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Abstract. These lectures are devoted to the study of various contemporary problems
of algebraic geometry, using fundamental tools from complex potential theory, namely
plurisubharmonic functions, positive currents and Monge-Ampere operators. Since their
inception by Oka and Lelong in the mid 1940’s, plurisubharmonic functions have been
used extensively in many areas of algebraic and analytic geometry, as they are the func-
tion theoretic counterpart of pseudoconvexity, the complexified version of convexity. One
such application is the theory of L? estimates via the Bochner-Kodaira-Hérmander tech-
nique, which provides very strong existence theorems for sections of holomorphic vector
bundles with positive curvature. One can mention here the foundational work achieved
by Bochner, Kodaira, Nakano, Morrey, Kohn, Andreotti-Vesentini, Grauert, Hérmander,
Bombieri, Skoda and Ohsawa-Takegoshi in the course of more than 4 decades. Another
development is the theory of holomorphic Morse inequalities (1985), which relate certain
curvature integrals with the asymptotic cohomology of large tensor powers of line or
vector bundles, and bring a useful complement to the Riemann-Roch formula.

We describe here the main techniques involved in the proof of holomorphic Morse in-
equalities (chapter I) and their link with Monge-Ampere operators and intersection the-
ory. Chapter II, especially, gives a fundamental approximation theorem for closed (1, 1)-
currents, using a Bergman kernel technique in combination with the Ohsawa-Takegoshi
theorem. As an application, we study the geometric properties of positives cones of
an algebraic variety (nef and pseudo-effective cone), and derive from there some results
about asymptotic cohomology functionals in chapter III. The last chapter IV provides an
application to the study of the Green-Griffiths-Lang conjecture. The latter conjecture
asserts that every entire curve drawn on a projective variety of general type should satisfy
a global algebraic equation; via a probabilistic curvature estimate, holomorphic Morse
inequalities imply that entire curves must at least satisfy a global algebraic differential
equation.



2 J.-P. Demailly = Applications of Pluripotential theory to Algebraic Geometry

Acknowledgment. The author expresses his warm thanks to the organizers of the
CIME School in Pluripotential Theory held in Cetraro in July 2011, Filippo Bracci and
John Erik Fornaess, for their invitation and the opportunity to deliver these lectures to
an audience of young researchers. The author is also grateful to the referee for his (her)
suggestions, and for a very careful reading of the manuscript.

Contents

Part I. Holomorphic Morse inequalities............................................... 3
0. IntrodUcCtion . . . .ot e e e 3
1. Holomorphic Morse inequalities . . ... ... ... oo e e e 9
2. Applications to algebraic geometry . ... ... ... o 21
3. Morse inequalities on g-convex varieties ....... ...t 27
Part II. Approximation of currents and intersection theory ................... 31
0. IntrodUction . . ..ot e e e e e e 31
1. Pseudo-effective line bundles and singular Hermitian metrics ............. ... ... i, 31
2. Hermitian metrics with minimal singularities and analytic Zariski decomposition................. 33
3. Description of the positive cones (Kéhler and projective cases).........c..oovuiiiiiiiiiiiiiinnn. 35
4. Approximation of plurisubharmonic functions via Bergman kernels .................. .. . ... ... 40
5. Global approximation of closed (1,1)-currents on a compact complex manifold ................... 43
6. Zariski decomposition and mobile intersections ... ........ ... 50
7. The orthogonality estimate ... ... 57
8. Dual of the pseudo-effective cone........... . 59

Part III. Asymptotic cohomology functionals

and Monge-Ampere operators.............. ... i 63
0. Introduction and main definitions . ..... ... ... o i i i 63
1. Extension of the functionals to real cohomology classes............... il 64
2. Transcendental asymptotic cohomology functions............. ... i i i i i i 67
3. Invariance by modification . ... ........ .o 71
4. Proof of the infimum formula for the volume ........... .. ... . . i 72
5. Estimate of the first cohomology group on a projective surface............ ..o, 74
6. Singular holomorphic Morse inequalities. ... ...... ... oo i i 78

Part IV. Morse inequalities and

the Green-Griffiths-Lang conjecture.............. ... ... ... 80
0. IntrodUcCtion . . . ..o e 80
1. Hermitian geometry of weighted projective spaces....... ... 86
2. Probabilistic estimate of the curvature of k-jet bundles............ ... ... .. . 90

R erencCes . ... 107



Part 1

Holomorphic Morse inequalities

Holomorphic Morse inequalities provide asymptotic bounds for the cohomology of
tensor powers of holomorphic line bundles. They are a very useful complement to the
Riemann-Roch formula in many circumstances. They were first introduced in [Dem85],
and were largely motivated by Siu’s solution [Siu84, Siu85] of the Grauert-Riemen-
schneider conjecture, which we reprove here as a special case of a stronger statement. The
basic tool is a spectral theorem which describes the eigenvalue distribution of complex
Laplace-Beltrami operators. The original proof of [Dem85] was based partly on Siu’s
techniques and partly on an extension of Witten’s analytic proof of standard Morse in-
equalities [Wit82]. Somewhat later Bismut [Bis87] and Getzler [Get89] gave new proofs,
both relying on an analysis of the heat kernel in the spirit of the Atiyah-Bott-Patodi proof
of the Atiyah-Singer index theorem [ABP73|. Although the basic idea is simple, Bismut
used deep results arising from probability theory (the Malliavin calculus), while Getz-
ler relied on his supersymmetric symbolic calculus for spin pseudodifferential operators

[Get83].

We present here a slightly more elementary and self-contained proof which was sug-
gested to us by Mohan Ramachadran on the occasion of a visit to Chicago in 1989.
The reader is referred to [Dem85, Dem91] for more details.

0. Introduction

0.A. Real Morse inequalities

Let M be a compact C'°° manifold, dimg M = m, and h a Morse function, i.e. a
function such that all critical points are non degenerate. The standard (real) Morse
inequalities relate the Betti numbers b, = dim H{, (M, R) and the numbers

sq = # critical points of index ¢ ,

where the index of a critical point is the number of negative eigenvalues of the Hessian
form (92h/0z;0z;). Specifically, the following “strong Morse inequalities” hold :

(01) bq — bq—l 4+ -4 (—1>qb0 < Sq — Sq—l 4+ -4 (—1>q80

for each integer ¢ > 0. As a consequence, one recovers the “weak Morse inequalities”
by < s4 and the expression of the Euler-Poincaré characteristic

(02) X(M) = bo — b1 + L + (—1)mbm = S0 — S1 + L + (—1)m8m .
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These results are purely topological. They are obtained by showing that M can be
reconstructed from the structure of the Morse function by attaching cells according to
the index of the critical points; real Morse inequalities are then obtained as a consequence
of the Mayer-Vietoris exact sequence (see [Mil63]).

0.B. Dolbeault cohomology

Instead of looking at De Rham cohomology, we want to investigate here Dolbeault
cohomology, i.e. cohomology of the d-complex. Let X be a compact complex manifold,
n = dimc X and E be a holomorphic vector bundle over X with rank £ = r. Let us
recall that there is a canonical 0-operator

(0.3) 0: 0 (X, A\PIT% @ E) — C°(X, AP T% @ F)

acting on spaces of (p, ¢)-forms with values in E. By the Dolbeault isomorphism theorem,
there is an isomorphism

(0.4) HEY(X, E) = HY(C®(X, A\"*T} @ E)) ~ HI(X, 2% @ O(E))

from the cohomology of the 9-complex onto the cohomology of the sheaf of holomorphic
p-forms with values in E. In particular, we have

(0.5) H2(X, E) ~ HY(X, 0(E)),

and we will denote as usual h?(X, E) = dim HY(X, O(F)).
0.C. Connections and curvature

Leut us consider first a C°° complex vector bundle £ — M on a real differential
manifold M (without necessarily any holomorphic structure at this point). A connection
D on FE is a linear differential operator

(0.6) D :C®(M,\Ty; ® E) — C™(M,\1'T}; ® E)

satisfying the Leibniz rule

(0.7) D(fAs)=df Ns+(=1)18 S f A Ds

for all forms f € C®(X,APT},), s € C°(X,AT}; ® E). On an open set U C M where
E is trivial, E|;y ~ U x C", the Leibniz rule shows that a connection D can be written
in a unique way

(0.8) Ds~ds+T As

where I' € C°°(U, A'T;; ® Hom(C",C")) is an arbitrary 7 x r matrix of 1-forms and d
acts componentwise. It is then easy to check that

(0.9) D?s~(dl' +TAT)As on U.

Therefore D?s = 0p A s for some global 2-form 0p € C°(M, A*T;; ® Hom(E, E)), given
by 0p ~ dl'y + 'y ATy on any trivializing open set U with a connection matrix I'y.
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(0.10) Definition. The (normalized) curvature tensor of D is defined to be ©p = 5=6p,
in other words

LDQS =OpAs
2

for any section s € C°(M, ATy, @ E).

The main reason for the introduction of the factor i is the well known formula for
the expression of the Chern classes in the ring of differential forms of even degree: one

has
det(Id +AOp) = 14+ A1 (D) + AN*72(D) + ... + A"v,(D),

where v;(D) is a d-closed differential form of degree 2j. Moreover, v;(D) has integral
periods, i.e. the De Rham cohomology class {v;(D)} € H? (M,R) is the image of an
integral class, namely the j-th Chern class ¢;(F) € H* (M,Z).

0.D. Hermitian connections

Assume now that the fibers of E are endowed with a C°° Hermitian metric h, and
that the isomorphism Ej; ~ U x C" is given by a C* frame (ex). Then we have a
canonical sesquilinear pairing

O (M, APT}; @ E) x C®(M, AT}, ® E) — C(M, APHIT},)
('LL, U) L {U, U}h

given by

{u,v}h:ZuA AT, (ex, eu)n for u:ZuA@)e)\, U:Z%‘X’ew

A

The connection D is said to be Hermitian (or compatible with the Hermitian metric h)
if it satisfies the additional property

(0.11) d{u, v}y = {Du, v}, + (=1)9% “{u, Dv}y,.

Assuming that (ey) is h-orthonormal, one easily checks that D is Hermitian if and only
if the associated connection matrix I' is skew-symmetric, i.e. I'* = —I'. In this case
Op = dI'+ T' AT also satisfies 05, = —0p, thus

(0.12) Op = ieD € O(M, A*T}, @ Herm(E, E)).

(0.13) Special case. For a bundle E of rank r = 1, the connection matrix I'" of a
Hermitian connection D can be more conveniently written I' = —iA where A is a real
1-form. Then we have

7 1
= —dI' = —dA.
©p 27rd 2

Frequently, especially in physics, the real 2-form B = dA = 2710p € C*(M, A*T},)
is referred to as the magnetic field, and the 1-form A as its potential. A phase change
5(z) = s(x)e’®) in the isomorphism Ejy = U x C replaces A with the new connection

form A = A+ da.
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0.E. Connections on a Hermitian holomorphic vector bundle

If M = X is a complex manifold, every connection D can be split in a unique way as
the sum D = D’ + D" of a (1,0)-connection D’ and a (0, 1)-connection D" :

D' : C®°(M,APT% @ E) — C®(M,A\P™T% @ E),
D" : C®°(M,A\PIT% @ E) — C®(M, A" T% @ E).

In a local trivialization given by a C'*° frame, one can write

Du=du+T" ANu,
D//u:d//u—l—F///\u,

with I' = IV + I and d' = 9, d’' = 0. If (E,h) is a C* Hermitian structure, the
connection is Hermitian if and only if IV = —(I')* in any h-orthonormal frame. Thus
there exists a unique Hermitian connection corresponding to a prescribed (0, 1) part D”.

Assume now that the Hermitian bundle (E,h) has a holomorphic structure. The

unique Hermitian connection D for which D” = 9 is called the Chern connection of
(E, h). In alocal holomorphic frame (ey) of E|;; , the metric h is given by some Hermitian
matrix H = (hy,) where hy, = (ex,e,)n. Standard computations yield the expression
of the Chern connection :

D's=08s+H OHAs,
D"s = 0s,
Op As=D2?s=(D'D"+D"D)s=—0(H 9H)As.

(0.14) Definition. The Chern curvature tensor of (E,h) is the curvature tensor of its
Chern connection, denoted

Opn,=D'D"+D'D = —9(H 0H).

In the special case of a rank 1 bundle E, the matrix H is simply a positive function,
and it is convenient to introduce its weight ¢ such that H = (e~ %) where ¢ € C*°(U,R)
depends on the given trivialization F|;; =~ U x C. We have in this case

? 1 =
(0.15) Opn = §0E’h = %6890 on U,

and therefore O , is a closed real (1, 1)-form.

0.F. Fundamental facts of Hodge theory

Assume here that M is a Riemannian manifold with metric g = ) ¢;;dz; ®dz;. Given
g-forms u, v on M with values in F , we consider the global L? norm and inner product

©16)  Jul? = [ u@Pdota), (o) = [ (o). ofe) dofe).
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where |u| is the pointwise Hermitian norm and do the Riemannian volume form. The
Laplace Beltrami operator associated with the connection D is

A = DD* + D*D,
acting on any of the spaces C*°(M, AT}, ® E); here
(0.17) D*: C®(M, ATy, ® E) — C®°(M, AT}, @ E)

is the (formal) L? adjoint of D. The complex Laplace operators A’ = D'D"™* + D*D’
and A" = D" D"* 4+ D"*D" are defined similarly when M = X is a complex manifold. In
degree 0 we simply have A = D*D. A well-known calculation shows that the principal
symbol of A is oa(z,&) = —|¢21d (while oa/(z,€) = oar (2, &) = —3[¢[21d). As a
consequence A, A’, A" are always elliptic operators.

When M is compact, the operator A acting on any of the spaces C*°(M, AT}, @ E)
has a discrete spectrum
A< A <K <

and corresponding eigenfunctions 1; € C*°(M, AT}, ® E), depending of course on g.

Our main goal is to obtain asymptotic formulas for the eigenvalues. For this, we will
make an essential use of the heat operator e *®. In the above setting, the heat operator
is the bounded Hermitian operator associated to the heat kernel

+oo
(0.18) Ky(z,y) = e ™, (x) @ ) (y),

i.e.

(e o) = [ (ule). Kuwv) - o(y) doz) doy).
M x M
Standard results of the theory of elliptic operators show that
K, € C*(]0, +00[ x M x M, Hom(E, E))
and that Ky(z,y) is the solution of the differential equation

0 : .
(0.19) a[(t(x,y) = —A,K(z,y), tl_l)l(l)l Ki(z,y) = 0y(x) (Dirac at y),
+

—tA _ _Ae—tA —0A

as follows formally from the fact that %e and e = Id. The asymptotic
distribution of eigenvalues can be recovered from the straightforward formula

—+o0

(0.20) Ze_A”t :/ trp Ky(z, x)do(x) .

v=1 M

In the sequel, we are especially interested in the 0O-eigenspace:

(0.21) Definition. The space of A-harmonic forms is defined to be

HL(M,E) =Ker A = {u € C®°(M,ATy; ® E); Au=0}.
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When M is compact, an integration by part shows that
(Au,w)) = [|Dul|* + || D*ulf?,

hence w is A-harmonic if and only if Du = D*u = 0. Moreover, as A is a self-ajoint
operator, standard elliptic theory implies that

(0.22) C®(M,NTy; @ E) =Ker A®ImA = H4(M,E) ®ImA,

and Ker A = #% (M, FE), ImA are orthogonal with respect to the L? inner product.
Clearly Im A C Im D+1Im D*, and both images Im D, Im D* are orthogonal to the space
of harmonic forms by what we have just seen. As a consequence, we have

(0.23) ImA =ImD + Im D*.

(0.24) Hodge isomorphism theorem. Assume that M is compact and that D is an
integrable connection, i.e. D> = 0 (or §p = 0). Then D defines on spaces of sections
C>®(M,\T;; ® E) a differential complex which can be seen as a generalization of the
De Rham complex. The condition D? = 0 immediately implies that Im D | Im D* and
we conclude from the above discussion that there is an orthogonal direct sum
(0.25) C®(M,NTy; @ E) = HA(M,E)®Im D & Im D*.
If we put u = h + Dv + D*w according to this decomposition, then Du = DD*w = 0 if
and only if ||D*w|| = {(DD*w,w)) = 0, thus

Ker D = #4 (M, E) ® Im D.
This implies the Hodge isomorphism theorem
(0.26) HEo(M,E):=KerD/Im D ~ K% (M, E).

In case M = X is a compact complex manifold, (£, h) a Hermitian holomorphic vector
bundle and D = D'+ D" the Chern connection, the integrability condition D"? = 9% = 0
is always satisfied. Thus we get an analogous isomorphism

(0.27)0.4 H'(X,0(E)) ~ HY'(X, E) ~ # X4 (M, E),
and more generally
(0.27),.4 H(X,0% ® 6(E)) ~ H2Y(X, E) ~ #H5% (M, B),

where #H\% (M, E) is the space of A”-harmonic forms of type (p, ¢) with values in E.

(0.28) Corollary (Hodge decomposition theorem). If (X, w) is a compact Kdihler mani-
fold and (E,h) is a flat Hermitian vector bundle over X (i.e. Diﬂ’h = 0), then there is
an isomorphism

k ~ P.q
HDR<M7 E) — @ Hg (X7 E)
pt+a=k
In fact, under the condition that w is Kéhler, i.e. dw = 0, well-known identities of Kahler
geometry imply A’ = A” = 1A, and as a consequence
HA (M. E)= P % (X,E).
p+q=k
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1. Holomorphic Morse inequalities

1.A. Main statements

Let X be a compact complex n-dimensional manifold, L — X a holomorphic line
bundle and £ — X a holomorphic vector bundle of rank r = rank . We assume
that L is equipped with a smooth Hermitian metric h and denote accordingly Oy, j its
curvature form; by definition this is a closed real (1,1)-form and its cohomology class
c1(L)r = {6 n} € HAz(X,R) is the first Chern class of L.

(1.1) g-index sets. We define the g-index sets and {< q}-index sets of (L, h) to be

X(L,h,q) = {x € X; Opn(x) has

q negative eigenvalues
n —q positive eigenvalues

X(Lh,<q)= |J X(L,hj) .

1<y<q

Clearly X (L, h,q) and X (L, h,< q) are open subsets of X, and we have a partition into
“chambers” X = S U Uy cn X (L, h,q) where S = {z € X; ©p(x) = 0} is the
degeneration set. The following theorem was first proved in [Dem85].

(1.2) Main Theorem. The cohomology groups of tensor powers E ® L* satisfy the
following asymptotic estimates as k — +oo :

(1.2)wm Weak Morse inequalities :

n

k
h(X,E® LF) <r—
mn:

/ (—1)907 , + o(k™) .
X (L,h,q)

(1.2)sm Strong Morse inequalities:

o km
> DT ES L) <t [ (e, o)
" JX(L,h.<a)

0<i<q

(1.2)grr Asymptotic Riemann-Roch formula:

o En
WXEOL)i= Y ()W Ee L) =rin [ ef, 4 o).
X

, n!
0<j<n

The weak Morse form (1.2)wy follows from strong Morse (1.2)spm by adding conse-
cutive inequalities for the indices ¢ — 1 and ¢, since the signs (—1)?77 and (—1)4=1~J
are opposite. Also, (1.2)rr is just a weaker formulation of the existence of the Hilbert
polynomial, and as such, is a consequence of the Hirzebruch-Riemann-Roch formula;
it follows formally from (1.2)gy with ¢ = n and ¢ = n+ 1, since A" ! = 0 identically and
the signs are reversed. Now, by adding (1.2)gy for the indices of opposite parity g + 1
and ¢ — 2, we find

AN X, E® LP) — h(..)+h?1(.) < o

ey (-1}, +olk"),
: X(Lahv{q_laQaq+1})
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where X (L,h,{q—1,q,q+ 1}) is meant for the union of chambers of indices ¢ — 1, g,
g+ 1. As a consequence, we get lower bounds for the cohomology groups:

k"

(1.3) h(X,E®LF) > h? =t —pi~t > r—
e JX(L,h,{q—1,q,q+1})

(=107 5, — o(k").

Another important special case is (1.2)gy for ¢ = 1, which yields the lower bound

(1.4) RO(X,E®LF) > h — Al Zrk—' L —o(k™).
n: Jx(rL,h,<1)

As we will see later in the applications, this lower bound provides a very useful criterion
to prove the existence of sections of large tensor powers of a line bundle. O

1.B. Heat kernel and eigenvalue distribution

We introduce here a basic heat equation technique, from which all asymptotic eigen-
value estimates can be derived via an explicit formula, known as Mehler’s formula.

We start with a compact Riemannian manifold (M, g) with dimg M = m, and denote
by do its Riemannian volume form. Let (L, hr) (resp. (E, hg)) be a Hermitian complex
line (resp. vector bundle) on M, equipped with a Hermitian connection Dy, (resp. Dg).

We denote by Dy, = Dggrx the associated connection on E® L, and by Ay, = D; Dy,
the Laplace-Beltrami operator acting on sections of E® L¥ (i.e. forms of degree 0). As in
(0.13), we introduce the (local) connection form I';, = —iA of L and the corresponding
(global) curvature 2-form B = dA € C*°(M, A*T5;), i.e. the “magnetic field” (I'g and the
corresponding curvature tensor O of Dp will not play a significant role here). Finally,
we assume that an additional section V' € C*°(M, Herm(FE, E)) is given (“electric field”) ;
for simplicity of notation, we still denote by V the operator V ® Id;» acting on F ® L*.

If Q C M is a smoothly bounded open subset of M, we consider for u in the Sobolev
space W} (Q, E ® L*) the quadratic form

(1.5) Qr.o(u) = /Q %|Dku|2 — (Vu,u).

Here W4 (Q, E® LF) is the closure of the space of smooth sections with compact support
in €2, taken in the Hilbert space WiL (M, E® L*) of sections that have L2 _ coefficients as
well as their first derivatives. In other words, we consider the densily defined self adjoint
operator

1
(1.6) O = EDZDIC -V
acting in the Hilbert space Wy (Q, E ®L*), i.e. with Dirichlet boundary conditions. Again,
Oy acting on W3 (2, E® L¥) has a discrete spectrum whenever  is relatively compact
(and also sometimes when € is unbounded, according to the behavior of B and V at
infinity; except otherwise stated, we will assume that we are in this case later on). Then,
there is an associated “localized” heat kernel

“+oo
(1.7) Kipale,y) =Y e 2%, o) @95 4 oy)
v=1
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where 1, .o € Wi (Q, E ® L*) are the eigenfunctions and ), j o their eigenvalues.

We want to study the asymptotic eigenvalue distribution of g as £ — +o00, and more
precisely get an asymptotic formula for the corresponding heat kernel e "™, The basic
idea is to decompose the proof in three steps :

(o) convince ourselves that the asymptotic estimates can be “localized”, up to lower
order error terms.

(8) show that the local estimates can be obtained by freezing the coefficients of the
operators involved at any given point.

compute explicitly the heat kernel in the case of connections with constant curvature,
gl y
assuming moreover that 2 ~ R™ with the flat euclidean metric.

() In order to see that the situation can be localized, we fix a partition of unity (7;)

relative to an arbitrarily fine finite covering (£2;) of €, such that > 77 = 1 near Q.
We consider the continuous injection

Ing, Wy (LE® L) - @PWi(QnQ, EQLY),  uw (rju);,

J

the inverse of which is (u;) — u = )" 7u;. As ) 7;dr; =0 on Q, we find

18 32 Qua, () ~ Quals =5 | (Z ) < o (F)1u

By the minimax principle, it follows that the eigenvalues of € Qk,0;| Im Ing, and those
of Q. q differ by at most O(1/k) as k — +oo. This explains why a localization process is
possible, at least as far as the eigenvalue distribution is concerned. For the related heat
kernels on small geodesic balls, one can use the following localization principle.

(1.9) Proposition. Let Q, = B(2°,p) be a geodesic ball of (M,g) of radius p where
p < injectivity radius. Then there exist constants C7 and €1 > 0 such that for all
t € 10, min(keq, kp?/2m)] and every xg € M we have

K 0 0\ _ 0 C k m/2 _k_PQ 9 v
‘ tem (1) = Ko, (0, )‘ 1 exp o + thlzlpH )
p

A proof of this technical result is given in Thierry Bouche’s PhD thesis (cf. [Bou90]). It
relies on a use of Kato’s inequality (cf. [HeSU80]), which amounts to say that we get an
upper bound for Ky ar in the case when the curvature is trivial; one can then use the
calculations given below to get the explicit bound, see e.g. (1.107).

(B) Now, let 2° € M be a given point. We choose coordinates (x1,...,2,,) centered at
20 such that (8/0x1,...,0/0x,,) is orthonormal at z° with respect to the Riemannian
metric g. By changing the orthonormal frame of L as in (0.13), we can adjust the
connection form I', = —iA of L to be given by any local potential A(z) =}, A;(z) dz;
such that B = dA, and we can therefore arrange that A(z") = 0. Similarly, we can fix
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a unitary frame of E such that ['g(z") = 0. Set 2° = 0 for simplicity. The first term of
our Laplace operator [ = %DZDR — V is the square of the first order operator

k=2 Dyu(z) = k72 (du(z) + k1dp @1 (2) - u(z) + 1dx ®Tp(2) - u(z))

_ ou . _
= k~1/2 Z (a—x] — zkl/QAj(x)u(x))dxj + k7 Y21d, e @Tp(2) - u(z).
j

1/2

If we use a rescaling z = k2% and set w(Z) = u(z) = w(k~'/2%), this operator takes

the form

~ ou SO i\~
D@ =Y (aT“ — kY2 A (k%) u(x))dxj + Ok~ V2|7)) 4(7) da.
- T

j
As A;(0) = 0, the term k'/2A4;(k~/2%) converges modulo O(k~'/2|7|?) terms to the
. . 1T~ 0A;
linearized part A;(7) = >, ; 5.
only contributes for terms of the form O(k~'/2|Z|) (and thus will be negligible in the
end, together with the quadratic terms of A;). Our initial operator O = %DZDk -V

becomes

(0) z;. Observe also that the connection form I'p of E

Ok = DjDy, —V
where V(%) = V(k~1/2%) and where the ajoint is computed with respect to the rescaled
metric §(z) = . g;;(k1/27) d7;dz; ; here g — > (d7;)? as k — +oo thanks to the
assumption that g;;(0) = &;;. Modulo lower order terms O(k~'/2|7|?), D, is given by a
linear connection form B
Az) = Z Bijz; dz;
assciated with the constant magnetic field B(z°) = Z” B;jdz; A dz; frozen at 2 = 0.
We can moreover choose orthonormal coordinates so that B(x°) takes the standard form

B(.IO) = ZB] dCL’j N dCL’j+S

Jj=1

where 2s < m is the rank of the alternate 2-form B(z") and B; the curvature eigenvalues
with respect to g(z"). The corresponding linearized potential is

A@) = B; T, dijy..

j=1

The intuition from Physics is that the eigenfunctions represent “waves” of heat propa-
gation of a certain typical wave length A in the coordinates x, and of a corresponding
(much shorter) wave length A k~1/2 in the original coordinates. At that scale, our space
behaves as if the metrics were flat and the curvature constant.

