let X be a compact complex manifold asad given smooth posi-
tive (1,1)-form on X. A line bundle k& X is said to benefif for everye > 0 there
exists a smooth Hermitian metrig lon L such tha®, ,, > —sw everywhere on X.

(2.10) A consequence of holomorphic Morse inequalitietf. X is compact Khler
and L is nef, for every holomorphic vector bundle E on X one has

h%(X,0(E)®@ @(kL)) =o(k")  forallq> 1.
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Proof.Let w be a Kahler metric. The nefnessloimplies that there exists a smooth
Hermitian metrich; onL such that® . > —ew. On X(L,hs,1) we have exactly
1 negative eigenvaluk; which is belongs td—¢,0[ and the other onek; (j > 2)
are positive. The produdt - - - Ap satisfiegAs - - - An| < €[7j52(A + €), hence

1

H‘ EWA (OLp +Ew)" T onX(Lhg,1).

1
n
< -
Ol | < =

By integrating, we find

on gne/w/\ (L) +ew)™?
/. oy O < [ 00 (@1(1) +£0)

and the result follows. O

(2.11) Note.When X is non Kahler, D. Popovici [Pop08] has announced bounds
for the Monge-Ampére masses 6f ,, which still imply the result, but the proof

is much harder in that case. On the other hand, wkde projective algebraic,
an elementary hyperplane section argument and an induatiatimension easily
implies the stronger upper bounds

(2.12) h%(X,@(E) ® @(kL)) = O(k""9) forall g > 0.
Hint. By Serre duality, it is enough to show that
h9(X,@(F)® @(—kL)) =O(k%)  foreveryq>0

and every holomorphic vector bundie Choose a very ample line bundieso big
thatF’ = F* ® @G(A) is Nakano positive, and apply the Nakano vanishing theorem
and Serre duality to see thaf|(X, O(F) @ G(—A) @ G(—kL)) = 0 for allkandg > 1.

Use the exact sequenced@x (—A) — Ox — Op — 0, take the tensor product with
O(F) ® @(—kL) and apply induction. O

It is unknown whether the accurate bound (2.12) holds trua general compact
complex manifold, even wheX is assumed to be Kahler.

2.C. Distortion inequalities for asymptotic Fubini-Study metrics

Another application of the heat kernel estimates is a gdimatian of G. Kempf’s
distortion inequalities ([Kem89], [Ji89]) to all projeet algebraic manifolds. In this
generality, the result was obtained by Th. Bouche [Bou90d, ia less generality
(but with somewhat stronger estimates) by G. Tian [Tia90].

LetL be a positive Hermitian line bundle over a projective madi®, equipped
with a Hermitian metrico. ThenVy = HO(X, L) has a natural Hermitian metric
given by the global.? norm of sections. Fok > kg large enough@®y, is an em-
bedding and.¥ can be identified to the pull-back; O(1). We want to compare the
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original metric|.| of L and the metrid. |rs induced by the Fubini-Study metric of
0(1).
Let(sy,...,sv) be an orthonormal basis bi°(X,L¥). Itis not difficult to check
that
&7

10017+ -+ [su(x) 2

thus all that we need is to get an estimatesds;(x)|?. However, this sum is the
contribution of the 0 eigenvalue in the heat kernel

oo
Z |l.UJ

associated tq%D[(’ in bidegree(0,0). We observe that non zero eigenvalu’efs
are also eigenvalues in bidegré® 1), sinced is injective on the corresponding
eigenspaces. The associated eigenfunctiongla[é k/\jk, for

& |Es= for £ e LK,

9w |12 = (A Wy, ;) = KAF
Thus the summation

+
Z 2t)\ |l9LIJ

is bounded by the heat kernel in bidegt@el), which is itself bounded bi"e
with ¢ > 0 (note thatogy — a; — Y |aj| < 0 onX for [J| = 1). Takingt = k® with
€ small, one can check that all estimates remain uniformlidveahd that the con-
tribution of the non zero eigenfunctionskg (x,x) becomes negligible i€° norm.
Then theorem 1.23 shows that

> I5j (97 ~ K (x,x) ~ K'(21) a1 (x) -+~ an(¥)]
ast = k& — +o. Foré ¢ L)‘E we get therefore th€® uniform estimate

&P
HEx

As a consequence, the Fubini-Study metriclomduced by®y, converges uni-
formly to the original metric. G. Tian [Tia90] proved thatigHast convergence
statement holds in nor@*. It is now known that there is in fact an asymptotic
expansion in 1k, and therefor€> convergence; this holds true even in the almost
complex setting, see [BUOO] and [SZ02].

~ (52) 1019 - cn¥)  as ko

(2.13) o
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2.D. Algebraic counterparts of the holomorphic Morse inequalities

One difficulty in the application of the analytic form of theeiqualities is that the
curvature integral is in general quite uneasy to computegsit is neither a topo-
logical nor an algebraic invariant. However, the Morse urediies can be reformu-
lated in a more algebraic setting in which only algebrai@imants are involved. We
give here two such reformulations — after they were founcawialysis in [Dem94],
F. Angelini [Ang96] gave a purely algebraic proof (see alSwP3] and [Tra95] for
related ideas).

(2.14) Theorem.Let L= F — G be a holomorphic line bundle over a compact
Kahler manifold X, where F and G are numerically effectiveelioundles. Then
forevery g=0,1,...,n=dimX, there is an asymptotic strong Morse inequality

—iRl K" yal n—j j n
(DYINX k) < = Y ()0 J(J_)F .Gl +o(KM).

0<J<q n 0<I<q

Proof.By addinge times a Kahler metriev to the curvature forms df andG, € > 0
one can writed = O ¢ — Og s WhereOr; = 5-O + ew andOg ¢ = - + W
are positive definite. Let; > --- > A, > 0 be the eigenvalues GIG’S with respectto
Or . Then the eigenvalues ¢fOL with respect tdr ¢ are the real numbers-14;
and the seK(L,h, < q) is the sef{Aq,1 < 1} of pointsx € X such thatq,1(x) < 1.
The strong Morse inequalities yield
o KN ~
Y O < [ (T[] (@ A)8+olk).
0dTXq A<l agjsn

On the other hand we have
n ~ i ~ . ~
<J) elr;,sJ A O(JB,S =03(A) elg,sa
whereay (A) is thej-th elementary symmetric function i, ..., An, hence

(-1 <r.‘>F”J’ -Gl = lim (-1 Ial(A) OF,.
0<Tq J

£20/X 0dxq

Thus, to prove the lemma, we only have to check that

(—D)¥ g} () = Uppg,p <y (1)1 [1 @=2)=0

0<Txn 1<j<n

forall Ay > --- > Ay > 0, where ¥, denotes the characteristic function of a set.
This is easily done by induction am (just split apart the parametap and write
Gl (A) =00, (A) + )1 (A) An). O

In the casey = 1, we get an especially interesting lower bound (this bouasl h
been observed and used by S. Trapani [Tra95] in a similaegdnt
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(2.15) Consequence®(X, kL) — hi(X,kL) > K (F" —nF"1.G) — o(k").
Therefore some multiple kL has a section as soonas fFF"~1.G > 0.
(2.16) Remark.The weaker inequality

n

hO(X, kL) > %(F“ —nF"1.G) —o(k")

is easy to prove iX is projective algebraic. Indeed, by adding a small aniple
divisor toF andG, we may assume th&, G are ample. LetnyG be very ample
and letk’ be the smallest integer k/mg. Thenh%(X, kL) > ho(X,kF — K'mgG). We
selectk’ smooth member§;, 1 < j <K in the linear systenimyG| and use the
exact sequence

0— HO(X,kF = 3 Gj) = HO(X,kF) — @DH(Gj kRg, ).

Kodaira’s vanishing theorem yield$%(X,kF) = 0 andHY%(G;, kﬁej) =0forg>1

andk > kg. By the exact sequence combined with Riemann-Roch, we get
h%(X,kL) = h%(X,kF = 5 Gj)

knfl

K" n n—1 n—1 n—2
> SF"—0K >*Z<7(n_1)!F -Gj —O(k ))
K" n k/mO n—1 n—1
>E(F —n- —F -G)—O(k )

K" n n—-1 n—1
>H(F —nF -G)fO(k ).

(This simple proofis due to F. Catanese.) O

(2.17) Corollary. Suppose that F and G are nef and that F is big. Some multiple of
mF — G has a section as soon as
F-1.G

m>n Fn

In the last condition, the factaris sharp: this is easily seen by takiXg= P}
andF =0(a,...,a) andG = @(by, ..., bn) overP}; the condition of the corollary is
thenm> 3 b;/a, whereak(mF — G) has a section if and only ih > supb; /a; this
shows that we cannot replandy n(1— ¢€).

3. Morse inequalities ong-convex varieties

Thierry Bouche [Bou89] has obtained an extension of holgrhiarMorse inequal-
ities to the case of stronglg-convex manifolds. We explain here the main ideas
involved.
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A complex (non compact) manifold of dimensionn is stronglyg-convex in
the sense of Andreotti and Grauert [AG62] if there exis& axhaustion function
Y on X such thatddy has at least — g+ 1 positive eigenvalues outside a compact
subset oiX. In this case, the Andreotti-Grauert theorem shows thatcddbmology
groupsH™(X, ) with values in a coherent analytic sheaf are finite dimeraditor
m> q.

(3.1) Theorem.Let L, E be holomorphic vector bundles over X with rankll,
rankE = r. Assume that X is strongly g-convex and that L has a Hermitigtric

h for which©_ ;, has at least r- p+ 1 nonnegative eigenvalues outside a compact
subset KC X. Then for all m> p+ g — 1 the following strong Morse inequalities
hold:

n n

> (~1)MdimH (X, E@ L) < rk—|/ (—1)Me, +o(K").

/=m N> JX(Lh,>m)

Proof. For everyc € R, we consider the sublevel sets
Xe={xeX; g(x) <c}.

Selectcy such thatiddy hasn— g+ 1 positive eigenvalues oKX ~ X.. One can
choose a Hermitian metrigy on X in such a way that the eigenvalué’sg <P

of iddy with respect taw satisfy

1
(3.2) —ﬁgyfgmgyg,lgl and Y= =y =1onX\Xg;

this can be achieved by taking, equal toiddy on aC® subbundle offy of rank
n—q+ 1 on whichiddy is positive, anduwy very large on the orthogonal comple-
ment. We setw = e’ ayy wherep is a function increasing so fast at infinity that
will be complete.

More important, we multiply the metric df by a weighte X% wherey is a
convex increasing function. The resulting Hermitian linmble is denote@.y, hy ).
For any(0,m) form u with values inE @ L¥, viewed as arin,m) form with values
in E® LX® ATy, the Bochner-Kodaira-Nakano formula implies an inequalit

(@) > [ KBy Al + (Wu

whereW depends only on the curvature Bfx A"Tx and the torsion ofv. By the
formulas of§1.C, we have

([16Ly 1y ) AJU,U) > (@14 -+ + am)[uf?
wherea; < --- < ap are the eigenvalues of

16,0, =16Ln+100(X o @) =i6n+ (X o @)iddy.
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If B is the lowest eigenvalue o8_p with respect taw, we find

aj =B+ (X o w)y)/e,
a4 Om = mB+ (X oY) (B +---+yR) /€
and by (3.2) we get for ath > q:

1
Ayt 0m>MB+—e Py o onX X,

It follows that one can choosgincreasing very fast in such a way that the Bochner
inequality becomes

(33) o =k [ AR -Cy [ Juix)?
.X\Xh X

whereA > 1 is a function tending te- at infinity onX andC; > 0. Now, Rellich’s
lemma easily shows tha; has a compact resolvent. Hence the spectrudy/afs
discrete and its eigenspaces are finite dimensional. Sth@dguments also show
the following:

(3.4) Lemma.Wheny increases sufficiently fast at infinity, the spa€& (X, L;} ®

E) of L2-harmonic forms of bidegre@, m) for A/’ is isomorphic to the cohomology
group H"(X,E® LK) for allk € N and m> q.

For a domaim2 cC X, we consider the quadratic form

k. 1/ = —x
QW = [ [+ Bl

with Dirichlet boundary conditions 08Q. We denote bWﬁT‘Q

all eigenspaces (Q'gm corresponding to eigenvaluesA (i.e. < kA for AY).

the direct sum of

(3.5) Lemma.For everyA > 0 ande > 0, there exists a domaif2 cC X and an
integer lg such that

s spkm - opkm - opkm
dlm%@’Q<d|m7€</\’xgdlm%gAJrs,Qfork}ko.

Proof. The left hand inequality is a straightforward consequerfcén® minimax
principle, because the domain of the global quadratic f@@ﬁ' is contained in the
domain of Q™.

: : > pK,m
For the other inequality, lat € %g/\’x.

k/ A|u|27C1/ |u|2<k)\/|u|2.
.X\XCO XCO JX

Then (3.3) gives
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Choosec; > ¢1 > ¢p so thatA(x) > a on X\ X, and a cut-off functionp with
compact support iiXe, such that 6< ¢ < 1 and¢ =1 onX,. Then we find

/ |u|2< M/ |u|2.
IX Xy ka Jx

For a large enough, we g x luj? < g/|ul|?. SetQ = X,. Then

Q"(9u) = § [ 198 AU+ 9T +193,u— 09 1 ul?

<<1+e>o§m<u> %2 (14 3) P

S@A+e)A+ o )HUH2

As|\<l>u||2>jxC lu? > (1—¢€)]|ul|?, we infer
k.m 1+£
Q"(pu) < T— (A

C2 2
1_¢ k—S)H‘PUH :

If € is replaced by a suitable smaller number &rtdken large enough, we obtain
QM(v) < (A +¢)||v|2forall ve ¢T/’€<A x- Then the right hand inequality in lemma
3.5 follows by the minimax principle. O

Now, Corollary 1.17 easily computes the counting funcmf‘{ﬁ“ for the eigen-
values:

npk:m r m i "
lim lim k"NS™(A) = /(LX,hX,m)(il) (E[GLX,hX)) -

A—0, k—+oo n!

Applying this to the Witten comple%f’g x» we easily infer the inequality of theo-

rem 3.1, except thai(L) is replaced b)p(LX) However, up to now, the inequality
is valid for allm > g. Take the convex functiog equal to 0 or] — o, cg]. Then

i i =
Oy = 5700 = OLn+ 5-09(x 0 )

coincides with@_, on X, and has at mostp — 1) + (q— 1) negative eigenvalues
on X~ Xg,. HenceX (Ly,hy,m) = X(L,h,m) form> p+q—1 ando, h, = OLn
on these sets. Theorem 3.1 is proved. O

As a corollary, one obtains a general a priori estimate ferMftonge-Ampere
operator(idd)" on g-convex manifolds.

(3.6) Corollary: calculus inequalities.Let X be a strongly g-convex manifold and
¢ a C” function on X, weakly p-convex outside a compact subset &biX¢ =
0,1,...,n, let G be the open set of points whed®dig is non degenerate and admits
¢ negative eigenvalues. Then for albmp=q—1
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% /G (i0d$)™ has the sign of—1)™.

{=m

This result has been first obtained by Y.T. Siu [Siu90] dezonvex domains
in a Stein manifold. At that time, thg-convex case of the inequalities was not
yet available and Siu had to rely on a rather sophisticatpdoegimation argument
of Stein manifolds by algebraic varieties; the proof codldrt be reduced to the
compact case.

The general statement given above is in fact a direct corseguof Theorem
3.1: take forL the trivial bundleL = @x equipped with the metric defined by the
weighte ? andE = @x. SinceH™(X, LK) = H™(X, @) is independent ok and
finite dimensional, Theorem 3.1 implies

K" % /é[(fl)m(idgqb)” > constant— o(k")

{=m"

forallk > kg andm > p+ q— 1, whence the result. O

Part Il. Approximation of currents and intersection theory

0. Introduction

Many concepts described in this Section (e.g. pseudoifityg are quite general
and make sense on an arbitrary compact complex manotdno projective or
Kahler assumption is needed. In this general context,beiser to work withd d-
cohomology classes instead of De Rham cohomology classedefine theBott-
Chern cohomologgf X to be

(0.1) HES (X, C) = {d-closed(p,q)-forms} /{ d9-exact(p,q)-forms}.

It is easily shown that these cohomology groups are finiteedsional and can be
computed either with spaces of smooth forms or with currantfact, they can be
computed by certain complexes of sheaves of forms or cuitbiat both provide
fine resolutions of the same sheaves of holomorphic or aitirkhorphic forms.
Our statement therefore follows formally from general tessof sheaf theory. Also,
finiteness can be obtained by the usual Cartan-Serre prgefloan Montel’s the-
orem forCech cohomology. In both cases, the quotient topologygﬁ(x,((j) in-
duced by the Fréchet topology of smooth forms or by the wep&lbgy of currents
is Hausdorff. ClearlyHg (X, C) is a bigraded algebra, and it is trivial by definition
that there are always canonical morphisms

(02)  HEAX,C)=HPIUX,C), @ HEX,C) - HER(X,C).
p+a=k
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By Hodge decomposition and by the well-kno@d-lemma of Kahler geometry,
these morphisms are isomorphisms wieis Kahler; especially, we get a canonical
algebra isomorphism

(0.3) HRRr(X,C) ~ @Hqu(x,@) if X is Kahler
p.q

We will see in Paragraph 5 (Remark 5.15) that this is true rgereerally ifX is in
the Fujiki classé€, i.e., the class of manifolds bimeromorphic to Kéahler nigldss.

1. Pseudo-effective line bundles and singular Hermitian nteics

Let L be a holomorphic line bundle on a compact complex manialtt is impor-
tant for many applications to allow singular Hermitian niestr

(1.1) Definition. A singular Hermitian metric h on L is a Hermitian metric sublat,
for any trivialisation Ly, ~ U x C, the metric is given by k e? ¢elLl (V).

The curvature tensor

i = i =
(1.2) OLh= ﬁadqb :—Eadlogh
can then be computed in the sense of distributions, and defirikis way a (global)
closed(1,1)-current onX. It defines a (real) cohomology cla§® n} € Hé’é(X,(C)
which is mapped to the first Chern clasgL) by the canonical morphism®.2).
We will therefore still denote this Bott-Chern classdyL ). The positive case is of
special interest.

(1.3) Definition. We say that L pseudo-effective ift) € Héé(X,(C) is the coho-
mology class of some closed positive current T, i.e. if L caretuipped with a
singular Hermitian metric h with == ©_, > 0 as a current, in other words, if the
weight functionsp can be chosen to be plurisubharmonic on each trivialization
opensetU.

The locus wherd has singularities turns out to be extremely important. Oag w
is to introduce multiplier ideal sheaves following A. Nafléhd89]. The main idea
actually goes back to the fundamental works of Bombieri [BOrand H. Skoda
[Sko75].

(1.4) Definition. Let ¢ be a psh(plurisubharmonig¢ function on an open subset
Q C X. To¢ we associate the ideal subshe&fp) C @q of germs of holomorphic
functions fe @gq 4 such that|f[?e~? is integrable with respect to the Lebesgue
measure in some local coordinates near x.
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The zero variety/ (.f(¢)) is thus the set of points in a neighborhood of which
e % is non integrable. The following result implies that thisalsays an analytic
set.

(1.5) Proposition([Nad89]). For any psh functiop on Q C X, the sheaff(¢) is

a coherent sheaf of ideals ov&. Moreover, ifQ is a bounded Stein open set, the
sheaf¥(¢) is generated by any Hilbert basis of thé épace#?(Q, ¢ ) of holomor-
phic functions f o2 such that/, | f|?e~? dA < +oo.

Proof. Since the result is local, we may assume ta a bounded pseudoconvex
open set inC". By the strong noetherian property of coherent sheavedathiy

of sheaves generated by finite subset#8tQ, ¢) has a maximal element on each
compact subset aR, hence#?(Q,¢) generates a coherent ideal shgaf @.

It is clear thaty C .4(¢); in order to prove the equality, we need only check that
Fx+ H(P)x ﬂmgj = .%(¢)x for every integers, in view of the Krull lemma. Let

f € .%(¢)x be defined in a neighborhodd of x and let6 be a cut-off function
with support inV such thatd = 1 in a neighborhood of. We solve the equation
du=g:=d(0f) by means of Hormanderls’ estimates [Hor65, AV65], applied
with the strictly psh weight

$(2) = $(2)+ (n+9)log|z—x* + |2
We get a solutioru such that/,, |uj?e ?|z—x|"2"9dA < oo, thusF = 8f —u
is holomorphicF € #2(Q,¢) and fx — F = ux € .4(¢)x N m¢ . This proves the
coherence. Nowf is generated by any Hilbert basis#f(Q, ¢ ), because it is well-

known that the space of sections of any coherent sheaf isc@h €t space, therefore
closed under locdl? convergence. O

Another important way of measuring singularities is viadrej numbers — a
natural generalization of the concept of multiplicity tdydanctions. Recall that the
Lelong number of a functiopp € Psi{Q) at a pointxp is defined to be

i 0@ SU?
(1.6) v(¢,%0) 7IIZrE>I)(I;Jf |og|z_)(0| 7r“ar(r)]+ logr .

In particular, if¢ = log|f| with f € @(Q), thenv(¢,xo) is equal to the vanishing
order
ordy (f) =sup{k € N;Df(xp) =0, V|a| < k}.

The link with multiplier ideal sheaves is provided by theléaling standard result
due to Skoda [Sko72].
(1.7) Lemma.Let ¢ be a psh function on an open tand let xc Q.

(@) If v(¢,x) < 2, then e? is Lebesgue integrable on a neighborhood of x, in
particular.#(¢ )x = Oq x.

(b) More generally, ifv(¢,x) > 2(n+s) for some integer & 0O, then

e?>cz—x2%  ¢>0
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in a neighborhood of x, and(¢)x C mgi wheremg, 4 is the maximal ideal of
@q x- In particular e ¢ is non integrable at x it’(¢,x) > 2n.
(c) The zero variety V.¥(¢)) of .¥(¢) satisfies

Van(9) CV(H(9)) C Ea(9)

where E(¢) = {x< X; v(¢,x) > c} is the c-upperlevel set of Lelong numbers

of ¢.

The only non trivial part is 1.7 (a); the proof relies on thecBoer-Martinelli
representation formula fof = +£9d¢ (see [Sko72]). One should observe that
1.7 (a) (resp. (b)) is optimal, as one can see by takftig) = Alog|z|, resp.
#(z) =Alog|z,onQ =C".

2. Hermitian metrics with minimal singularities and analytic Zariski
decomposition

We show here by a general “abstract” method that a pseuéact®# line bundle
always has a Hermitian metrig,i, with minimal singularities among those with
nonnegative curvatur®_p > 0 in the sense of currents. The following definition
was introduced in [DPS01].

(2.1) Definition. Let L be a pseudo-effective line bundle on a compact complex
manifold X. Consider two Hermitian metrics,Hy, on L with curvature@L’hj >0
in the sense of currents.

(&) We will write hy < hy, and say that his less singular than if there exists a
constant C> 0 such that h < Chy.

(b) We will write hy ~ hy, and say that h, hy are equivalent with respect to singu-
larities, if there exists a constant€ 0 such that C1h, < h; < Chy.

Of coursen; < hy if and only if the associated weights in suitable triviatinas
locally satisfy$, < @1 +C. This implies in particulav(¢1,x) < v(¢2,x) at each
point. The above definition is motivated by the following ebstion.

(2.2) Theorem.For every pseudo-effective line bundle L over a compact éamp
manifold X, there exists up to equivalence of singulariéiesique class of Hermi-
tian metrics h with minimal singularities such th@t , > 0.

