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Abstract. These lectures are devoted to the study of various contemporary prob-
lems of algebraic geometry, using fundamental tools from complex potential theory,
namely plurisubharmonic functions, positive currents andMonge-Ampère opera-
tors. Since their inception by Oka and Lelong in the mid 1940’s, plurisubharmonic
functions have been used extensively in many areas of algebraic and analytic geom-
etry, as they are the function theoretic counterpart of pseudoconvexity, the complex-
ified version of convexity. One such application is the theory of L2 estimates via the
Bochner-Kodaira-Hörmander technique, which provides very strong existence the-
orems for sections of holomorphic vector bundles with positive curvature. One can
mention here the foundational work achieved by Bochner, Kodaira, Nakano, Mor-
rey, Kohn, Andreotti-Vesentini, Grauert, Hörmander, Bombieri, Skoda and Ohsawa-
Takegoshi in the course of more than 4 decades. Another development is the theory
of holomorphic Morse inequalities (1985), which relate certain curvature integrals
with the asymptotic cohomology of large tensor powers of line or vector bundles,
and bring a useful complement to the Riemann-Roch formula.

We describe here the main techniques involved in the proof ofholomorphic
Morse inequalities (chapter I) and their link with Monge-Ampère operators and in-
tersection theory. Chapter II, especially, gives a fundamental approximation theorem
for closed(1,1)-currents, using a Bergman kernel technique in combinationwith the
Ohsawa-Takegoshi theorem. As an application, we study the geometric properties of
positives cones of an algebraic variety (nef and pseudo-effective cone), and derive
from there some results about asymptotic cohomology functionals in chapter III.
The last chapter IV provides an application to the study of the Green-Griffiths-Lang
conjecture. The latter conjecture asserts that every entire curve drawn on a projective
variety of general type should satisfy a global algebraic equation; via a probabilistic
curvature estimate, holomorphic Morse inequalities implythat entire curves must at
least satisfy a global algebraic differential equation.
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Part I. Holomorphic Morse inequalities

Holomorphic Morse inequalities provide asymptotic boundsfor the cohomology
of tensor powers of holomorphic line bundles. They are a veryuseful complement
to the Riemann-Roch formula in many circumstances. They were first introduced
in [Dem85], and were largely motivated by Siu’s solution [Siu84, Siu85] of the
Grauert-Riemenschneider conjecture, which we reprove here as a special case of a
stronger statement. The basic tool is a spectral theorem which describes the eigen-
value distribution of complex Laplace-Beltrami operators. The original proof of
[Dem85] was based partly on Siu’s techniques and partly on anextension of Wit-
ten’s analytic proof of standard Morse inequalities [Wit82]. Somewhat later Bismut
[Bis87] and Getzler [Get89] gave new proofs, both relying onan analysis of the
heat kernel in the spirit of the Atiyah-Bott-Patodi proof ofthe Atiyah-Singer in-
dex theorem [ABP73]. Although the basic idea is simple, Bismut used deep results
arising from probability theory (the Malliavin calculus),while Getzler relied on his
supersymmetric symbolic calculus for spin pseudodifferential operators [Get83].

We present here a slightly more elementary and self-contained proof which was
suggested to us by Mohan Ramachadran on the occasion of a visit to Chicago
in 1989. The reader is referred to [Dem85, Dem91] for more details.

0. Introduction

0.A. Real Morse inequalities

Let M be a compactC∞ manifold, dimR M = m, and h a Morse function, i.e. a
function such that all critical points are non degenerate. The standard (real) Morse
inequalities relate the Betti numbersbq = dimHq

DR(M,R) and the numbers

sq = # critical points of indexq ,

where the index of a critical point is the number of negative eigenvalues of the
Hessian form(∂ 2h/∂xi∂x j). Specifically, the following “strong Morse inequalities”
hold:

(0.1) bq−bq−1+ · · ·+(−1)qb0 6 sq− sq−1+ · · ·+(−1)qs0
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for each integerq> 0. As a consequence, one recovers the “weak Morse inequali-
ties” bq 6 sq and the expression of the Euler-Poincaré characteristic

(0.2) χ(M) = b0−b1+ · · ·+(−1)mbm = s0− s1+ · · ·+(−1)msm .

These results are purely topological. They are obtained by showing thatM can be
reconstructed from the structure of the Morse function by attaching cells according
to the index of the critical points; real Morse inequalitiesare then obtained as a
consequence of the Mayer-Vietoris exact sequence (see [Mil63]).

0.B. Dolbeault cohomology

Instead of looking at De Rham cohomology, we want to investigate here Dolbeault
cohomology, i.e. cohomology of the∂ -complex. LetX be a compact complex man-
ifold, n = dimC X andE be a holomorphic vector bundle overX with rankE = r.
Let us recall that there is a canonical∂ -operator

(0.3) ∂ : C∞(X,Λ p,qT∗
X ⊗E)−→C∞(X,Λ p,q+1T∗

X ⊗E)

acting on spaces of(p,q)-forms with values inE. By the Dolbeault isomorphism
theorem, there is an isomorphism

(0.4) H p,q
∂

(X,E) := Hq
∂
(C∞(X,Λ p,•T∗

X ⊗E))≃ Hq(X,Ω p
X ⊗O(E))

from the cohomology of the∂ -complex onto the cohomology of the sheaf of holo-
morphicp-forms with values inE. In particular, we have

(0.5) H0,q
∂

(X,E)≃ Hq(X,O(E)),
and we will denote as usualhq(X,E) = dimHq(X,O(E)).
0.C. Connections and curvature

Leut us consider first aC∞ complex vector bundleE →M on a real differential man-
ifold M (without necessarily any holomorphic structure at this point). A connection
D onE is a linear differential operator

(0.6) D : C∞(M,ΛqT∗
M ⊗E)→C∞(M,Λq+1T∗

M ⊗E)

satisfying the Leibniz rule

(0.7) D( f ∧s) = d f ∧s+(−1)deg f f ∧Ds

for all forms f ∈C∞(X,Λ pT∗
M), s∈C∞(X,ΛqT∗

M ⊗E). On an open setU ⊂M where
E is trivial, E|U ≃U ×Cr , the Leibniz rule shows that a connectionD can be written
in a unique way
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(0.8) Ds≃ ds+Γ ∧s

whereΓ ∈C∞(U,Λ1T∗
M ⊗Hom(Cr ,Cr)) is an arbitraryr × r matrix of 1-forms and

d acts componentwise. It is then easy to check that

(0.9) D2s≃ (dΓ +Γ ∧Γ )∧s on U.

ThereforeD2s= θD ∧ s for some global 2-formθD ∈C∞(M,Λ2T∗
M ⊗Hom(E,E)),

given byθD ≃ dΓU +ΓU ∧ΓU on any trivializing open setU with a connection matrix
ΓU .

(0.10) Definition. The(normalized) curvature tensor of D is defined to beΘD =
i

2π θD, in other words
i

2π
D2s=ΘD∧s

for any section s∈C∞(M,ΛqT∗
M ⊗E).

The main reason for the introduction of the factori
2π is the well known formula

for the expression of the Chern classes in the ring of differential forms of even
degree: one has

det(Id+λΘD) = 1+λ γ1(D)+λ 2γ2(D)+ . . .+λ rγr(D),

whereγ j(D) is ad-closed differential form of degree 2j. Moreover,γ j (D) has inte-
gral periods, i.e. the De Rham cohomology class{γ j(D)} ∈ H2 j(M,R) is the image
of an integral class, namely thej-th Chern classc j(E) ∈ H2 j(M,Z).

0.D. Hermitian connections

Assume now that the fibers ofE are endowed with aC∞ Hermitian metrich, and
that the isomorphismE|U ≃ U ×Cr is given by aC∞ frame(eλ ). Then we have a
canonical sesquilinear pairing

C∞(M,Λ pT∗
M ⊗E)×C∞(M,ΛqT∗

M ⊗E) −→ C∞(M,Λ p+qT∗
M)

(u,v) 7−→ {u,v}h

given by

{u,v}h = ∑
λ ,µ

uλ ∧vµ〈eλ ,eµ〉h for u= ∑uλ ⊗eλ , v= ∑vµ ⊗eµ .

The connectionD is said to beHermitian(or compatible with the Hermitian metric
h) if it satisfies the additional property

(0.11) d{u,v}h = {Du,v}h+(−1)degu{u,Dv}h.
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Assuming that(eλ ) is h-orthonormal, one easily checks thatD is Hermitian if and
only if the associated connection matrixΓ is skew-symmetric, i.e.Γ ∗ =−Γ . In this
caseθD = dΓ +Γ ∧Γ also satisfiesθ ∗

D =−θD, thus

(0.12) ΘD =
i

2π
θD ∈C∞(M,Λ2T∗

M ⊗Herm(E,E)).

(0.13) Special case.For a bundleE of rank r = 1, the connection matrixΓ of a
Hermitian connectionD can be more conveniently writtenΓ = −iA whereA is a
real 1-form. Then we have

ΘD =
i

2π
dΓ =

1
2π

dA.

Frequently, especially in physics, the real 2-formB= dA= 2πΘD ∈C∞(M,Λ2T∗
M)

is referred to as themagnetic field, and the 1-formA as its potential. A phase change
s̃(x) = s(x)eiα(x) in the isomorphismE|U ≃U ×C replacesA with the new connec-
tion form Ã= A+dα.

0.E. Connections on a Hermitian holomorphic vector bundle

If M = X is a complex manifold, every connectionD can be split in a unique way
as the sumD = D′+D′′ of a (1,0)-connectionD′ and a(0,1)-connectionD′′ :

D′ : C∞(M,Λ p,qT∗
X ⊗E)−→C∞(M,Λ p+1,qT∗

X ⊗E),

D′′ : C∞(M,Λ p,qT∗
X ⊗E)−→C∞(M,Λ p,q+1T∗

X ⊗E).

In a local trivialization given by aC∞ frame, one can write

D′u= d′u+Γ ′∧u ,

D′′u= d′′u+Γ ′′∧u ,

with Γ = Γ ′ +Γ ′′ andd′ = ∂ , d′′ = ∂ . If (E,h) is aC∞ Hermitian structure, the
connection is Hermitian if and only ifΓ ′ = −(Γ ′′)∗ in any h-orthonormal frame.
Thus there exists a unique Hermitian connection corresponding to a prescribed(0,1)
partD′′.

Assume now that the Hermitian bundle(E,h) has aholomorphicstructure. The
unique Hermitian connectionD for which D′′ = ∂ is called theChern connection
of (E,h). In a local holomorphic frame(eλ ) of E|U , the metrich is given by some
Hermitian matrixH = (hλ µ) wherehλ µ = 〈eλ ,eµ〉h. Standard computations yield
the expression of the Chern connection:





D′s= ∂s+H
−1∂H ∧s,

D′′s= ∂s,

θD ∧s= D2s= (D′D′′+D′′D′)s=−∂ (H−1∂H)∧s.
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(0.14) Definition.The Chern curvature tensor of(E,h) is the curvature tensor of its
Chern connection, denoted

θE,h = D′D′′+D′′D′ =−∂ (H−1∂H).

In the special case of a rank 1 bundleE, the matrixH is simply a positive func-
tion, and it is convenient to introduce its weightϕ such thatH = (e−ϕ) where
ϕ ∈ C∞(U,R) depends on the given trivializationE|U ≃ U ×C. We have in this
case

(0.15) ΘE,h =
i

2π
θE,h =

i
2π

∂∂ ϕ on U,

and thereforeΘE,h is a closed real(1,1)-form.

0.F. Fundamental facts of Hodge theory

Assume here thatM is a Riemannian manifold with metricg=∑gi j dxi ⊗dxj . Given
q-forms u, v on M with values inE , we consider the globalL2 norm and inner
product

(0.16) ‖u‖2 =

∫

M
|u(x)|2dσ(x), 〈〈u,v〉〉=

∫

M
〈u(x),v(x)〉dσ(x),

where|u| is the pointwise Hermitian norm anddσ the Riemannian volume form.
The Laplace Beltrami operator associated with the connectionD is

∆ = DD∗+D∗D,

acting on any of the spacesC∞(M,ΛqT∗
M ⊗E); here

(0.17) D∗ : C∞(M,ΛqT∗
M ⊗E)−→C∞(M,Λq−1T∗

M ⊗E)

is the (formal)L2 adjoint ofD. The complex Laplace operators∆ ′ = D′D′∗+D′∗D′

and∆ ′′ =D′′D′′∗+D′′∗D′′ are defined similarly whenM =X is a complex manifold.
In degree 0 we simply have∆ =D∗D. A well-known calculation shows that the prin-
cipal symbol of∆ is σ∆ (x,ξ ) =−|ξ |2 Id (while σ∆ ′(x,ξ ) = σ∆ ′′(x,ξ ) =− 1

2|ξ |2 Id).
As a consequence∆ , ∆ ′, ∆ ′′ are alwayselliptic operators.

WhenM is compact, the operator∆ acting on any of the spaces of the complex
C∞(M,Λ•T∗

M ⊗E) has a discrete spectrum

λ1 6 λ2 6 · · ·6 λ j 6 · · ·

and corresponding eigenfunctionsψ j ∈ C∞(M,ΛqT∗
M ⊗ E), depending of course

onq.
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Our main goal is to obtain asymptotic formulas for the eigenvalues. For this, we
will make an essential use of theheat operator e−t∆ . In the above setting, the heat
operator is the bounded Hermitian operator associated to theheat kernel

(0.18) Kt (x,y) =
+∞

∑
ν=1

e−λνtψν(x)⊗ψ∗
ν(y),

i.e.
〈〈u,e−t∆ v〉〉=

∫

M×M
〈u(x),Kt (x,y) ·v(y)〉dσ(x)dσ(y).

Standard results of the theory of elliptic operators show that

Kt ∈C∞( ]0,+∞[×M×M,Hom(E,E))

and thatKt(x,y) is the solution of the differential equation

(0.19)
∂
∂ t

Kt(x,y) =−∆xKt (x,y), lim
t→0+

Kt (x,y) = δy(x) (Dirac aty),

as follows formally from the fact that∂∂ t e
−t∆ =−∆e−t∆ ande−0∆ = Id. The asymp-

totic distribution of eigenvalues can be recovered from thestraightforward formula

(0.20)
+∞

∑
ν=1

e−λνt =

∫

M
trEKt(x,x)dσ(x) .

In the sequel, we are especially interested in the 0-eigenspace:

(0.21) Definition.The space of∆ -harmonic forms is defined to beHq
∆ (M,E) = Ker∆ =

{
u∈C∞(M,ΛqT∗

M ⊗E) ; ∆u= 0
}
.

WhenM is compact, an integration by part shows that

〈〈∆u,u〉〉= ‖Du‖2+ ‖D∗u‖2,

henceu is ∆ -harmonic if and only ifDu= D∗u= 0. Moreover, as∆ is a self-ajoint
operator, standard elliptic theory implies that

(0.22) C∞(M,ΛqT∗
M ⊗E) = Ker∆ ⊕ Im∆ =Hq

∆ (M,E)⊕ Im∆ ,

and Ker∆ =Hq
∆ (M,E), Im∆ are orthogonal with respect to theL2 inner product.

Clearly Im∆ ⊂ ImD+ ImD∗, and both images ImD, ImD∗ are orthogonal to the
space of harmonic forms by what we have just seen. As a consequence, we have

(0.23) Im∆ = ImD+ ImD∗.
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(0.24) Hodge isomorphism theorem.Assume thatM is compact and thatD is an
integrable connection, i.e.D2 = 0 (orθD = 0). ThenD defines on spaces of sections
C∞(M,ΛqT∗

M ⊗E) a differential complex which can be seen as a generalizationof
the De Rham complex. The conditionD2 = 0 immediately implies that ImD ⊥
ImD∗ and we conclude from the above discussion that there is an orthogonal direct
sum

(0.25) C∞(M,ΛqT∗
M ⊗E) =Hq

∆ (M,E)⊕ ImD⊕ ImD∗.

If we putu= h+Dv+D∗w according to this decomposition, thenDu= DD∗w= 0
if and only if ‖D∗w‖ = 〈〈DD∗w,w〉〉= 0, thus

KerD =Hq
∆ (M,E)⊕ ImD.

This implies theHodge isomorphism theorem

(0.26) Hq
DR(M,E) := KerD/ ImD ≃Hq

∆ (M,E).

In caseM = X is a compact complex manifold,(E,h) a Hermitian holomorphic
vector bundle andD = D′ +D′′ the Chern connection, the integrability condition
D′′2 = ∂ 2 = 0 is always satisfied. Thus we get an analogous isomorphism

(0.27)0,q Hq(X,O(E))≃ H0,q
∂

(X,E)≃H0,q
∆ ′′(M,E),

and more generally

(0.27)p,q Hq(X,Ω p
X ⊗O(E))≃ H p,q

∂
(X,E)≃Hp,q

∆ ′′ (M,E),

whereHp,q
∆ ′′ (M,E) is the space of∆ ′′-harmonic forms of type(p,q) with values

in E.

(0.28) Corollary (Hodge decomposition theorem). If (X,ω) is a compact K̈ahler
manifold and(E,h) is a flat Hermitian vector bundle over X(i.e. D2

E,h = 0), then
there is an isomorphism

Hk
DR(M,E) ≃

⊕

p+q=k

H p,q
∂

(X,E).

In fact, under the condition thatω is Kähler, i.e.dω = 0, well-known identities of
Kähler geometry imply∆ ′ = ∆ ′′ = 1

2∆ , and as a consequenceHk
∆ (M,E) =

⊕

p+q=k

Hp,q
∆ ′′ (X,E).
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1. Holomorphic Morse inequalities

1.A. Main statements

Let X be a compact complexn-dimensional manifold,L → X a holomorphic line
bundle andE → X a holomorphic vector bundle of rankr = rankE. We assume that
L is equipped with a smooth Hermitian metrich and denote accordinglyΘL,h its
curvature form; by definition this is a closed real(1,1)-form and its cohomology
classc1(L)R = {ΘL,h} ∈ H2

DR(X,R) is the first Chern class ofL.

(1.1) q-index sets.We define the q-index sets and{6 q}-index sets of(L,h) to be

X(L,h,q) =

{
x∈ X ; ΘL,h(x) has

q
n−q

negative eigenvalues
positive eigenvalues

}

X(L,h,6 q) =
⋃

16 j6q

X(L,h, j) .

Clearly X(L,h,q) andX(L,h,6 q) are open subsets ofX, and we have a partition
into “chambers”X = S ∪ ⋃

06q6nX(L,h,q) whereS= {x∈ X ; ΘL,h(x) = 0} is the
degeneration set. The following theorem was first proved in [Dem85].

(1.2) Main Theorem.The cohomology groups of tensor powers E⊗Lk satisfy the
following asymptotic estimates as k→+∞ :
(1.2)WM Weak Morse inequalities:

hq(X,E⊗Lk)6 r
kn

n!

∫

X(L,h,q)
(−1)qΘ n

L,h+o(kn) .

(1.2)SM Strong Morse inequalities:

∑
06 j6q

(−1)q− jh j(X,E⊗Lk)6 r
kn

n!

∫

X(L,h,6q)
(−1)qΘ n

L,h+o(kn) .

(1.2)RR Asymptotic Riemann-Roch formula:

χ(X,E⊗Lk) := ∑
06 j6n

(−1) jh j(X,E⊗Lk) = r
kn

n!

∫

X
Θ n

L,h+o(kn) .

The weak Morse form(1.2)WM follows from strong Morse(1.2)SM by adding
consecutive inequalities for the indicesq− 1 andq, since the signs(−1)q− j and
(−1)q−1− j are opposite. Also,(1.2)RR is just a weaker formulation of the exis-
tence of the Hilbert polynomial, and as such, is a consequence of the Hirzebruch-
Riemann-Roch formula; it follows formally from(1.2)SM with q= n andq= n+1,
sincehn+1 = 0 identically and the signs are reversed. Now, by adding(1.2)SM for
the indices of opposite parityq+1 andq−2, we find
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hq+1(X,E⊗Lk)−hq(...)+hq−1(...)6 r
kn

n!

∫

X(L,h,{q−1,q,q+1})
(−1)q+1Θ n

L,h+o(kn),

whereX(L,h,{q−1,q,q+1}) is meant for the union of chambers of indicesq−1,
q, q+1. As a consequence, we get lower bounds for the cohomology groups:
(1.3)

hq(X,E⊗Lk)> hq−hq+1−hq−1 > r
kn

n!

∫

X(L,h,{q−1,q,q+1})
(−1)qΘ n

L,h−o(kn).

Another important special case is(1.2)SM for q= 1, which yields the lower bound

(1.4) h0(X,E⊗Lk)> h0−h1 > r
kn

n!

∫

X(L,h,61)
Θ n

L,h−o(kn).

As we will see later in the applications, this lower bound provides a very useful
criterion to prove the existence of sections of large tensorpowers of a line bundle.

�

1.B. Heat kernel and eigenvalue distribution

We introduce here a basic heat equation technique, from which all asymptotic eigen-
value estimates can be derived via an explicit formula, known as Mehler’s formula.

We start with a compact Riemannian manifold(M,g) with dimR M = m, and de-
note bydσ its Riemannian volume form. Let(L,hL) (resp.(E,hE)) be a Hermitian
complex line (resp. vector bundle) onM, equipped with a Hermitian connectionDL

(resp.DE).
We denote byDk = DE⊗Lk the associated connection onE⊗ Lk, and by∆k =

D∗
kDk the Laplace-Beltrami operator acting on sections ofE ⊗ Lk (i.e. forms of

degree 0). As in (0.13), we introduce the (local) connectionform ΓL = −iA of
L and the corresponding (global) curvature 2-formB = dA∈ C∞(M,Λ2T∗

M), i.e.
the “magnetic field” (ΓE and the corresponding curvature tensorΘE of DE will
not play a significant role here). Finally, we assume that an additional section
V ∈ C∞(M,Herm(E,E)) is given (“electric field”); for simplicity of notation, we
still denote byV the operatorV ⊗ IdLk acting onE⊗Lk.

If Ω ⊂ M is a smoothly bounded open subset ofM, we consider foru in the
Sobolev spaceW1

0 (Ω ,E⊗Lk) the quadratic form

(1.5) Qk,Ω (u) =
∫

Ω

1
k
|Dku|2−〈Vu,u〉.

HereW1
0 (Ω ,E ⊗Lk) is the closure of the space of smooth sections with compact

support inΩ , taken in the Hilbert spaceW1
loc(M,E⊗Lk) of sections that haveL2

loc
coefficients as well as their first derivatives. In other words, we consider the densily
defined self adjoint operator

(1.6) �k =
1
k

D∗
kDk−V
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acting in the Hilbert spaceW1
0 (Ω ,E⊗Lk), i.e. with Dirichlet boundary conditions.

Again,�k acting onW1
0 (Ω ,E⊗Lk) has a discrete spectrum wheneverΩ is relatively

compact (and also sometimes whenΩ is unbounded, according to the behavior of
B andV at infinity; except otherwise stated, we will assume that we are in this case
later on). Then, there is an associated “localized” heat kernel

(1.7) Kt,k,Ω (x,y) =
+∞

∑
ν=1

e−λν,k,Ω tψν,k,Ω (x)⊗ψ∗
ν,k,Ω (y)

whereψν,k,Ω ∈W1
0 (Ω ,E⊗Lk) are the eigenfunctions andλν,k,Ω their eigenvalues.

We want to study the asymptotic eigenvalue distribution of�k ask → +∞, and
more precisely get an asymptotic formula for the corresponding heat kernele−t�k.
The basic idea is to decompose the proof in three steps:
(α) convince ourselves that the asymptotic estimates can be “localized”, up to lower

order error terms.
(β ) show that the local estimates can be obtained by freezing thecoefficients of the

operators involved at any given point.
(γ) compute explicitly the heat kernel in the case of connections with constant cur-

vature, assuming moreover thatΩ ≃ Rm with the flat Euclidean metric.

(α) In order to see that the situation can be localized, we fix a partition of unity (τ j )
relative to an arbitrarily fine finite covering(Ω j) of Ω , such that∑τ2

j = 1 nearΩ .
We consider the continuous injection

IΩ ,Ω j : W1
0 (Ω ,E⊗Lk)→

⊕

j

W1
0 (Ω ∩Ω j ,E⊗Lk), u 7→ (τ ju) j ,

the inverse of which is(u j) 7→ u= ∑τ ju j . As ∑τ jdτ j = 0 onΩ , we find

(1.8) ∑
j

Qk,Ω j (τ ju)−Qk,Ω (u) =
1
k

∫

Ω

(
∑ |dτ j |2

)
|u|2 6 O

(1
k

)
|u|2.

By the minimax principle, it follows that the eigenvalues of
⊕

Qk,Ω j | Im IΩ ,Ω j
and

those ofQk,Ω differ by at mostO(1/k) ask→+∞. This explains why a localization
process is possible, at least as far as the eigenvalue distribution is concerned. For the
related heat kernels on small geodesic balls, one can use thefollowing localization
principle.

(1.9) Proposition.LetΩρ = B(x0,ρ) be a geodesic ball of(M,g) of radiusρ where
ρ < injectivity radius. Then there exist constants C1 and ε1 > 0 such that for all
t ∈ ]0,min(kε1,kρ2/2m)] and every x0 ∈ M we have

∣∣Kt,k,M(x0,x0)−Kt,k,Ωρ (x
0,x0)

∣∣6C1

(k
t

)m/2
exp
(
− kρ2

4t
+2t sup

Ωρ

‖V‖
)
.

A proof of this technical result is given in Thierry Bouche’sPhD thesis (cf.
[Bou90]). It relies on a use of Kato’s inequality (cf. [HeSU80]), which amounts to
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say that we get an upper bound ofKt,k,M in the case when the curvature is trivial; one
can then use the calculations given below to get the explicitbound, see e.g.(1.10′).

(β ) Now, letx0 ∈M be a given point. We choose coordinates(x1, . . . ,xm) centered at
x0 such that(∂/∂x1, . . . ,∂/∂xm) is orthonormal atx0 with respect to the Riemannian
metricg. By changing the orthonormal frame ofL as in (0.13), we can adjust the con-
nection formΓL = −iA of L to be given by any local potentialA(x) = ∑ j A j(x)dxj

such thatB= dA, and we can therefore arrange thatA(x0) = 0. Similarly, we can fix
a unitary frame ofE such thatΓE(x0) = 0. Setx0 = 0 for simplicity. The first term
of our Laplace operator�k =

1
kD∗

kDk−V is the square of the first order operator

k−1/2Dku(x) = k−1/2(du(x)+ kIdE ⊗ΓL(x) ·u(x)+ IdLk ⊗ΓE(x) ·u(x)
)

= k−1/2∑
j

( ∂u
∂x j

− ik1/2A j(x)u(x)
)

dxj + k−1/2 IdLk ⊗ΓE(x) ·u(x).

If we use a rescalingx= k−1/2x̃ and set̃u(x̃) = u(x) = u(k−1/2x̃), this operator takes
the form

D̃kũ(x̃) = ∑
j

( ∂ ũ
∂ x̃ j

− ik1/2A j(k
−1/2x̃) ũ(x̃)

)
dxj +O(k−1/2|x̃|) ũ(x̃)dx.

As A j(0) = 0, the termk1/2A j(k−1/2x̃) converges moduloO(k−1/2|x̃|2) terms to the

linearized part̃A j(x̃) = ∑i, j
∂A j
∂xi

(0) x̃i . Observe also that the connection formΓE of E

only contributes for terms of the formO(k−1/2|x̃|) (and thus will be negligible in the
end, together with the quadratic terms ofA j ). Our initial operator�k =

1
kD∗

kDk−V
becomes

�̃k = D̃∗
kD̃k− Ṽ

whereṼ(x̃) = V(k−1/2x̃) and where the ajoint is computed with respect to the
rescaled metric̃g(x) = ∑gi j (k−1/2x̃)dx̃ jdx̃ j ; hereg̃→ ∑(dx̃ j)

2 ask → +∞ thanks
to the assumption thatgi j (0) = δi j . Modulo lower order termsO(k−1/2|x̃|2), D̃k is
given by a linear connection form

Ã(x̃) = ∑Bi j x̃i dx̃ j

assciated with the constant magnetic fieldB(x0) = ∑i, j Bi j dxi ∧dxj frozen atx0 = 0.
We can moreover choose orthonormal coordinates so thatB(x0) takes the standard
form

B(x0) =
s

∑
j=1

B j dxj ∧dxj+s

where 2s6 m is the rank of the alternate 2-formB(x0) andB j the curvature eigen-
values with respect tog(x0). The corresponding linearized potential is
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Ã(x̃) =
s

∑
j=1

B j x̃ j dx̃ j+s.

The intuition from Physics is that the eigenfunctions represent “waves” of heat prop-
agation of a certain typical wave lengthλ in the coordinates̃x, and of a correspond-
ing (much shorter) wave lengthλ k−1/2 in the original coordinates. At that scale,
our space behaves as if the metrics were flat and the curvatureconstant.

(γ) Let us consider the operators obtained by “freezing” the coefficients at any
point x0, as explained at step(β ), although we will not perform the rescaling here.
More specifically, we assume that
• L has constant curvatureB= ∑s

j=1B jdxj ∧dxj+s. Then there is a local trivial-
ization in which

DLu= du− iA∧u, A=
s

∑
j=1

B jx jdxj+s.

• Ω ≃ Rm and the metricg is flat: g= ∑dxj ⊗dxj .
• E ≃ Ω ×Cr is a trivial (flat) Hermitian bundle.
• the Hermitian formV is constant. We choose an orthonormal frame ofE in

whichV is diagonal, i.e.

〈Vu,u〉= ∑
16λ6r

Vλ |uλ |2.

In this ideal situation, the connectionDk onE⊗Lk can be writtenDku= du− ikA∧u
and the quadratic formQk,Ω is given by

Qk,Ω (u) =
∫

Rm

1
k


 ∑

16 j6s
16λ6r

(∣∣∣∂uλ
∂x j

∣∣∣
2
+
∣∣∣ ∂uλ
∂x j+s

− ikB jx juλ

∣∣∣
2
)

+ ∑
j>2s

16λ6r

∣∣∣duλ
dxj

∣∣∣
2




− ∑
16λ6r

Vλ |uλ |2.

In this situation,Qk,Ω is a direct sum of quadratic forms acting on each component
uλ and the computation ofe−t�k is reduced to the following model cases(1.10),
(1.11) in dimension 1 or 2:

(1.10) Q( f ) =
∫

R

∣∣∣d f
dx

∣∣∣
2
, � f =−d2 f

dx2

As is well known (and although the spectrum is not discrete inthat case) the kernel
of the “elementary” heat operatore−t� is given by

(1.10′) Kt,R(x,y) =
1√
4πt

e−(x−y)2/4t ,
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as follows from solving equation (0.19). The second model case is:

(1.11) Q( f ) =
∫

R2

∣∣∣ d f
dx1

∣∣∣
2
+
∣∣∣ d f
dx2

− iax1 f
∣∣∣
2
.

A partial Fourier transform̂f (x1,ξ2) =
1√
2π

∫
R f (x1,x2)e−ix2ξ2 dx2 gives

Q( f ) =
∫

R2

∣∣∣ d f̂
dx1

(x1,ξ2)
∣∣∣
2
+a2

(
x1−

ξ2

a

)2
| f̂ (x1,ξ2)|2

and the change of variablesx′1 = x1−ξ2/a, x′2 = ξ2 leads (after dropping the second
variablex′2) to the so called “harmonic oscillator” energy functional

(1.12) q(g) =
∫

R

∣∣∣dg
dx

∣∣∣
2
+a2x2|g|2 , �=− d2

dx2 +a2x2.

The heat kernel of this operator is given byMehler’s formula:

(1.12′) kt,R(x,y) =

√
a

2π sinh2at
exp
(
− a

2
(coth2at)(x− y)2−a(tanhat)xy

)
,

which actually reduces to(1.10′) whena→ 0. One way of obtaining this relation is
to observe that the unitary eigenfunctions of� are

(
2pp!

√
π
a

)−1/2

Φp(
√

ax), p= 0,1,2, . . . ,

with associated eigenvalues(2p+ 1)a, where(Φp) is the sequence of functions
associated with Hermite polynomials:

Φp(x) = ex2/2 dp

dxp (e
−x2

).

In fact, fora= 1, easy calculations bearing on derivatives ofex2/2 show that

(
− d2

dx2 +x2
)

Φp(x)=−ex2/2 dp+2

dxp+2(e
−x2

)−2xex2/2 dp+1

dxp+1 (e
−x2

)−ex2/2 dp

dxp (e
−x2

).

We can now replace the first term byex2/2 dp+1

dxp+1 (2x ·e−x2
) and use the Leibniz for-

mula for the differentiation of the product to see that�Φp(x) = (2p+ 1)Φp(x).
Therefore

kt,R(x,y) =

√
a
π

ea(x2+y2)/2
+∞

∑
p=0

e−(2p+1)at

2pp!ap

dp

dxp (e
−ax2

)
dp

dyp (e
−ay2

).

The above summationΣ(x,y) = ∑+∞
p=0 ... can be computed via its Fourier transform
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Σ̂ (ξ ,η) =
1
2a

e−at
+∞

∑
p=0

1
p!

(e−2at

2a

)p
(iξ )p(iη)pe−ξ 2/4ae−η2/4a

=
1
2a

e−at exp
(
− 1

4a
(ξ 2+η2+2e−2atξ η)

)
,

thus

Σ(x,y) =
e−at

√
1−e−4at

exp
(
− a

1−e−4at (x
2+ y2−2e−2atxy)

)
.

and Mehler’s formula(1.12′) follows. Through our change of variables, the heat
operator ofQ is given by

K̂t,R2 f (x1,ξ2) =

∫

R

kt,R

(
x1−

ξ2

a
,y1−

ξ2

a

)
f̂ (y1,ξ2)dy1.

By an inverse partial Fourier transform left to the reader, we obtain the desired heat
kernel expression

Kt,R2(x1,x2;y1,y2) =
a

4π sinhat
exp
(
− a

4
(cothat)

(
(x1− y1)

2+(x2− y2)
2))

×exp
( i

2
a(x1+ y1)(x2− y2)

)
.(1.11′)

The heat kernel associated with a sum of (pairwise commuting) operators�1, . . . ,�m

acting on disjoint sets of variables is the product of the corresponding heat kernels
e−t� j . Let Kλ

t,k,Ω be the heat kernel of the component ofQk,Ω acting on each sin-
gle entryuλ . The factor in the heat kernel corresponding to each pair of variables
(x j ,x j+s), 1 6 j 6 s, is obtained by substitutingkBj to a and t/k to t (the latter
rescaling comes from the initial factor1

k in the expression ofQk,Ω ). For the other
coordinatesj > 2s whereB has no coefficients, the kernel falls back to the “el-
ementary” heat kernel(1.10′). Finally, the constant term−Vλ |uλ |2 contributes to
multiplying the heat kernel byetVλ . Therefore we get for the global heat kernel on
Ω = Rn the explicit formula

Kλ
t,k,Rn(x,y) =

s

∏
j=1

kBj

4π sinhB j t
exp
(
− kBj

4
(cothB j t)

(
(x2 j−1−y2 j−1)

2+(x2 j−y2 j)
2)

+
i
2

kBj(x2 j−1+ y2 j−1)(x2 j − y2 j)
)

×etVλ × 1
(4πt/k)m−2s/2

exp
(
− k ∑

j>2s

(x j − y j)
2/4t

)
.(1.13)

On the diagonal ofRn×Rn, the global heat kernelKt,k,Rn is thus given by the rather
simple (Herm(E)⊗ IdLk)-valued tensor depending only onB, V andt/k:

(1.14) Kt,k,Rn(x,x) =
( k

4πt

)m/2
etV

s

∏
j=1

B jt
sinhB jt

.
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(1.15) Theorem.Consider the general(variable coefficient) case. Forδ > 0 small,
the heat kernel of�k over M admits an asymptotic estimate

Kt,k,M(x,x) =
( k

4πt

)m/2
etV(x)

s

∏
j=1

B j(x)t

sinhB j(x)t

(
1+O(k−1/2+δ)

)

as k→+∞, where O(k−1/2+δ ) is uniform with respect to x∈ M and t in a bounded
interval ]0,T]⊂ ]0,+∞[ (moreover, for every open setΩ ⊂ M, a similar estimate is
valid for Kt,k,Ω on relatively compact subsets ofΩ).

Proof.Notice first that(t,x) 7→ ∏s
j=1

B j (x) t
sinhB j (x) t

extends as a smooth positive function

on [0,+∞[×M, equal to 1 whent = 0: this is in fact the inverse of the square root
of the determinant of the positive definite symmetric matrix

sin(tb(x))
tb(x)

=
+∞

∑
p=0

t2p(−b(x)2)p

(2p+1)!
> Id,

whereb(x) is the antisymmetric endomorphism ofTM associated with the alternate
2-formB(x) and−b(x)2 = b(x)†b(x)> 0.