(7) Let us consider the operators obtained by “freezing” the coefficients at any point 2°, as
explained at step (), although we will not perform the rescaling here. More specifically,
we assume that
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e [ has constant curvature B = Ej.:l Bjdx; N dx;is. Then there is a local trivializa-
tion in which

Diu=du—iA A u, A= ZBjxjdxj+s.
j=1
e O ~R™ and the metric g is flat : ¢ =) dz; ® dz;.
o FE~QxC"is a trivial (flat) Hermitian bundle.

e the Hermitian form V is constant. We choose an orthonormal frame of £ in which
V' is diagonal, i.e.

(Vu,u) Z V,\|U>\\2

1<ALr

In this ideal situation, the connection Dy on E ® L* can be written Dyu = du —ikAAu
and the quadratic form Q) q is given by

Qr.o(u) = /m% Z (’gij’i 88;; _ikBj.iju)\’ >+Z le;\ - Z Valual?.

1Siss 1<ALr
1SASr 1<ALr SO

In this situation, Qx q is a direct sum of quadratic forms acting on each component uy

and the computation of e~*7* is reduced to the following model cases (1.10), (1.11) in
dimension 1 or 2:

(1.10) n=[|L} or=-21

dx?

As is well known (and although the spectrum is not discrete in that case) the kernel of
the “elementary” heat operator e ' is given by

1
(1.10") Kir(z,y) = \/Tme_(‘r_y)z/“,

as follows from solving equation (0.19). The second model case is:

df |2 df
d—xl + d—@—mxlf‘ )

(111) an- |

A partial Fourier transform f(ml, &) = \/% Jo f(21, 22) e~ 282 dry gives

an- |

and the change of variables ] = x1 — &/a, x5, = & leads (after dropping the second
variable x}) to the so called “harmonic oscillator” energy functional

~

d 5 2

dg |2 &
1.12 - ‘_‘ 222002 O=— 2.2
(1.12) q(9) /Rdw +a”z7|g] 5 ta
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The heat kernel of this operator is given by Mehler’s formula:

/ _ /@ ( _ g —y)?— )
(1.12%) kir(z,y) = 5 b oar &P 2(coth 2at)(x — y)* — a(tanhat)zy ),

which actually reduces to (1.10") when a — 0. One way of obtaining this relation is to
observe that the unitary eigenfunctions of [ are

~1/2
T
(2”])!\/;) P, (vaz), p=0,1,2,...,

with associated eigenvalues (2p + 1)a, where (®,) is the sequence of functions associated

with Hermite polynomials:

By () = /7 ()

x) = — (e .
P dzP

In fact, for a = 1, easy calculations bearing on derivatives of " /2 show that

2

(—%—I—x )<I> (x):—e‘rz/2

ar+2 2

qr+1 dr
y p+2(e—x )_2xe$2/2 2 _e$2/2_ 2
X

sy CR el CR

We can now replace the first term by er /2 dcf;rll (2 - e‘wQ) and use the Leibniz formula

for the differentiation of the product to see that O®,(z) = (2p + 1)@, (z). Therefore

e—(2p+l)at gp s dP

_ a(z?+y?)/2 az?\y Y _ay?
Fusleg) = e Z o (e e,

The above summation Y (z,y) = ;ﬁg ... can be computed via its Fourier transform
N I p2at ) )
S(,m) = Z (S ) ey et
= e “exp ( (&t 2e” “ten)),
thus at .
Y(x,y) = =" exp ( - m(xQ +y? - 26_2atxy)>.

and Mehler’s formula (1.12) follows. Through our change of variables, the heat operator
of @ is given by

Kt/,l;f(xl,ﬁz):AktR($1—%,y1—%>f(y1 §2)dys.

By an inverse partial Fourier transform left to the reader, we obtain the desired heat
kernel expression

a
Kige(x1,22;y1,Y2) = exp ( - Z(COth at) ((z1 — y1)* + (z2 — y2)2)>

47 sinh at

(1.117) X exp (%a(xl —|—y1)(x2—y2)).
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The heat kernel associated with a sum of (pairwise commuting) operators [y, ...,0,,
acting on disjoint sets of variables is the product of the corresponding heat kernels e =55 |
Let Kék’ﬂ be the heat kernel of the component of Qo acting on each single entry u,.
The factor in the heat kernel corresponding to each pair of variables (z;, zj4+5), 1 < j <s,
is obtained by substituting kB; to a and t/k to t (the latter rescaling comes from the
initial factor % in the expression of Q. o). For the other coordinates j > 2s where B has
no coefficients, the kernel falls back to the “elementary” heat kernel (1.10”). Finally, the
constant term — V) |uy|? contributes to multiplying the heat kernel by e!V». Therefore we
get for the global heat kernel on 2 = R" the explicit formula

z kB, kB,
A
K gn(z,y) = 1:[1 m exp ( — TJ(COth Bjt) (w251 — y2j-1)* + (w25 — y25)°)

1
+ 5 kBj(w2j-1 + Y1) (w2 — 923‘))

(1.13) x et x (47rt/k:)1m—23/2 exp (—k Z —y;)?/4t).

j>2s

On the diagonal of R™ x R", the global heat kernel K, j g~ is thus given by the rather
simple (Herm(E) ® Id«)-valued tensor depending only on B, V and t/k:

m/2 S
1.14 Ky pgn - <—) etV
( ) ok (&, 7) 4t H sth t

(1.15) Theorem. Consider the general (variable coefficient) case. For § > 0 small,
the heat kernel of U over M admits an asymptotic estimate

_(k ™2 etV (@) )t —1/2+46

as k — 400, where O(k=/2%9) is uniform with respect to x € M and t in a bounded
interval 10, T] C ]0,4o00[ (moreover, for every open set Q@ C M, a similar estimate is
valid for K 1. on relatively compact subsets of §2).

Proof. Notice first that (t,z) — H] 1 Sm%‘r)(;)t

on [0, 00| x M, equal to 1 when ¢ = 0: this is in fact the inverse of the square root of
the determinant of the positive definite symmetric matrix

extends as a smooth positive function

sin(th(@) X PPy

> 1d,
th(x) (2p+1)!

p=0

where b(x) is the antisymmetric endomorphism of T); associated with the alternate
2-form B(x) and —b(x)? = b(z)"b(z) > 0.

The only thing one has still to get convinced of is that the kernel of e
(k/t)™/20(k~1/?+9) uniformly along the diagonal at any point (z°,2°) € M x M, where
9 is the operator [y, “freezed” at x°. We can do this in a canonical way by using normal
coordinates from the Riemannian exponentlal mapping

—t0, e—tDQ N

expgo : R™ o~ Ty po — M,
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and trivializations of £ and L produced by parallel transport along geodesics from z°

to any point x € B(z°, pg), where py = injectivity radius of M. In this way, we actually
get automatically that I'z(z%) = T'g(2) = 0. When Suppu C 2, := B(z°, p), a Taylor
expansion yields Dyu — D%u = O(|z| + k|z|?) - u and we get the estimates

@, () = Qho, () = [ L (1Dwal = [DfuP?) = (V = V)

1

- O(/M = ((p+ kp*) [ Diullul + (p + kp?)*|ul*) + p|u\2>

~o( [ iDfu+ (CEEE L)),
— O(a@%np(u) 4 (% +p+6>\u|2)

2\2
whenever € < 1, hence there is a constant Cp 1, . = O((pﬂfif) + p+¢€) such that

(1-€)Qa,(u) = Cpre

ul’ < Qro,(u) < (14)Q} o, (1) + Cprelul®.

From this, we conclude that e~*7* is squeezed (as a positive bounded self-adjoint opera-
tor) between e~ Crkcle=t1+)L and eCorcte=t(1-)Ek By definition of the heat kernel

we have

Kt,k,Qp(«TO,QCO) = lim Ki k0, (2, y)u,(x)u, (y) do(x) do(y)

v—+o0 QpXQp
= i —ty,
,om (e Uy, Uy)
when u,, Ty 90 (Dirac measure), thus
—Cp.eT 370 0 ,.0 0 0 ,.0 0.0 0 0 ,.0
e oh K(1+s)t,k,9p($ 10) = Kigo,(27,27) < Kipo, (27,27) = Kip o, (27, 27)
Cyp ke T 770 0 ,.0 0 0 .0
Serh K(l—s)t,k,ﬂp<x » L )_Kt,k,ﬂp(x ,x).
We take here p = ¢ = k71/2¥9 5o that O, = O(k~Y/?*°). The expected uni-
form bounds are then obtained by an application of Proposition 1.9, where the choice
p=k~1/2+0 > E=1/2 ensures that the relative errors
Kipv = Kipo, and  K{ppn — K)o
are very small, namely of the order of magnitude O(exp(—k°®/4T)). O

As a consequence, we obtain the following estimate for the eigenvalues :

(1.16) Corollary. The eigenvalues A, ;.0 of Qi satisfy for every t > 0 the estimate

—+o00 m/2 s (o
S = o () [ we o) I i)

47t .
j=1
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This result can be also interpreted in terms of the counting function
Nio(AN) = #{v; Aka <A}
and of the spectral density measure (a sum of Dirac measures on the real line)

d
po = k™2 aNk,Q(A)-

Notice that the measures p, o are all supported in the fixed interval [—vg, +00], where vg
is an upper bound for the eigenvalues of V (z), x € M. In these notations, Corollary 1.16
can be restated :

S

im [ e P = — - / (V@) [T =29 ()
k—+oo J_ ’ (4mt)m/2 | sinh B;(x)t '

We thus see that the sequence of measures jy o converges weakly to a measure puo whose
Laplace transform is given by the right hand side. Inverting the formula, one obtains :

(1.17) Corollary. For almost all A € R

(L1l KN ) = (= o0, A) = [ 3 v (V) + Ado(a)

k—+oo

where vy (A) is the function on M x R defined by

m

25—m7.‘.—m/2

e LR DR LR BE VRSN

(plz"-ﬁpS)ENs

—S8

(1.19) v\ =

Proof. We leave as an exercise to the reader to check that the Laplace transform

+o0 +oo
/ e Pdup(v+\) = et”/ e N dug(N)

— 00 — 00

is actually equal to
tv

(& ﬁ Bj (CL’) t
(4rt)m/2 e sinh Bj(z)t

1.C. Proof of the holomorphic Morse inequalities

Let X be a compact complex manifold, L and E holomorphic Hermitian vector
bundles of rank 1 and r over X. If X is endowed with a Hermitian metric w, Hodge
theory shows that the Dolbeault cohomology group HY(X,E ® L*) can be identified
with the space of harmonic (0, ¢)-forms with respect to the Laplace-Beltrami operator
Al = gkgz + gzgk acting on E ® L*. We thus have to estimate the zero-eigenspace
of AY.
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In order to apply corollary 1.17, we first have to compute A} in terms of the Hermi-
tian connection V; on E® LF @ A%9T% deduced from the Chern connections of L, E, T'x.
What plays now the role of E is the (non holomorphic) bundle £ ® A%9T%.

The relation between A} and Vj, is most easily obtained by means of the Bochner-
Kodaira-Nakano identity. In order to simplify the exposition, we assume here that the
metric w on X is Kdhler. For any Hermitian holomorphic line bundle G on X, the
operators A’ and A” associated with the Chern connection D = D¢ are related by the
B-K-N identity (cf. [Boc48], [Kod53], [AN54], [Nak55])

(1.20) A" = A+ [ifg, A

where ¢ = DZ, € C°(X, AT @ Hom(G, G)) is the curvature tensor and A = L* is
the adjoint of the Lefschetz operator Lu = w A u.

The Leibniz rule implies g = kb ® Idg +0g ® Idp« (omitting the Hermitian
metrics for simplicity of notation), thus

At a given point z° € X | we can find a coordinate system (z1, ..., 2,) such that (9/9z;)
is an orthonormal basis of Tx diagonalizing if7(2°), in such a way that

w(ZO) = % Z de A dzj? ieL(ZO) = % Z Cl{dej /\d?j

1<j<n 1< <n

where a1, ...,q, are the curvature eigenvalues of if;(2°). A standard formula gives
the expression of the curvature term [ify, Aju for any (p,q)-form u. In fact, for u =
Y ourgadzr Ndzy ® ey, we have

([0, Alu,u) = > (g = agp)|ur, sl

1,0\

where oy = ZjeJ a;. In the case of a (0, ¢)-form u = ) usrdZ; ® ey we simply have
Alu = Dy Diu= ViV, u and

(1.21") W=ViEV, —kV 4+ [i0g, A,

(V'u,u) =Y ogslugal®  (here I =0).
JA

This is not yet what was needed, since only the (1,0) part V). appears. To get the (0, 1)
component, we consider u as a (n, ) form with values in £ ® L* ® A"Tx. We then get
Aju = D) D;*u where

I — T —

pu = —ZaUI’J’)\/aZdej Needzy - Ndz, NdZy @ ey

in normal coordinates. Thus Aju = V{*V/u and

(1.21") AL =VIVE+ RV + [i0pganty, A]
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(V"u,u) = Z asluza)®  (here I ={1,...,n}).
J,A

If the metric w is non Kahler, we get additional torsion terms, but these terms are
independent of k. A combination of (1.21") and (1.21”) yields

2
k

1 1
EVZV!@ - V + —W

(1.22) -

" o__
Al =

where W is a Hermitian form independent of & and

2

(Vu,u) = (ag; — o)|uga
JA

Now apply Theorem 1.15 and observe that W does not give any significant contribution
to the heat kernel as & — +00. We write here z; = x; + iy; and the “magnetic field”

B = ZQL == Z (l/jdl’j A dyj.

1<j<n

The curvature eigenvalues are given by B; = |a;|. We denote s = s(z) the rank of B(x)
and order the eigenvalues so that

‘al‘2"'>|as|>02a5+1:-~-:an.

The eigenvalues of V' acting on £ ® A"T% are the coefficients ag; — oy, counted with
multiplicity r. Therefore

(1.23) Theorem. The heat kernel associated with e~ %% in bidegree (0,q) satisfies

t(ags(z)—ay(x)) s
Kf(x x)wknTZ|J=qe( o) | ()]
b (4m)ngn—s e sinh |a; ()|t
as k — +oo. In particular, 1 Mot < NBT < are the eigenvalues of A" in bidegree
1 2 k—k

(0,q), we have

too agy(x)—ay(z S

Ze—m’;vq ~ kS / eHees (0)as () I1- |a; ()]

— a7 (4m)ngn—s e sinh |a; ()|t

for every t > 0.

At this point, the main idea is to use the eigenspaces to construct a finite dimen-
sional subcomplex of the Dolbeault complex possessing the same cohomology groups.
This was already the basic idea in Witten’s analytic proof of the standard Morse in-
equalities [Wit82]. We denote by

S k,q G kaq
Hy\",  resp. H Y
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the A-eigenspace of %AZ acting on C°(X,A%T% ® E ® L¥), resp. the direct sum of
eigenspaces corresponding to all eigenvalues < A. As J and A} commute, we see that
5(%];’(1) - %i’qﬂ, thus 7(1;" and %Z;\ are finite dimensional subcomplexes of the Dol-
beault complex

0 :C®(X,\"*TsE ® L"),
Since 9,0, + 0,0, = A% — kAId on #5® | we see that #H5* has trivial cohomology
for A # 0. Since % is the space of harmonic forms, we see that 7( 5 has the same

cohomology as the Dolbeault complex for A > 0. We will call this complex the Witten
O-complex. We need an elementary lemma of linear algebra.

(1.24) Lemma. Set h} = dim HY(X, E ® L¥). Then for everyt >0

q 00
hz B hz_l 4 g (_1)qh2 < Z(_l)q—é Ze—t)\;?»f.
£=0 j=1

Proof. The left hand side is the contribution of the 0 eigenvalues in the right hand
side. All we have to check is that the contribution of the other eigenvalues is > 0. The
contribution of the eigenvalues such that )\?’g =A>0is

q
e™ ) (—1)r7 dim TR

As 76]’;" is exact, one easily sees that the last sum is equal to the dimension of 576]’;’[1 C
%i’qﬂ, hence > 0. O

Combining Theorem 1.23 with Lemma 1.24, we get
B = hi e (<) ThE < o(k™)+
: e, Jol - eteos—ar-Siasd

rk™ )t / N :
Z Z 92n—spnin—s HJ<5(1 _ e—2t|aj|)

=0 |J|=¢

This inequality is valid for any ¢t > 0, so we can let ¢ tend to +oo. It is clear that
agy —ay — . log] is always < 0, thus the integrand tends to 0 at every point where
s < n. When s =n, we have og;(x) — ayz) — > |oj(z)| = 0 if and only if a;(x) > 0 for
every j € 0J and «a;(x) < 0 for every j € J. This implies z € X (L, h,£) ; in this case
there is only one multi-index J satisfying the above conditions and the limit is

(2m) " o - -] = (2m) 7" (0L,0)" | = |OF 4,

as Or ) = %QL,h by definition. By the monotone convergence theorem, our sum of
integrals converges to

S (—1)et / (2m) e -+ apldo = = (—1)107 ,

|
—0 X(L,h,0) N JX(L,h,<q)

The Main Theorem 1.2 follows. ]
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2. Applications to algebraic geometry

2.A. Solution of the Grauert-Riemenschneider conjecture

Let L be a holomorphic line bundle over a compact connected complex manifold X
of dimension n and Vi, = H°(X, L¥). Denote by Z(V},) the set of common zeroes of all
sections in Vi, and fix a basis (0y,...,on) of Vi. There is a canonical holomorphic map

(21) P 0 X Z(Vk) — P(Vk), T — [0'0<.’L‘) Lol O'N(.CC)]

sending a point z € X \ Z(V}) to the hyperplane H C Vj, of sections 0 = > Ajo; € Vj,
such that o(x) = > A\joj(x) = 0; it is therefore given by x — [o¢(z) : ... : on(x)] in
projective coordinates on P(Vj) ~ PV . The pull-back ®}; @(d) can be identified with the
restriction of L¥¥ to X \ Z(V}); indeed, to any homogeneous polynomial P(wy, ..., wy) €
H°(PN,@(d)) of degree d, one can associate a section

(2.2) s = P(0g,...,on) € H (X, L*).

When L possesses a smooth Hermitian metric h with ©p,; > 0, one can construct
many sections of high tensor powers L¥ (e.g. by Hormander’s L? estimates [Hor65],
[AV65] for 9). For k > ko large enough, the “base locus” Z(V;) is empty, the sections
in V} separate any two points of X and generate all 1-jets at any point. Then ®j; gives
an embedding of X in some projective space PV, for N = N(k) and k > ko. In this way,
the theory of L? estimates implies the Kodaira embedding theorem: a compact complex
manifold X is projective algebraic if and only if X possesses a Hermitian line bundle
(L, h) with C'* positive curvature.

The Grauert-Riemenschneider conjecture [GR70] is an attempt to characterize the
more general class of Moishezon varieties in terms of semi-positive line bundles. Let us
first recall a few definitions. The algebraic dimension a(X) is the transcendence degree of
the field M(X) of meromorphic functions on X. A well-known theorem of Siegel [Sie55]
asserts that 0 < a(X) < n (see Corollary 2.6 below). A compact manifold or variety X
is said to be Moishezon if a(X) = n.

By definition, the Kodaira dimension (L) is the supremum of the dimension of
the images Vi, = ®pr(X ~ Z(Vi)) C P(V))) for all integers £ > 0 [one defines k(L) =
—oo when V;, = 0 for all k, in which case we always have Y, = )]. Since the field of
meromorphic functions on X obtained by restriction of rational functions of P(V}¥) to Yy
has transcendence degree at least equal to dim Yy, we infer that

(2.3) —00 < k(L) =supdim Yy < a(X) < n.
(2.4) Definition. The line bundle L — X is said to be big if k(L) is mazimal, i.e.
k(L) =n=dimX.

The following standard lemma is needed (cf. [Ser54], [Sie55]).

(2.5) Lemma (Serre-Siegel). For every line bundle L — X, there exist constants
C >c>0 and kg € N* such that

dim H°(X, LF) < Ck* ) for allk > 1,
>

im , > c or a multiple of k.
dim H°(X, L* ) for all k > 1 multiple of k
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Proof. The lower bound is obtained by taking ko such that p := dim Yy, = x(L). Then,
by the rank theorem, there exists a point ¢ € X \ Z(V4,) and a basis (0g,...,0n) of
HO(X, L*) such that o¢(z¢) # 0 and (d(co1/00)A...Ad(0,/00))(z0) # 0. Then by taking
s = P(o¢,...,0p,0,...,0) in (2.2), we obtain an injection of the space of homogeneous
polynomials of degree d in p + 1 variables into H°(X, L*o9), whence

d+p

hO(X, Lkod) > (
p

)>#m.

The proof of the upper bound proceeds as follows : select a Hermitian metric h,
on L and a finite family of coordinate balls B; = B(z;,r;) such that B} = B(z;,7;/2)
cover X, and Lp, is trivial for each j. By moving a little bit the points z;, we may
assume that ®;7 has maximal rank at all points z; for all £ (the bad set is at most a
countable union of analytic sets, so it is nowhere dense). If L* has many sections, one
can solve a linear system in many unknowns to get a section s vanishing at a high order
m at all centers z;. Then the Schwarz lemma gives

Is] na, < 27"C(h) 5]

oo = sup||slln.z < 27"C(h)* sup ||
J J

h,00

where C'(h) is a bound for the oscillation of the metric h on Bj, which we may assume
to be finite after possibly shrinking B;. Thus m < klogC(h)/log2 if s # 0. Since
the sections of L* are constant along the fibers of ®;;, only mdim Yk#{zj} equations
transversally to the fibers are needed to make s vanish at order m. Therefore we can

choose m = (h°(X, L*)/#{z;})!/ 4im Y% and still get a non zero section, so that
WO(X, LF) = #{z;} - mdmYe < O kD), O
(2.6) Corollary (Siegel). For every compact complex manifold X

a(X) :=trdege M(X) < n.

Proof. Fix s algebraically independent elements fi,..., fs € M(X) and let D be the
sup of the pole divisors of the f;’s. To every polynomial P(fi,..., fs) of degree < k
corresponds injectively a section op = P(f1,...,fs) € H°(X,0@(kD)). A dimension
count implies

s! S

by Lemma 2.5. Therefore s < n. O

Now, the Grauert-Riemenschneider conjecture [GR70] can be stated as follows.

(2.7) Grauert-Riemenschneider conjecture. A compact complex variety Y is Moi-
shezon if and only if there is a proper non singular modification X — Y and a Hermitian
line bundle (L,h) over X such that the curvature form ©r p is > 0 on a dense open
subset of X.
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Proof. When Y is Moishezon, it is well known that there exists a projective algebraic
modification X ; therefore we can even take L to be ample and then there exists h such
that O, 5, > 0 everywhere on X.

The converse statement was proved by Siu in [Siu84, Siu85], assuming only O Lh=0
everywhere and Oy, ;, > 0 in at least one point. Morse inequalities provide in fact a much
stronger criterion, requiring only the positivity of some curvature integral:

(2.8) Theorem. If a Hermitian line bundle (L,h) on X satisfies the integral condition

/ (G)L,h>n >0,
X(L,h,<1)

then k(L) = n, in particular X is Moishezon.

In fact, the lower bound (1.4) applied with £ = @x implies immediately that
hY(X, L*) > ck™, hence k(L) = n. Now, if X is a modification of Y, we have M(Y) ~
M(X), s0 a(X) =a(Y), and Y has to be Moishezon. O

2.B. Cohomology estimates for nef line bundles

On a projective algebraic manifold X, a line bundle L is said to be nefif L -C > 0
for every algebraic curve C' C X. If w is a given Kéhler or Hermitian (1, 1)-form on X,
it can be shown (cf. [Dem90]) that L is nef if and only if for every € > 0 there exists a
smooth Hermitian metric h. such that O ;. > —ew on X ; in fact, the latter property
clearly implies

L-C:/@L,h8>—e/w — L-C>0
C C

for every curve C. Conversely, if L - C' > 0 for every curve C', the well-known Kleiman
criterion (cf. [Har70]) implies that kL + A is ample for every ample divisor A. Hence
there exists a smooth Hermitian metric hy on L such that

1
@kL+A:k’@L,hk+®A,hA >0 = ®L7hk 2—%00, where W:@A,hA > 0.

Therefore, one can introduce the following definition of nefness on an arbitrary compact
complex manifold.

(2.9) Definition. Let X be a compact complex manifold and w a given smooth positive
(1,1)-form on X. A line bundle L — X is said to be nef if for every e > 0 there ezists a
smooth Hermitian metric he on L such that ©p . > —ew everywhere on X.

(2.10) A consequence of holomorphic Morse inequalities. If X is compact Kdhler
and L s nef, for every holomorphic vector bundle E on X one has

h(X,0(F)® O(kL)) = o(k™) forall g > 1.

Proof. Let w be a Kahler metric. The nefness of L implies that there exists a smooth
Hermitian metric h. on L such that ©p ). > —ew. On X(L,h.,1) we have exactly
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1 negative eigenvalue \; which is belongs to [—¢,0[ and the other ones \; (j > 2) are
positive. The product Ay - -+ A, satisfies [A1--- A < e]];55(Aj +¢€), hence

1
n!

ew A (O p, +ew)" ! on X (L,h,1).

n
Lihe| S (n—1)!

By integrating, we find

/ OF . < ne/ wA (e (L) + ew)™ !
X(Lhe,l) X

and the result follows. ]

(2.11) Note. When X is non Kéhler, D. Popovici [Pop08] has announced bounds for
the Monge-Ampere masses of O, . which still imply the result, but the proof is much
harder in that case. On the other hand, when X is projective algebraic, an elementary
hyperplane section argument and an induction on dimension easily implies the stronger
upper bounds

(2.12) h1(X,0(FE)® O(kL)) = O(k"™1) for all ¢ > 0.
Hint. By Serre duality, it is enough to show that
h(X,0(F)® O(—kL)) = O(k7) for every ¢ > 0

and every holomorphic vector bundle F'. Choose a very ample line bundle A so big that
F' = F* ® G(A) is Nakano positive, and apply the Nakano vanishing theorem and Serre
duality to see that H1(X, O(F)®O(—A)®O@(—kL)) = 0 for all k and ¢ > 1. Use the exact
sequence 0 — Ox(—A) — Ox — @4 — 0, take the tensor product with @(F) ® O(—kL)
and apply induction. O

It is unknown whether the accurate bound (2.12) holds true on a general compact complex
manifold, even when X is assumed to be Kéahler.