Proof. The proof is almost trivial. We fix once for all a smooth methi¢c (whose
curvature is of random sign and signature), and we writeusargnetrics ol under

the formh = h..e¥. The condition®_, > 0 is equivalent toz'—n(ﬁtp > —uwhere

U= Opn,. This condition implies thaty is plurisubharmonic up to the addition
of the weight¢., of h., and therefore locally bounded from above. Since we are
concerned with metrics only up to equivalence of singuksitit is always possible

to adjusty by a constant in such a way that gup = 0. We now set
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himin = o™ Yimin, Wmin(X) = SEp’nU(X)

where the supremum is extended to all functiahssuch that supy = 0 and
5200y > —u. By standard re_sults on plurisubharmonic functions (sekrig
[Lel69]), Wmin still satisfies5=00 Ymin > —u (i.e. the weightpe + Ynin Of hin is
plurisubharmonic), anty,, is obviously the metric with minimal singularities that
we were looking for. [In principle one should take the uppangontinuous regu-
larizationy;, of Ymin to really get a plurisubharmonic weight, but sinfig, | also
participates to the upper envelope, we obtain ligsg = (,;,, automatically]. O

(2.3) Remark.In general, the supremuth= sup, ; of a locally dominated fam-
ily of plurisubharmonic functiongy; is not plurisubharmonic strictly speaking, but
its “upper semi-continuous regularizatiogy* (z) = limsup, _,, ({) is plurisubhar-
monic and coincides almost everywhere with with ¢* > (. However, in the
context of (2.3)* still satisfiesy* < 0 and5zddy > —u, hencey* participates
to the upper envelope. As a consequence, we gave€ (¢ and thusy = (* is in-
deed plurisubharmonic. Under a strict positivity assuomptnamely ifL is a big
line bundle (i.e. the curvature can be taken to be strictlsitp@ in the sense of
currents, see Definition (3.3 d) and Theorem (3.4 b), thgp can be shown to
possess some regularity properties. The reader may cqBsol209] for a rather
general (but certainly non trivial) proof theini, possesses locally bounded second
derivativesdzwmm/dzj 07 outside an analytic set C X; in other wordsO p,..
has locally bounded coefficients &\ Z. O

(2.4) Definition. Let L be a pseudo-effective line bundle. If h is a singularkiéan
metric such tha®_, > 0and

HO(X,mL® . #(h®M) ~HO(X,mL)  forallm>0,
we say that h is an analytic Zariski decomposition of L.

In other words, we require th&ithas singularities so mild that the vanishing
conditions prescribed by the multiplier ideal sheatés®™) do not kill any sections
of L and its multiples.

(2.5) Exercise A special case is when there is an isomorph@m= A+ E where
A andE are effective divisors such th&t®(X,mpL) = H%(X,mA) for all m and
@(A) is generated by sections. Th&mpossesses a smooth Hermitian melicand
this metric defines a singular Hermitian methion L with poIes%E and curvature

%)OA,hA + %,[E]. Show that this metrib is an analytic Zariski decomposition.
Note whenX projective and there is a decompositiph = A+ E with A nef (see
(1 2.9)), E effective andH®(X,mpL) = H(X,mA) for all m, one says that th@-
divisor equalityL = $A+ SE is analgebraic Zariski decompositioof L. It can be
shown that Zariski decompositions exist in dimension 2,ibutigher dimension
they do not exist in general. O
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(2.6) Theorem.The metric ki, with minimal singularities provides an analytic
Zariski decomposition.

It follows that an analytic Zariski decomposition alwayssex (while algebraic de-
compositions do not exist in general, especially in dimem& and more).

Proof. Let 0 € H(X,mL) be any section. Then we get a singular mefram L by
putting|€ |p = |& /a(x)¥™| for & € Ly, and it is clear thafo]|ym = 1 for this metric.
Henceo € HO(X,mL®.%(h®M)), and a fortiorio € HO(X,mL®.%(h™)) sincehmin
is less singular thah. O

3. Description of positive cones (Khler and projective cases)

Let us recall that an integral cohomology classHifiX,Z) is the first Chern class
of a holomorphic (or algebraic) line bundle if and only ifig$ in theNeron-Severi

group
(3.1) NS(X) = Ker (H?(X,Z) — H?(X,Ox))

(this fact is just an elementary consequence of the exp@henact sequence-6-
7 — @G — @ — 0). If X is compact Kahler, as we will suppose from now on in
this section, this is the same as saying that the class ipefiy1) with respect to
Hodge decomposition.

Let us consider the real vector spacep{&) = NS(X) ®zR, which can be
viewed as a subspace of the spade!(X,R) of real (1,1) cohomology classes. Its
dimension is by definition the Picard number

(3.2) p(X) = rank; NS(X) = dimg NS (X).

We thus have & p(X) < h%(X), and the example of complex tori shows that all
intermediate values can occur whes:- dimX > 2.

The positivity concepts for line bundles considered inisedt2.B and Il 1 pos-
sess in fact natural generalizationg101) classes which are not necessarily integral
or rational — and this works at least in the category of corhigabler manifolds (in
fact, by using Bott-Chern cohomology, one could even extiede concepts to
arbitrary compact complex manifolds).

(3.3) Definition. Let (X, w) be a compact Bhler manifold.

(@) The Kahler cone is the set ¢ HY(X,R) of cohomology classefw} of
Kéahler forms. This is almpen convex cone

(b) The closuréX of the Kahler cone consists of classéa} € H1(X,R) such
that for everye > 0 the sum{a + ew} is Kahler, or equivalently, for every
£ > 0, there exists a smooth functigrp on X such thatr + i(35¢£ > —ew. We
say that¥ is the cone ohef (1,1)-classes.

(c) The pseudo-effective cone is the $ett H1(X,R) of cohomology classes
{T} of closed positive currents of tygé, 1). This is aclosed convex cone
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(d) The interior€° of € consists of classes which still contain a closed positive
current after one subtracts{w} for € > 0 small, in other words, they are
classes of close(l, 1)-currents T such that T ew. Such a current will be
called aKahler currentand we say thafT} € HL1(X,R) is abig (1,1)-class

F = Kahler cone irHY(X,R) [open]
Q ' F = nef cone iHL1(X, R) [closure of#]
\ / ¢ = pseudo-effective cone iH11(X,R) [closed]

&° = big cone inHY(X, R) [interior of €]

The openness o is clear by definition, and the closedness@fs a con-
sequence of the fact that bounded sets of currents are weaklpact (as follows
from the similar weak compactness property for boundedsetssitive measures).
It is then clear thatX c €.

In spite of the fact that cohomology groups can be defineceithterms of
forms or currents, it turns out that the conéisand ¢ are in general different. To
see this, it is enough to observe that a Kahler cles$ satisfiesf, af > 0 for
everyp-dimensional analytic set. On the other hand if the surface obtained by
blowing-upP? in one point, then the exceptional divisér~ P! has a cohomology
class{a} such thatz a = E? = —1, hence{a} ¢ K, although{a} = {[E]} € €.

In caseX is projective, all Chern classeg(L) of line bundles lie by definitionin
NS(X), and likewise, all classes of real divisds=§ c;Dj, ¢j € R, lie in NSz (X).

In order to deal with suchlgebraic classeave therefore introduce the intersections

7{NS:7{QNSR(X), (((L'NS:(((L'QNSR(X),

and refer to classes dfit1(X,R) not contained in N§(X) as transcendental
classes
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Fns

\Ens\ [/

A4

A very important fact is that all four conékys, €ns, #ns. ‘Exs have simple
algebraic interpretations.

(3.4) Theorem.Let X be a projective manifold. Then

(a) Fnsis equalto the open coremp(X) generated by classes afple(or very
ample divisors A(recall that a divisor A is said to be very ample if the linear
system H(X,@(A)) provides an embedding of X in projective space

(b) The interior €} is the coneBig(X) generated by classes big divisors,
namely divisors D such thaPfX, @ (kD)) > ckdmX for k large.

(c) ‘énsisthe closuréff(X) of the cone generated by classegfiéctivedivisors,
i.e. divisors D=y ¢Dj, ¢j € R4..

(d) The closed congfys consists of the closurisef(X) of the cone generated by
nefdivisors D(or nef line bundles }, namely effective integral divisors D such
that D-C > O for every curve C, also equal temp(X).

In other words, the terminology “nef”, “big”, “pseudo-effive” used for
classes of the full transcendental cones appear to be aaheiirapolation of the
algebraic case.

Proof. First notice that since all of our con&have non empty interior in N§X)
(which is a rational vector space in terms of a basis of el¢gierH?(X,Q)), the
rational points€g := ‘€N NSy (X), NSp(X) = NS(X) @z Q, are dense in each of
them. (a) is therefore just Kodaira's embedding theoremnalie look at rational
points, and properties (b) and (d) are obtained easily bgipago the closure of
the open cones. We will now give details of the proof only tor\hich is possibly
slightly more involved.

By looking at points ofé¢, = ‘€° NNSg (X) and multiplying by a denominator,
it is enough to check that a line bundlesuch thatci(L) € €° is big. However,
this means that possesses a singular Hermitian metticsuch thato p, > cw
for some Kahler metriev. For some integepp > 0, we can then produce a sin-
gular Hermitian metric with positive curvature and with @egi logarithmic pole
hPoe-6(2)loglz—xl* in a neighborhood of every poimg € X (here@ is a smooth cut-
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off function supported on a neighborhoodxg). Then Hormander's? existence
theorem [Ho6r65, AV65] can be used to produce sections‘offhich generate all
jets of order(k/po) — n at pointsxg, so that_ is big.

Conversely, ifL is big andA is a (smooth) very ample divisor, the exact se-
quence 0- Ox(kL— A) — Ox (kL) — @a(kL;a) — 0 and the estimates

h°(X,@x (kL)) > ¢k,  h%(A,@a(KLia)) = O(K™ 1)

imply that@x (kL — A) has a section fdk large, thukL — A = E for some effective
divisor E. This means that there exists a singular métrion L such that

1 1
== >
OLn = 1 (Oan,+[E]) > T
wherew = Opp,, hencecy (L) € €°. O

(3.5) Corollary. If L is nef, then L is big(i.e. k(L) = n) if and only if L > 0.
Moreover, if L is nef and big, then for evedy> 0, L has a singular metric b= ¢
such thatmaxex v(¢,x) < 6 and IO h > £ w for somege > 0. The metric h can be
chosen to be smooth on the complement of a fixed divisor E |ogi#inithmic poles
along E.

Proof. By (I 2.10) and the Riemann-Roch formula, we have
hO(X, kL) = x (X, kL) + o(k") = k"L"/n! 4 o(k"),

whence the first statement. By the proof of Theorem 3.4 ()etlexists a singular
metrichy onL such that

i 1/ 1 i
- =7\ 57z E 2 sl = :
5r0tm = i (570 + [E]) > . &= 5 Onn,

Now, for everye > 0, there is a smooth metrig on L such tha%[@L,hE > —Ew.
The convex combination of metri¢g = hk*hl~ is a singular metric with poles
alongE which satisfies

%T@L,h’s > g(w+ [E]) — (1—ke)ew > ke w.

Its Lelong numbers arev(E, x) and they can be made smaller thaby choosing
€ > 0small. O

We still need a few elementary facts about the numerical dgioa of nef line
bundles.

(3.6) Definition. Let L be a nef line bundle on a compadciher manifold(X, w).
One defines the numerical dimension of L to be

nd(L) = max{k=0,....n; c1(L)* £ 0in H*(X,R)}.
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Notice that ifL is nef, each power; (L) can be represented by a closed positive
current@y € c1(L)X obtained as a weak limit of powers of smooth positive forms

. 1 — K
6= lim (a+aw+dd¢m), a e cy(L).

Mmoo

Such a weak limit exists sinck (a + ~w+ 05¢m)k A w"Kis uniformly bounded
asm— +oo. Then we see that

/Xcl(L)kAw”*k:AOk/\w”*k>0 — #0 <= cg(L)*#0

By Corollary 3.5, we have (L) = nif and only if ndL) = n. In general, we merely
have an inequality.

(3.7) Proposition.If L is a nef line bundle on a compac&Kler manifold(X, w),
thenk (L) < nd(L).

Proof. We consider arbitrary irreducible analytic subséts X and prove by in-
duction onp = dimZ thatk (Lz) < nd(Lz) where ndL,z) is the supremum of all
integersk such thatcy (Liz)% # 0, i.e. fx[Z] Acy(L)* A wP% > 0. This will prove
our statement whed = X, p = n. The statement is trivial ifp = 0, so we sup-
pose now thafp > 0. We can also assume that= k(L|z) > O, otherwise there
is nothing to prove. This implies that a sufficient large nplét mpL has at least
two independent sectionsy, 0, on Z. Consider the linear systefaygp + a101/,
a=|a:a) € PL, and takeY = Y; C Z to be an irreducible component of the
divisor of g, := agap + a1 01 which is not a fixed component whenvaries. For
m sufficiently divisible,quL12 has rankr at a generic (smooth) point &, hence

the rank of(®m, )y is > r':=min(r,p— 1) if a € P} is itself generic. A fortiori
rank((DmHY) >’ (we may even have sections@nwhich do not extend t&). By the
induction hypothesis we find

/ Y] A (L) AwP >0,
Jx
Now, we use the fact thgZ] A ci(mpL) — [Y] can be represented by an effective
cycle (the sum of all componengsY in the divisor of our generic sectiamy). This
implies
r'+1 p—1-r 1 r’ p—1—r’
Z]Ae (L) T Aw >— [ [Y]re(L) Aw > 0.
X Mo /X
If r = p, we haver’ = p— 1, hencea’+1=r and we are done. If < p, we have

r' =r and then we use the obvious inequality< Cow for some representative
a € ¢1(L) and somé& > 0 to conclude that

1 :
r p—r r+1 p—1-r
/X[Z]/\cl(L) AP > —./X[Z]/\cl(L) Aw > 0. O
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(3.8) Remark.It may happen that (L) < nd(L): take e.qg.
L—>X=XyxXp

equal to the total tensor product of an ample line buthdlen a projective mani-
fold X; and of a unitary flat line bundle, on an elliptic curveX, given by a rep-
resentationrg (X2) — U (1) such that no multipl&kL, with k = O is trivial. Then
HO(X, kL) = HO(Xy,kLy) ® HO(X, kL) = 0 fork > 0, and thus (L) = —e0. How-
evercy (L) = prici(L1) has numerical dimension equal to din The same exam-
ple shows that the Kodaira dimension may increase by réstito a subvariety (if
Y = Xg x {point}, thenk (L,y) = dimY).

4. Approximation of plurisubharmonic functions via Bergman kernels

We prove here, as an application of the Ohsawa-Takegoshixtension theo-
rem [OT87], that every psh function on a pseudoconvex opefse C" can be
approximated very accurately by functions of the fartog| f|, wherec > 0 andf

is a holomorphic function. The main idea is taken from [Dein®2r other appli-
cations to algebraic geometry, see [Dem93] and Demailljfak¢DKO1]. We first
recall the statement of the generaliz€dextension theorem; its proof relies on a
subtle enhancement of the Bochner-Kodaira technique, anckfer to the littera-
ture for details.

(4.1) Theorem(Ohsawa-Takegoshi [OT87], Manivel [Man93]et X be a complex
n-dimensional manifold possessing a smooth plurisubharcrexhaustion function
("weakly pseudoconvex” or “weaklf-convex” manifold, and a Kahler metricw.
Let L (resp. E) be a Hermitian holomorphic line bundlgesp. a Hermitian holo-
morphic vector bundle of rank r over)Xand s a global holomorphic section of E.
Assume that s is generically transverse to the zero seciuhlet

Y = {xe X; s(x) =0,A"dg(x) # 0}, p=dimY=n-r.

Finally, let ¢ be an arbitrary plurisubharmonic function on X. Assume ttiat
(1,1)-formO +r 5~ ad(log|s|2+¢) is semi-positive and that there is a continuous
functiona > 1 such that the following two inequalities hold everywhere<an

1 300182 {Ges s}
(@ O +15700(I0gls* +9) > a TS
() sl <e*

Then for every holomorphic sectiog 6f the line bundleA"T¢ ® L over Y such
that [, | fy|2e ¢ |A"(ds)|~2dV,, < +o, there exists a holomorphic extensiog df
fy over X such that

|fx|%e ¢ / |fy|?e?
~ d 9
/|s|2r —log|s))2 Mo < G |AT(d9)2 W
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where G is a numerical constant depending only on'r.

(4.2) Theorem.Let ¢ be a plurisubharmonic function on a bounded pseudoconvex
open set? C C". For every m> 0O, let # o (m¢) be the Hilbert space of holomor-
phic functions f o2 such thatf,, | f|2e72™dA < +o0 and letgm = 5 logy |oy|?
where(oy) is an orthonormal basis 6 o (m@ ). Then there are constantg C, > 0
independent of m such that
(@ o2 - it < ¢m(2) < sup ¢(Q) + 1Iog% for every ze Q and r <
m Z—z|<r m “r

d(z,0Q). In particular, ¢, converges tg pointwise and in EDC topology onQ

when m— + and
(b) v(¢,2— p~ < V(Pm,2) < v(9,2) forevery zc Q.

Proof.(a) Note thafy | o;(2)|? is the square of the norm of the evaluation linear form
ev;: f— f(z) onHo(mg), sinced;(z) = evy(0y) is thel-th coordinate of eyin
the orthonormal basigsy). In other words, we have

S (@2 = sup |1(2)1?
feB(1)

whereB(1) is the unit ball of o (m¢) (The sum is called th@ergman kernel
associated with# o (m¢)). As ¢ is locally bounded from above, tHe? topology
is actually stronger than the topology of uniform conveigean compact subsets
of Q. It follows that the serie§ |oy|?> converges uniformly o® and that its sum is
real analytic. Moreover, by what we just explained, we have

1
#m(2) = sup —log|(2).
feB(1)

Forzy € Q andr < d(z,0Q), the mean value inequality applied to the psh function
|f|2 implies

1@ < e [, o (@@

1 2—2mp
< Iy exp(Zm sup ¢(z))/9|f| e dA.

j2-z0/<r

If we take the supremum over dlle B(1) we get

1
Pm(z0) < sup ¢(z)+ — log
m(Zo) e (2) >m

mr2n /nl

and the second inequality in (a) is proved — as we see, this &gy consequence
of the mean value inequality. Conversely, the Ohsawa-Tadeit}> extension theo-
rem 4.1 applied to the 0-dimensional subvarigty} C Q and to the trivial bundles
L=Q x CandE = Q x C", with the sectiors(z) = z— z, of E, shows that for any
a < Cthere is a holomorphic functiohon Q such thatf (zy) = aand
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/ 1126 2™ dA < Calal2e 2 ()
Q

whereCsz only depends on and dian2. We fix a such that the right hand side is 1.
Then|| f|| <1 and so we get

_ logGs

b(20) > 109 1(z0)| =  loglal = $(2) 2.

The inequalities given in (a) are thus proved. Takirg1/m, we find that

im sup $(0)=¢(2)

M=+% 7 _zl<1/m

by the upper semicontinuity @f, and so limpm(z)=¢ (z), since Iimr—ln log(Com™")=0.
(b) The above estimates imply

sup ¢(2) - =

1 G
— < su z2) < su Z)+—log—.
b - P ¢m(2) P @)+ —log—

|z—2zo|<r |z—z0|<2r

After dividing by logr < 0 whenr — 0, we infer

Sugz—zo\<2r 4’(2) + nlqk)g % < SUszzo\« ¢m(2) < SUHZ—ZO\« 4’(2) - %
logr h logr h logr '
and from this and definition (1.6), it follows immediatelyath
n
V(¢,X)—E<V(¢m,2)<V(¢7Z). U

Theorem 4.2 implies in a straightforward manner the deegltre§[Siu74] on
the analyticity of the Lelong number upperlevel sets.

(4.3) Corollary ([Siu74]). Let¢ be a plurisubharmonic function on a complex man-
ifold X. Then, for every & 0, the Lelong number upperlevel set

Ec«(¢) ={zeX; v(¢,2) > c}

is an analytic subset of X.

Proof. Since analyticity is a local property, it is enough to coesithe case of a
psh functiong on a pseudoconvex open fetc C". The inequalities obtained in
Theorem 4.2 (b) imply that

EC(¢): ﬂ Ec—n/m(¢m)-

m=mp
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Now, it is clear thaE.(¢m) is the analytic set defined by the equati«njg)(z) =0
for all multi-indicesa such thaja| < mc ThusEc(¢) is analytic as a (countable)
intersection of analytic sets. O

(4.4) Remark. It can be easily shown that the Lelong numbers of any clossé po
tive (p, p)-current coincide (at least locally) with the Lelong nunef a suitable
plurisubharmonic potentid (see [Sko72]). Hence Siu’s theorem also holds true for
the Lelong number upperlevel séig(T) of any closed positivép, p)-currentT .

Theorem 4.2 motivates the following definition.

(4.5) Definition. A plurisubharmonic functiog on a complex manifold X is said to
have analytic singularities if it can be written locally meavery point ¥ € X as

¢(2) =clog Z |0j (2?4 0(1), i.e. up to equivalence of singularities
1<JN

with a family of holomorphic functior(g);) defined nearxand c> 0. Also, a closed
positive(1,1) current T is said to have analytic singularities if its plsuibharmonic
potential has analytic singularities. We also refer to thisiation by saying thap
or T have logarithmic poles. When X is algebraic, we say thatsingularities are
algebraic if ce Q4 and the(g;) are sections of some algebraic line bundieD),

Xo ¢ SuppD.

Notice that by Noetherianity, a convergent seriesyog |g; |2 can be replaced by
a finite sum up to equivalence of singularities, thus Theofedralways produces
plurisubharmonic functiongm, with analytic singularities.

5. Global approximation of closed (1,1)-currents on a compet complex
manifold

We take hereX to be an arbitrary compact complex manifold (no Kéhler agsu
tion is needed). Now, lef be a closed1,1)-current onX. We assume thak is
quasi-positivei.e. that there exists@, 1)-form y with continuous coefficients such
thatT > y; the case of positive currentg £ 0) is of course the most important.

(5.1) Lemma.There exists a smooth closgld 1)-forma representing the samid-
cohomology class as T andqauasi-psHunctiong on X such that T= a + %05(}5.

(We say that a functiog is quasi-psh if its complex Hessian is bounded below by a
(1,1)-form with locally bounded coefficients, that is,d8i¢ is quasi-positive:

Proof. Select an open coverir@j) of X by coordinate balls such that= %05(}5,-
overUj, and construct a global functigh= S 6;¢; by means of a partition of unity
{6;} subordinate tdJj. Now, we observe thap — ¢ is smooth orlJy because all
differencesp; — ¢y are smooth in the intersectiobgNUy, and we have the equality
¢ — ¢ =3 6j(9j — ¢x). Thereforea :=T — L9d¢ is smooth. O
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By replacingT with T —a andy with y— a, we can assume without loss of
generality tha{T} = 0, i.e. thafl = +.dd¢ with a quasi-psh functiotp on X such
thatLddg > y.

Our goal is to approximat€ in the weak topology by current, = %05¢m
such their potentialg, have analytic singularities in the sense of Definition 4.5,
more precisely, defined on a neighborhdggl of any pointxy € X in the form
¢m(2) = cmlogy j|0jm/2+ O(1), wherecy, > 0 and theo; r, are holomorphic func-
tions onVy,.

We select a finite coveringM,) of X with open coordinate charts, and shrink
them a little to be on the safe side. Giv@p- 0, we take in eact\, a maximal family
of points with (coordinate) distance to the boundar®d and mutual distance:
0/2. In this way, we get fod > 0 small a finite covering oK by open baIIsUj’
of radiusd (actually every point is even at distanged/2 of one of the centers,
otherwise the family of points would not be maximal), suchttthe concentric
ball Uj of radius @ is relatively compact in the corresponding chait. Let 1; :

U; — B(aj,29) be the isomorphism given by the coordinated\gf, by taking
0 > 0 small enough, we can assume that the coordinatef ektend toU; U Uy
whenevelUj NUy # 0. Let£(d) be a modulus of continuity foy on the setdJ;,
such that ling_,p£(0) = 0 andy — Y < %5(6) wy for all x,x' € U;. We denote by
yi the (1,1)-form with constant coefficients o(a;,25) such thatr;y; coincides

with y—¢(d) w at rjfl(aj). Then we have
(5.2) 0<y-T1y<2¢(d)w onU;j

for 4 > 0 small. We sethj = ¢ o rj’l on B(aj,20) and letq; be the homogeneous
quadratic function ire — a; such thati;rdgqj =yj on B(aj,20). Then¢; —q; is
plurisubharmonic oB(a;,25) since

i = * *
(5.3) 550((¢j*QJ>OTJ):T*TjVJ>V*ijj>0-

We letU] CC U{" cC Uj be the concentric balls of raddi, 1.5, 26 respectively. On
each open s&f; the functionyj := ¢ —qjo 1; = (¢; —q;) o Tj is plurisubharmonic,
so Theorem 4.2 applied wit? = U; ~ B(aj,26) produces functions

1 .
(5.4) Yim= 5 Iog; 0j.61%,  (0j,) = basis ofiy, (my;).

The functionsyj m+ gj o T; onU;j then have to be glued together by a partition of
unity technique. For this, we rely on the following “disceggzy” lemma, estimating
the variation of the approximating functions on overlaggialls.

(5.5) Lemma.There is a constant C independent of m @nslich that the quasi-psh
functions Wm = 2m({jm+djoTj), i.e.
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Wj m(X) = 2mgj o Tj(X) + Iog; |0j’4(x)}2, xe Uy,

satisfy
Wj.m—Wim| < C(logd~t+me(8)8%)  on U'nUyY.