The only thing one has still to get convinced of is that the kernel of e−t�k −
e−t�0

k is (k/t)m/2O(k−1/2+δ ) uniformly along the diagonal at any point(x0,x0) ∈
M×M, where�0

k is the operator�k “freezed” atx0. We can do this in a canonical
way by using normal coordinates from the Riemannian exponential mapping

expx0 : Rm ≃ TM,x0 → M,

and trivializations ofE andL produced by parallel transport along geodesics from
x0 to any pointx ∈ B(x0,ρ0), whereρ0 = injectivity radius ofM. In this way, we
actually get automatically thatΓL(x0)=ΓE(x0)= 0. When Suppu⊂ Ωρ := B(x0,ρ),
a Taylor expansion yieldsDku−D0

ku= O(|x|+ k|x|2) ·u and we get the estimates

Qk,Ωρ (u)−Q0
k,Ωρ (u) =

∫

M

1
k

(
|Dku|2−|D0

ku|2
)
−〈(V −V0)u,u〉

= O
(∫

M

1
k

(
(ρ + kρ2)|D0

ku||u|+(ρ + kρ2)2|u|2
)
+ρ |u|2

)

= O
(∫

M

ε
k
|D0

ku|2+
((ρ + kρ2)2

kε
+ρ
)
|u|2
)
,

= O
(

ε Q0
k,Ωρ (u)+

((ρ + kρ2)2

kε
+ρ + ε

)
|u|2
)

wheneverε < 1, hence there is a constantCρ ,k,ε = O
( (ρ+kρ2)2

kε +ρ + ε
)

such that

(1− ε)Q0
k,Ωρ (u)−Cρ ,k,ε |u|2 6 Qk,Ωρ (u)6 (1+ ε)Q0

k,Ωρ (u)+Cρ ,k,ε |u|2.
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From this, we conclude thate−t�k is squeezed (as a positive bounded self-adjoint
operator) betweene−Cρ,k,ε te−t(1+ε)�0

k andeCρ,k,ε te−t(1−ε)�0
k . By definition of the heat

kernel we have

Kt,k,Ωρ (x
0,x0) = lim

ν→+∞

∫

Ωρ×Ωρ
Kt,k,Ωρ (x,y)uν (x)uν(y)dσ(x)dσ(y)

= lim
ν→+∞

〈〈e−t�kuν ,uν〉〉

whenuν −→
L1

δx0 (Dirac measure), thus

e−Cρ,k,ε TK0
(1+ε)t,k,Ωρ

(x0,x0)−K0
t,k,Ωρ (x

0,x0)6 Kt,k,Ωρ (x
0,x0)−K0

t,k,Ωρ (x
0,x0)

6 eCρ,k,ε TK0
(1−ε)t,k,Ωρ

(x0,x0)−K0
t,k,Ωρ (x

0,x0).

We take hereρ = ε = k−1/2+δ , so thatCρ ,k,ε = O(k−1/2+δ ). The expected uniform
bounds are then obtained by an application of Proposition 1.9, where the choice
ρ = k−1/2+δ ≫ k−1/2 ensures that the relative errors

Kt,k,M −Kt,k,Ωρ and K0
t,k,Rm −K0

t,k,Ωρ

are very small, namely of the order of magnitudeO(exp(−kδ/4T)). �

As a consequence, we obtain the following estimate for the eigenvalues:

(1.16) Corollary.The eigenvaluesλν,k,Ω of Qk,Ω satisfy for every t> 0 the estimate

+∞

∑
ν=1

e−tλν,k,Ω = (1+O(k−1/2))
( k

4πt

)m/2∫

Ω
tr(etV(x))

s

∏
j=1

B j(x)t
sinhB j(x)t

dσ(x).

This result can be also interpreted in terms of the counting function

Nk,Ω (λ ) = #{ν ; λν,k,Ω 6 λ}

and of the spectral density measure (a sum of Dirac measures on the real line)

µk,Ω = k−m/2 d
dλ

Nk,Ω (λ ).

Notice that the measuresµk,Ω are all supported in the fixed interval[−v0,+∞[,
wherev0 is an upper bound for the eigenvalues ofV(x), x∈ M. In these notations,
Corollary 1.16 can be restated:

lim
k→+∞

∫ +∞

−∞
e−tλ dµk,Ω (λ ) =

1

(4πt)m/2

∫

Ω
tr(etV(x))

s

∏
j=1

B j(x)t

sinhB j(x)t
dσ(x).
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We thus see that the sequence of measuresµk,Ω converges weakly to a measureµΩ
whose Laplace transform is given by the right hand side. Inverting the formula, one
obtains:

(1.17) Corollary. For almost allλ ∈ R

(1.18) lim
k→+∞

k−m/2Nk,Ω (λ ) = µΩ (]−∞,λ ]) =
∫

Ω

r

∑
j=1

νB(x)(Vj(x)+λ )dσ(x)

whereνB(x)(λ ) is the function on M×R defined by

(1.19) νB(λ ) =
2s−mπ−m/2

Γ (m
2 − s+1)

B1 · · ·Bs ∑
(p1,...,ps)∈Ns

[
λ −∑(2p j +1)B j

]m
2 −s

+
.

Proof.We leave as an exercise to the reader to check that the Laplacetransform

∫ +∞

−∞
e−tλ dνB(v+λ ) = etv

∫ +∞

−∞
e−tλ dνB(λ )

is actually equal to
etv

(4πt)m/2

s

∏
j=1

B j(x)t

sinhB j(x)t
.

1.C. Proof of the holomorphic Morse inequalities

Let X be a compact complex manifold,L andE holomorphic Hermitian vector bun-
dles of rank 1 andr over X. If X is endowed with a Hermitian metricω , Hodge
theory shows that the Dolbeault cohomology groupHq(X,E ⊗ Lk) can be identi-
fied with the space of harmonic(0,q)-forms with respect to the Laplace-Beltrami
operator∆ ′′

k = ∂ k∂
∗
k + ∂

∗
k∂ k acting onE⊗ Lk. We thus have to estimate the zero-

eigenspace of∆ ′′
k .

In order to apply corollary 1.17, we first have to compute∆ ′′
k in terms of the

Hermitian connection∇k on E⊗Lk⊗Λ0,qT∗
X deduced from the Chern connections

of L,E,TX . What plays now the role ofE is the (non holomorphic) bundleE ⊗
Λ0,qT∗

X .
The relation between∆ ′′

k and ∇k is most easily obtained by means of the
Bochner-Kodaira-Nakano identity. In order to simplify theexposition, we assume
here that the metricω on X is Kähler. For any Hermitian holomorphic line bundle
G onX, the operators∆ ′ and∆ ′′ associated with the Chern connectionD = DG are
related by the B-K-N identity (cf. [Boc48], [Kod53], [AN54], [Nak55])

(1.20) ∆ ′′ = ∆ ′+[iθG,Λ ]

whereθG = D2
G ∈C∞(X,Λ1,1T∗

X ⊗Hom(G,G)) is the curvature tensor andΛ = L∗

is the adjoint of the Lefschetz operatorLu= ω ∧u.



Applications of Pluripotential Theory to Algebraic Geometry 19

The Leibniz rule impliesθE⊗Lk = kθL⊗ IdE +θE⊗ IdLk (omitting the Hermitian
metrics for simplicity of notation), thus

∆ ′′
k = ∆ ′

k+ k[iθL,Λ ]+ [iθE,Λ ].

At a given pointz0 ∈ X , we can find a coordinate system(z1, . . . ,zn) such that
(∂/∂zj ) is an orthonormal basis ofTX diagonalizingiθL(z0), in such a way that

ω(z0) =
i
2 ∑

16 j6n

dzj ∧dzj , iθL(z
0) =

i
2 ∑

16 j6n

α jdzj ∧dzj

whereα1, . . . ,αn are the curvature eigenvalues ofiθL(z0). A standard formula gives
the expression of the curvature term[iθL,Λ ]u for any (p,q)-form u. In fact, for
u= ∑uI ,J,λ dzI ∧dzJ ⊗eλ , we have

〈[iθL,Λ ]u,u〉= ∑
I ,J,λ

(αJ −α∁I )|uI ,J,λ |2

whereαJ = ∑ j∈J α j . In the case of a(0,q)-form u= ∑uJ,λ dzJ⊗eλ we simply have
∆ ′

ku= D′∗
k D′

ku= ∇′∗
k ∇′

ku and

(1.21′) ∆ ′′
k = ∇′∗

k ∇′
k− kV′+[iθE,Λ ] ,

〈V ′u,u〉= ∑
J,λ

α∁J|uJ,λ |2 (hereI = /0).

This is not yet what was needed, since only the(1,0) part ∇′
k appears. To get the

(0,1) component, we consideru as a(n,q) form with values inE⊗Lk⊗ΛnTX. We
then get∆ ′

ku= D′
kD

′∗
k u where

D′∗
k u=−∑∂uI ,J,λ /∂zjdz1∧·· · d̂zj · · · ∧dzn∧dzJ ⊗eλ

in normal coordinates. Thus∆ ′
ku= ∇′′∗

k ∇′′
ku and

(1.21′′) ∆ ′′
k = ∇′′∗

k ∇′′
k + kV′′+[iθE⊗ΛnTX ,Λ ] ,

〈V ′′u,u〉= ∑
J,λ

αJ|uJ,λ |2 (hereI = {1, . . . ,n}).

If the metricω is non Kähler, we get additional torsion terms, but these terms are
independent ofk. A combination of(1.21′) and(1.21′′) yields

(1.22)
2
k

∆ ′′
k =

1
k

∇∗
k∇k−V +

1
k
W

whereW is a Hermitian form independent ofk and

〈Vu,u〉= ∑
J,λ

(α∁J −αJ)|uJ,λ |2.



20 Jean-Pierre Demailly

Now apply Theorem 1.15 and observe thatW does not give any significant contri-
bution to the heat kernel ask→+∞. We write herezj = x j + iy j and the “magnetic
field”

B= iθL = ∑
16 j6n

α jdxj ∧dyj .

The curvature eigenvalues are given byB j = |α j |. We denotes= s(x) the rank of
B(x) and order the eigenvalues so that

|α1|> · · ·> |αs|> 0= αs+1 = · · ·= αn.

The eigenvalues ofV acting onE⊗ΛnT∗
X are the coefficientsα∁J −αJ, counted

with multiplicity r. Therefore

(1.23) Theorem.The heat kernel associated with e− 2t
k ∆ ′′

k in bidegree(0,q) satisfies

Kk
t (x,x)∼ kn r ∑|J|=q et(α∁J(x)−αJ(x))

(4π)ntn−s

s

∏
j=1

|α j (x)|
sinh|α j(x)|t

as k→+∞. In particular, if λ k,q
1 6 λ k,q

2 6 · · · are the eigenvalues of1
k∆ ′′

k in bidegree
(0,q), we have

+∞

∑
ν=1

e−2tλ k,q
ν ∼ rkn ∑

|J|=q

∫

X

et(α∁J(x)−αJ(x))

(4π)ntn−s

s

∏
j=1

|α j(x)|
sinh|α j (x)|t

for every t> 0.

At this point, the main idea is to use the eigenspaces to construct a finite di-
mensional subcomplex of the Dolbeault complex possessing the same cohomology
groups. This was already the basic idea in Witten’s analyticproof of the standard
Morse inequalities [Wit82]. We denote byHk,q

λ , resp.Hk,q
6λ

theλ -eigenspace of1k∆ ′′
k acting onC∞(X,Λ0,qT∗

X ⊗E⊗Lk), resp. the direct sum of

eigenspaces corresponding to all eigenvalues6 λ . As ∂ k and∆ ′′
k commute, we see

that∂ (Hk,q
λ )⊂Hk,q+1

λ , thusHk,•
λ andHk,•

6λ are finite dimensional subcomplexes of
the Dolbeault complex

∂ : C∞(X,Λ0,•T∗
XE⊗Lk).

Since∂ k∂ ∗
k +∂∗

k∂ k = ∆ ′′
k = kλ Id onHk,•

λ , we see thatHk,•
λ has trivial cohomology

for λ 6= 0. SinceHk,•
0 is the space of harmonic forms, we see thatHk,•

6λ has the
same cohomology as the Dolbeault complex forλ > 0. We will call this complex
the Witten∂ -complex. We need an elementary lemma of linear algebra.

(1.24) Lemma.Set hqk = dimHq(X,E⊗Lk). Then for every t> 0
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hq
k −hq−1

k + · · ·+(−1)qh0
k 6

q

∑
ℓ=0

(−1)q−ℓ
+∞

∑
j=1

e−tλ k,ℓ
j .

Proof. The left hand side is the contribution of the 0 eigenvalues inthe right hand
side. All we have to check is that the contribution of the other eigenvalues is> 0.
The contribution of the eigenvalues such thatλ k,ℓ

j = λ > 0 is

e−tλ
q

∑
ℓ=0

(−1)q−ℓdimHk,ℓ
λ .

As Hk,•
λ is exact, one easily sees that the last sum is equal to the dimension of

∂Hk,q
λ ⊂Hk,q+1

λ , hence> 0. �

Combining Theorem 1.23 with Lemma 1.24, we get

hq
k −hq−1

k + · · ·+(−1)qh0
k 6 o(kn)+

rkn
q

∑
ℓ=0

(−1)q−ℓ ∑
|J|=ℓ

∫

X

∏ j6s|α j | ·et(α∁J−αJ−∑ |α j |)

22n−sπntn−s∏ j6s(1−e−2t|α j |)
.

This inequality is valid for anyt > 0, so we can lett tend to+∞. It is clear that
α∁J −αJ −∑ |α j | is always6 0, thus the integrand tends to 0 at every point where
s< n. Whens= n, we haveα∁J(x)−αJx)−∑ |α j(x)| = 0 if and only if α j(x) > 0
for every j ∈ ∁J andα j (x) < 0 for every j ∈ J. This impliesx ∈ X(L,h, ℓ) ; in this
case there is only one multi-indexJ satisfying the above conditions and the limit is

(2π)−n|α1 · · ·αn|= (2π)−n|(iθL,h)
n|= |Θ n

L,h|,

asΘL,h =
i

2π θL,h by definition. By the monotone convergence theorem, our sum of
integrals converges to

q

∑
ℓ=0

(−1)q−ℓ
∫

X(L,h,ℓ)
(2π)−n|α1 · · ·αn|dσ =

1
n!

∫

X(L,h,6q)
(−1)qΘ n

L,h .

The Main Theorem 1.2 follows. �

2. Applications to algebraic geometry

2.A. Solution of the Grauert-Riemenschneider conjecture

Let L be a holomorphic line bundle over a compact connected complex manifoldX
of dimensionn andVk =H0(X,Lk). Denote byZ(Vk) the set of common zeroes of all
sections inVk, and fix a basis(σ0, . . . ,σN) of Vk. There is a canonical holomorphic
map
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(2.1) ΦkL : XrZ(Vk)−→ P(Vk), x 7→ [σ0(x) : . . . : σN(x)]

sending a pointx∈XrZ(Vk) to the hyperplaneH ⊂Vk of sectionsσ = ∑λ jσ j ∈Vk

such thatσ(x) = ∑λ jσ j(x) = 0; it is therefore given byx 7→ [σ0(x) : . . . : σN(x)]
in projective coordinates onP(Vk) ≃ PN. The pull-backΦ∗

kLO(d) can be identified
with the restriction ofLkd to X rZ(Vk); indeed, to any homogeneous polynomial
P(w0, . . . ,wN) ∈ H0(PN,O(d)) of degreed, one can associate a section

(2.2) s= P(σ0, . . . ,σN) ∈ H0(X,Lkd).

WhenL possesses a smooth Hermitian metrichwith ΘL,h > 0, one can construct
many sections of high tensor powersLk (e.g. by Hörmander’sL2 estimates [Hör65],
[AV65] for ∂ ). Fork> k0 large enough, the “base locus”Z(Vk) is empty, the sections
in Vk separate any two points ofX and generate all 1-jets at any point. ThenΦkL

gives an embedding ofX in some projective spacePN, for N = N(k) andk > k0.
In this way, the theory ofL2 estimates implies theKodaira embedding theorem: a
compact complex manifoldX is projective algebraic if and only ifX possesses a
Hermitian line bundle(L,h) with C∞ positive curvature.

The Grauert-Riemenschneider conjecture [GR70] is an attempt to characterize
the more general class of Moishezon varieties in terms of semi-positive line bundles.
Let us first recall a few definitions. The algebraic dimensiona(X) is the transcen-
dence degree of the fieldM(X) of meromorphic functions onX. A well-known
theorem of Siegel [Sie55] asserts that 06 a(X) 6 n (see Corollary 2.6 below). A
compact manifold or varietyX is said to beMoishezonif a(X) = n.

By definition, theKodaira dimensionκ(L) is the supremum of the dimension
of the imagesYk = ΦkL(X r Z(Vk)) ⊂ P(V∗

k ) for all integersk > 0 [one defines
κ(L) =−∞ whenVk = 0 for all k, in which case we always haveYk = /0]. Since the
field of meromorphic functions onX obtained by restriction of rational functions of
P(V∗

k ) to Yk has transcendence degree at least equal to dimYk, we infer that

(2.3) −∞ 6 κ(L) = supdimYk 6 a(X)6 n.

(2.4) Definition. The line bundle L→ X is said to bebig if κ(L) is maximal, i.e.
κ(L) = n= dimX.

The following standard lemma is needed (cf. [Ser54], [Sie55]).

(2.5) Lemma (Serre-Siegel). For every line bundle L→ X, there exist constants
C> c> 0 and k0 ∈N∗ such that

dimH0(X,Lk)6Ckκ(L) for all k > 1,

dimH0(X,Lk)> c kκ(L) for all k > 1 multiple of k0.

Proof. The lower bound is obtained by takingk0 such thatp := dimYk0 = κ(L).
Then, by the rank theorem, there exists a pointx0 ∈ X r Z(Vk0) and a basis
(σ0, . . . ,σN) of H0(X,Lk0) such thatσ0(x0) 6= 0 and
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(
d(σ1/σ0)∧ . . .∧d(σp/σ0)

)
(x0) 6= 0.

Then by takings= P(σ0, . . . ,σp,0, . . . ,0) in (2.2), we obtain an injection of the
space of homogeneous polynomials of degreed in p+1 variables intoH0(X,Lk0d),
whence

h0(X,Lk0d)>

(
d+ p

p

)
> dp/p!.

The proof of the upper bound proceeds as follows: select a Hermitian metrich,
onL and a finite family of coordinate ballsB j = B(zj , r j ) such thatB′

j = B(zj , r j/2)
coverX, andL|B j

is trivial for each j. By moving a little bit the pointszj , we may
assume thatΦkL has maximal rank at all pointszj for all k (the bad set is at most a
countable union of analytic sets, so it is nowhere dense). IfLk has many sections,
one can solve a linear system in many unknowns to get a sections vanishing at a
high orderm at all centerszj . Then the Schwarz lemma gives

‖s‖h,∞ = sup
j
‖s‖h,B′

j
6 2−mC(h)k sup

j
‖s‖h,B j 6 2−mC(h)k‖s‖h,∞

whereC(h) is a bound for the oscillation of the metrich on B j , which we may
assume to be finite after possibly shrinkingB j . Thusm6 k logC(h)/ log2 if s 6= 0.
Since the sections ofLk are constant along the fibers ofΦkL, onlymdimYk#{zj} equa-
tions transversally to the fibers are needed to makes vanish at orderm. Therefore
we can choosem≈ (h0(X,Lk)/#{zj})1/dimYk and still get a non zero section, so that

h0(X,Lk)≈ #{zj} ·mdimYk 6Ckκ(L). �

(2.6) Corollary (Siegel). For every compact complex manifold X

a(X) := trdegCM(X)6 n.

Proof.Fix s algebraically independent elementsf1, . . . , fs ∈M(X) and letD be the
sup of the pole divisors of thef j ’s. To every polynomialP( f1, . . . , fs) of degree6 k
corresponds injectively a sectionσP = P( f1, . . . , fs) ∈ H0(X,O(kD)). A dimension
count implies

ks

s!
6

(
k+ s

s

)
6Ckκ(O(D)) 6Ckn

by Lemma 2.5. Therefores6 n. �

Now, the Grauert-Riemenschneider conjecture [GR70] can bestated as follows.

(2.7) Grauert-Riemenschneider conjecture.A compact complex variety Y is Moi-
shezon if and only if there is a proper non singular modification X → Y and a
Hermitian line bundle(L,h) over X such that the curvature formΘL,h is > 0 on a
dense open subset of X.
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Proof.WhenY is Moishezon, it is well known that there exists a projectivealgebraic
modificationX ; therefore we can even takeL to be ample and then there existsh
such thatΘL,h > 0 everywhere onX.

The converse statement was proved by Siu in [Siu84, Siu85], assuming only
ΘL,h > 0 everywhere andΘL,h > 0 in at least one point. Morse inequalities provide
in fact a much stronger criterion, requiring only the positivity of some curvature
integral:

(2.8) Theorem.If a Hermitian line bundle(L,h) on X satisfies the integral condition
∫

X(L,h,61)
(ΘL,h)

n > 0,

thenκ(L) = n, in particular X is Moishezon.

In fact, the lower bound (1.4) applied withE = OX implies immediately that
h0(X,Lk)> ckn, henceκ(L) = n. Now, if X is a modification ofY, we haveM(Y)≃M(X), soa(X) = a(Y), andY has to be Moishezon. �

2.B. Cohomology estimates for nef line bundles

On a projective algebraic manifoldX, a line bundleL is said to benef if L ·C > 0
for every algebraic curveC⊂ X. If ω is a given Kähler or Hermitian(1,1)-form on
X, it can be shown (cf. [Dem90]) thatL is nef if and only if for everyε > 0 there
exists a smooth Hermitian metrichε such thatΘL,hε >−εω onX ; in fact, the latter
property clearly implies

L ·C=

∫

C
ΘL,hε >−ε

∫

C
ω =⇒ L ·C> 0

for every curveC. Conversely, ifL ·C > 0 for every curveC, the well-known
Kleiman criterion (cf. [Har70]) implies thatkL+A is ample for every ample divisor
A. Hence there exists a smooth Hermitian metrichk onL such that

ΘkL+A = kΘL,hk +ΘA,hA > 0 =⇒ ΘL,hk >−1
k

ω , where ω =ΘA,hA > 0.

Therefore, one can introduce the followingdefinition of nefnesson an arbitrary com-
pact complex manifold.

(2.9) Definition.Let X be a compact complex manifold andω a given smooth posi-
tive (1,1)-form on X. A line bundle L→ X is said to benef if for everyε > 0 there
exists a smooth Hermitian metric hε on L such thatΘL,hε >−εω everywhere on X.

(2.10) A consequence of holomorphic Morse inequalities.If X is compact K̈ahler
and L is nef, for every holomorphic vector bundle E on X one has

hq(X,O(E)⊗O(kL)) = o(kn) for all q > 1.
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Proof.Let ω be a Kähler metric. The nefness ofL implies that there exists a smooth
Hermitian metrichε on L such thatΘL,hε > −εω . On X(L,hε ,1) we have exactly
1 negative eigenvalueλ1 which is belongs to[−ε,0[ and the other onesλ j ( j > 2)
are positive. The productλ1 · · ·λn satisfies|λ1 · · ·λn|6 ε ∏ j>2(λ j + ε), hence

1
n!

∣∣Θ n
L,hε

∣∣6 1
(n−1)!

εω ∧ (ΘL,hε + εω)n−1 onX(L,hε ,1).

By integrating, we find
∫

X(L,hε ,1)
Θ n

L,hε 6 nε
∫

X
ω ∧ (c1(L)+ εω)n−1

and the result follows. �

(2.11) Note.WhenX is non Kähler, D. Popovici [Pop08] has announced bounds
for the Monge-Ampère masses ofΘL,hε which still imply the result, but the proof
is much harder in that case. On the other hand, whenX is projective algebraic,
an elementary hyperplane section argument and an inductionon dimension easily
implies the stronger upper bounds

(2.12) hq(X,O(E)⊗O(kL)) = O(kn−q) for all q> 0.

Hint. By Serre duality, it is enough to show that

hq(X,O(F)⊗O(−kL)) = O(kq) for everyq> 0

and every holomorphic vector bundleF . Choose a very ample line bundleA so big
thatF ′ = F∗⊗O(A) is Nakano positive, and apply the Nakano vanishing theorem
and Serre duality to see thatHq(X,O(F)⊗O(−A)⊗O(−kL)) = 0 for allk andq> 1.
Use the exact sequence 0→OX(−A)→ OX → OA → 0, take the tensor product withO(F)⊗O(−kL) and apply induction. �

It is unknown whether the accurate bound (2.12) holds true ona general compact
complex manifold, even whenX is assumed to be Kähler.

2.C. Distortion inequalities for asymptotic Fubini-Study metrics

Another application of the heat kernel estimates is a generalization of G. Kempf’s
distortion inequalities ([Kem89], [Ji89]) to all projective algebraic manifolds. In this
generality, the result was obtained by Th. Bouche [Bou90], and in less generality
(but with somewhat stronger estimates) by G. Tian [Tia90].

LetL be a positive Hermitian line bundle over a projective manifold X, equipped
with a Hermitian metricω . ThenVk = H0(X,Lk) has a natural Hermitian metric
given by the globalL2 norm of sections. Fork > k0 large enough,ΦkL is an em-
bedding andLk can be identified to the pull-backΦ∗

k O(1). We want to compare the
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original metric| • | of L and the metric| • |FS induced by the Fubini-Study metric of
O(1).

Let (s1, . . . ,sN) be an orthonormal basis ofH0(X,Lk). It is not difficult to check
that

|ξ |2FS=
|ξ |2

|s1(x)|2+ · · ·+ |sN(x)|2
for ξ ∈ Lk

x ,

thus all that we need is to get an estimate of∑ |sj(x)|2. However, this sum is the
contribution of the 0 eigenvalue in the heat kernel

Kk
t (x,x) =

+∞

∑
j=1

e−2tλ k
j |ψ j(x)|2

associated to2
k�

′′
k in bidegree(0,0). We observe that non zero eigenvaluesλ k

j

are also eigenvalues in bidegree(0,1), since∂ is injective on the corresponding

eigenspaces. The associated eigenfunctions are∂ψ j/
√

kλ k
j , for

‖∂ψ j‖2 = 〈〈∆ ′′
k ψ j ,ψ j〉〉= kλ k

j .

Thus the summation
+∞

∑
j=1

e−2tλ k
j |∂ψ j(x)|2

is bounded by the heat kernel in bidegree(0,1), which is itself bounded bykne−ct

with c > 0 (note thatα∁J −αJ −∑ |α j | < 0 onX for |J| = 1). Takingt = kε with
ε small, one can check that all estimates remain uniformly valid and that the con-
tribution of the non zero eigenfunctions inKk

t (x,x) becomes negligible inC0 norm.
Then theorem 1.23 shows that

∑ |sj(x)|2 ∼ Kk
t (x,x)∼ kn(2π)−n|α1(x) · · ·αn(x)|

ast = kε →+∞. Forξ ∈ Lk
x we get therefore theC0 uniform estimate

(2.13)
|ξ |2
|ξ |2FS

∼
( k

2π

)n
|α1(x) · · ·αn(x)| as k→+∞.

As a consequence, the Fubini-Study metric onL induced byΦkL converges uni-
formly to the original metric. G. Tian [Tia90] proved that this last convergence
statement holds in normC4. It is now known that there is in fact an asymptotic
expansion in 1/k, and thereforeC∞ convergence; this holds true even in the almost
complex setting, see [BU00] and [SZ02].
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2.D. Algebraic counterparts of the holomorphic Morse inequalities

One difficulty in the application of the analytic form of the inequalities is that the
curvature integral is in general quite uneasy to compute, since it is neither a topo-
logical nor an algebraic invariant. However, the Morse inequalities can be reformu-
lated in a more algebraic setting in which only algebraic invariants are involved. We
give here two such reformulations – after they were found viaanalysis in [Dem94],
F. Angelini [Ang96] gave a purely algebraic proof (see also [Siu93] and [Tra95] for
related ideas).

(2.14) Theorem.Let L = F − G be a holomorphic line bundle over a compact
Kähler manifold X, where F and G are numerically effective line bundles. Then
for every q= 0,1, . . . ,n= dimX, there is an asymptotic strong Morse inequality

∑
06 j6q

(−1)q− jh j(X,kL)6
kn

n! ∑
06 j6q

(−1)q− j
(

n
j

)
Fn− j ·G j +o(kn).

Proof.By addingε times a Kähler metricω to the curvature forms ofF andG, ε > 0
one can writeΘL = Θ̃F,ε −Θ̃G,ε whereΘ̃F,ε =

i
2π ΘF + εω andΘ̃G,ε =

i
2π ΘG+ εω

are positive definite. Letλ1 > · · ·> λn > 0 be the eigenvalues of̃ΘG,ε with respect to
Θ̃F,ε . Then the eigenvalues ofi2π ΘL with respect toΘ̃F,ε are the real numbers 1−λ j

and the setX(L,h,6 q) is the set{λq+1 < 1} of pointsx∈ X such thatλq+1(x)< 1.
The strong Morse inequalities yield

∑
06 j6q

(−1)q− jh j(X,kL) 6
kn

n!

∫

{λq+1<1}
(−1)q ∏

16 j6n

(1−λ j)Θ̃ n
F,ε +o(kn).

On the other hand we have
(

n
j

)
Θ̃ n− j

F,ε ∧Θ̃ j
G,ε = σ j

n(λ )Θ̃ n
F,ε ,

whereσ j
n(λ ) is the j-th elementary symmetric function inλ1, . . . ,λn , hence

∑
06 j6q

(−1)q− j
(

n
j

)
Fn− j ·G j = lim

ε→0

∫

X
∑

06 j6q

(−1)q− jσ j
n(λ )Θ̃ n

F,ε .

Thus, to prove the lemma, we only have to check that

∑
06 j6n

(−1)q− jσ j
n(λ )−1l{λq+1<1}(−1)q ∏

16 j6n

(1−λ j)> 0

for all λ1 > · · · > λn > 0, where 1l{...} denotes the characteristic function of a set.
This is easily done by induction onn (just split apart the parameterλn and write
σ j

n(λ ) = σ j
n−1(λ )+σ j−1

n−1(λ )λn). �

In the caseq= 1, we get an especially interesting lower bound (this bound has
been observed and used by S. Trapani [Tra95] in a similar context).
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(2.15) Consequence.h0(X,kL)−h1(X,kL)> kn

n! (F
n−nFn−1 ·G)−o(kn).

Therefore some multiple kL has a section as soon as Fn−nFn−1 ·G> 0.

(2.16) Remark.The weaker inequality

h0(X,kL)>
kn

n!
(Fn−nFn−1 ·G)−o(kn)

is easy to prove ifX is projective algebraic. Indeed, by adding a small ampleQ-
divisor to F andG, we may assume thatF , G are ample. Letm0G be very ample
and letk′ be the smallest integer> k/m0. Thenh0(X,kL)> h0(X,kF−k′m0G). We
selectk′ smooth membersG j , 16 j 6 k′ in the linear system|m0G| and use the
exact sequence

0→ H0(X,kF−∑G j)→ H0(X,kF)→
⊕

H0(G j ,kF|Gj
).

Kodaira’s vanishing theorem yieldsHq(X,kF) = 0 andHq(G j ,kF|Gj
) = 0 for q> 1

andk> k0. By the exact sequence combined with Riemann-Roch, we get

h0(X,kL)> h0(X,kF−∑G j)

>
kn

n!
Fn−O(kn−1)−∑

( kn−1

(n−1)!
Fn−1 ·G j −O(kn−2)

)

>
kn

n!

(
Fn−n

k′m0

k
Fn−1 ·G

)
−O(kn−1)

>
kn

n!

(
Fn−nFn−1 ·G

)
−O(kn−1).

(This simple proof is due to F. Catanese.) �

(2.17) Corollary. Suppose that F and G are nef and that F is big. Some multiple of
mF−G has a section as soon as

m> n
Fn−1 ·G

Fn .

In the last condition, the factorn is sharp: this is easily seen by takingX = Pn
1

andF =O(a, . . . ,a) andG= O(b1, . . . ,bn) overPn
1 ; the condition of the corollary is

thenm> ∑b j/a, whereask(mF−G) has a section if and only ifm> supb j/a; this
shows that we cannot replacen by n(1− ε).

3. Morse inequalities onq-convex varieties

Thierry Bouche [Bou89] has obtained an extension of holomorphic Morse inequal-
ities to the case of stronglyq-convex manifolds. We explain here the main ideas
involved.
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A complex (non compact) manifoldX of dimensionn is stronglyq-convex in
the sense of Andreotti and Grauert [AG62] if there exists aC∞ exhaustion function
ψ onX such thati∂∂ ψ has at leastn−q+1 positive eigenvalues outside a compact
subset ofX. In this case, the Andreotti-Grauert theorem shows that allcohomology
groupsHm(X,F) with values in a coherent analytic sheaf are finite dimensional for
m> q.

(3.1) Theorem.Let L, E be holomorphic vector bundles over X with rankL= 1,
rankE= r. Assume that X is strongly q-convex and that L has a Hermitian metric
h for whichΘL,h has at least n− p+1 nonnegative eigenvalues outside a compact
subset K⊂ X. Then for all m> p+q−1 the following strong Morse inequalities
hold:

n

∑
ℓ=m

(−1)ℓ−mdimHℓ(X,E⊗Lk)6 r
kn

n!

∫

X(L,h,>m)
(−1)mΘ n

L,h+o(kn).

Proof.For everyc∈R, we consider the sublevel sets

Xc = {x∈ X ; ψ(x)< c}.

Selectc0 such thati∂∂ ψ hasn− q+ 1 positive eigenvalues onX rXc. One can
choose a Hermitian metricω0 onX in such a way that the eigenvaluesγ0

1 6 · · ·6 γ0
n

of i∂∂ ψ with respect toω0 satisfy

(3.2) −1
n
6 γ0

1 6 · · ·6 γ0
q−1 6 1 and γ0

q = · · ·= γ0
n = 1 onXrXc0 ;

this can be achieved by takingω0 equal toi∂∂ ψ on aC∞ subbundle ofTX of rank
n−q+1 on whichi∂∂ ψ is positive, andω0 very large on the orthogonal comple-
ment. We setω = eρ ω0 whereρ is a function increasing so fast at infinity thatω
will be complete.

More important, we multiply the metric ofL by a weighte−χ◦ψ whereχ is a
convex increasing function. The resulting Hermitian line bundle is denoted(Lχ ,hχ).
For any(0,m) form u with values inE⊗Lk, viewed as an(n,m) form with values
in E⊗Lk⊗ΛnTX , the Bochner-Kodaira-Nakano formula implies an inequality

〈〈∆ ′′
k u,u〉〉>

∫

X
k〈[iθLχ ,hχ ),Λ ]u,u〉+ 〈Wu,u〉

whereW depends only on the curvature ofE⊗ΛnTX and the torsion ofω . By the
formulas of§1.C, we have

〈[iθLχ ,hχ ),Λ ]u,u〉> (α1+ · · ·+αm)|u|2

whereα1 6 · · ·6 αn are the eigenvalues of

iθLχ ,hχ = iθL,h+ i∂∂ (χ ◦ψ)> iθL,h+(χ ′ ◦ψ)i∂∂ψ .
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If β is the lowest eigenvalue ofiθL,h with respect toω , we find

α j > β +(χ ′ ◦ψ)γ0
j /eρ ,

α1+ · · ·+αm > mβ +(χ ′ ◦ψ)(γ0
1 + · · ·+ γ0

m)/eρ ,

and by (3.2) we get for allm> q:

α1+ · · ·+αm > mβ +
1
n

e−ρ χ ′ ◦ψ onXrXc0.

It follows that one can chooseχ increasing very fast in such a way that the Bochner
inequality becomes

(3.3) 〈∆ ′′
k u,u〉> k

∫

XrXc0

A(x)|u(x)|2−C1

∫

X
|u(x)|2

whereA> 1 is a function tending to+∞ at infinity onX andC1 > 0. Now, Rellich’s
lemma easily shows that∆ ′′

k has a compact resolvent. Hence the spectrum of∆ ′′
k is

discrete and its eigenspaces are finite dimensional. Standard arguments also show
the following:

(3.4) Lemma.Whenχ increases sufficiently fast at infinity, the spaceHm(X,Lk
χ ⊗

E) of L2-harmonic forms of bidegree(0,m) for ∆ ′′
k is isomorphic to the cohomology

group Hm(X,E⊗Lk) for all k ∈N and m> q.