2.C. Distortion inequalities for asymptotic Fubini-Study metrics

Another application of the heat kernel estimates is a generalization of G. Kempf’s
distortion inequalities ([Kem89], [Ji89]) to all projective algebraic manifolds. In this
generality, the result was obtained by Th. Bouche [Bou90], and in less generality (but
with somewhat stronger estimates) by G. Tian [Tia90].

Let L be a positive Hermitian line bundle over a projective manifold X, equipped
with a Hermitian metric w. Then Vj, = H°(X, L*) has a natural Hermitian metric given
by the global L? norm of sections. For k > kg large enough, ®;, is an embedding and
L% can be identified to the pull-back ®;0O(1). We want to compare the original metric
|« | of L and the metric |« |ps induced by the Fubini-Study metric of O(1).

Let (s1,...,sn) be an orthonormal basis of H(X, L¥). It is not difficult to check
that )
€]

[s1(@)? + - -+ [sn(2)]

€3 = _for ¢ € LF
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thus all that we need is to get an estimate of Y |s;(z)|*.

contribution of the 0 eigenvalue in the heat kernel

However, this sum is the

+oo
KP(z,2) =) e 2N iy (x)|?
j=1

associated to %D% in bidegree (0,0). We observe that non zero eigenvalues )\;’? are also
eigenvalues in bidegree (0, 1), since 0 is injective on the corresponding eigenspaces. The

associated eigenfunctions are gwj /1/ k)\?, for

100317 = (Afp;, ;) = kXY
Thus the summation

+oo .
Z 8—2t)\j |a¢j (CL’)|2
j=1

is bounded by the heat kernel in bidegree (0,1), which is itself bounded by k™e~ ¢ with
¢ > 0 (note that ag; —ay — > |a;| < 0on X for |J| =1). Taking t = k° with ¢ small,
one can check that all estimates remain uniformly valid and that the contribution of the
non zero eigenfunctions in K¥(z, z) becomes negligible in C° norm. Then theorem 1.23

shows that
Y lsi@))? ~ K (z,2) ~ k™ (2m) "o () - an(2)]
as t = k® — 4o00. For &£ € L* we get therefore the C° uniform estimate

15

[k

As a consequence, the Fubini-Study metric on L induced by ®;;, converges uniformly to
the original metric. G. Tian [Tia90] proved that this last convergence statement holds
in norm C*. It is now known that there is in fact an asymptotic expansion in 1/k, and
therefore C'™° convergence; this holds true even in the almost complex setting, see [BU0O]

and [SZ02].

(2.13) (%)n|a1(x)~-~an(x)\ as k — +o0.

2.D. Algebraic counterparts of the holomorphic Morse inequalities

One difficulty in the application of the analytic form of the inequalities is that the cur-
vature integral is in general quite uneasy to compute, since it is neither a topological nor
an algebraic invariant. However, the Morse inequalities can be reformulated in a more
algebraic setting in which only algebraic invariants are involved. We give here two such
reformulations — after they were found via analysis in [Dem94], F. Angelini [Ang96] gave
a purely algebraic proof (see also [Siu93] and [Tra95] for related ideas).

(2.14) Theorem. Let L = F — G be a holomorphic line bundle over a compact Kdihler
manifold X, where F and G are numerically effective line bundles. Then for every
q=0,1,...,n=dim X, there is an asymptotic strong Morse inequality

Y (DTIRI(XRL) < = Y (=) (’?)F”—j -G7 + o(k™).
0<j<q ™ 0 J
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Proof. By adding ¢ times a Kéhler metric w to the curvature forms of F' and G, € > 0
one can write O = @FE @GE where @Fe = ’ ~OF + ew and @GE = 5-0¢g + ew are

positive definite. Let Ay > --- > \,, > 0 be the elgenvalues of @QE with respect to @F’E.

Then the eigenvalues of %@ 1, with respect to © F,e are the real numbers 1 — A\; and the
set X (L, h, < q) is the set {\;41 < 1} of points € X such that A;41(z) < 1. The strong
Morse inequalities yield

S (—1)7 0 (X, kL) < %/{A <1§_1)q [T @=x)0%. +o(k™).

0<I<q 1<jsn

On the other hand we have

(j) 6179 NG, = ol () O

where o7 (\) is the j-th elementary symmetric function in A1, ..., A, , hence
S () e =t [ S i e
0<i<q J : X 0<j<q

Thus, to prove the lemma, we only have to check that

> (DTN =, (=D ] =2 =0

0<j<n 1<jsn
for all Ay > --- > A\, = 0, where ]1{ 3 denotes the characteristic function of a set.
This is easily done by induction on n (just split apart the parameter A, and write
ol (N =0ol (N + a7 ) A). O

In the case ¢ = 1, we get an especially interesting lower bound (this bound has been
observed and used by S. Trapani [Tra95] in a similar context).

(2.15) Consequence. h°(X, kL) — h'(X, kL) > L (F* —nF"=1. Q) — o(k").

Therefore some multiple kL has a section as soon as F™ —nF"~1.G > 0.
(2.16) Remark. The weaker inequality

kn
(X, kL) > m(F” —nEF" Q) - o(k™)

is easy to prove if X is projective algebraic. Indeed, by adding a small ample Q-divisor
to F' and G, we may assume that F', G are ample. Let moG be very ample and let &’
be the smallest integer > k/mg. Then h%(X,kL) > h°(X,kF — k'moG). We select k’
smooth members G, 1 < j < &’ in the linear system |mG| and use the exact sequence

0— HY(X,kF - ) G;) = H'(X,kF) — @ H(G, kF|g,).
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Kodaira’s vanishing theorem yields H?(X, kF') = 0 and HY(G}, kF|g,) = 0 for ¢ > 1 and
k > ko. By the exact sequence combined with Riemann-Roch, we get

hO(X, kL) > B°(X,kF =) G))

> %F” —Oo(k" ) =>" ( LA -Gy — O(k;”_Q))

(n—1)!
k" n ]{Jlmo n—1 n—1
> m(F —n=F -G) — Ok Y
> k—' (F” —pFnl G) —O(k"Y).
n!
(This simple proof is due to F. Catanese.) O

(2.17) Corollary. Suppose that F' and G are nef and that F is big. Some multiple of
mF — G has a section as soon as

In the last condition, the factor n is sharp: this is easily seen by taking X = P} and
F =0(a,...,a) and G = O(by,...,b,) over PT; the condition of the corollary is then
m > > b;/a, whereas k(mF — G) has a section if and only if m > supb;/a; this shows
that we cannot replace n by n(1 —¢).

3. Morse inequalities on g-convex varieties

Thierry Bouche [Bou89] has obtained an extension of holomorphic Morse inequalities
to the case of strongly g-convex manifolds. We explain here the main ideas involved.

A complex (non compact) manifold X of dimension n is strongly g-convex in the
sense of Andreotti and Grauert [AG62] if there exists a C* exhaustion function 1 on
X such that 1001 has at least n — ¢ 4+ 1 positive eigenvalues outside a compact subset
of X. In this case, the Andreotti-Grauert theorem shows that all cohomology groups
H™(X,F) with values in a coherent analytic sheaf are finite dimensional for m > q.

(3.1) Theorem. Let L, E be holomorphic vector bundles over X with rankL = 1,
rank E = r. Assume that X is strongly q-conver and that L has a Hermitian metric h
for which ©r j has at least n — p + 1 nonnegative eigenvalues outside a compact subset
K C X. Then for allm = p+ q — 1 the following strong Morse inequalities hold :

n kn
> (-1 mdimHY(X,E® LF) < r— / (=1)™Oe7 , + o(k™).
i—m v JX(L,h,2m) ’

Proof. For every c € R, we consider the sublevel sets

Xe={z e X ; ¢¥(x) <c}.
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Select ¢y such that 00y has n — ¢ + 1 positive eigenvalues on X ~ X,. One can choose
a Hermitian metric wy on X in such a way that the eigenvalues 7 < -+ < 72 of 199y
with respect to wy satisfy

(3.2) —— <YW <90 <1 and = =qp=lon X\ X

co

S

this can be achieved by taking wy equal to i00y on a C'* subbundle of Tx of rank
n — q + 1 on which i99% is positive, and wy very large on the orthogonal complement.
We set w = ePwy where p is a function increasing so fast at infinity that w will be
complete.

More important, we multiply the metric of L by a weight e ~X°¥ where x is a convex
increasing function. The resulting Hermitian line bundle is denoted (L, hy). For any
(0,m) form u with values in £ ® L*, viewed as an (n,m) form with values in £ ® L* ®
A"Tx, the Bochner-Kodaira-Nakano formula implies an inequality

(A, ) > / B((i0L,n ), Au, u) + (W, u)

X

where W depends only on the curvature of £ ® A"Tx and the torsion of w. By the
formulas of §1.C, we have

(101, 1), Alu,u) = (a1 + -+ + o) |ul?
where a7 < - - < a,, are the eigenvalues of
0L, hy =010+ i00(x 0 1) = i0r.n + (X 0 )iddnp.

If B is the lowest eigenvalue of 6y, ;, with respect to w, we find

(X o)y /e’

(l/j +
mp + (x’ o¢>(7?+---+7?n)/6” :

>
Qa2

and by (3.2) we get for all m > ¢

1
a+ - Fay, =>mp+ € P o on X N\ X, .

It follows that one can choose y increasing very fast in such a way that the Bochner
inequality becomes

(3.3) (Afu,u) > /X AP - /X () ?

where A > 1 is a function tending to +oo at infinity on X and C; > 0. Now, Rellich’s
lemma easily shows that A} has a compact resolvent. Hence the spectrum of A} is
discrete and its eigenspaces are finite dimensional. Standard arguments also show the
following :
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(3.4) Lemma. When x increases sufficiently fast at infinity, the space #H™ (X, Lk ® E)
of L?-harmonic forms of bidegree (0,m) for Al is isomorphic to the cohomology group
H™(X,E® L¥) for allk € N and m > q.

For a domain 2 CC X, we consider the quadratic form
k,m _ 1 Drul? 5* 2
57 (w) = 1 [ Byl + Bhu
Q
with Dirichlet boundary conditions on 9). We denote by 76< A the direct sum of all

eigenspaces of QQ corresponding to eigenvalues < A (i.e. < kA for AY).

(3.5) Lemma. For every A > 0 and € > 0, there exists a domain @ CC X and an
integer ko such that

k,m k,m . k,m
d1m7€<>\Q d1m7€<>\x < dlm%gﬁ_syQ for k > ko.

Proof. The left hand inequality is a straightforward consequence of the minimax principle,
because the domain of the global quadratic form Qg’m is contained in the domain of Q];(’m.

For the other inequality, let u € %Z;\"X Then (3.3) gives

k/ A|u\2—C’1/ 2 gk)\/ ul2.
X\ Xe, Xeo X

Choose cg > ¢1 > ¢g so that A(x) > a on X \ X, and a cut-off function ¢ with compact
support in X., such that 0 < ¢ <1 and ¢ =1 on X.,. Then we find

Cr+ kX
Ay AT’
XX, a X

For a large enough, we get fX\X lul? < ellul|®. Set Q = X,,. Then

k,m

1 [ — _ —
py (cpu):E/Q|8g0/\u+g06ku|2+|g08ku—8ng u\z
Cy 1 9
< _Z =
<(1+9)QY" @) + =2 (1+ ) llul
< (1 — .
(I+e)(A+ kg)HUH

As ||pul]* > fX [ul? > (1 — &)||ul|? , we infer

1+¢ C
k,m 2 2
’ < A2 llul®.
§" (o) < = (A+ 22 leul
If € is replaced by a suitable smaller number and k taken large enough, we obtain
QE™(v) < (A+e)||v]|? for all v € 4,076’<>\ - Then the right hand inequality in lemma 3.5
follows by the minimax principle. O
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Now, Corollary 1.17 easily computes the counting function Né’m for the eigenvalues :

r 1 n
)\i}ng k—1>I-|I-100 Q@ ( ) n' /)‘((anhxam)( ) 27T LXJLX)

Applying this to the Witten complex HE < )\ » we easily infer the inequality of theorem
3.1, except that c¢(L) is replaced by c(L, ) However, up to now, the inequality is valid
for all m > ¢q. Take the convex function x equal to 0 on | — 00, ¢g]. Then

Or. h

1 7 —
xohx = %QLx:hx = G)L:h + %aa(x © ¢)
coincides with Oy ; on X., and has at most (p — 1) + (¢ — 1) negative eigenvalues on
X N\ X¢y. Hence X(Ly,hy,m) = X(L,h,m) for m >p+q—1and O = Or; on
these sets. Theorem 3.1 is proved. O

_As a corollary, one obtains a general a priori estimate for the Monge-Ampere operator
(¢00)™ on g-convex manifolds.

(3.6) Corollary: calculus inequalities. Let X be a strongly q-convex manifold and ¢ a
C* function on X, weakly p-convex outside a compact subset of X. For { =0,1,...,n,
let Gy be the open set of points where i00p is non degenerate and admits ¢ negative
ergenvalues. Then for allm >p=q—1

Z / (i00p)™ has the sign of (—1)™

This result has been first obtained by Y.T. Siu [Siu90] for g-convex domains in a
Stein manifold. At that time, the ¢g-convex case of the inequalities was not yet available
and Siu had to rely on a rather sophisticated approximation argument of Stein manifolds
by algebraic varieties ; the proof could then be reduced to the compact case.

The general statement given above is in fact a direct consequence of Theorem 3.1 :
take for L the trivial bundle L = @ x equipped with the metric defined by the weight e™%
and E = Ox. Since H™(X, L¥) = H™(X, @) is independent of k and finite dimensional,
Theorem 3.1 implies

kJ”Z/ " (i00p)™ > constant — o(k™)

for all k > kg and m > p 4+ q¢ — 1, whence the result. O



Part 11

Approximation of currents and intersection theory

0. Introduction

Many concepts described in this chapter (e.g. pseudo-effectivity) are quite general
and make sense on an arbitrary compact complex manifold X — no projective or Kéahler
assumption is needed. In this general context, it is better to work with d9-cohomology
classes instead of De Rham cohomology classes: we define the Bott-Chern cohomology
of X to be

(0.1) HEA(X, C) = {d-closed (p, q)-forms}/{dd-exact (p, q)-forms}.

It is easily shown that these cohomology groups are finite dimensional and can be com-
puted either with spaces of smooth forms or with currents; in fact, they can be computed
by certain complexes of sheaves of forms or currents that both provide fine resolutions
of the same sheaves of holomorphic or anti-holomorphic forms. Our statement therefore
follows formally from general results of sheaf theory. Also, finiteness can be obtained by
the usual Cartan-Serre proof based on Montel’s theorem for Cech cohomology. In both
cases, the quotient topology of HRA(X,C) induced by the Fréchet topology of smooth
forms or by the weak topology of currents is Hausdorff. Clearly, H§~ (X, C) is a bigraded
algebra, and it is trivial by definition that there are always canonical morphisms

(0.2)  HRUX,C)—» HDUX,C), @ HEAX,C)— Hbg(X,0).
p+q=k

By Hodge decomposition and by the well-known 90-lemma of Kihler geometry, these
morphisms are isomorphisms when X is Kéahler; especially, we get a canonical algebra
isomorphism

(0.3) Hpg(X,C) ~ P HEY(X,C)  if X is Kéhler.
p,q

We will see in Section 5 (Remark 5.15) that this is true more generally if X is in the
Fujiki class €, i.e., the class of manifolds bimeromorphic to Kahler manifolds.

1. Pseudo-effective line bundles and singular Hermitian metrics

Let L be a holomorphic line bundle on a compact complex manifold X. It is impor-
tant for many applications to allow singular Hermitian metrics.
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(1.1) Definition. A singular Hermitian metric h on L is a Hermitian metric such that,
for any trivialisation Ly ~ U x C, the metric is given by h =e™%, p € Li (U).

loc

The curvature tensor

- —
1.2 = — =——90logh
( ) @L,h 27T08g0 27T(90 og

can then be computed in the sense of distributions, and defines in this way a (global)
closed (1,1)-current on X. Tt defines a (real) cohomology class {O1 1} € Hys(X,C)
which is mapped to the first Chern class ¢;(L) by the canonical morphisms (0.2). We
will therefore still denote this Bott-Chern class by ¢;(L). The positive case is of special
interest.

(1.3) Definition. We say that L pseudo-effective if c1(L) € Hé’é(X, C) is the coho-
mology class of some closed positive current T', i.e. if L can be equipped with a singular
Hermitian metric h with T = ©r ), = 0 as a current, in other words, if the weight
functions ¢ can be chosen to be plurisubharmonic on each trivialization open set U.

The locus where h has singularities turns out to be extremely important. One way is to
introduce multiplier ideal sheaves following A. Nadel [Nad89]. The main idea actually
goes back to the fundamental works of Bombieri [Bom70] and H. Skoda [Sko75].

(1.4) Definition. Let ¢ be a psh (plurisubharmonic) function on an open subset 2 C X.
To ¢ we associate the ideal subsheaf ¥(p) C C@q of germs of holomorphic functions
f € Oq. such that |f|?e™% is integrable with respect to the Lebesque measure in some
local coordinates near x.

The zero variety V(.4(yp)) is thus the set of points in a neighborhood of which e™%
is non integrable. The following result implies that this is always an analytic set.

(1.5) Proposition ([Nad89]). For any psh function ¢ on Q C X, the sheaf $(p) is a
coherent sheaf of ideals over 2. Moreover, if 2 is a bounded Stein open set, the sheaf

F(p) is generated by any Hilbert basis of the L? space #?(Q, ) of holomorphic functions
f on Q such that [, |f|*e™? d\ < 4o0.

Proof. Since the result is local, we may assume that () is a bounded pseudoconvex open
set in C". By the strong noetherian property of coherent sheaves, the family of sheaves
generated by finite subsets of #2(, ») has a maximal element on each compact subset
of 2, hence #?(£2, p) generates a coherent ideal sheaf § C @gq. It is clear that ¥ C .¥(¢p);
in order to prove the equality, we need only check that ¥, + .¥(p), Nm&" = F(¢), for
every integer s, in view of the Krull lemma. Let f € .%(p), be defined in a neighborhood
V of x and let 8 be a cut-off function with support in V' such that § = 1 in a neighborhood
of . We solve the equation Ou = ¢ := J(Af) by means of Hérmander’s L? estimates

[Hor65, AV65], applied with the strictly psh weight
¢(2) = p(2) + (n+ 5)log|z — z|* +|2|*.

We get a solution u such that [, |u[?e?|z — z|72("*$)d\ < oo, thus F = 0f — u is
holomorphic, F € #2(Q, ¢) and f,—F, = u, € 3(@)xﬂmfzr;. This proves the coherence.
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Now, J is generated by any Hilbert basis of #2(£2, ), because it is well-known that the
space of sections of any coherent sheaf is a Fréchet space, therefore closed under local L?
convergence. U

Another important way of measuring singularities is via Lelong numbers — a natural
generalization of the concept of multiplicity to psh functions. Recall that the Lelong
number of a function ¢ € Psh(Q2) at a point x( is defined to be

su
(1.6) v(p, xg) = liminf — P SUPB@en

oo log |z —xo|  r—04  logr
In particular, if ¢ = log |f| with f € @(2), then v (¢, xg) is equal to the vanishing order
ordg, (f) =sup{k € N; D“f(z9) =0, V]a| < k}.

The link with multiplier ideal sheaves is provided by the following standard result due
to Skoda [Sko72].

(1.7) Lemma. Let ¢ be a psh function on an open set Q and let x € €.

(a) If v(p,x) < 2, then e~ ¥ is Lebesque integrable on a neighborhood of x, in particular

(b) More generally, if v(p,z) = 2(n+ s) for some integer s > 0, then

e ¥ > cly — x| 722, c>0

in a neighborhood of x, and J(p), C mf{rl, where mq 5 is the mazimal ideal of Oq ;.

In particular e=% is non integrable at = if v(p, x) > 2n.

(¢) The zero variety V($(p)) of F(p) satisfies

Van(p) CV(H(p)) C Ea(p)

where E.(p) ={x € X ; v(p,x) > c} is the c-upperlevel set of Lelong numbers of ¢.

The only non trivial part is 1.7 (a); the proof relies on the Bochner-Martinelli represen-
tation formula for 7' = *00¢ (see [Sko72]). One should observe that 1.7 (a) (resp. (b))
is optimal, as one can see by taking ¢(z) = Alog|z1], resp. ¢(z) = Alog |z|, on 2 = C™.

2. Hermitian metrics with minimal singularities and analytic
Zariski decomposition

We show here by a general “abstract” method that a pseudo-effective line bundle
always has a Hermitian metric hAyy;, with minimal singularities among those with nonneg-
ative curvature ©r, ;, > 0 in the sense of currents. The following definition was introduced
in [DPS01].

(2.1) Definition. Let L be a pseudo-effective line bundle on a compact complex man-
ifold X. Consider two Hermitian metrics hy, ho on L with curvature @L,hj >0 in the
sense of currents.
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(a) We will write hy < ha, and say that hy is less singular than he, if there ezists a
constant C' > 0 such that hy < Chs.

(b) We will write hy ~ ha, and say that hy, hy are equivalent with respect to singularities,
if there exists a constant C > 0 such that C~'hy < hy < Chs.

Of course h; < hg if and only if the associated weights in suitable trivializations
locally satisfy po < ¢1 + C. This implies in particular v(¢1,z) < v(p2,x) at each point.
The above definition is motivated by the following observation.

(2.2) Theorem. For every pseudo-effective line bundle L over a compact complex mani-
fold X, there exists up to equivalence of singularities a unique class of Hermitian metrics
h with minimal singularities such that O 5 > 0.

Proof. The proof is almost trivial. We fix once for all a smooth metric ho, (whose
curvature is of random sign and signature), and we write singular metrics of L under
the form h = hooe ¥. The condition Or.n = 0 is equivalent to %851& > —u where
u = Op . This condition implies that v is plurisubharmonic up to the addition of the
weight ., of hy, and therefore locally bounded from above. Since we are concerned
with metrics only up to equivalence of singularities, it is always possible to adjust i by
a constant in such a way that supy 1 = 0. We now set

Bmin = hooe™ ¥min i (x) = Sup Y ()

where the supremum is extended to all functions v such that supy ¢ = 0 and %851# >
—u. By standard results on plurisubharmonic functions (see Lelong [Lel69]), ¢y still
satisfies %35%@1 > —u (i.e. the weight @ oo +¥min Of Amin is plurisubharmonic), and A,
is obviously the metric with minimal singularities that we were looking for. [In principle
one should take the upper semicontinuous regularization 1. of ¥y, to really get a
plurisubharmonic weight, but since . also participates to the upper envelope, we
obtain here min = ¥, automatically]. O
(2.3) Remark. In general, the supremum ¢ = sup,;9; of a locally dominated family
of plurisubharmonic functions v; is not plurisubharmonic strictly speaking, but its “up-
per semi-continuous regularization” ¢*(z) = limsup,_,, 1 (¢) is plurisubharmonic and
coincides almost everywhere with ¢, with ¢* > 1. However, in the context of (2.3), ¥*
still satisfies * < 0 and %851& > —u, hence ¥* participates to the upper envelope. As
a consequence, we have ¥* < ¢ and thus ¥ = ¢* is indeed plurisubharmonic. Under a
strict positivity assumption, namely if L is a big line bundle (i.e. the curvature can be
taken to be strictly positive in the sense of currents, see Definition (3.3 d) and Theorem
(3.4 b), then hy,i, can be shown to possess some regularity properties. The reader may
consult [BmDO09] for a rather general (but certainly non trivial) proof that ., pos-
sesses locally bounded second derivatives 924y, / 0207, outside an analytic set Z C X ;
in other words, ©y, 3, has locally bounded coefficients on X \ Z. U

min

(2.4) Definition. Let L be a pseudo-effective line bundle. If h is a singular Hermitian
metric such that ©r p > 0 and

HY(X,mL® $(h®™)) ~ H*(X,mL)  for all m >0,
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we say that h is an analytic Zariski decomposition of L.

In other words, we require that h has singularities so mild that the vanishing condi-
tions prescribed by the multiplier ideal sheaves .¥(h®™) do not kill any sections of L and
its multiples.

(2.5) Exercise. A special case is when there is an isomorphism pL. = A + E where A
and E are effective divisors such that H°(X, mpL) = H°(X,mA) for all m and @(A) is
generated by sections. Then A possesses a smooth Hermitian metric h4, and this metric
defines a singular Hermitian metric 4 on L with poles 1 E and curvature %@A,h at %[E]
Show that this metric h is an analytic Zariski decomposition.

Note: when X projective and there is a decomposition pL = A + E with A nef (see
(I 2.9)), E effective and H°(X,mpL) = H°(X,mA) for all m, one says that the Q-
divisor equality L = ]—17A + %E is an algebraic Zariski decomposition of L. It can be
shown that Zariski decompositions exist in dimension 2, but in higher dimension they do

not exist in general. U

(2.6) Theorem. The metric hyin with minimal singularities provides an analytic Zariski
decomposition.

It follows that an analytic Zariski decomposition always exists (while algebraic decom-
positions do not exist in general, especially in dimension 3 and more).

Proof. Let 0 € H°(X,mL) be any section. Then we get a singular metric h on L by
putting |£], = |¢/o(z)Y/™| for € € L,, and it is clear that |o|,m = 1 for this metric.
Hence 0 € H*(X,mL ® $(h®™)), and a fortiori 0 € H*(X, mL ® F(hZ")) since Ay, is

less singular than h. O

3. Description of the positive cones (Kéhler and projective cases)

Let us recall that an integral cohomology class in H2(X, Z) is the first Chern class of
a holomorphic (or algebraic) line bundle if and only if it lies in the Neron-Severi group

(3.1) NS(X) = Ker (H*(X,Z) — H*(X, Ox))

(this fact is just an elementary consequence of the exponential exact sequence
0> Z — @ — @ - 0). If X is compact Kéhler, as we will suppose from now on
in this section, this is the same as saying that the class is of type (1,1) with respect to
Hodge decomposition.