Proof. The details will be left as an exercise to the reader. The rtEa is the
following: for any holomorphic functiori; € #y, (my;), ad equatiordu = 9(6f;)
can be solved oby, wheref is a cut-off function with support iJ{' "Uy, on a
ball of radius< 6/4, equal to 1 on the ball of radiu¥/8 centered at a given point
X € Uj' NY}/, with |08] = O(5~1). We apply thel.? estimate with respect to the
weight (n+ 1)log|x — xo|2 + 2myy, where the first term is picked up so as to force
the solutionu to vanish atxp, in such a way thal = u— 6f; is holomorphic and
Fk(Xo) = fj(xo). The discrepancy between the weightdghandUy’ is given by

Wi —dk=—(qjoTj — Qo T).
By re-centering the quadratic functionstatxo), resp.tx(Xo), we can write
gjoTj —Oko Ty = ReGjk + Rjk

where Gji is holomorphic onU; UUy [equal to a difference of linear forms in
the coordinates dB(aj,26) andB(ax,20)], Gjk(Xo) = Qj o Tj(Xo) — Ok © Tk(Xo) and
Rjk = O(€(8)4?) is a remainder term coming from the change of coordinates and

the slight discrepancy betwe@d (g o ;) anddd(gx o Tx) at the common point,
with Rjk(Xo) = 0. In this way, we get

|emij |Zeme,Uk _ eme,Uj *Zijk7

so that we have a uniform control of thé norm of the solutionf, = e"CkF, =
€"Cik (u— Bf;) of the form

/ |fk|2672mwk<C572n74em0(s(6)62)/ I£;2e 2™,
Uy Uj

The required estimate follows, using the equality

MW m(X) _ ;|aj7€(x)|2 = sup f(x)[> onUj,
, fey; (my), | Fll<1

and the analogous equality bR. O

Now, the actual glueing of our quasi-psh functions is perfed using the fol-
lowing elementary partition of unity calculation.

(5.6) Lemma.Let UJ-’ cC UJ-” be locally finite open coverings of a complex manifold
X by relatively compact open sets, and@gbe smooth nonnegative functions with
supportin ', such tha; < 1on U and6; = 1 on U]. Let A > 0 be such that
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i(ejdﬁej — 06 /\591') > —Ajw on UJ-”\UJ-/

for some positivel, 1)-form w. Finally, let wj be quasi-psh functions oy With the
property that 9dw; > y for some real1,1)-formy on M, and let G be constants
such that
wj(x) <Cj+ sup wg(x) on Uj'~\Uj.
ke ],Uf 2%

Then the function w- log ( S ejzewi) is quasi-psh and satisfies

IdEW Zy— 2(2 ]JUj//\Uj/Ajecj ) w.
J

Proof. If we seta; = 8;0w; + 206, a straightforward computation shows that

z(ejzawj +29,-z99j)ewi Y Gje""j aj

d —
" y 67€" 5 676"
daw — ¥ (a /\aj+9j205Wj+29j059j72091-/\591-)@’"1 Sk 6;€"i B e"aj ATy
y 67e (s GJZeWJ)Z
I O!kfekaj‘Zer e 3 02e"idow; 5(26,006;—206;/36;)e"
- 626 2ei 2aWj
(5 6fe")’ > 67e” 5 67¢"

by using the Legendre identity. The first term in the last Imeonnegative and the
second oneig y. Inthe third term, i is in the support 08;096; — 96; A9 6;, then

x € Uj' \Uj and sowj(x) < Cj +wk(x) for somek # j with Uy > x and6k(x) = 1.
This gives

.z (26,006 — 206; A 36;)e"!

>-251 e“IA .
y 62" - ;Ui’\ui J

The expected lower bound follows. O

We apply Lemma 5.6 to function®; , which are just slight modifications of
the functionswj m = 2m(y; m+ g;j o Tj) occurring in Lemma 5.5:

. C
Wjm(X) = Wi m(X) +2m( 2+ Coe(8) (62/2— |1 (9)?) )
C
= 2m(Wj.m(X) + 0 0 7 (X) + = +Cae(8)(8%/2~[1(x) )
wherex — z= Tj(x) is a local coordinate identifying; to B(0,25), C; is the con-

stant occurring in Lemma 5.5 a@ is a sufficiently large constant. It is easy to see
that we can také; = C402in Lemma 5.6. We have
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C
Wij.m > Wjm+2C; + m73£(6)62 onB(xj,5/2) C U],

since|Tj(x)| < 6/2 onB(xj,6/2), while
Wj.m < Wjm+2C; — mGse(8)6”  onUJ'\ U/

Form>my(3) = (logd~1/(£(5)6?), Lemma5.5 impliedv; m— Wi m| < Csme ()52
onU{’nUy. Hence, forCs large enough, we get

Wjm(X) < sup Wiem(X) < Sup Wim(x) on U\ Uj,
ke, B(x¢,8/2) 5% k£j,UL3x

and we can tak€; = 0 in the hypotheses of Lemma 5.6. The associated function
w=log (5 67€"im) is given by

C
w=logy GJ-Zexp(Zm(l,Uj,anqj oTj+ ﬁl +C3e(0)(6%/2 - |Tj|2))).
]

If we definegm = 5w, we get

1 G G
Pm(X) = ﬁW(X) 2 Yjm(X) +gjo Tj(x) + m 75(5)52 > (%)
in view of Lemma 5.5, by picking an indgsuch thak € B(xj, d/2). In the opposite
direction, the maximum numbéi of overlapping balldJ; does not depend od,
and we thus get

C C
w < logN +2m(mjax{q_lj,m(x) +0gjoTi(x)} + ﬁl + 738(5)52).

By definition of ¢J; we have sup_, ., ¥j({) < SUR;_x<r #({) — dj o Tj(X) +Csr
thanks to the uniform Lipschitz continuity ofj o 7j, thus by Lamme 5.5 again we
find

logN G 1 & G 2
< — — — — —
Pm(x) < 5 +‘Z§2‘Er¢(5)+ + —log o + > £(0)0°+Csr.

By taking for instance = 1/mandd = J, — 0, we see thapm converges t@. On
the other hand5.2) implies 0094 o Tj(x) = Ty} > y— 2¢(J)w, thus

TLTOEWj’m > 2m(y — Cse () w).
Lemma 5.6 then produces the lower bound

TLTOEW > 2m(y— Cse(8)w) — C78 2w,
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whence
—ddd)m y—Cge(d)w

for m> my(8) = (logd—1)/(£(5)8?). We can fixd = &y to be the smallest value
of & > 0 such thatmyg(d) < m, thendy, — 0 and we have obtained a sequence of
quasi-psh functiongp, satisfying the following properties.

(5.7) Theorem.Let ¢ be a quasi-psh function on a compact complex manifold X
such that—daqb > y for some continuou§l, 1)-form y. Then there is a sequence
of quasi- psh functiongn, such thatp, has the same singularities as a logarithm
of a sum of squares of holomorphic functions and a decreasdogience, > 0
converging td such that
@ 900 <m0 < sup o)+ 1y g
[{—Xx|<r
with respect to coordinate open sets covering X. In paréicdi,, converges to
) pointwise and in £(X) and

B) v(#,X) — 2 < v(gmx) < V($,X) for every xe X

(© T—T@Mm 2 Y — EmW.

In particular, we can | apply this to an arbitrary positive oasji-positive closed
(1,1)-currentT = a + ;,00¢.

(5.8) Corollary. Let T be a quasi-positive closédl, 1)-current on a compact com-
plex manifold X such that B y for some continuougl, 1)-form y. Then there is a
sequence of currents,whose local potentials have the same singularities as
times a logarithm of a sum of squares of holomorphic funstiand a decreasing
sequencey, > 0 converging td such that

(@ Tm converges weaklyto T,

(b) v(T,x)— m V(Tm,X) < V(T,x) for every xc X;

€) Tm=y— &mw.
We say that our currentsylare approximations of T with logarithmic poles.

By using blow-ups ofX, the structure of the currentg, can be better under-
stood. In fact, consider the coherent idelsgenerated locally by the holomorphic

functions(aj(f‘,fq) onUy in the local approximations
1 (K2
bkm = %IOQZ|O—j,m| +0(1)
]

of the potentialp of T onUy. These ideals are in fact globally defined, because the

local idealsjrq? = (aj(ﬁ) are integrally closed, and they coincide on the intersec-
tionsUx NU, as they have the same order of vanishing by the proof of LemBa 5
By Hironaka [Hir64], we can find a composition of blow-ups lvémooth centers
Hm : Xm — X such thaty;,¥m is an invertible ideal sheaf associated with a normal
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crossing divisoEp,. Now, we can write

1
“rfr1¢k,m = Prmo tUm = m log|se, | + ak,m

wheresg,, is the canonical section ¢f(—Er,) and i, is a smooth potential. This
implies

(5.9) IJ;-.Tm = nl,][Em] + Bm

where[En| is the current of integration ovéty,, andfny, is a smooth closedl, 1)-
form which satisfies the lower boungh > i (y — emw). (Recall that the pull-
back of a closed1,1)-current by a holomorphic map is always well-defined,
by taking a local plurisubharmonic potenti@lsuch thatT = idd¢ and writing
f*T =i9d(¢ o f)). In the remainder of this section, we derive from this a ath
important geometric consequence, first appeared in [DP@/)need two related
definitions.

(5.10) Definition. A Kahler current on a compact complex space X is a closed
positive current T of bidegregl, 1) which satisfies T> ew for somee > 0 and
some smooth positive Hermitian formmon X.

(5.11) Definition. A compact complex manifold is said to be in thajiki class
“€ if it is bimeromorphic to a Khler manifold(or equivalently, using Hironaka'’s
desingularization theorem, if it admits a propeékler modification.

(5.12) Theorem.A compact complex manifold X is bimeromorphic to @hter
manifold(i.e. X € ‘€) if and only if it admits a Khler current.

Proof.If X is bimeromorphic to a Kahler manifold, Hironaka’s desingularization
theorem implies that there exists a blowXipf Y (obtained by a sequence of blow-
ups with smooth centers) such that the bimeromorphic map ¥ao X can be
resolved into a modificatiop : Y — X. ThenY is Kahler and the push-forward
T = u.@ of a Kahler forma on'Y provides a Kahler current oX. In fact, if w

is a smooth Hermitian form oKX, there is a constar@ such thatu*w < Cw (by
compactness of), hence

T=wo>uC o =Cclw

Conversely, assume thxtadmits a Kahler current > ew. By Theorem 5.8 (c),
there exists a Kahler currefit= Ty, > $w (with m>> 1 so large thaty, < £/2)

in the same?d-cohomology class &8, possessing logarithmic poles. Observation
(5.9) implies the existence of a composition of blow-wpsX — X such that
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whereE is a Q-divisor with normal crossings arﬁ a smooth closedl, 1)-form
such thai > §u*w. In particularf is positive outside the exceptional locusjof

This is not enough yet to produce a Kahler form X¥nbut we are not very far.
Suppose thaX is obtained as a tower of blow-ups

X=Xy = Xn-1— = X = Xo=X,

whereX| 1 is the blow-up ofX; along a smooth centefj C X;. Denote bySj 1 C
Xj+1 the exceptional divisor, and lgf; : Xj+1 — X; be the blow-up map. Now, we
use the following simple

(5.13) Lemma. For every Kahler current T on X;, there existsgj,; > 0 and a
smooth form g4 in the d3-cohomology class 061 such that

Tiv1 =T — §+1Uj 1

is a Kahler current on X, 1.

Proof. The line bundle?(—S;.1)|Sj1 is equal to¥p(y;) (1) whereN; is the normal
bundle toY; in Xj. Pick an arbitrary smooth Hermitian metric b, use this metric
to get an induced Fubini-Study metric @B(Nj) (1), and finally extend this metric as
a smooth Hermitian metric on the line bundlé-S; 1). Such a metric has positive
curvature along tangent vectors Xf, 1 which are tangent to the fibers 8f 1 =
P(N;j) — Yj. Assume furthermore tha > ;w; for some Hermitian forna; on X;
and a suitable 62 §; < 1. Then

M T — &4alj1 > O @) — Ejalj4a

where i wj is semi-positive orXj. 1, positive definite orXj.1 \ Sj;1, and also
positive definite on tangent vectorsT;q‘Hl‘Sj+l which are not tangent to the fibers
of §j11 —Yj. The statement is then easily proved by taking < o; and by using
an elementary compactness argument on the unit sphereebofiitd ., associated
with any given Hermitian metric. O

End of proof of Theorers.12. IfUj is the pull-back oty to the final blow-ugf(, we

conclude inductively thai*T — ¥ &;0; is a Kahler current. Therefore the smooth

form _ N N
=B~ gl =p'T - &l - [E]

is Kahler and we see thatis a Kahler manifold. 0

(5.14) Remark.A special case of Theorem 5.12 is the following charactédna
of Moishezon varieties (i.e. manifolds which are bimeropioc to projective alge-
braic varieties or, equivalently, whose algebraic dimens equal to their complex
dimension)A compact complex manifold X is Moishezon if and only if X ggsss

a Kahler current T such that the De Rham cohomology ckgBk is rational, i.e.
{T} € H2(X,Q). In fact, in the above proof, we get an integral curiErit we take
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the push forward = p,. of an integral ample clasgw} onY, wherep : Y — X

is a projective model of . Conversely, if{ T} is rational, we can take thg's to be
rational in Lemma 5.13. This produces at the end a Kahlerieetwith rational
De Rham cohomology class éh ThereforeX is projective by the Kodaira embed-
ding theorem. This result was already observed in [JS98] &t [Bon93, Bon98]
and Paragraph Ill 6 for a more general perspective basediog@aa holomorphic
Morse inequalities).

(5.15) Remark.Hodge decomposition also holds true for manifofds €. In fact
let u : X — X be a modification such that is Kahler. Then there are natural mor-
phisms

pHRMX C) - HEY(X 0), o tHPAX C) = HEY(X,C)

induced respectively by the pull-back of smooth forms (réspdirectimage of cur-
rents). Clearlyy, o u* = Id, thereforeu* is injective andu, surjective, and similar
results hold true for Bott-Chern cohomology or De Rham coblogy. It follows
easily from this that th@d-lemma still holds true foiX € €, and that there are
isomorphisms

HES(X,C) = HPY(X,C), @D HEI(X,C) = HER(X,C).
p+a=k
6. Zariski decomposition and mobile intersections

Let X be compact Kahler and let € ‘€° be in theinterior of the pseudo—effective
cone. In analogy with the algebraic context such a ctass called “big”, and it
can then be represented biahler current T, i.e. a closed positivél, 1)-currentT
such thafl > dw for some smooth Hermitian metrio and a constand <« 1. We
first need a variant of the approximation theorem proved nagtaph 5.

(6.1) Regularization theorem for currents.Let X be a compact complex manifold
equipped with a Hermitian metri@. Let T= a +idd¢ be a closed1,1)-current

on X, wherea is smooth and is a quasi-plurisubharmonic function. Assume that
T > y for some real(1,1)-form y on X with real coefficients. Then there exists a
sequencepf= a +idd¢m of closed(1, 1)-currents such that

(@) ¢m (and thus ) is smooth on the complementXZy, of an analytic set 4,
and the %’s form an increasing sequence

ZoCZ3C--CZnC---CX.

(b) There is a uniform estimatg,=> y— dmw withlim | &, = 0as m tends ta-co.

(c) The sequencEpnm) is non increasing, and we halien | ¢ = ¢. As a conse-
guence, i}, converges weakly to T as m tendsH®.
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(d) Near %y, the potentialg,, has logarithmic poles, namely, for every & Zm,
there is a neighborhood U ofsuch thatpm(z) = Amlog s ¢ |gme|? + O(1) for
suitable holomorphic function&m, ) on U andAny, > 0. Moreover, there is a
(global) proper modificationum, : Xm — X of X, obtained as a sequence of
blow-ups with smooth centers, such tipafo tim can be written locally o,
as

Pmo Um(W) = Am( Z n,log |gf|2 + f(W))

where(g, = 0) are local generators of suitablglobal) divisors & onXm such
thaty E, has normal crossings,rare positive integers, and the f's are smooth
functions onXn,.

Sketch of proofWe essentially repeat the proofs of Theorems 4.2 and 5.7aalith
ditional considerations. One fact that does not follow igafdom these proofs is
the monotonicity of the sequendg, (which we will not really need anyway — it
can be obtained by applying Theoren2 4vith 2" instead ofm, and by using the
Ohsawa-Takegosh? extension theorem 4.1 for potential8¢2(x) + 2M¢ (y) on the
diagonal ofX x X, so that the restriction is"?1¢(x) on the diagonal; we refer
e.g. to [DPS01] for details). The mapy, is obtained by blowing-up the (global)
ideals ¥ m defined by the holomorphic functiotig; m) in the local approximations
Om ~ %Iogzj |gj.m|?. By Hironaka [Hir64], we can achieve thaf,fm is an in-
vertible ideal sheaf associated with a normal crossingdivi O

(6.2) Corollary. If T is a Kahler current, then one can write ¥ lim T, for a se-
quence of Khler currents T, which have logarithmic poles with coeﬁicientsﬁﬁé,
i.e. there are modificationgm, : Xm — X such that

M Tm = [Em] + Bm

where E, is an effectiveQ-divisor on X, with coefficients irﬁ—,,Z (the “fixed part”)
andfm is a closed semi-positive forfthe “mobile part”).

Proof. We apply Theorem 6.1 witly = e andm so large thaty < €/2. Then
Tm has analytic singularities anfl, > £w, so we get a composition of blow-ups
Um : Xm — X such

P T = [Em] + Bm,

whereEn is an effectiveQ-divisor andfBm > . In particular,By is strictly
positive outside the exceptional divisors, by playing wilte multiplicities of the
components of the exceptional divisorskp, we could even achieve thf, is a
Kahler class orXy,. Notice also that by constructiopy, is obtained by blowing-up
the multiplier ideal sheave$(mT) =.¥(m¢) associated to a potentiglof T. [

The more familiar algebraic analogue would be to take c;(L) with a big
line bundleL and to blow-up the base locus pfL|, m > 1, to get aQ-divisor
decomposition

(6.3) L ~ Em+ D, En effective Dy base point free
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(One says thabp, is base point free iH%(X,@(Dp) is generated by sections, in
other words ifDyy, is entirely “mobile” in the linear systerfDy|). Such a blow-up
is usually referred to as a “log resolution” of the lineartsys |mL|, and we say
thatEm + D is an approximate Zariski decompositionlofWe will also use this
terminology for Kahler currents with logarithmic poles.

(6.4) Definition. We define th@olume or mobile self-intersectiownf a classa €
HYL(X,R) to be

Vol(a) = sup/ T"=sup/ B">0,
Tea JX\SingT) Tea /X
where the supremum is taken over aéliier currents Te a with logarithmic poles,
andu*T = [E] + B with respect to some modificatipn: X — X. Correspondingly,
we set
Vol(a)=0 if a ¢ €°.

In the special case wheme = c;(L) is an integral class, we have the following
interpretation of the volume.

(6.5) Theorem.If L is a big line bundle and;L ~ Em+ Dny is a log resolution
of |mL|, we have

|
Vol(cy(L)) = lim DY = lim %hO(X,mL),

M—+-00 M—+-00

Sketch of proofGiven a Kahler currenT € ¢;(L) with logarithmic pole, we can
always take a blow-upt : X — X so thatu*T = [E] + 3 whereE is an effective
R-divisor andB > 0. By using a perturbation technique as in Lemma 5.13, we can
always assume th& is aQ-divisor and tha3 is Kahler. Then{3} = p*cy(L) —
{[E]} is a rational class and therefgBes the first Chern class; (A) of an ampleQ-
divisor onX. Whenmis a multiple of a suitable denominatwg andm = qmy+r,

0 <r < mp, we get by the elementary Riemann-Roch formula
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0 0/y * 0/ * m" n
(X, mL) > h(X, mu*L = mo[m/mol ) = hP(X, molm/molA+ru’L) ~ = [ B

hence Iiminf”W!ho(X,mL) > Vol(cy(L)) by taking the supremum over all such cur-
rentsT. In the other direction, the inequality lim sﬁaho(x,mL) < \Vol(cy(L)) is
obtained by subtracting a small rational multighe of an ample line bundlé. One
shows that multiples df — eA roughly have the same number of sections as those of
L by an exact sequence argument similar to what was done imdoégf 3.4 (b). By

a result of Fujita [Fuj94] (cf. also [DELO0Q]), the volume dfe base point free part
Dme in a log resolution ofm(L — A)| approximates limsufzh®(X, m(L — eA)),

so we gefn L = Emg + (Dme + €A) whereDy ¢ +Ais ample. The positivél, 1)-
currentTme = (Ume)+Op,, +ea i @ Kahler current with logarithmic poles and its
volume approaches limsdfyh°(X, mL) whene < 1 andmis large. O

In these terms, we get the following statement.

(6.6) Proposition.Let L be a big line bundle on the projective manifold X. £et 0.
Then there exists a modificatign: X — X and a decompositiop*(L) = E+ 3
with E an effectivé)-divisor andf a big and nefQ-divisor such that

Vol (L) — e < Vol (B) < VolI(L).

It is very useful to observe that the supremum in Definitioh 8. actually
achieved by a collection of currents whose singularitigisfyea filtering property.
Namely, if Ty = a +idd ¢, andT, = a +i1dd ¢, are two Kahler currents with loga-
rithmic poles in the class af, then

(6.7) T=a+idd¢, ¢ = max(¢y, §2)

is again a Kahler current with weaker singularities tigaandT,. One could define
as well

(6.7) T=a+iddp, ¢= %nmg(ezm‘f’l + &™2),

wherem = lcm(my, mp) is the lowest common multiple of the denominators occur-
ing in Ty, To. Now, take a simultaneous log-resolutigp : X, — X for which the
singularities ofTy andT, are resolved a®-divisorsE; andE,. Then clearly the as-
sociated divisor in the decompositipgh, T = [E] + B is given byE = min(Ej, Ey).

By doing so, the volumg, " gets increased, as we shall see in the proof of The-
orem 6.8 below.

(6.8) Theorem (Boucksom [Bck02]) Let X be a compact &ler manifold. We

denote here by I;-ié(x) the cone of cohomology classes of tygek) which have

non-negative intersection with all closed semi-positimesth forms of bidegree
(n—k,n—Kk).
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(@) For each integer k=1,2,...,n, there exists a canonical “mobile intersection
product”

> o k.k
E X x é—)H)’O(X), (al,...,ak)H <a1~a2.~-~.ak,l~ak>

such thaMol(a) = (a") wheneven is a big class.
(b) The product is increasing, homogeneous of dedraed superadditive in each
argument, i.e.

<al...(a1(+aj{/)...ak>><a1...aj(...ak>+<al...aj{/...ak>_

It coincides with the ordinary intersection product whee tiy € % are nef
classes.

(c) The mobile intersection product satisfies the Hovanskésier inequalities
([Hov79], [Tei79, Tei82])

(ar-tz.---.am) > (@)™ ((am) Y™ (with (a?) = Vol (a)).

(d) For k=1, the above “product” reduces to gon linearn projection operator
€ — €1, a—{(a)

onto a certain convex subcoffg of ¢ such thatk c €, c €. Moreover, there
is a “divisorial Zariski decomposition”

a = {N(@)} + (@)

where N a) is a uniquely defined effective divisor which is called thedative
divisorial part” of a. The mapa — N(a) is homogeneous and subadditive,
and N(a) = 0if and only ifa € €;.

(e) The components of() always consist of divisors whose cohomology classes
are linearly independent, especially(&) has at mosp = rank; NS(X) com-
ponents.

Proof. We essentially repeat the arguments developped in [Bck@ft],some sim-
plifications arising from the fact that is supposed to be Kahler from the beginning.

(a) First assume that all classeg are big, i.e.aj € ‘€°. Fix a smooth closed
(n—k,n—k) semi-positivform u on X. We select Kahler current§ € a; with

logarithmic poles, and a simultaneous log-resolufiarX — X such that
pT; = [Ejl +B;.

We consider the direct image curramt(f1 A --- A B«) (which is a closed positive
current of bidegreék, k) on X) and the corresponding integrals
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/Nﬁl/\“'/\Bk/\[.l*UEO.
X

If we change the representatiVe with another currenTJ-’, we may always take a
simultaneous log-resolution such thatT| = [E{] + B, and by usind6.7) we can
always assume th&; < E;. ThenD;j = E; — Ej is an effective divisor and we find
[Ejl + Bj = [Ej] + B, henceB] = fj + [Dj]. A substitution in the integral implies

/)zﬁi/\ﬁz/\"'/\ﬁk/\l-‘*u
:/Nﬁl/\Bz/\"'/\Bk/\H*U+/~[D1]/\BZ/\"'/\BK/\IJ*U
X X
> [BinBen- A B
X

Similarly, we can replace successively all forgsby thij’, and by doing so, we
find
ﬁBiABéAmABMu*w [BlABzAmABkAu*u-
X X

We claim that the closed positive currept31 A - -- A Bg) are uniformly bounded
in mass. In fact, it is a Kahler metric irX, there exists a consta@f > 0 such that
Cij{w} —aj is a Kahler class. Hendg w — Tj = y; for some Kahler formy; on X.
By pulling back withu, we findC; u*w — ([Ej] + Bj) = u*y;, hence

Bi =Cju w— ([Ejl +H7Yj).