For a domainΩ ⊂⊂ X, we consider the quadratic form

Qk,m
Ω (u) =

1
k

∫

Ω
|∂ ku|2+ |∂∗

ku|2

with Dirichlet boundary conditions on∂Ω . We denote byHk,m
6λ ,Ω the direct sum of

all eigenspaces ofQk,m
Ω corresponding to eigenvalues6 λ (i.e.6 kλ for ∆ ′′

k ).

(3.5) Lemma.For everyλ > 0 andε > 0, there exists a domainΩ ⊂⊂ X and an
integer k0 such that

dimHk,m
6λ ,Ω 6 dimHk,m

6λ ,X 6 dimHk,m
6λ+ε,Ω for k> k0.

Proof. The left hand inequality is a straightforward consequence of the minimax
principle, because the domain of the global quadratic formQk,m

Ω is contained in the

domain ofQk,m
X .

For the other inequality, letu∈Hk,m
6λ ,X. Then (3.3) gives

k
∫

XrXc0

A|u|2−C1

∫

Xc0

|u|2 6 kλ
∫

X
|u|2.



Applications of Pluripotential Theory to Algebraic Geometry 31

Choosec2 > c1 > c0 so thatA(x) > a on X rXc1 and a cut-off functionϕ with
compact support inXc2 such that 06 ϕ 6 1 andϕ = 1 onXc1. Then we find

∫

XrXc1

|u|2 6 C1+ kλ
ka

∫

X
|u|2.

For a large enough, we get
∫

XrXc1
|u|2 6 ε‖u‖2. SetΩ = Xc2. Then

Qk,m
Ω (ϕu) =

1
k

∫

Ω
|∂ϕ ∧u+ϕ∂ku|2+ |ϕ∂∗

ku− ∂ϕ u|2

6 (1+ ε)Qk,m
X (u)+

C2

k

(
1+

1
ε

)
‖u‖2

6 (1+ ε)(λ +
C2

kε
)‖u‖2.

As ‖ϕu‖2 >
∫

Xc1
|u|2 > (1− ε)‖u‖2 , we infer

Qk,m
Ω (ϕu)6

1+ ε
1− ε

(
λ +

C2

kε

)
‖ϕu‖2.

If ε is replaced by a suitable smaller number andk taken large enough, we obtain
Qk,m

Ω (v)6 (λ +ε)‖v‖2 for all v∈ ϕHk,m
6λ ,X. Then the right hand inequality in lemma

3.5 follows by the minimax principle. �

Now, Corollary 1.17 easily computes the counting functionNk,m
Ω for the eigen-

values:

lim
λ→0+

lim
k→+∞

k−nNk,m
Ω (λ ) =

r
n!

∫

X(Lχ ,hχ ,m)
(−1)m

( i
2π

θLχ ,hχ )
)n

.

Applying this to the Witten complexHk,•
6λ ,X, we easily infer the inequality of theo-

rem 3.1, except thatc(L) is replaced byc(Lχ). However, up to now, the inequality
is valid for allm> q. Take the convex functionχ equal to 0 on]−∞,c0]. Then

ΘLχ ,hχ =
i

2π
θLχ ,hχ =ΘL,h+

i
2π

∂∂ (χ ◦ψ)

coincides withΘL,h on Xc0 and has at most(p−1)+ (q−1) negative eigenvalues
on XrXc0. HenceX(Lχ ,hχ ,m) = X(L,h,m) for m> p+q−1 andΘLχ ,hχ = ΘL,h

on these sets. Theorem 3.1 is proved. �

As a corollary, one obtains a general a priori estimate for the Monge-Ampère
operator(i∂∂ )n onq-convex manifolds.

(3.6) Corollary: calculus inequalities.Let X be a strongly q-convex manifold and
ϕ a C∞ function on X, weakly p-convex outside a compact subset of X.For ℓ =
0,1, . . . ,n, let Gℓ be the open set of points where i∂∂ϕ is non degenerate and admits
ℓ negative eigenvalues. Then for all m> p= q−1
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n

∑
ℓ=m

∫

Gℓ

(i∂∂ ϕ)m has the sign of(−1)m.

This result has been first obtained by Y.T. Siu [Siu90] forq-convex domains
in a Stein manifold. At that time, theq-convex case of the inequalities was not
yet available and Siu had to rely on a rather sophisticated approximation argument
of Stein manifolds by algebraic varieties; the proof could then be reduced to the
compact case.

The general statement given above is in fact a direct consequence of Theorem
3.1: take forL the trivial bundleL = OX equipped with the metric defined by the
weight e−ϕ andE = OX. SinceHm(X,Lk) = Hm(X,OX) is independent ofk and
finite dimensional, Theorem 3.1 implies

kn
n

∑
ℓ=m

∫

Gℓ

(−1)m(i∂∂ ϕ)n > constant−o(kn)

for all k> k0 andm> p+q−1, whence the result. �

Part II. Approximation of currents and intersection theory

0. Introduction

Many concepts described in this Section (e.g. pseudo-effectivity) are quite general
and make sense on an arbitrary compact complex manifoldX – no projective or
Kähler assumption is needed. In this general context, it isbetter to work with∂∂ -
cohomology classes instead of De Rham cohomology classes: we define theBott-
Chern cohomologyof X to be

(0.1) H p,q
BC(X,C) =

{
d-closed(p,q)-forms}/

{
∂∂ -exact(p,q)-forms}.

It is easily shown that these cohomology groups are finite dimensional and can be
computed either with spaces of smooth forms or with currents; in fact, they can be
computed by certain complexes of sheaves of forms or currents that both provide
fine resolutions of the same sheaves of holomorphic or anti-holomorphic forms.
Our statement therefore follows formally from general results of sheaf theory. Also,
finiteness can be obtained by the usual Cartan-Serre proof based on Montel’s the-
orem forČech cohomology. In both cases, the quotient topology ofH p,q

BC(X,C) in-
duced by the Fréchet topology of smooth forms or by the weak topology of currents
is Hausdorff. Clearly,H•

BC(X,C) is a bigraded algebra, and it is trivial by definition
that there are always canonical morphisms

(0.2) H p,q
BC(X,C)→ H p,q

∂
(X,C),

⊕

p+q=k

H p,q
BC(X,C)→ Hk

DR(X,C).
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By Hodge decomposition and by the well-known∂∂ -lemma of Kähler geometry,
these morphisms are isomorphisms whenX is Kähler; especially, we get a canonical
algebra isomorphism

(0.3) H•
DR(X,C)≃

⊕

p,q

H p,q
∂

(X,C) if X is Kähler.

We will see in Paragraph 5 (Remark 5.15) that this is true moregenerally ifX is in
the Fujiki classC, i.e., the class of manifolds bimeromorphic to Kähler manifolds.

1. Pseudo-effective line bundles and singular Hermitian metrics

Let L be a holomorphic line bundle on a compact complex manifoldX. It is impor-
tant for many applications to allow singular Hermitian metrics.

(1.1) Definition.A singular Hermitian metric h on L is a Hermitian metric such that,
for any trivialisation L|U ≃U ×C, the metric is given by h= e−ϕ , ϕ ∈ L1

loc(U).

The curvature tensor

(1.2) ΘL,h =
i

2π
∂∂ ϕ =− i

2π
∂∂ logh

can then be computed in the sense of distributions, and defines in this way a (global)
closed(1,1)-current onX. It defines a (real) cohomology class{ΘL,h} ∈ H1,1

BC(X,C)
which is mapped to the first Chern classc1(L) by the canonical morphisms(0.2).
We will therefore still denote this Bott-Chern class byc1(L). The positive case is of
special interest.

(1.3) Definition. We say that L pseudo-effective if c1(L) ∈ H1,1
BC(X,C) is the coho-

mology class of some closed positive current T , i.e. if L can be equipped with a
singular Hermitian metric h with T=ΘL,h > 0 as a current, in other words, if the
weight functionsϕ can be chosen to be plurisubharmonic on each trivialization
open set U.

The locus whereh has singularities turns out to be extremely important. One way
is to introduce multiplier ideal sheaves following A. Nadel[Nad89]. The main idea
actually goes back to the fundamental works of Bombieri [Bom70] and H. Skoda
[Sko75].

(1.4) Definition. Let ϕ be a psh(plurisubharmonic) function on an open subset
Ω ⊂ X. Toϕ we associate the ideal subsheafI(ϕ) ⊂ OΩ of germs of holomorphic
functions f∈ OΩ ,x such that| f |2e−ϕ is integrable with respect to the Lebesgue
measure in some local coordinates near x.
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The zero varietyV(I(ϕ)) is thus the set of points in a neighborhood of which
e−ϕ is non integrable. The following result implies that this isalways an analytic
set.

(1.5) Proposition([Nad89]). For any psh functionϕ on Ω ⊂ X, the sheafI(ϕ) is
a coherent sheaf of ideals overΩ . Moreover, ifΩ is a bounded Stein open set, the
sheafI(ϕ) is generated by any Hilbert basis of the L2 spaceH2(Ω ,ϕ) of holomor-
phic functions f onΩ such that

∫
Ω | f |2e−ϕ dλ <+∞.

Proof.Since the result is local, we may assume thatΩ is a bounded pseudoconvex
open set inCn. By the strong noetherian property of coherent sheaves, thefamily
of sheaves generated by finite subsets ofH2(Ω ,ϕ) has a maximal element on each
compact subset ofΩ , henceH2(Ω ,ϕ) generates a coherent ideal sheafJ ⊂ OΩ .
It is clear thatJ ⊂ I(ϕ); in order to prove the equality, we need only check thatJx +I(ϕ)x ∩m

s+1
Ω ,x = I(ϕ)x for every integers, in view of the Krull lemma. Let

f ∈ I(ϕ)x be defined in a neighborhoodV of x and letθ be a cut-off function
with support inV such thatθ = 1 in a neighborhood ofx. We solve the equation
∂u = g := ∂ (θ f ) by means of Hörmander’sL2 estimates [Hör65, AV65], applied
with the strictly psh weight

ϕ̃(z) = ϕ(z)+ (n+ s) log|z− x|2+ |z|2.

We get a solutionu such that
∫

Ω |u|2e−ϕ |z− x|−2(n+s)dλ < ∞, thusF = θ f − u
is holomorphic,F ∈H2(Ω ,ϕ) and fx −Fx = ux ∈ I(ϕ)x ∩m

s+1
Ω ,x. This proves the

coherence. Now,J is generated by any Hilbert basis ofH2(Ω ,ϕ), because it is well-
known that the space of sections of any coherent sheaf is a Fr´echet space, therefore
closed under localL2 convergence. �

Another important way of measuring singularities is via Lelong numbers – a
natural generalization of the concept of multiplicity to psh functions. Recall that the
Lelong number of a functionϕ ∈ Psh(Ω) at a pointx0 is defined to be

(1.6) ν(ϕ ,x0) = lim inf
z→x0

ϕ(z)
log|z− x0|

= lim
r→0+

supB(x0,r) ϕ
logr

.

In particular, ifϕ = log| f | with f ∈ O(Ω), thenν(ϕ ,x0) is equal to the vanishing
order

ordx0( f ) = sup{k∈ N ;Dα f (x0) = 0, ∀|α|< k}.
The link with multiplier ideal sheaves is provided by the following standard result
due to Skoda [Sko72].

(1.7) Lemma.Let ϕ be a psh function on an open setΩ and let x∈ Ω .

(a) If ν(ϕ ,x) < 2, then e−ϕ is Lebesgue integrable on a neighborhood of x, in
particularI(ϕ)x = OΩ ,x.

(b) More generally, ifν(ϕ ,x) > 2(n+ s) for some integer s> 0, then

e−ϕ > c|z− x|−2n−2s, c> 0
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in a neighborhood of x, andI(ϕ)x ⊂m
s+1
Ω ,x, wheremΩ ,x is the maximal ideal ofOΩ ,x. In particular e−ϕ is non integrable at x ifν(ϕ ,x)> 2n.

(c) The zero variety V(I(ϕ)) ofI(ϕ) satisfies

V2n(ϕ)⊂V(I(ϕ)) ⊂ E2(ϕ)

where Ec(ϕ) = {x∈ X ; ν(ϕ ,x)> c} is the c-upperlevel set of Lelong numbers
of ϕ .

The only non trivial part is 1.7 (a); the proof relies on the Bochner-Martinelli
representation formula forT = i

π ∂∂ϕ (see [Sko72]). One should observe that
1.7 (a) (resp. (b)) is optimal, as one can see by takingϕ(z) = λ log|z1|, resp.
ϕ(z) = λ log|z|, onΩ = Cn.

2. Hermitian metrics with minimal singularities and analyt ic Zariski
decomposition

We show here by a general “abstract” method that a pseudo-effective line bundle
always has a Hermitian metrichmin with minimal singularities among those with
nonnegative curvatureΘL,h > 0 in the sense of currents. The following definition
was introduced in [DPS01].

(2.1) Definition. Let L be a pseudo-effective line bundle on a compact complex
manifold X. Consider two Hermitian metrics h1, h2 on L with curvatureΘL,h j > 0
in the sense of currents.

(a) We will write h1 4 h2, and say that h1 is less singular than h2, if there exists a
constant C> 0 such that h1 6Ch2.

(b) We will write h1 ∼ h2, and say that h1, h2 are equivalent with respect to singu-
larities, if there exists a constant C> 0 such that C−1h2 6 h1 6Ch2.

Of courseh1 4 h2 if and only if the associated weights in suitable trivializations
locally satisfyϕ2 6 ϕ1 +C. This implies in particularν(ϕ1,x) 6 ν(ϕ2,x) at each
point. The above definition is motivated by the following observation.

(2.2) Theorem.For every pseudo-effective line bundle L over a compact complex
manifold X, there exists up to equivalence of singularitiesa unique class of Hermi-
tian metrics h with minimal singularities such thatΘL,h > 0.

Proof. The proof is almost trivial. We fix once for all a smooth metrich∞ (whose
curvature is of random sign and signature), and we write singular metrics ofL under
the formh= h∞e−ψ . The conditionΘL,h > 0 is equivalent to i

2π ∂∂ψ > −u where
u = ΘL,h∞ . This condition implies thatψ is plurisubharmonic up to the addition
of the weightϕ∞ of h∞, and therefore locally bounded from above. Since we are
concerned with metrics only up to equivalence of singularities, it is always possible
to adjustψ by a constant in such a way that supX ψ = 0. We now set
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hmin = h∞e−ψmin, ψmin(x) = sup
ψ

ψ(x)

where the supremum is extended to all functionsψ such that supX ψ = 0 and
i

2π ∂∂ ψ > −u. By standard results on plurisubharmonic functions (see Lelong

[Lel69]), ψmin still satisfies i
2π ∂∂ψmin > −u (i.e. the weightϕ∞ +ψmin of hmin is

plurisubharmonic), andhmin is obviously the metric with minimal singularities that
we were looking for. [In principle one should take the upper semicontinuous regu-
larizationψ∗

min of ψmin to really get a plurisubharmonic weight, but sinceψ∗
min also

participates to the upper envelope, we obtain hereψmin = ψ∗
min automatically]. �

(2.3) Remark.In general, the supremumψ = supj∈I ψ j of a locally dominated fam-
ily of plurisubharmonic functionsψ j is not plurisubharmonic strictly speaking, but
its “upper semi-continuous regularization”ψ∗(z) = limsupζ→zψ(ζ ) is plurisubhar-
monic and coincides almost everywhere withψ , with ψ∗ > ψ . However, in the
context of (2.3),ψ∗ still satisfiesψ∗ 6 0 and i

2π ∂∂ ψ > −u, henceψ∗ participates
to the upper envelope. As a consequence, we haveψ∗ 6 ψ and thusψ = ψ∗ is in-
deed plurisubharmonic. Under a strict positivity assumption, namely ifL is a big
line bundle (i.e. the curvature can be taken to be strictly positive in the sense of
currents, see Definition (3.3 d) and Theorem (3.4 b), thenhmin can be shown to
possess some regularity properties. The reader may consult[BmD09] for a rather
general (but certainly non trivial) proof thatψmin possesses locally bounded second
derivatives∂ 2ψmin/∂zj∂zk outside an analytic setZ ⊂ X ; in other words,ΘL,hmin

has locally bounded coefficients onXrZ. �

(2.4) Definition.Let L be a pseudo-effective line bundle. If h is a singular Hermitian
metric such thatΘL,h > 0 and

H0(X,mL⊗I(h⊗m))≃ H0(X,mL) for all m> 0,

we say that h is an analytic Zariski decomposition of L.

In other words, we require thath has singularities so mild that the vanishing
conditions prescribed by the multiplier ideal sheavesI(h⊗m) do not kill any sections
of L and its multiples.

(2.5) Exercise.A special case is when there is an isomorphismpL= A+E where
A andE are effective divisors such thatH0(X,mpL) = H0(X,mA) for all m andO(A) is generated by sections. ThenA possesses a smooth Hermitian metrichA, and
this metric defines a singular Hermitian metrich on L with poles1

pE and curvature
1
pΘA,hA +

1
p[E]. Show that this metrich is an analytic Zariski decomposition.

Note: whenX projective and there is a decompositionpL= A+E with A nef (see
(I 2.9)), E effective andH0(X,mpL) = H0(X,mA) for all m, one says that theQ-
divisor equalityL = 1

pA+ 1
pE is analgebraic Zariski decompositionof L. It can be

shown that Zariski decompositions exist in dimension 2, butin higher dimension
they do not exist in general. �
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(2.6) Theorem.The metric hmin with minimal singularities provides an analytic
Zariski decomposition.

It follows that an analytic Zariski decomposition always exists (while algebraic de-
compositions do not exist in general, especially in dimension 3 and more).

Proof.Let σ ∈ H0(X,mL) be any section. Then we get a singular metrich on L by
putting|ξ |h = |ξ/σ(x)1/m| for ξ ∈ Lx, and it is clear that|σ |hm = 1 for this metric.
Henceσ ∈H0(X,mL⊗I(h⊗m)), and a fortioriσ ∈H0(X,mL⊗I(h⊗m

min)) sincehmin

is less singular thanh. �

3. Description of positive cones (K̈ahler and projective cases)

Let us recall that an integral cohomology class inH2(X,Z) is the first Chern class
of a holomorphic (or algebraic) line bundle if and only if it lies in theNeron-Severi
group

(3.1) NS(X) = Ker
(
H2(X,Z)→ H2(X,OX)

)

(this fact is just an elementary consequence of the exponential exact sequence 0→
Z → O→ O∗ → 0). If X is compact Kähler, as we will suppose from now on in
this section, this is the same as saying that the class is of type(1,1) with respect to
Hodge decomposition.

Let us consider the real vector space NSR(X) = NS(X)⊗ZR, which can be
viewed as a subspace of the spaceH1,1(X,R) of real(1,1) cohomology classes. Its
dimension is by definition the Picard number

(3.2) ρ(X) = rankZ NS(X) = dimR NSR(X).

We thus have 06 ρ(X) 6 h1,1(X), and the example of complex tori shows that all
intermediate values can occur whenn= dimX > 2.

The positivity concepts for line bundles considered in section I 2.B and II 1 pos-
sess in fact natural generalizations to(1,1) classes which are not necessarily integral
or rational – and this works at least in the category of compact Kähler manifolds (in
fact, by using Bott-Chern cohomology, one could even extendthese concepts to
arbitrary compact complex manifolds).

(3.3) Definition.Let (X,ω) be a compact K̈ahler manifold.

(a) The K̈ahler cone is the setK ⊂ H1,1(X,R) of cohomology classes{ω} of
Kähler forms. This is anopen convex cone.

(b) The closureK of the K̈ahler cone consists of classes{α} ∈ H1,1(X,R) such
that for everyε > 0 the sum{α + εω} is Kähler, or equivalently, for every
ε > 0, there exists a smooth functionϕε on X such thatα + i∂∂ ϕε >−εω . We
say thatK is the cone ofnef (1,1)-classes.

(c) The pseudo-effective cone is the setE ⊂ H1,1(X,R) of cohomology classes
{T} of closed positive currents of type(1,1). This is aclosed convex cone.
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(d) The interiorE◦ of E consists of classes which still contain a closed positive
current after one subtractsε{ω} for ε > 0 small, in other words, they are
classes of closed(1,1)-currents T such that T> εω . Such a current will be
called aKähler current, and we say that{T} ∈ H1,1(X,R) is abig (1,1)-class.KE K= Kähler cone inH1,1(X,R) [open]K= nef cone inH1,1(X,R) [closure ofK]E= pseudo-effective cone inH1,1(X,R) [closed]E◦ = big cone inH1,1(X,R) [interior ofE]

The openness ofK is clear by definition, and the closedness ofE is a con-
sequence of the fact that bounded sets of currents are weaklycompact (as follows
from the similar weak compactness property for bounded setsof positive measures).
It is then clear thatK⊂E.

In spite of the fact that cohomology groups can be defined either in terms of
forms or currents, it turns out that the conesK andE are in general different. To
see this, it is enough to observe that a Kähler class{α} satisfies

∫
Y α p > 0 for

everyp-dimensional analytic set. On the other hand, ifX is the surface obtained by
blowing-upP2 in one point, then the exceptional divisorE ≃ P1 has a cohomology
class{α} such that

∫
E α = E2 =−1, hence{α} /∈K, although{α}= {[E]} ∈E.

In caseX is projective, all Chern classesc1(L) of line bundles lie by definition in
NS(X), and likewise, all classes of real divisorsD = ∑c jD j , c j ∈R, lie in NSR(X).
In order to deal with suchalgebraic classes, we therefore introduce the intersectionsKNS =K∩NSR(X), ENS =E∩NSR(X),

and refer to classes ofH1,1(X,R) not contained in NSR(X) as transcendental
classes.
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NSR(X)

A very important fact is that all four conesKNS, ENS,KNS,E◦
NS have simple

algebraic interpretations.

(3.4) Theorem.Let X be a projective manifold. Then

(a) KNS is equal to the open coneAmp(X) generated by classes ofample(or very
ample) divisors A(recall that a divisor A is said to be very ample if the linear
system H0(X,O(A)) provides an embedding of X in projective space).

(b) The interiorE◦
NS is the coneBig(X) generated by classes ofbig divisors,

namely divisors D such that h0(X,O(kD)) > ckdimX for k large.

(c) ENS is the closureEff(X) of the cone generated by classes ofeffectivedivisors,
i.e. divisors D= ∑c jD j , cj ∈R+.

(d) The closed coneKNS consists of the closureNef(X) of the cone generated by
nefdivisors D(or nef line bundles L), namely effective integral divisors D such
that D·C> 0 for every curve C, also equal toAmp(X).

In other words, the terminology “nef”, “big”, “pseudo-effective” used for
classes of the full transcendental cones appear to be a natural extrapolation of the
algebraic case.

Proof.First notice that since all of our conesC have non empty interior in NSR(X)
(which is a rational vector space in terms of a basis of elements in H2(X,Q)), the
rational pointsCQ := C∩NSQ(X), NSQ(X) = NS(X)⊗ZQ, are dense in each of
them. (a) is therefore just Kodaira’s embedding theorem when we look at rational

points, and properties (b) and (d) are obtained easily by passing to the closure of
the open cones. We will now give details of the proof only for (b) which is possibly
slightly more involved.

By looking at points ofE◦
Q =E◦∩NSQ(X) and multiplying by a denominator,

it is enough to check that a line bundleL such thatc1(L) ∈ E◦ is big. However,
this means thatL possesses a singular Hermitian metrichL such thatΘL,hL > εω
for some Kähler metricω . For some integerp0 > 0, we can then produce a sin-
gular Hermitian metric with positive curvature and with a given logarithmic pole
hp0

L e−θ(z) log|z−x0|2 in a neighborhood of every pointx0 ∈ X (hereθ is a smooth cut-
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off function supported on a neighborhood ofx0). Then Hörmander’sL2 existence
theorem [Hör65, AV65] can be used to produce sections ofLk which generate all
jets of order(k/p0)−n at pointsx0, so thatL is big.

Conversely, ifL is big andA is a (smooth) very ample divisor, the exact se-
quence 0→ OX(kL−A)→ OX(kL)→ OA(kL↾A)→ 0 and the estimates

h0(X,OX(kL)) > ckn, h0(A,OA(kL↾A)) = O(kn−1)

imply thatOX(kL−A) has a section fork large, thuskL−A≡ E for some effective
divisorE. This means that there exists a singular metrichL onL such that

ΘL,hL =
1
k

(
ΘA,hA +[E]

)
>

1
k

ω

whereω =ΘA,hA, hencec1(L) ∈E◦. �

(3.5) Corollary. If L is nef, then L is big(i.e. κ(L) = n) if and only if Ln > 0.
Moreover, if L is nef and big, then for everyδ > 0, L has a singular metric h= e−ϕ

such thatmaxx∈X ν(ϕ ,x) 6 δ and iΘL,h > ε ω for someε > 0. The metric h can be
chosen to be smooth on the complement of a fixed divisor E, withlogarithmic poles
along E.

Proof.By (I 2.10) and the Riemann-Roch formula, we have

h0(X,kL) = χ(X,kL)+o(kn) = knLn/n! +o(kn),

whence the first statement. By the proof of Theorem 3.4 (b), there exists a singular
metrich1 onL such that

i
2π

ΘL,h1 =
1
k

( i
2π

ΘA,hA +[E]
)
>

1
k

ω , ω =
i

2π
ΘA,hA.

Now, for everyε > 0, there is a smooth metrichε on L such that i
2π ΘL,hε > −εω .

The convex combination of metricsh′ε = hkε
1 h1−kε

ε is a singular metric with poles
alongE which satisfies

i
2π

ΘL,h′ε > ε(ω +[E])− (1− kε)εω > kε2ω .

Its Lelong numbers areεν(E,x) and they can be made smaller thanδ by choosing
ε > 0 small. �

We still need a few elementary facts about the numerical dimension of nef line
bundles.

(3.6) Definition. Let L be a nef line bundle on a compact Kähler manifold(X,ω).
One defines the numerical dimension of L to be

nd(L) = max
{

k= 0, . . . ,n; c1(L)
k 6= 0 in H2k(X,R)

}
.
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Notice that ifL is nef, each powerc1(L)k can be represented by a closed positive
currentΘk ∈ c1(L)k obtained as a weak limit of powers of smooth positive forms

Θk = lim
m→+∞

(
α +

1
m

ω + ∂∂ϕm

)k
, α ∈ c1(L).

Such a weak limit exists since
∫

X

(
α + 1

mω +∂∂ϕm
)k∧ωn−k is uniformly bounded

asm→+∞. Then we see that
∫

X
c1(L)

k∧ωn−k =

∫

X
Θk∧ωn−k > 0 ⇐⇒ Θk 6= 0 ⇐⇒ c1(L)

k 6= 0.

By Corollary 3.5, we haveκ(L) = n if and only if nd(L) = n. In general, we merely
have an inequality.

(3.7) Proposition.If L is a nef line bundle on a compact Kähler manifold(X,ω),
thenκ(L)6 nd(L).

Proof. We consider arbitrary irreducible analytic subsetsZ ⊂ X and prove by in-
duction onp = dimZ that κ(L|Z) 6 nd(L|Z) where nd(L|Z) is the supremum of all
integersk such thatc1(L|Z)

k 6= 0, i.e.
∫

X [Z]∧ c1(L)k ∧ω p−k > 0. This will prove
our statement whenZ = X, p = n. The statement is trivial ifp = 0, so we sup-
pose now thatp > 0. We can also assume thatr = κ(L|Z) > 0, otherwise there
is nothing to prove. This implies that a sufficient large multiple m0L has at least
two independent sectionsσ0, σ1 on Z. Consider the linear system|a0σ0 + a1σ1|,
a = [a0 : a1] ∈ P1

C, and takeY = Ya ⊂ Z to be an irreducible component of the
divisor of σa := a0σ0 + a1σ1 which is not a fixed component whena varies. For
m sufficiently divisible,ΦmL|Z has rankr at a generic (smooth) point ofZ, hence

the rank of(ΦmL|Z)|Y is> r ′ := min(r, p−1) if a∈ P1
C is itself generic. A fortiori

rank(ΦmL|Y)> r ′ (we may even have sections onY which do not extend toZ). By the
induction hypothesis we find

∫

X
[Y]∧c1(L)

r ′ ∧ω p−1−r ′ > 0.

Now, we use the fact that[Z]∧ c1(m0L)− [Y] can be represented by an effective
cycle (the sum of all components6=Y in the divisor of our generic sectionσa). This
implies

∫

X
[Z]∧c1(L)

r ′+1∧ω p−1−r ′ >
1

m0

∫

X
[Y]∧c1(L)

r ′ ∧ω p−1−r ′ > 0.

If r = p, we haver ′ = p−1, hencer ′+1= r and we are done. Ifr < p, we have
r ′ = r and then we use the obvious inequalityα 6 C0ω for some representative
α ∈ c1(L) and someC0 > 0 to conclude that

∫

X
[Z]∧c1(L)

r ∧ω p−r >
1

C0

∫

X
[Z]∧c1(L)

r+1∧ω p−1−r > 0. �



42 Jean-Pierre Demailly

(3.8) Remark.It may happen thatκ(L)< nd(L): take e.g.

L → X = X1×X2

equal to the total tensor product of an ample line bundleL1 on a projective mani-
fold X1 and of a unitary flat line bundleL2 on an elliptic curveX2 given by a rep-
resentationπ1(X2) → U(1) such that no multiplekL2 with k 6= 0 is trivial. Then
H0(X,kL) = H0(X1,kL1)⊗H0(X2,kL2) = 0 for k> 0, and thusκ(L) =−∞. How-
everc1(L) = pr∗1c1(L1) has numerical dimension equal to dimX1. The same exam-
ple shows that the Kodaira dimension may increase by restriction to a subvariety (if
Y = X1×{point}, thenκ(L↾Y) = dimY).

4. Approximation of plurisubharmonic functions via Bergman kernels

We prove here, as an application of the Ohsawa-TakegoshiL2 extension theo-
rem [OT87], that every psh function on a pseudoconvex open set Ω ⊂ Cn can be
approximated very accurately by functions of the formclog| f |, wherec> 0 and f
is a holomorphic function. The main idea is taken from [Dem92]. For other appli-
cations to algebraic geometry, see [Dem93] and Demailly-Kollár [DK01]. We first
recall the statement of the generalizedL2 extension theorem; its proof relies on a
subtle enhancement of the Bochner-Kodaira technique, and we refer to the littera-
ture for details.

(4.1) Theorem(Ohsawa-Takegoshi [OT87], Manivel [Man93]). Let X be a complex
n-dimensional manifold possessing a smooth plurisubharmonic exhaustion function
(”weakly pseudoconvex” or “weakly1-convex” manifold), and a K̈ahler metricω .
Let L (resp. E) be a Hermitian holomorphic line bundle(resp. a Hermitian holo-
morphic vector bundle of rank r over X), and s a global holomorphic section of E.
Assume that s is generically transverse to the zero section,and let

Y =
{

x∈ X ; s(x) = 0,Λ rds(x) 6= 0
}
, p= dimY = n− r.

Finally, let ϕ be an arbitrary plurisubharmonic function on X. Assume thatthe
(1,1)-formΘL+ r i

2π ∂∂ (log|s|2+ϕ) is semi-positive and that there is a continuous
functionα > 1 such that the following two inequalities hold everywhere onX :

(a) ΘL + r
i

2π
∂∂ (log|s|2+ϕ)> α−1{ΘEs,s}

|s|2 ,

(b) |s|6 e−α .

Then for every holomorphic section fY of the line bundleΛnT∗
X ⊗ L over Y such

that
∫
Y | fY|2e−ϕ |Λ r(ds)|−2dVω < +∞, there exists a holomorphic extension fX of

fY over X such that

∫

X

| fX |2e−ϕ

|s|2r(− log|s|)2 dVX,ω 6Cr

∫

Y

| fY|2e−ϕ

|Λ r(ds)|2 dVY,ω ,
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where Cr is a numerical constant depending only on r.

(4.2) Theorem.Let ϕ be a plurisubharmonic function on a bounded pseudoconvex
open setΩ ⊂ Cn. For every m> 0, letHΩ (mϕ) be the Hilbert space of holomor-
phic functions f onΩ such that

∫
Ω | f |2e−2mϕdλ <+∞ and letϕm = 1

2m log∑ |σℓ|2
where(σℓ) is an orthonormal basis ofHΩ (mϕ). Then there are constantsC1,C2 > 0
independent of m such that

(a) ϕ(z) − C1

m
6 ϕm(z) 6 sup

|ζ−z|<r
ϕ(ζ ) +

1
m

log
C2

rn for every z∈ Ω and r <

d(z,∂Ω). In particular,ϕm converges toϕ pointwise and in L1loc topology onΩ
when m→+∞ and

(b) ν(ϕ ,z)− n
m

6 ν(ϕm,z)6 ν(ϕ ,z) for every z∈ Ω .

Proof.(a) Note that∑ |σℓ(z)|2 is the square of the norm of the evaluation linear form
evz : f 7→ f (z) onHΩ (mϕ), sinceσℓ(z) = evz(σℓ) is theℓ-th coordinate of evz in
the orthonormal basis(σℓ). In other words, we have

∑ |σℓ(z)|2 = sup
f∈B(1)

| f (z)|2

whereB(1) is the unit ball ofHΩ (mϕ) (The sum is called theBergman kernel
associated withHΩ (mϕ)). As ϕ is locally bounded from above, theL2 topology
is actually stronger than the topology of uniform convergence on compact subsets
of Ω . It follows that the series∑ |σℓ|2 converges uniformly onΩ and that its sum is
real analytic. Moreover, by what we just explained, we have

ϕm(z) = sup
f∈B(1)

1
m

log| f (z)|.

Forz0 ∈ Ω andr < d(z0,∂Ω), the mean value inequality applied to the psh function
| f |2 implies

| f (z0)|2 6
1

πnr2n/n!

∫

|z−z−0|<r
| f (z)|2dλ (z)

6
1

πnr2n/n!
exp
(

2m sup
|z−z0|<r

ϕ(z)
)∫

Ω
| f |2e−2mϕdλ .

If we take the supremum over allf ∈ B(1) we get

ϕm(z0)6 sup
|z−z0|<r

ϕ(z)+
1

2m
log

1
πnr2n/n!

and the second inequality in (a) is proved – as we see, this is an easy consequence
of the mean value inequality. Conversely, the Ohsawa-TakegoshiL2 extension theo-
rem 4.1 applied to the 0-dimensional subvariety{z0} ⊂ Ω and to the trivial bundles
L = Ω ×C andE = Ω ×Cn, with the sections(z) = z−z0 of E, shows that for any
a∈ C there is a holomorphic functionf on Ω such thatf (z0) = a and
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∫

Ω
| f |2e−2mϕdλ 6C3|a|2e−2mϕ(z0),

whereC3 only depends onn and diamΩ . We fix a such that the right hand side is 1.
Then‖ f‖ 6 1 and so we get

ϕm(z0)>
1
m

log| f (z0)|=
1
m

log|a|= ϕ(z)− logC3

2m
.

The inequalities given in (a) are thus proved. Takingr = 1/m, we find that

lim
m→+∞

sup
|ζ−z|<1/m

ϕ(ζ ) = ϕ(z)

by the upper semicontinuity ofϕ , and so limϕm(z)=ϕ(z), since lim1
m log(C2mn)=0.

(b) The above estimates imply

sup
|z−z0|<r

ϕ(z)− C1

m
6 sup

|z−z0|<r
ϕm(z)6 sup

|z−z0|<2r
ϕ(z)+

1
m

log
C2

rn .

After dividing by logr < 0 whenr → 0, we infer

sup|z−z0|<2r ϕ(z)+ 1
m log C2

rn

logr
6

sup|z−z0|<r ϕm(z)

logr
6

sup|z−z0|<r ϕ(z)− C1
m

logr
,

and from this and definition (1.6), it follows immediately that

ν(ϕ ,x)− n
m

6 ν(ϕm,z)6 ν(ϕ ,z). �

Theorem 4.2 implies in a straightforward manner the deep result of [Siu74] on
the analyticity of the Lelong number upperlevel sets.

(4.3) Corollary ([Siu74]). Letϕ be a plurisubharmonic function on a complex man-
ifold X. Then, for every c> 0, the Lelong number upperlevel set

Ec(ϕ) =
{

z∈ X ; ν(ϕ ,z)> c
}

is an analytic subset of X.

Proof. Since analyticity is a local property, it is enough to consider the case of a
psh functionϕ on a pseudoconvex open setΩ ⊂ Cn. The inequalities obtained in
Theorem 4.2 (b) imply that

Ec(ϕ) =
⋂

m>m0

Ec−n/m(ϕm).
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Now, it is clear thatEc(ϕm) is the analytic set defined by the equationsσ (α)
ℓ (z) = 0

for all multi-indicesα such that|α| < mc. ThusEc(ϕ) is analytic as a (countable)
intersection of analytic sets. �

(4.4) Remark. It can be easily shown that the Lelong numbers of any closed posi-
tive (p, p)-current coincide (at least locally) with the Lelong numbers of a suitable
plurisubharmonic potentialϕ (see [Sko72]). Hence Siu’s theorem also holds true for
the Lelong number upperlevel setsEc(T) of any closed positive(p, p)-currentT.