Let us consider the real vector space NSg(X) = NS(X) ®z R, which can be viewed
as a subspace of the space H1(X,R) of real (1,1) cohomology classes. Its dimension is
by definition the Picard number

(3.2) p(X) = ranky NS(X) = dimg NSg(X).

We thus have 0 < p(X) < hY1(X), and the example of complex tori shows that all
intermediate values can occur when n = dim X > 2.
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The positivity concepts for line bundles considered in section I 2.B and II 1 possess in
fact natural generalizations to (1, 1) classes which are not necessarily integral or rational —
and this works at least in the category of compact Kahler manifolds (in fact, by using
Bott-Chern cohomology, one could even extend these concepts to arbitrary compact
complex manifolds).

(3.3) Definition. Let (X,w) be a compact Kdhler manifold.

(a) The Kihler cone is the set # C HV1(X,R) of cohomology classes {w} of Kdihler
forms. This is an open convex cone.

(b) The closure K of the Kihler cone consists of classes {a} € HYY(X,R) such that for
every € > 0 the sum {a+¢cw} is Kdhler, or equivalently, for every e > 0, there exists
a smooth function p. on X such that o +i00p. > —ew. We say that K is the cone
of nef (1,1)-classes.

(c) The pseudo-effective cone is the set ‘€ C HYY(X,R) of cohomology classes {T} of
closed positive currents of type (1,1). This is a closed convex cone.

(d) The interior ‘€° of ‘€ consists of classes which still contain a closed positive current
after one subtracts e{w} for e > 0 small, in other words, they are classes of closed
(1,1)-currents T such that T > ew. Such a current will be called a Kahler current,
and we say that {T} € HY1(X,R) is a big (1,1)-class.

H = Kihler cone in H1(X,R) [open]
F = nef cone in H'1 (X, R) [closure of K]
€ = pseudo-effective cone in H1(X,R) [closed]

‘€° = big cone in H»1(X, R) [interior of €]

The openness of K is clear by definition, and the closedness of ‘€ is a consequence of
the fact that bounded sets of currents are weakly compact (as follows from the similar
weak compactness property for bounded sets of positive measures). It is then clear that
K cCE.

In spite of the fact that cohomology groups can be defined either in terms of forms
or currents, it turns out that the cones F and € are in general different. To see this, it
is enough to observe that a Kéhler class {a} satisfies [, a” > 0 for every p-dimensional
analytic set. On the other hand, if X is the surface obtained by blowing-up P? in

one point, then the exceptional divisor £ =~ P! has a cohomology class {a} such that
[z a=FE?*=—1, hence {a} ¢ K, although {a} = {[E]} € €.

In case X is projective, all Chern classes c;(L) of line bundles lie by definition in
NS(X), and likewise, all classes of real divisors D = ) ¢;Dj, ¢; € R, lie in NSg(X). In
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order to deal with such algebraic classes, we therefore introduce the intersections
Hns = %QNSR(X), Eng = %ﬂNSR(X),

and refer to classes of H1'!(X,R) not contained in NSg(X) as transcendental classes.

NS (X) o

A very important fact is that all four cones Kns, €ns, Fns, 6%y have simple
algebraic interpretations.

(3.4) Theorem. Let X be a projective manifold. Then

(a) Hns is equal to the open cone Amp(X) generated by classes of ample (or very
ample) divisors A (recall that a divisor A is said to be very ample if the linear
system H°(X,@(A)) provides an embedding of X in projective space).

(b) The interior €xg is the cone Big(X) generated by classes of big divisors, namely
divisors D such that h®(X,@(kD)) > ck4™X for k large.

(c) Ens is the closure Eff(X) of the cone generated by classes of effective divisors, i.e.
divisors D =) ¢;Dj, ¢; € Ry.

(d) The closed cone Fns consists of the closure Nef(X) of the cone generated by nef
divisors D (or nef line bundles L), namely effective integral divisors D such that
D -C >0 for every curve C, also equal to Amp(X).

In other words, the terminology “nef”, “big”, “pseudo-effective” used for classes of
the full transcendental cones appear to be a natural extrapolation of the algebraic case.

Proof. First notice that since all of our cones “€ have non empty interior in NSg(X') (which
is a rational vector space in terms of a basis of elements in H2(X,Q)), the rational points
“€g := €N NSg(X), NSg(X) = NS(X) ®z Q, are dense in each of them.

(a) is therefore just Kodaira’s embedding theorem when we look at rational points, and
properties (b) and (d) are obtained easily by passing to the closure of the open cones.
We will now give details of the proof only for (b) which is possibly slightly more involved.

oo

By looking at points of ‘€g = €° N NSq(X) and multiplying by a denominator, it
is enough to check that a line bundle L such that ¢1(L) € ‘€° is big. However, this
means that L possesses a singular Hermitian metric hy, such that O 5, > ew for some



38 J.-P. Demailly Applications of Pluripotential theory to Algebraic Geometry

Kahler metric w. For some integer pg > 0, we can then produce a singular Hermitian
metric with positive curvature and with a given logarithmic pole hi“e_e(z) log |z—o|* jp
a neighborhood of every point xg € X (here 6 is a smooth cut-off function supported on
a neighborhood of zp). Then Hérmander’s L? existence theorem [Hor65, AV65] can be
used to produce sections of L*¥ which generate all jets of order (k/py) — n at points g,
so that L is big.

Conversely, if L is big and A is a (smooth) very ample divisor, the exact sequence
0— Ox(kL —A) = Ox (kL) — Ga(kLja) — 0 and the estimates h°(X,Ox (kL)) > ck",
hO(A,@4(kL;4)) = O(k™ ') imply that @x (kL — A) has a section for k large, thus
kL — A = FE for some effective divisor E. This means that there exists a singular metric
hr, on L such that . .

OLh, = T <®A,hA + [E]> > P
where w = © 4 3, hence ¢; (L) € €°. O

(3.5) Corollary. If L is nef, then L is big (i.e. k(L) = n) if and only if L™ > 0.
Moreover, if L is nef and big, then for every § > 0, L has a singular metric h = e~ ¥
such that maxgzex v(p,z) < 6 and 1O > cw for some € > 0. The metric h can
be chosen to be smooth on the complement of a fixed divisor E, with logarithmic poles
along E.

Proof. By (I 2.10) and the Riemann-Roch formula, we have
(X, kL) = x(X, kL) + o(k") = k" L™ /n! + o(k"),

whence the first statement. By the proof of Theorem 3.4 (b), there exists a singular
metric hy on L such that

7 1/ 1 1
e = — — E) > —Ww, =
or Ol = 1 (QW@A’hA +E]) = v W

l

S) .
5y O Aha

Now, for every € > 0, there is a smooth metric h. on L such that %@L,hg > —ew. The
convex combination of metrics h. = h¥hl=*¢ is a singular metric with poles along E
which satisfies

iGL’h/& > e(w+ [E]) — (1 — ke)ew > ke’w.

Its Lelong numbers are ev(E, x) and they can be made smaller than ¢ by choosing £ > 0
small. O

We still need a few elementary facts about the numerical dimension of nef line bun-

dles.

(3.6) Definition. Let L be a nef line bundle on a compact Kdhler manifold X. One
defines the numerical dimension of L to be

nd(L) = max{k=0,...,n; c1(L)" #0 in H**(X,R)}.

Notice that if L is nef, each power c;(L)* can be represented by a closed positive

current Oy, € ¢;(L)* obtained as a weak limit of powers of smooth positive forms

1 _ Nk
O = lim (a + —w + 68¢m> , a€c(l).
m

m——+400
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Such a weak limit exists since [ X (a + %w + Ggwm)k A w™F is uniformly bounded as
m — +00. Then we see that

/ ci(L)F A wnF :/ O AW F>0 = 0,40 <= c(L)F#0.
X X

By Corollary 3.5, we have k(L) = n if and only if nd(L) = n. In general, we merely have
an inequality.

(3.7) Proposition. If L is a nef line bundle on a compact Kdihler manifold (X,w), then
k(L) < nd(L).

Proof. We consider arbitrary irreducible analytic subsets Z C X and prove by induction
on p = dim Z that x(L|z) < nd(L|z) where nd(L|z) is the supremum of all integers k
such that ¢1(Ljz)* # 0, i.e. [\ [Z] Aci(L)F AwP™ > 0. This will prove our statement
when Z = X, p = n. The statement is trivial if p = 0, so we suppose now that p > 0. We
can also assume that r = x(L|z) > 0, otherwise there is nothing to prove. This implies
that a sufficient large multiple myL has at least two independent sections g, o1 on Z.
Consider the linear system |agog + a101|, a = [ag : a1] € P§, and take Y =Y, C Z to
be an irreducible component of the divisor of o, := agop + a0 which is not a fixed
component when a varies. For m sufficiently divisible, ®,,,, has rank r at a generic
(smooth) point of Z, hence the rank of (®,r,,)y is = 7' := min(r,p — 1) if a € P¢ is
itself generic. A fortiori rank(®,,z,, ) > r’ (we may even have sections on Y which do
not extend to Z). By the induction hypothesis we find

/ YIA e (D) Awl=1=" > 0.
X

Now, we use the fact that [Z] A ¢;(moL) — [Y] can be represented by an effective cycle
(the sum of all components # Y in the divisor of our generic section ¢,). This implies

/ [Z) A e (D)" T AwP™ 17" > L / Y] A (D) AwP™ =" > 0.

X mo Jx

If r = p, we have v’ = p — 1, hence ' + 1 = r and we are done. If r < p, we have ' =r
and then we use the obvious inequality a@ < Cyw for some representative a € ¢;(L) and
some Cy > 0 to conclude that

1
/ [Z]Ner (L) AwP™" > —/ [Z] A ey (L) AwP™177 > 0. O
X CO X

(3.8) Remark. It may happen that x(L) < nd(L): take e.g.
L— X=X xXs

equal to the total tensor product of an ample line bundle L; on a projective manifold
X and of a unitary flat line bundle Lo on an elliptic curve X5 given by a representation
m1(X2) — U(1) such that no multiple kLy with k # 0 is trivial. Then H°(X, kL) =
HO(X1, kL)) ® H*(X2,kLs) = 0 for k > 0, and thus x(L) = —oo. However c¢;(L) =
prici(L1) has numerical dimension equal to dim X;. The same example shows that the
Kodaira dimension may increase by restriction to a subvariety (if ¥ = X; x {point},
then k(Ly) =dimY). O
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4. Approximation of plurisubharmonic functions via Bergman
kernels

We prove here, as an application of the Ohsawa-Takegoshi L? extension theorem
[OT8T7], that every psh function on a pseudoconvex open set 2 C C™ can be approximated
very accurately by functions of the form clog|f|, where ¢ > 0 and f is a holomorphic
function. The main idea is taken from [Dem92]. For other applications to algebraic
geometry, see [Dem93] and Demailly-Kollar [DKO01]. We first recall the statement of
the generalized L? extension theorem; its proof relies on a subtle enhancement of the
Bochner-Kodaira technique, and we refer to the litterature for details.

(4.1) Theorem (Ohsawa-Takegoshi [OT87], Manivel [Man93]). Let X be a complex
n-dimensional manifold possessing a smooth plurisubharmonic exhaustion function
("weakly pseudoconver” or ‘“weakly 1-convex” manifold), and a Kdhler metric w. Let
L (resp. E) be a Hermitian holomorphic line bundle (resp. a Hermitian holomorphic vec-
tor bundle of rank r over X), and s a global holomorphic section of E. Assume that s is
generically transverse to the zero section, and let

Y ={z€X; s(x)=0,A"ds(z) # 0}, p=dimY =n—r.

Finally, let ¢ be an arbitrary plurisubharmonic function on X. Assume that the (1,1)-
form ©p + 1 5= 00(log |s|? + ¢) is semi-positive and that there is a continuous function
a =1 such that the following two inequalities hold everywhere on X :

1 {@E57 S}

i
- 1 2 >
(@) O1 4 1 5 99log|sf* + ) > o HOE

(b) [s] <em®.

Then for every holomorphic section fy of the line bundle A"T5 ® L over Y such that
[y [fy[Pe?|A"(ds)|72dV,, < +oo, there exists a holomorphic extension fx of fy over X

such that r |2 s |2
x|°e”? y|ce™?
AVx o <Cr | Tors
x |s]?"(—log|s[)? y [A7(ds)]?

where C. is a numerical constant depending only on r.

dVY,w 9

(4.2) Theorem. Let ¢ be a plurisubharmonic function on a bounded pseudoconvez open
set Q@ C C™. For every m > 0, let #Hq(me) be the Hilbert space of holomorphic functions
[ on Q such that [, |f|?e>™?d\ < 400 and let p,, = 5-log Y |o¢|> where (o) is an
orthonormal basis of Hq(mey). Then there are constants C1,Cs > 0 independent of m
such that

C 1 C

(a) ¢(2)— — < pm(2) < sup @(¢)+—log —j for every z € Q and r < d(z,00). In
m |¢—z]<r m r

particular, ¢., converges to ¢ pointwise and in L . topology on  when m — +o00

and

(b) v(p,2)— < V(pm,2) < v(p,z) for every z € Q.
m

Proof. (a) Note that > |o¢(2)|? is the square of the norm of the evaluation linear form
ev, : f— f(2) on Hq(my), since o4(z) = ev,(op) is the ¢-th coordinate of ev, in the
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orthonormal basis (0y). In other words, we have

Y loe=))? = suwp |f(2)]?

feB(1)

where B(1) is the unit ball of #(m¢) (The sum is called the Bergman kernel associated
with #q(mep)). As ¢ is locally bounded from above, the L? topology is actually stronger
than the topology of uniform convergence on compact subsets of 2. It follows that the
series > |oy|? converges uniformly on Q and that its sum is real analytic. Moreover, by
what we just explained, we have

1
om(z) = sup —log|f(z)].
feB(1) M

For zp € Q and r < d(z9, 09), the mean value inequality applied to the psh function |f|?
implies

—rEn Tl |f(2)I7dA(2)

ﬂ-nTZn/n! |z—z—0|<r

1
exp (Qm sup gp(z))/|f|26_2m‘pd)\.
)

N ng2n
T /’I’L' |z—zo|<r

| f(20)* <

If we take the supremum over all f € B(1) we get

1 1

~ log — —
8 wnr2n /n)

<
©m(20) sup  p(z) + 5

|z—zo|<T

and the second inequality in (a) is proved — as we see, this is an easy consequence of
the mean value inequality. Conversely, the Ohsawa-Takegoshi L? extension theorem 4.1
applied to the 0-dimensional subvariety {2} C © and to the trivial bundles L = 2 x C
and E = Q x C", with the section s(z) = z — 2z¢ of E, shows that for any a € C there is
a holomorphic function f on € such that f(z9) = a and

/ |f|26—2mcpd/\ < 613|a|26—2m<,0(z0)7

Q

where C3 only depends on n and diam 2. We fix a such that the right hand side is 1.
Then || f|| < 1 and so we get

log C'5

1 1
Pmlz0) > —log|f(20)| = — loga] = p(2) — = 2.

The inequalities given in (a) are thus proved. Taking r = 1/m, we find that

lim  sup () = ¢(2)
Mt c—z|<1/m

by the upper semicontinuity of ¢, and thus lim ¢,, (2) = ¢(2), since lim - log(Com™) = 0.

(b) The above estimates imply

C 1 C
sup p(2) —— < sup gm(z) < sup  (z) + — log —.
|z—zo|<T m |z—zo|<T |z—zo|<2r m r
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After dividing by logr < 0 when r — 0, we infer

SUDP|;—zo|<2r 90(Z> + % log % SUDP|z—zo|<r QOm(Z> SUP|z—z|<r (20(2) - %
< < ;
log r logr logr
and from this and definition (1.6), it follows immediately that
n
V(cp,x)—aéu(cpm,z)éu(cp,z) O

Theorem 4.2 implies in a straightforward manner the deep result of [Siu74] on the
analyticity of the Lelong number upperlevel sets.

(4.3) Corollary ([Siu74]). Let ¢ be a plurisubharmonic function on a complex mani-
fold X. Then, for every ¢ > 0, the Lelong number upperlevel set

E.(p) = {z € X v(p2) 2 c}

s an analytic subset of X.

Proof. Since analyticity is a local property, it is enough to consider the case of a psh
function ¢ on a pseudoconvex open set {2 C C". The inequalities obtained in Theorem
4.2 (b) imply that

m>=mg

Now, it is clear that E.(¢,,) is the analytic set defined by the equations aéa) (z) = 0 for all

multi-indices a such that |a| < me. Thus E.(¢) is analytic as a (countable) intersection
of analytic sets. O

(4.4) Remark. It can be easily shown that the Lelong numbers of any closed positive
(p, p)-current coincide (at least locally) with the Lelong numbers of a suitable plurisub-
harmonic potential ¢ (see [Sko72]). Hence Siu’s theorem also holds true for the Lelong
number upperlevel sets E.(T') of any closed positive (p, p)-current 7.

Theorem 4.2 motivates the following definition.

(4.5) Definition. A plurisubharmonic function ¢ on a complex manifold X is said to
have analytic singularities if it can be written locally near every point o € X as

o(z) = clog Z 19;(2)]* + O(1), i.e. up to equivalence of singularities,
ISGSN

with a family of holomorphic functions (g;) defined near xy and ¢ > 0. Also, a closed
positive (1,1) current T is said to have analytic singularities if its plurisubharmonic
potential has analytic singularities. We also refer to this situation by saying that ¢ or T
have logarithmic poles. When X 1is algebraic, we say that the singularities are algebraic
if c € Q4 and the (g;) are sections of some algebraic line bundle @(D), xy ¢ Supp D.
Notice that by Noetherianity, a convergent series log )’ jeN |g;|> can be replaced by a
finite sum up to equivalence of singularities, thus Theorem 4.2 always produces plurisub-
harmonic functions ¢, with analytic singularities.
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5. Global approximation of closed (1,1)-currents on a compact
complex manifold

We take here X to be an arbitrary compact complex manifold (no Kéhler assumption
is needed). Now, let T" be a closed (1, 1)-current on X. We assume that 7" is quasi-positive,
i.e. that there exists a (1,1)-form « with continuous coefficients such that 7" > ~ ; the
case of positive currents (7 = 0) is of course the most important.

(5.1) Lemma. There exists a smooth closed (1,1)-form o representing the same 90-
cohomology class as T' and a quasi-psh function ¢ on X such that'T = o + %agcp, (We
say that a function ¢ is quasi-psh if its complex Hessian is bounded below by a (1,1)-form
with locally bounded coefficients, that is, if i00y is quasi-positive).

Proof. Select an open covering (U;) of X by coordinate balls such that T' = %65(@
over U;, and construct a global function ¢ = ) 6;¢; by means of a partition of unity
{6;} subordinate to U;. Now, we observe that ¢ — ¢, is smooth on Uj because all
differences ¢; — ¢y are smooth in the intersections U; N Uy, and we have the equality
o —r = 0;(0; —pr). Therefore a:= T — £y is smooth. O

By replacing T" with T'— « and «y with 7 — &, we can assume without loss of generality
that {T'} = 0, i.e. that T' = >00dy with a quasi-psh function ¢ on X such that =00y > 7.

Our goal is to approximate 7' in the weak topology by currents 1;, = %854,07”
such their potentials ¢, have analytic singularities in the sense of Definition 4.5, more
precisely, defined on a neighborhood V,, of any point o € X in the form ¢,,(z) =
cmlog lo;.m|* +O(1), where ¢, > 0 and the o, are holomorphic functions on V.

We select a finite covering (W,,) of X with open coordinate charts, and shrink them a
little to be on the safe side. Given § > 0, we take in each W, a maximal family of points
with (coordinate) distance to the boundary > 3 and mutual distance > §/2. In this way,
we get for § > 0 small a finite covering of X by open balls U j’ of radius § (actually every
point is even at distance < §/2 of one of the centers, otherwise the family of points would
not be maximal), such that the concentric ball U; of radius 26 is relatively compact in
the corresponding chart W,,. Let 7; : U; — B(aj, 26) be the isomorphism given by the
coordinates of W, ; by taking § > 0 small enough, we can assume that the coordinates
of U; extend to U; U Uy, whenever U; N Uy # ). Let €(d) be a modulus of continuity for
v on the sets Uj, such that lims_,ge(d) = 0 and v, — v, < %5(6) w, for all z,2’" € Uj.
We denote by v; the (1,1)-form with constant coefficients on B(ay;,2d) such that 777,
coincides with v — e(d) w at Tj_l(aj). Then we have

(5.2) 0<y—7/7 <2(f)w on U

for 6 > 0 small. We set ¢; = 4,007']-_1 on B(a;,26) and let ¢; be the homogeneous quadratic
function in z — a; such that %aéqj =, on B(aj,26). Then ¢; — g; is plurisubharmonic
on B(a;,26) since

) " *
(5.3) ;33((903‘—%)073'):T—Tﬂj>’Y-Tﬂj>0~

We let U; CC U}’ CC Uj be the concentric balls of radii §, 1.55, 20 respectively. On
each open set U; the function ¢; := ¢ — q; o 7; = (¢; — ;) o 75 is plurisubharmonic, so
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Theorem 4.2 applied with Q = U; ~ B(aj, 20) produces functions
1 .
(5.4) Vim = . logz |O’j7g|2, (0j,0) = basis of #Hy, (my;).
¢

The functions v;,, + ¢; o 7; on U; then have to be glued together by a partition of
unity technique. For this, we rely on the following “discrepancy” lemma, estimating the
variation of the approximating functions on overlapping balls.

(5.5) Lemma. There is a constant C' independent of m and 6 such that the quasi-psh
functions wj y = 2m(¢; m + q; 0 75), i.e.

Wjm(x) =2mgq;oT;(x) + 10gz }Uj,E(x)IQ, T e U]/-/,
¢

satisfy
[Wjm — We,m| < C(logd~" 4+ me(8)6*)  on Ui nuy.

Proof. The details will be left as an exercise to the reader. The main idea is the following:
for any holomorphic function f; € Hy, (my;), a d equation du = 9(6f;) can be solved on
Uk, where ¢ is a cut-off function with support in U NU}/, on a ball of radius < /4, equal
to 1 on the ball of radius /8 centered at a given point zo € U NU}/, with [90] = O(6~1).
We apply the L? estimate with respect to the weight (n + 1) log |z — x¢|? + 2may,, where
the first term is picked up so as to force the solution u to vanish at xg, in such a way
that Fj, = u — 0f; is holomorphic and Fj(z¢) = f;(xo). The discrepancy between the
weights on U}' and U}/ is given by

Y — Uk =—(qj 07 — qr 0 Tk).
By re-centering the quadratic functions at 7;(x¢), resp. 7, (zo), we can write
q; 0T — qk O T = Reij +Rjk

where Gy, is holomorphic on U; U Uy, [equal to a difference of linear forms in the coordi-
nates of B(a;,28) and B(ax,26)], Gjr(z0) = gjo7;(x0) — qr oTk(xo) and R, = O((5)6?)
is a remainder term coming from the change of coordinates and the slight discrepancy
between 99(q; o ;) and 99(qy o 7x) at the common point zg, with R;x(zo) = 0. In this

way, we get
|6mij |28—m1/)k — e—m’l/)j—Qijk’

so that we have a uniform control of the L? norm of the solution f, = e™Ci*F), =
emYir(u — 0 f;) of the form

/ ‘fk|26—2m¢k < Cé—Qn—4emO(s(5)52)/ ‘fj‘Qe—sz/Jj.
Uk Uj

The required estimate follows, using the equality

2vim(® =3 oy (@) = sup F@)P? onUj,
y4 fe%Uj(mwj)’Hngl
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and the analogous equality on Uy. O

Now, the actual glueing of our quasi-psh functions is performed using the following
elementary partition of unity calculation.

(5.6) Lemma. Let U; CC U} be locally finite open coverings of a complex manifold X
by relatively compact open sets, and let 6; be smooth nonnegative functions with support
m U]'-’, such that 0; <1 on UJ'-’ and 0; =1 on U]’-. Let A; > 0 be such that

2(9]859] — 69] /\59]') 2 —Ajw on U]// N U]/

for some positive (1,1)-form w. Finally, let w; be quasi-psh functions on U; with the
property that i@gwj > v for some real (1,1)-form ~ on M, and let C; be constants such
that
w;(z) <Cj+  sup  wp(z) on U/ \Uj.
k#3,U; >z

Then the function w = log (Z H?ewﬂ') is quasi-psh and satisfies

00w >y — 2(2 nUg,\UJ,,Ajecj)w.
;

Proof. If we set a; = 0;0w; + 200;, a straightforward computation shows that

Z(G?@w] + 29j89j)ewj _ Z Qjewjo_/j
Z 0‘72-61"3’ Z Q?ewj ’
Z(O&j VAN aj+9]2-65’w]‘+29j650j—289j/\50j)8wj B Ej,k: Qjewj 0 ek ;A\
> 0Fevs (EQJ%W)Q
S enlOian—Ora;Peviens 3 02ew 00w, 3 (260,000;,—200,796,) "
- 2 N\2 + Z 92611)3- + Z 02€wj
(2 0Fevs) i j

ow =

DOw =

by using the Legendre identity. The first term in the last line is nonnegative and the
second one is > 7. In the third term, if = is in the support of 6;000; — 00; A 00;, then
x € U \Uj and so wj(z) < Cj +wi(z) for some k # j with Uy 5 x and 0 (z) = 1. This
gives

22 (29J(959] — 269] A 59]-)6“’3'
2 _w;
Eeje i

The expected lower bound follows. O

2 -2 Z ﬂUJ’.’\UJ’. eCj Ajw.
J

We apply Lemma 5.6 to functions w;,, which are just slight modifications of the
functions w; ., = 2m(y; m + ¢; o 7j) occurring in Lemma 5.5 :

By () = (@) + 2 T+ Coe0)(0%/2 ~ [, (@)P))

= 2m(Wjm (@) + 5 0 75(w) + % + Ce(0)(62/2 = |5 (w)%)
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where x +— z = 7;(z) is a local coordinate identifying U; to B(0,24§), C} is the constant

occurring in Lemma 5.5 and (5 is a sufficiently large constant. It is easy to see that we
can take A; = C4672 in Lemma 5.6. We have

. C
Wjm 2 Wjm + 2C7 + m§5(5)52 on B(xj, 5/2) C U]/,
since |7j(x)| < 0/2 on B(z;,0/2), while
Q’Ej’m < Wi m + 207 — m035(5)52 on U]// N U]/

For m > mg(8) = (logd~'/(£(8)6?), Lemma 5.5 implies |w; , — Wi m| < Csme(5)6% on
Ui NU; . Hence, for C3 large enough, we get

Wjm(x) < sup Wi () < sup  wgm(x) on U]'-’ ~ U]'-,
k;éj,B($k,5/2)9$ k#]: U]/QS:E
and we can take C; = 0 in the hypotheses of Lemma 5.6. The associated function

w=log (Y Q?e’zj»m) is given by
2 G 2 2
w = logZQj exp (2m(¢j7m +gjoTt;+ o + C3e(6)(6°/2 — |75] )))
J

If we define ¢, = ﬁw, we get

1 Cl 03 2
m () == %w(l’) 2 jm(x) + g5 07(x) + T Z5(5>5 > p(z)
in view of Lemma 5.5, by picking an index j such that x € B(x;,6/2). In the opposite
direction, the maximum number N of overlapping balls U; does not depend on §, and
we thus get

C,  C
w < log N + Qm(max {jm(x) +qjori(z)} + El + 735(5)52)
j

By definition of ¢; we have sup|._, |, ¥;(¢) < supjc_, <, () — g; o 7j(x) + C5r thanks
to the uniform Lipschitz continuity of g; o 7;, thus by Lamme 5.5 again we find

log N C 1 C C
<=Ly sup  ¢(C) + L4 Zlog = + —35(5)52 + Csr.
2m |C—a|<r m m rn 2

By taking for instance r = 1/m and § = 6,, — 0, we see that ¢, converges to . On the
other hand (5.2) implies ~09q; o 7;(z) = 7/7y; = v — 2¢(d)w, thus

%65@j7m > 2m(y — Cse(d)w).