By performing again a substitution in the integrals, we find
/;Bl/\"'/\ﬁk/\l-l*u <Cr-- G /Lu*kau*U=Cl---Ck / AT
JX JX Jx

and this is true especially far= w" K. We can now arrange that for each of the
integrals associated with a countable dense family of fommthe supremum is
achieved by a sequence of currefits). (BymA- - - A B m) Obtained as directimages
by a suitable sequence of modificatiqns: Xm — X. By extracting a subsequence,
we can achieve that this sequence is weakly convergent aisdtwe

(a1-0g.---.0k) = H+L{(Hm)*([31,m/\ﬁz,m/\ A Bem) }

(the monotonicity is not in terms of the currents themselilzasin terms of the inte-
grals obtained when we evaluate against a smooth closedpsesitive formu). By
evaluating against a basis of positive clasggsc H"*"K(X), we infer by Serre
duality that the class ofa; - a,.---.ak) is uniquely defined (although, in general,
the representing current is not unique).

(b) Itis indeed clear from the definition that the mobile mstction product is
homogeneous, increasing and superadditive in each arguanéast when the;’s
are in‘¢°. However, we can extend the product to the closed ¢oby monotonic-
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ity, by setting

(ar-az---ay) =lim [{(a1+ d0w) - (024 d0w). - --.(ak+ dw))
310

for arbitrary classest; € ‘€ (again, monotonicity occurs only where we evaluate
against closed semi-positive forras By weak compactness, the mobile intersec-
tion product can always be represented by a closed positisrerdt of bidegree
(k,K).

(c) The Hovanskii-Teissier inequalities are a direct copgace of the fact that
they hold true for nef classes, so we just have to apply thetheelassegj m on
Xm and pass to the limit.

(d) Whenk = 1 anda € €°, we have
a= mirﬂm{(l-‘m)*Tm} = m'Lrﬂm(l-‘m)*[Em] +{ (tim)«Bm}

and(a) = liMm_ 4o { (HUm)«Bm} by definition. However, the imagés, = (Um)«
Fm are effectiveQ-divisors in X, and the filtering property implies thd, is
a decreasing sequence. It must therefore converge to auglpigefined) limit
F =lim Fy, := N(a) which is an effectiveR-divisor, and we get the asserted de-
composition in the limit.
SinceN(a) = a — (a) we easily see thal(a) is subadditive and thét(a) =0
if o is the class of a smooth semi-positive form. Wheeis no longer a big class,
we define

(a) zg%¢<a+6w), N(a):l(isiraTN(a+6w)

(the subadditivity ofN implies N(a + (8 + €)w) < N(o + dw)). The divisorial
Zariski decomposition follows except maybe for the factttN&a) might be a
convergent countable sum of divisors. However, this willrbked out when (e) is
proved. ASN(.) is subadditive and homogeneous, the&gt= {a € € ; N(a) =0}

is a closed convex cone, and we find that> (a) is a projection ofé onto‘€¢; (ac-
cording to [Bck02],€, consists of those pseudo-effective classes which are tinef i
codimension 17”).

(e) Leta € ‘€°, and assume th&t(a) contains linearly dependent components
Fj. Then already all currenf® € a should be such that*T = [E] + B whereF =
u+E contains those linearly dependent components. VFite 3 AjFj, Aj >0 and

assume that
XJCj Fi=0
JE

for a certain non trivial linear combination. Then some & toefficientsc; must
be negative (and some other positive). Tlkeis numerically equivalent to

E =+t (TAF),
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and by choosing > 0 appropriate, we obtain an effective diviger which has a
zero coefficient on one of the componepts;;. By replacingE with min(E,E’)
via (6.7'), we eliminate the componept‘Fj,. This is a contradiction sinch(a)
was supposed to contalj,. O

(6.9) Definition. For a classa € HY(X,R), we define thewumerical dimension
nd(a) to bend(a) = —w if a is not pseudo-effective, and

nd(a) =max{pe N; (aP) # 0}, nd(a) € {0,1,...,n}
if a is pseudo-effective.

By the results of [DP04], a class is big € €°) if and only if nda) = n.
Classes of numerical dimension 0 can be described much nrecésely, again
following Boucksom [BckO02].

(6.10) Theorem.Let X be a compact &ler manifold. Then the subsetg of irre-
ducible divisors D in X such thaid(D) = 0Ois countable, and these divisors are rigid
as well as their multiples. I € ‘€ is a pseudo-effective class of numerical dimen-
sion0, thena is numerically equivalent to an effectifedivisor D= 3 ;AjDj,

for some finite subs€D;)jc; C % such that the cohomology classgB;} are
linearly independent and somg > 0. If such a linear combination is of numerical
dimensiorD, then so is any other linear combination of the same divisors

Proof. It is immediate from the definition that a pseudo-effectikass is of numeri-
caldimension 0 if and only ifa) = 0, in other words ity = N(a ). Thusa = 5 A;D;
as described in 6.10, and sinkgDj) < (a), the divisorsD; must themselves have
numerical dimension 0. There is at most one such divsor any given cohomol-
ogy class iNSX)N€ c H?(X,Z), otherwise two such divisoB= D’ would yield

a blow-upy : X — X resolving the intersection, and by taking rfriD, u*D’) via
(6.7), we would findu*D =E + 3, B # 0, so that{D} would not be of numerical
dimension 0. This implies that there are at most countablyyndévisors of numer-
ical dimension 0, and that these divisors are rigid as wethes multiples. O

(6.11) Remark.If L is an arbitrary holomorphic line bundle, we define its nuicedri
dimension to be nd.) = nd(cy(L)). Using the canonical map®$,,, and pulling-
back the Fubini-Study metric it is immediate to see thdtnd> k (L).

The above general concept of numerical dimension leads émyanatural for-
mulation of the abundance conjecture for Kahler varieties

(6.12) Generalized Abundance Conjecturd.et X be an arbitrary compactéhler

manifold X.

(@) The Kodaira dimension of X should be equal to its numericaletision
K(Kx) = nd(Kx).

(b) More generally, letd be aQ-divisor which is klt(Kawamata log terminal, i.e.
such that g (A) > 1). Thenk (Kx +A4) = nd(Kx + A).
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(6.13) Remark. It is obvious that abundance holds in the caséKgd = —oo (if
L is not pseudo-effective, no multiple &f can have sections), or in the case
nd(Kx) = n which impliesKx big (the latter property follows e.g. from the solu-
tion of the Grauert-Riemenschneider conjecture in the foroven in [Dem85], see
also [DP04]).

In the remaining cases, the most tractable situation isdBe when nKx) =
0. In fact Theorem 6.10 then givé& = 3 A;D; for some effective divisor with
numerically independent components{Dg) = 0. It follows that theA; are rational
and therefore

()  Kx~YADj+F  whereA; € QF, ndDj) = 0 andF € Pic’(X).

If we assume additionally thag(X) = h®1(X) is zero, thermKy is linearly equiv-
alent to an integral divisor for some multiphe, and it follows immediately that
K(X) = 0. The case of a general projective manifold with kg) = 0 and posi-

tive irregularityq(X) > 0 has been solved by Campana-Peternell [CP04], Proposi-
tion 3.7. It would be interesting to understand the Kahéesecas well.

7. The orthogonality estimate
The goal of this section is to show that, in an appropriatssespproximate Zariski
decompositions are almost orthogonal.

(7.1) Theorem.Let X be a projective manifold, and let= {T} € €} be a big
class represented by adKler current T. Consider an approximate Zariski decom-
position

[J;]Tm = [Em] + [Dm]

Then
(Dfy - En)? < 20(C)"(Vol (@) ~ DF)

wherew = ¢;(H) is a Kahler form and C= O is a constant such thata is domi-
nated by @ (i.e., Cw+ a is nef). In other words, & and Dy, become “more and
more orthogonal” as [}, approaches the volume.

Proof. For everyt € [0,1], we have
Vol(a) = Vol (Em+ Dm) = VoI (tEm + D).
Now, by our choice o€, we can writeE, as a difference of two nef divisors

Em=p"a —Dm= py(a +Cw) — (Dm+Cunw). O

(7.2) Lemma.For all nefR-divisors A, B we have

Vol(A—B) > A"—nA"1.B
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as soon as the right hand side is positive.

Proof. In caseA andB are integral divisors, this is a consequence of holomorphic
Morse inequalities (cf. (1 2.15)). IA andB areQ-divisors, we conclude by the ho-
mogeneity of the volume. The general cas®edivisors follows by approximation
(actually, as it is defined to be a supremum, the volume fanaan easily be shown
to be lower semi-continuous, but it is in fact even contirgjaf. [Bck02, 3.1.26]).

O

(7.3) Remark.We hope that Lemma 7.2 also holds true on an arbitrary Kainderi-
fold for arbitrary nef (non necessarily integral) classésis would follow from
Conjecture (lll 2.11) generalizing holomorphic Morse inatities to non integral
classes, exactly by the same proof as Theorem (I 2.14).

(7.4) Lemma. Let B1,..., By and B1,..., B, be nef classes on a compacéfer
manifoldX such that each differencﬂq‘ — B; is pseudo-effective. Then the n-th in-
tersection products satisfy

BrBa < Bi- B

Proof. We can proceed step by step and replace jusiBytey 8'j = Bj + T; where
Tj is a closed positivé¢l, 1)-current and the other classBs= B, k # j are limits
of Kahler forms. The inequality is then obvious. O

End of proof of Theorem.1. In order to exploit the lower bound of the volume, we
write

By our choice of the constaf, bothA andB are nef. Lemma 7.2 and the binomial
formula imply

VOl (tEm+Dpm) > A" —nA™1.B
= k(N k k
=D +ntD L i (a +Cow) + >t (k) D - Um(a +Caw)
k=2
—ntD% L (Dm+ Cpiw)

n-1 n—1
—mZZt“( ) )Dﬂﬁk-ua<a+Cw>k-<Dm+Cuaw>.
k=1

Now, we use the obvious inequalities
Dm < Un(Cw),  Hm(a +Cw) < 2Up(Cw),  Dm+ Cly < 21y (Cow)

in which all members are nef (and where the inequalitmeans that the difference
of classes is pseudo-effective). We use Lemma 7.4 to bounth#h summation in
the estimate of the volume, and in this way we get



Applications of Pluripotential Theory to Algebraic Geomyet 63

n—-1 -1
VoI (tEm+ Dm) > D+ ntDy - Em—nt* § 2k+1tk1<” . )(Cm)”.
k=1

We will always take: smaller than 110n so that the last summation is bounded by
4(n—1)(1+1/5n)"2 < 4ne'/5 < 5n. This implies

VoI (tEm + D) > D4 nt D 1 - Eyy — 5nt?(Coo)".
Now, the choice = 74 (D1 Em)((Cw)") 1 gives by substituting

1 Dyt Em)?
Z—O(TCTnm) < Vol (Em+ Dm) — Dﬂ1< Vol (a) — Dpn

(and we have indeed< ﬁ by Lemma 7.4), whence Theorem 7.1. Of course, the

constant 20 is certainly not optimal. O

(7.5) Corollary. If a € €ys, then the divisorial Zariski decompositian= N(a) +
(a) is such that
(@™ 1y .N(a) =0.

Proof. By replacinga with a + ¢y (H), one sees that it is sufficient to consider the
case where is big. Then the orthogonality estimate implies

(Hm)« (D) - (Hm)«Em =D+ (Um)* (m) «Em
< D1 Ep < C(Vol(a) — DI)Y2.

Since (a" 1) = lim (um). (D 1), N(a) = lim (um).Em and limD}, = Vol(a), we
get the desired conclusion in the limit. O
8. Dual of the pseudo-effective cone

We consider here the Serre duality pairing
81) H¥WX,R)xH"M"LX R) —R, (a,B)— a-B :/ a ApB.
X

When restricted to real vector subspaces generated byahiggsses, it defines a
perfect pairing
(8.2) NSg x NSI " H(X) — R

where NS ¢ HLL(X,R) and N§ " (X) ¢ H™11-1(X R). Next, we introduce
the concept of mobile curves.

(8.3) Definition. Let X be a smooth projective variety.
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(a) One definedlE(X) C Nsﬂl‘{l’”’l(x) to be the convex cone generated by coho-
mology classes of all effective curves ifi"%(X, R).

(b) We say that C is anobile curveif C = G, is a member of an analytic family
{G hessuchthat J;.sC = X and, as such, is a reduced irreducilikeycle. We
define the mobile condE(X), to be the convex cone generated by all mobile
curves.

(c) If X is projective, we say that an effectitecycle C is astrongly mobileif we
have N N

C=u(Ar1N---NA-1)

for suitable very ample divisor; on X, wherey : X — X is a modification.
We letME3(X) be the convex cone generated by all strongly mobile eftectiv
1-cycles(notice that by taking&j general enough these classes can be repre-
sented by reduced irreducible curves; also, by Hironaka&, could just restrict
oneself to compositions of blow-ups with smooth ceiters

Clearly, we have

(8.4) MES(X) € ME(X) € NE(X) ¢ NS§ " (x).

Another simple observation is:

(8.5) Proposition.One hasxr -C > 0whenevefa } € ‘€ and{C} € ME(X). In other

words‘éns = € NNSg(X) is contained in the dual condE(X))".

Proof. If the class{a} is represented by a closed positive currérandC = G,
belongs to a covering famil{C )ics, it is easy to see thdig, is locally well defined
and nonnegative as soon@sgs not contained in the set of poles of a local potential
¢ of T. However, this occurs only wherbelongs to a pluripolar s€ C S, hence
fort € S\. P we have

mC:/T >0, 0
Jo, T

The following statement was first proved in [BDPPO04].

(8.6) Theorem.If X is projective, the cone§ys = Eff(X) and MES(X) are dual
with respect to Serre duality, and we haM&3(X) = ME(X).

In other words, a line bundle is pseudo-effective if (and only if)-C > 0 for
all mobile curvesi.e.,L-C > 0 for every very generic curv€ (not contained in
a countable union of algebraic subvarieties). In fact, bjniteon of MES(X), it is
enough to consider only those curé@which are images of generic complete inter-
section of very ample divisors on some varigtyunder a modificatiop : X — X.
By a standard blowing-up argument, it also follows that & lboundleL on a nor-
mal Moishezon variety is pseudo-effective if and only ifC > 0 for every mobile
curveC.
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Proof.By (8.5) we havétns C (ME(X))" and (8.4) impliesME(X))" C (ME3(X))Y,
therefore

(8.7) Ens C (MES(X))".

If we show thaténs = (MES(X))Y, we get at the same tiM{®E3(X))" = (ME(X))",
and therefore by biduality (Hahn-Banach theorem) we wisiIES(X) = ME(X).
Now, if the inclusion were strict in (8.7), there would be deneenta € d€ns on
the boundary oféns which is in the interior of ME(X)".

NSg(X) HLL(X,R) HM-L-1(X, R) (X)

Let w = ci(H) be an ample class. Sineee déys, the classa + dw is big for
everyd > 0, and sincex € ((MES(X))")° we still havea — ew € (MES(X))" for
€ > 0 small. Therefore

(8.8) a-rFzew-r

for every strongly mobile curvé, and therefore for everfy € MES(X). We are
going to contradict (8.8). Since + dw is big, we have an approximate Zariski
decomposition

Hz(a+dw) =Es+Ds.

We pickl™ = (;.15)*(Dg*1) € MES(X). By the Hovanskii-Teissier concavity inequal-

[
vy w- > (wn)l/n(Dg)(nfl)/n-

On the other hand
a-T=a-(Us).(DF )
= pza-Df < pz(a+dw) Dyt
= (Es+Ds)-D} ' =Dj +D} ' Es.

By the orthogonality estimate, we find
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1/2

a-l _ DY + (20(Cw)"(Vol(a + dw) — DY))

w-r > (wn)l/n(Dg)(nfl)/n

(Vol(ar + dw) — D})1/2
(DF)(n=1)/n

< CI(Dg)l/n +c”

However, sincer € d¢ys, the classr cannot be big so

lim D% = Vol(a) =0.
50 6 ( )
We can also tak®s to approximate Vdla + dw) in such a way thatVol(a +
dw) —DY)Y2 tends to 0 much faster thddi}. Notice thatD}} > 5"w", so in fact it
is enough to take

Vol (a + dw) — D} < 6",

which gives(a - M) /(w- ) < (C'+C")d. This contradicts (8.8) fod small. O

Part Ill. Asymptotic cohomology functionals and
Monge-Ampere operators

The goal of this Section is to show that there are strongiosiatbetween certain
Monge-Ampere integrals appearing in holomorphic Morsgjimlities, and asymp-
totic cohomology estimates for tensor powers of holomargihie bundles. Espe-
cially, we prove that these relations hold without resiwictfor projective surfaces,
and in the special case of the volume, i.e. of asymptoticliomlogy, for all pro-
jective manifolds. These results can be seen as a partisécsmto the Andreotti-
Grauert vanishing theorem.

0. Introduction and main definitions

Throughout this SectionX denotes a compact complex manifoids= dime X its
complex dimension and — X a holomorphic line bundle. In order to estimate
the growth of cohomology groups, it is interesting to coesigppropriate “asymp-
totic cohomology functions”. Following partly notationénooncepts introduced by
A. Kiironya [Kir06, FKLO7], we introduce

(0.1) Definition. Let X be a compact complex manifold and let-LX be a holo-
morphic line bundle.
(@) The g-th asymptotic cohomology functional is defined as

~ !
hA(X,L) := limsup %hq(x, )
k—+00
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(b) The g-th asymptotic holomorphic Morse sum of L is

~ . n! e
h=9(X,L) := limsup . 2 Y (-1 Thi(X,L®k).
k—+00 0<J<q

When the limsup’s are limits, we have the obvious relation

h=9(X,L) = (—1)% TRl (X, L).

0<J<q

Clearly, Definition 0.1 can also be given forline bundleL or a Q-divisor D,
and in the casg = 0 one gets by (Il 6.5) what is called the volumelofsee also
[DELOO], [Bck02], [Laz04]):

= . n! ,
(0.2) Vol (X, L) := ho(X,L) = limsup Eh"(x,L@k).
k—+00

1. Extension of the functionals to real cohomology classes

We are going to show that ¥ functional induces a continuous map
(1.1) DNSz(X) 3 a — hilys(X, a),

which is defined on the “divisorial Néron-Severi space” DN) C Haa (X, R),
i.e. the vector space spanned by real linear combinatioclasdes of divisors in the
real Bott-Chern cohomology group of bidegréel). HereHSJ (X, C) is defined as
the quotient ofl-closed(p, q)-forms bydd-exact(p, q)-forms, and there is a natural
conjugatiorH (X, C) — HgE (X, C) which allows us to speak of real classes when
g= p. Notice thaHé’é‘(X, C) coincides with the usual Dolbeault cohomology group
HPA(X,C) whenX is Kahler, and that DNX) coincides with the usual Néron-

Severi space
(1.2) NSk(X) = R®g (HA(X,Q) NHY(X,C))

whenX is projective (the inclusion can be strict in general, ergcomplex 2-tori
which only have indefinite integrdl, 1)-classes, cf. [BL0O4]).
Foroa € NSg(X) (resp.a € DNSg(X)), we set

~ =~ . n!
his(X. ) (resp.thS(X,a)) = limsup  —hi(X,L)
k—+oo, fc1(L)—a
n!
1 = inf —ha(X,L).
(1.3) s>(|)r]ko>0 sup kn (X.L)

k>ko .|| Fc1(L)—all<e
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when the pair(k,L) runs overN* x Pic(X), resp. overN* x Picp(X) where
Picp (X) C Pic(X) is the subgroup generated by “divisorial line bundles”, liree
bundles of the forn@x (D). Similar definitions can be given for the Morse sum func-
tionalshyd(X, a) andhSls(X, a). ClearlyhSds(X, a) < hgd(X,a) on DNS:(X),
but we do not know at this point whether this is always an atju&#rom the very
definition,hls , hNd (and likewisen? < , hS <) are upper semi-continuous functions
which are positively homogeneous of degreeamely

(1.4) hls(X,Aa) = A"his(X, a)

for all @ € NSz(X) and allA > 0. Notice thahfls(X, a) andh{d(X, a) are always
finite thanks to holomorphic Morse inequalities (see below)

(1.5) Proposition. N N N R
(@) ForL e Picp(X), one hah¥(X,L)=h%(X,cy(L)), hS9(X, L):héﬁls(x,cl(L)),
in particular asymptotic cohnomology depends only on theerigal class of L.

(b) The mapa — ﬂgNS(X, a) is (locally) Lipschitz continuous 0BNSg (X).

(c) When g=0, h,s(X,a) andhds(X, @) coincide orDNSg (X) and the limsups
are limits.

The proofis derived from arguments quite similar to thosealy developed in
[Kiir06] (see also [Dem10a] for the non projective situajidf D = 5 p;Dj is anin-
tegral divisor, we define its normto jj®|| = 5 |pj| Vol (Dj), where the volume of
an irreducible divisor is computed by means of a given Heamimetricw on X; in
other words, this is precisely the mass of the current ofjiratgon D] with respect
to w. Clearly, sinceX is compact, we get equivalent norms for all choices of Her-
mitian metricsw on X. We can also use to fix a normalized metric oz (X, R).
Elementary properties of potential theory show that@(D))| < C||D|| for some
constanC > 0 (but the converse inequality is of course wrong in mostgas&opo-
sition 1.5 is a simple consequence of the more precise cologyestimates (1.9)
which will be obtained below. The special case- 0 is easier, in fact, one can get
non zero values fon%(X, L) only whenL is big, i.e. wherX is Moishezon (so that
we are always reduced to the divisorial situation); the that limsups are limits
was proved in Il (6.5). We postpone the proof to section 19ckvhvill provide
stronger results based on approximate Zariski decompositi

(1.6) Lemma.Let X be a compact complex n-fold. Then for every cohereatf She
on X, there is a constant£> 0 such that for every holomorphic line bundle L on X
we have

(X, 7 ® Ox(L)) < Cx(llea(L) ]| + )P

where p= dim Supp7.

Proof. We prove the result by induction qm it is indeed clear fop = 0 since we
then have cohomology only in degree 0 and the dimensidAd%K, 7 @ @x (L))
does not depend dnwhenF has finite support. Let us consider the suppodf
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7 and a resolution of singulariy : Y — Y of the corresponding (reduced) analytic
space. Thef¥ is an@y-module for some non necessarily reduced complex structure
@Gy = @Ox/f onY. We can look at the reduced struct@rgreq = Ox /¥, ¥ = /¥,

and filterF by .¥*F, k> 0. Since¥*F /. #+1F is a cohereniy re-module, we can
easily reduce the situation to the case whéiie reduced and is an@y-module.

In that case the cohomology

HI(X, T @ Ox(L)) =HYY,T @ Cy(Ly))

just lives on the reduced spa¥e

Now, we have an injective sheaf morphism— p,u*F whose cokernéli has
support in dimensior: p. By induction onp, we conclude from the exact sequence
that

[h9(X, F @ Gx (L)) — (X, o pt*F @ Ox (L))| < Ca(flea(L)]| +1)P2.
The functorial morphisms

prHAY, F @Oy (Ly)) = HAY, 0" F @ Gy (u™L) ),
He t HICY 7T @ g (L)) — HAY, ™ F @ Oy (L))

yield a composition
Heo T HI(Y, T @ Oy (Ly)) — HI(Y, " F © Gy (Ly))
induced by the natural injectidfi — . *%. This implies
MY, 7 @ Gy (L)) < MY, 1*F @ G (L)) +Ca(flen(L)]| + 1P

By taking a suitable modificatiop’ : Y’ — Y of the desingularizatioh?, we
can assume thaf’)*7 is locally free modulo torsion. Then we are reduced to
the case wher&’ = (u’')*F is a locally free sheaf on a smooth manifotd,
and L’ = (W')*Lyy. In this case, we apply Morse inequalities to conclude that
hI(Y', 7' @ Gy (L) < Ca(llex(L')]| +1)P. Sincefca(L')| < Calcy(L)]| by pulling-
back, the statement follows easily. O

(1.7) Corollary. For every irreducible divisor D on X, there exists a const@pt
such that
hY(D.@p(Lip)) < Co(flea(L)] +1)™*

Proof. It is enough to apply Lemma 1.6 with = (ip).@p whereip : D — X is the
injection. O

(1.8) Remark.ltis very likely that one can get an “elementary” proof of Lexa 1.6

without invoking resolutions of singularities, e.g. by doiming the Cartan-Serre
finiteness argument along with the standard Serre-Siegef pased ultimately on
the Schwarz lemma. In this context, one would invaReestimates to get explicit
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bounds for the homotopy operators betw&eth complexes relative to two cov-
erings? = (B(xj,rj)), W = (B(xj,r;/2)) of X by concentric balls. By exercising
enough care in the estimates, it is likely that one couldheacexplicit dependence
Cp < C'||D|| for the constanEp of Corollary 1.7. The proof would of course become
much more technical than the rather naive brute force apgpra@ have used.