Theorem 4.2 motivates the following definition.

(4.5) Definition.A plurisubharmonic functionϕ on a complex manifold X is said to
have analytic singularities if it can be written locally near every point x0 ∈ X as

ϕ(z) = clog ∑
16 j6N

|g j(z)|2+O(1), i.e. up to equivalence of singularities,

with a family of holomorphic functions(g j) defined near x0 and c> 0. Also, a closed
positive(1,1) current T is said to have analytic singularities if its plurisubharmonic
potential has analytic singularities. We also refer to thissituation by saying thatϕ
or T have logarithmic poles. When X is algebraic, we say that the singularities are
algebraic if c∈ Q+ and the(g j) are sections of some algebraic line bundleO(D),
x0 /∈ SuppD.

Notice that by Noetherianity, a convergent series log∑ j∈N |g j |2 can be replaced by
a finite sum up to equivalence of singularities, thus Theorem4.2 always produces
plurisubharmonic functionsϕm with analytic singularities.

5. Global approximation of closed (1,1)-currents on a compact complex
manifold

We take hereX to be an arbitrary compact complex manifold (no Kähler assump-
tion is needed). Now, letT be a closed(1,1)-current onX. We assume thatT is
quasi-positive, i.e. that there exists a(1,1)-form γ with continuous coefficients such
thatT > γ ; the case of positive currents (γ = 0) is of course the most important.

(5.1) Lemma.There exists a smooth closed(1,1)-formα representing the same∂∂ -
cohomology class as T and aquasi-pshfunctionϕ on X such that T= α + i

π ∂∂ ϕ .
(We say that a functionϕ is quasi-psh if its complex Hessian is bounded below by a
(1,1)-form with locally bounded coefficients, that is, if i∂∂ ϕ is quasi-positive).

Proof.Select an open covering(U j) of X by coordinate balls such thatT = i
π ∂∂ ϕ j

overU j , and construct a global functionϕ = ∑θ jϕ j by means of a partition of unity
{θ j} subordinate toU j . Now, we observe thatϕ −ϕk is smooth onUk because all
differencesϕ j −ϕk are smooth in the intersectionsU j ∩Uk, and we have the equality
ϕ −ϕk = ∑θ j(ϕ j −ϕk). Thereforeα := T − i

π ∂∂ ϕ is smooth. �
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By replacingT with T −α andγ with γ −α, we can assume without loss of
generality that{T}= 0, i.e. thatT = i

π ∂∂ ϕ with a quasi-psh functionϕ onX such

that i
π ∂∂ ϕ > γ.

Our goal is to approximateT in the weak topology by currentsTm = i
π ∂∂ϕm

such their potentialsϕm have analytic singularities in the sense of Definition 4.5,
more precisely, defined on a neighborhoodVx0 of any pointx0 ∈ X in the form
ϕm(z) = cm log∑ j |σ j ,m|2+O(1), wherecm > 0 and theσ j ,m are holomorphic func-
tions onVx0.

We select a finite covering(Wν ) of X with open coordinate charts, and shrink
them a little to be on the safe side. Givenδ > 0, we take in eachWν a maximal family
of points with (coordinate) distance to the boundary> 3δ and mutual distance>
δ/2. In this way, we get forδ > 0 small a finite covering ofX by open ballsU ′

j
of radiusδ (actually every point is even at distance6 δ/2 of one of the centers,
otherwise the family of points would not be maximal), such that the concentric
ball U j of radius 2δ is relatively compact in the corresponding chartWν . Let τ j :
U j −→ B(a j ,2δ ) be the isomorphism given by the coordinates ofWν ; by taking
δ > 0 small enough, we can assume that the coordinates ofU j extend toU j ∪Uk

wheneverU j ∩Uk 6= /0. Let ε(δ ) be a modulus of continuity forγ on the setsU j ,
such that limδ→0 ε(δ ) = 0 andγx− γx′ 6

1
2ε(δ )ωx for all x,x′ ∈U j . We denote by

γ j the (1,1)-form with constant coefficients onB(a j ,2δ ) such thatτ∗j γ j coincides

with γ − ε(δ )ω atτ−1
j (a j). Then we have

(5.2) 06 γ − τ∗j γ j 6 2ε(δ )ω on U j

for δ > 0 small. We setϕ j = ϕ ◦ τ−1
j on B(a j ,2δ ) and letq j be the homogeneous

quadratic function inz− a j such that i
π ∂∂ q j = γ j on B(a j ,2δ ). Thenϕ j − q j is

plurisubharmonic onB(a j ,2δ ) since

(5.3)
i
π

∂∂ ((ϕ j −q j)◦ τ j) = T − τ∗j γ j > γ − τ∗j γ j > 0.

We letU ′
j ⊂⊂U ′′

j ⊂⊂U j be the concentric balls of radiiδ , 1.5δ , 2δ respectively. On
each open setU j the functionψ j := ϕ −q j ◦τ j = (ϕ j −q j)◦τ j is plurisubharmonic,
so Theorem 4.2 applied withΩ =U j ≃ B(a j ,2δ ) produces functions

(5.4) ψ j ,m =
1

2m
log∑

ℓ

|σ j ,ℓ|2, (σ j ,ℓ) = basis ofHU j (mψ j).

The functionsψ j ,m+q j ◦ τ j onU j then have to be glued together by a partition of
unity technique. For this, we rely on the following “discrepancy” lemma, estimating
the variation of the approximating functions on overlapping balls.

(5.5) Lemma.There is a constant C independent of m andδ such that the quasi-psh
functions wj ,m = 2m(ψ j ,m+q j ◦ τ j), i.e.
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wj ,m(x) = 2mqj ◦ τ j(x)+ log∑
ℓ

∣∣σ j ,ℓ(x)
∣∣2, x∈U ′′

j ,

satisfy
|wj ,m−wk,m|6C

(
logδ−1+mε(δ )δ 2) on U ′′

j ∩U ′′
k .

Proof. The details will be left as an exercise to the reader. The mainidea is the
following: for any holomorphic functionf j ∈HU j (mψ j), a∂ equation∂u= ∂ (θ f j )
can be solved onUk, whereθ is a cut-off function with support inU ′′

j ∩U ′′
k , on a

ball of radius< δ/4, equal to 1 on the ball of radiusδ/8 centered at a given point
x0 ∈ U ′′

j ∩U ′′
k , with |∂θ | = O(δ−1). We apply theL2 estimate with respect to the

weight(n+1) log|x− x0|2+2mψk, where the first term is picked up so as to force
the solutionu to vanish atx0, in such a way thatFk = u− θ f j is holomorphic and
Fk(x0) = f j (x0). The discrepancy between the weights onU ′′

j andU ′′
k is given by

ψ j −ψk =−
(
q j ◦ τ j −qk◦ τk

)
.

By re-centering the quadratic functions atτ j(x0), resp.τk(x0), we can write

q j ◦ τ j −qk◦ τk = ReG jk +Rjk

whereG jk is holomorphic onU j ∪Uk [equal to a difference of linear forms in
the coordinates ofB(a j ,2δ ) andB(ak,2δ )], G jk(x0) = q j ◦ τ j (x0)−qk ◦ τk(x0) and
Rjk = O(ε(δ )δ 2) is a remainder term coming from the change of coordinates and
the slight discrepancy between∂∂ (q j ◦ τ j) and∂∂ (qk◦ τk) at the common pointx0,
with Rjk(x0) = 0. In this way, we get

|emGjk |2e−mψk = e−mψ j−2mRjk ,

so that we have a uniform control of theL2 norm of the solutionfk = emGjk Fk =
emGjk (u−θ f j) of the form

∫

Uk

| fk|2e−2mψk 6Cδ−2n−4emO(ε(δ )δ 2)
∫

U j

| f j |2e−2mψ j .

The required estimate follows, using the equality

e2mψ j,m(x) = ∑
ℓ

|σ j ,ℓ(x)|2 = sup
f∈HUj (mψ j ),‖ f‖61

| f (x)|2 onU j ,

and the analogous equality onUk. �

Now, the actual glueing of our quasi-psh functions is performed using the fol-
lowing elementary partition of unity calculation.

(5.6) Lemma.Let U′
j ⊂⊂U ′′

j be locally finite open coverings of a complex manifold
X by relatively compact open sets, and letθ j be smooth nonnegative functions with
support in U′′

j , such thatθ j 6 1 on U′′
j andθ j = 1 on U′

j . Let Aj > 0 be such that
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i(θ j∂∂ θ j − ∂θ j ∧∂θ j)>−A jω on U ′′
j rU ′

j

for some positive(1,1)-formω . Finally, let wj be quasi-psh functions on Uj with the
property that i∂∂ wj > γ for some real(1,1)-form γ on M, and let Cj be constants
such that

wj(x)6Cj + sup
k6= j ,U ′

k∋x
wk(x) on U ′′

j rU ′
j .

Then the function w= log
(

∑θ 2
j ew j

)
is quasi-psh and satisfies

i∂∂ w> γ −2
(
∑

j
1lU ′′

j rU ′
j
A je

Cj

)
ω .

Proof. If we setα j = θ j∂wj +2∂θ j , a straightforward computation shows that

∂w=
∑(θ 2

j ∂wj +2θ j∂θ j)ew j

∑θ 2
j ew j

=
∑θ jew j α j

∑θ 2
j ew j

,

∂∂ w=
∑
(
α j ∧α j+θ 2

j ∂∂ wj+2θ j∂∂ θ j−2∂θ j∧∂θ j
)
ew j

∑θ 2
j ew j

− ∑ j ,k θ j ew j θkewkα j∧αk(
∑θ 2

j ew j
)2

=
∑ j<k

∣∣θ j αk−θkα j
∣∣2ew j ewk

(
∑θ 2

j ew j
)2 +

∑θ 2
j ew j ∂∂wj

∑θ 2
j ew j

+
∑
(
2θ j∂∂ θ j−2∂θ j∧∂θ j

)
ew j

∑θ 2
j ew j

by using the Legendre identity. The first term in the last lineis nonnegative and the
second one is> γ. In the third term, ifx is in the support ofθ j∂∂ θ j −∂θ j ∧∂θ j , then
x∈U ′′

j rU ′
j and sowj(x) 6Cj +wk(x) for somek 6= j with U ′

k ∋ x andθk(x) = 1.
This gives

i
∑
(
2θ j∂∂θ j −2∂θ j ∧∂θ j

)
ew j

∑θ 2
j ew j

>−2∑
j

1lU ′′
j rU ′

j
eCj A jω .

The expected lower bound follows. �

We apply Lemma 5.6 to functions̃wj ,m which are just slight modifications of
the functionswj ,m = 2m(ψ j ,m+q j ◦ τ j) occurring in Lemma 5.5:

w̃j ,m(x) = wj ,m(x)+2m
(C1

m
+C3ε(δ )(δ 2/2−|τ j(x)|2)

)

= 2m
(

ψ j ,m(x)+q j ◦ τ j(x)+
C1

m
+C3ε(δ )(δ 2/2−|τ j(x)|2)

)

wherex 7→ z= τ j(x) is a local coordinate identifyingU j to B(0,2δ ), C1 is the con-
stant occurring in Lemma 5.5 andC3 is a sufficiently large constant. It is easy to see
that we can takeA j =C4δ−2 in Lemma 5.6. We have
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w̃j ,m > wj ,m+2C1+m
C3

2
ε(δ )δ 2 onB(x j ,δ/2)⊂U ′

j ,

since|τ j (x)|6 δ/2 onB(x j ,δ/2), while

w̃j ,m 6 wj ,m+2C1−mC3ε(δ )δ 2 onU ′′
j rU ′

j .

Form>m0(δ )= (logδ−1/(ε(δ )δ 2), Lemma 5.5 implies|wj ,m−wk,m|6C5mε(δ )δ 2

onU ′′
j ∩U ′′

k . Hence, forC3 large enough, we get

w̃j ,m(x)6 sup
k6= j ,B(xk,δ/2)∋x

wk,m(x)6 sup
k6= j ,U ′

k∋x
wk,m(x) on U ′′

j rU ′
j ,

and we can takeCj = 0 in the hypotheses of Lemma 5.6. The associated function
w= log

(
∑θ 2

j ew̃ j,m
)

is given by

w= log∑
j

θ 2
j exp

(
2m
(
ψ j ,m+q j ◦ τ j +

C1

m
+C3ε(δ )(δ 2/2−|τ j |2)

))
.

If we defineϕm = 1
2mw, we get

ϕm(x) :=
1

2m
w(x)> ψ j ,m(x)+q j ◦ τ j(x)+

C1

m
+

C3

4
ε(δ )δ 2 > ϕ(x)

in view of Lemma 5.5, by picking an indexj such thatx∈B(x j ,δ/2). In the opposite
direction, the maximum numberN of overlapping ballsU j does not depend onδ ,
and we thus get

w6 logN+2m
(

max
j

{
ψ j ,m(x)+q j ◦ τ j(x)

}
+

C1

m
+

C3

2
ε(δ )δ 2

)
.

By definition ofψ j we have sup|ζ−x|<r ψ j(ζ ) 6 sup|ζ−x|<r ϕ(ζ )−q j ◦ τ j(x)+C5r
thanks to the uniform Lipschitz continuity ofq j ◦ τ j , thus by Lamme 5.5 again we
find

ϕm(x)6
logN
2m

+ sup
|ζ−x|<r

ϕ(ζ )+
C1

m
+

1
m

log
C2

rn +
C3

2
ε(δ )δ 2+C5r.

By taking for instancer = 1/mandδ = δm→ 0, we see thatϕm converges toϕ . On
the other hand(5.2) implies i

π ∂∂q j ◦ τ j(x) = τ∗j γ j > γ −2ε(δ )ω , thus

i
π

∂∂ w̃j ,m > 2m
(
γ −C6ε(δ )ω

)
.

Lemma 5.6 then produces the lower bound

i
π

∂∂w> 2m
(
γ −C6ε(δ )ω

)
−C7δ−2ω ,
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whence
i
π

∂∂ ϕm > γ −C8ε(δ )ω

for m> m0(δ ) = (logδ−1)/(ε(δ )δ 2). We can fixδ = δm to be the smallest value
of δ > 0 such thatm0(δ ) 6 m, thenδm → 0 and we have obtained a sequence of
quasi-psh functionsϕm satisfying the following properties.

(5.7) Theorem.Let ϕ be a quasi-psh function on a compact complex manifold X
such that i

π ∂∂ϕ > γ for some continuous(1,1)-form γ. Then there is a sequence
of quasi-psh functionsϕm such thatϕm has the same singularities as a logarithm
of a sum of squares of holomorphic functions and a decreasingsequenceεm > 0
converging to0 such that

(a) ϕ(x)< ϕm(x)6 sup
|ζ−x|<r

ϕ(ζ )+C
( | logr|

m
+ r + εm

)

with respect to coordinate open sets covering X. In particular, ϕm converges to
ϕ pointwise and in L1(X) and

(b) ν(ϕ ,x)− n
m

6 ν(ϕm,x)6 ν(ϕ ,x) for every x∈ X ;

(c)
i
π

∂∂ϕm > γ − εmω .

In particular, we can apply this to an arbitrary positive or quasi-positive closed
(1,1)-currentT = α + i

π ∂∂ϕ .

(5.8) Corollary. Let T be a quasi-positive closed(1,1)-current on a compact com-
plex manifold X such that T> γ for some continuous(1,1)-form γ. Then there is a
sequence of currents Tm whose local potentials have the same singularities as1/m
times a logarithm of a sum of squares of holomorphic functions and a decreasing
sequenceεm > 0 converging to0 such that
(a) Tm converges weakly to T ,

(b) ν(T,x)− n
m

6 ν(Tm,x)6 ν(T,x) for every x∈ X ;

(c) Tm > γ − εmω .
We say that our currents Tm are approximations of T with logarithmic poles.

By using blow-ups ofX, the structure of the currentsTm can be better under-
stood. In fact, consider the coherent idealsJm generated locally by the holomorphic

functions(σ (k)
j ,m) onUk in the local approximations

ϕk,m =
1

2m
log∑

j
|σ (k)

j ,m|2+O(1)

of the potentialϕ of T onUk. These ideals are in fact globally defined, because the

local idealsJ(k)
m = (σ (k)

j ,m) are integrally closed, and they coincide on the intersec-
tionsUk∩Uℓ as they have the same order of vanishing by the proof of Lemma 5.5.
By Hironaka [Hir64], we can find a composition of blow-ups with smooth centers
µm : X̃m → X such thatµ∗

mJm is an invertible ideal sheaf associated with a normal
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crossing divisorEm. Now, we can write

µ∗
mϕk,m = ϕk,m◦ µm =

1
m

log|sEm|+ ϕ̃k,m

wheresEm is the canonical section ofO(−Em) andϕ̃k,m is a smooth potential. This
implies

(5.9) µ∗
mTm =

1
m
[Em]+βm

where[Em] is the current of integration overEm andβm is a smooth closed(1,1)-
form which satisfies the lower boundβm > µ∗

m(γ − εmω). (Recall that the pull-
back of a closed(1,1)-current by a holomorphic mapf is always well-defined,
by taking a local plurisubharmonic potentialϕ such thatT = i∂∂ ϕ and writing
f ∗T = i∂∂ (ϕ ◦ f )). In the remainder of this section, we derive from this a rather
important geometric consequence, first appeared in [DP04]). We need two related
definitions.

(5.10) Definition. A Kähler current on a compact complex space X is a closed
positive current T of bidegree(1,1) which satisfies T> εω for someε > 0 and
some smooth positive Hermitian formω on X.

(5.11) Definition. A compact complex manifold is said to be in theFujiki classC if it is bimeromorphic to a K̈ahler manifold(or equivalently, using Hironaka’s
desingularization theorem, if it admits a proper Kähler modification).

(5.12) Theorem.A compact complex manifold X is bimeromorphic to a Kähler
manifold(i.e. X∈C) if and only if it admits a K̈ahler current.

Proof. If X is bimeromorphic to a Kähler manifoldY, Hironaka’s desingularization
theorem implies that there exists a blow-upỸ of Y (obtained by a sequence of blow-
ups with smooth centers) such that the bimeromorphic map from Y to X can be
resolved into a modificationµ : Ỹ → X. ThenỸ is Kähler and the push-forward
T = µ∗ω̃ of a Kähler formω̃ on Ỹ provides a Kähler current onX. In fact, if ω
is a smooth Hermitian form onX, there is a constantC such thatµ∗ω 6 Cω̃ (by
compactness of̃Y), hence

T = µ∗ω̃ > µ∗(C−1µ∗ω) =C−1ω .

Conversely, assume thatX admits a Kähler currentT > εω . By Theorem 5.8 (c),
there exists a Kähler current̃T = Tm > ε

2ω (with m≫ 1 so large thatεm 6 ε/2)

in the same∂∂ -cohomology class asT, possessing logarithmic poles. Observation
(5.9) implies the existence of a composition of blow-upsµ : X̃ → X such that

µ∗T̃ = [Ẽ]+ β̃ on X̃,
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whereẼ is aQ-divisor with normal crossings and̃β a smooth closed(1,1)-form
such that̃β > ε

2µ∗ω . In particularβ̃ is positive outside the exceptional locus ofµ .
This is not enough yet to produce a Kähler form onX̃, but we are not very far.
Suppose that̃X is obtained as a tower of blow-ups

X̃ = XN → XN−1 → ··· → X1 → X0 = X,

whereXj+1 is the blow-up ofXj along a smooth centerYj ⊂ Xj . Denote bySj+1 ⊂
Xj+1 the exceptional divisor, and letµ j : Xj+1 → Xj be the blow-up map. Now, we
use the following simple

(5.13) Lemma.For every K̈ahler current Tj on Xj , there existsε j+1 > 0 and a
smooth form uj+1 in the∂∂ -cohomology class of[Sj+1] such that

Tj+1 = µ∗
j Tj − ε j+1u j+1

is a Kähler current on Xj+1.

Proof.The line bundleO(−Sj+1)|Sj+1 is equal toOP(Nj )(1) whereNj is the normal
bundle toYj in Xj . Pick an arbitrary smooth Hermitian metric onNj , use this metric
to get an induced Fubini-Study metric onOP(Nj )(1), and finally extend this metric as
a smooth Hermitian metric on the line bundleO(−Sj+1). Such a metric has positive
curvature along tangent vectors ofXj+1 which are tangent to the fibers ofSj+1 =
P(Nj)→Yj . Assume furthermore thatTj > δ jω j for some Hermitian formω j onXj

and a suitable 0< δ j ≪ 1. Then

µ∗
j Tj − ε j+1u j+1 > δ j µ∗

j ω j − ε j+1u j+1

whereµ∗
j ω j is semi-positive onXj+1, positive definite onXj+1 rSj+1, and also

positive definite on tangent vectors ofTXj+1|Sj+1
which are not tangent to the fibers

of Sj+1 →Yj . The statement is then easily proved by takingε j+1 ≪ δ j and by using
an elementary compactness argument on the unit sphere bundle of TXj+1 associated
with any given Hermitian metric. �

End of proof of Theorem5.12. If ũ j is the pull-back ofu j to the final blow-up̃X, we
conclude inductively thatµ∗T̃ −∑ε j ũ j is a Kähler current. Therefore the smooth
form

ω̃ := β̃ −∑ε j ũ j = µ∗T̃ −∑ε j ũ j − [Ẽ]

is Kähler and we see that̃X is a Kähler manifold. �

(5.14) Remark.A special case of Theorem 5.12 is the following characterization
of Moishezon varieties (i.e. manifolds which are bimeromorphic to projective alge-
braic varieties or, equivalently, whose algebraic dimension is equal to their complex
dimension):A compact complex manifold X is Moishezon if and only if X possesses

a Kähler current T such that the De Rham cohomology class{T} is rational, i.e.
{T} ∈ H2(X,Q). In fact, in the above proof, we get an integral currentT if we take
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the push forwardT = µ∗ω̃ of an integral ample class{ω̃} onY, whereµ : Y → X
is a projective model ofY. Conversely, if{T} is rational, we can take theε j ’s to be
rational in Lemma 5.13. This produces at the end a Kähler metric ω̃ with rational
De Rham cohomology class oñX. ThereforeX̃ is projective by the Kodaira embed-
ding theorem. This result was already observed in [JS93] (see also [Bon93, Bon98]
and Paragraph III 6 for a more general perspective based on a singular holomorphic
Morse inequalities).

(5.15) Remark.Hodge decomposition also holds true for manifoldsX ∈C. In fact
let µ : X̃ → X be a modification such that̃X is Kähler. Then there are natural mor-
phisms

µ∗ : H p,q
∂

(X,C)→ H p,q
∂

(X̃,C), µ∗ : H p,q
∂

(X̃,C)→ H p,q
∂

(X,C)

induced respectively by the pull-back of smooth forms (resp. the direct image of cur-
rents). Clearly,µ∗ ◦ µ∗ = Id, thereforeµ∗ is injective andµ∗ surjective, and similar
results hold true for Bott-Chern cohomology or De Rham cohomology. It follows
easily from this that the∂∂ -lemma still holds true forX ∈ C, and that there are
isomorphisms

H p,q
BC(X,C)→ H p,q

∂
(X,C),

⊕

p+q=k

H p,q
BC(X,C)→ Hk

DR(X,C).

6. Zariski decomposition and mobile intersections

Let X be compact Kähler and letα ∈E◦ be in theinterior of the pseudo–effective
cone. In analogy with the algebraic context such a classα is called “big”, and it
can then be represented by aKähler current T, i.e. a closed positive(1,1)-currentT
such thatT > δω for some smooth Hermitian metricω and a constantδ ≪ 1. We
first need a variant of the approximation theorem proved in Paragraph 5.

(6.1) Regularization theorem for currents.Let X be a compact complex manifold
equipped with a Hermitian metricω . Let T= α + i∂∂ϕ be a closed(1,1)-current
on X, whereα is smooth andϕ is a quasi-plurisubharmonic function. Assume that
T > γ for some real(1,1)-form γ on X with real coefficients. Then there exists a
sequence Tm = α + i∂∂ϕm of closed(1,1)-currents such that

(a) ϕm (and thus Tm) is smooth on the complement XrZm of an analytic set Zm,
and the Zm’s form an increasing sequence

Z0 ⊂ Z1 ⊂ ·· · ⊂ Zm ⊂ ·· · ⊂ X.

(b) There is a uniform estimate Tm> γ −δmω with lim ↓ δm= 0 as m tends to+∞.

(c) The sequence(ϕm) is non increasing, and we havelim ↓ ϕm = ϕ . As a conse-
quence, Tm converges weakly to T as m tends to+∞.
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(d) Near Zm, the potentialϕm has logarithmic poles, namely, for every x0 ∈ Zm,
there is a neighborhood U of x0 such thatϕm(z) = λm log∑ℓ |gm,ℓ|2+O(1) for
suitable holomorphic functions(gm,ℓ) on U andλm > 0. Moreover, there is a
(global) proper modificationµm : X̃m → X of X, obtained as a sequence of
blow-ups with smooth centers, such thatϕm◦ µm can be written locally oñXm

as
ϕm◦ µm(w) = λm

(
∑nℓ log|g̃ℓ|2+ f (w)

)

where(g̃ℓ = 0) are local generators of suitable(global) divisors Eℓ onX̃m such
that∑Eℓ has normal crossings, nℓ are positive integers, and the f ’s are smooth
functions onX̃m.

Sketch of proof.We essentially repeat the proofs of Theorems 4.2 and 5.7 withad-
ditional considerations. One fact that does not follow readily from these proofs is
the monotonicity of the sequenceϕm (which we will not really need anyway – it
can be obtained by applying Theorem 4.2 with 2m instead ofm, and by using the
Ohsawa-TakegoshiL2 extension theorem 4.1 for potentials 2mϕ(x)+2mϕ(y) on the
diagonal ofX ×X, so that the restriction is 2m+1ϕ(x) on the diagonal; we refer
e.g. to [DPS01] for details). The mapµm is obtained by blowing-up the (global)
idealsJm defined by the holomorphic functions(g j ,m) in the local approximations
ϕm ∼ 1

2m log∑ j |g j ,m|2. By Hironaka [Hir64], we can achieve thatµ∗
mJm is an in-

vertible ideal sheaf associated with a normal crossing divisor. �

(6.2) Corollary. If T is a Kähler current, then one can write T= lim Tm for a se-
quence of K̈ahler currents Tm which have logarithmic poles with coefficients in1

mZ,
i.e. there are modificationsµm : Xm → X such that

µ∗
mTm = [Em]+βm

where Em is an effectiveQ-divisor on Xm with coefficients in1
mZ (the “fixed part”)

andβm is a closed semi-positive form(the “mobile part”).

Proof. We apply Theorem 6.1 withγ = εω andm so large thatδm 6 ε/2. Then
Tm has analytic singularities andTm > ε

2ω , so we get a composition of blow-ups
µm : Xm → X such

µ∗
mTm = [Em]+βm,

whereEm is an effectiveQ-divisor andβm > ε
2µ∗

mω . In particular,βm is strictly
positive outside the exceptional divisors, by playing withthe multiplicities of the
components of the exceptional divisors inEm, we could even achieve thatβm is a
Kähler class onXm. Notice also that by construction,µm is obtained by blowing-up
the multiplier ideal sheavesI(mT) = I(mϕ) associated to a potentialϕ of T. �

The more familiar algebraic analogue would be to takeα = c1(L) with a big
line bundleL and to blow-up the base locus of|mL|, m≫ 1, to get aQ-divisor
decomposition

(6.3) µ∗
mL ∼ Em+Dm, Em effective, Dm base point free.
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(One says thatDm is base point free ifH0(X,O(Dm) is generated by sections, in
other words ifDm is entirely “mobile” in the linear system|Dm|). Such a blow-up
is usually referred to as a “log resolution” of the linear system |mL|, and we say
thatEm+Dm is an approximate Zariski decomposition ofL. We will also use this
terminology for Kähler currents with logarithmic poles.KNSENS

NSR(Xm)

α̃

[Em]
βm

α̃ = µ∗
mα = [Em]+βm

(6.4) Definition. We define thevolume, or mobile self-intersectionof a classα ∈
H1,1(X,R) to be

Vol(α) = sup
T∈α

∫

XrSing(T)
Tn = sup

T∈α

∫

X̃
β n > 0,

where the supremum is taken over all Kähler currents T∈ α with logarithmic poles,
andµ∗T = [E]+β with respect to some modificationµ : X̃ → X. Correspondingly,
we set

Vol(α) = 0 if α /∈E◦.

In the special case whereα = c1(L) is an integral class, we have the following
interpretation of the volume.

(6.5) Theorem.If L is a big line bundle andµ∗
mL ∼ Em+Dm is a log resolution

of |mL|, we have

Vol(c1(L)) = lim
m→+∞

Dn
m = lim

m→+∞

n!
mnh0(X,mL),

Sketch of proof.Given a Kähler currentT ∈ c1(L) with logarithmic pole, we can
always take a blow-upµ : X̃ → X so thatµ∗T = [E] + β whereE is an effective
R-divisor andβ > 0. By using a perturbation technique as in Lemma 5.13, we can
always assume thatE is aQ-divisor and thatβ is Kähler. Then{β} = µ∗c1(L)−
{[E]} is a rational class and thereforeβ is the first Chern classc1(A) of an ampleQ-
divisor onX̃. Whenm is a multiple of a suitable denominatorm0 andm= qm0+ r,
06 r < m0, we get by the elementary Riemann-Roch formula
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h0(X,mL)> h0(X̃,mµ∗L−m0[m/m0]E) = h0(X̃,m0[m/m0]A+ rµ∗L)∼ mn

n!

∫

X̃
β n,

hence liminfn!
mn h0(X,mL) > Vol(c1(L)) by taking the supremum over all such cur-

rentsT. In the other direction, the inequality limsupn!
mn h0(X,mL) 6 Vol(c1(L)) is

obtained by subtracting a small rational multipleεA of an ample line bundleA. One
shows that multiples ofL−εA roughly have the same number of sections as those of
L by an exact sequence argument similar to what was done in the proof of 3.4 (b). By
a result of Fujita [Fuj94] (cf. also [DEL00]), the volume of the base point free part
Dm,ε in a log resolution of|m(L− εA)| approximates limsupn!

mn h0(X,m(L− εA)),
so we getµ∗

m,ε L = Em,ε +(Dm,ε +εA) whereDm,ε +A is ample. The positive(1,1)-
currentTm,ε = (µm,ε )∗ΘDm,ε+εA is a Kähler current with logarithmic poles and its
volume approaches limsupn!

mn h0(X,mL) whenε ≪ 1 andm is large. �

In these terms, we get the following statement.

(6.6) Proposition.Let L be a big line bundle on the projective manifold X. Letε > 0.
Then there exists a modificationµ : Xε → X and a decompositionµ∗(L) = E+ β
with E an effectiveQ-divisor andβ a big and nefQ-divisor such that

Vol(L)− ε 6 Vol(β )6 Vol(L).

It is very useful to observe that the supremum in Definition 6.4 is actually
achieved by a collection of currents whose singularities satisfy a filtering property.
Namely, ifT1 = α + i∂∂ϕ1 andT2 = α + i∂∂ϕ2 are two Kähler currents with loga-
rithmic poles in the class ofα, then

(6.7) T = α + i∂∂ϕ , ϕ = max(ϕ1,ϕ2)

is again a Kähler current with weaker singularities thanT1 andT2. One could define
as well

(6.7′) T = α + i∂∂ϕ , ϕ =
1

2m
log(e2mϕ1 +e2mϕ2),

wherem= lcm(m1,m2) is the lowest common multiple of the denominators occur-
ing in T1, T2. Now, take a simultaneous log-resolutionµm : Xm → X for which the
singularities ofT1 andT2 are resolved asQ-divisorsE1 andE2. Then clearly the as-
sociated divisor in the decompositionµ∗

mT = [E]+β is given byE = min(E1,E2).
By doing so, the volume

∫
Xm

β n gets increased, as we shall see in the proof of The-
orem 6.8 below.

(6.8) Theorem (Boucksom [Bck02]). Let X be a compact K̈ahler manifold. We
denote here by Hk,k>0(X) the cone of cohomology classes of type(k,k) which have
non-negative intersection with all closed semi-positive smooth forms of bidegree
(n− k,n− k).
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(a) For each integer k= 1,2, . . . ,n, there exists a canonical “mobile intersection
product”E×·· ·×E→ Hk,k

>0(X), (α1, . . . ,αk) 7→ 〈α1 ·α2. · · · .αk−1 ·αk〉

such thatVol(α) = 〈αn〉 wheneverα is a big class.

(b) The product is increasing, homogeneous of degree1 and superadditive in each
argument, i.e.

〈α1 · · · (α ′
j +α ′′

j ) · · ·αk〉> 〈α1 · · ·α ′
j · · ·αk〉+ 〈α1 · · ·α ′′

j · · ·αk〉.

It coincides with the ordinary intersection product when the α j ∈K are nef
classes.

(c) The mobile intersection product satisfies the Hovanskii-Teissier inequalities
([Hov79], [Tei79, Tei82])

〈α1 ·α2. · · · .αn〉> (〈αn
1〉)1/n · · · (〈αn

n〉)1/n (with 〈αn
j 〉= Vol(α j )).

(d) For k= 1, the above “product” reduces to a(non linear) projection operatorE→E1, α → 〈α〉

onto a certain convex subconeE1 ofE such thatK⊂E1 ⊂E. Moreover, there
is a “divisorial Zariski decomposition”

α = {N(α)}+ 〈α〉

where N(α) is a uniquely defined effective divisor which is called the “negative
divisorial part” of α. The mapα 7→ N(α) is homogeneous and subadditive,
and N(α) = 0 if and only ifα ∈E1.

(e) The components of N(α) always consist of divisors whose cohomology classes
are linearly independent, especially N(α) has at mostρ = rankZ NS(X) com-
ponents.

Proof.We essentially repeat the arguments developped in [Bck02],with some sim-
plifications arising from the fact thatX is supposed to be Kähler from the beginning.

(a) First assume that all classesα j are big, i.e.α j ∈ E◦. Fix a smooth closed
(n− k,n− k) semi-positiveform u on X. We select Kähler currentsTj ∈ α j with
logarithmic poles, and a simultaneous log-resolutionµ : X̃ → X such that

µ∗Tj = [E j ]+β j .

We consider the direct image currentµ∗(β1∧ ·· · ∧ βk) (which is a closed positive
current of bidegree(k,k) onX) and the corresponding integrals
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∫

X̃
β1∧·· ·∧βk∧µ∗u> 0.

If we change the representativeTj with another currentT ′
j , we may always take a

simultaneous log-resolution such thatµ∗T ′
j = [E′

j ]+β ′
j , and by using(6.7′) we can

always assume thatE′
j 6 E j . ThenD j = E j −E′

j is an effective divisor and we find
[E j ]+β j ≡ [E′

j ]+β ′
j , henceβ ′

j ≡ β j +[D j ]. A substitution in the integral implies

∫

X̃
β ′

1∧β2∧·· ·∧βk∧µ∗u

=
∫

X̃
β1∧β2∧·· ·∧βk∧µ∗u+

∫

X̃
[D1]∧β2∧·· ·∧βk∧µ∗u

>

∫

X̃
β1∧β2∧·· ·∧βk∧µ∗u.

Similarly, we can replace successively all formsβ j by theβ ′
j , and by doing so, we

find ∫

X̃
β ′

1∧β ′
2∧·· ·∧β ′

k∧µ∗u>

∫

X̃
β1∧β2∧·· ·∧βk∧µ∗u.

We claim that the closed positive currentsµ∗(β1∧·· · ∧βk) are uniformly bounded
in mass. In fact, ifω is a Kähler metric inX, there exists a constantCj > 0 such that
Cj{ω}−α j is a Kähler class. HenceCjω −Tj ≡ γ j for some Kähler formγ j on X.
By pulling back withµ , we findCj µ∗ω − ([E j ]+β j)≡ µ∗γ j , hence

β j ≡Cj µ∗ω − ([E j ]+ µ∗γ j).