Lemma 5.6 then produces the lower bound

dow > 2m(vy — Cee(6)w) — C76 2w,

7
™
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whence

%85%,1 >y — Cge()w

for m > mo(8) = (logd=1)/((6)6%). We can fix § = §,, to be the smallest value of
d > 0 such that mgy(d) < m, then J,, — 0 and we have obtained a sequence of quasi-psh
functions ¢,, satisfying the following properties.

(5.7)_ Theorem. Let ¢ be a quasi-psh function on a compact complexr manifold X such
that =00y > vy for some continuous (1,1)-form . Then there is a sequence of quasi-psh
functions @, such that @, has the same singularities as a logarithm of a sum of squares
of holomorphic functions and a decreasing sequence €, > 0 converging to 0 such that

@) ¢(@) < pm(a) < sup o(c) + o (e

with respect to coordinate open sets covering X. In particular, ¢,, converges to ¢
pointwise and in L'(X) and

(b) v(9,2) = = < V(pm,x) < v(p,x) for every x € X ;
m

+7r+ 5m)

(c) %65907” >y — EnWw.

In particular, we can apply this to an arbitrary positive or quasi-positive closed
(1,1)-current T' = a + =90¢.

(5.8) Corollary. Let T' be a quasi-positive closed (1,1)-current on a compact complex
manifold X such that T >~y for some continuous (1,1)-form ~v. Then there is a sequence
of currents T, whose local potentials have the same singularities as 1/m times a logarithm
of a sum of squares of holomorphic functions and a decreasing sequence €,, > 0 converging
to 0 such that

(a) T, converges weakly to T,
(b) v(T,z)— n Sv(Thp,x) <v(T,x) for every x € X
m

(¢) T 27— emw.

We say that our currents T, are approzimations of T with logarithmic poles.

By using blow-ups of X, the structure of the currents 7}, can be better understood.
In fact, consider the coherent ideals ¥,, generated locally by the holomorphic functions
p ( ) ) on Uy, in the local approximations

Ok, :—logZ\a D12 +0(1)

of the potential ¢ of T on U,. These ideals are in fact globally defined, because the

local ideals j(k) ( J(ﬂ)l) are integrally closed, and they coincide on the intersections

UiNUy as they have the same order of vanishing by the proof of Lemma 5.5. By Hironaka
[Hir64], we can find a composition of blow-ups with smooth centers p,, : X,, = X such
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that pr ¥, is an invertible ideal sheaf associated with a normal crossing divisor E,,.
Now, we can write

. 1 ~

where sg, is the canonical section of G(—FE,,) and @, is a smooth potential. This
implies

e 1
(5.9) P L, = m[Em] + Bm

where [E,,| is the current of integration over E,, and 3, is a smooth closed (1, 1)-form
which satisfies the lower bound f3,, > u), (v — emw). (Recall that the pull-back of a
closed (1, 1)-current by a holomorphic map f is always well-defined, by taking a local
plurisubharmonic potential ¢ such that T' = i99p and writing f*T = idd(po f)). In the
remainder of this section, we derive from this a rather important geometric consequence,
first appeared in [DP04]). We need two related definitions.

(5.10) Definition. A Kdhler current on a compact complex space X is a closed positive
current T of bidegree (1,1) which satisfies T > ew for some € > 0 and some smooth
positive Hermitian form w on X.

(5.11) Definition. A compact complex manifold is said to be in the Fujiki class € if it is
bimeromorphic to a Kdihler manifold (or equivalently, using Hironaka’s desingularization
theorem, if it admits a proper Kdhler modification).

(5.12) Theorem. A compact complex manifold X is bimeromorphic to a Kdhler mani-
fold (i.e. X € €) if and only if it admits a Kdhler current.

Proof. If X is bimeromorphic to a Kéhler manifold Y, Hironaka’s desingularization
theorem implies that there exists a blow-up Y of Y (obtained by a sequence of blow-ups
with smooth centers) such that the bimeromorphic map from Y to X can be resolved

into a modification p : Y — X. Then Y is Kéhler and the push-forward T' = p.w of a
Kihler form w on Y provides a Kéhler current on X. In fact, if w is a smooth Hermitian
form on X, there is a constant C' such that pu*w < Cw (by compactness of Y'), hence

T =y > po (C7Hp*w) = C .

Conversely, assume that X admits a Kéhler current 7" > ew. By Theorem 5.8 (c), there
exists a Kihler current T = T, > Sw (with m > 1 so large that ¢, < €/2) in the same
d0-cohomology class as T, possessing logarithmic poles. Observation (5.9) implies the
existence of a composition of blow-ups p : X — X such that

wT=[E]+8 onX,

where E is a Q-divisor with normal crossings and E a smooth closed (1,1)-form such
that 8 > Spu*w. In particular § is positive outside the exceptional locus of u. This is not

enough yet to produce a Kéhler form on X , but we are not very far. Suppose that X is
obtained as a tower of blow-ups

)’Z:XN—)XN_1—>-'-—)X1—)X0:X,
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where X1 is the blow-up of X; along a smooth center Y; C X;. Denote by S;11 C X4+
the exceptional divisor, and let u; : X;,1 — X; be the blow-up map. Now, we use the
following simple

(5.13) Lemma. For every Kdhler current T; on X, there exists ;11 > 0 and a smooth
form w;i1 in the 00-cohomology class of [Sj+1] such that

*
Tj1 = piTj — €j41Uj41

is a Kdhler current on X;q1.

Proof. The line bundle @(—S;41)[S;j11 is equal to @Op(y,)(1) where Nj is the normal
bundle to Y; in X;. Pick an arbitrary smooth Hermitian metric on Nj, use this metric
to get an induced Fubini-Study metric on @p(y;)(1), and finally extend this metric as
a smooth Hermitian metric on the line bundle @(—S;;). Such a metric has positive
curvature along tangent vectors of X;,; which are tangent to the fibers of S;;1 =
P(N;) — Y;. Assume furthermore that 7; > J;w; for some Hermitian form w; on X
and a suitable 0 < ; < 1. Then

* *
wily — jr1uji1 2 O w5 — €j41Uj41

where pfw; is semi-positive on X1, positive definite on X ;11 \..S;11, and also positive
definite on tangent vectors of Ty, ,|s,,, which are not tangent to the fibers of S; 1 — Yj.
The statement is then easily proved by taking ;41 < §; and by using an elementary
compactness argument on the unit sphere bundle of Ty, , associated with any given
Hermitian metric. O

End of proof of Theorem 5.12. If u; is the pull-back of u; to the final blow-up X, we
conclude inductively that *T" — )" e;u; is a Kéhler current. Therefore the smooth form

& = 6 — Z»sjﬁj = M*T— Zeﬂlj — [E]
is Kahler and we see that X is a Kihler manifold. ]

(5.14) Remark. A special case of Theorem 5.12 is the following characterization of
Moishezon varieties (i.e. manifolds which are bimeromorphic to projective algebraic va-
rieties or, equivalently, whose algebraic dimension is equal to their complex dimension):

A compact complex manifold X is Moishezon if and only if X possesses a Kdhler current
T such that the De Rham cohomology class {T'} is rational, i.e. {T} € H*(X,Q).

In fact, in the above proof, we get an integral current 7' if we take the push forward
T = p.w of an integral ample class {w} on Y, where p : Y — X is a projective model
of Y. Conversely, if {T'} is rational, we can take the ¢;’s to be rational in Lemma 5.13.
This produces at the end a Kahler metric w with rational De Rham cohomology class
on X. Therefore X is projective by the Kodaira embedding theorem. This result was
already observed in [JS93] (see also [Bon93, Bon98| and Section III 6 for a more general
perspective based on a singular holomorphic Morse inequalities).
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(5.15) Remark. Hodge decomposition also holds true for manifolds X € €. In fact let
T X — X be a modification such that X is Kihler. Then there are natural morphisms

p* i HZY(X,C) —» H2Y(X,C),  p.: H2Y(X,C) — H2Y(X,C)

induced respectively by the pull-back of smooth forms (resp. the direct image of currents).
Clearly, s o u* = 1Id, therefore p* is injective and u, surjective, and similar results hold
true for Bott-Chern cohomology or De Rham cohomology. It follows easily from this that
the 90-lemma still holds true for X € ‘€, and that there are isomorphisms

HES(X,C) = HP(X,C), €D HE3(X,C) = Hip(X,C).
pt+qg=Fk

6. Zariski decomposition and mobile intersections

Let X be compact Kéahler and let o € ‘€° be in the interior of the pseudo—effective
cone. In analogy with the algebraic context such a class « is called “big”, and it can
then be represented by a Kdhler current T, i.e. a closed positive (1,1)-current 7" such
that T' > dw for some smooth Hermitian metric w and a constant § << 1. We first need
a variant of the approximation theorem proved in Section 5.

(6.1) Regularization theorem for currents. Let X be a compact complex manifold
equipped with a Hermitian metric w. Let T = a4 i00¢ be a closed (1,1)-current on X,
where « is smooth and ¢ is a quasi-plurisubharmonic function. Assume that T > =
for some real (1,1)-form v on X with real coefficients. Then there exists a sequence
Ty = o+ i00¢,, of closed (1,1)-currents such that

(a) @m (and thus T,,) is smooth on the complement X \ Z,,, of an analytic set Z,,, and
the Z,,’s form an increasing sequence

ZoCZ1C - CZypC---CX.

(b) There is a uniform estimate Ty, > v — dpw with lim | 6,, = 0 as m tends to +oo.

(c) The sequence (¢y,) is non increasing, and we have lim | ¢, = ¢. As a consequence,
T, converges weakly toT' as m tends to +o0.

(d) Near Z,,, the potential @, has logarithmic poles, namely, for every xg € Z,,, there
is a neighborhood U of xo such that ¢m(z) = A\ 10og >, |gm.e|*> + O(1) for suitable
holomorphic functions (gm.e) on U and A\, > 0. Moreover, there is a (global) proper

modification py, : X, — X of X, obtained as a sequence of blow-ups with smooth
centers, such that p,, o, can be written locally on X,, as

@ © (W) = A (3 mglog [ef? + f(w))

where (§; = 0) are local generators of suitable (global) divisors Ey on Xy, such that
> Ey has normal crossings, ng are positive integers, and the f’s are smooth functions
on X,
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Sketch of proof. We essentially repeat the proofs of Theorems 4.2 and 5.7 with additional
considerations. One fact that does not follow readily from these proofs is the monotonicity
of the sequence ¢,, (which we will not really need anyway — it can be obtained by applying
Theorem 4.2 with 2™ instead of m, and by using the Ohsawa-Takegoshi L? extension
theorem 4.1 for potentials 2™ p(z) + 2™p(y) on the diagonal of X x X, so that the
restriction is 2™ 1p(z) on the diagonal; we refer e.g. to [DPS01] for details). The map
[ is obtained by blowing-up the (global) ideals ¥,,, defined by the holomorphic functions
(9j,m) in the local approximations ¢, ~ 5- log > |9;,m|?. By Hironaka [Hir64], we can
achieve that p, ¥, is an invertible ideal sheaf associated with a normal crossing divisor.

O

(6.2) Corollary. IfT is a Kdhler current, then one can write T'= limT,,, for a sequence
of Kdhler currents T,, which have logarithmic poles with coefficients in %Z, i.e. there
are modifications py, : X, — X such that

H;knTm = [Em] + Bm

where E,, is an effective Q-divisor on X,, with coefficients in %Z (the “fized part”) and
Bm s a closed semi-positive form (the “mobile part”).

Proof. We apply Theorem 6.1 with v = ew and m so large that §,, < £/2. Then T}, has
analytic singularities and T}, > Sw, so we get a composition of blow-ups p,, : Xp, — X
such

i Tm = [Em] + B,

[
where E,, is an effective Q-divisor and 3, > Suy,w. In particular, 8, is strictly positive
outside the exceptional divisors, by playing with the multiplicities of the components
of the exceptional divisors in F,,, we could even achieve that 3, is a Kéhler class on
X .. Notice also that by construction, pu., is obtained by blowing-up the multiplier ideal
sheaves .¥(mT) = J(my) associated to a potential ¢ of T'. O

The more familiar algebraic analogue would be to take a = ¢;(L) with a big line
bundle L and to blow-up the base locus of |mL|, m > 1, to get a Q-divisor decomposition

(6.3) por Lo~ Epy + Dy, E,, effective, D,, base point free.

(One says that D,, is base point free if H%(X, @(D,,) is generated by sections, in other
words if D,, is entirely “mobile” in the linear system |D,,|). Such a blow-up is usually
referred to as a “log resolution” of the linear system |mL|, and we say that F,, + D,, is
an approximate Zariski decomposition of L. We will also use this terminology for Kahler
currents with logarithmic poles.

NSa(Xm)

Hns

C L
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(6.4) Definition. We define the volume, or mobile self-intersection of a class o €
HY(X,R) to be

Vol(a) = sup/ sup/ g™ >0,
Tea X\Sing(T) Tea

where the supremum is taken over all Kahler currents T € o with logarithmic poles, and
w*T = [E] + B with respect to some modification p : X — X . Correspondingly, we set

Vol(a) =0 if a ¢ €°.

In the special case where a = ¢;(L) is an integral class, we have the following interpre-
tation of the volume.

(6.5) Theorem. If L is a big line bundle and u),L ~ E,, + Dy, is a log resolution
of |[mL|, we have

Vol(c; (L)) = lim D" = lim —hO(X mlL),

m—-+oo m—>—|—oo mm

Sketch of proof. Given a Kéhler current T' € ¢1 (L) with logarithmic pole, we can always
take a blow-up p: X — X so that u*T = [E] 4+ 8 where E is an effective R-divisor and
B = 0. By using a perturbation technique as in Lemma 5.13, we can always assume that
E is a Q-divisor and that  is Kéhler. Then {8} = p*ci1(L) — {[£]} is a rational class
and therefore g is the first Chern class ¢1(A) of an ample Q-divisor on X. When m is
a multiple of a suitable denominator mg and m = qgmg + r, 0 < r < mg, we get by the
elementary Riemann-Roch formula

BO(X,mL) > h°(X,mp* L —mo[m/mo] E) = h°(X, mo[m/mo] A+ rp"L) ~ "o /~ 8",
n! Jx

hence liminf 2-h%(X,mL) > Vol(c;(L)) by taking the supremum over all such cur-
rents 7. In the other direction, the inequality limsup -2-h°(X,mL) < Vol(ci(L)) is
obtained by subtracting a small rational multiple €A of an ample line bundle A. One
shows that multiples of L — A roughly have the same number of sections as those of L
by an exact sequence argument similar to what was done in the proof of 3.4 (b). By a
result of Fujita [Fuj94] (cf. also [DELO00]), the volume of the base point free part D, .
in a log resolution of |m(L — eA)| approximates lim sup -2-h%(X, m(L — £4)), so we get
u:‘meL = Eme + (Dpe + €A) where D, . + A is ample. The positive (1, 1)-current
Tone = (Hm,e)<O Dm _+eA is a Kahler current with logarithmic poles and its volume ap-
proaches lim sup -+ nlh9(X, mL) when £ < 1 and m is large. O

In these terms, we get the following statement.

(6.6) Proposition. Let L be a big line bundle on the projective manifold X. Let € > 0.
Then there exists a modification p : X. — X and a decomposition u*(L) = E + B with
E an effective Q-divisor and B a big and nef Q-divisor such that

Vol(L) — ¢ < Vol(B) < Vol(L).
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It is very useful to observe that the supremum in Definition 6.4 is actually achieved
by a collection of currents whose singularities satisfy a filtering property. Namely, if
TN = o+ 265(,01 and 15 = a + iagcpg are two Kéahler currents with logarithmic poles in
the class of «, then

(6.7) T = a+iddy, © = max(p1, p2)

is again a Kahler current with weaker singularities than 77 and 7%. One could define as
well

— 1
(67/) T =o+ Z@@gp, Y= % log(82m<p1 + 62m<,02>7

where m = lem(my, ms) is the lowest common multiple of the denominators occuring in
T1, T,. Now, take a simultaneous log-resolution u,, : X,, — X for which the singularities
of T and T5 are resolved as Q-divisors E; and E5. Then clearly the associated divisor in
the decomposition p), T = [E]+ [ is given by E = min(F1, E»). By doing so, the volume
f X, B™ gets increased, as we shall see in the proof of Theorem 6.8 below.

(6.8) Theorem (Boucksom [Bck02]). Let X be a compact Kihler manifold. We denote

here by Hg’(f;(X) the cone of cohomology classes of type (k, k) which have non-negative
intersection with all closed semi-positive smooth forms of bidegree (n — k,n — k).

(a) For each integer k = 1,2,...,n, there exists a canonical “mobile intersection prod-
uct”
Exox €= HEJ(X), (an,...,ak) = {01 a9 .ap_1 - o)

such that Vol(a) = (a™) whenever a is a big class.

(b) The product is increasing, homogeneous of degree 1 and superadditive in each arqu-
ment, i.e.

It coincides with the ordinary intersection product when the a; € T are nef classes.

(¢) The mobile intersection product satisfies the Hovanskii- Teissier inequalities ([Hov79],
[Tei79, Tei82])

(1 ag. o) = (@)Y ((am)M™ (with (o) = Vol(ay)).

(d) For k=1, the above “product” reduces to a (non linear) projection operator
€ — €1, a— (a)

onto a certain convex subcone ‘€1 of € such that K C €, C €. Moreover, there is
a “divisorial Zariski decomposition”

a={N(a)} +(a)
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where N(«) is a uniquely defined effective divisor which is called the “negative diviso-
rial part” of a. The map o — N («) is homogeneous and subadditive, and N(«a) =0
if and only if a« € €.

(e) The components of N(«) always consist of divisors whose cohomology classes are
linearly independent, especially N(«) has at most p = ranky NS(X) components.

Proof. We essentially repeat the arguments developped in [Bck02], with some simplifica-
tions arising from the fact that X is supposed to be Kahler from the beginning.

(a) First assume that all classes «; are big, i.e. o; € €°. Fix a smooth closed
(n — k,n — k) semi-positive form uv on X. We select Kahler currents T; € «; with

logarithmic poles, and a simultaneous log-resolution pu : X — X such that
p Ty = [Ej] + Bj.

We consider the direct image current ju,. (81 A--- A By) (which is a closed positive current
of bidegree (k, k) on X) and the corresponding integrals

/~61/\---/\6k/\,u*u>0.
X

If we change the representative 7); with another current T]{ , we may always take a simulta-
neous log-resolution such that ;* 7} = [E}]+ 3}, and by using (6.7") we can always assume
that £} < E;. Then D; = E;— E is an effective divisor and we find [E;]+8; = [E}]+ 3],
hence ) = B; + [D;]. A substitution in the integral implies

/gﬁj/\ﬁg/v-wﬁkAu*u
= [ nsan-nfenptut [(DIABA A AR
X

X

>[mAmAmAmAw%
X

Similarly, we can replace successively all forms 3; by the 55-, and by doing so, we find

/~51A5§A-~-A52Au*u>/~51A/32A-~-A5kw*u-
X X

We claim that the closed positive currents (81 A --- A Bg) are uniformly bounded in
mass. In fact, if w is a Kahler metric in X, there exists a constant C; > 0 such that
Cj{w} — a; is a Kéhler class. Hence Cjw — T = ; for some Kahler form v; on X. By
pulling back with p, we find C;p*w — ([E;] + 5;) = p*;, hence

Bi = Cipw — ([Ej] + 1™ ;).

By performing again a substitution in the integrals, we find

/~51/\-~-/\5k/\,u*u<C’1-~-Ck/~u*wk/\u*u:01-~-0k/ W A
X X X
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and this is true especially for © = w™ . We can now arrange that for each of the
integrals associated with a countable dense family of forms u, the supremum is achieved
by a sequence of currents (ftym )«(B1,m A+ - A Br,m) obtained as direct images by a suitable
sequence of modifications u,, : X,, — X. By extracting a subsequence, we can achieve
that this sequence is weakly convergent and we set

(a1 -ag. o) = Hm T {(tm)«(Br,m A B2y A+ A Brom) }

m——+oo

(the monotonicity is not in terms of the currents themselves, but in terms of the integrals
obtained when we evaluate against a smooth closed semi-positive form u). By evaluating
against a basis of positive classes {u} € H" *"=*(X) we infer by Serre duality that
the class of (ay - ag.---.ag) is uniquely defined (although, in general, the representing
current is not unique).

(b) It is indeed clear from the definition that the mobile intersection product is
homogeneous, increasing and superadditive in each argument, at least when the a;’s are
in ‘€°. However, we can extend the product to the closed cone ‘€ by monotonicity, by
setting

<041 Qe Oék> = h;ilol,«al + 5w) . (O_/Q + 5&)) oo .(O_/k + 5w))
for arbitrary classes a; € € (again, monotonicity occurs only where we evaluate against
closed semi-positive forms u). By weak compactness, the mobile intersection product
can always be represented by a closed positive current of bidegree (k, k).

(c) The Hovanskii-Teissier inequalities are a direct consequence of the fact that they
hold true for nef classes, so we just have to apply them to the classes ;,, on X,, and
pass to the limit.

d) When k£ =1 and a € €°, we have
(d) ,

a= Um {(n)Tm} = Hm (un)sEm] +{(km)eBm}

m——+oo

and (a) = limy, 4+ 0o{ (tm)«Bm } by definition. However, the images Fy,, = (ftm )«

F,,, are effective Q-divisors in X, and the filtering property implies that F;, is a decreasing
sequence. It must therefore converge to a (uniquely defined) limit F' = lim F},, := N(«)
which is an effective R-divisor, and we get the asserted decomposition in the limit.

Since N(a) = a — («) we easily see that N(«) is subadditive and that N(«) = 0 if
« is the class of a smooth semi-positive form. When « is no longer a big class, we define

(a):%iﬁ)li(a-i—&)% N(oz):%iﬁ)lTN(a-l—dw)

(the subadditivity of N implies N(a + (0 + ¢)w) < N(a + éw)). The divisorial Zariski
decomposition follows except maybe for the fact that N(«) might be a convergent count-
able sum of divisors. However, this will be ruled out when (e) is proved. As N(.) is
subadditive and homogeneous, the set ‘€, = {a € € ; N(a) = 0} is a closed convex
cone, and we find that « — () is a projection of € onto €; (according to [Bck02], €,
consists of those pseudo-effective classes which are “nef in codimension 1”).
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(e) Let a € €°, and assume that N(a) contains linearly dependent components F).
Then already all currents T € « should be such that p*T = [E] 4+ 8 where F' = u,FE
contains those linearly dependent components. Write F' = > A, F}, A; > 0 and assume

that

Z c;F; =0

JjeJ
for a certain non trivial linear combination. Then some of the coefficients c¢; must be
negative (and some other positive). Then E is numerically equivalent to

E/EE—FtM*(Z)\]F]),

and by choosing t > 0 appropriate, we obtain an effective divisor E’ which has a zero
coefficient on one of the components p*Fj . By replacing E with min(E, E’) via (6.7’),
we eliminate the component p*F,. This is a contradiction since N(a) was supposed to
contain Fj,. U

(6.9) Definition. For a class « € HVY(X,R), we define the numerical dimension nd(«)
to be nd(a) = —o0 if a is not pseudo-effective, and

nd(a) = max{p € N; (a?) # 0}, nd(a) € {0,1,...,n}

if a is pseudo-effective.

By the results of [DP04], a class is big (« € €°) if and only if nd(a) = n. Classes of
numerical dimension 0 can be described much more precisely, again following Boucksom
[Bck02].

(6.10) Theorem. Let X be a compact Kihler manifold. Then the subset %o of irre-
ducible divisors D in X such that nd(D) = 0 is countable, and these divisors are rigid
as well as their multiples. If o € € is a pseudo-effective class of numerical dimension 0,
then « is numerically equivalent to an effective R-divisor D = Zje] \;jDj, for some fi-
nite subset (Dj);jc; C Do such that the cohomology classes {D;} are linearly independent
and some \j > 0. If such a linear combination is of numerical dimension 0, then so is
any other linear combination of the same divisors.

Proof. 1t is immediate from the definition that a pseudo-effective class is of numerical
dimension 0 if and only if (o) = 0, in other words if @« = N(«). Thus a = > \;D,
as described in 6.10, and since \;(D;) < (a), the divisors D; must themselves have
numerical dimension 0. There is at most one such divisor D in any given cohomology
class in NS(X)N ‘€ C H?*(X,Z), otherwise two such divisors D = D’ would yield a
blow-up p : X — X resolving the intersection, and by taking min(u*D, u*D') via (6.7'),
we would find pu*D = E+ 3, 8 # 0, so that {D} would not be of numerical dimension 0.
This implies that there are at most countably many divisors of numerical dimension 0,
and that these divisors are rigid as well as their multiples. U

(6.11) Remark. If L is an arbitrary holomorphic line bundle, we define its numerical
dimension to be nd(L) = nd(ci(L)). Using the canonical maps @,z and pulling-back
the Fubini-Study metric it is immediate to see that nd(L) > x(L).
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The above general concept of numerical dimension leads to a very natural formulation
of the abundance conjecture for Kahler varieties.