(1.9) Theorem.Let X be a compact complex manifold. Fix a finitely generatdd s
groupl” of the group ofZ-divisors on X. Then there are constants Cdépending
only on X, its Hermitian metrieo and the subgroug, satisfying the following
properties.

(a) LetLandl =L®®@(D) be holomorphic line bundles on X, wheres is an
integral divisor. Then

[h9(X, L) = (X, L)| < C(llea (L) + [IDIN™ D]

(b) On the subspacBNSg(X), the asymptotic g-cohomology functilﬁ%}vS satis-
fies a global estimate

[hns(X. B) —hdns(X, @) < C'(llall + 1B HIB ~ al.

In particular (without any further assumption on))(hAgNS is locally Lipschitz con-
tinuous onDNSg (X).

Proof. (a) We want to compare the cohomologylofandL’ = L ® @¢(D) on X.

For this we writeD = D, — D_, and compare the cohomology of the pdirand

L; =L®@(—D_) one one hand, and &f andL; = L' ® @(—D,.) on the other hand.
Sincel|c1(@(D))|| < C||D|| by elementary potential theory, we see that is is enough
to consider the case of a negative divisor, Le=L ® @(—D), D > 0. If D is an
irreducible divisor, we use the exact sequence

0—-L®6(-D)—L—OpaLp—0
and conclude by Corollary 1.7 that
|h9(X,L® @(—D)) —h%(X,L)| <h9(D,@p @ Lip) +h* (D, @p & Lp)
< 2Cp(flea(L)]| +1)"
ForD =3 p;D; > 0, we easily get by induction
[P, L 0(-D)) ~ P(X.L)| <23 piCo (lea(L) 1+ 3 pelCil )"

If we knew thatCp < C'||D|| as expected in Remark 1.6, then the argument would
be complete without any restriction @ The trouble disappears if we f in a
finitely generated subgroup of divisors, because only finitely many irreducible
components appear in that case, and so we have to deal witHfioiiély many
constant£p, . Property 1.9 (a) is proved.



Applications of Pluripotential Theory to Algebraic Geomyet 71

(b) Fix once for all a finite set of divisor§Aj)i<j<t providing a basis of
DNSg (X)C Haa(X,R). Take two elementsr and 8 in DNSg(X), and fixe > 0.
Thenp — a can bes-approximated by &-divisory A;Dj, Aj € Q, and we can find
a pair(k, L) with k arbitrary large such thf%tcl(L) is e-close toa andn! /k"h9(X,L)
approacheEgNS(X, o)bye. Then% L+ AjAj approacheg as closely as we want.
When approximatin — o, we can arrange th#f\j is an integer by taking large
enough. TherB is approximated b)%cl(L’) with L' = L® @(3 kAj4;). Property (a)
implies

n-1
WXL~ hX, L) > ~C(JleaL) | + || T nai|) || S|
> —CK'(lal|+e+IB—al+&)" (B —al +e).
We multiply the previous inequality byt /k" and get in this way

n! o~ _
aGL) > hgs(X, @) —e = C'(Jlal| + [|B] +&)" YIB—all +e).
By taking the limsup and letting — 0, we finally obtain

PBns(X,B) — Mgs(X. ) = ~C'(llal| + IBI)" 8~ all.

Property 1.9 (b) follows by exchanging the rolescoénd 3. O

2. Transcendental asymptotic cohomology functions

Our ambition is to extend the functidﬁﬂ,S in a natural way to the full coho-
mology groupHéé(X,R). The main trouble, already whex is projective alge-
braic, is that the Picard numbp(X) = dimg NSz (X) may be much smaller than
dimg Héé(X,R), namely, there can be rather few integral classes of t¥8 on X.
Itis well known for instance thaa(X) = 0 for a generic complex torus of dimension
n > 2, while dimg Hé’é(X,R) =n?. However, if we look at the natural morphism

Haa(X,R) = H3(X,R) =~ H?(X,R)

to de Rham cohomology, the#?(X, Q) is dense irH?(X,R). Therefore, given a
classa € Héé(X,R) and a smoothi-closed(1,1)-form u in a, we can find an
infinite sequencéLk (k € SC N) of topologicalQ-line bundles, equipped with
Hermitian metricdy and compatible connectiofig such that the curvature forms
%ODK converge tau. By using Kronecker’s approximation with respect to theint
gral latticeH?(X, Z) /torsionc H?(X,RR), we can even achieve a fast diophantine
approximation

(2.1) 160, — k| < Ck*/*
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for a suitable infinite subsé&te S N of multipliers. Then in particular

0.2 0.2 2 ~1/b
(2.2) 10321 = 1857 ~ kP?| < Ck Y/*,

and we see thdly, hy, Oy) is aC* Hermitian line bundle which is extremely close
to being holomorphic, s;inc(dﬂ(lz’l)2 = @8’2 is very small. We fix a Hermitian metric
w onX and introduce the complex Lapliace-BeItrami operator

Dcq = (OH(ORN+ (ORH (01 acting onL?(X, ATy @ Ly).

We look at its eigenspaces with respect to tRemetric induced byw on X and

hx on Lg. In the holomorphic case, Hodge theory tells us that theg@repace is
isomorphictdH9(X, @(Lk)), butin the “almost holomorphic case” the 0-eigenvalues
deviate from 0, essentially by a shift of the order of magllﬂmengH ~ k~1/02
(see also the PhD thesis of L. Laeng [Lae02], Chapter 4, foerdetails). It is thus
natural to introduce in this case

(2.3) Definition. Let X be a compact complex manifold aode Hga(X,R) an
arbitrary Bott-Chern(1,1)-class. We define the “transcendental” asymptotic g-
cohomology functions to be

= . . nl -
(@ hi(X,a)=inf limsup EN(Dk’q,g ke)

uea
S0 a0k, L by, D 10, —u

(b) h9(X,a) = inf limsup n S (—1)%IN(Ogj, < ke)

n
T 0 kst L by Dk, 1O, U K" 0fxq

where thelimsup runs over all5-tuples (&, k, Ly, hg, Ck), and where N g, ke)
denotes the sum of dimensions of all eigenspaces of eigmsvat most equal to
ke for the Laplace-Beltrami operatdrly 4 on L2(X,A%9Ty @ L) associated with
(Lk, hg, Ok) and the base Hermitian metrio.

The word “transcendental” refers here to the fact that wédith classesx of
type(1,1) which are not algebraic or even analytic. Of course, in tHandien, we
could have restricted the limsup to families satisfying sidseapproximation prop-
erty || £0r, — ul| < Ck1-1/P2 for some large consta@(this would lead a priori to
a smaller limsup, but there is enough stability in the patam@ependence of the
spectrum for making such a change irrelevant). The mininmasciple easily shows
that Definition 2.1 does not depend oy as the eigenvalues are at most multi-
plied or divided by constants under a change of base mettiend € NSg(X), by
restricting our familie (¢, k, Ly, hg, Okx)} to the case of holomorphic line bundles
only, we get the obvious inequalities

(2.48) Mis(X,a) <hI(X,a),  Va e NSy(X),
(2.4b) hRI(X,a) <hgd(X,a), VaeNSz(X).
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It is natural to raise the question whether these ineqaaldire always equalities.
Hopefully, the calculation of the quantities i, L‘—,’,N(Dk’q, < ke) is a problem

of spectral theory which is completely understood thankSéation | (see also
[Dem85, 91]). In fact, by Corollary | (1.13), the above lincéhn be evaluated ex-
plicitly for any value ofe € R, except possibly for a countable number of values
of € for which jumps occur; one only has to take care that the moegrability of

d due to the diophantine approximation does not contribuenpgotically to the
eigenvalue distribution, a fact which follows immediatéiym (2.2) (cf. [Lae02]).

(2.5) Theorem.With the above notations and assumptions, let us introdtieaeh
point x in X the “spectral density function”, defined as a fin$um

Tl 3 (03 @nsl)

(P1,---,Ps)ENS

w(A) =

where s=5(x) is the rank of the real1, 1)-formu at x, and g, 1 < j <s, its non zero
eigenvalues with respect to the base Hermitian metri@and w1 =... = u, =0.
For each multi-index &= {1,2,...,n}, let us set y= ¥ ;;uj. Then the asymptotic
spectrum of_li ; admits the estimate

. n_ -
Jm ENDg <) = [ 3 wlh =)V

except possibly for a countable number of valuea @fhich are discontinuities of
the right hand integral as an increasing integral of
(2.6) Corollary. We havéas a limit rather than just #im sup) the spectral estimate

nl =
lim —N(yq, < ke :/ —1)%".
N Oea<ke)= [ (1)

-0, k—+00, L, hy, Ok, § O, —u

Coming back to the transcendental asymptotic cohomologgtions, we get the
following fundamental result, which gives in some sense »pli@t formula for
hl (X, a) andh$9(X, a) in terms of Monge-Ampére operators.

. eorem. F'neliimsups aeftning ,a) an hs ,a) are imits, and we
2.7) Th Theli defininghf (X dhs9(Xx | d
have

a /Hq X,a = inf —1)%" u smooth.
( ) tr( ) uea X(u,q)( ) ( h
b ’ﬁgq X,a) = inf —1)9" u smooth.
( ) tr ( ) ) uea X(u,gq)( ) ( h

Now, if L — X is a holomorphic line bundle, we have by definition

28) h<IX.L) <hS9 (X.cu(l)) <hSI(X.cu(L)) < inf [ —1)%"
( ) ( ) DNS( 1( )) Ns( l( )) uecl(L).x(u,gq)( )
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(u smooth), where the last inequality is a consequence of haiphic Morse in-
equalities. We hope for the following conjecture which wbiumhply that we always
have equalities.

(2.9) Conjecture.For every holomorphic line bundle- X on a compact complex
manifold X, we have

a ha(X,L) = inf —1)%", usmooth

( ) ( ) uea X(u,q)( )

b ’ﬁgq X,L) = inf -1 qu”, u smooth
( ) ( ) uea x(u,gq)( )

Since the right hand side is easily seen to depend contihyons € Hé’é(X,C),
one would get:

(2.10) Corollary of the conjecture.If (2.9) holds true, then
@ MsX.a)=hi(X,a) and (b)) h3d(X,a) =h3X,a)
for all classesor € NSg(X).

In general, equalities 2.9 (a,b) seem rather hard to provsoine sense, they
would stand as an asymptotic converse of the Andreotti-&taheorem [AG62]:
under a suitablg-convexity assumption, the latter asserts the vanishinglated
cohomology groups in degreg here, conversely, assuming a known growth of
these groups in degreg we expect to be able to say something aboutgiredex
sets of suitable Hermitian metrics on the line bundles undasideration. The only
cases where we have a positive answer to Question 2.8 are Xvieprojective
andg = 0 or dimX < 2 (see Theorems 4.1 and 5.1 below). In the general setting of
compact complex manifolds, we also hope for the followimatiscendental” case
of holomorphic Morse inequalities.

(2.11) Conjecture.Let X be a compact complex n-fold andan arbitrary coho-
mology class in B2 (X, R). Then the volume, defined as the supremum

(2.12) Vol(a) := sup / T,

0<Tea /X\SingT)
extended to all Bhler currents Te a with analytic singularities(see Definition
11 (4.4)), satisfies

(2.13) Vol(a) > sup . u"
uea J X(u,0)UX(u,1)

where u runs over all smooth closétl 1) forms. In particular, if the right hand side
is positive, therr contains a Khler current.
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By the holomorphic Morse inequalities, Conjecture 2.1-dkafue in caser is
an integral class. Our hope is that the general case cardiegtby the diophantine
approximation technique described earlier; there are tiemmajor hurdles, see
[Lae02] for a few hints on these issues.

3. Invariance by modification

We end this section by the observation that the asymptotiowmlogy functions
are invariant by modification, namely that for every modiiiea 1 : X — X and
every line bundld. we have e.g.

(3.1) ha(X,L) = h9(X, u*L).
In fact the Leray spectral sequence provide&aterm
EDY = HP(X, R Og (°L7)) = HP(X, Ox (L) & R Cg).

SinceRu, O is equal to¥x for g = 0 and is supported on a proper analytic subset
of X for g > 1, one infers thahP(X, @x (LK @ RAp, @y ) = O(k"1) for all g > 1.
The spectral sequence implies that

h9(X, LZK) — hI(X, p*L=%) = O(k™1).
We claim that the Morse integral infimums are also invarigntiodification.

(3.2) Proposition.Let (X, w) be a compact Ehler manifold,a € HLL(X,R) areal
cohomology class and : X — X a modification. Then

a inf —1)%U" = inf —1)N"
(@) uea ><<u,q>( ) vepta ><<v,q>( SV
b inf —1)%U" = inf —1)W".
®) uea ><<u,<q>( M= ><<v,<q>( )

Proof. Givenu € a on X, we obtain Morse integrals with the same values by tak-
ing v= p*u on X, hence the infimum oiX is smaller or equal to what is ox.
Conversely, we have to show that given a smooth represestedi Li* o on X, one
can find a smooth representative X such that the Morse integrals do not differ
much. We can always assume tiaitself is Kahler, since by Hironaka [Hir64] any
modificationX is dominated by a composition of blow-ups X%f Let us fix some
Up € a and write

' @-9), dd°=__0a3,

. * C C __
V= up+dd¢, d o

T 4m

where¢ is a smooth function oX. We adjustp by a constant in such a way that
¢ > 1 onX. There exists an analytic sBt- X such thafu : X ~ p=%(S) — X \. Sis
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a biholomorphism, and a quasi-psh functiggwhich is smooth orX ~\. Sand has
—oo logarithmic poles ors (see e.g. [Dem82]). We define

(3.3) U= p'up+dd*maxe (¢ +dPsop, 0) =v-+dd*max,(dPsou, — @)

where may,, 0 < & < 1, is a regularized max function ar@d> 0 is very small.

By constructiorti coincides withu*ug in a neighborhood ofi=1(S) and therefore

U descends to a smooth closgd1)-form u on X which coincides withug nears,

so thatu = u*u. Clearly U converges uniformly to on every compact subset of
X~ u~%(S)asé — 0, so we only have to show that the Morse integrals are small
(uniformly in 8) when restricted to a suitable small neighborhood of theptional
setE = u~1(S). Take a sufficiently large Kahler metria onX such that

1. 1. 1. 1. ~
—Zw<vg = —Zo<dde < = —w<dd° )
W<V 2, w<dd9 <z, w < dd°Pso u

Thend > —@ andli < @+ ddd°Yso 4 everywhere oiX. As a consequence
0" < (@+ 8(@+dd°yso )"

<
< @"+n8(0+dd°Wso p) A (@+ 8(@+ddso )"

thanks to the inequalitya+ b)" < a” + nb(a+ b)"~. For any neighborhood of
pu=L(S) this implies

/ " < / @+ n3(1+ 5)“71/; &
\% JV JX

by Stokes formula. We thus see that the integrals are sm¥llaihd & are small.
The reader may be concerned that Monge-Ampere integrals used with an
unbounded potentials, but in fact, for any giverd, all the above formulas and
estimates are still valid when we replage by max,({s,—(M + 2)/6) with
M = max; ¢, especially formula (3.3) shows that the fotnis unchanged. There-
fore our calculations can be handled by using merely smoatiémpials. O

4. Proof of the infimum formula for the volume

We prove here

(4.1) Theorem.Let L— X be a holomorphic line bundle on a projective algebraic
manifold X. Then

Vol(X,L)= inf [ u
uecy (L) JX(u,0)

It is enough to show the inequality
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(4.1) inf u" < Vol (X,L)

uecy (L) /X(u,0)
and for this, we have to construct metrics approximatingvibleme. Let us first
assume thdt is a big line bundle, i.e. that VX, L) > 0. We have seen in Il (6.4—
6.5) (cf. also [Bck02]) that V@X, L) is obtained as the supremumj;(f\sing(T)T”
for Kahler currentsT = —5-ddh with analytic singularities ircy(L); this means
that locallyh = e where¢ is a strictly plurisubharmonic function which has the
same singularities adogy |g; |2 wherec > 0 and theg; are holomorphic functions.
By [Dem92], there exists a blow-yp: X — X such thap*T = [E] + B whereE is
a normal crossing divisor o andf3 > 0 smooth. Moreover, by [BDPP04] we have
the orthogonality estimate

(4.2) -5 = [t <c(volx.L) - B
while
(4.3) Bn:/)?ﬁn:/x\smg(T)Tn approaches VK, L).

In other wordsE and become “more and more orthogonal’@%approaches the
volume (these properties are summarized by sayingith@it= [E] + 3 defines an
approximate Zariski decomposition of(L), cf. also [Fuj94]). By subtracting t@

a small linear combination of the exceptional divisors ameteéasing accordingly
the coefficients o, we can achieve that the cohomology cld#s contains a
positive definite formB’ on X (i.e. the fundamental form of a Kahler metric); we
refer e.g. to ([DP04], proof of Lemma 3.5) for details. Thigans that we can
replacel by a cohomologous current such that the corresponding fisractually
a Kahler metric, and we will assume for simplicity of notetithat this situation
occurs right away folr . Under this assumption, there exists a smooth cld$eD)-
form v belonging to the Bott-Chern cohomology class[Bf, such that we have
identically (v— 88) A "% = 0 where

(4.4) 0= w < C'(Vol(X,L) —B")

Bn

for some constar@’ > 0. In fact, given an arbitrary smooth representatiye {[E]},
the existence of = vp+idd P amounts to solving a Laplace equatidg = f with
respect to the Kahler metrg, and the choice o ensures that we havg f " =0
and hence that the equation is solvable. Ther v+ 8 is a smooth close(ll, 1)-
form in the cohomology clags*cy (L), and its eigenvalues with respectfaare of
the form 1+ A; whereA; are the eigenvalues uf The Laplace equation is equivalent
to the identityy Aj = nd. Therefore

1/2

(4.5) S A <C'(Vol(X,L) - ")

1<7xn
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The inequality between arithmetic means and geometric mieaplies

M (1+AJ)<(1+1 S A) <1HCsvl(x.L) BT

1<j<n 1<7<n

whenever all factorgl + Aj) are nonnegative. By 2.2 (i) we get

inf TURS /~ a"
uecy (L) JX(u,0) X(0,0)

< [B(a+cxvolx.L) - 7)Y

< VOI(X, L) +Ca(Vol (X, L) — M2,

As " approches V@, L), this implies inequality (4.1).

We still have to treat the case wheris not big, i.e. Vo[X,L) = 0. LetA be an
ample line bundle and lég > 0 be the infimum of real numbers such thattAis a
big Q-line bundle fott rationalt > tg. The continuity of the volume functionimplies
that 0< Vol(X,L+tA) < € for t > tg sufficiently close tdp. By what we have just
proved, there exists a smooth fome c1(L +tA) such thatfy ,, o U < 2¢. Take a
Kahler metricw € ¢1(A) and definai = u; — tw. Then clearly

/ u" < / u' < 2,
X(u,0) X(uw,0)

hence i
inf u"=0.
uecy (L) JX(u,0)
Inequality (4.1) is now proved in all cases. O

5. Estimate of the first cohomology group on a projective suidce

Our goal here is to show the following result.

(5.1) Theorem.Let L— X be a holomorphic line bundle on a complex projective
surface. Then both weak and strong inequali(e8) (i) and(1.3) (i) are equalities
for g=0, 1, 2, and thelimsups involved inhd(X,L) andh=9(X,L) are limits.

We start with a projective non singular varietyof arbitrary dimensiom, and
will later restrict ourselves to the case wheis a surface. The proof again consists
of using (approximate) Zariski decomposition, but now wettr compute more
explicitly the resulting curvature forms and Morse intégréhis will turn out to be
much easier on surfaces.

Assume first that is abig line bundle onX. As in section 3, we can find an
approximate Zariski decomposition, i.e. a blow-up X — X and a curren® €
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c1(L) suchu*T = [E] + B, whereE an effective divisor anf} a Kahler metric oiX
such that

(5.2) Vol(X,L) —n < B" < Vol(X,L), n<1

(On a projective surface, one could even get exact Zariskbagposition, but we
want to remain general as long as possible). By blowing-up &, we may assume
thatE is a normal crossing divisor. We select a Hermitian métion @(E) and take

T
(5.3) Ue = 500 log(|oe[? + €%) + Oeeyn+ B € Mrca(l)
whereog € H°(>~(,@(E)) is the canonical section ar@,g) n the Chern curvature
form. Clearly, by the Lelong-Poincaré equatiopconverges tgg] + 8 in the weak

topology ass — 0. Straightforward calculations yield

U [ szDﬁ’anADﬁ’an g2
fom (2+|0el)? €2+ o]

26E7h+B'

The first term converges ] in the weak topology, while the second, which is
close toGg y nearE, converges pointwise everywhere to 0 ¥n\ E. A simple
asymptotic analysis shows that

<|_ ezDﬁ’OGE A Dﬁ’an g2

p
p—1
a2 joP? T PrlopoEn)  EINCE

in the weak topology fop > 1, hence
(5.4) lim ul = g"+ s (" [E]A@P tABTP
' £=0 ¢ le p Eh -

In arbitrary dimension, the signature of is hard to evaluate, and it is also non
trivial to decide the sign of the limiting measure lith However, whem = 2, we
get the simpler formula

lim u2 = B2+ 2[E] AB+ [E] A G
£—0 ’

In this caseE can be assumed to be an exceptional divisor (otherwise same p
of it would be nef and could be removed from the poles pf Hence the matrix
(Ej - Ex) is negative definite and we can find a smooth Hermitian matdo ¢(E)
such thal®g h) e < 0, i.e.O¢ 4 has one negative eigenvalue everywhere abng

(5.5) Lemma. One can adjust the metric h ¢f(E) in such a way tha®g}, is
negative definite on a neighborhood of the suppBitof the exceptional divisor,
and ©g , + B has signature(1,1) there. (We do not care about the signature far
away from|E|).
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Proof. At a given pointxg € X, let us fix coordinates and a positive quadratic faym
onC?2. If we pute(2) = ex(2)log(1+ £1q(z)) with a suitable cut-off functior,
then the Hessian form af, is equal tog atxy and decays rapidly t(¢loge)|d2?
away fromxo. In this way, after multiplyingh with e=%:(2 we can replace the
curvaturedg j(Xo) with O n(Xo) £ g without substantially modifying the form away
fromXo. This allows to adjusBg h to be equal to (say) %B(Xo) at any singular point
Xo € Ej NEx in the support of E|, while keepingOg 1 negative definite along.
In order to adjust the curvature at smooth poixts |E|, we replace the metrib
with I (2) = h(z) exp(—c(2)|0e(2)|?). Then the curvature for@g 1, is replaced by
Ok v (X) = Og,(X) +c(x)|dog|? atx € |E| (notice thatdog (x) = 0 if x € Sing E|),
and we can always select a real functiso thatOg y is negative definite with one
negative eigenvalue betweerl/2 and 0 at any point ofE|. Then®gy + B has
signature(1,1) near|E|. ' O
With this choice of the metric, we see that for- 0 small, the sum

2

€
e+t
€2+ |og2 & B

is of signature(2,0) or (1,1) (or degenerate of signatuté,0)), the non positive
definite points being concentrated in a neighborhooH afn particular the index
setX(ug,2) is empty, and also

[ ezDﬁ’an/\Dﬁ’OaE
2 (e2+4|0ogl?)?

+B

Ue &

on a neighborhool of |E|, while us converges uniformly tg8 on X ~. V. This
implies that

B2 < liminf u? < limsup uw? < B%+2B-E.
=0 JX(ug,0) e—0 JX(ug,0)

Since [y u2 = L2 = B2+ 2B - E + E2 we conclude by taking the difference that

—E?-2B-E < liminf —u2 < limsup —u2 < —E2
=0 JX(ug,1) g0 JX(Ug,1)

Let us recall thap - E < C(Vol(X,L) — 2)¥2 = 0(n'/?) is small by (5.3) and the
orthogonality estimate. The asymptotic cohomology is gikere byh?(X,L) = 0

sinceh?(X,L%K) = HO(X,Kx ® L®7) = 0 for k > ko, and we have by Riemann-
Roch

h'(X,L) =h%(X,L) = L? = Vol(X,L) — L= —E2— B-E+0O(n).