By performing again a substitution in the integrals, we find
∫

X̃
β1∧·· ·∧βk∧µ∗u6C1 · · ·Ck

∫

X̃
µ∗ωk∧µ∗u=C1 · · ·Ck

∫

X
ωk∧u

and this is true especially foru = ωn−k. We can now arrange that for each of the
integrals associated with a countable dense family of formsu, the supremum is
achieved by a sequence of currents(µm)∗(β1,m∧·· ·∧βk,m) obtained as direct images
by a suitable sequence of modificationsµm : X̃m → X. By extracting a subsequence,
we can achieve that this sequence is weakly convergent and weset

〈α1 ·α2. · · · .αk〉= lim ↑
m→+∞

{(µm)∗(β1,m∧β2,m∧·· ·∧βk,m)}

(the monotonicity is not in terms of the currents themselves, but in terms of the inte-
grals obtained when we evaluate against a smooth closed semi-positive formu). By
evaluating against a basis of positive classes{u} ∈ Hn−k,n−k(X), we infer by Serre
duality that the class of〈α1 ·α2. · · · .αk〉 is uniquely defined (although, in general,
the representing current is not unique).

(b) It is indeed clear from the definition that the mobile intersection product is
homogeneous, increasing and superadditive in each argument, at least when theα j ’s
are inE◦. However, we can extend the product to the closed coneE by monotonic-
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ity, by setting

〈α1 ·α2 · · ·αk〉= lim ↓
δ↓0

〈(α1+ δω) · (α2+ δω). · · · .(αk+ δω)〉

for arbitrary classesα j ∈ E (again, monotonicity occurs only where we evaluate
against closed semi-positive formsu). By weak compactness, the mobile intersec-
tion product can always be represented by a closed positive current of bidegree
(k,k).

(c) The Hovanskii-Teissier inequalities are a direct consequence of the fact that
they hold true for nef classes, so we just have to apply them tothe classesβ j ,m on
X̃m and pass to the limit.

(d) Whenk= 1 andα ∈E0, we have

α = lim
m→+∞

{(µm)∗Tm}= lim
m→+∞

(µm)∗[Em]+ {(µm)∗βm}

and〈α〉= limm→+∞{(µm)∗βm} by definition. However, the imagesFm = (µm)∗
Fm are effectiveQ-divisors in X, and the filtering property implies thatFm is
a decreasing sequence. It must therefore converge to a (uniquely defined) limit
F = lim Fm := N(α) which is an effectiveR-divisor, and we get the asserted de-
composition in the limit.

SinceN(α) =α−〈α〉 we easily see thatN(α) is subadditive and thatN(α) = 0
if α is the class of a smooth semi-positive form. Whenα is no longer a big class,
we define

〈α〉= lim
δ↓0

↓ 〈α + δω〉, N(α) = lim
δ↓0

↑ N(α + δω)

(the subadditivity ofN implies N(α + (δ + ε)ω) 6 N(α + δω)). The divisorial
Zariski decomposition follows except maybe for the fact that N(α) might be a
convergent countable sum of divisors. However, this will beruled out when (e) is
proved. AsN(•) is subadditive and homogeneous, the setE1 = {α ∈E ; N(α) = 0}
is a closed convex cone, and we find thatα 7→ 〈α〉 is a projection ofE ontoE1 (ac-
cording to [Bck02],E1 consists of those pseudo-effective classes which are “nef in
codimension 1”).

(e) Letα ∈E◦, and assume thatN(α) contains linearly dependent components
Fj . Then already all currentsT ∈ α should be such thatµ∗T = [E]+β whereF =
µ∗E contains those linearly dependent components. WriteF = ∑λ jFj , λ j > 0 and
assume that

∑
j∈J

c jFj ≡ 0

for a certain non trivial linear combination. Then some of the coefficientsc j must
be negative (and some other positive). ThenE is numerically equivalent to

E′ ≡ E+ tµ∗
(
∑λ jFj

)
,
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and by choosingt > 0 appropriate, we obtain an effective divisorE′ which has a
zero coefficient on one of the componentsµ∗Fj0. By replacingE with min(E,E′)
via (6.7′), we eliminate the componentµ∗Fj0. This is a contradiction sinceN(α)
was supposed to containFj0. �

(6.9) Definition. For a classα ∈ H1,1(X,R), we define thenumerical dimension
nd(α) to bend(α) =−∞ if α is not pseudo-effective, and

nd(α) = max{p∈ N ; 〈α p〉 6= 0}, nd(α) ∈ {0,1, . . . ,n}

if α is pseudo-effective.

By the results of [DP04], a class is big (α ∈ E◦) if and only if nd(α) = n.
Classes of numerical dimension 0 can be described much more precisely, again
following Boucksom [Bck02].

(6.10) Theorem.Let X be a compact K̈ahler manifold. Then the subsetD0 of irre-
ducible divisors D in X such thatnd(D)=0 is countable, and these divisors are rigid
as well as their multiples. Ifα ∈E is a pseudo-effective class of numerical dimen-
sion 0, thenα is numerically equivalent to an effectiveR-divisor D= ∑ j∈J λ jD j ,
for some finite subset(D j) j∈J ⊂D0 such that the cohomology classes{D j} are
linearly independent and someλ j > 0. If such a linear combination is of numerical
dimension0, then so is any other linear combination of the same divisors.

Proof. It is immediate from the definition that a pseudo-effective class is of numeri-
cal dimension 0 if and only if〈α〉= 0, in other words ifα =N(α). Thusα ≡∑λ jD j

as described in 6.10, and sinceλ j〈D j〉6 〈α〉, the divisorsD j must themselves have
numerical dimension 0. There is at most one such divisorD in any given cohomol-
ogy class inNS(X)∩E⊂H2(X,Z), otherwise two such divisorsD≡D′ would yield
a blow-upµ : X̃ → X resolving the intersection, and by taking min(µ∗D,µ∗D′) via
(6.7′), we would findµ∗D ≡ E+β , β 6= 0, so that{D} would not be of numerical
dimension 0. This implies that there are at most countably many divisors of numer-
ical dimension 0, and that these divisors are rigid as well astheir multiples. �

(6.11) Remark.If L is an arbitrary holomorphic line bundle, we define its numerical
dimension to be nd(L) = nd(c1(L)). Using the canonical mapsΦ|mL| and pulling-
back the Fubini-Study metric it is immediate to see that nd(L) > κ(L).

The above general concept of numerical dimension leads to a very natural for-
mulation of the abundance conjecture for Kähler varieties.

(6.12) Generalized Abundance Conjecture.Let X be an arbitrary compact K̈ahler
manifold X.

(a) The Kodaira dimension of X should be equal to its numerical dimension:
κ(KX) = nd(KX).

(b) More generally, let∆ be aQ-divisor which is klt(Kawamata log terminal, i.e.
such that cX(∆) > 1). Thenκ(KX +∆) = nd(KX +∆).
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(6.13) Remark. It is obvious that abundance holds in the case nd(KX) =−∞ (if
L is not pseudo-effective, no multiple ofL can have sections), or in the case
nd(KX) = n which impliesKX big (the latter property follows e.g. from the solu-
tion of the Grauert-Riemenschneider conjecture in the formproven in [Dem85], see
also [DP04]).

In the remaining cases, the most tractable situation is the case when nd(KX) =
0. In fact Theorem 6.10 then givesKX ≡ ∑λ jD j for some effective divisor with
numerically independent components, nd(D j) = 0. It follows that theλ j are rational
and therefore

(∗) KX ∼ ∑λ jD j +F whereλ j ∈Q+, nd(D j) = 0 andF ∈ Pic0(X).

If we assume additionally thatq(X) = h0,1(X) is zero, thenmKX is linearly equiv-
alent to an integral divisor for some multiplem, and it follows immediately that
κ(X) = 0. The case of a general projective manifold with nd(KX) = 0 and posi-
tive irregularityq(X) > 0 has been solved by Campana-Peternell [CP04], Proposi-
tion 3.7. It would be interesting to understand the Kähler case as well.

7. The orthogonality estimate

The goal of this section is to show that, in an appropriate sense, approximate Zariski
decompositions are almost orthogonal.

(7.1) Theorem.Let X be a projective manifold, and letα = {T} ∈ E◦
NS be a big

class represented by a Kähler current T . Consider an approximate Zariski decom-
position

µ∗
mTm = [Em]+ [Dm]

Then
(Dn−1

m ·Em)
2 6 20(Cω)n(Vol(α)−Dn

m

)

whereω = c1(H) is a Kähler form and C> 0 is a constant such that±α is domi-
nated by Cω (i.e., Cω ±α is nef). In other words, Em and Dm become “more and
more orthogonal” as Dnm approaches the volume.

Proof.For everyt ∈ [0,1], we have

Vol(α) = Vol(Em+Dm)> Vol(tEm+Dm).

Now, by our choice ofC, we can writeEm as a difference of two nef divisors

Em = µ∗α −Dm = µ∗
m(α +Cω)− (Dm+Cµ∗

mω). �

(7.2) Lemma.For all nefR-divisors A, B we have

Vol(A−B)> An−nAn−1 ·B
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as soon as the right hand side is positive.

Proof. In caseA andB are integral divisors, this is a consequence of holomorphic
Morse inequalities (cf. (I 2.15)). IfA andB areQ-divisors, we conclude by the ho-
mogeneity of the volume. The general case ofR-divisors follows by approximation
(actually, as it is defined to be a supremum, the volume function can easily be shown
to be lower semi-continuous, but it is in fact even continuous, cf. [Bck02, 3.1.26]).

�

(7.3) Remark.We hope that Lemma 7.2 also holds true on an arbitrary Kählermani-
fold for arbitrary nef (non necessarily integral) classes.This would follow from
Conjecture (III 2.11) generalizing holomorphic Morse inequalities to non integral
classes, exactly by the same proof as Theorem (I 2.14).

(7.4) Lemma. Let β1, . . . ,βn and β ′
1, . . . ,β

′
n be nef classes on a compact Kähler

manifoldX̃ such that each differenceβ ′
j −β j is pseudo-effective. Then the n-th in-

tersection products satisfy
β1 · · ·βn 6 β ′

1 · · ·β ′
n.

Proof.We can proceed step by step and replace just oneβ j by β ′ j ≡ β j +Tj where
Tj is a closed positive(1,1)-current and the other classesβ ′

k = βk, k 6= j are limits
of Kähler forms. The inequality is then obvious. �

End of proof of Theorem7.1. In order to exploit the lower bound of the volume, we
write

tEm+Dm = A−B, A= Dm+ tµ∗
m(α +Cω), B= t(Dm+Cµ∗

mω).

By our choice of the constantC, bothA andB are nef. Lemma 7.2 and the binomial
formula imply

Vol(tEm+Dm)> An−nAn−1 ·B

= Dn
m+nt Dn−1

m ·µ∗
m(α +Cω)+

n

∑
k=2

tk
(

n
k

)
Dn−k

m ·µ∗
m(α +Cω)k

−nt Dn−1
m · (Dm+Cµ∗

mω)

−nt2
n−1

∑
k=1

tk−1
(

n−1
k

)
Dn−1−k

m ·µ∗
m(α +Cω)k · (Dm+Cµ∗

mω).

Now, we use the obvious inequalities

Dm 6 µ∗
m(Cω), µ∗

m(α +Cω)6 2µ∗
m(Cω), Dm+Cµ∗

mω 6 2µ∗
m(Cω)

in which all members are nef (and where the inequality6 means that the difference
of classes is pseudo-effective). We use Lemma 7.4 to bound the last summation in
the estimate of the volume, and in this way we get
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Vol(tEm+Dm)> Dn
m+ntDn−1

m ·Em−nt2
n−1

∑
k=1

2k+1tk−1
(

n−1
k

)
(Cω)n.

We will always taket smaller than 1/10n so that the last summation is bounded by
4(n−1)(1+1/5n)n−2< 4ne1/5 < 5n. This implies

Vol(tEm+Dm)> Dn
m+nt Dn−1

m ·Em−5n2t2(Cω)n.

Now, the choicet = 1
10n(D

n−1
m ·Em)((Cω)n)−1 gives by substituting

1
20

(Dn−1
m ·Em)

2

(Cω)n 6 Vol(Em+Dm)−Dn
m 6 Vol(α)−Dn

m

(and we have indeedt 6 1
10n by Lemma 7.4), whence Theorem 7.1. Of course, the

constant 20 is certainly not optimal. �

(7.5) Corollary. If α ∈ENS, then the divisorial Zariski decompositionα = N(α)+
〈α〉 is such that

〈αn−1〉 ·N(α) = 0.

Proof.By replacingα with α +δc1(H), one sees that it is sufficient to consider the
case whereα is big. Then the orthogonality estimate implies

(µm)∗(Dn−1
m ) · (µm)∗Em = Dn−1

m · (µm)
∗(µm)∗Em

6 Dn−1
m ·Em 6C(Vol(α)−Dn

m)
1/2.

Since〈αn−1〉 = lim(µm)∗(Dn−1
m ), N(α) = lim(µm)∗Em and limDn

m = Vol(α), we
get the desired conclusion in the limit. �

8. Dual of the pseudo-effective cone

We consider here the Serre duality pairing

(8.1) H1,1(X,R)×Hn−1,n−1(X,R)−→R, (α,β ) 7−→ α ·β =
∫

X
α ∧β .

When restricted to real vector subspaces generated by integral classes, it defines a
perfect pairing

(8.2) NSR×NSn−1,n−1
R (X)−→R

where NSR ⊂ H1,1(X,R) and NSn−1,n−1
R (X)⊂ Hn−1,n−1(X,R). Next, we introduce

the concept of mobile curves.

(8.3) Definition.Let X be a smooth projective variety.
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(a) One definesNE(X)⊂ NSn−1,n−1
R (X) to be the convex cone generated by coho-

mology classes of all effective curves in Hn−1,n−1(X,R).

(b) We say that C is amobile curveif C = Ct0 is a member of an analytic family
{Ct}t∈S such that

⋃
t∈SCt =X and, as such, is a reduced irreducible1-cycle. We

define the mobile coneME(X), to be the convex cone generated by all mobile
curves.

(c) If X is projective, we say that an effective1-cycle C is astrongly mobileif we
have

C= µ∗(Ã1∩·· ·∩ Ãn−1)

for suitable very ample divisors̃A j on X̃, whereµ : X̃ → X is a modification.
We letMEs(X) be the convex cone generated by all strongly mobile effective
1-cycles(notice that by taking̃A j general enough these classes can be repre-
sented by reduced irreducible curves; also, by Hironaka, one could just restrict
oneself to compositions of blow-ups with smooth centers).

Clearly, we have

(8.4) MEs(X)⊂ ME(X)⊂ NE(X)⊂ NSn−1,n−1
R (X).

Another simple observation is:

(8.5) Proposition.One hasα ·C> 0 whenever{α}∈E and{C}∈ME(X). In other
wordsENS =E∩NSR(X) is contained in the dual cone(ME(X))∨.

Proof. If the class{α} is represented by a closed positive currentT andC = Ct0
belongs to a covering family(Ct)t∈S, it is easy to see thatT|Ct is locally well defined
and nonnegative as soon asCt is not contained in the set of poles of a local potential
ϕ of T. However, this occurs only whent belongs to a pluripolar setP⊂ S, hence
for t ∈ SrP we have

α ·C=

∫

Ct

T|Ct > 0. �

The following statement was first proved in [BDPP04].

(8.6) Theorem.If X is projective, the conesENS = Eff(X) andMEs(X) are dual
with respect to Serre duality, and we haveMEs(X) = ME(X).

In other words, a line bundleL is pseudo-effective if (and only if)L ·C> 0 for
all mobile curves, i.e., L ·C > 0 for every very generic curveC (not contained in
a countable union of algebraic subvarieties). In fact, by definition of MEs(X), it is
enough to consider only those curvesC which are images of generic complete inter-
section of very ample divisors on some varietyX̃, under a modificationµ : X̃ → X.
By a standard blowing-up argument, it also follows that a line bundleL on a nor-
mal Moishezon variety is pseudo-effective if and only ifL ·C > 0 for every mobile
curveC.
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Proof.By (8.5) we haveENS⊂ (ME(X))∨ and (8.4) implies(ME(X))∨ ⊂ (MEs(X))∨,
therefore

(8.7) ENS ⊂ (MEs(X))∨.

If we show thatENS=(MEs(X))∨, we get at the same time(MEs(X))∨ =(ME(X))∨,
and therefore by biduality (Hahn-Banach theorem) we will infer MEs(X) = ME(X).
Now, if the inclusion were strict in (8.7), there would be an elementα ∈ ∂ENS on
the boundary ofENS which is in the interior of MEs(X)∨.EENS M∨

(MNS)
∨

NSR(X) H1,1(X,R) Hn−1,n−1(X,R)

MNS

M
α − εω

α
α + δω

ω

Γ

Nn−1
NS (X)

Let ω = c1(H) be an ample class. Sinceα ∈ ∂ENS, the classα + δω is big for
everyδ > 0, and sinceα ∈ ((MEs(X))∨)◦ we still haveα − εω ∈ (MEs(X))∨ for
ε > 0 small. Therefore

(8.8) α ·Γ > εω ·Γ

for every strongly mobile curveΓ , and therefore for everyΓ ∈ MEs(X). We are
going to contradict (8.8). Sinceα + δω is big, we have an approximate Zariski
decomposition

µ∗
δ (α + δω) = Eδ +Dδ .

We pickΓ = (µδ )∗(D
n−1
δ )∈MEs(X). By the Hovanskii-Teissier concavity inequal-

ity
ω ·Γ > (ωn)1/n(Dn

δ )
(n−1)/n.

On the other hand

α ·Γ = α · (µδ )∗(D
n−1
δ )

= µ∗
δ α ·Dn−1

δ 6 µ∗
δ (α + δω) ·Dn−1

δ

= (Eδ +Dδ ) ·Dn−1
δ = Dn

δ +Dn−1
δ ·Eδ .

By the orthogonality estimate, we find
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α ·Γ
ω ·Γ 6

Dn
δ +
(
20(Cω)n(Vol(α + δω)−Dn

δ)
)1/2

(ωn)1/n(Dn
δ )

(n−1)/n

6C′(Dn
δ )

1/n+C′′ (Vol(α + δω)−Dn
δ)

1/2

(Dn
δ )

(n−1)/n
.

However, sinceα ∈ ∂ENS, the classα cannot be big so

lim
δ→0

Dn
δ = Vol(α) = 0.

We can also takeDδ to approximate Vol(α + δω) in such a way that(Vol(α +
δω)−Dn

δ )
1/2 tends to 0 much faster thanDn

δ . Notice thatDn
δ > δ nωn, so in fact it

is enough to take
Vol(α + δω)−Dn

δ 6 δ 2n,

which gives(α ·Γ )/(ω ·Γ )6 (C′+C′′)δ . This contradicts (8.8) forδ small. �

Part III. Asymptotic cohomology functionals and
Monge-Ampère operators

The goal of this Section is to show that there are strong relations between certain
Monge-Ampère integrals appearing in holomorphic Morse inequalities, and asymp-
totic cohomology estimates for tensor powers of holomorphic line bundles. Espe-
cially, we prove that these relations hold without restriction for projective surfaces,
and in the special case of the volume, i.e. of asymptotic 0-cohomology, for all pro-
jective manifolds. These results can be seen as a partial converse to the Andreotti-
Grauert vanishing theorem.

0. Introduction and main definitions

Throughout this Section,X denotes a compact complex manifold,n= dimC X its
complex dimension andL → X a holomorphic line bundle. In order to estimate
the growth of cohomology groups, it is interesting to consider appropriate “asymp-
totic cohomology functions”. Following partly notation and concepts introduced by
A. Küronya [Kür06, FKL07], we introduce

(0.1) Definition. Let X be a compact complex manifold and let L→ X be a holo-
morphic line bundle.
(a) The q-th asymptotic cohomology functional is defined as

ĥq(X,L) := limsup
k→+∞

n!
kn hq(X,L⊗k).
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(b) The q-th asymptotic holomorphic Morse sum of L is

ĥ≤q(X,L) := limsup
k→+∞

n!
kn ∑

06 j6q

(−1)q− jh j(X,L⊗k).

When the limsup’s are limits, we have the obvious relation

ĥ≤q(X,L) = ∑
06 j6q

(−1)q− j ĥ j(X,L).

Clearly, Definition 0.1 can also be given for aQ-line bundleL or aQ-divisor D,
and in the caseq = 0 one gets by (II 6.5) what is called the volume ofL (see also
[DEL00], [Bck02], [Laz04]):

(0.2) Vol(X,L) := ĥ0(X,L) = limsup
k→+∞

n!
kn h0(X,L⊗k).

1. Extension of the functionals to real cohomology classes

We are going to show that thêhq functional induces a continuous map

(1.1) DNSR(X) ∋ α 7→ ĥq
DNS(X,α),

which is defined on the “divisorial Néron-Severi space” DNSR(X) ⊂ H1,1
BC(X,R),

i.e. the vector space spanned by real linear combinations ofclasses of divisors in the
real Bott-Chern cohomology group of bidegree(1,1). HereH p,q

BC(X,C) is defined as
the quotient ofd-closed(p,q)-forms by∂∂ -exact(p,q)-forms, and there is a natural
conjugationH p,q

BC(X,C)→Hq,p
BC(X,C) which allows us to speak of real classes when

q= p. Notice thatH p,q
BC(X,C) coincides with the usual Dolbeault cohomology group

H p,q(X,C) whenX is Kähler, and that DNSR(X) coincides with the usual Néron-
Severi space

(1.2) NSR(X) = R⊗Q

(
H2(X,Q)∩H1,1(X,C)

)

whenX is projective (the inclusion can be strict in general, e.g. on complex 2-tori
which only have indefinite integral(1,1)-classes, cf. [BL04]).

For α ∈ NSR(X) (resp.α ∈ DNSR(X)), we set

ĥq
NS(X,α)

(
resp.̂hq

DNS(X,α)
)
= limsup

k→+∞, 1
k c1(L)→α

n!
kn hq(X,L)

= inf
ε>0,k0>0

sup
k>k0,‖ 1

k c1(L)−α‖6ε

n!
kn hq(X,L).(1.3)
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when the pair(k,L) runs overN∗ × Pic(X), resp. overN∗ × PicD(X) where
PicD(X)⊂ Pic(X) is the subgroup generated by “divisorial line bundles”, i.e. line
bundles of the formOX(D). Similar definitions can be given for the Morse sum func-
tionalsĥ6q

NS(X,α) andĥ6q
DNS(X,α). Clearlyĥ6q

DNS(X,α) 6 ĥ6q
NS(X,α) on DNSR(X),

but we do not know at this point whether this is always an equality. From the very
definition,̂hq

NS , ĥ6q
NS (and likewisêhq

DNS , ĥ6q
DNS) are upper semi-continuous functions

which are positively homogeneous of degreen, namely

(1.4) ĥq
NS(X,λ α) = λ nĥq

NS(X,α)

for all α ∈ NSR(X) and allλ > 0. Notice that̂hq
NS(X,α) andĥ6q

NS(X,α) are always
finite thanks to holomorphic Morse inequalities (see below).

(1.5) Proposition.
(a) For L∈ PicD(X), one haŝhq(X,L)=ĥq(X,c1(L)), ĥ6q(X,L)=ĥ6q

DNS(X,c1(L)),
in particular asymptotic cohomology depends only on the numerical class of L.

(b) The mapα 7→ ĥq
DNS(X,α) is (locally) Lipschitz continuous onDNSR(X).

(c) When q= 0, ĥ0
DNS(X,α) andĥ0

NS(X,α) coincide onDNSR(X) and the limsups
are limits.

The proof is derived from arguments quite similar to those already developed in
[Kür06] (see also [Dem10a] for the non projective situation). If D=∑ p jD j is an in-
tegral divisor, we define its norm to be‖D‖= ∑ |p j |Volω(D j ), where the volume of
an irreducible divisor is computed by means of a given Hermitian metricω onX; in
other words, this is precisely the mass of the current of integration[D] with respect
to ω . Clearly, sinceX is compact, we get equivalent norms for all choices of Her-
mitian metricsω onX. We can also useω to fix a normalized metric onH1,1

BC(X,R).
Elementary properties of potential theory show that‖c1(O(D))‖ 6C‖D‖ for some
constantC> 0 (but the converse inequality is of course wrong in most cases). Propo-
sition 1.5 is a simple consequence of the more precise cohomology estimates (1.9)
which will be obtained below. The special caseq= 0 is easier, in fact, one can get
non zero values for̂h0(X,L) only whenL is big, i.e. whenX is Moishezon (so that
we are always reduced to the divisorial situation); the factthat limsups are limits
was proved in II (6.5). We postpone the proof to section 19, which will provide
stronger results based on approximate Zariski decomposition.

(1.6) Lemma.Let X be a compact complex n-fold. Then for every coherent sheafF
on X, there is a constant CF > 0 such that for every holomorphic line bundle L on X
we have

hq(X,F⊗OX(L)) 6CF(‖c1(L)‖+1)p

where p= dimSuppF.

Proof.We prove the result by induction onp; it is indeed clear forp= 0 since we
then have cohomology only in degree 0 and the dimension ofH0(X,F⊗OX(L))
does not depend onL whenF has finite support. Let us consider the supportY of
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space. ThenF is anOY-module for some non necessarily reduced complex structureOY = OX/J on Y. We can look at the reduced structureOY,red = OX/I, I =

√J,
and filterF byIkF, k> 0. SinceIkF/Ik+1F is a coherentOY,red-module, we can
easily reduce the situation to the case whereY is reduced andF is anOY-module.
In that case the cohomology

Hq(X,F⊗OX(L)) = Hq(Y,F⊗OY(L|Y))

just lives on the reduced spaceY.
Now, we have an injective sheaf morphismF→ µ∗µ∗F whose cokernelG has

support in dimension< p. By induction onp, we conclude from the exact sequence
that

∣∣hq(X,F⊗OX(L))−hq(X,µ∗µ∗F⊗OX(L))
∣∣ 6C1(‖c1(L)‖+1)p−1.

The functorial morphisms

µ∗ : Hq(Y,F⊗OY(L|Y))→ Hq(Ŷ,µ∗F⊗OŶ(µ
∗L)|Y),

µ∗ : Hq(Ŷ,µ∗F⊗OŶ(µ
∗L)|Y)→ Hq(Y,µ∗µ∗F⊗OY(L|Y))

yield a composition

µ∗ ◦ µ∗ : Hq(Y,F⊗OY(L|Y))→ Hq(Y,µ∗µ∗F⊗OY(L|Y))

induced by the natural injectionF→ µ∗µ∗F. This implies

hq(Y,F⊗OY(L|Y))6 hq(Ŷ,µ∗F⊗OŶ(µ
∗L|Y))+C1(‖c1(L)‖+1)p−1.

By taking a suitable modificationµ ′ : Y′ → Y of the desingularization̂Y, we
can assume that(µ ′)∗F is locally free modulo torsion. Then we are reduced to
the case whereF′ = (µ ′)∗F is a locally free sheaf on a smooth manifoldY′,
and L′ = (µ ′)∗L|Y. In this case, we apply Morse inequalities to conclude that
hq(Y′,F′⊗OY′(L′)) 6C2(‖c1(L′)‖+1)p. Since‖c1(L′)‖ 6C3‖c1(L)‖ by pulling-
back, the statement follows easily. �

(1.7) Corollary. For every irreducible divisor D on X, there exists a constantCD

such that
hq(D,OD(L|D))6CD(‖c1(L)‖+1)n−1

Proof. It is enough to apply Lemma 1.6 withF= (iD)∗OD whereiD : D → X is the
injection. �

(1.8) Remark.It is very likely that one can get an “elementary” proof of Lemma 1.6
without invoking resolutions of singularities, e.g. by combining the Cartan-Serre
finiteness argument along with the standard Serre-Siegel proof based ultimately on
the Schwarz lemma. In this context, one would invokeL2 estimates to get explicit
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bounds for the homotopy operators betweenČech complexes relative to two cov-
eringsU = (B(x j , r j)), U′ = (B(x j , r j/2)) of X by concentric balls. By exercising
enough care in the estimates, it is likely that one could reach an explicit dependence
CD 6C′‖D‖ for the constantCD of Corollary 1.7. The proof would of course become
much more technical than the rather naive brute force approach we have used.

(1.9) Theorem.Let X be a compact complex manifold. Fix a finitely generated sub-
groupΓ of the group ofZ-divisors on X. Then there are constants C, C′ depending
only on X, its Hermitian metricω and the subgroupΓ , satisfying the following
properties.

(a) Let L and L′ = L⊗O(D) be holomorphic line bundles on X, where D∈ Γ is an
integral divisor. Then

∣∣hq(X,L′)−hq(X,L)
∣∣ 6C(‖c1(L)‖+ ‖D‖)n−1‖D‖.

(b) On the subspaceDNSR(X), the asymptotic q-cohomology functionĥq
DNS satis-

fies a global estimate
∣∣ĥq

DNS(X,β )− ĥq
DNS(X,α)

∣∣6C′(‖α‖+ ‖β‖)n−1‖β −α‖.

In particular (without any further assumption on X), ĥq
DNS is locally Lipschitz con-

tinuous onDNSR(X).

Proof. (a) We want to compare the cohomology ofL and L′ = L ⊗O(D) on X.
For this we writeD = D+−D−, and compare the cohomology of the pairsL and
L1 = L⊗O(−D−) one one hand, and ofL′ andL1 = L′⊗O(−D+) on the other hand.
Since‖c1(O(D))‖6C‖D‖ by elementary potential theory, we see that is is enough
to consider the case of a negative divisor, i.e.L′ = L⊗O(−D), D > 0. If D is an
irreducible divisor, we use the exact sequence

0→ L⊗O(−D)→ L → OD⊗L|D → 0

and conclude by Corollary 1.7 that
∣∣hq(X,L⊗O(−D))−hq(X,L)

∣∣ 6 hq(D,OD ⊗L|D)+hq−1(D,OD ⊗L|D)

6 2CD(‖c1(L)‖+1)n−1.

ForD = ∑ p jD j > 0, we easily get by induction

∣∣hq(X,L⊗O(−D))−hq(X,L)
∣∣6 2∑

j
p jCD j

(
‖c1(L)‖+∑

k

pk‖∇k‖+1
)n−1

.

If we knew thatCD 6 C′‖D‖ as expected in Remark 1.6, then the argument would
be complete without any restriction onD. The trouble disappears if we fixD in a
finitely generated subgroupΓ of divisors, because only finitely many irreducible
components appear in that case, and so we have to deal with only finitely many
constantsCD j . Property 1.9 (a) is proved.
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(b) Fix once for all a finite set of divisors(∆ j)16 j6t providing a basis of

DNSR(X)⊂ H1,1
BC(X,R). Take two elementsα andβ in DNSR(X), and fix ε > 0.

Thenβ −α can beε-approximated by aQ-divisor∑λ jD j , λ j ∈Q, and we can find
a pair(k,L) with k arbitrary large such that1kc1(L) is ε-close toα andn!/knhq(X,L)

approacheŝhq
DNS(X,α) by ε. Then1

kL+∑λ j∆ j approachesβ as closely as we want.
When approximatingβ −α, we can arrange thatkλ j is an integer by takingk large
enough. Thenβ is approximated by1kc1(L′) with L′ = L⊗O(∑kλ j∆ j). Property (a)
implies

hq(X,L′)−hq(X,L)>−C
(
‖c1(L)‖+

∥∥∥∑kλ j∆ j

∥∥∥
)n−1∥∥∥∑kλ j∆ j

∥∥∥
>−Ckn(‖α‖+ ε + ‖β −α‖+ ε)n−1(‖β −α‖+ ε).

We multiply the previous inequality byn!/kn and get in this way

n!
kn hq(X,L′)> ĥq

DNS(X,α)− ε −C′(‖α‖+ ‖β‖+ ε)n−1(‖β −α‖+ ε).

By taking the limsup and lettingε → 0, we finally obtain

ĥq
DNS(X,β )− ĥq

DNS(X,α)>−C′(‖α‖+ ‖β‖)n−1‖β −α‖.

Property 1.9 (b) follows by exchanging the roles ofα andβ . �

2. Transcendental asymptotic cohomology functions

Our ambition is to extend the function̂hq
NS in a natural way to the full coho-

mology groupH1,1
BC(X,R). The main trouble, already whenX is projective alge-

braic, is that the Picard numberρ(X) = dimR NSR(X) may be much smaller than
dimR H1,1

BC(X,R), namely, there can be rather few integral classes of type(1,1) onX.
It is well known for instance thatρ(X) = 0 for a generic complex torus of dimension
n> 2, while dimR H1,1

BC(X,R) = n2. However, if we look at the natural morphism

H1,1
BC(X,R)→ H2

DR(X,R)≃ H2(X,R)

to de Rham cohomology, thenH2(X,Q) is dense inH2(X,R). Therefore, given a
classα ∈ H1,1

BC(X,R) and a smoothd-closed(1,1)-form u in α, we can find an
infinite sequence1kLk (k ∈ S⊂ N) of topologicalQ-line bundles, equipped with
Hermitian metricshk and compatible connections∇k such that the curvature forms
1
kΘ∇k

converge tou. By using Kronecker’s approximation with respect to the inte-
gral latticeH2(X,Z)/torsion⊂ H2(X,R), we can even achieve a fast diophantine
approximation

(2.1) ‖Θ∇k
− ku‖6Ck−1/b2
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for a suitable infinite subsetk∈ S⊂ N of multipliers. Then in particular

(2.2) ‖Θ 0,2
∇k

‖= ‖Θ 0,2
∇k

− ku0,2‖6Ck−1/b2,

and we see that(Lk,hk,∇k) is aC∞ Hermitian line bundle which is extremely close
to being holomorphic, since(∇0,1

k )2 =Θ 0,2
∇k

is very small. We fix a Hermitian metric
ω onX and introduce the complex Laplace-Beltrami operator

k,q = (∇0,1
k )(∇0,1

k )∗+(∇0,1
k )∗(∇0,1

k ) acting onL2(X,Λ0,qT∗
X ⊗Lk).

We look at its eigenspaces with respect to theL2 metric induced byω on X and
hk on Lk. In the holomorphic case, Hodge theory tells us that the 0-eigenspace is
isomorphic toHq(X,O(Lk)), but in the “almost holomorphic case” the 0-eigenvalues
deviate from 0, essentially by a shift of the order of magnitude of‖Θ 0,2

∇k
‖ ∼ k−1/b2

(see also the PhD thesis of L. Laeng [Lae02], Chapter 4, for more details). It is thus
natural to introduce in this case

(2.3) Definition. Let X be a compact complex manifold andα ∈ H1,1
BC(X,R) an

arbitrary Bott-Chern(1,1)-class. We define the “transcendental” asymptotic q-
cohomology functions to be

(a) ĥq
tr(X,α) = inf

u∈α
limsup

ε→0,k→+∞,Lk,hk,∇k,
1
kΘ∇k

→u

n!
kn N( k,q,6 kε)

(b) ĥ6q
tr (X,α) = inf

u∈α
limsup

ε→0,k→+∞,Lk,hk,∇k,
1
kΘ∇k

→u

n!
kn ∑

06 j6q

(−1)q− jN( k, j ,6 kε)

where thelimsup runs over all5-tuples(ε,k,Lk,hk,∇k), and where N( k,q,kε)
denotes the sum of dimensions of all eigenspaces of eigenvalues at most equal to
kε for the Laplace-Beltrami operator k,q on L2(X,Λ0,qT∗

X ⊗Lk) associated with
(Lk,hk,∇k) and the base Hermitian metricω .

The word “transcendental” refers here to the fact that we deal with classesα of
type(1,1) which are not algebraic or even analytic. Of course, in the definition, we
could have restricted the limsup to families satisfying a better approximation prop-
erty‖ 1

kΘ∇k
−u‖6Ck−1−1/b2 for some large constantC (this would lead a priori to

a smaller limsup, but there is enough stability in the parameter dependence of the
spectrum for making such a change irrelevant). The minimax principle easily shows
that Definition 2.1 does not depend onω , as the eigenvalues are at most multi-
plied or divided by constants under a change of base metric. Whenα ∈ NSR(X), by
restricting our families{(ε,k,Lk,hk,∇k)} to the case of holomorphic line bundles
only, we get the obvious inequalities

ĥq
NS(X,α)6 ĥq

tr(X,α), ∀α ∈ NSR(X),(2.4a)

ĥ6q
NS(X,α)6 ĥ6q

tr (X,α), ∀α ∈ NSR(X).(2.4b)
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It is natural to raise the question whether these inequalities are always equalities.
Hopefully, the calculation of the quantities limk→+∞

n!
kn N( k,q,6 kε) is a problem

of spectral theory which is completely understood thanks toSection I (see also
[Dem85, 91]). In fact, by Corollary I (1.13), the above limitcan be evaluated ex-
plicitly for any value ofε ∈ R, except possibly for a countable number of values
of ε for which jumps occur; one only has to take care that the non-integrability of
∂ due to the diophantine approximation does not contribute asymptotically to the
eigenvalue distribution, a fact which follows immediatelyfrom (2.2) (cf. [Lae02]).