(6.12) Generalized Abundance Conjecture. Let X be an arbitrary compact Kdhler
manifold X .

(a) The Kodaira dimension of X should be equal to its numerical dimension: k(Kx) =
nd(Kx) .

(b) More generally, let A be a Q-divisor which is kit (Kawamata log terminal, i.e. such
that cx(A) > 1). Then k(Kx + A) =nd(Kx + A).

(6.13) Remark. It is obvious that abundance holds in the case nd(Kx) = —oo (if L
is not pseudo-effective, no multiple of L can have sections), or in the case nd(Kx) =n
which implies K x big (the latter property follows e.g. from the solution of the Grauert-
Riemenschneider conjecture in the form proven in [Dem85], see also [DP04]).

In the remaining cases, the most tractable situation is the case when nd(Kx) = 0. In
fact Theorem 6.10 then gives Kx = > A\;D; for some effective divisor with numerically
independent components, nd(D;) = 0. It follows that the \; are rational and therefore

(%) Kx ~Y XNDj+F  where \; € Q", nd(D;) =0 and F € Pic’(X).

If we assume additionally that ¢(X) = h%!(X) is zero, then mK x is linearly equivalent to
an integral divisor for some multiple m, and it follows immediately that x(X) = 0. The
case of a general projective manifold with nd(K x) = 0 and positive irregularity ¢(X) > 0
has been solved by Campana-Peternell [CP04], Proposition 3.7. It would be interesting
to understand the Kéhler case as well.

7. The orthogonality estimate

The goal of this section is to show that, in an appropriate sense, approximate Zariski
decompositions are almost orthogonal.

(7.1) Theorem. Let X be a projective manifold, and let « = {T'} € ‘€}q be a big class
represented by a Kdhler current T. Consider an approximate Zariski decomposition

ton Tm = [Em] + [Di]

Then
(Dt Ep)? <20 (Cw)™(Vol(a) — DY)

where w = ¢1(H) is a Kdhler form and C > 0 is a constant such that £« is dominated
by Cw (i.e., Cw £+ « is nef). In other words, E,, and D,, become “more and more
orthogonal” as D), approaches the volume.

Proof. For every t € [0,1], we have

Vol(«) = Vol(Ey, + Dy,) = Vol(tE,, + Dyy,).
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Now, by our choice of C, we can write F,, as a difference of two nef divisors

E,=pa—-D, =u (a+Cw)— (D, +Cu,w). O

(7.2) Lemma. For all nef R-divisors A, B we have
Vol(A— B) > A" —nA""'.B

as soon as the right hand side is positive.

Proof. In case A and B are integral divisors, this is a consequence of holomorphic Morse
inequalities (cf. (I 2.15)). If A and B are Q-divisors, we conclude by the homogeneity
of the volume. The general case of R-divisors follows by approximation (actually, as
it is defined to be a supremum, the volume function can easily be shown to be lower
semi-continuous, but it is in fact even continuous, cf. [Bck02, 3.1.26]). O

(7.3) Remark. We hope that Lemma 7.2 also holds true on an arbitrary Kahler mani-
fold for arbitrary nef (non necessarily integral) classes. This would follow from Conjecture
(IIT 2.11) generalizing holomorphic Morse inequalities to non integral classes, exactly by
the same proof as Theorem (I 2.14).

(7.4) Lemma. Let 31,...,0, and By, ..., 5, be nef classes on a compact Kihler manifold
X such that each difference 5} —B; is pseudo-effective. Then the n-th intersection products
satisfy

BrowBn < B B

Proof. We can proceed step by step and replace just one ; by 'j = 8; +T; where T is
a closed positive (1, 1)-current and the other classes 3, = B, k # j are limits of Kéahler
forms. The inequality is then obvious. U

End of proof of Theorem 7.1. In order to exploit the lower bound of the volume, we write
tEy + D, = A— B, A= Dy +tu,,(a+Cw), B=t(Dy,+Curw).

By our choice of the constant C, both A and B are nef. Lemma 7.2 and the binomial
formula imply

Vol(tE,,+D,,) > A" —nA""'. B

n

= D! +nt Dbk C tk
ot Dl (o4 Cw) 4+ (k

k=2
—nt D™ (D, + Cukw)

)D:;;k (o + Cw)F

n—1
—1
— nt? Z th1 <n 5 )D;Z_l_k k(a4 Cw)k - (Dyy + Cut,w).
k=1

Now, we use the obvious inequalities

D < piy, (Cw), o (0 + Cw) < 2p7, (Cw), Dy + Cpigyw < 24y, (Cw)
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in which all members are nef (and where the inequality < means that the difference
of classes is pseudo-effective). We use Lemma 7.4 to bound the last summation in the
estimate of the volume, and in this way we get

n—1
—1
Vol(tEy, + D) = Dy, +ntDp b Epy —nt? Y~ 281+ (" N )(Cw)”.
k=1

We will always take ¢ smaller than 1/10n so that the last summation is bounded by
4(n —1)(1+1/5n)"2 < 4ne'/® < 5n. This implies

Vol(tE,, + D,,) = D +nt D™ . E,, — 5n*t*(Cw)".
Now, the choice t = 13— (D! - E,,,)((Cw)™) ™t gives by substituting

1 (Dn—l A Em>2
— = < Vol(E,, + D,,) — D;;, < Vol(a) — D

(and we have indeed ¢t < ﬁ by Lemma 7.4), whence Theorem 7.1. Of course, the

constant 20 is certainly not optimal. O

(7.5) Corollary. If a € €xg, then the divisorial Zariski decomposition o = N(a) + ()

1s such that
(@™ 1. N(a) =0.

Proof. By replacing « with a+ dcq (H), one sees that it is sufficient to consider the case
where « is big. Then the orthogonality estimate implies

(k) (DY) = (pn ) By = D+ (pn)* (pn )« B
<DV ' E,, < C(Vol(a) — D)2
Since (a™™1) = lim ()« (DY), N(a) = lim(pm )« Ey and lim D7, = Vol(«), we get the

desired conclusion in the limit. O

8. Dual of the pseudo-effective cone

We consider here the Serre duality pairing
(8.1) HY'(X,R) x H* V"X, R) — R, (a,B) — a- = / ap.
X

When restricted to real vector subspaces generated by integral classes, it defines a perfect
pairing

(8.2) NSg x NS~ 1" H(X) — R

where NS ¢ H1(X,R) and NSp~ "~ *(X) ¢ H* "~(X,R). Next, we introduce the
concept of mobile curves.
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(8.3) Definition. Let X be a smooth projective variety.

(a) One defines NE(X) C NSﬁ_l’”_l(X) to be the convex cone generated by cohomology
classes of all effective curves in H*~1n=1(X R).

(b) We say that C is a mobile curve if C = Cy, is a member of an analytic family
{Ci}ies such that |J,cg Cr = X and, as such, is a reduced irreducible 1-cycle. We
define the mobile cone ME(X), to be the convex cone generated by all mobile curves.

(c) If X is projective, we say that an effective 1-cycle C' is a strongly mobile if we have

C=p (AN NA,_q)

for suitable very ample divisors ,Z[j on )Z, where | : X > Xisa modification. We
let ME®(X) be the convexr cone generated by all strongly mobile effective 1-cycles

(notice that by taking A; general enough these classes can be represented by reduced
irreducible curves; also, by Hironaka, one could just restrict oneself to compositions
of blow-ups with smooth centers).

Clearly, we have
(8.4) ME*(X) ¢ ME(X) ¢ NE(X) c NSz~ b H(X).
Another simple observation is:

(8.5) Proposition. One has a- C > 0 whenever {a} € ‘€ and {C} € ME(X). In other
words €xg = € NNSr(X) is contained in the dual cone (ME(X))".

Proof. If the class {a} is represented by a closed positive current 7' and C = (Y,
belongs to a covering family (Ct)ies, it is easy to see that Tjc, is locally well defined and
nonnegative as soon as Cy is not contained in the set of poles of a local potential ¢ of T
However, this occurs only when ¢ belongs to a pluripolar set P C S, hence for t € S~ P
we have

Oé'C:/T]CtZO. U
Cy

The following statement was first proved in [BDPP04].

(8.6) Theorem. If X is projective, the cones ‘€nxs = Eff (X) and ME®*(X) are dual with
respect to Serre duality, and we have ME®(X) = ME(X).

In other words, a line bundle L is pseudo-effective if (and only if) L - C > 0 for
all mobile curves, i.e., L -C > 0 for every very generic curve C' (not contained in a
countable union of algebraic subvarieties). In fact, by definition of ME?®(X), it is enough
to consider only those curves C which are images of generic complete intersection of
very ample divisors on some variety X, under a modification p: X — X. By a standard
blowing-up argument, it also follows that a line bundle L on a normal Moishezon variety
is pseudo-effective if and only if L - C' > 0 for every mobile curve C.
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Proof. By (8.5) we have €ns C (ME(X))" and (8.4) implies (ME(X))¥ ¢ (ME*(X))",
therefore

(8.7) Ens C (ME® (X)),

If we show that €xg = (ME*(X))Y, we get at the same time (ME®*(X))” = (ME(X))",
and therefore by biduality (Hahn-Banach theorem) we will infer ME®(X) = ME(X).
Now, if the inclusion were strict in (8.7), there would be an element o € 9éng on the
boundary of ‘€ng which is in the interior of ME®(X)Y.

HV(X,R) H"Ln—1(X R) (X)

Let w = ¢1(H) be an ample class. Since a € 0€ys, the class o + dw is big for every
d > 0, and since o € ((ME?*(X))¥)° we still have o — ew € (ME®(X))" for £ > 0 small.
Therefore

(8.8) a-I'>ew-T

for every strongly mobile curve I'; and therefore for every I' € ME®*(X). We are going to
contradict (8.8). Since o + dw is big, we have an approximate Zariski decomposition

ws(a+ dw) = E5 + Ds.
We pick I' = (,u(;)*(Dg_l) € ME®(X). By the Hovanskii- Teissier concavity inequality
0T > (WMD),
On the other hand

o T =a (). (DI
— - P < i+ 0w) - Dy
= (Es; + Ds) - Dy~' = Dy + Dy~ - Es.
By the orthogonality estimate, we find
o T _ Dj + (20(Cw)" (Vol(a + o) — Dr))'?
w-T (wn>1/n(D(7§I>(n—1)/n

(Vol(a + dw) — DP)1/2
EREE

< C/(ng)l/n + C//



62 J.-P. Demailly Applications of Pluripotential theory to Algebraic Geometry
However, since a € 9€ysg, the class a cannot be big so

lim D = Vol(a) = 0.
6—0

We can also take Ds to approximate Vol(a+dw) in such a way that (Vol(a+dw) —DF)/2
tends to 0 much faster than DJ. Notice that Dj > ¢"w", so in fact it is enough to take

Vol(a + 6w) — D < 62",

which gives (a-T')/(w-T) < (C" + C")d. This contradicts (8.8) for ¢ small. O



Part 111

Asymptotic cohomology functionals
and Monge-Ampere operators

The goal of this chapter is to show that there are strong relations between certain
Monge-Ampere integrals appearing in holomorphic Morse inequalities, and asymptotic
cohomology estimates for tensor powers of holomorphic line bundles. Especially, we prove
that these relations hold without restriction for projective surfaces, and in the special
case of the volume, i.e. of asymptotic 0-cohomology, for all projective manifolds. These
results can be seen as a partial converse to the Andreotti-Grauert vanishing theorem.

0. Introduction and main definitions

Throughout this chapter, X denotes a compact complex manifold, n = dim¢ X its
complex dimension and L — X a holomorphic line bundle. In order to estimate the
growth of cohomology groups, it is interesting to consider appropriate “asymptotic co-
homology functions”. Following partly notation and concepts introduced by A. Kiironya
[Kiir06, FKLO7], we introduce

(0.1) Definition. Let X be a compact complex manifold and let L — X be a holomorphic
line bundle.

(a) The g-th asymptotic cohomology functional is defined as
~ |
h9(X, L) := limsup —h(X, L&),
k——+o0 k™
(b) The q-th asymptotic holomorphic Morse sum of L is
< NERT n! —j1j k
h=1(X, L) = limsup > (-1)TIR (X, L),

k—=+oo 0<i<q

When the lim sup’s are limits, we have the obvious relation
h=9(X,L)= Y (-1)"7hi(X,L).
0si<q

Clearly, Definition 0.1 can also be given for a Q-line bundle L or a QQ-divisor D, and in
the case ¢ = 0 one gets by (II 6.5) what is called the volume of L (see also [DEL00],
[Bck02], [Laz04]):

~ |
(0.2) Vol(X, L) := h°(X, L) = limsup %hO(X, L),

k—+o00
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1. Extension of the functionals to real cohomology classes
We are going to show that the K9 functional induces a continuous map
(1.1) DNSg(X) 3 a = hl\o(X, a),

which is defined on the “divisorial Néron-Severi space” DNSg(X) C Hgi(X,R), i.e.
the vector space spanned by real linear combinations of classes of divisors in the real
Bott-Chern cohomology group of bidegree (1,1). Here H{3(X, C) is defined as the quo-
tient of d-closed (p, ¢)-forms by d0-exact (p, q)-forms, and there is a natural conjugation
HEA(X,C) — HEE(X, C) which allows us to speak of real classes when ¢ = p. Notice
that H (X, C) coincides with the usual Dolbeault cohomology group H”9(X, C) when
X is Kahler, and that DNSg(X) coincides with the usual Néron-Severi space

(1.2) NSg(X) =R ®q (H*(X,Q)NnH"'(X,C))

when X is projective (the inclusion can be strict in general, e.g. on complex 2-tori which
only have indefinite integral (1, 1)-classes, cf. [BL04]).

For a € NSg(X) (resp. a« € DNSg(X)), we set

~ ~ |
his(X, ) (resp. hins (X, a)) = lim sup %hq(X, L)

k— 400, %cl (L)—a

|
(1.3) = inf sup &hq(X, L).

n
€>0,k0>0 > | ter(D)—al<e K

when the pair (k, L) runs over N* x Pic(X), resp. over N* x Picp(X) where Picp(X) C
Pic(X) is the subgroup generated by “divisorial line bundles”, i.e. line bundles of the
form @x (D). Similar definitions can be given for the Morse sum functionals hﬁg(X , Q)

and th{IS(X «). Clearly hDNS(X a) < hﬁg(X a) on DNSg(X), but we do not know
at this point whether jhls is always an equality. From the very definition, th , h§g
(and likewise hDNS , hDNS) are upper semi-continuous functions which are positively
homogeneous of degree n, namely

(1.4) R (X, Aar) = AR (X, @)

for all @« € NSg(X) and all A > 0. Notice that ﬁ%s (X, «) and ?Lflg(X, «) are always finite
thanks to holomorphic Morse inequalities (see below).
(1.5) Proposition.

(a) For L € Picp(X), one has BQ(X, L)=h(X,c1(L)) and hS?(X,L)= hél‘{IS(X, a1 (L)),
in particular asymptotic cohomology depends only on the numerical class of L.

(b) The map o /HQDNS(X, «) is (locally) Lipschitz continuous on DNSg(X).
(¢) When q =0, E%NS(X, a) and /HONS(X, a) coincide on DNSg(X) and the limsups are

limits.

The proof is derived from arguments quite similar to those already developed in
[Kiir06] (see also [Deml0a] for the non projective situation). If D = ) p;D; is an
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integral divisor, we define its norm to be ||D| = > |p;| Vol,(D;), where the volume of
an irreducible divisor is computed by means of a given Hermitian metric w on X; in
other words, this is precisely the mass of the current of integration [D] with respect to w.
Clearly, since X is compact, we get equivalent norms for all choices of Hermitian metrics
w on X. We can also use w to fix a normalized metric on Hé’cl(X ,R). Elementary
properties of potential theory show that ||c;(@(D))|| < C||D|| for some constant C' > 0
(but the converse inequality is of course wrong in most cases). Proposition 1.5 is a simple
consequence of the more precise cohomology estimates (1.9) which will be obtained below.
The special case ¢ = 0 is easier, in fact, one can get non zero values for EO(X , L) only
when L is big, i.e. when X is Moishezon (so that we are always reduced to the divisorial
situation); the fact that limsups are limits was proved in II (6.5). We postpone the
proof to section 19, which will provide stronger results based on approximate Zariski
decomposition.

(1.6) Lemma. Let X be a compact complex n-fold. Then for every coherent sheaf F
on X, there is a constant Cg > 0 such that for every holomorphic line bundle L on X
we have

hi(X,F © Ox (L)) < C5([ler(L)]| + 1)
where p = dim Supp F.

Proof. We prove the result by induction on p; it is indeed clear for p = 0 since we
then have cohomology only in degree 0 and the dimension of H*(X,F ® @x (L)) does
not depend on L when F has finite support. Let us consider the support Y of F and a
resolution of singularity i : Y — Y of the corresponding (reduced) analytic space. Then
F is an @y-module for some non necessarily reduced complex structure Oy = Ox /¥
on Y. We can look at the reduced structure Oy, eq = Ox /%, I = V¥, and filter F
by .F*F, k > 0. Since jkg/jkﬂg is a coherent Oy ;.q-module, we can easily reduce
the situation to the case where Y is reduced and F is an @y-module. In that case the

cohomology
Hq(X, F® @X(L)) = Hq(Y, F R @y(L|y))

just lives on the reduced space Y.

Now, we have an injective sheaf morphism F — u,u*F whose cokernel ‘G has support

in dimension < p. By induction on p, we conclude from the exact sequence that
KX, F @ Ox (L)) = h(X, pui*F @ Ox (L))| < Ca(fler (D) + 17,

The functorial morphisms

yield a composition
ps ot s HI(Y, F @ Oy (Lyy)) — HUY, pupt™F @ Oy (L}y))
induced by the natural injection F — p,pu*F. This implies

WY, T @ Oy (Ly)) <Y, 1T © O (1" Liy)) + Cr(ler (D) + 1P
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By taking a suitable modification u/ : Y' — Y of the desingularization SA/, we can assume
that (u/)*F is locally free modulo torsion. Then we are reduced to the case where F' =
(W')*F is a locally free sheaf on a smooth manifold Y’, and L' = (u')*L|y. In this case,
we apply Morse inequalities to conclude that h?(Y', F' ® Oy (L)) < Ca(||cr (L) + 1)P.
Since ||¢1(L")]| < Csl|e1(L)|| by pulling-back, the statement follows easily. O

(1.7) Corollary. For every irreducible divisor D on X, there ezists a constant Cp such
that
(D, Op(Lip)) < Cp(ller (L)l +1)" 7

Proof. 1t is enough to apply Lemma 1.6 with F = (ip).@p where ip : D — X is the
injection. U

(1.8) Remark. It is very likely that one can get an “elementary” proof of Lemma 1.6
without invoking resolutions of singularities, e.g. by combining the Cartan-Serre finiteness
argument along with the standard Serre-Siegel proof based ultimately on the Schwarz
lemma. In this context, one would invoke L? estimates to get explicit bounds for the
homotopy operators between Cech complexes relative to two coverings U = (B (x5,75)),
W = (B(z;,7;/2)) of X by concentric balls. By exercising enough care in the estimates,
it is likely that one could reach an explicit dependence Cp < C'||D|| for the constant
Cp of Corollary 1.7. The proof would of course become much more technical than the
rather naive brute force approach we have used.

(1.9) Theorem. Let X be a compact complex manifold. Fix a finitely generated subgroup
I’ of the group of Z-divisors on X. Then there are constants C, C' depending only on X,
its Hermitian metric w and the subgroup T, satisfying the following properties.

(a) Let L and L' = L ® G(D) be holomorphic line bundles on X, where D € T" is an
integral divisor. Then

h9(X, L") = h(X, L)| < C([ler(D)]| + DI DII-

(b) On the subspace DNSr(X), the asymptotic q-cohomology function E%NS satisfies a
global estimate

|hns (X, B) — W (X, )| < C'(lafl + 181118 — .-

~

In particular (without any further assumption on X ), hi g is locally Lipschitz continuous

on DNSg(X).

Proof. (a) We want to compare the cohomology of L and L’ = L ® G(D) on X. For
this we write D = D, — D_, and compare the cohomology of the pairs L and L; =
L ® @(—D_) one one hand, and of L' and L; = L'’ ® @(—D,.) on the other hand. Since
|lc1(@(D))|| < C||DJ| by elementary potential theory, we see that is is enough to consider
the case of a negative divisor, i.e. L' = L®@(—D), D > 0. If D is an irreducible divisor,
we use the exact sequence
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and conclude by Corollary 1.7 that

’hq(Xv L® @(_D)> - hq(X7 L)’ < hq(D7@D ® L|D> + hq_l(D7@D ® L\D)
< 20p(ler (D) + 1)

For D =3 p;D; > 0, we easily get by induction
n—1
[h(X, L& 6(=D)) = (X, L) <23 p;Co, (lex(Dll + > pel Vil +1) .
J k

If we knew that Cp < C’||D|| as expected in Remark 1.6, then the argument would be
complete without any restriction on D. The trouble disappears if we fix D in a finitely
generated subgroup I' of divisors, because only finitely many irreducible components
appear in that case, and so we have to deal with only finitely many constants Cp,.
Property 1.9 (a) is proved.

(b) Fix once for all a finite set of divisors (A;)i<;<¢+ providing a basis of DNSg(X)C
HE5(X,R). Take two elements a and 8 in DNSg(X), and fix ¢ > 0. Then 8 — « can
be e-approximated by a Q-divisor > A\;D;, A\; € Q, and we can find a pair (k, L) with k
arbitrary large such that ;¢ (L) is e-close to a and n!/k"h?(X, L) approaches /f\LqDNS(X, @)
by €. Then %L—i—z A;A; approaches 3 as closely as we want. When approximating 8—a,

we can arrange that £)\; is an integer by taking k large enough. Then j is approximated
by c1(L') with L' = L ® G(3 kA;A;). Property (a) implies

n(x, 1)~ (X, D) = —C(lea(D)] + | ks |) ]| waa,
> —Ck" (ol +<+ 18— all + )" (I8 — ] +2).

We multiply the previous inequality by n!/k™ and get in this way

n! ~ .
(X L) 2 g (X, a) —e = C' ([l + 18] +)" 7 (118 = all +¢).

By taking the limsup and letting ¢ — 0, we finally obtain
I (X, 8) = s (X, ) = =C" (ol + 181)" 118 — all.

Property 1.9 (b) follows by exchanging the roles of o and £. O

2. Transcendental asymptotic cohomology functions

Our ambition is to extend the function /H,qNS in a natural way to the full cohomology
group Hllg’é(X ,R). The main trouble, already when X is projective algebraic, is that
the Picard number p(X) = dimg NSg(X) may be much smaller than dimg Hy(X,R),
namely, there can be rather few integral classes of type (1,1) on X. It is well known
for instance that p(X) = 0 for a generic complex torus of dimension n > 2, while
dimpg Hé’é(X ,R) = n?. However, if we look at the natural morphism

HyM(X,R) — H3R(X,R) ~ H?(X,R)
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to de Rham cohomology, then H?(X, Q) is dense in H?(X,R). Therefore, given a class
aceH é’é(X ,R) and a smooth d-closed (1, 1)-form w in «, we can find an infinite sequence
%Lk (k € S C N) of topological Q-line bundles, equipped with Hermitian metrics hy and
compatible connections Vj such that the curvature forms %@vk converge to u. By
using Kronecker’s approximation with respect to the integral lattice H?(X,Z)/torsion C
H?(X,R), we can even achieve a fast diophantine approximation

(2.1) 1Oy, — ku|| < Ck~1/b2
for a suitable infinite subset £ € S C N of multipliers. Then in particular

(2:2) 1%,

| = 62 — ku®2| < K,

and we see that (Lg, hg, Vi) is a C° Hermitian line bundle which is extremely close to
being holomorphic, since (Vg’l)2 = @%i is very small. We fix a Hermitian metric w on

X and introduce the complex Laplace-Beltrami operator
Dg = (VOHVEY 4 (V21 (VY acting on LA(X, AT} ® Ly).

We look at its eigenspaces with respect to the L? metric induced by w on X and hy on Lj,.
In the holomorphic case, Hodge theory tells us that the 0-eigenspace is isomorphic to
H(X,6(Ly)), but in the “almost holomorphic case” the 0-cigenvalues deviate from 0,
essentially by a shift of the order of magnitude of H@%i | ~ kb2 (see also the PhD
thesis of L. Laeng [Lae02|, Chapter 4, for more details). It is thus natural to introduce
in this case

(2.3) Definition. Let X be a compact complex manifold and o € Hllg’cl(X, R) an arbi-
trary Bott-Chern (1,1)-class. We define the “transcendental” asymptotic q-cohomology
functions to be

~ | —
(a) hi (X, a) = inf lim sup %N( Uk.q, < ke)
uea €—)O, k—)-’-OO,Lk,hk,vk,%@vk—)u k
~ | ) —
(b) hSY(X, o) = inf lim sup % Z (—1)9/N(Oy ;, < ke)
ucx €—>0,k—>+OO,Lk,hk,vk,%@vk—>u k Ogqu

where the limsup runs over all 5-tuples (e, k, Ly, hi, Vi), and where N(ﬁk,q, ke) denotes
the sum of dimensions of all eigenspaces of eigenvalues at most equal to ke for the Laplace-
Beltrami operator Uy, , on L*(X, A%9T% ® Ly,) associated with (L, hy, Vi) and the base
Hermitian metric w.

The word “transcendental” refers here to the fact that we deal with classes a of type
(1,1) which are not algebraic or even analytic. Of course, in the definition, we could have
restricted the limsup to families satisfying a better approximation property || %@v L—ull <
Ck=171/% for some large constant C (this would lead a priori to a smaller limsup, but
there is enough stability in the parameter dependence of the spectrum for making such
a change irrelevant). The minimax principle easily shows that Definition 2.1 does not
depend on w, as the eigenvalues are at most multiplied or divided by constants under a
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change of base metric. When o € NSg(X), by restricting our families {(e, k, L, hx, Vi) }
to the case of holomorphic line bundles only, we get the obvious inequalities

(2.4a) R (X, ) <hL(X,a),  Va e NSp(X),
(2.4D) RSA(X,a) <hSI(X, @), Va € NSg(X).

It is natural to raise the question whether these inequalities are always equalities. Hope-
fully, the calculation of the quantities limg_, 1 o k”—,{N (U, ¢, < ke) is a problem of spectral
theory which is completely understood thanks to Chapter I (see also [Dem85, 91]). In
fact, by Corollary I (1.13), the above limit can be evaluated explicitly for any value of
e € R, except possibly for a countable number of values of ¢ for which jumps occur;
one only has to take care that the non-integrability of 0 due to the diophantine approx-
imation does not contribute asymptotically to the eigenvalue distribution, a fact which

follows immediately from (2.2) (cf. [Lae02]).