Here we use the fact thgth®(X, LK) converges to the volume whénis big. Al
this shows that equality occurs in the Morse inequalitie8)(tvhen we pass to the
infimum. By taking limits in the Neron-Severi spaceiN&) ¢ HY1(X,R), we fur-
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ther see that equality occurs as sooh éspseudo-effective, and the same is true if
—L is pseudo-effective by Serre duality. It remains to treatdase when neithér

nor —L are pseudo-effective. Théf(X,L) = h?(X,L) = 0, and asymptotic coho-
mology appears only in degree 1, with(X,L) = —L2 by Riemann-Roch. Fix an
ample line bundlé\ and letty > 0 be the infimum of real numbers such that tA
is big fort rational,t > to, resp. let; > 0 be the infimum of real numbetSsuch
that—L +t’Alis big fort’ > t;. Then fort > to andt’ > t;, we can find a modification
p:X — X and current¥ € ¢(L +tA), T' € cy(—L +t'A) such that

HT=[E+B  WT =[F+y

wheref, y are Kahler forms anét, F normal crossing divisors. By taking a suitable
linear combination’(L +tA) —t(—L +t’A) the ample divisoA disappears, and we
get
1 I I *
= (t [E] +t'B —t[F] fty) e (L)

After replacingE, F, 3, y by suitable multiples, we obtain an equality

[E]-[Fl+B-yeuc(l)

We may further assume by subtracting that the divigg#s have no common com-
ponents. The construction shows tifgt< Vol(X,L +tA) can be taken arbitrarily
small (as well of course ag), and the orthogonality estimate implies that we can
assumeB - E andy- F to be arbitrarily small. Let us introduce metrias on G(E)
andhg on@(F) as in Lemma 5.5, and consider the forms

. ~2[10 1,0
i € Dhl’E O'E/\Dhl’E O g2
Us =+ =— S
e 2n (21 (oeZ | &2+ |oel Ehe TP
i 82D100|:/\D O-F 82 o i .
-y € C .
27_[ (82+|UF| ) £2+|O_F|2 F,hg V IJ l( )

Observe thati; converges uniformly tg3 — y outside of every neighborhood of
|[E|U|F|. Assume thag . < 0 onVg = {|0g| < &} andOgp. < 0 ONVE =
{|oF| < &}. OnVE UVE we have

R AT TR SN
2 (€21 |og|?)? €21 |op |2 Fhr E,he

Us <

Where@gh is the positive part 0B . with respect tg3. One sees immediately
that this term is negligible. The first term is the only one ethis not uniformly
bounded, and actually it converges weakly to the curffehBy squaring, we find

limsup ugg/ (B—y)*>+2B-E.
£-0  JX(Ug,0) X(B-y,0)
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Notice that the term- —=*— 2+\o— E Or n- does not contribute to the limit as it converges
boundedly almost everywhere to 0, the exceptions beingpofF |, but this set is
of measure zero with respect to the currigjt Clearly we havely s_, ) (B — y)? <
B2 and therefore
limsup w2 < B%+2B-E.
£-0 JX(ug,0)

Similarly, by looking at—u,, we find

limsup W < y?+2y-F
£-0  JX(Ug,2)
These limsup’s are small and we conclude that the esseraialop the mass is
concentrated on the 1-index set, as desired. O

(5.6) Remark.lIt is interesting to put these results in perspective withdlgebraic
version (I 2.14) of holomorphic Morse inequalities. Wh€is projective, the alge-
braic Morse inequalities used in combination with the linadl invariance of the
Morse integrals imply the inequalities

() inf (—1)%" < inf (n) Fn-a.Gu,

ueer(L) JX(ug) W (L=0(F-6) \q
b inf _D < inf - <,)Fnl Gl
O 0 e T S e 0,2 TV

where the infimums on the right hand side are taken over allfinationsy : X = X
and all decompositions*L = G(F —G) of u*L as a difference of two nép-divisors
F, G on X. Again, a natural question is to know whether these infimuersvdd
from algebraic intersection numbers are equal to the asytmmohomology func-
tionalshd(X,L) andh=4(X,L). A positive answer would of course automatically
yield a positive answer to the equality cases in 2.9 (a) apdHowever, the Zariski
decompositions involved in our proofs of equality fip= 0 orn < 2 produce cer-
tain effective exceptional divisors which are not nef. laieclear how to write those
effective divisors as a difference of nef divisors. Thig faises a lot of doubts upon
the sufficiency of taking merely differences of nef divisarghe infimums 5.6 (a)
and 5.6 (b), and it is likely that one needs a more subtle ftamu O

6. Singular holomorphic Morse inequalities

The goal of this short section is to extend holomorphic Mansgualities to the case
of singular Hermitian metrics, following Bonavero’s PhDeslis [Bon93] (cf. also
[Bon98]).We always assume that our Hermitian mettiare given by quasi-psh
weights¢. By Theorem (11 5.7), one can always approximate the weigltarbarbi-
trary close quasi-psh weigltwith analytic singularities, modulo smooth functions.
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(6.1) Theorem.Let (L, h) be a holomorphic line bundle on a compact complex n-
fold X, and let E be an arbitrary holomorphic vector bundleark r. Assume that
locally h=e? has analytic singularities, and thgt is quasi-psh of the form

h=clog} |gj|* modC”,  ¢>0,

in such a way that for a suitable modificatiprn X — X one hag*O. = [D] + B
where D is an effective divisor anl a smooth form orX. Let S= p(SuppD)
be the singular set of h. Then we have the following asyntpéstimates for the
cohomology twisted by the appropriate multiplier ideal @hes:

n
(a) ha(X,E® LX®.%(h)) < rk—/ (=1)%", +o(k") .
n!' JxLhg)~s '
. . n o
(b) (-1 Th (X, E@ Lk®.F(h) < rk— (—1)9" ), +o(k") .
0<Tq ntJx(Lh<a)~s ’

Proof. For this, we observe that the Morse integrals are given by

e
_/X(&m( Yo",

thanks to a change of variatde= i (x). In fact, by our assumptio®, p is smooth
on X\ 'S, and its pull-backi*O p coincides with the smooth forifi on the com-
plementX ~. SuppD (and Supp is a negligible set with respect to the integration of
the smooth(n, n) form B" on X.) Now, a straightforwardl?> argument in the change
of variable (cf. [Dem01]) yields the direct image formula

(6.2) Kx ®.F(hK) = p. (Kg @ F(u"hY)).

Let us introduce the relative canonical shl=§§f/X =Ky ® P Kyt = @(div(Jacu))

and let us put _ B N
L=u’L, h=p*h, E= [.l*E®K>N(/X.
Thenh has divisorial singularities and therefofgh¥) = @(—|kD|) where]|...|
means the integral part of a divisor. The projection fornfatadirect images yields
p(Ee*e.9(hF) = Ee Lo % (hY),
Rip (Ee @ 9 (h9) = Ee Lo Kyt @ R, (Kg @ F(hY)).
However, fork > kg large enough, the multiplicities ¢kD| are all> O for each
of the components db, hence¥(h¥) = @(—|kD|) is relatively ample with respect
to the morphisnmu : X — X. From this, e.g. by an application of Hormander%s

estimates (see [Bon93] for more details), we concludelﬁﬂx(Ki ®,3‘(ﬁk)) =0
for k > ko. The Leray spectral sequence then implies

(6.3) HI(X,E@L*®.9(h)) ~ HI(X,E® X®.%(hY)).
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This reduces the proof to the case of divisorial singukesitLet us next assume that
D is aQ-divisor. Leta be a denominator fdD, and putk=a/+b,0< b <a—1.
Then

EoLl*®.f(h) =ExL¥*Pe@(—alD - [bD])=FRa G

where o _
R=E®l’@@(-|bD|), G=L["®@6(-aD).

By construction, we get a smooth Hermitian metnig on G such thatOg p, =
aB. In this case, the proof is reduced to the standard case ofrfawphic Morse
inequalities, applied to the smooth Hermitian line bur{@ehg) onX and the finite
family of rankr vector bundle$y,, 0 < b < a—1. Theresult is true even whéhis

a real divisor. In fact, we can then perturb the coefficieit® doy smalle’s to get
a rational divisoD,, and we then have to change the smooth pa@qﬂ{ to Be =

B +0O(¢) (again smooth); actuall§: — B can be taken to be a linear combination by
coefficientsO(¢) of given smooth forms representing the Chern classg8(Dj))
of the components dD. The Morse integrals are then perturbed®e). On the
other hand, Theorem 1.9 shows that the cohomology groupeinght hand side
of (6.3) are perturbed byk". The result follows ag — 0, thanks to the already
settled rational case. O

Part IV. Morse inequalities and the Green-Giriffiths-Lang
conjecture

The goal of this section is to study the existence and prigsedf entire curves
f : C— X drawnin a complex irreducibledimensional variety, and more specif-
ically to show that they must satisfy certain global algéboa differential equations
as soon aX is projective of general type. By means of holomorphic Mansgjuali-
ties and a probabilistic analysis of the cohomology of jetcgs, we are able to prove
a significant step of a generalized version of the GreerfithstLang conjecture on
the algebraic degeneracy of entire curves.

0. Introduction

Let X be a complex-dimensional manifold; most of the time we will assume that
X is compact and even projective algebraic. By an “entire €uwe always mean

a non constant holomorphic map defined on the whole compiexdj and we say
that it is algebraically degenerate if its image is contdinea proper algebraic
subvariety of the ambient variety. If : X — X is a modification and : C — X

is an entire curve whose imagéC) is not contained in the image(E) of the
exceptional locus, thef admits a unique I|ft|ngf C — X. For this reason, the
study of the algebraic degeneration bfis a birationally invariant problem, and
singularities do not play an essential role at this stage willetherefore assume
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that X is non singular, possibly after performing a suitable cosifimn of blow-
ups. We are interested more generally in the situation wiheréangent bundl&x

is equipped with dinear subspace \- Tx, that is, an irreducible complex analytic
subset of the total space @ such that (0.1) all fiber¥y :=V N Ty x are vector

subspaces ofx x. Then the problem is to study entire curviesC — X which are

tangenttd/, i.e. such thaf, Tc C V. We will refer to a pai(X,V) as being a@irected
variety(or directed manifoll A morphism of directed varietie® : (X,V) — (Y,W)
is a holomorphic magp : X — Y such that®,V C W; by the irreducibility, it is
enough to check this condition over the dense open sdbseding'V) whereV is
actually a subbundle. Here Sif\) denotes the indeterminacy set of the associated
meromorphic mapr : X ---> G;(Tx ) to the Grassmannian bbundlereplanes irTx,
r =rankV; we thus hav&/x_singv) = 0*SwhereS— G (Tx) is the tautological
subbundle o6, (Tx). In that way, we get a category, and we will be mostly interest
in the subcategory whose obje€¥ V) are projective algebraic manifolds equipped
with algebraic linear subspaces. Notice that an entireectirnC — X tangent tov
is just a morphisnf : (C,T¢) — (X,V).

The case wher€ = Ty s is the relative tangent space of some fibration; S
is of special interest, and so is the case of a foliated wafiéis is the situation
where the sheaf of sectiorf§(V) satisfies the Frobenius integrability condition
[@(V),6(V)] C @(V)); however, it is very useful to allow as well non integrable
linear subspaceg. We refer toV = Tx as being thebsolute caseOur main tar-
get is the following deep conjecture concerning the algelitageneracy of entire
curves, which generalizes similar statements made in [(&G&2 also [Lang86,
Lang87]).

(0.2) Generalized Green-Griffiths-Lang conjecture.Let (X,V) be a projective
directed manifold such that the canonical sheaf i§ big (in the absolute case
V = Ty, this means that X is a variety of general type, and in thetinatacase
we will say that(X,V) is of general typg Then there should exist an algebraic
subvariety YC X such that every non constant entire curve(f — X tangentto V
is contained in'Y .

The precise meaning &€y and of its bigness will be explained below — our
definitiondoes not coincidevith other frequently used definitions and is in our view
better suited to the study of entire curveg¥fV). One says thatX,V) is Brody-
hyperbolic when there are no entire curves tangekt tAccording to (generalized
versions of) conjectures of Kobayashi [Kob70, Kob76] thedmpolicity of (X,V)
should imply thaKy is big, and even possibly ample, in a suitable sense. It would
then follow from conjecture (0.2) th&X,V) is hyperbolic if and only if for every
irreducible varietyy C X, the linear subspacé; = T;_¢ NV C Ty has a big
canonical sheaf whenevgr: Y — Y is a desingularization arid is the exceptional
locus.

The most striking fact known at this date on the Green-Grifitang conjec-
ture is a recent result of Diverio, Merker and Rousseau [DPIRA the absolute
case, confirming the statement wh¥nC IP{&” is a generic non singular hyper-
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surface of large degre@, with a (non optimal) sufficient lower boundl > 2,
Their proof is based in an essential way on a strategy degdlby Siu [Siu02,
Siu04], combined with techniques of [Dem95]. Notice thathi& Green-Griffiths-
Lang conjecture holds true, a much stronger and probablynaptesult would be
true, namely all smooth hypersurfaces of degiee n+ 3 would satisfy the ex-
pected algebraic degeneracy statement. Moreover, bytsesfuClemens [Cle86]
and \oisin [Voi96], a (very) generic hypersurface of degdee 2n+ 1 would in
fact be hyperbolic for every > 2. Such a generic hyperbolicity statement has been
obtained unconditionally by McQuillan [McQ98, McQ99] wher-= 2 andd > 35,
and by Demailly-El Goul [DEG00] whem = 2 andd > 21. Recently Diverio-
Trapani [DT10] proved the same result whers= 3 andd > 593. By definition,
proving the algebraic degeneracy means finding a non zeyopualialP on X such
that all entire curves : C — X satisfyP(f) = 0. All known methods of proof are
based on establishing first the existence of certain algeditfierential equations
P(f; ., f”,...,£K) =0 of some ordek, and then trying to find enough such equa-
tions so that they cut out a proper algebraic lo€uys X.

LetJV be the space déjets of curved : (C,0) — X tangent td/. One defines
the shea@(EEﬁV*) of jet differentials of ordek and degreen to be the sheaf of
holomorphic function$(z &1, ... &) on JV which are homogeneous polynomials
of degreem on the fibers oflv — X with respect to local coordinate derivatives
& = f(1)(0) (see below in cas¥ has singularities). The degreeconsidered here
is the weighted degree with respect to the nat@alaction onJ*V defined by
A - f(t) ;= f(At), i.e. by reparametrizing the curve with a homothetic chaoige
variable. SincéA - f)U)(t) = A1 1) (At), the weighted action is given in coordinates
by

(0.3) A (8,82, &) = (AE,A %82, AR&).

One of the major tool of the theory is the following result doeGreen-Griffiths
[GGT79] (see also [Blo26], [Dem95, Dem97], [SY96a, SY96BJUP7]).

(0.4) Fundamental vanishing theoremLet (X,V) be a directed projective vari-
ety and f: (C,Tc) — (X,V) an entire curve tangent to V. Then for every global
section Pe HO(X,EEH?V* ® @(—A)) where A is an ample divisor of X, one has
P(f; ' f7,... fK)=0.

Let us give the proof of (0.4) in a special case. We interpEEEEEﬁV* ®
@(—A) as the bundle of differential operators whose coefficieatssh alongA. By
awell-known theorem of Brody [Bro78], for every entire cafv: (C, T¢) — (X, V),
one can extract a convergent “renormalized” sequenedim f o h, whereh, are
suitable homographic functions, in such a way thistan entire curve with bounded
derivative sup. ||g(t)||w < + (with respect to any given Hermitian metigon
X); the imageg(C) is then contained in the cluster s&(C), but it is possible that
g(C) C f(C). Then Cauchy inequalities imply that all derivatig#§ are bounded,
and therefore, by compactnessqfu=P(g; ¢,¢”",...,g) is a bounded holomor-
phic function onC. However, after raising to a power, we may assume thhats
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very ample, and after moving € |A|, that Sup intersectg(C). Thenu vanishes
somewhere, henae= 0 by Liouville’s theorem. The proof for the general case is
more subtle and makes use of Nevanlinna's second main tine(aee the above
references).

It is expected that the global sectionsHf(X, EE,EV* ® O(—A)) are precisely
those which ultimately define the algebraic lodtus. X where the curvd should
lie. The problem is then reduced to the question of showiagttiere are many non
zero sections oH%(X,EZ2V* ® O(—A)), and further, understanding what is their
joint base locus. The first part of this program is the mainltex this Section.

(0.5) Theorem.Let (X,V) be a directed projective variety such thag k big and
let A be an ample divisor. Then forsk 1 andd € Q. small enoughd < c(logk) /K,
the number of sectiond (X, ESSV* ® @(—mdA)) has maximal growth, i.e. is larger
that qm™*—1 for some m> my, where ccx > 0, n= dimX and r=rankV. In
particular, entire curves f (C,T¢) — (X,V) satisfy(many) algebraic differential
equations.

The statement is very elementary to check whearankv = 1, and there-
fore whenn = dimX = 1. In higher dimensions > 2, only very partial results
were known at this point, concerning merely the absolute ¥as Tx. In dimen-
sion 2, Theorem 0.5 is a consequence of the Riemann-Rocdhl&izbn of Green-
Griffiths [GG79], combined with a vanishing theorem due t@Bmolov [Bog79]
— the latter actually only applies to the top cohomology gréif, and things be-
come much more delicate when extimates of intermediateroolagy groups are
needed. In higher dimensions, Diverio [Div08, Div09] prdule existence of sec-
tions of HO(X,EESV* © @(—1)) wheneveiX is a hypersurface dPE™ of high de-
greed > d,, assumind > nandm > m,. More recently, Merker [Mer10] was able
to treat the case of arbitrary hypersurfaces of general fyme > n+ 3, assuming
this timek to be very large. The latter result is obtained through expdiigebraic
calculations of the spaces of sections, and the proof is atetipnally very inten-
sive. Bérczi [Ber10] also obtained related results witlifiecent approach based on
residue formulas, assumirgg> 27"109n,

All these approaches are algebraic in nature, and use amblgiebraic version
of holomorphic Morse inequalities (section | 2.D). Herewleoer, our techniques
are based on more elaborate curvature estimates in thé apiCiowen-Griffiths
[CGT76]. They require the stronger analytic form of holontdgMorse inequalities
(see Section | and Paragraph 111 6) —and we do not know hovatstate our method
in an algebraic setting. Notice that holomorphic Morse irdijies are essentially
insensitive to singularities, as we can pass to non singutatels and blow-ui as
much as we want: if1 : X — X is a modification them. @y = Ox andRIp. Oy is
supported on a codimension 1 analytic subset (even codioresf X is smooth).
As already observed in Paragraph Il 3, it follows from thedyespectral sequence
that the cohomology estimates foon X or for L = u*L on X differ by negligible
terms, i.e.

hd(X,L®™) — hd(X,L®™) = O(m"1).
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Finally, singular holomorphic Morse inequalities (seei@etll 6) allow us to work
with singular Hermitian metrics; this is the reason why we will only require to
have big line bundles rather than ample line bundles. In&ise of linear subspaces
V C Tx, we introduce singular Hermitian metrics as follows.

(0.6) Definition. A singular Hermitian metric on a linear subspaceVTx is a
metric h on the fibers of V such that the functiogh: & — Iog|E|ﬁ is locally
integrable on the total space of V.

Such a metric can also be viewed as a singular Hermitian cnatrihe tauto-
logical line bundlg9p,)(—1) on the projectivized bundlg(V) =V ~ {0} /C*, and
therefore its dual metrib* defines a curvature curreé, ).h- of type (1,1) on

P(V) C P(Tx), such that

Pv)(d

p @”Jpw)(l),h* = 5_{00 logh, wherep:V ~ {0} — P(V).

If log his quasi-plurisubharmonior quasi-psh, which means psh modulo addition
of a smooth functiohon V, then loch is indeed locally integrable, and we have
moreover

(07) O@P(v)(l)ah* > —Cw

for some smooth positivel, 1)-form onP(V) and some consta@t> 0 ; conversely,
if (0.7) holds, then lo@ is quasi-psh.

(0.8) Definition. We will say that a singular Hermitian metric h on Vasimissible

if h can be written as k- e? hoy Where Iy is a smooth positive definite Hermitian on
Tx and ¢ is a quasi-psh weight with analytic singularities on X, ag@®). Then

h can be seen as a singular Hermitian metric@g, (1), with the property that it
induces a smooth positive definite metric on a Zariski opeXse X \ SingV);

we will denote bySingh) O Sing(V) the complement of the largest such Zariski
open set X

If his an admissible metric, we defifg(V*) to be the sheaf of germs of holo-
morphic sections sections m;(\s.ngh) which areh*-bounded near Sir{h); by the
assumption on the analytic smgularltles this is a cohtesle@af (as the direct image
of some coherent sheaf &{V)), and actually, since* = e ?h, it is a subsheaf of
the sheaf’(V*) := @y, (V*) associated with a smooth positive definite mefigon
Tx. If r is the generic rank of andma positive integer, we define similark(}, to
be sheaf of germs of holomorphic sections(d)éM;/)®m =(A r\/&,)®m which are
deth*-bounded, an&" := K}, .

If V is defined bya : X ---- G(Tx), there always exists a modificatign:

X — X such that the compositiamo 1 : X — Gy (U*Tx ) becomes holomorphic, and
thenp™V|,,-1x_singv)) €xtends as a locally trivial subbundle@fTx which we will
simply denote byu*V. If his an admissible metric ov, thenu*V can be equipped
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with the metricu*h = e?°Hu*hy whereu*hg is smooth and positive definite. We
may assume thag o u has divisorial singularities (otherwise just perform het
blow-ups ofX to achieve this). We then see that there is an integesuch that for
all multiplesm = pmy the pull-backy* Kmh is an invertible sheaf oX, and deh*
induces a smooth non singular metric on it (wlnea hy, we can even takey = 1).
By definition we always havﬁ\’,“h = s (HK{Y,) foranym> 0. In the sequel, how-
ever, we think oKy ,, notreally as a coherent sheaf, but rather as the “virtQalfhe
bundle, (uKyh)Y™, and we say tha{Vh is big if (X, K},) = cnf' form > my,

with ¢ > 0, i.e. if the invertible sheafi*K. h is big in the usual sense.

At this point, it is important to observe that “our” canorlisheafKy differs
from the sheaffy :=i.@(Ky) associated with the injectian X \ SingV) < X,
which is usually referred to as being the “canonical sheatfleast wherV is the
space of tangents to a foliation. In fadty is always an invertible sheaf and there
is an obvious inclusioiy C Hy. More precisely, the image 6f(A'Tg) — Ky is
equal toHy @ay f for a certain coherent idegl C @x, and the condition to have
ho-bounded sections 0~ Sing(V) precisely means that our sections are bounded
by Consy |g;| in terms of the generatofg)j) of Ky Qe f, i.e. Ky = Hv ey ¥
whereY is the integral closure of . More generally,

Kih = Y ey fm/mo

Wherejh C Oy isthe(m/mg)-integral closure of a certain ideal shgfafm, C Ox,
which can |tself be assumed to be integrally closed; in oavipus discussiory is
chosen so that* ¥, is invertible onX.

The discrepancy already occurs e.g. with the rank 1 lineacesy C Tpn
consisting at each poirt# 0 of the tangent to the liné0z) (so that necessarily
Vo = Tpn o). As a sheaf (and not as a linear spa¢g),(V) is the invertible sheaf
generated by the vector fiefi= 3 zjd/dz; on the affine open se&t" c PP, and
thereforeXy :=i.@(V*) is generated oveE" by the unique 1-formu such that
u(¢) = 1. Sinceé vanishes at 0, the generatoiis unboundedwith respect to a
smooth metridhp on Ten, and it is easily seen thay is the non invertible sheaf
Kv = Fv @mpn o. We can make it invertible by considering the blowqupX — X
of X =P¢ at 0, s0 thap*Ky is isomorphic tou*#y @ O (—E) whereE is the ex-
ceptional divisor. The integral curv€ofV are of course lines through 0, and when
a standard parametrization is used, their derivatives tlearosh at 0, while the sec-
tions ofi.@(V) do — another sign that@(V) andi.@(V*) are thewrong objectgo
consider. Another standard example is obtained by takirenaric pencil of elliptic
curvesAP(2) + uQ(z) = 0 of degree 3 iPZ, and the linear spacé consisting of
the tangents to the fibers of the rational nfgp--- PL defined byz+— Q(2)/P(2).
ThenV is given by

P P
dQ-Qd

0—i.O(V) — O(Tp) Op2(6)© Js— 0
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whereS= Sing(V) consists of the 9 pointSP(z) = 0} N {Q(z) = 0}, and ¥s is the
corresponding ideal sheaf 8f Since de@/(T,2) = @(3), we see thatly = @(3) is
ample, which seems to contradict (0.2) since all leaveslipdiecurves. There is
however no such contradiction, becalige= Ky ® ¥sis not big in our sense (it
has degree 0 on all members of the elliptic pencil). A siméeaample is obtained
with a generic pencil of conics, in which cagg, = @(1) and car= 4.