(2.5) Theorem.With the above notations and assumptions, let us introduce at each
point x in X the “spectral density function”, defined as a finite sum

νu(λ ) =
n! (4π)s−n

(n− s)!
|u1| . . . |us| ∑

(p1,...,ps)∈Ns

(
λ −

s

∑
j=1

(2p j +1)|u j |
)n−s

+

where s= s(x) is the rank of the real(1,1)-form u at x, and uj , 16 j 6 s, its non zero
eigenvalues with respect to the base Hermitian metricω , and us+1 = . . . = un = 0.
For each multi-index J⊂ {1,2, . . . ,n}, let us set uJ = ∑ j∈J u j . Then the asymptotic
spectrum of k,q admits the estimate

lim
k→+∞

n!
kn N( k,q,6 kλ ) =

∫

X
∑
|J|=q

νu(λ +u∁J−uJ)dVω

except possibly for a countable number of values ofλ which are discontinuities of
the right hand integral as an increasing integral ofλ .

(2.6) Corollary. We have(as a limit rather than just alimsup) the spectral estimate

lim
ε→0,k→+∞,Lk,hk,∇k,

1
kΘ∇k

→u

n!
kn N( k,q,6 kε) =

∫

X(u,q)
(−1)qun.

Coming back to the transcendental asymptotic cohomology functions, we get the
following fundamental result, which gives in some sense an explicit formula for
ĥq

tr(X,α) andĥ6q
tr (X,α) in terms of Monge-Ampère operators.

(2.7) Theorem.The limsup’s definingĥq
tr(X,α) and ĥ6q

tr (X,α) are limits, and we
have

(a) ĥq
tr(X,α) = inf

u∈α

∫

X(u,q)
(−1)qun (u smooth).

(b) ĥ6q
tr (X,α) = inf

u∈α

∫

X(u,6q)
(−1)qun (u smooth).

Now, if L → X is a holomorphic line bundle, we have by definition

(2.8) ĥ6q(X,L)6 ĥ6q
DNS(X,c1(L))6 ĥ6q

NS(X,c1(L))6 inf
u∈c1(L)

∫

X(u,6q)
(−1)qun
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(u smooth), where the last inequality is a consequence of holomorphic Morse in-
equalities. We hope for the following conjecture which would imply that we always
have equalities.

(2.9) Conjecture.For every holomorphic line bundle L→ X on a compact complex
manifold X, we have

(a) ĥq(X,L) = inf
u∈α

∫

X(u,q)
(−1)qun, u smooth,

(b) ĥ6q(X,L) = inf
u∈α

∫

X(u,6q)
(−1)qun, u smooth.

Since the right hand side is easily seen to depend continuously on α ∈ H1,1
BC(X,C),

one would get:

(2.10) Corollary of the conjecture.If (2.9) holds true, then

(a) ĥq
NS(X,α) = ĥq

tr(X,α) and (b) ĥ6q
NS(X,α) = ĥ6q

tr (X,α)

for all classesα ∈ NSR(X).

In general, equalities 2.9 (a,b) seem rather hard to prove. In some sense, they
would stand as an asymptotic converse of the Andreotti-Grauert theorem [AG62] :
under a suitableq-convexity assumption, the latter asserts the vanishing ofrelated
cohomology groups in degreeq; here, conversely, assuming a known growth of
these groups in degreeq, we expect to be able to say something about theq-index
sets of suitable Hermitian metrics on the line bundles underconsideration. The only
cases where we have a positive answer to Question 2.8 are whenX is projective
andq= 0 or dimX 6 2 (see Theorems 4.1 and 5.1 below). In the general setting of
compact complex manifolds, we also hope for the following “transcendental” case
of holomorphic Morse inequalities.

(2.11) Conjecture.Let X be a compact complex n-fold andα an arbitrary coho-
mology class in H1,1BC(X,R). Then the volume, defined as the supremum

(2.12) Vol(α) := sup
0<T∈α

∫

XrSing(T)
Tn,

extended to all K̈ahler currents T∈ α with analytic singularities(see Definition
II (4.4)), satisfies

(2.13) Vol(α) > sup
u∈α

∫

X(u,0)∪X(u,1)
un

where u runs over all smooth closed(1,1) forms. In particular, if the right hand side
is positive, thenα contains a K̈ahler current.
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By the holomorphic Morse inequalities, Conjecture 2.11 holds true in caseα is
an integral class. Our hope is that the general case can be attained by the diophantine
approximation technique described earlier; there are however major hurdles, see
[Lae02] for a few hints on these issues.

3. Invariance by modification

We end this section by the observation that the asymptotic cohomology functions
are invariant by modification, namely that for every modification µ : X̃ → X and
every line bundleL we have e.g.

(3.1) ĥq(X,L) = ĥq(X̃,µ∗L).

In fact the Leray spectral sequence provides anE2 term

Ep,q
2 = H p(X,Rqµ∗OX̃(µ

∗L⊗k)) = H p(X,OX(L
⊗k)⊗Rqµ∗OX̃).

SinceRqµ∗OX̃ is equal toOX for q= 0 and is supported on a proper analytic subset
of X for q > 1, one infers thathp(X,OX(L⊗k ⊗Rqµ∗OX̃) = O(kn−1) for all q > 1.
The spectral sequence implies that

hq(X,L⊗k)− ĥq(X̃,µ∗L⊗k) = O(kn−1).

We claim that the Morse integral infimums are also invariant by modification.

(3.2) Proposition.Let (X,ω) be a compact K̈ahler manifold,α ∈ H1,1(X,R) a real
cohomology class andµ : X̃ → X a modification. Then

inf
u∈α

∫

X(u,q)
(−1)qun = inf

v∈µ∗α

∫

X(v,q)
(−1)qvn,(a)

inf
u∈α

∫

X(u,6q)
(−1)qun = inf

v∈µ∗α

∫

X(v,6q)
(−1)qvn.(b)

Proof. Givenu ∈ α on X, we obtain Morse integrals with the same values by tak-
ing v = µ∗u on X̃, hence the infimum oñX is smaller or equal to what is onX.
Conversely, we have to show that given a smooth representativev∈ µ∗α on X̃, one
can find a smooth representativeu∈ X such that the Morse integrals do not differ
much. We can always assume thatX̃ itself is Kähler, since by Hironaka [Hir64] any
modificationX̃ is dominated by a composition of blow-ups ofX. Let us fix some
u0 ∈ α and write

v= µ∗u0+ddcϕ , dc =
i

4π
(∂ − ∂ ), ddc =

i
2π

∂∂ ,

whereϕ is a smooth function oñX. We adjustϕ by a constant in such a way that
ϕ > 1 onX̃. There exists an analytic setS⊂ X such thatµ : X̃rµ−1(S)→ XrS is
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a biholomorphism, and a quasi-psh functionψS which is smooth onXrSand has
−∞ logarithmic poles onS(see e.g. [Dem82]). We define

(3.3) ũ= µ∗u0+ddcmaxε0(ϕ + δ ψS◦ µ , 0) = v+ddcmaxε0(δ ψS◦ µ , −ϕ)

where maxε0, 0< ε0 < 1, is a regularized max function andδ > 0 is very small.
By constructioñu coincides withµ∗u0 in a neighborhood ofµ−1(S) and therefore
ũ descends to a smooth closed(1,1)-form u on X which coincides withu0 nearS,
so thatũ = µ∗u. Clearly ũ converges uniformly tov on every compact subset of
X̃ r µ−1(S) asδ → 0, so we only have to show that the Morse integrals are small
(uniformly in δ ) when restricted to a suitable small neighborhood of the exceptional
setE = µ−1(S). Take a sufficiently large Kähler metric̃ω on X̃ such that

−1
2

ω̃ 6 v6
1
2

ω̃ , −1
2

ω̃ 6 ddcϕ 6
1
2

ω̃ , −ω̃ 6 ddcψS◦ µ .

Thenũ>−ω̃ andũ6 ω̃ + δ ddcψS◦ µ everywhere oñX. As a consequence

|ũn|6
(
ω̃ + δ (ω̃ +ddcψS◦ µ)

)n

6 ω̃n+nδ (ω̃ +ddcψS◦ µ)∧
(
ω̃ + δ (ω̃ +ddcψS◦ µ)

)n−1

thanks to the inequality(a+b)n 6 an+nb(a+b)n−1. For any neighborhoodV of
µ−1(S) this implies

∫

V
|ũn|6

∫

V
ω̃n+nδ (1+ δ )n−1

∫

X̃
ω̃n

by Stokes formula. We thus see that the integrals are small ifV andδ are small.
The reader may be concerned that Monge-Ampère integrals were used with an
unbounded potentialψS, but in fact, for any givenδ , all the above formulas and
estimates are still valid when we replaceψS by maxε0(ψS,−(M + 2)/δ ) with
M = max̃X ϕ , especially formula (3.3) shows that the form̃u is unchanged. There-
fore our calculations can be handled by using merely smooth potentials. �

4. Proof of the infimum formula for the volume

We prove here

(4.1) Theorem.Let L→ X be a holomorphic line bundle on a projective algebraic
manifold X. Then

Vol(X,L) = inf
u∈c1(L)

∫

X(u,0)
un.

It is enough to show the inequality
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(4.1′) inf
u∈c1(L)

∫

X(u,0)
un 6 Vol(X,L)

and for this, we have to construct metrics approximating thevolume. Let us first
assume thatL is a big line bundle, i.e. that Vol(X,L) > 0. We have seen in II (6.4–
6.5) (cf. also [Bck02]) that Vol(X,L) is obtained as the supremum of

∫
XrSing(T)Tn

for Kähler currentsT = − i
2π ∂∂ h with analytic singularities inc1(L); this means

that locallyh= e−ϕ whereϕ is a strictly plurisubharmonic function which has the
same singularities asclog∑ |g j |2 wherec> 0 and theg j are holomorphic functions.
By [Dem92], there exists a blow-upµ : X̃ → X such thatµ∗T = [E]+β whereE is
a normal crossing divisor oñX andβ > 0 smooth. Moreover, by [BDPP04] we have
the orthogonality estimate

(4.2) [E] ·β n−1 =

∫

E
β n−1 6C

(
Vol(X,L)−β n)1/2

,

while

(4.3) β n =

∫

X̃
β n =

∫

XrSing(T)
Tn approaches Vol(X,L).

In other words,E andβ become “more and more orthogonal” asβ n approaches the
volume (these properties are summarized by saying thatµ∗T = [E]+β defines an
approximate Zariski decomposition ofc1(L), cf. also [Fuj94]). By subtracting toβ
a small linear combination of the exceptional divisors and increasing accordingly
the coefficients ofE, we can achieve that the cohomology class{β} contains a
positive definite formβ ′ on X̃ (i.e. the fundamental form of a Kähler metric); we
refer e.g. to ([DP04], proof of Lemma 3.5) for details. This means that we can
replaceT by a cohomologous current such that the corresponding formβ is actually
a Kähler metric, and we will assume for simplicity of notation that this situation
occurs right away forT. Under this assumption, there exists a smooth closed(1,1)-
form v belonging to the Bott-Chern cohomology class of[E], such that we have
identically(v− δβ )∧β n−1 = 0 where

(4.4) δ =
[E] ·β n−1

β n 6C′(Vol(X,L)−β n)1/2

for some constantC′ > 0. In fact, given an arbitrary smooth representativev0 ∈ {[E]},
the existence ofv= v0+ i∂∂ψ amounts to solving a Laplace equation∆ψ = f with
respect to the Kähler metricβ , and the choice ofδ ensures that we have

∫
X f β n = 0

and hence that the equation is solvable. Thenũ := v+β is a smooth closed(1,1)-
form in the cohomology classµ∗c1(L), and its eigenvalues with respect toβ are of
the form 1+λ j whereλ j are the eigenvalues ofv. The Laplace equation is equivalent
to the identity∑λ j = nδ . Therefore

(4.5) ∑
16 j6n

λ j 6C′′(Vol(X,L)−β n)1/2
.



78 Jean-Pierre Demailly

The inequality between arithmetic means and geometric means implies

∏
16 j6n

(1+λ j)6
(

1+
1
n ∑

16 j6n

λ j

)n
6 1+C3(Vol(X,L)−β n)1/2

whenever all factors(1+λ j) are nonnegative. By 2.2 (i) we get

inf
u∈c1(L)

∫

X(u,0)
un 6

∫

X̃(ũ,0)
ũn

6

∫

X̃
β n(1+C3(Vol(X,L)−β n)1/2)

6 Vol(X,L)+C4(Vol(X,L)−β n)1/2
.

As β n approches Vol(X,L), this implies inequality (4.1).

We still have to treat the case whenL is not big, i.e. Vol(X,L) = 0. LetA be an
ample line bundle and lett0 > 0 be the infimum of real numbers such thatL+ tA is a
bigQ-line bundle fort rational,t > t0. The continuity of the volume function implies
that 0< Vol(X,L+ tA)6 ε for t > t0 sufficiently close tot0. By what we have just
proved, there exists a smooth formut ∈ c1(L+ tA) such that

∫
X(ut ,0)un

t 6 2ε. Take a
Kähler metricω ∈ c1(A) and defineu= ut − tω . Then clearly

∫

X(u,0)
un 6

∫

X(ut ,0)
un

t 6 2ε,

hence
inf

u∈c1(L)

∫

X(u,0)
un = 0.

Inequality (4.1) is now proved in all cases. �

5. Estimate of the first cohomology group on a projective surface

Our goal here is to show the following result.

(5.1) Theorem.Let L→ X be a holomorphic line bundle on a complex projective
surface. Then both weak and strong inequalities(1.3) (i)and(1.3) (ii) are equalities
for q= 0, 1, 2, and thelimsup’s involved inĥq(X,L) andĥ≤q(X,L) are limits.

We start with a projective non singular varietyX of arbitrary dimensionn, and
will later restrict ourselves to the case whenX is a surface. The proof again consists
of using (approximate) Zariski decomposition, but now we try to compute more
explicitly the resulting curvature forms and Morse integrals; this will turn out to be
much easier on surfaces.

Assume first thatL is a big line bundle onX. As in section 3, we can find an
approximate Zariski decomposition, i.e. a blow-upµ : X̃ → X and a currentT ∈
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c1(L) suchµ∗T = [E]+β , whereE an effective divisor andβ a Kähler metric oñX
such that

(5.2) Vol(X,L)−η < β n < Vol(X,L), η ≪ 1.

(On a projective surface, one could even get exact Zariski decomposition, but we
want to remain general as long as possible). By blowing-up further, we may assume
thatE is a normal crossing divisor. We select a Hermitian metrich onO(E) and take

(5.3) uε =
i

2π
∂∂ log(|σE|2h+ ε2)+ΘO(E),h+β ∈ µ∗c1(L)

whereσE ∈ H0(X̃,O(E)) is the canonical section andΘO(E),h the Chern curvature
form. Clearly, by the Lelong-Poincaré equation,uε converges to[E]+β in the weak
topology asε → 0. Straightforward calculations yield

uε =
i

2π
ε2D1,0

h σE ∧D1,0
h σE

(ε2+ |σE|2)2 +
ε2

ε2+ |σE|2
ΘE,h+β .

The first term converges to[E] in the weak topology, while the second, which is
close toΘE,h nearE, converges pointwise everywhere to 0 onX̃ r E. A simple
asymptotic analysis shows that

( i
2π

ε2D1,0
h σE ∧D1,0

h σE

(ε2+ |σE|2)2 +
ε2

ε2+ |σE|2
ΘE,h

)p
→ [E]∧Θ p−1

E,h

in the weak topology forp> 1, hence

(5.4) lim
ε→0

un
ε = β n+

n

∑
p=1

(
n
p

)
[E]∧Θ p−1

E,h ∧β n−p.

In arbitrary dimension, the signature ofuε is hard to evaluate, and it is also non
trivial to decide the sign of the limiting measure limun

ε . However, whenn= 2, we
get the simpler formula

lim
ε→0

u2
ε = β 2+2[E]∧β +[E]∧ΘE,h.

In this case,E can be assumed to be an exceptional divisor (otherwise some part
of it would be nef and could be removed from the poles ofT). Hence the matrix
(E j ·Ek) is negative definite and we can find a smooth Hermitian metrich onO(E)
such that(ΘE,h)|E < 0, i.e.ΘE,h has one negative eigenvalue everywhere alongE.

(5.5) Lemma. One can adjust the metric h ofO(E) in such a way thatΘE,h is
negative definite on a neighborhood of the support|E| of the exceptional divisor,
andΘE,h + β has signature(1,1) there.(We do not care about the signature far
away from|E|).
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Proof.At a given pointx0 ∈ X, let us fix coordinates and a positive quadratic formq
onC2. If we putψε(z) = εχ(z) log(1+ ε−1q(z)) with a suitable cut-off functionχ ,
then the Hessian form ofψε is equal toq atx0 and decays rapidly toO(ε logε)|dz|2
away fromx0. In this way, after multiplyingh with e±ψε (z), we can replace the
curvatureΘE,h(x0) with ΘE,h(x0)±q without substantially modifying the form away
fromx0. This allows to adjustΘE,h to be equal to (say)− 1

4β (x0) at any singular point
x0 ∈ E j ∩Ek in the support of|E|, while keepingΘE,h negative definite alongE.
In order to adjust the curvature at smooth pointsx ∈ |E|, we replace the metrich
with h′(z) = h(z)exp(−c(z)|σE(z)|2). Then the curvature formΘE,h is replaced by
ΘE,h′(x) = ΘEh(x)+ c(x)|dσE|2 at x ∈ |E| (notice thatdσE(x) = 0 if x ∈ Sing|E|),
and we can always select a real functionc so thatΘE,h′ is negative definite with one
negative eigenvalue between−1/2 and 0 at any point of|E|. ThenΘE,h′ +β has
signature(1,1) near|E|. �

With this choice of the metric, we see that forε > 0 small, the sum

ε2

ε2+ |σE|2
ΘE,h+β

is of signature(2,0) or (1,1) (or degenerate of signature(1,0)), the non positive
definite points being concentrated in a neighborhood ofE. In particular the index
setX(uε ,2) is empty, and also

uε 6
i

2π
ε2D1,0

h σE ∧D1,0
h σE

(ε2+ |σE|2)2 +β

on a neighborhoodV of |E|, while uε converges uniformly toβ on X̃ rV. This
implies that

β 2 6 lim inf
ε→0

∫

X(uε ,0)
u2

ε 6 limsup
ε→0

∫

X(uε ,0)
u2

ε 6 β 2+2β ·E.

Since
∫

X̃ u2
ε = L2 = β 2+2β ·E+E2 we conclude by taking the difference that

−E2−2β ·E 6 lim inf
ε→0

∫

X(uε ,1)
−u2

ε 6 limsup
ε→0

∫

X(uε ,1)
−u2

ε 6−E2.

Let us recall thatβ ·E 6 C(Vol(X,L)−β 2)1/2 = 0(η1/2) is small by (5.3) and the
orthogonality estimate. The asymptotic cohomology is given here bŷh2(X,L) = 0
sinceh2(X,L⊗k) = H0(X,KX ⊗ L⊗−k) = 0 for k > k0, and we have by Riemann-
Roch

ĥ1(X,L) = ĥ0(X,L)−L2 = Vol(X,L)−L2 =−E2−β ·E+O(η).

Here we use the fact thatn!
kn h0(X,L⊗k) converges to the volume whenL is big. All

this shows that equality occurs in the Morse inequalities (1.3) when we pass to the
infimum. By taking limits in the Neron-Severi space NSR(X)⊂ H1,1(X,R), we fur-
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ther see that equality occurs as soon asL is pseudo-effective, and the same is true if
−L is pseudo-effective by Serre duality. It remains to treat the case when neitherL

nor−L are pseudo-effective. Then̂h0(X,L) = ĥ2(X,L) = 0, and asymptotic coho-
mology appears only in degree 1, withĥ1(X,L) = −L2 by Riemann-Roch. Fix an
ample line bundleA and lett0 > 0 be the infimum of real numbers such thatL+ tA
is big for t rational,t > t0, resp. lett ′0 > 0 be the infimum of real numberst ′ such
that−L+ t ′A is big for t ′ > t ′0. Then fort > t0 andt ′ > t ′0, we can find a modification
µ : X̃ → X and currentsT ∈ c1(L+ tA), T ′ ∈ c1(−L+ t ′A) such that

µ∗T = [E]+β , µ∗T ′ = [F ]+ γ

whereβ , γ are Kähler forms andE, F normal crossing divisors. By taking a suitable
linear combinationt ′(L+ tA)− t(−L+ t ′A) the ample divisorA disappears, and we
get

1
t + t ′

(
t ′[E]+ t ′β − t[F]− tγ

)
∈ µ∗c1(L).

After replacingE, F , β , γ by suitable multiples, we obtain an equality

[E]− [F]+β − γ ∈ µ∗c1(L).

We may further assume by subtracting that the divisorsE, F have no common com-
ponents. The construction shows thatβ 2 6 Vol(X,L+ tA) can be taken arbitrarily
small (as well of course asγ2), and the orthogonality estimate implies that we can
assumeβ ·E andγ ·F to be arbitrarily small. Let us introduce metricshE onO(E)
andhF onO(F) as in Lemma 5.5, and consider the forms

uε =+
i

2π
ε2D1,0

hE
σE ∧D1,0

hE
σE

(ε2+ |σE|2)2 +
ε2

ε2+ |σE|2
ΘE,hE +β

− i
2π

ε2D1,0
hF

σF ∧D1,0
hF

σF

(ε2+ |σF |2)2 − ε2

ε2+ |σF |2
ΘF,hF − γ ∈ µ∗c1(L).

Observe thatuε converges uniformly toβ − γ outside of every neighborhood of
|E| ∪ |F |. Assume thatΘE,hE < 0 on VE = {|σE| < ε0} andΘF,hF < 0 on VF =
{|σF |< ε0}. OnVE ∪VF we have

uε 6
i

2π
ε2D1,0

hE
σE ∧D1,0

hE
σE

(ε2+ |σE|2)2 − ε2

ε2+ |σF |2
ΘF,hF +β +

ε2

ε2
0

Θ+
E,hE

whereΘ+
E,hE

is the positive part ofΘE,hE with respect toβ . One sees immediately
that this term is negligible. The first term is the only one which is not uniformly
bounded, and actually it converges weakly to the current[E]. By squaring, we find

limsup
ε→0

∫

X(uε ,0)
u2

ε 6

∫

X(β−γ,0)
(β − γ)2+2β ·E.
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Notice that the term− ε2

ε2+|σF |2
ΘF,hF does not contribute to the limit as it converges

boundedly almost everywhere to 0, the exceptions being points of |F |, but this set is
of measure zero with respect to the current[E]. Clearly we have

∫
X(β−γ,0)(β −γ)2 6

β 2 and therefore

limsup
ε→0

∫

X(uε ,0)
u2

ε 6 β 2+2β ·E.

Similarly, by looking at−uε , we find

limsup
ε→0

∫

X(uε ,2)
u2

ε 6 γ2+2γ ·F.

These limsup’s are small and we conclude that the essential part of the mass is
concentrated on the 1-index set, as desired. �

(5.6) Remark. It is interesting to put these results in perspective with the algebraic
version (I 2.14) of holomorphic Morse inequalities. WhenX is projective, the alge-
braic Morse inequalities used in combination with the birational invariance of the
Morse integrals imply the inequalities

(a) inf
u∈c1(L)

∫

X(u,q)
(−1)qun ≤ inf

µ∗(L)≃O(F−G)

(
n
q

)
Fn−q ·Gq ,

(b) inf
u∈c1(L)

∫

X(u,6q)
(−1)qun ≤ inf

µ∗(L)≃O(F−G)
∑

06 j6q

(−1)q− j
(

n
j

)
Fn− j ·G j ,

where the infimums on the right hand side are taken over all modificationsµ : X̃ →X
and all decompositionsµ∗L=O(F−G) of µ∗L as a difference of two nefQ-divisors
F, G on X̃. Again, a natural question is to know whether these infimums derived
from algebraic intersection numbers are equal to the asymptotic cohomology func-
tionals ĥq(X,L) and ĥ≤q(X,L). A positive answer would of course automatically
yield a positive answer to the equality cases in 2.9 (a) and (b). However, the Zariski
decompositions involved in our proofs of equality forq= 0 or n6 2 produce cer-
tain effective exceptional divisors which are not nef. It isunclear how to write those
effective divisors as a difference of nef divisors. This fact raises a lot of doubts upon
the sufficiency of taking merely differences of nef divisorsin the infimums 5.6 (a)
and 5.6 (b), and it is likely that one needs a more subtle formula. �

6. Singular holomorphic Morse inequalities

The goal of this short section is to extend holomorphic Morseinequalities to the case
of singular Hermitian metrics, following Bonavero’s PhD thesis [Bon93] (cf. also
[Bon98]).We always assume that our Hermitian metricsh are given by quasi-psh
weightsϕ . By Theorem (II 5.7), one can always approximate the weight by an arbi-
trary close quasi-psh weightϕ with analytic singularities, modulo smooth functions.
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(6.1) Theorem.Let (L,h) be a holomorphic line bundle on a compact complex n-
fold X, and let E be an arbitrary holomorphic vector bundle ofrank r. Assume that
locally h= e−ϕ has analytic singularities, and thatϕ is quasi-psh of the form

h= clog∑ |g j |2 modC∞, c> 0,

in such a way that for a suitable modificationµ : X̃ → X one hasµ∗ΘL,h = [D]+β
where D is an effective divisor andβ a smooth form oñX. Let S= µ(SuppD)
be the singular set of h. Then we have the following asymptotic estimates for the
cohomology twisted by the appropriate multiplier ideal sheaves:

(a) hq(X,E⊗Lk⊗I(hk))6 r
kn

n!

∫

X(L,h,q)rS
(−1)qΘ n

L,h+o(kn) .

(b) ∑
06 j6q

(−1)q− jh j(X,E⊗Lk⊗I(hk))6 r
kn

n!

∫

X(L,h,6q)rS
(−1)qΘ n

L,h+o(kn) .

Proof.For this, we observe that the Morse integrals are given by
∫

X̃(β ,q)
(−1)qβ n,

thanks to a change of variablez= µ(x). In fact, by our assumptionΘL,h is smooth
on XrS, and its pull-backµ∗ΘL,h coincides with the smooth formβ on the com-
plementX̃rSuppD (and SuppD is a negligible set with respect to the integration of
the smooth(n,n) form β n on X̃.) Now, a straightforwardL2 argument in the change
of variable (cf. [Dem01]) yields the direct image formula

(6.2) KX ⊗I(hk) = µ∗
(
KX̃ ⊗I(µ∗hk)

)
.

Let us introduce the relative canonical sheafKX̃/X = KX̃ ⊗ µ∗K−1
X = O(div(Jacµ))

and let us put
L̃ = µ∗L, h̃= µ∗h, Ẽ = µ∗E⊗KX̃/X.

Then h̃ has divisorial singularities and thereforeI(h̃k) = O(−⌊kD⌋) where⌊...⌋
means the integral part of a divisor. The projection formulafor direct images yields

µ∗
(
Ẽ⊗ L̃k⊗I(h̃k)

)
= E⊗Lk⊗I(hk),

Rqµ∗
(
Ẽ⊗ L̃k⊗I(h̃k)

)
= E⊗Lk⊗K−1

X ⊗Rqµ∗
(
KX̃ ⊗I(h̃k)

)
.

However, fork > k0 large enough, the multiplicities of⌊kD⌋ are all> 0 for each
of the components ofD, henceI(hk) = O(−⌊kD⌋) is relatively ample with respect
to the morphismµ : X̃ → X. From this, e.g. by an application of Hörmander’sL2

estimates (see [Bon93] for more details), we conclude thatRqµ∗
(
KX̃ ⊗I(h̃k)

)
= 0

for k> k0. The Leray spectral sequence then implies

(6.3) Hq(X,E⊗Lk⊗I(hk)
)
≃ Hq(X̃, Ẽ⊗ L̃k⊗I(h̃k)

)
.
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This reduces the proof to the case of divisorial singularities. Let us next assume that
D is aQ-divisor. Leta be a denominator forD, and putk = aℓ+b, 06 b6 a−1.
Then

Ẽ⊗ L̃k⊗I(h̃k) = Ẽ⊗ L̃aℓ+b⊗O(−aℓD−⌊bD⌋)= Fb⊗Gℓ

where
Fb = Ẽ⊗ L̃b⊗O(−⌊bD⌋), G= L̃a⊗O(−aD).

By construction, we get a smooth Hermitian metrichG on G such thatΘG,hG =
aβ . In this case, the proof is reduced to the standard case of holomorphic Morse
inequalities, applied to the smooth Hermitian line bundle(G,hG) onX̃ and the finite
family of rankr vector bundlesFb, 06 b6 a−1. The result is true even whenD is
a real divisor. In fact, we can then perturb the coefficients of D by smallε ’s to get
a rational divisorDε , and we then have to change the smooth part ofΘL̃,h̃ to βε =
β +O(ε) (again smooth); actuallyβε −β can be taken to be a linear combination by
coefficientsO(ε) of given smooth forms representing the Chern classesc1(O(D j))
of the components ofD. The Morse integrals are then perturbed byO(ε). On the
other hand, Theorem 1.9 shows that the cohomology groups in the right hand side
of (6.3) are perturbed byεkn. The result follows asε → 0, thanks to the already
settled rational case. �

Part IV. Morse inequalities and the Green-Griffiths-Lang
conjecture

The goal of this section is to study the existence and properties of entire curves
f :C→X drawn in a complex irreduciblen-dimensional varietyX, and more specif-
ically to show that they must satisfy certain global algebraic or differential equations
as soon asX is projective of general type. By means of holomorphic Morseinequali-
ties and a probabilistic analysis of the cohomology of jet spaces, we are able to prove
a significant step of a generalized version of the Green-Griffiths-Lang conjecture on
the algebraic degeneracy of entire curves.

0. Introduction

Let X be a complexn-dimensional manifold ; most of the time we will assume that
X is compact and even projective algebraic. By an “entire curve” we always mean
a non constant holomorphic map defined on the whole complex lineC, and we say
that it is algebraically degenerate if its image is contained in a proper algebraic
subvariety of the ambient variety. Ifµ : X̃ → X is a modification andf : C → X
is an entire curve whose imagef (C) is not contained in the imageµ(E) of the
exceptional locus, thenf admits a unique liftingf̃ : C → X̃. For this reason, the
study of the algebraic degeneration off is a birationally invariant problem, and
singularities do not play an essential role at this stage. Wewill therefore assume
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that X is non singular, possibly after performing a suitable composition of blow-
ups. We are interested more generally in the situation wherethe tangent bundleTX

is equipped with alinear subspace V⊂ TX, that is, an irreducible complex analytic
subset of the total space ofTX such that (0.1) all fibersVx := V ∩TX,x are vector

subspaces ofTX,x. Then the problem is to study entire curvesf : C→ X which are

tangent toV, i.e. such thatf∗TC ⊂V. We will refer to a pair(X,V) as being adirected
variety(ordirected manifold). A morphism of directed varietiesΦ : (X,V)→ (Y,W)
is a holomorphic mapΦ : X → Y such thatΦ∗V ⊂ W ; by the irreducibility, it is
enough to check this condition over the dense open subsetXrSing(V) whereV is
actually a subbundle. Here Sing(V) denotes the indeterminacy set of the associated
meromorphic mapα : X > Gr(TX) to the Grassmannian bbundle ofr-planes inTX,
r = rankV ; we thus haveV|XrSing(V) = α∗S whereS→ Gr(TX) is the tautological
subbundle ofGr(TX). In that way, we get a category, and we will be mostly interested
in the subcategory whose objects(X,V) are projective algebraic manifolds equipped
with algebraic linear subspaces. Notice that an entire curve f : C→ X tangent toV
is just a morphismf : (C,TC)→ (X,V).

The case whereV = TX/S is the relative tangent space of some fibrationX → S
is of special interest, and so is the case of a foliated variety (this is the situation
where the sheaf of sectionsO(V) satisfies the Frobenius integrability condition
[O(V),O(V)] ⊂ O(V)); however, it is very useful to allow as well non integrable
linear subspacesV. We refer toV = TX as being theabsolute case. Our main tar-
get is the following deep conjecture concerning the algebraic degeneracy of entire
curves, which generalizes similar statements made in [GG79] (see also [Lang86,
Lang87]).

(0.2) Generalized Green-Griffiths-Lang conjecture.Let (X,V) be a projective
directed manifold such that the canonical sheaf KV is big (in the absolute case
V = TX, this means that X is a variety of general type, and in the relative case
we will say that(X,V) is of general type). Then there should exist an algebraic
subvariety Y( X such that every non constant entire curve f: C→ X tangent to V
is contained in Y.

The precise meaning ofKV and of its bigness will be explained below – our
definitiondoes not coincidewith other frequently used definitions and is in our view
better suited to the study of entire curves of(X,V). One says that(X,V) is Brody-
hyperbolic when there are no entire curves tangent toV. According to (generalized
versions of) conjectures of Kobayashi [Kob70, Kob76] the hyperbolicity of (X,V)
should imply thatKV is big, and even possibly ample, in a suitable sense. It would
then follow from conjecture (0.2) that(X,V) is hyperbolic if and only if for every
irreducible varietyY ⊂ X, the linear subspaceVỸ = T̃YrE ∩µ∗−1V ⊂ T̃Y has a big
canonical sheaf wheneverµ : Ỹ →Y is a desingularization andE is the exceptional
locus.

The most striking fact known at this date on the Green-Griffiths-Lang conjec-
ture is a recent result of Diverio, Merker and Rousseau [DMR10] in the absolute
case, confirming the statement whenX ⊂ Pn+1

C is a generic non singular hyper-
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surface of large degreed, with a (non optimal) sufficient lower boundd > 2n5
.

Their proof is based in an essential way on a strategy developed by Siu [Siu02,
Siu04], combined with techniques of [Dem95]. Notice that ifthe Green-Griffiths-
Lang conjecture holds true, a much stronger and probably optimal result would be
true, namely all smooth hypersurfaces of degreed > n+ 3 would satisfy the ex-
pected algebraic degeneracy statement. Moreover, by results of Clemens [Cle86]
and Voisin [Voi96], a (very) generic hypersurface of degreed > 2n+ 1 would in
fact be hyperbolic for everyn> 2. Such a generic hyperbolicity statement has been
obtained unconditionally by McQuillan [McQ98, McQ99] whenn= 2 andd > 35,
and by Demailly-El Goul [DEG00] whenn = 2 andd > 21. Recently Diverio-
Trapani [DT10] proved the same result whenn = 3 andd > 593. By definition,
proving the algebraic degeneracy means finding a non zero polynomialP onX such
that all entire curvesf : C→ X satisfyP( f ) = 0. All known methods of proof are
based on establishing first the existence of certain algebraic differential equations
P( f ; f ′, f ′′, . . . , f (k)) = 0 of some orderk, and then trying to find enough such equa-
tions so that they cut out a proper algebraic locusY ( X.

Let JkV be the space ofk-jets of curvesf : (C,0)→X tangent toV. One defines
the sheafO(EGG

k,mV∗) of jet differentials of orderk and degreem to be the sheaf of
holomorphic functionsP(z;ξ1, . . .ξk) on JkV which are homogeneous polynomials
of degreem on the fibers ofJkV → X with respect to local coordinate derivatives
ξ j = f ( j)(0) (see below in caseV has singularities). The degreem considered here
is the weighted degree with respect to the naturalC∗ action onJkV defined by
λ · f (t) := f (λ t), i.e. by reparametrizing the curve with a homothetic changeof
variable. Since(λ · f )( j)(t) = λ j f ( j)(λ t), the weighted action is given in coordinates
by

(0.3) λ · (ξ1,ξ2, . . . ,ξk) = (λ ξ1,λ 2ξ2, . . . ,λ kξk).

One of the major tool of the theory is the following result dueto Green-Griffiths
[GG79] (see also [Blo26], [Dem95, Dem97], [SY96a, SY96b], [Siu97]).

(0.4) Fundamental vanishing theorem.Let (X,V) be a directed projective vari-
ety and f : (C,TC) → (X,V) an entire curve tangent to V. Then for every global
section P∈ H0(X,EGG

k,mV∗ ⊗O(−A)) where A is an ample divisor of X, one has
P( f ; f ′, f ′′, . . . , f (k)) = 0.

Let us give the proof of (0.4) in a special case. We interpret hereEGG
k,mV∗ ⊗O(−A) as the bundle of differential operators whose coefficients vanish alongA. By

a well-known theorem of Brody [Bro78], for every entire curve f : (C,TC)→ (X,V),
one can extract a convergent “renormalized” sequenceg= lim f ◦hν wherehν are
suitable homographic functions, in such a way thatg is an entire curve with bounded
derivative supt∈C ‖g′(t)‖ω < +∞ (with respect to any given Hermitian metricω on
X); the imageg(C) is then contained in the cluster setf (C), but it is possible that
g(C)( f (C). Then Cauchy inequalities imply that all derivativesg( j) are bounded,
and therefore, by compactness ofX, u= P(g; g′,g′′, . . . ,g(k)) is a bounded holomor-
phic function onC. However, after raisingP to a power, we may assume thatA is
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very ample, and after movingA∈ |A|, that SuppA intersectsg(C). Thenu vanishes
somewhere, henceu≡ 0 by Liouville’s theorem. The proof for the general case is
more subtle and makes use of Nevanlinna’s second main theorem (see the above
references).