(2.5) Theorem. With the above notations and assumptions, let us introduce at each
point x in X the “spectral density function”, defined as a finite sum

n—s

I (4m)s—n -
) = T sl 3 (A= 20+ Dlwl)

(P1---,Ps) EN® Jj=1

where s = s(x) is the rank of the real (1,1)-form u at x, and u;, 1 < j < s, its non
zero eigenvalues with respect to the base Hermitian metric w, and usy1 = ... = u, = 0.
For each multi-index J C {1,2,...,n}, let us set uy = ZjeJ uj. Then the asymptotic
spectrum of Uy , admits the estimate

| —
lim iN(Dk’q,gk/‘/\):/ Z Vu(>\+uﬂj_uj>de
X
|71=q

except possibly for a countable number of values of A\ which are discontinuities of the right
hand integral as an increasing integral of \.

(2.6) Corollary. We have (as a limit rather than just a limsup ) the spectral estimate

|
lim EN( Ly gy < ke) = / (=1)9u™.
X (u,q)

e—0, k—>+oo,Lk,hk,Vk,%®vk—>u kn

Coming back to the transcendental asymptotic cohomology functions, we get the follow-
ing fundamental result, which gives in some sense an explicit formula for h{ (X, a) and
hSl(X, ) in terms of Monge-Ampere operators.

(2.7) Theorem. The limsup’s defining h.(X, ) and Bﬁq(X, a) are limits, and we have

(a) Rl (X, a) = inf / (—=1)%u™ (u smooth).
X(u,q)

ucw

(b) hSU(X, ) = inf/ (=)™ (u smooth).
X (u,<q)

uco
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Now, if L — X is a holomorphic line bundle, we have by definition

(28)  hSUX,L) < hfs(X (L) < hNE(X, e (L)) < inf / (—1)%u"
ueer(L) Jx (u,<q)

(u smooth), where the last inequality is a consequence of holomorphic Morse inequalities.
We hope for the following conjecture which would imply that we always have equalities.

(2.9) Conjecture. For every holomorphic line bundle L — X on a compact complex
manifold X, we have

~

(a) hi(X,L) = inf/ (=1)%™, u smooth,
X(u,q)

uco

uco

(b) hS9(X, L) = inf/ (=)™, u smooth.
X (u,<q)

Since the right hand side is easily seen to depend continuously on « € Hé’é(X ,C), one
would get :

(2.10) Corollary of the conjecture. If (2.9) holds true, then
(a) hg(X,0) =h{(X,0)  and (b))  BN4(X ) =h5(X, )

for all classes o € NSg(X).

In general, equalities 2.9 (a, b) seem rather hard to prove. In some sense, they would
stand as an asymptotic converse of the Andreotti-Grauert theorem [AG62] : under a
suitable g-convexity assumption, the latter asserts the vanishing of related cohomology
groups in degree ¢; here, conversely, assuming a known growth of these groups in degree ¢,
we expect to be able to say something about the g-index sets of suitable Hermitian metrics
on the line bundles under consideration. The only cases where we have a positive answer
to Question 2.8 are when X is projective and ¢ = 0 or dim X < 2 (see Theorems 4.1 and
5.1 below). In the general setting of compact complex manifolds, we also hope for the
following “transcendental” case of holomorphic Morse inequalities.

(2.11) Conjecture. Let X be a compact complex n-fold and o an arbitrary cohomology
class in Hllg’é(X, R). Then the volume, defined as the supremum

(2.12) Vol(a) := sup / T,
0<Tea J X\ Sing(T)

extended to all Kdhler currents T' € a with analytic singularities (see Definition 11 (4.4)),
satisfies

(2.13) Vol(a) > sup/ u”
X (u,0)UX (u,1)

uco

where u runs over all smooth closed (1,1) forms. In particular, if the right hand side is
positive, then o contains a Kahler current.
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By the holomorphic Morse inequalities, Conjecture 2.11 holds true in case « is an
integral class. Our hope is that the general case can be attained by the diophantine
approximation technique described earlier; there are however major hurdles, see [Lae02]
for a few hints on these issues.

3. Invariance by modification

We end this section by the observation that the asymptotic cohomology functions
are invariant by modification, namely that for every modification p: X — X and every
line bundle L we have e.g.

(3.1) h9(X,L) =hi(X,u*L).
In fact the Leray spectral sequence provides an Fs term
p,q __ * 1T Rk _ @ Rk P
E5? = HP (X, R, O (u L®")) = HP(X,Ox (L )®un*OX).

Since Rq,u*() is equal to @x for ¢ = 0 and is supported on a proper analytic subset of
X for ¢ > 1, one infers that h?(X,Ox(L®* ® Rip,Oz) = O(k"~ D) for all ¢ > 1. The
spectral sequence implies that

hi(X, L®F) — h9(X, w* L&) = O(k"1).
We claim that the Morse integral infimums are also invariant by modification.

(3.2) Proposition. Let (X,w) be a compact Kihler manifold, o € HY1(X,R) a real
cohomology class and p : X — X a modification. Then

(a) inf/ (=1)%™ = inf / (—1)%0",
uco X (u,q) veEp*a X(v,q)

(b) inf/ (=1)%"™ = inf / (—=1)%™.
v S X (u,<q) veR e JX (v,<q)

Proof. Given u € a on X, we obtain Morse integrals with the same values by taking
v = p*u on X, hence the infimum on X is smaller or equal to what is on X. Conversely,
we have to show that given a smooth representative v € p*a on X, one can find a
smooth representative u € X such that the Morse integrals do not differ much. We can
always assume that X itself is Kéhler, since by Hironaka [Hir64] any modification X is
dominated by a composition of blow-ups of X. Let us fix some uy € a and write

v = ug + ddp

where ¢ is a smooth function on X. We adjust ¢ by a constant in such a way that ¢ > 1
on X. There exists an analytic set S C X such that g : X ~ p1(S) = X S is a
biholomorphism, and a quasi-psh function g which is smooth on X ~ S and has —oo
logarithmic poles on S (see e.g. [Dem82]). We define

(3.3) u = p*uyg+ dd°max.,(p + dsop, 0)=v+dd°max.,(6sopu, —p)
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where max.,, 0 < g9 < 1, is a regularized max function and J > 0 is very small. By
construction u coincides with p*ug in a neighborhood of 1 ~1(.S) and therefore & descends
to a smooth closed (1, 1)-form u on X which coincides with ug near S, so that u = p*u.
Clearly u converges uniformly to v on every compact subset of X < p=1t(S)as§ — 0, so
we only have to show that the Morse integrals are small (uniformly in §) when restricted
to a suitable small neighborhood of the exceptional set E = ;~1(S). Take a sufficiently
large Kihler metric & on X such that

w, —w < ddYPgopu.

DO |

1.
w, —QW < ddCSD <

Then u > —w and u < W + § dd“yg o u everywhere on X. As a consequence

"] < (@ + 8@ + dds o )" < B+ nd(@ + ddtps o ) A (@ + 6@ + dd b o )"

thanks to the inequality (a+b)" < a™ +nb(a+b)"!. For any neighborhood V of u~1(5)

this implies
/ lu"| < / O™ 4+ nd(1+6)" 1 /~@”
1% 1% X

by Stokes formula. We thus see that the integrals are small if V and ¢ are small. The
reader may be concerned that Monge-Ampere integrals were used with an unbounded
potential 1g, but in fact, for any given 4, all the above formulas and estimates are still
valid when we replace 1s by maxc, (s, —(M + 2)/0) with M = maxy ¢, especially
formula (3.3) shows that the form @ is unchanged. Therefore our calculations can be
handled by using merely smooth potentials. U

4. Proof of the infimum formula for the volume

We prove here

(4.1) Theorem. Let L — X be a holomorphic line bundle on a projective algebraic
manifold X. Then

Vol(X,L) = inf / u™.
ueer(L) Jx (u,0)

It is enough to show the inequality

(4.1) inf /X( ) u" < Vol(X, L)

u€cy (L)

and for this, we have to construct metrics approximating the volume. Let us first assume
that L is a big line bundle, i.e. that Vol(X, L) > 0. We have seen in IT (6.4-6.5) (cf. also
[Bck02]) that Vol(X, L) is obtained as the supremum of | Xsing(r) 1" for Kihler currents
T = —5-00h with analytic singularities in ¢;(L); this means that locally h = ™% where
¢ is a strictly plurisubharmonic function which has the same singularities as clog > |g;|?
where ¢ > 0 and the g; are holomorphic functions. By [Dem92], there exists a blow-up
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i X — X such that p*T = [E] + B where E' is a normal crossing divisor on X and
S = 0 smooth. Moreover, by [BDPP04] we have the orthogonality estimate

(4.2) - gt / gt < C(Vol(X, L) — g™)"/?,

while

(4.3) g = /~ g :/ T" approaches Vol(X, L).
X X\ Sing(T)

In other words, E and 8 become “more and more orthogonal” as " approaches the
volume (these properties are summarized by saying that pu*T = [E] + 8 defines an ap-
proximate Zariski decomposition of ¢1 (L), cf. also [Fuj94]). By subtracting to § a small
linear combination of the exceptional divisors and increasing accordingly the coefficients
of E, we can achieve that the cohomology class {8} contains a positive definite form S’
on X (i.e. the fundamental form of a K&hler metric); we refer e.g. to ([DP04], proof of
Lemma 3.5) for details. This means that we can replace T by a cohomologous current
such that the corresponding form ( is actually a Kahler metric, and we will assume for
simplicity of notation that this situation occurs right away for T'. Under this assumption,
there exists a smooth closed (1, 1)-form v belonging to the Bott-Chern cohomology class
of [E], such that we have identically (v — d3) A 8771 = 0 where

(4.4) 5 = [E]ﬁ#_l < C'(Vol(X, L) — gm)'/?

for some constant C’ > 0. In fact, given an arbitrary smooth representative vy € {[E]},
the existence of v = vy + {00y amounts to solving a Laplace equation Ay = f with
respect to the Kéhler metric 3, and the choice of § ensures that we have [ « fB"=0and
hence that the equation is solvable. Then u := v+ 3 is a smooth closed (1, 1)-form in the
cohomology class p*c1 (L), and its eigenvalues with respect to 5 are of the form 1 + A;
where \; are the eigenvalues of v. The Laplace equation is equivalent to the identity
Y- Aj =nd. Therefore

(4.5) Y N < CM(Vol(X, L) - M) 2.

1<j<n

The inequality between arithmetic means and geometric means implies

[T a+x<(1 +— S n) <1+ Cy(Vol(X, 1) - )

1<j<n 1<]<n

whenever all factors (1 + ;) are nonnegative. By 2.2 (i) we get

inf / Un</~ u"
u€er(L) J X (u,0) X (u,0)

< /)Zﬁn(l +Cy(Vol(X, L) — 7))

< Vol(X, L) + Cy(Vol(X, L) — gm) /2.
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As g™ approches Vol(X, L), this implies inequality (4.1).

We still have to treat the case when L is not big, i.e. Vol(X,L) = 0. Let A be an
ample line bundle and let ¢ty > 0 be the infimum of real numbers such that L +tA is a
big Q-line bundle for ¢ rational, t > ty. The continuity of the volume function implies
that 0 < Vol(X,L +tA) < € for t > t, sufficiently close to ty. By what we have just
proved, there exists a smooth form wu; € ¢;(L + tA) such that fX(ut’O) uy < 2e. Take a

Kéhler metric w € ¢1(A) and define u = u; — tw. Then clearly

/ u" < / uy < 2,
X (u,0) X (ut,0)

inf / u” =0.
ueer(®) Jx(uo)

Inequality (4.1) is now proved in all cases. O

hence

5. Estimate of the first cohomology group on a projective surface

Our goal here is to show the following result.

(5.1) Theorem. Let L — X be a holomorphic line bundle on a complex projective
surface. Then both weak and strong inequalities (1.3) (i) and (1.3) (ii) are equalities for
q=0,1,2, and the limsup’s involved in h?(X, L) and h<9(X, L) are limits.

We start with a projective non singular variety X of arbitrary dimension n, and will
later restrict ourselves to the case when X is a surface. The proof again consists of using
(approximate) Zariski decomposition, but now we try to compute more explicitly the
resulting curvature forms and Morse integrals; this will turn out to be much easier on
surfaces.

Assume first that L is a big line bundle on X. As in section 3, we can find an
approximate Zariski decomposition, i.e. a blow-up p: X — X and a current T € ¢1(L)

such p*T = [E] 4 8, where E an effective divisor and  a Kéhler metric on X such that
(5.2) Vol(X,L) —n < " < Vol(X, L), n < 1.

(On a projective surface, one could even get exact Zariski decomposition, but we want
to remain general as long as possible). By blowing-up further, we may assume that F is
a normal crossing divisor. We select a Hermitian metric h on O(FE) and take

7 —
(5.3) Ue = %(%)log(\a};\,% +*)+Oumn+B8 € wall)

where o € HO()?, @(F)) is the canonical section and ©¢(gy,, the Chern curvature form.
Clearly, by the Lelong-Poincaré equation, u. converges to [F] + [ in the weak topology
as € — 0. Straightforward calculations yield

1 €2D}1L’00E A D}L’OUE g2
2 (e2 4 |og|?)? €2 + |og|

Ue =

5O8n + 5.
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The first term converges to [E] in the weak topology, while the second, which is close
to ©p  near E, converges pointwise everywhere to 0 on X \ E. A simple asymptotic
analysis shows that

. 21,0 1,0 2
1 € Dh OR /\Dh o) € p 1
— ) ) — [E] A ©F
<27r (€% + |og/?)? €2+ |og2 D" VA O

in the weak topology for p > 1, hence
(5.4) lim ul = 5" + Z ( ) NOL T ABTE.

In arbitrary dimension, the signature of u. is hard to evaluate, and it is also non trivial
to decide the sign of the limiting measure limu?. However, when n = 2, we get the
simpler formula

;%uz = B>+ 2[E]AB+ [E]AOg.p.

In this case, E' can be assumed to be an exceptional divisor (otherwise some part of it
would be nef and could be removed from the poles of T'). Hence the matrix (E; - Ey)
is negative definite and we can find a smooth Hermitian metric A on @(E) such that
(©pn)|E <0, ie. Op) has one negative eigenvalue everywhere along E.

(5.5) Lemma. One can adjust the metric h of O(E) in such a way that O, is negative
definite on a neighborhood of the support |E| of the exceptional divisor, and O g p+ [ has
signature (1,1) there. (We do not care about the signature far away from |E|).

Proof. At a given point xy € X, let us fix coordinates and a positive quadratic form g on
C2. If we put ¥.(z) = ex(2) log(1 + ¢ 1q(z)) with a suitable cut-off function x, then the
Hessian form of 1. is equal to q at x¢ and decays rapidly to O(eloge)|dz|? away from
xo. In this way, after multiplying h with e*¥<(*) we can replace the curvature O n(7o)
with O j, (o) £ without Substantially modifying the form away from xy. This allows to
adjust O g, to be equal to (say) —13(z¢) at any singular point zg € E;NE}, in the support
of |E|, while keeping O j, negatlve definite along E. In order to adJust the curvature
at smooth points z € |E|, we replace the metric h with h/(2) = h(z) exp(—c(2)|og(2)]?).
Then the curvature form O, is replaced by O p/(z) = O, (z) +c(z)|dog|? at x € |E|
(notice that dog(xz) = 0 if = € Sing|E|), and we can always select a real function ¢ so
that Op j/ is negative definite with one negative eigenvalue between —1/2 and 0 at any
point of |E|. Then ©F j + [ has signature (1, 1) near |E]|. O

With this choice of the metric, we see that for £ > 0 small, the sum

62

— 0
2 1 lon? Bn+ 0

is of signature (2,0) or (1,1) (or degenerate of signature (1,0)), the non positive definite
points being concentrated in a neighborhood of E. In particular the index set X (uc,2)
is empty, and also

1 €2D}1L’OO'E A D;L’OO'E
2r (2 +ol?)?

+ 8

uE\
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on a neighborhood V' of |E|, while u. converges uniformly to 5 on X V. This implies
that

e—0 e—0

32 <liminf/ u?éhmsup/ u? < B*+26-E.
X (ue,0) X (ue,0)

Since f),z u?2 = L? =32+ 2B E+ E? we conclude by taking the difference that

—E?* - 2B-FE <lim inf/ —u? < lim Sup/ —u? < —E2
=20 JX (uc,1) e=0  JX(uc,1)
Let us recall that 8- E < C(Vol(X,L) — 82)'/2 = 0(n'/?) is small by (5.3) and the

orthogonality estimate. The asymptotic cohomology is given here by BQ(X , L) = 0 since
h2(X, L®%) = HO(X, Kx ® L®*) = 0 for k > ko, and we have by Riemann-Roch

RYX,L) =h°(X,L) — L? = Vol(X,L) — L?> = —E®> — B- E+ O(n).

Here we use the fact that 2-h0(X, L®*) converges to the volume when L is big. All this
shows that equality occurs in the Morse inequalities (1.3) when we pass to the infimum.
By taking limits in the Neron-Severi space NSg(X) C HV!(X,R), we further see that
equality occurs as soon as L is pseudo-effective, and the same is true if —L is pseudo-
effective by Serre duality.

It remains to treat the case when neither L nor —L are pseudo-effective. Then
h%(X,L) = h?(X,L) = 0, and asymptotic cohomology appears only in degree 1, with
/f;l(X, L) = —L? by Riemann-Roch. Fix an ample line bundle A and let ¢y > 0 be the
infimum of real numbers such that L + tA is big for ¢ rational, ¢ > ¢g, resp. let t;, > 0
be the infimum of real numbers ¢ such that —L + ¢’ A is big for ¢’ > ¢(. Then for ¢ > ¢,

and ¢’ > t{, we can find a modification p : X — X and currents T" € ¢1(L + tA),
T" € c;(—L+t'A) such that

wT=[E+5,  pT =[F+79

where 3, v are Kéahler forms and E, F' normal crossing divisors. By taking a suitable
linear combination t'(L + tA) — t(—L 4 t' A) the ample divisor A disappears, and we get

1
t+t

(t’[E] Y18 — t[F] - m) e wei(L).
After replacing E, F', 8, v by suitable multiples, we obtain an equality
[E] = [Fl+ 8-~ € pa(l)

We may further assume by subtracting that the divisors E, F' have no common compo-
nents. The construction shows that 32 < Vol(X, L + tA) can be taken arbitrarily small
(as well of course as ?), and the orthogonality estimate implies that we can assume 3- E
and v - F' to be arbitrarily small. Let us introduce metrics hg on O(F) and hr on O(F)
as in Lemma 5.5, and consider the forms

. 1,0 1,0
7 €2Dh’ op N Dh’ OE g2
Ue =+ 5= - ) Ophy + 6
P PR s R P PR
. 2 1,0 1,0 2
7 € DhFO'F A DhFUF €

_ _ Orne —7 € prer(L).
2r (2 +|op|?)? 2 4 |op[2 T ! wrer(l)



Chapter III, Asymptotic cohomology functionals and Monge-Ampeére operators T

Observe that u. converges uniformly to § — outside of every neighborhood of |E|U|F|.
Assume that ©g j, < 0on Vg = {|og| < e} and Opp, <0 on Vi = {|lop| <ep}. On
Vg U Vg we have

1 52D;IL£UE A Dill;gUE g2
o (4 opl?)? 2 +|or|
where @JEC 118 the positive part of O 5, with respect to 5. One sees immediately that

this term is negligible. The first term is the only one which is not uniformly bounded,
and actually it converges weakly to the current [E]. By squaring, we find

limsup/ u? </ (B—v)*+28-E.
e—~0  JX(u.,0) X (8-,0)

Notice that the term —ﬁ OF h,. does not contribute to the limit as it converges

boundedly almost everywhere to 0, the exceptions being points of |F'|, but this set is of
measure zero with respect to the current [E]. Clearly we have fX(ﬂ_7 0)(6 — )% < B2

2
€
+
Ue sOrh, + 8+ 8_2@E7hE
0

and therefore
limsup/ ug <pB2+26-E.
X (ue,0)

e—0

Similarly, by looking at —u., we find

limsup/ u? <2 +2y- F.
X (ue,2)

e—0

These lim sup’s are small and we conclude that the essential part of the mass is concen-
trated on the 1-index set, as desired. U

(5.6) Remark. It is interesting to put these results in perspective with the algebraic
version (I 2.14) of holomorphic Morse inequalities. When X is projective, the algebraic
Morse inequalities used in combination with the birational invariance of the Morse inte-
grals imply the inequalities

(a) inf / (—1)%u™ < inf (n) Fr=1.GY,
u€ci(L) X (u,q) p*(L)~O(F-G) \q

n

b inf / 1) < inf -1 H’( )F”‘j LGY
(b) u€er (L) X(u,<q)< ) p*(L)~O(F-G) Z( ) J

0<i<q

where the infimums on the right hand side are taken over all modifications p : X > X
and all decompositions p*L = O(F — G) of u*L as a difference of two nef Q-divisors F, G
on X. Again, a natural question is to know whether these infimums derived from algebraic
intersection numbers are equal to the asymptotic cohomology functionals h?(X, L) and
h<9(X,L). A positive answer would of course automatically yield a positive answer to
the equality cases in 2.9 (a) and (b). However, the Zariski decompositions involved in
our proofs of equality for ¢ = 0 or n < 2 produce certain effective exceptional divisors
which are not nef. It is unclear how to write those effective divisors as a difference of nef
divisors. This fact raises a lot of doubts upon the sufficiency of taking merely differences
of nef divisors in the infimums 5.6 (a) and 5.6 (b), and it is likely that one needs a more
subtle formula. U
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6. Singular holomorphic Morse inequalities

The goal of this short section is to extend holomorphic Morse inequalities to the
case of singular Hermitian metrics, following Bonavero’s PhD thesis [Bon93] (cf. also
[Bon98]).We always assume that our Hermitian metrics h are given by quasi-psh
weights ¢. By Theorem (II 5.7), one can always approximate the weight by an arbi-
trary close quasi-psh weight ¢ with analytic singularities, modulo smooth functions.

(6.1) Theorem. Let (L,h) be a holomorphic line bundle on a compact complex n-
fold X, and let E be an arbitrary holomorphic vector bundle of rank r. Assume that
locally h = e~% has analytic singularities, and that o is quasi-psh of the form

h:clogZ|gj|2 mod C*°, c>0,

in such a way that for a suitable modification u : X - X one has p*O©p = [D] 4 B
where D is an effective divisor and B a smooth form on X. Let S = pu(Supp D) be the
singular set of h. Then we have the following asymptotic estimates for the cohomology
twisted by the appropriate multiplier ideal sheaves :

kTL
e (~1)10%, + o(k") .
e JX(L,h,q)~S

n

k
= (—1)707, + o(k") -
e JX(L,h,<q)~S

Proof. For this, we observe that the Morse integrals are given by

/~ (1)1,
X(B,q)

thanks to a change of variable z = p(z). In fact, by our assumption ©y, 5, is smooth on
X N\ S, and its pull-back ©*©p j coincides with the smooth form 3 on the complement
X \Supp D (and Supp D is a negligible set with respect to the integration of the smooth
(n,n) form 8" on X.) Now, a straightforward L? argument in the change of variable (cf.
[Dem01]) yields the direct image formula

(a) h(X,E® LF @ F(h*)) <r

(b) Y (-D)R(X,E@ LF @ 3(hh) <r

0<isg

(6.2) Kx ® J(h*) = p. (K @ J(u*h")).

Let us introduce the relative canonical sheaf K, = K¢ ® Kyt = @(div(Jac p)) and

/
let us put

Then h has divisorial singularities and therefore .¥(h¥) = @(—|kD|) where |...| means
the integral part of a divisor. The projection formula for direct images yields
(B @ LF @ $(hF)) = B @ LF @ $(hF),
R (E@LF® J(hF) = E® L* @ Kx' ® R, (K5 @ J(hY)).
However, for k& > kg large enough, the multiplicities of |kD]| are all > 0 for each of
the components of D, hence .¥(h*) = @G(—|kD]) is relatively ample with respect to the
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morphism g : X — X. From this, e.g. by an application of Hormander’s L? estimates
(see [Bon93] for more details), we conclude that Ry, (K)A(« ® . f(h*)) =0 for k > ko. The
Leray spectral sequence then implies

(6.3) HY(X,E® LF @ $(h*)) ~ HI(X,E @ L* @ $(h¥)).

This reduces the proof to the case of divisorial singularities. Let us next assume that D
is a Q-divisor. Let a be a denominator for D, and put K =af+b, 0 < b < a—1. Then

E®L*® $(h*) = E® LY @ G(—alD — |bD|) = F, @ G*

where

F,=E®L*®0(-|bD]), G=L"®0(-aD).

By construction, we get a smooth Hermitian metric hg on G such that ©g ., = afB. In
this case, the proof is reduced to the standard case of holomorphic Morse inequalities,
applied to the smooth Hermitian line bundle (G, hg) on X and the finite family of rank r
vector bundles Fj, 0 < b < a — 1. The result is true even when D is a real divisor. In
fact, we can then perturb the coefficients of D by small €’s to get a rational divisor D,
and we then have to change the smooth part of O3+ to 5. = 8+ O(¢) (again smooth);
actually 3. — 8 can be taken to be a linear combination by coefficients O(¢) of given
smooth forms representing the Chern classes ¢1(€@(D;)) of the components of D. The
Morse integrals are then perturbed by O(e). On the other hand, Theorem 1.9 shows that
the cohomology groups in the right hand side of (6.3) are perturbed by k™. The result
follows as € — 0, thanks to the already settled rational case. O



Part IV

Morse inequalities and
the Green-Griffiths-Lang conjecture

The goal of this section is to study the existence and properties of entire curves
f: C — X drawn in a complex irreducible n-dimensional variety X, and more specifically
to show that they must satisfy certain global algebraic or differential equations as soon
as X is projective of general type. By means of holomorphic Morse inequalities and a
probabilistic analysis of the cohomology of jet spaces, we are able to prove a significant
step of a generalized version of the Green-Griffiths-Lang conjecture on the algebraic
degeneracy of entire curves.