For a given admissible Hermitian structufé h), we define similarly the
sheafEZTV; to be the sheaf of polynomials defined over. Sing(h) which are
“h-bounded”. This means that when they are viewed as polyrsfiz; &1,. .., &)
in terms of & = (%)) £(0) where J° is the (1,0)-component of the induced
Chern connection ofV, hp), there is a uniform bound

(09) P@ &80 <c( 3 I§1F)"

near points ofX . X’ (see section 2 for more details on this). Again, by a direct
image argument, one sees tﬁﬁﬁvh is always a coherent sheaf. The shEleIV*
is defined to beEGGVh whenh = hg (it is actually independent of the choicenf
as follows from arguments similar to those given in sectipnNbtice that this is
exactly what is needed to extend the proof of the vanishiagrém 0.4 to the case
of a singular linear spacé; the value distribution theory argument can only work
when the function®(f; f,..., f)(t) do not exhibit poles, and this is guaranteed
here by the boundedness assumption.

Our strategy can be described as follows. We consider ther=@&iffiths bun-
dle ofk-jetsXEC = J*v « {0} /C*, which by (0.3) consists of a fibration weighted
projective spacesand its associated tautological sheaf

L= Oyca(1),

viewed rather as a virtug)-line bundle@ycc(mo)*™ with mg = lem(1,2, ..., k).
Then, if 7§ : XE© — X is the natural projection, we have

EkG$ = (T&)*@kaG(m) and Rq(m)*@xkee(m) =0forq> 1

Hence, by the Leray spectral sequence we get for every ibleesheaf on X the
isomorphism

(0.10) HIX,EGRV" @ F) = HAXES, Oyoo(m) @ TG F).

The latter group can be evaluated thanks to holomorphic ioexgualities. In fact
we can associate with any admissible metrion V a metric (or rather a natu-
ral family) of metrics onL = @ycs(1). The spacé(kGG always possesses quotient
singularities ifk > 2 (and even some moreV is singular), but we do not really
care since Morse inequalities still work in this setting. s will see, it is then
possible to get nice asymptotic formulaskas> +. They appear to be of grob-
abilistic natureif we take the components of thejet (i.e. the successive deriva-
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tivesé; = 0)(0), 1< j < k) as random variables. This probabilistic behaviour was
somehow already visible in the Riemann-Roch calculatiofc@79]. In this way,
assumingy big, we produce a lot of sectiomg = H%(XZ®, Oyes(m) @ KF), cor-
responding to certain diviso& C XkGG. The hard problem which is left in order to
complete a proof of the generalized Green-Giriffiths-Langecture is to compute
the base locug = (Z; and to show thaY = 75(Z) C X must be a proper algebraic
variety. Unfortunately we cannot address this problem esgnt.

1. Hermitian geometry of weighted projective spaces

The goal of this section is to introduce natural Kahler meston weighted pro-
jective spaces, and to evaluate the corresponding volummasfoHere we put
d° = ,=(d - 9) so thatdd® = 4-dd. The normalization of thel® operator is cho-
sen such that we have precisétyd®log|z?)" = & for the Monge-Ampere operator
in C"; also, for every holomorphic or meromorphic sectiorof a Hermitian line

bundle(L, h) the Lelong-Poincaré can be formulated
(L1) dd®log|off = [Zo] — OLp,

where@ j, = %nyh is the (1, 1)-curvature form ol andZ, the zero divisor ob.
The closed1,1)-form Oy is a representative of the first Chern clagd ). Given a
k-tuple of “weights’a= (ay, .. .,a), i.e. of integerss > O with gcday, ..., a) = 1,
we introduce the weighted projective spa@gas,...,ax) to be the quotient of
CX . {0} by the corresponding weightezt action:

(1.2) P(ag,...,a) = CK {0}/C*,  A-z=(A%¥z7,...,A%Z).

As is well known, this defines a torigk — 1)-dimensional algebraic variety with
quotient singularities. On this variety, we introduce tlos$ibly singular (but almost
everywhere smooth and non degenerate) Kahler mgmdefined by

1
(13) Mwap=ddap,  Pap(z) = o log S |z,

1<s<k

whererg, : Ck~ {0} — P(ay,...,a) is the canonical projection arl> 0 is a pos-
itive constant. It is clear thaf, 5 is real analytic orCk~ {0} if pis an integer and
a common multiple of all weightas. It is at leasiC? if p is real andp > maxas),
which will be more than sufficient for our purposes (but eteiryg would still work
for any p > 0). The resulting metric is in any case smooth and positiviaite out-
side of the coordinate hyperplanges= 0, and these hyperplanes will not matter
here since they are of capacity zero with respect to all on:s(ddcqba,p)[. In order

to evaluate the volumg,, o) w[a‘jpl, one can observe that

k-1 ' k=1 A qC
= Ad
/P(al ) Wa p ./zeck,cpa‘p(z):orgwa’p Pap

.....
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= dd®pap) tAde
zeck,¢a,p<z):o( $a.p) ¢ap

1

== ddCePdar)k,
pk /zeck,¢a,p(z)<0( )

(1.4)

The first equality comes from the fact thfpa p(z) = O} is a circle bundle over
P(as,...,a), together with the identitiesha p(A - 2) = Pap(2) + log|A|? and
fwzldclogM |> = 1. The third equality can be seen by Stokes formula applied to
the (2k — 1)-form

(ddePPar)k=1 A dCePPar — ePar(ddCs p) 1 A d P p

on the pseudoconvex open getc CX; ¢4 p(2) < 0}. Now, we find

(15)  (ddePer)k= (o ¥ |zs|2"/a'5)k= [ (aﬁslzslﬁ’l)(dd"IZIZ)",

1<s<k 1<s<k
K
(1.6) / (ddCePPar)k — pP__P
JzeCk, ¢ p(2)<0 ngkas ar...ax
In fact, (1.5) and (1.6) are clear when=a; = ... = ax = 1 (this is just the stan-

dard calculation of the volume of the unit ball @); the general case follows by
substituting formallyzs — z’®, and using rotational invariance together with the
observation that the arguments of the complex nurmgé‘?%now runin the interval
[0,2mp/ag] instead of|0, 277 (say). As a consequence of (1.4) and (1.6), we obtain
the well known value

(L7) Lo ag=—
Plag.a) ©0 1.8

for the volume. Notice that this is independentfas it is obvious by Stokes
theorem, since the cohomology classugf, does not depend op). Whenp tends
to +o, we haveda p(2) — Paw(2) = logmax<sck|z|?? and the volume form
ngjl converges to a rotationally invariant measure supportethbymage of the
polycircle[1{|zs| = 1} in P(ay,...,a). This is so because not d#|?/% are equal
outside of the image of the polycircle, thig.(z) locally depends only ok — 1
complex variables, and xof;;ol = 0 there by log homogeneity.

Our later calculations will require a slightly more genesatting. Instead of
looking atCK, we consider the weighted* action defined by

(1.8) CM=Clnx...xC%  A.z=(A%z,... A%g).

Herezs € C's for somek-tupler = (rq,...,rg) and|r| =ry+...+rg. This gives rise
to a weighted projective space

P(a[irl],...,agk}) =P(ay,...,a1,..,8,--, ),
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(1.9) Ty ! Ctx...xCx~ {0} — P( , ,ak )

obtained by repeating times each weighas. On this space, we introduce the de-
generate Kahler metrie, . p such that

1
(1.10) TG War,p = dd°day p, Parp(2) = _pIOQ z |ZS|2p/'Sls

1<s<k

where|z| stands now for the standard Hermitian noffn < <. | 12)Y2 onC's.
This metric is cohomologous to the corresponding “polydilse” metric w, , al-
ready defined, and therefore Stokes theorem implies

_ 1
111 / [
(110 P@EL,...ak) y at...ak

Since(dd®log|zs|?)"s = 0 onC's ~. {0} by homogeneity, we conclude as before that

the weak limit limp— 4o ch‘r p = wg‘r ml associated with

— 2/as
(1.12) Pareo(2) = log max z|

\\

is a measure supported by the image of the product of unitrepfigS?s—1 in
P(a[lrl],...,agk]), which is invariant under the action &f(r1) x...xU(rg) on

C" x ... x C'x, and thus coincides with the Hermitian area measure up tastaot
determined by condition (1.11). In fact, outside of the pretdf spherespa .o l0-
cally depends only on at mokst- 1 factors and thus, for dimension reasons, the top
power(dd°¢a’r,m)"‘*1 must be zero there. In the next section, the following change
of variable formula will be needed. For simplicity of exptimn we restrict our-
selves to continuous functions, but a standard densitynaegtiwould easily extend
the formula to all functions that are Lebesgue integrabtl wéspect to the volume
form oo(‘i‘, -

(1.13) Proposition.Let f(z) be a bounded function on(E[lrl], ,ak ) which is
continuous outside of the hyperplane sectiogs-0. We also view f as &*-
invariant continuous function opj(C" ~. {0}). Then

.....

_ =Dty

re—1
PO 2Puy, /2Py T —

I_lsa-S /XU)GAk ;|_><|_|52"S 1 ! 1<s< k( 1)'

dxdu(u)

whereAy_1 is the (k— 1)-simplex{xs > 0, I xs = 1}, dx=dxg A ... Ad¥1 itS

standard measure, and wherg (u) = duy(ug) . .. duk(ug) is the rotation invariant
probability measure on the produfs s~ of unit spheres irC x ... x C'k. As

a consequence
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) 1
Iim/ fz"l:—/ f(u)dp(u).
p—+oo P(a[lrl],...,agk]) ()wa,.,p Hsags HSZ"S*J- ( ) I"l( )

Proof. The area formula of the dISﬁF)\ <1ddA |? =1 and a consideration of the unit
disc bundle oveP(a; al't - ,ak ) imply that

| ::/ f(z "‘*1:/ £(2) (dd°Pa, o)1= A dcetare,
p P(a[lrll al[:k]) ( )OJd,r,p 26l Bar p(2)<0 ( )( ¢a,r,p)

Now, a straightforward calculation afi'! gives

(ddcep‘pa‘-p)‘r‘ _ (ddc z |zs|2p/as)‘r‘

1<s<k

rs+1
= |—| (B) |25|2's(P/8=1) (ddC|Z/2) ",

1<s<k as

On the other hand, we hayed©|z?)/l = rl!"r_"!rk! Mics<k(dd®|zs|?)™s and

(ddcep(ﬁa.r,p)\r\ _ (pep¢a"'p(ddc¢a,r,p+ pd¢a,r,p/\dc¢a,r,p))‘r‘
= |r|p‘rHlemP¢a,r‘p(ddc¢a’r!p)\r\*1 A d¢a,r,p/\ dc¢a,r,p
— |r|p‘rHle(‘r‘P*l)‘l)a‘r,p(ddctpa’r’p)‘r‘*l A ddcefpa‘r,p,

thanks to the homogeneity reIatiQddctpa’r’p)"‘ = 0. Putting everything together,
we find

(=1 P (2 (dd°z*)"
JzeCl parp(2)<0 (T s|zs|2P/3s)Ir=1/p Ly ags+1|zs|2rs(l—p/as) '

A standard calculation in polar coordinates with= psus, Us € S~ 1, yields

(dd°jz|»)"
|ZS|2r5

=2rg pps dus(us)

whereps is theU (rs)-invariant probability measure d&'s—*. Therefore

oo [ (D Mt 203" % sy
P Par,p(2)<0 (

Zl<s<kP2p/as)"‘ /p s (rs—1)raft?
:/ (Ir|— 1)1 p~Lf (12 %Py, ...,tlfk/z"uk)l_lt;sldtsduS(us)
UseSs 1, 5 ts<1 (Trcsckts)=1/P o (rs—1las

by puttingts = [z5/2P/3 = p2P/%  j.e. ps = t2/?P t € ]0,1]. We use still another

change of variablg = txs with t = 31 skts andxs € ]0,1], Y 1<s<kXs = 1. Then
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dy A...Adt=t“"Tdxdt  wheredx=dxgA...AdX_1.

TheC* invariance off shows that

re—1
0= [ e (FI— D108 Py, 2y ) 2GRl Sxd

I's _
Sxe-1te]0]] 14sk (rs—1tag pti-i/p
2 2 2 ng ldl-ls(us)
= [ s (1= DO P, Pug [ e o
Sxs=1 1<s<k 'S
This is equivalent to the formula given in Proposition 1.0 havex®’? — 1 as

p — +, and by Lebesgue’s bounded convergence theorem and Fufainiula,
we get

Xt
) T dxdu(u).

1<s<k (rS* )

jim 1, — (=1 /
p=te Hsags J(xu)ely_1 x| Ps1

It can be checked by elementary integrations by parts anectiah onk, ry, ..., rg
that

1

1.14) / s ldy . dx = ———— re—1)!.

( XeAk_1 1<S<kXS (|r| - 1)' 1§|:|§k( ° )

This implies that(|r| — 1)! [1<s<k (r — dx is a probability measure afy,_1 and
that

1
lim 1 =—/ f(u)du(u).
Jm o= [ f0u(

Even without an explicit check, Formula (1.14) also folloin@m the fact that we
must have equality fof (z) = 1 in the latter equality, if we take into account the
volume formula (1.11). O

2. Probabilistic estimate of the curvature ofk-jet bundles

Let (X,V) be a compact complex directed non singular variety. To aanjdtechni-
cal difficulty at this point, we first assume thatis a holomorphic vector subbundle
of Tx, equipped with a smooth Hermitian methic

According to the notation already specified in the introdhrctwe denote by
JXV the bundle ok-jets of holomorphic curve$ : (C,0) — X tangent to/ at each
point. Let us seh = dimc X andr = rank:V. ThenJXV — X is an algebraic fiber
bundle with typical fiberC™® (see below). It has a canonid@t-action defined by
A-f:(C,0) =X, (A-f)(t) = f(At). Fix a pointxg in X and a local holomorphic
coordinate systen(z,...,z,) centered aky such thatvy, is the vector subspace
(0/07,...,0/0%) atxg. Then, in a neighborhodd of xo, V admits a holomorphic
frame of the form
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17}
@1y o+ ap(@)—, LSBT, agp(0)=0.

)
r+1<a<n Za

Let f(t) = (f1(t),..., fn(t)) be ak-jet of curve tangent t&¥ starting from a point
f(0) = x € U. Such a curve is entirely determined by its initial point dndthe

projection f(t) := (f1(t),..., f;(t)) to the firstr-components, since the condition
f'(t) € Vs (1) implies that the other components must satisfy the ordidéfgrential

equation
fat)= 5 agp(f(t)fa(t).
1<B<r

This implies that thék-jet of f is entirely determined by the initial poistand the
Taylor expansion

(2.2) f(t) —X= &t + &%+ ...+ &+ O+

whereés = (&sa)1<a<r € C'. The C* action (A, f) — A - f is then expressed in
coordinates by the weighted action

(2.3) A (81,80 &) = (AELA%E, ... ARE)

associated with the weiglat= (11, 2"/ ... k). The quotient projectivized-jet
bundle

(2.4) XS = (Jv < {o})/C*

considered by Green and Griffiths [GG79] is therefore in aurstway a
P(al, 2l . k) Weighted projective bundle ovet. As such, it possesses a
canonical sheaﬁ cs(1) such that@,cs(m) is invertible whenm is a multiple
of lem(1,2,. nder the natural projectiory, : XkGG — X, the direct image

(Th )« O GG( ) commdes with the sheaf of sections of the burﬂfgﬁv of jet dif-
ferentigis of ordek and degreen, namely polynomials

(2.5) P(z; &1,..., &) = Z Aoy o (2 &1 E
a,eNT 1<k

of weighted degreg | + 2|az| + ... + K| ax| = mon IV with holomorphic coeffi-
cients. The jet differentials operate on germs of curvesféerential operators

(2.6) P(F)(t) = S aa..ap (1) F'() ... £ (1),

In the sequel, we do not make any further use of coordinatedsaas (2.1), because
they need not be related in any way to the Hermitian métraf V. Instead, we
choose a local holomorphic coordinate frafeg(z))1<a<r 0f V on a neighborhood
U of Xg, such that

(2.7) (€a(2),€p(2)) = Sap + Gijapz2j +O((2°)
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for suitable complex coefficients;; o). It is a standard fact that such a normalized
coordinate system always exists, and that the Chern cua/tHDsoranD\z, n of (V. h)
atxg is then given by

i )
(28) a/,h(XO):*E_[. _ZBCijaBdZ /\d2j®ea®eﬁ.
L],a,

Also, instead of defining the vectoés € C" as in (2.2), we consider a local holo-
morphic connectionl onVyy (e.g. the one which turn@ ) into a parallel frame),
and takeg, = 0K (0) € V defined inductively by1* f = " andOSf = Oy (051 1).
This is just another way of parametrizing the fibersJ&¥ overU by the vector
bundle\/‘b. Notice that this is highly dependent d@n (the bundleJ“V actually
does not carry a vector bundle or even affine bundle strugtboevever, the ex-
pression of the weighted action (2.3) is unchanged in thig setting. Now, we
fix a finite open coveringUq )qer Of X by open coordinate charts such th@

is trivial, along with holomorphic connectiofig, onV|y, . Let 6, be a partition of
unity of X subordinate to the coverin@yq ). Let us fixp > 0 and small parameters
1=¢&>&>...> g > 0. Then we define a global weighted exhaustiod®n
by putting for anyk-jet f € Jv

1/p
(29) Uhpe(D) = (3 060y PITEIOIGE)

where|| [l is the Hermitian metrit of V evaluated on the fibék, x= f(0). The
function$, ,, . satisfies the fundamental homogeneity property

(2.10) Yhpe(A - ) =Yhpe(f)A]?

with respect to th&€* action onJ*V, in other words, it induces a Hermitian metric on
the dual* of the tautological-line bundlel = Cycc(1) overXSC. The curvature

of Ly is given by
(2.11) Tﬁf@Lk,wﬁp‘E =ddlog Yhp.e

whererg : ¢V ~ {0} — XkGG is the canonical projection. Our next goal is to compute
precisely the curvature and to apply holomorphic Morse usdities toL. — XkGG
with the above metric. It might look a priori like an untragla problem, since the
definition of ¥, , ¢ is a rather unnatural one. However, the “miracle” is that the
asymptotic behavior oH, , ¢ ases/es_1 — 0 is in some sense uniquely defined and
very natural. It will lead to a computable asymptotic foremulvhich is moreover
simple enough to produce useful results.

(2.12) Lemma.On each coordinate chart U equipped with a holomorphic ceane
tion 00 of Vy, let us define the components of a k-jet 84V by & = 0%f(0), and
consider the rescaling transformation
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Poe(é1,&2,. .., &) = (e1€1,€2&5,...,688) onJV, xeU

(it commutes with th&*-action but is otherwise unrelated and not canonically
defined over X as it depends on the choice]()f Then, if p is a multiple of
Icm(l 2,...,k) and&s/es 1 — Oforall s = .,k, the rescaled functiok, p ¢

st(El, ,E ) converges towards

1/p
(3 i)

1<s<k

on every compact subset d‘M]J ~ {0}, uniformly in C° topology.
Proof. LetU C X be an open set on whic¥y is trivial and equipped with some
holomorphic connectioll. Let us pick another holomorphic connectign= 0+ I
wherel" € HO(U, Q§ ® Hom(V,V). Then02f = 02f + I (f)(f")- f/, and induc-
tively we get N

OSf = OSf + Ry(f; Of,...,05°1f)
whereP(x; &1,...,&-1) is a polynomial with holomorphic coefficients e U
which is of weighted homogeneous degsda (&1,...,&s-1). In other words, the
corresponding change in the parametrizatioﬂi‘wu is given by aC*-homogeneous
transformation

gs =&+ Ps(X; &1,...,&s-1).

Let us introduce the corresponding rescaled components

(Ever- &ke) = (8181, 8K&),  (8er...r&ke) = (E1&1,... &),

Then _
E&azfs,aﬁLfsps(X'fflEls, c € 1 Es 1e)

= &oe+O(s/8s 1)°O(||Evell + ...+ |E 16|V D)

and the error terms are thus polynomials of fixed degree wﬁhrarlly small coef-
ficients ases/es-1 — 0. Now, the definition ofH, , . consists of glueing the sums

S 2PIElP =Y Il

1<s<k 1<s<k

corresponding tdx = 3 f(0) by means of the partition of unity 65 (x) = 1. We

see that by using the rescaled varialfes the changes occurring when replacing
a connectiorily by an alternative onélg are arbitrary small i€ topology, with
error terms uniformly controlled in terms of the raticgsss 1 on all compact sub-
sets ofVk < {0}. This shows that ||¢°° topology,%¥ p. °pg, E(El, ,&) converges
uniformly towards(zl<s<k||§k|\h $)1/P, whatever the tr|V|aI|zmg open skt and

the holomorphic connectionl used to evaluate the components and perform the
rescaling are. O
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Now, we fix a pointxg € X and a local holomorphic fram@y (2))1<a<r Sat-
isfying (2.7) on a neighborhodd of xy. We introduce the rescaled components
&s = €205 (0) onJ*V)y and compute the curvature of

-1 2p/s Y
HhpeoPrg(Z &, &)= Y &y
1<s<k

(by Lemma 2.12, the errors can be taken arbitrary smafiopology). We write
és= Y1<a<résa€a- By (2.7) we have

I&sIF =3 [8sal®+ 5 Gijapazigsadss +O(I2% &%)

a i,j.a,B

The question is to evaluate the curvature of the weightediofined by

1/p
v 80— (3 161P"7)

1<s<k
_ p/s 1/p
< z (Z|Esa|2+ z CijagZi?jEsaEsg) > +O(|Z|3).
1<sgk @ i.j,a.B

We set|&|? = 5 4 |€sa|?. A straightforward calculation yields
log¥(z; &1,...,&) =

1
=Zlog 3 [&*P5+
p 1Zk °

<

1 |ES|2p/s _ Esagsﬁ 3
S Y Giapd2i e +O(ZP).
1<s<kSZt |Et|2p/t i,j,za,B P |ES|2

By (2.11), the curvature form dfy = @xkee(l) is given at the central poing by the
following formula.

(2.13) Proposition.With the above choice of coordinates and with respect to the
rescaled componenés = 005 (0) at xp € X, we have the approximate expression

i 1 |&?P/s Ealep
Oy, (X0, [€]) ~ warp(E) + e w2
kThpe r.p angsgk32t|5t|2p/ti,j,a,g ijap &2

dz A d?j
where the error terms are @ax<s<k(&s/&-1)°) uniformly on the compact variety
XkGG. Here wa p is the (degeneratgKahler metric associated with the weighta

(a7, 2. K of the canonical* action on JV.

Thanks to the uniform approximation, we can (and will) neglthe error
terms in the calculations below. Since p is positive definite on the fibers of
XEC — X (at least outside of the axds = 0), the index of the(1,1) curvature
form eLk,W,{p‘E(Za [€]) is equal to the index of thel, 1)-form
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Efsg

i 1 |&%P/s

(2.14) w(z &) =
27T1<s<kSZt|ft|2p/t aB
depending only on the differential®lz);<j<n on X. The g-index integral of
(Lk, ) ON XEC is therefore equal to

/ ntkr—1 _
JXGe(Ly.q) Lk,""ﬁpg
n +kr— kr—1 n

B n| ni(kr—1)1 /zex/.fep ..... war (a2 (2 8)
where 3, 4(z &) is the characteristic function of the open set of points wigz, & )
has signaturén— g, q) in terms of thedz’s. Notice that sincex(z )" is a deter-
minant, the product Jl4(z &) w(z &)" gives rise to a continuous function &4§C.
Formula 1.14 withry = ... = ry = r andas = syields the slightly more explicit
integral

IXC(Lw.a) Lo e nl (kK1)

-1
1y, q(zZ%,u zxu”ded u
/ZEX /(x,u)eAk,lx(SZT*Hk gk7Q( X, U)Gk(Z, X, U) (r—l)!k L (u),
wheregy(z x,U) = W(zX5/*"uy, .., X/?Puy) is given by
i 1
(2.15) Ok(zZx,u) = =— —Xs Cijap(2) Usalgg dz A dZ
27T1<Z<k s i,j-,za,B ' ¥

and 1, q4(z x,u) is the characteristic function of itgindex set. Here

(2.16) dvier (X) = (kr — 1)1 (Xg... %) 1 i

(r—1)k

is a probability measure ofy,_1, and we can rewrite

/ n+kr—1 w .