It is expected that the global sections ofH0(X,EGG
k,mV∗⊗O(−A)) are precisely

those which ultimately define the algebraic locusY ( X where the curvef should
lie. The problem is then reduced to the question of showing that there are many non
zero sections ofH0(X,EGG

k,mV∗⊗O(−A)), and further, understanding what is their
joint base locus. The first part of this program is the main result of this Section.

(0.5) Theorem.Let (X,V) be a directed projective variety such that KV is big and
let A be an ample divisor. Then for k≫ 1 andδ ∈Q+ small enough,δ 6 c(logk)/k,
the number of sections h0(X,EGG

k,mV∗⊗O(−mδA)) has maximal growth, i.e. is larger
that ckmn+kr−1 for some m> mk, where c, ck > 0, n = dimX and r= rankV. In
particular, entire curves f: (C,TC) → (X,V) satisfy(many) algebraic differential
equations.

The statement is very elementary to check whenr = rankV = 1, and there-
fore whenn = dimX = 1. In higher dimensionsn > 2, only very partial results
were known at this point, concerning merely the absolute case V = TX. In dimen-
sion 2, Theorem 0.5 is a consequence of the Riemann-Roch calculation of Green-
Griffiths [GG79], combined with a vanishing theorem due to Bogomolov [Bog79]
– the latter actually only applies to the top cohomology group Hn, and things be-
come much more delicate when extimates of intermediate cohomology groups are
needed. In higher dimensions, Diverio [Div08, Div09] proved the existence of sec-
tions ofH0(X,EGG

k,mV∗⊗O(−1)) wheneverX is a hypersurface ofPn+1
C of high de-

greed > dn, assumingk> n andm> mn. More recently, Merker [Mer10] was able
to treat the case of arbitrary hypersurfaces of general type, i.e.d > n+3, assuming
this timek to be very large. The latter result is obtained through explicit algebraic
calculations of the spaces of sections, and the proof is computationally very inten-
sive. Bérczi [Ber10] also obtained related results with a different approach based on
residue formulas, assumingd > 27nlogn.

All these approaches are algebraic in nature, and use only the algebraic version
of holomorphic Morse inequalities (section I 2.D). Here, however, our techniques
are based on more elaborate curvature estimates in the spirit of Cowen-Griffiths
[CG76]. They require the stronger analytic form of holomorphic Morse inequalities
(see Section I and Paragraph III 6) – and we do not know how to translate our method
in an algebraic setting. Notice that holomorphic Morse inequalities are essentially
insensitive to singularities, as we can pass to non singularmodels and blow-upX as
much as we want: ifµ : X̃ → X is a modification thenµ∗OX̃ = OX andRqµ∗OX̃ is
supported on a codimension 1 analytic subset (even codimension 2 if X is smooth).
As already observed in Paragraph III 3, it follows from the Leray spectral sequence
that the cohomology estimates forL on X or for L̃ = µ∗L on X̃ differ by negligible
terms, i.e.

hq(X̃, L̃⊗m)−hq(X,L⊗m) = O(mn−1).
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Finally, singular holomorphic Morse inequalities (see Setion III 6) allow us to work
with singular Hermitian metricsh; this is the reason why we will only require to
have big line bundles rather than ample line bundles. In the case of linear subspaces
V ⊂ TX, we introduce singular Hermitian metrics as follows.

(0.6) Definition. A singular Hermitian metric on a linear subspace V⊂ TX is a
metric h on the fibers of V such that the functionlogh : ξ 7→ log|ξ |2h is locally
integrable on the total space of V .

Such a metric can also be viewed as a singular Hermitian metric on the tauto-
logical line bundleOP(V)(−1) on the projectivized bundleP(V) =V r{0}/C∗, and
therefore its dual metrich∗ defines a curvature currentΘOP(V)(1),h∗ of type(1,1) on

P(V)⊂ P(TX), such that

p∗ΘOP(V)(1),h∗ =
i

2π
∂∂ logh, wherep : V r {0}→ P(V).

If log h is quasi-plurisubharmonic(or quasi-psh, which means psh modulo addition
of a smooth function) on V, then logh is indeed locally integrable, and we have
moreover

(0.7) ΘOP(V)(1),h∗ >−Cω

for some smooth positive(1,1)-form onP(V) and some constantC> 0 ; conversely,
if (0.7) holds, then logh is quasi-psh.

(0.8) Definition. We will say that a singular Hermitian metric h on V isadmissible
if h can be written as h= eϕh0|V where h0 is a smooth positive definite Hermitian on
TX andϕ is a quasi-psh weight with analytic singularities on X, as in(0.6). Then
h can be seen as a singular Hermitian metric onOP(V)(1), with the property that it
induces a smooth positive definite metric on a Zariski open set X′ ⊂ XrSing(V) ;
we will denote bySing(h) ⊃ Sing(V) the complement of the largest such Zariski
open set X′.

If h is an admissible metric, we defineOh(V∗) to be the sheaf of germs of holo-
morphic sections sections ofV∗

|XrSing(h) which areh∗-bounded near Sing(h); by the
assumption on the analytic singularities, this is a coherent sheaf (as the direct image
of some coherent sheaf onP(V)), and actually, sinceh∗ = e−ϕh∗0, it is a subsheaf of
the sheafO(V∗) := Oh0(V

∗) associated with a smooth positive definite metrich0 on
TX. If r is the generic rank ofV andma positive integer, we define similarlyKm

V,h to
be sheaf of germs of holomorphic sections of(detV∗

|X′)⊗m = (Λ rV∗
|X′)⊗m which are

deth∗-bounded, andKm
V := Km

V,h0
.

If V is defined byα : X > Gr(TX), there always exists a modificationµ :
X̃ →X such that the compositionα ◦µ : X̃ →Gr(µ∗TX) becomes holomorphic, and
thenµ∗V|µ−1(XrSing(V)) extends as a locally trivial subbundle ofµ∗TX which we will
simply denote byµ∗V. If h is an admissible metric onV, thenµ∗V can be equipped
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with the metricµ∗h = eϕ◦µ µ∗h0 whereµ∗h0 is smooth and positive definite. We
may assume thatϕ ◦ µ has divisorial singularities (otherwise just perform further
blow-ups ofX̃ to achieve this). We then see that there is an integerm0 such that for
all multiplesm= pm0 the pull-backµ∗Km

V,h is an invertible sheaf oñX, and deth∗

induces a smooth non singular metric on it (whenh= h0, we can even takem0 = 1).
By definition we always haveKm

V,h = µ∗(µ∗Km
V,h) for anym> 0. In the sequel, how-

ever, we think ofKV,h not really as a coherent sheaf, but rather as the “virtual”Q-line
bundleµ∗(µ∗Km0

V,h)
1/m0, and we say thatKV,h is big if h0(X,Km

V,h)> cmn for m> m1,
with c> 0, i.e. if the invertible sheafµ∗Km0

V,h is big in the usual sense.
At this point, it is important to observe that “our” canonical sheafKV differs

from the sheafKV := i∗O(KV) associated with the injectioni : XrSing(V) →֒ X,
which is usually referred to as being the “canonical sheaf”,at least whenV is the
space of tangents to a foliation. In fact,KV is always an invertible sheaf and there
is an obvious inclusionKV ⊂KV . More precisely, the image ofO(Λ rT∗

X )→KV is
equal toKV ⊗OX J for a certain coherent idealJ ⊂ OX, and the condition to have
h0-bounded sections onXrSing(V) precisely means that our sections are bounded
by Const∑ |g j | in terms of the generators(g j) of KV ⊗OX J, i.e. KV =KV ⊗OX J
whereJ is the integral closure ofJ. More generally,

Km
V,h =Km

V ⊗OX Jm/m0
h,m0

whereJm/m0
h,m0

⊂OX is the(m/m0)-integral closure of a certain ideal sheafJh,m0 ⊂ OX,
which can itself be assumed to be integrally closed; in our previous discussion,µ is
chosen so thatµ∗Jh,m0 is invertible onX̃.

The discrepancy already occurs e.g. with the rank 1 linear spaceV ⊂ TPn
C

consisting at each pointz 6= 0 of the tangent to the line(0z) (so that necessarily
V0 = TPn

C
,0). As a sheaf (and not as a linear space),i∗O(V) is the invertible sheaf

generated by the vector fieldξ = ∑zj ∂/∂zj on the affine open setCn ⊂ Pn
C, and

thereforeKV := i∗O(V∗) is generated overCn by the unique 1-formu such that
u(ξ ) = 1. Sinceξ vanishes at 0, the generatoru is unboundedwith respect to a
smooth metrich0 on TPn

C
, and it is easily seen thatKV is the non invertible sheaf

KV =KV ⊗mPn
C
,0. We can make it invertible by considering the blow-upµ : X̃ → X

of X = Pn
C at 0, so thatµ∗KV is isomorphic toµ∗KV ⊗OX̃(−E) whereE is the ex-

ceptional divisor. The integral curvesC of V are of course lines through 0, and when
a standard parametrization is used, their derivatives do not vanish at 0, while the sec-
tions of i∗O(V) do – another sign thati∗O(V) andi∗O(V∗) are thewrong objectsto
consider. Another standard example is obtained by taking a generic pencil of elliptic
curvesλP(z)+ µQ(z) = 0 of degree 3 inP2

C, and the linear spaceV consisting of
the tangents to the fibers of the rational mapP2

C
> P1

C defined byz 7→ Q(z)/P(z).
ThenV is given by

0−→ i∗O(V)−→ O(T
P2
C

)
PdQ−QdP→ O

P2
C

(6)⊗JS−→ 0
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whereS= Sing(V) consists of the 9 points{P(z) = 0}∩{Q(z) = 0}, andJS is the
corresponding ideal sheaf ofS. Since detO(TP2) = O(3), we see thatKV = O(3) is
ample, which seems to contradict (0.2) since all leaves are elliptic curves. There is
however no such contradiction, becauseKV =KV ⊗JS is not big in our sense (it
has degree 0 on all members of the elliptic pencil). A similarexample is obtained
with a generic pencil of conics, in which caseKV = O(1) and cardS= 4.

For a given admissible Hermitian structure(V,h), we define similarly the
sheafEGG

k,mV∗
h to be the sheaf of polynomials defined overX rSing(h) which are

“h-bounded”. This means that when they are viewed as polynomialsP(z; ξ1, . . . ,ξk)

in terms ofξ j = (∇1,0
h0
) j f (0) where∇1,0

h0
is the (1,0)-component of the induced

Chern connection on(V,h0), there is a uniform bound

(0.9)
∣∣P(z; ξ1, . . . ,ξk)

∣∣ 6C
(
∑‖ξ j‖1/ j

h

)m

near points ofX rX′ (see section 2 for more details on this). Again, by a direct
image argument, one sees thatEGG

k,mV∗
h is always a coherent sheaf. The sheafEGG

k,mV∗

is defined to beEGG
k,mV∗

h whenh= h0 (it is actually independent of the choice ofh0,
as follows from arguments similar to those given in section 2). Notice that this is
exactly what is needed to extend the proof of the vanishing theorem 0.4 to the case
of a singular linear spaceV ; the value distribution theory argument can only work
when the functionsP( f ; f ′, . . . , f (k))(t) do not exhibit poles, and this is guaranteed
here by the boundedness assumption.

Our strategy can be described as follows. We consider the Green-Griffiths bun-
dle ofk-jetsXGG

k = JkVr{0}/C∗, which by (0.3) consists of a fibration inweighted
projective spaces, and its associated tautological sheaf

L = OXGG
k

(1),

viewed rather as a virtualQ-line bundleOXGG
k

(m0)
1/m0 with m0 = lcm(1,2, ... ,k).

Then, ifπk : XGG
k → X is the natural projection, we have

EGG
k,m = (πk)∗OXGG

k
(m) and Rq(πk)∗OXGG

k
(m) = 0 for q> 1.

Hence, by the Leray spectral sequence we get for every invertible sheafF onX the
isomorphism

(0.10) Hq(X,EGG
k,mV∗⊗F)≃ Hq(XGG

k ,OXGG
k

(m)⊗π∗
k F).

The latter group can be evaluated thanks to holomorphic Morse inequalities. In fact
we can associate with any admissible metrich on V a metric (or rather a natu-
ral family) of metrics onL = OXGG

k
(1). The spaceXGG

k always possesses quotient
singularities ifk > 2 (and even some more ifV is singular), but we do not really
care since Morse inequalities still work in this setting. Aswe will see, it is then
possible to get nice asymptotic formulas ask → +∞. They appear to be of aprob-
abilistic natureif we take the components of thek-jet (i.e. the successive deriva-
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tivesξ j = f ( j)(0), 16 j 6 k) as random variables. This probabilistic behaviour was
somehow already visible in the Riemann-Roch calculation of[GG79]. In this way,
assumingKV big, we produce a lot of sectionsσ j = H0(XGG

k ,OXGG
k

(m)⊗π∗
k F), cor-

responding to certain divisorsZ j ⊂ XGG
k . The hard problem which is left in order to

complete a proof of the generalized Green-Griffiths-Lang conjecture is to compute
the base locusZ =

⋂
Z j and to show thatY = πk(Z)⊂ X must be a proper algebraic

variety. Unfortunately we cannot address this problem at present.

1. Hermitian geometry of weighted projective spaces

The goal of this section is to introduce natural Kähler metrics on weighted pro-
jective spaces, and to evaluate the corresponding volume forms. Here we put
dc = i

4π (∂ − ∂ ) so thatddc = i
2π ∂∂ . The normalization of thedc operator is cho-

sen such that we have precisely(ddc log|z|2)n = δ0 for the Monge-Ampère operator
in Cn; also, for every holomorphic or meromorphic sectionσ of a Hermitian line
bundle(L,h) the Lelong-Poincaré can be formulated

(1.1) ddc log|σ |2h = [Zσ ]−ΘL,h,

whereΘL,h =
i

2π D2
L,h is the(1,1)-curvature form ofL andZσ the zero divisor ofσ .

The closed(1,1)-formΘL,h is a representative of the first Chern classc1(L). Given a
k-tuple of “weights”a=(a1, . . . ,ak), i.e. of integersas> 0 with gcd(a1, . . . ,ak) = 1,
we introduce the weighted projective spaceP(a1, . . . ,ak) to be the quotient of
Ckr {0} by the corresponding weightedC∗ action:

(1.2) P(a1, . . . ,ak) = Ckr {0}/C∗, λ ·z= (λ a1z1, . . . ,λ akzk).

As is well known, this defines a toric(k− 1)-dimensional algebraic variety with
quotient singularities. On this variety, we introduce the possibly singular (but almost
everywhere smooth and non degenerate) Kähler formωa,p defined by

(1.3) π∗
aωa,p = ddcϕa,p, ϕa,p(z) =

1
p

log ∑
16s6k

|zs|2p/as,

whereπa : Ckr {0}→ P(a1, . . . ,ak) is the canonical projection andp> 0 is a pos-
itive constant. It is clear thatϕp,a is real analytic onCkr {0} if p is an integer and
a common multiple of all weightsas. It is at leastC2 if p is real andp> max(as),
which will be more than sufficient for our purposes (but everything would still work
for anyp> 0). The resulting metric is in any case smooth and positive definite out-
side of the coordinate hyperplaneszs = 0, and these hyperplanes will not matter
here since they are of capacity zero with respect to all currents(ddcϕa,p)

ℓ. In order
to evaluate the volume

∫
P(a1,...,ak)

ωk−1
a,p , one can observe that

∫

P(a1,...,ak)
ωk−1

a,p =

∫

z∈Ck,ϕa,p(z)=0
π∗

aωk−1
a,p ∧dcϕa,p
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=

∫

z∈Ck,ϕa,p(z)=0
(ddcϕa,p)

k−1∧dcϕa,p

=
1
pk

∫

z∈Ck,ϕa,p(z)<0
(ddcepϕa,p)k.(1.4)

The first equality comes from the fact that{ϕa,p(z) = 0} is a circle bundle over
P(a1, . . . ,ak), together with the identitiesϕa,p(λ · z) = ϕa,p(z) + log|λ |2 and∫
|λ |=1dc log|λ |2 = 1. The third equality can be seen by Stokes formula applied to

the(2k−1)-form

(ddcepϕa,p)k−1∧dcepϕa,p = epϕa,p(ddcϕa,p)
k−1∧dcϕa,p

on the pseudoconvex open set{z∈ Ck ; ϕa,p(z)< 0}. Now, we find

(ddcepϕa,p)k =
(

ddc ∑
16s6k

|zs|2p/as
)k

= ∏
16s6k

( p
as
|zs|

p
as
−1
)
(ddc|z|2)k,(1.5)

∫

z∈Ck,ϕa,p(z)<0
(ddcepϕa,p)k = ∏

16s6k

p
as

=
pk

a1 . . .ak
.(1.6)

In fact, (1.5) and (1.6) are clear whenp = a1 = . . . = ak = 1 (this is just the stan-
dard calculation of the volume of the unit ball inCk); the general case follows by
substituting formallyzs 7→ zp/as

s , and using rotational invariance together with the
observation that the arguments of the complex numberszp/as

s now run in the interval
[0,2π p/as[ instead of[0,2π [ (say). As a consequence of (1.4) and (1.6), we obtain
the well known value

(1.7)
∫

P(a1,...,ak)
ωk−1

a,p =
1

a1 . . .ak
,

for the volume. Notice that this is independent ofp (as it is obvious by Stokes
theorem, since the cohomology class ofωa,p does not depend onp). Whenp tends
to +∞, we haveϕa,p(z) 7→ ϕa,∞(z) = logmax16s6k |zs|2/as and the volume form
ωk−1

a,p converges to a rotationally invariant measure supported bythe image of the

polycircle∏{|zs|= 1} in P(a1, . . . ,ak). This is so because not all|zs|2/as are equal
outside of the image of the polycircle, thusϕa,∞(z) locally depends only onk− 1
complex variables, and soωk−1

a,∞ = 0 there by log homogeneity.
Our later calculations will require a slightly more generalsetting. Instead of

looking atCk, we consider the weightedC∗ action defined by

(1.8) C|r| = Cr1 × . . .×Crk, λ ·z= (λ a1z1, . . . ,λ akzk).

Herezs ∈Crs for somek-tupler = (r1, . . . , rk) and|r|= r1+ . . .+ rk. This gives rise
to a weighted projective space

P(a[r1]
1 , . . . ,a[rk]

k ) = P(a1, . . . ,a1, . . . ,ak, . . . ,ak),
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πa,r : Cr1 × . . .×Crk r {0} −→ P(a[r1]
1 , . . . ,a[rk]

k )(1.9)

obtained by repeatingrs times each weightas. On this space, we introduce the de-
generate Kähler metricωa,r,p such that

(1.10) π∗
a,rωa,r,p = ddcϕa,r,p, ϕa,r,p(z) =

1
p

log ∑
16s6k

|zs|2p/as

where|zs| stands now for the standard Hermitian norm(∑16 j6rs |zs, j |2)1/2 onCrs.
This metric is cohomologous to the corresponding “polydisc-like” metric ωa,p al-
ready defined, and therefore Stokes theorem implies

(1.11)
∫

P(a
[r1]
1 ,...,a

[rk]
k )

ω |r|−1
a,r,p =

1

ar1
1 . . .ark

k

.

Since(ddc log|zs|2)rs = 0 onCrsr{0} by homogeneity, we conclude as before that

the weak limit limp→+∞ ω |r|−1
a,r,p = ω |r|−1

a,r,∞ associated with

(1.12) ϕa,r,∞(z) = log max
16s6k

|zs|2/as

is a measure supported by the image of the product of unit spheres ∏S2rs−1 in
P(a[r1]

1 , . . . ,a[rk]
k ), which is invariant under the action ofU(r1)× . . .×U(rk) on

Cr1 × . . .×Crk, and thus coincides with the Hermitian area measure up to a constant
determined by condition (1.11). In fact, outside of the product of spheres,ϕa,r,∞ lo-
cally depends only on at mostk−1 factors and thus, for dimension reasons, the top
power(ddcϕa,r,∞)

|r|−1 must be zero there. In the next section, the following change
of variable formula will be needed. For simplicity of exposition we restrict our-
selves to continuous functions, but a standard density argument would easily extend
the formula to all functions that are Lebesgue integrable with respect to the volume
form ω |r|−1

a,r,p .

(1.13) Proposition.Let f(z) be a bounded function on P(a[r1]
1 , . . . ,a[rk]

k ) which is
continuous outside of the hyperplane sections zs = 0. We also view f as aC∗-
invariant continuous function on∏(Crs r {0}). Then
∫

P(a
[r1]
1 ,...,a

[rk]
k )

f (z)ω |r|−1
a,r,p

=
(|r|−1)!

∏sars
s

∫

(x,u)∈∆k−1×∏S2rs−1
f (xa1/2p

1 u1, . . . ,x
ak/2p
k uk) ∏

16s6k

xrs−1
s

(rs−1)!
dxdµ(u)

where∆k−1 is the (k− 1)-simplex{xs > 0, ∑xs = 1}, dx= dx1 ∧ . . .∧ dxk−1 its
standard measure, and where dµ(u) = dµ1(u1) . . .dµk(uk) is the rotation invariant
probability measure on the product∏sS2rs−1 of unit spheres inCr1 × . . .×Crk. As
a consequence
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lim
p→+∞

∫

P(a
[r1]
1 ,...,a

[rk]
k )

f (z)ω |r|−1
a,r,p =

1

∏sars
s

∫

∏S2rs−1
f (u)dµ(u).

Proof.The area formula of the disc
∫
|λ |<1ddc|λ |2 = 1 and a consideration of the unit

disc bundle overP(a[r1]
1 , . . . ,a[rk]

k ) imply that

Ip :=
∫

P(a
[r1]
1 ,...,a

[rk]
k )

f (z)ω |r|−1
a,r,p =

∫

z∈C|r|,ϕa,r,p(z)<0
f (z)(ddcϕa,r,p)

|r|−1∧ddceϕa,r,p.

Now, a straightforward calculation onC|r| gives

(ddcepϕa,r,p)|r| =
(

ddc ∑
16s6k

|zs|2p/as
)|r|

= ∏
16s6k

( p
as

)rs+1
|zs|2rs(p/as−1)(ddc|z|2)|r|.

On the other hand, we have(ddc|z|2)|r| = |r|!
r1!...rk! ∏16s6k(ddc|zs|2)rs and

(ddcepϕa,r,p)|r| =
(
pepϕa,r,p(ddcϕa,r,p+ pdϕa,r,p∧dcϕa,r,p)

)|r|

= |r|p|r|+1e|r|pϕa,r,p(ddcϕa,r,p)
|r|−1∧dϕa,r,p∧dcϕa,r,p

= |r|p|r|+1e(|r|p−1)ϕa,r,p(ddcϕa,r,p)
|r|−1∧ddceϕa,r,p,

thanks to the homogeneity relation(ddcϕa,r,p)
|r| = 0. Putting everything together,

we find

Ip =

∫

z∈C|r|,ϕa,r,p(z)<0

(|r|−1)! pk−1 f (z)

(∑s |zs|2p/as)|r|−1/p ∏
s

(ddc|zs|2)rs

rs! ars+1
s |zs|2rs(1−p/as)

.

A standard calculation in polar coordinates withzs = ρsus, us ∈ S2rs−1, yields

(ddc|zs|2)rs

|zs|2rs
= 2rs

dρs

ρs
dµs(us)

whereµs is theU(rs)-invariant probability measure onS2rs−1. Therefore

Ip =

∫

ϕa,r,p(z)<0

(|r|−1)! pk−1 f (ρ1u1, . . . ,ρkuk)

(∑16s6k ρ2p/as
s )|r|−1/p

∏
s

2ρ2prs/as
s

dρs
ρs

dµs(us)

(rs−1)! ars+1
s

=

∫

us∈S2rs−1,∑ ts<1

(|r|−1)! p−1 f (ta1/2p
1 u1, . . . , t

ak/2p
k uk)

(∑16s6k ts)|r|−1/p ∏
s

trs−1
s dtsdµs(us)

(rs−1)! ars
s

by putting ts = |zs|2p/as = ρ2p/as
s , i.e. ρs = tas/2p

s , ts ∈ ]0,1]. We use still another
change of variablets = txs with t = ∑16s6k ts andxs ∈ ]0,1], ∑16s6k xs = 1. Then
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dt1∧ . . .∧dtk = tk−1dxdt wheredx= dx1∧ . . .∧dxk−1.

TheC∗ invariance off shows that

Ip =

∫
us∈S2rs−1

Σxs=1, t∈]0,1]
(|r|−1)! f (xas/2p

1 u1, . . . ,x
ak/2p
k uk) ∏

16s6k

xrs−1
s dµs(us)

(rs−1)! ars
s

dxdt

pt1−1/p

=
∫

us∈S2rs−1

Σxs=1

(|r|−1)! f (xas/2p
1 u1, . . . ,x

ak/2p
k uk) ∏

16s6k

xrs−1
s dµs(us)

(rs−1)! ars
s

dx.

This is equivalent to the formula given in Proposition 1.13.We havex2as/p
s → 1 as

p→ +∞, and by Lebesgue’s bounded convergence theorem and Fubini’s formula,
we get

lim
p→+∞

Ip =
(|r|−1)!

∏sars
s

∫

(x,u)∈∆k−1×∏S2rs−1
f (u) ∏

16s6k

xrs−1
s

(rs−1)!
dxdµ(u).

It can be checked by elementary integrations by parts and induction onk, r1, . . . , rk

that

(1.14)
∫

x∈∆k−1
∏

16s6k

xrs−1
s dx1 . . .dxk−1 =

1
(|r|−1)! ∏

16s6k

(rs−1)! .

This implies that(|r|−1)! ∏16s6k
xrs−1
s

(rs−1)! dx is a probability measure on∆k−1 and
that

lim
p→+∞

Ip =
1

∏sars
s

∫

u∈∏S2rs−1
f (u)dµ(u).

Even without an explicit check, Formula (1.14) also followsfrom the fact that we
must have equality forf (z) ≡ 1 in the latter equality, if we take into account the
volume formula (1.11). �

2. Probabilistic estimate of the curvature ofk-jet bundles

Let (X,V) be a compact complex directed non singular variety. To avoidany techni-
cal difficulty at this point, we first assume thatV is a holomorphic vector subbundle
of TX, equipped with a smooth Hermitian metrich.

According to the notation already specified in the introduction, we denote by
JkV the bundle ofk-jets of holomorphic curvesf : (C,0)→ X tangent toV at each
point. Let us setn= dimC X andr = rankCV. ThenJkV → X is an algebraic fiber
bundle with typical fiberCrk (see below). It has a canonicalC∗-action defined by
λ · f : (C,0)→ X, (λ · f )(t) = f (λ t). Fix a pointx0 in X and a local holomorphic
coordinate system(z1, . . . ,zn) centered atx0 such thatVx0 is the vector subspace
〈∂/∂z1, . . . ,∂/∂zr 〉 atx0. Then, in a neighborhoodU of x0, V admits a holomorphic
frame of the form
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(2.1)
∂

∂zβ
+ ∑

r+16α6n

aαβ (z)
∂

∂zα
, 16 β 6 r, aαβ (0) = 0.

Let f (t) = ( f1(t), . . . , fn(t)) be ak-jet of curve tangent toV starting from a point
f (0) = x ∈ U . Such a curve is entirely determined by its initial point andby the
projection f̃ (t) := ( f1(t), . . . , fr(t)) to the firstr-components, since the condition
f ′(t) ∈Vf (t) implies that the other components must satisfy the ordinarydifferential
equation

f ′α (t) = ∑
16β6r

aαβ ( f (t)) f ′β (t).

This implies that thek-jet of f is entirely determined by the initial pointx and the
Taylor expansion

(2.2) f̃ (t)− x̃= ξ1t + ξ2t
2+ . . .+ ξkt

k+O(tk+1)

whereξs = (ξsα)16α6r ∈ Cr . TheC∗ action (λ , f ) 7→ λ · f is then expressed in
coordinates by the weighted action

(2.3) λ · (ξ1,ξ2, . . . ,ξk) = (λ ξ1,λ 2ξ2, . . . ,λ kξk)

associated with the weighta = (1[r],2[r], . . . ,k[r]). The quotient projectivizedk-jet
bundle

(2.4) XGG
k := (JkV r {0})/C∗

considered by Green and Griffiths [GG79] is therefore in a natural way a
P(1[r],2[r], . . . ,k[r]) weighted projective bundle overX. As such, it possesses a
canonical sheafOXGG

k
(1) such thatOXGG

k
(m) is invertible whenm is a multiple

of lcm(1,2, . . . ,k). Under the natural projectionπk : XGG
k → X, the direct image

(πk)∗OXGG
k

(m) coincides with the sheaf of sections of the bundleEGG
k,mV∗ of jet dif-

ferentials of orderk and degreem, namely polynomials

(2.5) P(z; ξ1, . . . ,ξk) = ∑
αℓ∈Nr ,16ℓ6k

aα1...αk(z)ξ α1
1 . . .ξ αk

k

of weighted degree|α1|+2|α2|+ . . .+ k|αk| = m on JkV with holomorphic coeffi-
cients. The jet differentials operate on germs of curves as differential operators

(2.6) P( f )(t) = ∑aα1...αk( f (t)) f ′(t)α1 . . . f (k)(t)αk .

In the sequel, we do not make any further use of coordinate frames as (2.1), because
they need not be related in any way to the Hermitian metrich of V. Instead, we
choose a local holomorphic coordinate frame(eα(z))16α6r of V on a neighborhood
U of x0, such that

(2.7) 〈eα(z),eβ (z)〉= δαβ + ∑
16i, j6n,16α ,β6r

ci j αβ zizj +O(|z|3)
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for suitable complex coefficients(ci j αβ ). It is a standard fact that such a normalized
coordinate system always exists, and that the Chern curvature tensor i

2π D2
V,h of (V,h)

at x0 is then given by

(2.8) ΘV,h(x0) =− i
2π ∑

i, j ,α ,β
ci j αβ dzi ∧dzj ⊗e∗α ⊗eβ .

Also, instead of defining the vectorsξs ∈ Cr as in (2.2), we consider a local holo-
morphic connection∇ onV|U (e.g. the one which turns(eα) into a parallel frame),
and takeξk = ∇k f (0) ∈Vx defined inductively by∇1 f = f ′ and∇s f = ∇ f ′(∇s−1 f ).
This is just another way of parametrizing the fibers ofJkV overU by the vector
bundleVk

|U . Notice that this is highly dependent on∇ (the bundleJkV actually
does not carry a vector bundle or even affine bundle structure); however, the ex-
pression of the weighted action (2.3) is unchanged in this new setting. Now, we
fix a finite open covering(Uα)α∈I of X by open coordinate charts such thatV|Uα
is trivial, along with holomorphic connections∇α onV|Uα . Let θα be a partition of
unity of X subordinate to the covering(Uα). Let us fix p> 0 and small parameters
1= ε1 ≫ ε2 ≫ . . .≫ εk > 0. Then we define a global weighted exhaustion onJkV
by putting for anyk-jet f ∈ Jk

xV

(2.9) Ψh,p,ε( f ) :=
(

∑
α∈I

θα(x) ∑
16s6k

ε2p
s ‖∇s

α f (0)‖2p/s
h(x)

)1/p

where‖ ‖h(x) is the Hermitian metrich of V evaluated on the fiberVx, x= f (0). The
functionΨh,p,ε satisfies the fundamental homogeneity property

(2.10) Ψh,p,ε(λ · f ) =Ψh,p,ε( f ) |λ |2

with respect to theC∗ action onJkV, in other words, it induces a Hermitian metric on
the dualL∗ of the tautologicalQ-line bundleLk =OXGG

k
(1) overXGG

k . The curvature

of Lk is given by

(2.11) π∗
kΘLk,Ψ∗

h,p,ε
= ddc logΨh,p,ε

whereπk : JkVr{0}→XGG
k is the canonical projection. Our next goal is to compute

precisely the curvature and to apply holomorphic Morse inequalities toL → XGG
k

with the above metric. It might look a priori like an untractable problem, since the
definition of Ψh,p,ε is a rather unnatural one. However, the “miracle” is that the
asymptotic behavior ofΨh,p,ε asεs/εs−1 → 0 is in some sense uniquely defined and
very natural. It will lead to a computable asymptotic formula, which is moreover
simple enough to produce useful results.

(2.12) Lemma.On each coordinate chart U equipped with a holomorphic connec-
tion ∇ of V|U , let us define the components of a k-jet f∈ JkV byξs = ∇s f (0), and
consider the rescaling transformation
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ρ∇,ε(ξ1,ξ2, . . . ,ξk) = (ε1
1ξ1,ε2

2ξ2, . . . ,εk
kξk) on Jk

xV, x∈U

(it commutes with theC∗-action but is otherwise unrelated and not canonically
defined over X as it depends on the choice of∇). Then, if p is a multiple of
lcm(1,2, . . . ,k) and εs/εs−1 → 0 for all s = 2, . . . ,k, the rescaled functionΨh,p,ε ◦
ρ−1

∇,ε(ξ1, . . . ,ξk) converges towards
(

∑
16s6k

‖ξs‖2p/s
h

)1/p

on every compact subset of JkV|U r {0}, uniformly in C∞ topology.

Proof. Let U ⊂ X be an open set on whichV|U is trivial and equipped with some

holomorphic connection∇. Let us pick another holomorphic connection∇̃ = ∇+Γ
whereΓ ∈ H0(U,Ω1

X ⊗Hom(V,V). Then∇̃2 f = ∇2 f +Γ ( f )( f ′) · f ′, and induc-
tively we get

∇̃s f = ∇s f +Ps( f ; ∇1 f , . . . ,∇s−1 f )

whereP(x; ξ1, . . . ,ξs−1) is a polynomial with holomorphic coefficients inx ∈ U
which is of weighted homogeneous degrees in (ξ1, . . . ,ξs−1). In other words, the
corresponding change in the parametrization ofJkV|U is given by aC∗-homogeneous
transformation

ξ̃s = ξs+Ps(x; ξ1, . . . ,ξs−1).

Let us introduce the corresponding rescaled components

(ξ1,ε , . . . ,ξk,ε ) = (ε1
1ξ1, . . . ,εk

kξk), (ξ̃1,ε , . . . , ξ̃k,ε) = (ε1
1 ξ̃1, . . . ,εk

k ξ̃k).

Then
ξ̃s,ε = ξs,ε + εs

s Ps(x; ε−1
1 ξ1,ε , . . . ,ε

−(s−1)
s−1 ξs−1,ε)

= ξs,ε +O(εs/εs−1)
sO(‖ξ1,ε‖+ . . .+ ‖ξs−1,ε‖1/(s−1))s

and the error terms are thus polynomials of fixed degree with arbitrarily small coef-
ficients asεs/εs−1 → 0. Now, the definition ofΨh,p,ε consists of glueing the sums

∑
16s6k

ε2p
s ‖ξk‖2p/s

h = ∑
16s6k

‖ξk,ε‖2p/s
h

corresponding toξk = ∇s
α f (0) by means of the partition of unity∑θα(x) = 1. We

see that by using the rescaled variablesξs,ε the changes occurring when replacing
a connection∇α by an alternative one∇β are arbitrary small inC∞ topology, with
error terms uniformly controlled in terms of the ratiosεs/εs−1 on all compact sub-
sets ofVkr{0}. This shows that inC∞ topology,Ψh,p,ε ◦ρ−1

∇,ε(ξ1, . . . ,ξk) converges
uniformly towards(∑16s6k‖ξk‖2p/s

h )1/p, whatever the trivializing open setU and
the holomorphic connection∇ used to evaluate the components and perform the
rescaling are. �
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Now, we fix a pointx0 ∈ X and a local holomorphic frame(eα(z))16α6r sat-
isfying (2.7) on a neighborhoodU of x0. We introduce the rescaled components
ξs = εs

s∇s f (0) onJkV|U and compute the curvature of

Ψh,p,ε ◦ρ−1
∇,ε(z; ξ1, . . . ,ξk)≃

(
∑

16s6k

‖ξs‖2p/s
h

)1/p

(by Lemma 2.12, the errors can be taken arbitrary small inC∞ topology). We write
ξs = ∑16α6r ξsαeα . By (2.7) we have

‖ξs‖2
h = ∑

α
|ξsα |2+ ∑

i, j ,α ,β
ci j αβ zizjξsα ξ sβ +O(|z|3|ξ |2).

The question is to evaluate the curvature of the weighted metric defined by

Ψ(z; ξ1, . . . ,ξk) =

(
∑

16s6k

‖ξs‖2p/s
h

)1/p

=

(
∑

16s6k

(
∑
α
|ξsα |2+ ∑

i, j ,α ,β
ci j αβ zizjξsα ξ sβ

)p/s
)1/p

+O(|z|3).

We set|ξs|2 = ∑α |ξsα |2. A straightforward calculation yields

logΨ(z; ξ1, . . . ,ξk) =

=
1
p

log ∑
16s6k

|ξs|2p/s+ ∑
16s6k

1
s

|ξs|2p/s

∑t |ξt |2p/t ∑
i, j ,α ,β

ci j αβ zizj
ξsα ξ sβ

|ξs|2
+O(|z|3).

By (2.11), the curvature form ofLk = OXGG
k

(1) is given at the central pointx0 by the
following formula.

(2.13) Proposition.With the above choice of coordinates and with respect to the
rescaled componentsξs = εs

s∇s f (0) at x0 ∈ X, we have the approximate expression

ΘLk,Ψ∗
h,p,ε

(x0, [ξ ])≃ ωa,r,p(ξ )+
i

2π ∑
16s6k

1
s

|ξs|2p/s

∑t |ξt |2p/t ∑
i, j ,α ,β

ci j αβ
ξsα ξ sβ

|ξs|2
dzi ∧dzj

where the error terms are O(max26s6k(εs/εs−1)
s) uniformly on the compact variety

XGG
k . Hereωa,r,p is the(degenerate) Kähler metric associated with the weight a=

(1[r],2[r], . . . ,k[r]) of the canonicalC∗ action on JkV.

Thanks to the uniform approximation, we can (and will) neglect the error
terms in the calculations below. Sinceωa,r,p is positive definite on the fibers of
XGG

k → X (at least outside of the axesξs = 0), the index of the(1,1) curvature
formΘLk,Ψ∗

h,p,ε
(z, [ξ ]) is equal to the index of the(1,1)-form
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(2.14) γk(z,ξ ) :=
i

2π ∑
16s6k

1
s

|ξs|2p/s

∑t |ξt |2p/t ∑
i, j ,α ,β

ci j αβ (z)
ξsα ξ sβ

|ξs|2
dzi ∧dzj

depending only on the differentials(dzj )16 j6n on X. The q-index integral of
(Lk,Ψ∗

h,p,ε) onXGG
k is therefore equal to

∫

XGG
k (Lk,q)

Θ n+kr−1
Lk,Ψ ∗

h,p,ε
=

=
(n+ kr−1)!
n!(kr−1)!

∫

z∈X

∫

ξ∈P(1[r],...,k[r])
ωkr−1

a,r,p (ξ )1lγk,q(z,ξ )γk(z,ξ )n

where 1lγk,q(z,ξ ) is the characteristic function of the open set of points whereγk(z,ξ )
has signature(n−q,q) in terms of thedzj ’s. Notice that sinceγk(z,ξ )n is a deter-
minant, the product 1lγk,q(z,ξ )γk(z,ξ )n gives rise to a continuous function onXGG

k .
Formula 1.14 withr1 = . . . = rk = r andas = s yields the slightly more explicit
integral

∫

XGG
k (Lk,q)

Θ n+kr−1
Lk,Ψ∗

h,p,ε
=

(n+ kr−1)!
n!(k!)r ×

∫

z∈X

∫

(x,u)∈∆k−1×(S2r−1)k
1lgk,q(z,x,u)gk(z,x,u)

n (x1 . . .xk)
r−1

(r −1)!k dxdµ(u),

wheregk(z,x,u) = γk(z,x
1/2p
1 u1, . . . ,x

k/2p
k uk) is given by

(2.15) gk(z,x,u) =
i

2π ∑
16s6k

1
s
xs ∑

i, j ,α ,β
ci j αβ (z)usαusβ dzi ∧dzj

and 1lgk,q(z,x,u) is the characteristic function of itsq-index set. Here

(2.16) dνk,r(x) = (kr−1)!
(x1 . . .xk)

r−1

(r −1)!k dx

is a probability measure on∆k−1, and we can rewrite

∫

XGG
k (Lk,q)

Θ n+kr−1
Lk,Ψ∗

h,p,ε
=

(n+ kr−1)!
n!(k!)r(kr−1)!

×
∫

z∈X

∫

(x,u)∈∆k−1×(S2r−1)k
1lgk,q(z,x,u)gk(z,x,u)

n dνk,r(x)dµ(u).(2.17)

Now, formula (2.15) shows thatgk(z,x,u) is a “Monte Carlo” evaluation of the cur-
vature tensor, obtained by averaging the curvature at random pointsus∈ S2r−1 with
certain positive weightsxs/s; we should then think of thek-jet f as some sort of
random parameter such that the derivatives∇k f (0) are uniformly distributed in all
directions. Let us compute the expected value of(x,u) 7→ gk(z,x,u) with respect
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to the probability measuredνk,r(x)dµ(u). Since
∫

S2r−1 usαusβ dµ(us) =
1
r δαβ and∫

∆k−1
xsdνk,r(x) =

1
k , we find

E(gk(z,•,•)) =
1
kr ∑

16s6k

1
s
· i
2π ∑

i, j ,α
ci j αα(z)dzi ∧dzj .

In other words, we get the normalized trace of the curvature,i.e.

(2.18) E(gk(z,•,•)) =
1
kr

(
1+

1
2
+ . . .+

1
k

)
Θdet(V∗),deth∗ ,

whereΘdet(V∗),deth∗ is the(1,1)-curvature form of det(V∗) with the metric induced
byh. It is natural to guess thatgk(z,x,u) behaves asymptotically as its expected value
E(gk(z,•,•)) whenk tends to infinity. If we replace brutallygk by its expected value
in (2.17), we get the integral

(n+ kr−1)!
n!(k!)r(kr−1)!

1
(kr)n

(
1+

1
2
+ . . .+

1
k

)n∫

X
1lη,qηn,

whereη := Θdet(V∗),deth∗ and 1lη,q is the characteristic function of itsq-index set
in X. The leading constant is equivalent to(logk)n/n!(k!)r modulo a multiplicative
factor 1+O(1/ logk). By working out a more precise analysis of the deviation, we
will prove the following result.

(2.19) Probabilistic estimate.Fix smooth Hermitian metrics h on V andω =
i

2π ∑ωi j dzi ∧dzj on X. Denote byΘV,h =− i
2π ∑ci j αβ dzi ∧dzj ⊗e∗α ⊗eβ the curva-

ture tensor of V with respect to an h-orthonormal frame(eα), and put

η(z) =Θdet(V∗),deth∗ =
i

2π ∑
16i, j6n

ηi j dzi ∧dzj , ηi j = ∑
16α6r

ci j αα .

Finally consider the k-jet line bundle Lk = OXGG
k

(1) → XGG
k equipped with the in-

duced metricΨ ∗
h,p,ε (as defined above, with1= ε1 ≫ ε2 ≫ . . . ≫ εk > 0). When k

tends to infinity, the integral of the top power of the curvature of Lk on its q-index
set XGG

k (Lk,q) is given by

∫

XGG
k (Lk,q)

Θ n+kr−1
Lk,Ψ∗

h,p,ε
=

(logk)n

n! (k!)r

(∫

X
1lη,qηn+O((logk)−1)

)

for all q = 0,1, . . . ,n, and the error term O((logk)−1) can be bounded explicitly in
terms ofΘV , η andω . Moreover, the left hand side is identically zero for q> n.

The final statement follows from the observation that the curvature ofLk is
positive along the fibers ofXGG

k → X, by the plurisubharmonicity of the weight
(this is true even when the partition of unity terms are takeninto account, since they
depend only on the base); therefore theq-index sets are empty forq> n. We start
with three elementary lemmas.
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(2.20) Lemma.The integral

Ik,r,n =
∫

∆k−1

(
∑

16s6k

xs

s

)n

dνk,r(x)

is given by the expansion

(a) Ik,r,n = ∑
16s1,s2,...,sn6k

1
s1s2 . . .sn

(kr−1)!
(r −1)!k

∏16i6k(r −1+βi)!

(kr+n−1)!
.

whereβi = βi(s) = card{ j ; sj = i}, ∑βi = n, 16 i 6 k. The quotient

Ik,r,n

/
rn

kr(kr+1) . . . (kr+n−1)

(
1+

1
2
+ . . .+

1
k

)n

is bounded below by1 and bounded above by

(b) 1+
1
3

n

∑
m=2

2mn!
(n−m)!

(
1+

1
2
+ . . .+

1
k

)−m

= 1+O((logk)−2)

As a consequence

Ik,r,n =
1
kn

((
1+

1
2
+ . . .+

1
k

)n
+O((logk)n−2)

)
(c)

=
(logk+ γ)n+O((logk)n−2)

kn

whereγ is the Euler-Mascheroni constant.

Proof.Let us expand then-th power
(

∑16s6k
xs
s

)n
. This gives

Ik,r,n = ∑
16s1,s2,...,sn6k

1
s1s2 . . .sn

∫

∆k−1

xβ1
1 . . .xβk

k dνk,r(x)

and by definition of the measureνk,r we have

∫

∆k−1

xβ1
1 . . .xβk

k dνk,r(x) =
(kr−1)!
(r −1)!k

∫

∆k−1

xr+β1−1
1 . . .xr+βk−1

k dx1 . . .dxk.

By Formula (1.14), we find

∫

∆k−1

xβ1
1 . . .xβk

k dνk,r(x) =
(kr−1)!
(r −1)!k

∏16i6k(r +βi −1)!

(kr+n−1)!

=
rn ∏i,βi>1(1+

1
r )(1+

2
r ) . . . (1+

βi−1
r )

kr(kr+1) . . . (kr+n−1)
,
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and (2.20a) follows from the first equality. The final productis minimal whenr = 1,
thus

rn

kr(kr+1) . . . (kr+n−1)
6
∫

∆k−1

xβ1
1 . . .xβk

k dνk,r(x)

6
rn ∏16i6k βi!

kr(kr+1) . . . (kr+n−1)
.(2.21)

Also, the integral is maximal when allβi vanish except one, in which case one gets

(2.22)
∫

∆k−1

xn
j dνk,r(x) =

r(r +1) . . . (r +n−1)
kr(kr+1) . . . (kr+n−1)

.

By (2.21), we find the lower and upper bounds

Ik,r,n >
rn

kr(kr+1) . . . (kr+n−1)

(
1+

1
2
+ . . .+

1
k

)n
,(2.23)

Ik,r,n 6
rn

kr(kr+1) . . . (kr+n−1) ∑
16s1,...,sn6k

β1! . . .βk!
s1 . . .sn

.(2.24)

In order to make the upper bound more explicit, we reorganizethen-tuple(s1, . . . ,sn)
into those indicest1 < .. . < tℓ which appear a certain number of timesαi = βti > 2,
and those, saytℓ+1 < .. . < tℓ+m, which appear only once. We have of course
∑βi = n−m, and each choice of theti ’s corresponds ton!/α1! . . .αℓ! possibilities
for then-tuple(s1, . . . ,sn). Therefore we get

∑
16s1,...,sn6k

β1! . . .βk!
s1 . . .sn

6 n!
n

∑
m=0

∑
ℓ,Σαi=n−m

∑
(ti )

1

tα1
1 . . . tαℓ

ℓ

1
tℓ+1 . . . tℓ+m

.

A trivial comparison series vs. integral yields

∑
s<t<+∞

1
tα 6

1
α −1

1
sα−1

and in this way, using successive integrations intℓ, tℓ−1, . . . , we get inductively

∑
16t1<...<tℓ<+∞

1

tα1
1 . . . tαℓ

ℓ

6
1

∏16i6ℓ(αℓ−i+1+ . . .+αℓ− i)
6

1
ℓ!
,

sinceαi > 2 impliesαℓ−i+1+ . . .+αℓ− i > i. On the other hand

∑
16tℓ+1<...<tℓ+m6k

1
tℓ+1 . . . tℓ+m

6
1
m! ∑

16s1,...,sm6k

1
s1 . . .sm

=
1
m!

(
1+

1
2
+ . . .+

1
k

)m

.

Since partitionsα1 + . . .+αℓ = n−m satisfying the additional restrictionαi > 2
correspond toα ′

i = αi −2 satisfying∑α ′
i = n−m−2ℓ, their number is equal to
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(
n−m−2ℓ+ ℓ−1

ℓ−1

)
=

(
n−m− ℓ−1

ℓ−1

)
6 2n−m−ℓ−1

and we infer from this

∑
16s1,...,sn6k

β1! . . .βk!
s1 . . .sn

6 ∑
ℓ>1

2ℓ+m6n

2n−m−ℓ−1n!
ℓ! m!

(
1+

1
2
+ . . .+

1
k

)m

+

(
1+

1
2
+ . . .+

1
k

)n

where the last term corresponds to the special caseℓ= 0, m= n. Therefore

∑
16si6k

β1! . . .βk!
s1 . . .sn

6
e1/2−1

2

n−2

∑
m=0

2n−mn!
m!

(
1+

1
2
+ . . .+

1
k

)m

+

(
1+

1
2
+ . . .+

1
k

)n

6
1
3

n

∑
m=2

2mn!
(n−m)!

(
1+

1
2
+ . . .+

1
k

)n−m

+

(
1+

1
2
+ . . .+

1
k

)n

.

This estimate combined with (2.23, 2.24) implies the upper bound (2.20 b) (the
lower bound 1 being now obvious). The asymptotic estimate (2.20 c) follows imme-
diately. �

(2.25) Lemma.If A is a Hermitian n×n matrix, set1lA,q to be equal to1 if A has
signature(n−q,q) and0 otherwise. Then for all n×n Hermitian matrices A, B we
have the estimate

∣∣1lA,qdetA−1lB,qdetB
∣∣6 ‖A−B‖ ∑

06i6n−1

‖A‖i‖B‖n−1−i,

where‖A‖, ‖B‖ are the Hermitian operator norms of the matrices.

Proof.We first check that the estimate holds for|detA−detB|. Let λ1 6 . . .6 λn be
the eigenvalues ofA andλ ′

1 6 . . .6 λ ′
n be the eigenvalues ofB. We have|λi |6 ‖A‖,

|λ ′
i |6 ‖B‖ and the minimax principle implies that|λi −λ ′

i |6 ‖A−B‖. We then get
the desired estimate by writing

detA−detB= λ1 . . .λn−λ ′
1 . . .λ

′
n = ∑

16i6n

λ1 . . .λi−1(λi −λ ′
i )λ

′
i+1 . . .λ

′
n.

This already implies (2.25) ifA or B is degenerate. IfA andB are non degenerate
we only have to prove the result when one of them (sayA) has signature(n−q,q)
and the other one (sayB) has a different signature. If we putM(t) = (1− t)A+ tB,
the already established estimate for the determinant yields

∣∣∣ d
dt

detM(t)
∣∣∣6 n‖A−B‖ ‖M(t)‖6 n‖A−B‖

(
(1− t)‖A‖+ t‖B‖

)n−1
.

However, since the signature ofM(t) is not the same fort = 0 andt = 1, there must
exist t0 ∈ ]0,1[ such that(1− t0)A+ t0B is degenerate. Our claim follows by inte-
grating the differential estimate on the smallest such interval [0, t0], after observing
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thatM(0) = A, detM(t0) = 0, and that the integral of the right hand side on[0,1] is
the announced bound. �

(2.26) Lemma.Let QA be the Hermitian quadratic form associated with the Hermi-
tian operator A onCn. If µ is the rotation invariant probability measure on the unit
sphere S2n−1 ofCn andλi are the eigenvalues of A, we have

∫

|ζ |=1
|QA(ζ )|2dµ(ζ ) =

1
n(n+1)

(
∑λ 2

i +
(
∑λi

)2)
.

The norm‖A‖= max|λi| satisfies the estimate

1
n2‖A‖2 6

∫

|ζ |=1
|QA(ζ )|2dµ(ζ )6 ‖A‖2.

Proof. The first identity is an easy calculation, and the inequalities follow by com-
puting the eigenvalues of the quadratic form∑λ 2

i +
(

∑λi
)2−cλ 2

i0
, c> 0. The lower

bound is attained e.g. forQA(ζ ) = |ζ1|2− 1
n(|ζ2|2+ . . .+ |ζn|2) when we takei0 = 1

andc= 1+ 1
n. �

Proof of the Probabilistic estimate2.19. Take a vectorζ ∈ TX,z, ζ = ∑ζi
∂

∂zi
,

with ‖ζ‖ω = 1, and introduce the trace free sesquilinear quadratic form

Qz,ζ (u) = ∑
i, j ,α ,β

c̃i j αβ (z)ζiζ j uαuβ , c̃i j αβ = ci j αβ − 1
r

ηi j δαβ , u∈ Cr

whereηi j = ∑16α6r ci j αα . We consider the corresponding trace free curvature ten-
sor

(2.27) Θ̃V =
i

2π ∑
i, j ,α ,β

c̃i j αβ dzi ∧dzj ⊗e∗α ⊗eβ .

As a general matter of notation, we adopt here the conventionthat the cano-
nical correspondence between Hermitian forms and(1,1)-forms is normalized as
∑ai j dzi ⊗dzj ↔ i

2π ∑ai j dzi ∧dzj , and we take the liberty of using the same sym-
bols for both types of objects; we do so especially forgk(z,x,u) and η(z) =

i
2π ∑ηi j (z)dzi ∧ dzj = TrΘV(z). First observe that for allk-tuples of unit vectors
u= (u1, . . . ,uk) ∈ (S2r−1)k, us = (usα)16α6r , we have

∫

(S2r−1)k

∣∣∣∣ ∑
16s6k

1
s
xs ∑

i, j ,α ,β
c̃i j αβ (z)ζiζ jusαusβ

∣∣∣∣
2

dµ(u) = ∑
16s6k

x2
s

s2 V(Qz,ζ )

whereV(Qz,ζ ) is the variance ofQz,ζ on S2r−1. This is so because we have a sum
overs of independent random variables on(S2r−1)k, all of which have zero mean
value (Lemma 2.26 shows that the varianceV(Q) of a trace free Hermitian quadratic
form Q(u) = ∑16α6r λα |uα |2 on the unit sphereS2r−1 is equal to 1

r(r+1) ∑λ 2
α , but
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we only give the formula to fix the ideas). Formula (2.22) yields

∫

∆k−1

x2
sdνk,r(x) =

r +1
k(kr+1)

.

Therefore, according to notation (2.15), we obtain the partial variance formula
∫

∆k−1×(S2r−1)k

∣∣gk(z,x,u)(ζ )−gk(z,x)(ζ )|2dνk,r(x)dµ(u)

=
(r +1)

k(kr+1)

(
∑

16s6k

1
s2

)
σh(Θ̃V(ζ ,ζ ))2

in which

gk(z,x)(ζ ) = ∑
16s6k

1
s
xs

1
r ∑

i j α
ci j ααζiζ j =

(
∑

16s6k

1
s
xs

)
1
r

η(z)(ζ ),

σh(Θ̃V(ζ ,ζ ))2 = V
(
u 7→ 〈Θ̃V(ζ ,ζ )u,u〉h

)
=

∫

u∈S2r−1

∣∣〈Θ̃V(ζ ,ζ )u,u〉h

∣∣2dµ(u).

By integrating overζ ∈ S2n−1 ⊂Cn and applying the left hand inequality in Lemma
2.26 we infer

∫

∆k−1×(S2r−1)k

∥∥gk(z,x,u)−gk(z,x)‖2
ω dνk,r(x)dµ(u)

6
n2(r +1)
k(kr+1)

(
∑

16s6k

1
s2

)
σω,h(Θ̃V)

2(2.28)

whereσω,h(Θ̃V) is the standard deviation of̃ΘV onS2n−1×S2r−1 :

σω,h(Θ̃V)
2 =

∫

|ζ |ω=1, |u|h=1

∣∣〈Θ̃V(ζ ,ζ )u,u〉h

∣∣2dµ(ζ )dµ(u).

On the other hand, brutal estimates give the Hermitian operator norm estimates

‖gk(z,x)‖ω 6

(
∑

16s6k

1
s
xs

)
1
r
‖η(z)‖ω ,(2.29)

‖gk(z,x,u)‖ω 6

(
∑

16s6k

1
s
xs

)
‖ΘV‖ω,h(2.30)

where
‖ΘV‖ω,h = sup

|ζ |ω=1, |u|h=1

∣∣〈ΘV(ζ ,ζ )u,u〉h
∣∣.

We use these estimates to evaluate theq-index integrals. The integral associated with
gk(z,x) is much easier to deal with thangk(z,x,u) since the characteristic function
of theq-index set depends only onz. By Lemma 2.25 we find
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∣∣1lgk,q(z,x,u)detgk(z,x,u)−1lη,q(z)detgk(z,x)
∣∣

6
∥∥gk(z,x,u)−gk(z,x)

∥∥
ω ∑

06i6n−1

‖gk(z,x,u)‖i
ω‖gk(z,x)‖n−1−i

ω .

The Cauchy-Schwarz inequality combined with (2.28 – 2.30) implies
∫

∆k−1×(S2r−1)k

∣∣1lgk,q(z,x,u)detgk(z,x,u)−1lη,q(z)detgk(z,x)
∣∣dνk,r(x)dµ(u)

6

(∫

∆k−1×(S2r−1)k

∥∥gk(z,x,u)−gk(z,x)
∥∥2

ωdνk,r(x)dµ(u)
)1/2

×
(∫

∆k−1×(S2r−1)k

(
∑

06i6n−1
‖gk(z,x,u)‖i

ω‖gk(z,x)‖n−1−i
ω

)2

dνk,r(x)dµ(u)
)1/2

6
n(1+1/r)1/2

(k(k+1/r))1/2

(
∑

16s6k

1
s2

)1/2

σω,h(Θ̃V) ∑
16i6n−1

‖ΘV‖i
ω,h

(1
r
‖η(z)‖ω

)n−1−i

×
(∫

∆k−1

(
∑

16s6k

xs

s

)2n−2

dνk,r(x)

)1/2

= O
( (logk)n−1

kn

)

by Lemma 2.20 withn replaced by 2n−2. This is the essential error estimate. As
one can see, the growth of the error mainly depends on the finalintegral factor,
since the initial multiplicative factor is uniformly bounded overX. In order to get
the principal term, we compute

∫

∆k−1

detgk(z,x)dνk,r (x) =
1
rn detη(z)

∫

∆k−1

(
∑

16s6k

xs

s

)n

dνk,r(x)

∼ (logk)n

rnkn detη(z).

From there we conclude that
∫

z∈X

∫

(x,u)∈∆k−1×(S2r−1)k
1lgk,q(z,x,u)gk(z,x,u)

n dνk,r(x)dµ(u)

=
(logk)n

rnkn

∫

X
1lη,qηn+O

((logk)n−1

kn

)

The probabilistic estimate 2.19 follows by (2.17). �

(2.31) Remark. If we take care of the precise bounds obtained above, the proof
gives in fact the explicit estimate

∫

XGG
k (Lk,q)

Θ n+kr−1
Lk,Ψ ∗

h,p,ε
=

(n+ kr−1)! Ik,r,n
n!(k!)r(kr−1)!

(∫

X
1lη,qηn+ εk,r,nJ

)

where
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J = n(1+1/r)1/2
( k

∑
s=1

1
s2

)1/2∫

X
σω,h(Θ̃V)

n−1

∑
i=1

r i+1‖ΘV‖i
ω,h‖η(z)‖n−1−i

ω ωn

and

|εk,r,n|6

(∫

∆k−1

( k

∑
s=1

xs

s

)2n−2

dνk,r(x)

)1/2

(k(k+1/r))1/2
∫

∆k−1

( k

∑
s=1

xs

s

)n

dνk,r(x)

6

(
1+ 1

3 ∑2n−2
m=2

2m(2n−2)!
(2n−2−m)!

(
1+ 1

2 + . . .+ 1
k

)−m
)1/2

1+ 1
2 + . . .+ 1

k

∼ 1
logk

by the lower and upper bounds ofIk,r,n, Ik,r,2n−2 obtained in Lemma 2.20. As
(2n−2)!/(2n−2−m)! 6 (2n−2)m, one easily shows that

(2.32) |εk,r,n|6
(31/15)1/2

logk
for k> e5n−5.

Also, we see that the error terms vanish ifΘ̃V is identically zero, but this is of
course a rather unexpected circumstance. In general, sincethe formΘ̃V is trace
free, Lemma 2.23 applied to the quadratic formu 7→ 〈Θ̃V(ζ ,ζ )u,u〉 onCr implies
σω,h(Θ̃V)6 (r +1)−1/2‖Θ̃V‖ω,h. This yields the simpler bound

(2.33) �J 6 nr1/2
( k

∑
s=1

1
s2

)1/2∫

X
‖Θ̃V‖ω,h

n−1

∑
i=1

r i‖ΘV‖i
ω,h‖η(z)‖n−1−i

ω ωn.

It will be useful to extend the above estimates to the case of sections of

(2.34) Lk = OXGG
k

(1)⊗π∗
kO( 1

kr

(
1+

1
2
+ . . .+

1
k

)
F
)

whereF ∈ PicQ(X) is an arbitraryQ-line bundle onX andπk : XGG
k → X is the

natural projection. We assume here thatF is also equipped with a smooth Hermitian
metrichF . In formulas (2.17–2.19), the renormalized curvatureηk(z,x,u) of Lk takes
the form

(2.35) ηk(z,x,u) =
1

1
kr (1+

1
2 + . . .+ 1

k)
gk(z,x,u)+ΘF,hF (z),

and by the same calculations its expected value is

(2.36) η(z) := E(ηk(z,•,•)) =ΘdetV∗,deth∗(z)+ΘF,hF(z).
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Then the variance estimate forηk − η is unchanged, and theLp bounds forηk

are still valid, since our forms are just shifted by adding the constant smooth term
ΘF,hF (z). The probabilistic estimate 2.18 is therefore still true inexactly the same
form, provided we use (2.34 – 2.36) instead of the previouslydefinedLk, ηk andη .
An application of holomorphic Morse inequalities gives thedesired cohomology
estimates for

hq
(

X,EGG
k,mV∗⊗O(m

kr

(
1+

1
2
+ . . .+

1
k

)
F
))

= hq(XGG
k ,OXGG

k
(m)⊗π∗

kO(m
kr

(
1+

1
2
+ . . .+

1
k

)
F
))

,

providedm is sufficiently divisible to give a multiple ofF which is aZ-line bundle.

(2.37) Theorem.Let (X,V) be a directed manifold, F→ X aQ-line bundle,(V,h)
and(F,hF) smooth Hermitian structure on V and F respectively. We define

Lk = OXGG
k

(1)⊗π∗
kO( 1

kr

(
1+

1
2
+ . . .+

1
k

)
F
)
,

η =ΘdetV∗,deth∗ +ΘF,hF .

Then for all q> 0 and all m≫ k≫ 1 such that m is sufficiently divisible, we have

hq(XGG
k ,O(L⊗m

k ))6
mn+kr−1

(n+ kr−1)!
(logk)n

n! (k!)r

(∫

X(η,q)
(−1)qηn+O((logk)−1)

)
,(a)

h0(XGG
k ,O(L⊗m

k ))>
mn+kr−1

(n+ kr−1)!
(logk)n

n! (k!)r

(∫

X(η,61)
ηn−O((logk)−1)

)
,(b)

χ(XGG
k ,O(L⊗m

k )) =
mn+kr−1

(n+ kr−1)!
(logk)n

n! (k!)r

(
c1(V

∗⊗F)n+O((logk)−1)
)
.(c)

Green and Griffiths [GG79] already checked the Riemann-Rochcalculation
(2.37c) in the special caseV = T∗

X andF = OX. Their proof is much simpler since
it relies only on Chern class calculations, but it cannot provide any information on
the individual cohomology groups, except in very special cases where vanishing
theorems can be applied; in fact in dimension 2, the Euler characteristic satisfies
χ = h0−h1+h2 6 h0+h2, hence it is enough to get the vanishing of the top coho-
mology groupH2 to inferh0 > χ ; this works for surfaces by means of a well-known
vanishing theorem of Bogomolov which implies in general

Hn
(

X,EGG
k,mT∗

X ⊗O(m
kr

(
1+

1
2
+ . . .+

1
k

)
F
)))

= 0

as soon asKX ⊗F is big andm≫ 1.
In fact, thanks to Bonavero’s singular holomorphic Morse inequalities [Bon93],

everything works almost unchanged in the case whereV ⊂ TX has singularities
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and h is an admissible metric onV (see (0.8)). We only have to find a blow-up
µ : X̃k → Xk so that the resulting pull-backsµ∗Lk and µ∗V are locally free, and
µ∗deth∗, µ∗Ψh,p,ε only have divisorial singularities. Thenη is a(1,1)-current with
logarithmic poles, and we have to deal with smooth metrics onµ∗L⊗m

k ⊗O(−mEk)
whereEk is a certain effective divisor onXk (which, by our assumption (0.8), does
not project ontoX). The cohomology groups involved are then the twisted cohomol-
ogy groups

Hq(XGG
k ,O(L⊗m

k )⊗Jk,m)

whereJk,m = µ∗(O(−mEk)) is the corresponding multiplier ideal sheaf, and the
Morse integrals need only be evaluated in the complement of the poles, that is on
X(η ,q)rSwhereS= Sing(V)∪Sing(h). Since

(πk)∗
(O(L⊗m

k )⊗Jk,m
)
⊂ EGG

k,mV∗⊗O(m
kr

(
1+

1
2
+ . . .+

1
k

)
F
))

we still get a lower bound for theH0 of the latter sheaf (or for theH0 of the un-
twisted line bundleO(L⊗m

k ) onXGG
k ). If we assume thatKV ⊗F is big, these consid-

erations also allow us to obtain a strong estimate in terms ofthe volume, by using an
approximate Zariski decomposition on a suitable blow-up of(X,V). The following
corollary implies in particular Theorem 0.5.

(2.38) Corollary. If F is an arbitraryQ-line bundle over X, one has

h0
(

XGG
k ,OXGG

k
(m)⊗π∗

kO(m
kr

(
1+

1
2
+ . . .+

1
k

)
F
))

>
mn+kr−1

(n+ kr−1)!
(logk)n

n! (k!)r

(
Vol(KV ⊗F)−O((logk)−1)

)
−o(mn+kr−1),

when m≫ k ≫ 1, in particular there are many sections of the k-jet differentials of
degree m twisted by the appropriate power of F if KV ⊗F is big.

Proof.The volume is computed here as usual, i.e. after performing asuitable modifi-
cation µ : X̃ → X which convertsKV into an invertible sheaf. There is of course
nothing to prove ifKV ⊗F is not big, so we can assume Vol(KV ⊗F)> 0. Let us fix
smooth Hermitian metricsh0 onTX andhF onF . They induce a metricµ∗(deth−1

0 ⊗
hF) on µ∗(KV ⊗F) which, by our definition ofKV , is a smooth metric. By the result
of Fujita [Fuj94] on approximate Zariski decomposition, for everyδ > 0, one can
find a modificationµδ : X̃δ → X dominatingµ such that

µ∗
δ (KV ⊗F) = OX̃δ

(A+E)

whereA andE areQ-divisors,A ample andE effective, with

Vol(A) = An > Vol(KV ⊗F)− δ .

If we take a smooth metrichA with positive definite curvature formΘA,hA, then we
get a singular Hermitian metrichAhE on µ∗

δ (KV ⊗F) with poles alongE, i.e. the
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quotienthAhE/µ∗(deth−1
0 ⊗hF) is of the forme−ϕ whereϕ is quasi-psh with log

poles log|σE|2 (modC∞(X̃δ )) precisely given by the divisorE. We then only need
to take the singular metrich onTX defined by

h= h0e
1
r (µδ )

∗ϕ

(the choice of the factor1r is there to correct adequately the metric on detV). By
constructionh induces an admissible metric onV and the resulting curvature current
η =ΘKV ,deth∗ +ΘF,hF is such that

µ∗
δ η =ΘA,hA +[E], [E] = current of integration onE.

Then the 0-index Morse integral in the complement of the poles is given by
∫

X(η,0)rS
ηn =

∫

X̃δ
Θ n

A,hA
= An > Vol(KV ⊗F)− δ

and (2.38) follows from the fact thatδ can be taken arbitrary small. �

(2.39) Example.In some simple cases, the above estimates can lead to very explicit
results. Take for instanceX to be a smooth complete intersection of multidegree
(d1,d2, . . . ,ds) in Pn+s

C and consider the absolute caseV = TX. Then

KX = OX(d1+ . . .+ds−n− s−1).

Assume thatX is of general type, i.e.∑d j > n+s+1. Let us equipV = TX with the
restriction of the Fubini-Study metrich=ΘO(1) ; a better choice might be the Kähler-
Einstein metric but we want to keep the calculations as elementary as possible. The
standard formula for the curvature tensor of a submanifold gives

ΘTX ,h = (ΘT
Pn+s,h)|X +β ∗∧β

whereβ ∈C∞(Λ1,0T∗
X ⊗Hom(TX,

⊕O(d j))
)

is the second fundamental form. In
other words, by the well known formula for the curvature of projective space, we
have

〈ΘTX ,h(ζ ,ζ )u,u〉 = |ζ |2|u|2+ |〈ζ ,u〉|2−|β (ζ ) ·u|2.
The curvatureρ of (KX ,deth∗) (i.e. the opposite of the Ricci form TrΘTX ,h) is given
by

(2.40) ρ =−TrΘTX ,h = Tr(β ∧β ∗)− (n+1)h>−(n+1)h.

We take hereF = OX(−a), a ∈ Q+, and we want to determine conditions for the
existence of sections

(2.41) H0
(

X,EGG
k,mT∗

X ⊗O(−a
m
kr

(
1+

1
2
+ . . .+

1
k

)))
, m≫ 1.
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We have to chooseKX ⊗OX(−a) ample, i.e.∑d j > n+ s+a+1, and then (by an
appropriate choice of the metric ofF = OX(−a)), the formη =ΘKX⊗OX(−a) can be
taken to be any positive form cohomologous to(∑d j − (n+ s+a+1))h. We use
remark 2.31 and estimate the error terms by considering the Kähler metric

ω = ρ +(n+ s+2)h≡
(
∑d j +1

)
h.

Inequality (2.40) shows thatω > 2h and also thatω > Tr(β ∧ β ∗). From this,
one easily concludes that‖η‖ω 6 1 by an appropriate choice ofη , as well as
‖ΘTX ,h‖ω,h 6 1 and‖Θ̃TX,h‖ω,h 6 2. By (2.33), we obtain forn> 2

J 6 n3/2 π√
6
×2

nn−1
n−1

∫

X
ωn <

4π√
6

nn+1/2
∫

X
ωn

where
∫

X ωn =
(

∑d j +1
)ndeg(X). On the other hand, the leading term

∫
X ηn equals(

∑d j −n− s−a−1
)n

deg(X) with deg(X) = d1 . . .ds. By the bound (2.32) on the
error termεk,r,n, we find that the leading coefficient of the growth of our spaces of
sections is strictly controlled below by a multiple of

(
∑d j −n− s−a−1

)n
−4π

(31
90

)1/2 nn+1/2

logk

(
∑d j +1

)n

if k> e5n−5. A sufficient condition for the existence of sections in (2.41) is thus

(2.42) k> exp
(

7.38nn+1/2
( ∑d j +1

∑d j −n− s−a−1

)n)
.

This is good in view of the fact that we can cover arbitrary smooth complete inter-
sections of general type. On the other hand, even when the degreesd j tend to+∞,
we still get a large lower boundk ∼ exp(7.38nn+1/2) on the order of jets, and this
is far from being optimal : Diverio [Div08, Div09] has shown e.g. that one can take
k = n for smooth hypersurfaces of high degree. It is however not unlikely that one
could improve estimate (2.42) with more careful choices ofω , h. �

References

[ABP73] M.F. Atiyah, R. Bott and V.K. Patodi. — On the heat equation and the
index theorem, Invent. Math., 19 (1973), 279–330.

[AN54] Y. Akizuki, S. Nakano. — Note on Kodaira-Spencer’s proof of Lefschetz
theorems, Proc. Jap. Acad., 30 (1954), 266–272.

[AG62] A. Andreotti, H. Grauert. — Théorèmes de finitude pour la cohomologie
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[CG76] M. Cowen, P. Griffiths. — Holomorphic curves and metrics of negative
curvature, J. Analyse Math, 29 (1976), 93–153.

[CP04] F. Campana, Th. Peternell. — Geometric stability of the cotangent
bundle and the universal cover of a projective manifold, arXiv:math.AG/
0405093.

[Dem82] J.-P. Demailly. — Estimations L2 pour l’opérateur ∂ d’un fibré vectoriel
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