XSO(La) e¥hpe  nI(KI) (kr — 1)

(247 /ZEX /X U)EA_1 x (1)K Tg,.q(2,%, U) Gk (2, %, u)" dvicr (X) A ().
k—1

Now, formula (2.15) shows thaj(z x, u) is a “Monte Carlo” evaluation of the cur-
vature tensor, obtained by averaging the curvature at rarmtontsus € S~ with
certain positive weightss/s; we should then think of thk-jet f as some sort of
random parameter such that the derivatii&$(0) are uniformly distributed in all
directions. Let us compute the expected valuéxti) — gx(z x,u) with respect
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to the probability measurdvk,r(x)du(u). Since [gr 1 UsqUsgdH (Us) = 18,5 and
Ja  XsdVier (X) = &, we find

1 1

E(gk(z,e,0)) = o ) z 5

<s<k

[
e ,Z Cijaa(2)dz A dz;.
In other words, we get the normalized trace of the curvailee,

(2.18) E(gk(ze.0)) = (1+ St t k)ede(v *).deth s

whereOye(y+) deth+ 1S the(1,1)-curvature form of dgV*) with the metric induced
by h. Itis natural to guess thak(z x, u) behaves asymptotically as its expected value
E(gk(z e,)) whenk tends to infinity. If we replace brutally by its expected value

in (2.17), we get the integral

(n+kr—1)! 1 1 1N .
nt (k)" (kr —1)! (kr)n (1+§+"'+E) /X]]n,qu ;

wheren = Ogeqv+).det and 1 q is the characteristic function of itgindex set

in X. The leading constant is equivalent(togk)"/n! (k!)" modulo a multiplicative
factor 1+ O(1/logk). By working out a more precise analysis of the deviation, we
will prove the following result.

(2.19) Probabilistic estimate.Fix smooth Hermitian metrics h on V and =
7= Y wjdz Adzj on X. Denote by, = — 5= 3 Cijopdz A dZ) ® €; @ g the curva-
ture tensor of V with respect to an h-orthonormal frafeg), and put
[ -
N(2) = Oteqv) et = 5= > Mjdandz,  mj= 5 Cijaa.

1< <n 1<a<r

Finally consider the k-jet line bundlel= ()’xkee( 1) — XkGG equipped with the in-
duced metrlcwh ¢ (as defined above, with= & > & > ... > & > 0). When k
tends to |nf|n|ty, the integral of the top power of the curvatuf Ly on its g-index
set X°¢(Ly, q) is given by

nikr—1 _ (logk)" /
/XkGG(Lk-,q)@Lk’WP:P:S_ ICON ( 1y qn" -+ O((logk) 1)

forallg=0,1,...,n, and the error term Q(logk) 1) can be bounded explicitly in
terms of®y, n andw. Moreover, the left hand side is identically zero fora.

The final statement follows from the observation that thevature oflLy is
positive along the fibers oS¢ — X, by the plurisubharmonicity of the weight
(this is true even when the partition of unity terms are takémaccount, since they
depend only on the base); therefore thmdex sets are empty far > n. We start
with three elementary lemmas.
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(2.20) Lemma.The integral

X n
Ik,r,n:/ ( —S) de,r(X)
D1 1<Z<k S

is given by the expansion

S 1 (kr=1)! Micick(r —1+B)!
1<sy oo snck 192+ Sn (r—1)k (kr+n—1)!

(a) Ik,r,n =

wheref3i = Bi(s) = card{j; sj =i}, 3 B =n, 1 <i<k. The quotient
rn 1 1\n
Ik’r’”/kr(errl)...(errn1) (13t +3)

is bounded below by and bounded above by

(b) 1+ 27! (1+}+...+})m:1+O((Iogk)2)

1 n
§nh2(nfm)! 2 k

As a consequence

(C) |k,r,n: %((1+%++%)n—|—0((|ogk)n72))
(logk+ y)"+ O((logk)"2)

kn
wherey is the Euler-Mascheroni constant.
Proof. Let us expand the-th power( ¥ ;s %)". This gives

1 : 5 5
lkrn= 7/ Xll...ka de,r(X)
- 1<51,s§..,sn<k S19...S Ja

and by definition of the measuwg, we have

B B I L AW N R A Y |
/AHxll...xkkdvk’r(x)_m.AHx1 X XA

By Formula (1.14), we find

LB B (ke =1 Magick(r +Bi—1)!
./Ak,lxl XM () = TR T (e 1)
M1+ DA+ (1+ A
N kr(kr4+1)...(kr+n—1) ’
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and (2.20a) follows from the first equality. The final prodisaninimal wherr = 1,
thus

rn :
< 1K
kr(kr+1)...(kr+n—1) . Akile X dvier (%)
M Mi<i<k B!

(2:21) < kr(kr+1)...(kr+n—1)

Also, the integral is maximal when gJ vanish except one, in which case one gets

rr+1)...(r+n-1)
r(kr+1)...(kr+n—1)

(2.22) / X2 dvicr (X) =
JAy—1 ) ’ k

By (2.21), we find the lower and upper bounds

rn 1 1\n
22 lern > 1424+..42)"
(2:23) ki kr(kr+1)...(kr+n71)( t3t )

_ rn Bt Bd
KNS Kr(kr+ 1) (kr+n—1)

(2.24)

In order to make the upper bound more explicit, we reorgahize-tuple(sy, . ..,s)
into those indice$, < ... <t, which appear a certain number of timgs= 3, > 2,
and those, say; 1 < ... < tyym, Which appear only once. We have of course
Y B =n—m, and each choice of thgs corresponds ta! /a1! ... a,! possibilities
for then-tuple(sy,...,s). Therefore we get

%gn!i t"llt"ét 1t '
1Sk Lo m=0 ¢Sdi=n-m (f) 1 -t “CAleectAm
A trivial comparison series vs. integral yields
t.rt 1
s<|Z+°° e S a-1s7t
and in this way, using successive integrations,ity_, ..., we get inductively
1 1 1

< < =
a ap X . . o )
l<t1<...<t4<+ootll"'t€ n1g|<[(a[7|+1+---+a£ )~

sincea; > 2 impliesay_j 1+...+a,—1i>1i. On the other hand

1 1 1 1 1 n\"
1<t <oty ek UL tem o Mg S ST Smo MY

Since partitionn; + ...+ ay = n— m satisfying the additional restrictioo > 2
correspond ta; = a; — 2 satisfyingy af = n—m— 2/, their number is equal to
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n-m-20+¢-1) (n-m—-(-1 < on-m-(-1
-1 (-1 =
and we infer from this
Bi!... B! 2n-m—(—1p) 1 1\" 1 1\"
—— < — 1+ 4.+ 1+=+...+=
1gsl,.Z,sn<k S1...S ; 2rml +2+ Jrk + +2+ Jrk

2(+m<n
where the last term corresponds to the special €as®, m= n. Therefore

L. B!  el2_1n=2on-mp 1 1\™ 1 1\"
Bl Bd Y (1+—+...+—) +(1+—+...+—)
15« S-S 2 & m 2 k 2 k

R ALY T S LY T A
S32 momi et Tk 2Tk )

This estimate combined with (2.23, 2.24) implies the uppmurd (2.20 b) (the
lower bound 1 being now obvious). The asymptotic estima@)(2) follows imme-
diately. O

(2.25) Lemma.If A is a Hermitian nx n matrix, setlia 4 to be equal tal if A has
signature(n— g,q) and0 otherwise. Then for all x n Hermitian matrices A, B we
have the estimate

|1agdetA— lg qdetB| < |[A—B|| A8,

o<is<n-1

where||A||, ||B|| are the Hermitian operator norms of the matrices.

Proof. We first check that the estimate holds fdetA— detB|. LetA; < ... < Apbe
the eigenvalues A andA; < ... <A/ be the eigenvalues &. We haveAi| < [|A|,
|A/| < ||B|| and the minimax principle implies th&; — A/| < ||A— BJ|. We then get
the desired estimate by writing

detA—deB=Ar.. A=A Ah= ¥ ArAah—A)ALp AL

1<i<n

This already implies (2.25) i or B is degenerate. IA andB are non degenerate
we only have to prove the result when one of them &phas signaturén — q,q)
and the other one (sd) has a different signature. If we pht(t) = (1—t)A+tB,
the already established estimate for the determinantyield

d -1
| 55 deM()] < nllA—BI| M) < nl]A-BJ (L - t)]A] +t]B])" .
However, since the signature Mft) is not the same far= 0 andt = 1, there must

existty € |0, 1[ such that(1 —tg)A+toB is degenerate. Our claim follows by inte-
grating the differential estimate on the smallest suchriatd0, tp], after observing
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thatM(0) = A, detM(tg) = 0, and that the integral of the right hand side[0ri] is
the announced bound. O

(2.26) Lemma.Let Qu be the Hermitian quadratic form associated with the Hermi-
tian operator A onC". If u is the rotation invariant probability measure on the unit
sphere 81 of C" and ; are the eigenvalues of A, we have

./‘;‘:1|QA(Z)|2dIJ(Z) = 7n(ni 0 (Z)\i2+ (Z}\i)z).

The norm||A|| = max|A;| satisfies the estimate

1 2 2 2
R IAP< [ 10 Pdu(@) < A

Proof. The first identity is an easy calculation, and the inequeifollow by com-
puting the eigenvalues of the quadratic foym? + (Z/\i)2 —CAZ2,¢>0. The lower
bound is attained e.g. f@a({) = |12 — £(|2|?+ ... + |{n|?) when we takéo = 1
andc=1+1. O

Proof of the Probabilistic estimat@.19. Take a vector{ € Txz, { = ZZi,y%'
with ||{]|» = 1, and introduce the trace free sesquilinear quadratic form

_ - _ 1
QW)= 3 Cjap(2)Gi¢jUalp,  Cjap=GCijap — MiOap:  UEC
i.j,a.B
wherenij = ¥ 1<q<r Cijaa- We consider the corresponding trace free curvature ten-
sor
~ [

i,j.a,B

As a general matter of notation, we adopt here the convertiahthe cano-
nical correspondence between Hermitian forms éhd)-forms is normalized as
Y ajdz ®dzj < 5= ¥ ajdz Adzj, and we take the liberty of using the same sym-
bols for both types of objects; we do so especially fpfz x,u) and n(z) =

5= 3 Nij(2)dz A dz; = TrOy(z). First observe that for ak-tuples of unit vectors
u=(Up,...,u) € (S HK us = (Usa)1<a<r, We have

_/(Serl)k

whereV(Q, ;) is the variance 0Q,; on -1 This is so because we have a sum
over s of independent random variables (8 ~1)K, all of which have zero mean
value (Lemma 2.26 shows that the varial¢®)) of a trace free Hermitian quadratic
form Q(U) = ¥1<q<r AaUq|? ON the unit spher& 1 is equal toﬁ S AZ, but

1 ~ _ 2
2xs Y Gjap(2) Gl jUsalsg| dp(u) =

1&&kS ijap 185k

Rl

V(QZ,Z)
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we only give the formula to fix the ideas). Formula (2.22) ggel

r+1

2
dvgr(X) = ——.
e (T

Therefore, according to notation (2.15), we obtain theiglarariance formula

Lo |o(@X 00 ~ 8@ (@) v
k-1x($1)

_(r+1) 1 ~
= m <1<ng?> Uh(OV(Z,Z))Z

in which
_ 1 1 = 1 1
G(zx) () = lgsgngSF ijza CijaaZiZj = (lgggkgxs) F’](Z)(ZL
Oh(BV(Z,0)? =V (u— (Bv(Z,u,up) = / o [(Bv(Z,Q)u,upn| *dp(u).

By integrating oved € "1 ¢ C" and applying the left hand inequality in Lemma
2.26 we infer

Lo 16230 B2 X v (9w
k—1

n’(r+1) 1 ~
<k(kr+1)( 2 ?)Uw’“(a’)z

1<s<k

(2.29)

Whereaw,h(év) is the standard deviation &, on "1 x S2—1:

Oun(@?= [ [(OV(Z.Q)uun[Ou() du(w).

On the other hand, brutal estimates give the Hermitian dpenarm estimates

_ 1 1
(229) Bzlos (3 %) FIn@l
1<s<k
1
(230) Iodzrlos (5 2ol
1<

where
[&Vlwh=sup  [{&({,)u,unl.
1{]w=1,]ulp=1
We use these estimates to evaluategtiedex integrals. The integral associated with
Tk(z X) is much easier to deal with thajp(z x,u) since the characteristic function
of theg-index set depends only anBy Lemma 2.25 we find
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| g, q(z %, u) detgy(z,x,u) — 1l q(2) detgy (z.X) |
< ||gk(Z,X,U)—gk(Z,X)Hw z ||gk(ZX u)”ngk(Z X)”n . I'

o<i<n-1

The Cauchy-Schwarz inequality combined with (2.28 — 2.8)lies

[ oo ez 0)detou(z 1) — By (2 etz e (00 (u)
JA 1

1/2
2
< Z,X,U —0 Z,X dV Xd u
(/Aklx(S?’l)ngk( ) =Bl )Hw r (X)A( )) X

2 1/2
(/A“X(szrl)k(o Z llgk(zx WL ge(zx) |15t l) dvkyr(X)dH(U))
n(1+1/r)4/2 1\"2 e n-1-i
<R 2,E) @ 3 Ievln(Finls)

(L (lggk&;)”‘zdwx))” o[ 109

by Lemma 2.20 witm replaced by 8 — 2. This is the essential error estimate. As
one can see, the growth of the error mainly depends on theifitegral factor,
since the initial multiplicative factor is uniformly bouad overX. In order to get
the principal term, we compute

1 "
detgy(z:X)dvr (9 = e @) [ (3 ’¢) duat
k-1 N 1<s<k

logk)"
~ (‘:r?kn) det (2).

A1

From there we conclude that

k—1

~ (logk)" Iog k)1
T ynkn / Ip.an Kkn )
The probabilistic estimate 2.19 follows by (2.17). O

(2.31) Remark. If we take care of the precise bounds obtained above, thef proo
gives in fact the explicit estimate

/XkGG<Lk,q)@Lk”’hps_ n! (k1) (kr, | dn.an "+ &crnd

where
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k 1\Y2 o ) | N
Z?) /X%h@v);f'* |8V llonlln (@& w

</A,kl (iX_SS)ZHZdVKJ(X)) 1/2
(k(k+ 1/r))1/2/Ak71 (ix_ss ndvk,r(x)

2n—2 2™(2n-2)! 1 1y-m\ Y2
( SZn?:Z (2n—2—m)! (1+§+"'+R) ) 1
1+3+...+% logk

J :n(1+1/r)1/2(

and

|£k,r,n| <

X

by the lower and upper bounds &f, lkr2on—> Obtained in Lemma 2.20. As
(2n—-2)!/(2n—2—-m)! < (2n—2)™, one easily shows that

(31/15)/?

: <
(2.32) |8k,r,n| logk

for k > €5,

Also, we see that the error terms vanisréj is identically zero, but this is of
course a rather unexpected circumstance. In general, sieckorm©y is trace
free, Lemma 2.23 applied to the quadratic fourms (G ({,{)u,u) on C" implies
Tun(6v) < (r+1)7Y2||6y || . This yields the simpler bound

k

1/2
@3 <ot(5 1) [1ovony Vi@ @ O

&1

It will be useful to extend the above estimates to the caseaifans of

(2.34) LkZ@XkGG()Q@TlﬁO( (1—1—24— +i)|:)

whereF € Picy(X) is an arbitraryQ-line bundle onX and 75 : X¢© — X is the
natural projection. We assume here thas also equipped with a smooth Hermitian
metrichg. In formulas (2.17-2.19), the renormalized curvatgy, x, u) of Ly takes
the form

1
El+3+...+5)

(2.35) Nk(z,x,u) = Ok(Z,X,U) 4+ O e (2),

and by the same calculations its expected value is

(2.36) N(2) :=E(Nk(z »,®)) = Oewv+ detr* (2) + Or e (2)-
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Then the variance estimate fgi — n is unchanged, and thie® bounds forny
are still valid, since our forms are just shifted by adding ttonstant smooth term
Ok ne (2). The probabilistic estimate 2.18 is therefore still trueekactly the same
form, provided we use (2.34 — 2.36) instead of the previodsfynedLy, nx andn.
An application of holomorphic Morse inequalities gives tiesired cohomology
estimates for

1 1
q G *
h (X,EK ®O(k (1+ 5t k)F))
1 1
a(xGG @
h(XEC, Oy e )®n;;o( (1+2+ + k)F)),
providedm s sufficiently divisible to give a multiple df which is aZ-line bundle.

(2.37) Theorem.Let (X,V) be a directed manifold, F+ X aQ-line bundle,(V, h)
and(F, hg) smooth Hermitian structure onV and F respectively. We define

, 1 1
Lk = Oyeo( )®rn§6( (1+2+ +k)F)
1N = Odetv* deth* + OF he -

Then for all g> 0 and all m> k> 1 such that m is sufficiently divisible, we have

+kr—1 n
(@ WXEOLM) < oo ([ (-1 +Ol(ogk) )

J(Lem mk—L (logk)"
®) PO O™ > D ay (/

mtkr=1 (|ng)n
(n+kr—1)! n! (k)"

n”—0<<logk>1>),

<1

© XX, 0LEm) = (ca(V* ®@F)"+O((logk) 1)).

Green and Griffiths [GG79] already checked the Riemann-Rwdbulation
(2.37c) in the special cas¢= Ty andF = @x. Their proof is much simpler since
it relies only on Chern class calculations, but it cannowjate any information on
the individual cohomology groups, except in very speciaesawhere vanishing
theorems can be applied; in fact in dimension 2, the Euleratiteristic satisfies
Xx = h%—hl+h? < hO+h? hence it is enough to get the vanishing of the top coho-
mology groupH? to inferh® > x ; this works for surfaces by means of a well-known
vanishing theorem of Bogomolov which implies in general

Hn <x EE&Tx@@o(k (1+;+ +i)F))) =

as soon akx ® F is big andm> 1.
In fact, thanks to Bonavero’s singular holomorphic Morsjnalities [Bon93],
everything works almost unchanged in the case whkére Tx has singularities



110 Jean-Pierre Demailly

andh is an admissible metric o¥ (see (0.8)). We only have to find a blow-up
U : Xk — X so that the resulting pull-backs*Ly and u*V are locally free, and
p*deth”, u*#, , - only have divisorial singularities. Thepis a(1,1)-current with
logarithmic poles, and we have to deal with smooth metrica ™ ® @(—mE)
whereEy is a certain effective divisor oKy (which, by our assumption (0.8), does
not project ontdX). The cohomology groups involved are then the twisted cailom
ogy groups

HI(XC, O(L™ @ Fiem)
where fym = U(@(—mE)) is the corresponding multiplier ideal sheaf, and the
Morse integrals need only be evaluated in the complemeriteopbles, that is on
X(n,q) ~ SwhereS= SingV) USingh). Since

(1) (O™ @ Fiem) € ESS *®@(%(”%+“'+%)F))

we still get a lower bound for thel® of the latter sheaf (or for thel® of the un-
twisted line bundle?(L™) on XEC). If we assume thaty @ F is big, these consid-
erations also allow us to obtain a strong estimate in ternfssofolume, by using an
approximate Zariski decomposition on a suitable blow-upal). The following
corollary implies in particular Theorem 0.5.

(2.38) Corollary. If F is an arbitrary Q-line bundle over X, one has

hO(XkGG,@XkGG(m)Q@ Tﬁz@(% (l—i— % +...+ %)F))

o mtkr—1 (|ng)n
~ (n+kr—21)! n! (k)"

(VOl(Kv ®F)—0O((log k)*l)) —o(mkr=1)

when m> k> 1, in particular there are many sections of the k-jet diffdials of
degree m twisted by the appropriate power of F\f&F is big.

Proof. The volume is computed here as usual, i.e. after performsugtable modifi-
cation u : X — X which convertKy into an invertible sheaf. There is of course
nothing to prove iy ® F is not big, so we can assume Yl ® F) > 0. Let us fix
smooth Hermitian metridgy on Tx andhg onF. They induce a metrip*(dethgl®
hr) on u*(Ky @ F) which, by our definition oKy, is a smooth metric. By the result
of Fujita [Fuj94] on approximate Zariski decomposition; &veryd > 0, one can
find a modificationu; : X5 — X dominatingu such that

Hz(Ky @ F) = @ié(A+ E)
whereA andE areQ-divisors,A ample anck effective, with
Vol(A) = A" > Vol (Ky ® F) — d.

If we take a smooth metrios with positive definite curvature for@ap,, then we
get a singular Hermitian metricahe on p3(Kv ® F) with poles alongg, i.e. the
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quotienthAhE/u*(dem51~® he) is of the forme~? where¢ is quasi-psh with log
poles logoge|? (modC™(X5)) precisely given by the divisdE. We then only need
to take the singular metricon Tx defined by

h= hoe%(ua)*d’

(the choice of the facto;1E is there to correct adequately the metric on\detBy
constructiorh induces an admissible metric ¥nand the resulting curvature current

N = Ok deth* + O ne is such that
Uzn = Oan, + [E], [E] = current of integration oOf.

Then the 0-index Morse integral in the complement of the pEegiven by
"=/ Op,, =A">Vol(Ky ®F)—9d
/X(n,O)\Sn /)?5 Aba (kv )

and (2.38) follows from the fact thdt can be taken arbitrary small. O

(2.39) Example In some simple cases, the above estimates can lead to veigitexp
results. Take for instanck¥ to be a smooth complete intersection of multidegree
(dq,dy,...,ds) in PE"° and consider the absolute case- Tx. Then

Kx :@x(dl+...+ds—n—s—l).

Assume thaK is of general type, i.€5 d; > n+s+1. Let us equipy = Tx with the
restriction of the Fubini-Study metrit= O, ; a better choice might be the Kahler-
Einstein metric but we want to keep the calculations as ef¢ang as possible. The
standard formula for the curvature tensor of a submanifielsg

@TX,h = (@T n+s,h)\X + B* A B

P

where B € C* (AT ® Hom(Tx, @ @(d;))) is the second fundamental form. In
other words, by the well known formula for the curvature odjpctive space, we
have

(@nn(¢,Q)u ) = [ZPuP+ [, u)> = |B(Z) -u”.
The curvature of (Kx,deth*) (i.e. the opposite of the Ricci form &, p) is given
by

(2.40) p=—-TrOph=Tr(BAB")—(n+1)h>—(n+1)h.

We take herd= = Ox(—a), a€ Q., and we want to determine conditions for the
existence of sections
m

(2.41) HO(X,EﬁﬁTQ(@@(—akr(1+%+...+%))), m> 1.
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We have to chooskx ® Ox(—a) ample, i.e.y d; > n+s+a+1, and then (by an
appropriate choice of the metric Bf= Ox (—a)), the formn = Ok, zey(—a) Can be
taken to be any positive form cohomologous(fd; — (n+s+a+ 1))h. We use
remark 2.31 and estimate the error terms by considering #ielk metric

w=p+(N+s+2)h (Zd,+1)

Inequality (2.40) shows thad > 2h and also thato > Tr(8 A B*). From this,
one easily concludes thdit7||» < 1 by an appropriate choice of, as well as

1O nllewh < 1and|\@T hllwn < 2. By (2.33), we obtain fon >

J<n 3/2 7T i) n+l/2/w

n 1

wherefy "= (¥ dj+ 1)ndeg(X). On the other hand, the leading tefgn" equals
(3dj—n—s—a—1)"degX) with degX) = d; ...ds. By the bound (2.32) on the
error termg . n, we find that the leading coefficient of the growth of our sgaok
sections is strictly controlled below by a multiple of

(30-n-s-a-1) -an(o) T2

if k > €5, A sufficient condition for the existence of sections in ©.% thus

Zdj+l)n

(2.42) k)exp(7.38n”+l/2(zd_ anjzla 1)n).
[—n-s-a—

This is good in view of the fact that we can cover arbitrary sthawomplete inter-
sections of general type. On the other hand, even when tireelslj tend to+oo,
we still get a large lower bourki~ exp(7.38n"t1/2) on the order of jets, and this
is far from being optimal: Diverio [Div08, Div09] has showrgethat one can take
k = n for smooth hypersurfaces of high degree. It is however nbkeiy that one
could improve estimate (2.42) with more careful choiceaph. O
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