0. Introduction

Let X be a complex n-dimensional manifold ; most of the time we will assume that
X is compact and even projective algebraic. By an “entire curve” we always mean a non
constant holomorphic map defined on the whole complex line C, and we say that it is
algebraically degenerate if its image is contained in a proper algebraic subvariety of the
ambient variety. If p: X — X is a modification and f : C — X is an entire curve whose
image f(C) is not contained in the image ;(E) of the exceptional locus, then f admits
a unique lifting f : C — X. For this reason, the study of the algebraic degeneration of
f is a birationally invariant problem, and singularities do not play an essential role at
this stage. We will therefore assume that X is non singular, possibly after performing
a suitable composition of blow-ups. We are interested more generally in the situation
where the tangent bundle T'x is equipped with a linear subspace V' C Tx, that is, an
irreducible complex analytic subset of the total space of Tx such that

(0.1) all fibers V,, := V N T , are vector subspaces of T'x ;.

Then the problem is to study entire curves f : C — X which are tangent to V, i.e. such
that f,7c C V. We will refer to a pair (X, V) as being a directed variety (or directed
manifold). A morphism of directed varieties ® : (X, V) — (Y, W) is a holomorphic map
® : X — Y such that &,V C W ; by the irreducibility, it is enough to check this condition
over the dense open subset X \ Sing(V') where V is actually a subbundle. Here Sing(V)
denotes the indeterminacy set of the associated meromorphic map « : X ---> G,.(Tx) to
the Grassmannian bbundle of r-planes in Ty, r = rank V'; we thus have V|x sing(v) =
a*S where S — G,.(Tx) is the tautological subbundle of G, (Tx). In that way, we get a
category, and we will be mostly interested in the subcategory whose objects (X, V) are
projective algebraic manifolds equipped with algebraic linear subspaces. Notice that an
entire curve f: C — X tangent to V is just a morphism f : (C,T¢) — (X, V).
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The case where V' = T'x /g is the relative tangent space of some fibration X — S is of
special interest, and so is the case of a foliated variety (this is the situation where the sheaf
of sections @(V') satisfies the Frobenius integrability condition [@(V),O(V)] C G(V));
however, it is very useful to allow as well non integrable linear subspaces V. We refer
to V = Tx as being the absolute case. Our main target is the following deep conjecture
concerning the algebraic degeneracy of entire curves, which generalizes similar statements

made in [GG79] (see also [Lang86, Lang87]).

(0.2) Generalized Green-Griffiths-Lang conjecture. Let (X,V) be a projective
directed manifold such that the canonical sheaf Ky is big (in the absolute case V- = Tx,
this means that X is a variety of general type, and in the relative case we will say that
(X, V) is of general type). Then there should exist an algebraic subvariety Y C X such
that every mon constant entire curve f : C — X tangent to V is contained in Y .

The precise meaning of Ky and of its bigness will be explained below — our definition
does not coincide with other frequently used definitions and is in our view better suited
to the study of entire curves of (X, V). One says that (X, V) is Brody-hyperbolic when
there are no entire curves tangent to V. According to (generalized versions of) conjectures
of Kobayashi [Kob70, Kob76] the hyperbolicity of (X, V) should imply that Ky is big,
and even possibly ample, in a suitable sense. It would then follow from conjecture (0.2)
that (X, V) is hyperbolic if and only if for every irreducible variety ¥ C X, the linear
subspace V5 =15 N ulV C T has a big canonical sheaf whenever p:Y — Y is a
desingularization and F is the exceptional locus.

The most striking fact known at this date on the Green-Griffiths-Lang conjecture
is a recent result of Diverio, Merker and Rousseau [DMR10] in the absolute case, con-
firming the statement when X C ]P’gJrl is a generic non singular hypersurface of large
degree d, with a (non optimal) sufficient lower bound d > 2. Their proof is based in an
essential way on a strategy developed by Siu [Siu02, Siu04], combined with techniques of
[Dem95]. Notice that if the Green-Griffiths-Lang conjecture holds true, a much stronger
and probably optimal result would be true, namely all smooth hypersurfaces of degree
d > n+3 would satisfy the expected algebraic degeneracy statement. Moreover, by results
of Clemens [Cle86] and Voisin [Voi96], a (very) generic hypersurface of degree d > 2n+1
would in fact be hyperbolic for every n > 2. Such a generic hyperbolicity statement has
been obtained unconditionally by McQuillan [McQ98, McQ99] when n = 2 and d > 35,
and by Demailly-El Goul [DEG00] when n = 2 and d > 21. Recently Diverio-Trapani
[DT10] proved the same result when n = 3 and d > 593. By definition, proving the alge-
braic degeneracy means finding a non zero polynomial P on X such that all entire curves
f: C— X satisfy P(f) = 0. All known methods of proof are based on establishing first
the existence of certain algebraic differential equations P(f; f/, f,..., f*)) = 0 of some
order k, and then trying to find enough such equations so that they cut out a proper
algebraic locus Y C X.

Let JiV be the space of k-jets of curves f : (C,0) — X tangent to V. One defines the
sheaf O(EZC V*) of jet differentials of order k and degree m to be the sheaf of holomorphic
functions P(z;fl, ...&k) on JiV which are homogeneous polynomials of degree m on
the fibers of J¥V — X with respect to local coordinate derivatives &; = f()(0) (see
below in case V has singularities). The degree m considered here is the weighted degree
with respect to the natural C* action on J¥V defined by A - f(t) := f(\t), i.e. by
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reparametrizing the curve with a homothetic change of variable. Since (X - f))(¢) =
M fU)(Xt), the weighted action is given in coordinates by

(0.3) M- (&, &, E8) = (NELL N2, . NG,

One of the major tool of the theory is the following result due to Green-Griffiths [GG79]
(see also [Blo26], [Dem95, Dem97], [SY96a, SY96b], [Siu97]).

(0.4) Fundamental vanishing theorem. Let (X,V) be a directed projective vari-
ety and f : (C,Tc) — (X,V) an entire curve tangent to V. Then for every global
section P € H°(X, ES%V* ® O(—A)) where A is an ample divisor of X, one has
P(f5 f'f" s f™) =0.

Let us give the proof of (0.4) in a special case. We interpret here EE%V* ®O(—A)
as the bundle of differential operators whose coefficients vanish along A. By a well-
known theorem of Brody [Bro78], for every entire curve f : (C,T¢) — (X,V), one
can extract a convergent “renormalized” sequence g = lim f o h,, where h, are suitable
homographic functions, in such a way that ¢ is an entire curve with bounded derivative
sup;cc |19’ (t)]|w < +oo (with respect to any given Hermitian metric w on X); the image

g(C) is then contained in the cluster set f(C), but it is possible that g(C) € f(C).
Then Cauchy inequalities imply that all derivatives ¢(9) are bounded, and therefore, by
compactness of X, u = P(g:; ¢',g",...,g") is a bounded holomorphic function on C.
However, after raising P to a power, we may assume that A is very ample, and after
moving A € |A|, that Supp A intersects g(C). Then u vanishes somewhere, hence u = 0
by Liouville’s theorem. The proof for the general case is more subtle and makes use of

Nevanlinna’s second main theorem (see the above references).

It is expected that the global sections of H°(X, B3 V*©@(—A)) are precisely those
which ultimately define the algebraic locus Y C X where the curve f should lie. The
problem is then reduced to the question of showing that there are many non zero sections
of HO(X, ES%V* ® @(—A)), and further, understanding what is their joint base locus.
The first part of this program is the main result of this chapter.

(0.5) Theorem. Let (X,V) be a directed projective variety such that Ky is big and let
A be an ample divisor. Then for k > 1 and 6 € Q4 small enough, § < c(logk)/k, the
number of sections h9(X, ES%V* ® @G(—mdA)) has mazimal growth, i.e. is larger that
cem™ R for some m > my,, wherec, ¢, > 0, n = dim X andr = rank V. In particular,
entire curves f : (C,Tc) — (X, V) satisfy (many) algebraic differential equations.

The statement is very elementary to check when » = rank V' = 1, and therefore when
n = dim X = 1. In higher dimensions n > 2, only very partial results were known at
this point, concerning merely the absolute case V' = T'x. In dimension 2, Theorem 0.5
is a consequence of the Riemann-Roch calculation of Green-Griffiths [GGT79], combined
with a vanishing theorem due to Bogomolov [Bog79] — the latter actually only applies to
the top cohomology group H™, and things become much more delicate when extimates
of intermediate cohomology groups are needed. In higher dimensions, Diverio [Div08,
Div09] proved the existence of sections of H(X, EFCV* @ @(—1)) whenever X is a
hypersurface of IP’EJrl of high degree d > d,,, assuming k > n and m > m,,. More recently,
Merker [Mer10] was able to treat the case of arbitrary hypersurfaces of general type, i.e.
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d > n + 3, assuming this time k to be very large. The latter result is obtained through
explicit algebraic calculations of the spaces of sections, and the proof is computationally
very intensive. Bérczi [Berl0] also obtained related results with a different approach
based on residue formulas, assuming d > 27718,

All these approaches are algebraic in nature, and use only the algebraic version of
holomorphic Morse inequalities (section I 2.D). Here, however, our techniques are based
on more elaborate curvature estimates in the spirit of Cowen-Griffiths [CG76]. They
require the stronger analytic form of holomorphic Morse inequalities (see Chapter I and
Section III 6) — and we do not know how to translate our method in an algebraic setting.
Notice that holomorphic Morse inequalities are essentially insensitive to singularities, as
we can pass to non singular models and blow-up X as much as we want: if g : X — X is
a modification then p,@ 5= Ox and Ry, O e is supported on a codimension 1 analytic
subset (even codimension 2 if X is smooth). As already observed in Section III 3,
it follows from the Leray spectral sequence that the cohomology estimates for L on X or
for L = p*L on X differ by negligible terms, i.e.

hi(X,L%™) — h9(X, L®™) = O(m™ ).

Finally, singular holomorphic Morse inequalities (see Setion III 6) allow us to work with
singular Hermitian metrics h; this is the reason why we will only require to have big line
bundles rather than ample line bundles. In the case of linear subspaces V C Tx, we
introduce singular Hermitian metrics as follows.

(0.6) Definition. A singular Hermitian metric on a linear subspace V- C Tx is a metric
h on the fibers of V such that the function logh : & — log || is locally integrable on the
total space of V.

Such a metric can also be viewed as a singular Hermitian metric on the tautological
line bundle @pyy(—1) on the projectivized bundle P(V)) = V ~.{0}/C*, and therefore its
dual metric ~* defines a curvature current ©¢,, ,, (1),n+ of type (1,1) on P(V) C P(Tx),
such that

P O0p vy (1), h = QL(‘)glog h, where p: V {0} — P(V).
s

If log h is quasi-plurisubharmonic (or quasi-psh, which means psh modulo addition of a
smooth function) on V', then log h is indeed locally integrable, and we have moreover

(07) G)@P(V)(l),h* = —Cw

for some smooth positive (1,1)-form on P(V') and some constant C' > 0 ; conversely, if
(0.7) holds, then log h is quasi-psh.

(0.8) Definition. We will say that a singular Hermitian metric h on V is admissible if
h can be written as h = e®hqy where hg is a smooth positive definite Hermitian on Tx
and ¢ is a quasi-psh weight with analytic singularities on X, as in (0.6). Then h can
be seen as a singular Hermitian metric on Op (1), with the property that it induces a
smooth positive definite metric on a Zariski open set X' C X ~\ Sing(V') ; we will denote
by Sing(h) D Sing(V') the complement of the largest such Zariski open set X'.
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If h is an admissible metric, we define @}, (V*) to be the sheaf of germs of holomorphic
sections sections of V&\Sin o (h) which are h*-bounded near Sing(h); by the assumption
on the analytic singularities, this is a coherent sheaf (as the direct image of some co-
herent sheaf on P(V)), and actually, since h* = e~ %hf, it is a subsheaf of the sheaf
G(V*) := O, (V*) associated with a smooth positive definite metric hg on T'x. If r is
the generic rank of V' and m a positive integer, we define similarly K7/, to be sheaf of
germs of holomorphic sections of (det V&,) (ATV&,)@m which are det h*-bounded,
and Ky' = Ky, .

If V' is defined by o : X ---> G,.(Tx ), there always exists a modification f : XX
such that the composition cwop : X — G,(u*Tx) becomes holomorphic, and then
WV u-1(x<sing(v)) €xtends as a locally trivial subbundle of p*Tx which we will simply
denote by p*V. If h is an admissible metric on V', then p*V can be equipped with the
metric p*h = e?°u*hg where p*hg is smooth and positive definite. We may assume that
o has divisorial singularities (otherwise just perform further blow-ups of X to achieve
this). We then see that there is an integer mg such that for all multiples m = pmg the
pull-back p* Ky, is an invertible sheaf on X, and det A* induces a smooth non singular
metric on it (W}len h = hg, we can even take my = 1). By definition we always have
KV, = ps (,u*K{/r"h) for any m > 0. In the sequel, however, we think of Ky j; not really
as a coherent sheaf, but rather as the “virtual” Q-line bundle p., (p* Ky mo)l/ ™o and we
say that Ky, is big if h(X, K{,) = em™ for m > my, with ¢ > 0, ie. if the invertible
sheaf p* K m% is big in the usual sense.

At this point, it is important to observe that “our” canonical sheaf Ky differs from
the sheaf Ky := i.O(Ky) associated with the injection i : X ~\ Sing(V) — X, which
is usually referred to as being the “canonical sheaf”, at least when V is the space of
tangents to a foliation. In fact, Ky, is always an invertible sheaf and there is an obvious
inclusion Ky C Ky . More precisely, the image of O(A"T%) — Ky is equal to Ky ®ey F
for a certain coherent ideal ¥ C @x, and the condition to have hg-bounded sections on
X~ Sing(V') precisely means that our sections are bounded by Const}  [g;| in terms of
the generators (g;) of Ky ®a, ¥, ie. Ky = Ky Qay ¥ where ¥ is the integral closure
of . More generally,

—m/mo

m __ Sym
Ky = RV ®ax Fhome

where ?mengo C Ox is the (m/mg)-integral closure of a certain ideal sheaf ¥, ., C Ox,
which can itself be assumed to be integrally closed; in our previous discussion, y is chosen
so that pu* ¥ m, is invertible on X.

The discrepancy already occurs e.g. with the rank 1 linear space V' C Tpr consisting

at each point z # 0 of the tangent to the line (0z) (so that necessarily Vo = Tpr o). As a
sheaf (and not as a linear space), i,@(V) is the invertible sheaf generated by the vector
field & = )" 2;0/0z; on the affine open set C* C P, and therefore Ky := i, O(V*) is
generated over C™ by the unique 1-form u such that u(£) = 1. Since & vanishes at 0,
the generator u is unbounded with respect to a smooth metric hg on Tpr, and it is easily
seen that Ky is the non invertible sheaf Ky = Ky ® mpz . We can make it invertible
by considering the blow-up u : X5 Xof X = PZ at 0, so that p* Ky is isomorphic to
p* Ry ® Oz (—E) where E is the exceptional d1v1sor The integral curves C of V' are of
course lines through 0, and when a standard parametrization is used, their derivatives do
not vanish at 0, while the sections of i,@(V') do — another sign that i.@(V') and i, @G(V*)
are the wrong objects to consider. Another standard example is obtained by taking a
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generic pencil of elliptic curves AP(z) + pQ(z) = 0 of degree 3 in PZ, and the linear
space V consisting of the tangents to the fibers of the rational map PZ ---> P{ defined
by z +— Q(2)/P(z). Then V is given by

0 — i, O(V) — O(Tpz) —2=25

@Pf; (6) ® fs —0

where S = Sing(V') consists of the 9 points {P(z) = 0} N {Q(z) = 0}, and Jg is the
corresponding ideal sheaf of S. Since det O(Tp2) = @(3), we see that Ky = @(3) is ample,
which seems to contradict (0.2) since all leaves are elliptic curves. There is however no
such contradiction, because Ky = Ky ® g is not big in our sense (it has degree 0 on
all members of the elliptic pencil). A similar example is obtained with a generic pencil
of conics, in which case Ky = @(1) and card S = 4.

For a given admissible Hermitian structure (V,h), we define similarly the sheaf
ES%V,{“ to be the sheaf of polynomials defined over X \ Sing(h) which are “h-bounded”.
This means that when they are viewed as polynomials P(z; &1,...,&) in terms of
& = (v;;oo)j f(0) where V}L’OO is the (1, 0)-component of the induced Chern connection on
(V, hg), there is a uniform bound

(0.9) PG &g <o ( Xl

near points of X ~ X’ (see section 2 for more details on this). Again, by a direct
image argument, one sees that EGG ~V is always a coherent sheaf. The sheaf EGG %
is defined to be EGG V7 when h = ho (it is actually independent of the choice of ho, as
follows from arguments similar to those given in section 2). Notice that this is exactly
what is needed to extend the proof of the vanishing theorem 0.4 to the case of a singular
linear space V' ; the value distribution theory argument can only work when the functions
P(f; f,..., f%®))(t) do not exhibit poles, and this is guaranteed here by the boundedness
assumption.

Our strategy can be described as follows. We consider the Green-Griffiths bundle of
k-jets XJ¢ = J*V ~ {0}/C*, which by (0.3) consists of a fibration in weighted projective
spaces, and its associated tautological sheaf

L =0yo(1),

viewed rather as a virtual Q-line bundle Oxcc (mo) /™o with mg = lem(1, 2, ..., k). Then,
if XGG — X 1is the natural pI‘OJGCthIl we have

E,S;Sn = (Wk)*@xgc; (m) and Rq(ﬂ'k)*@xgc; (m) =0 for ¢ > 1.

Hence, by the Leray spectral sequence we get for every invertible sheaf F' on X the
isomorphism

(0.10) HYX,EfV* ® F) ~ HI(XJ9, Oxoc(m) @ mp F).

The latter group can be evaluated thanks to holomorphic Morse inequalities. In fact we
can associate with any admissible metric h on V' a metric (or rather a natural family)
of metrics on L = @ X,?G(l)- The space X ,SG always possesses quotient singularities if
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k > 2 (and even some more if V' is singular), but we do not really care since Morse
inequalities still work in this setting. As we will see, it is then possible to get nice
asymptotic formulas as k — +o00. They appear to be of a probabilistic nature if we take
the components of the k-jet (i.e. the successive derivatives & = fW(0), 1 < j < k)
as random variables. This probabilistic behaviour was somehow already visible in the
Riemann-Roch calculation of [GGT9]. In this way, assuming Ky big, we produce a lot of
sections o; = HO(XJG, Oxca (m) ® m}:F), corresponding to certain divisors Z; C X €.
The hard problem which is left in order to complete a proof of the generalized Green-
Griffiths-Lang conjecture is to compute the base locus Z = ()Z; and to show that
Y = m(Z) € X must be a proper algebraic variety. Unfortunately we cannot address
this problem at present.

1. Hermitian geometry of weighted projective spaces

The goal of this section is to introduce natural Kahler metrics on weighted projective
spaces, and to evaluate the corresponding volume forms. Here we put d¢ = ﬁ(é —0)
so that dd® = %85. The normalization of the d° operator is chosen such that we
have precisely (dd¢log|z|?)™ = &y for the Monge-Ampere operator in C"; also, for every
holomorphic or meromorphic section o of a Hermitian line bundle (L, k) the Lelong-
Poincaré can be formulated

(1.1) dd®log|o|} = [Z4] — O .1,

where ©r, ), = %D%}h is the (1, 1)-curvature form of L and Z, the zero divisor of o.
The closed (1,1)-form Oy, 5, is a representative of the first Chern class ¢;(L). Given a
k-tuple of “weights” a = (aq,...,ax), i.e. of integers a5 > 0 with ged(aq,...,ax) =1, we
introduce the weighted projective space P(a1,...,ay) to be the quotient of C* \. {0} by
the corresponding weighted C* action:

(1.2) P(ai,...,a;) = C* ~ {0}/C*, Az= (A2, 00, A% 2.

As is well known, this defines a toric (k — 1)-dimensional algebraic variety with quotient
singularities. On this variety, we introduce the possibly singular (but almost everywhere
smooth and non degenerate) Kéhler form w, , defined by

1
(13) sza,p = ddc@a,p, @a,p(z) = ~log Z |Zs‘2p/as,
PGk
where 7, : C*¥ <\ {0} — P(ay,...,a) is the canonical projection and p > 0 is a positive

constant. It is clear that ¢, , is real analytic on Ck . {0} if p is an integer and a
common multiple of all weights a,. It is at least C? if p is real and p > max(as), which
will be more than sufficient for our purposes (but everything would still work for any
p > 0). The resulting metric is in any case smooth and positive definite outside of the
coordinate hyperplanes z; = 0, and these hyperplanes will not matter here since they are
of capacity zero with respect to all currents (dd“p, ;). In order to evaluate the volume

k—1
fP(al,... ap) Wa,p » ONE can observe that

k—1 _ * k—1 c
/ Wa p —/ TaWq p Ndpq p
P(al,...,ak) ZG(Ck7()0a7p(z):O
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z€CF, 4 p(2)=0

1
(1.4) = — (ddCePear ).

pk z€CFk, 0, ., (2)<0
The first equality comes from the fact that {y,,(2) = 0} is a circle bundle over
P(ai,...,ax), together with the identities @q (A - 2) = ©ap(2) + log|A|?

fl A=1 d®log |\|?> = 1. The third equality can be seen by Stokes formula applied to the
(2k — 1)-form

(ddcePPer)h=1 A doePPar = ePPar(ddp, ) 1 A dCp,.,

on the pseudoconvex open set {z € C*; ¢, ,(2) < 0}. Now, we find

(1.5) (ddcereer)s = (dd* Y lzsﬁp/‘“)k: 11

1<s<k 1<s<k

1) ()=

S

k

b b
(1.6) / (ddcePear)k = ="
z€Ck, g, p(2)<0 H Qg al...ag

1<s<k

In fact, (1.5) and (1.6) are clear when p = a; = ... = a, = 1 (this is just the standard
calculation of the volume of the unit ball in C*); the general case follows by substituting
formally z, — z5/“*, and using rotational invariance together with the observation that
the arguments of the complex numbers 25’ “* now run in the interval [0, 27p/a[ instead
of [0, 27| (say). As a consequence of (1.4) and (1.6), we obtain the well known value

1
(1.7) / ws;l =,
P(a17"'7ak) ’ ap...ak

for the volume. Notice that this is independent of p (as it is obvious by Stokes theorem,
since the cohomology class of w, , does not depend on p). When p tends to 400, we
have 0q p(2) — Pa.0o(2) = logmax; <ok |25|%/ % and the volume form wk ! converges to
a rotationally invariant measure supported by the image of the polycircle [I{lzs| = 1}
in P(aq,...,ax). This is so because not all |zs|2/“8 are equal outside of the image of the
polycircle, thus ¢, o (%) locally depends only on k—1 complex variables, and so wk L=0
there by log homogeneity.

Our later calculations will require a slightly more general setting. Instead of looking
at C*, we consider the weighted C* action defined by

=C" x...xC" Aoz =A%z, 00 A% 2.

(1.8) clr

Here z5 € C"s for some k-tuple r = (r1,...,7r%) and |r| = r1 + ...+ rg. This gives rise to
a weighted projective space

P(a[lrl], aer]):P(al,...,al,...,ak,... ar),

(1.9) Tar:Ct x ... xC™* {0} — P(a[lﬁ],. agk])
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obtained by repeating r¢ times each weight as. On this space, we introduce the degenerate
Kahler metric wq,,p, such that

* C 1 a
(1.10) Tararp = A Parp,  arplz) = log DONEN G

1<s<k

where |z, stands now for the standard Hermitian norm (3, ¢, [2s,; 2)1/2 on C"s. This
metric is cohomologous to the corresponding “polydisc-like” metric w, ;, already defined,
and therefore Stokes theorem implies

1

1.11 -1 L

( ) /P(a[lrl],...,agzk]) Wa,r,p a71“1 N .aZk

Since (ddlog|zs]?)™ = 0 on C™ . {0} by homogeneity, we conclude as before that the

. . . |r‘—1 - |7'|—1 . .

weak limit limy,_, o Wa,rp = Wa,r,co associated with

1.12 ) =1 [2/as

(1.12) Pa.r.oo(2) = log max |z|

is a measure supported by the image of the product of unit spheres [[S?=~! in
P(a[{l], . .,aZﬂ’“]), which is invariant under the action of U(ry) x...x U(rg) on
C™ x ... x C", and thus coincides with the Hermitian area measure up to a constant
determined by condition (1.11). In fact, outside of the product of spheres, ¢, o locally
depends only on at most k — 1 factors and thus, for dimension reasons, the top power
(ddccpa’r,oo)“"'_l must be zero there. In the next section, the following change of variable
formula will be needed. For simplicity of exposition we restrict ourselves to continu-
ous functions, but a standard density argument would easily extend the formula to all

functions that are Lebesgue integrable with respect to the volume form wmn,_l

(1.13) Proposition. Let f(z) be a bounded function on P(a[{l],...,agk]) which is
continuous outside of the hyperplane sections zs = 0. We also view f as a C*-invariant
continuous function on [[(C™s \ {0}). Then

fR)wyi,
/I‘D(a[lrl],...,agzk]) a,r,p
rs—1

(Ir| = 1)! a1/2 ar /2 7
= H - f(lﬂ / p'l,Ll, Ce ,xkk/ puk) H ﬂ dx du(u)
s s (%u)GAkleH S2rs—1 1<s<k Ts :

where A1 is the (k—1)-simplex {xs > 0, Y xs =1}, de = dx1 A. .. Ndzxp_1 its standard
measure, and where du(u) = dupq(uy)...dug(ug) is the rotation invariant probability
measure on the product [, S*"=~1 of unit spheres in C™ x ... x C"™. As a consequence

1
li rl-1_ _ - ‘
o Joiap gy T Cery = T /HS () dp(w)

Proof. The area formula of the disc f| Al <1ddc|)\|2 = 1 and a consideration of the unit

disc bundle over P(a[{l], cees aLT’“]) imply that

I, := / [r1] (5] f(z) wl::liol = / f(2) (ddc‘;pa,r,p)lr'_l Addte?ere.
P(ay" . a, %) €00 rp(2)<0
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Now, a straightforward calculation on C!"l gives

(ddcep‘/’aﬂ",p)|7"| — (ddc Z |ZS|2p/aS)|T|

1<s<k
rs+1
= 1 (&) leprre D
1<s<k 8

On the other hand, we have (dd¢|z|?)!"l = rl, m' H1<S<k(ddc|zs| )"« and

(ddcePWa,r,p)|7’| — (pep@a,r,p (ddc@a,r,p +Pd<,0a,r,p /\dc@a,r,p))m
e ‘r‘plr|+1elr|p90a,'r,p (ddc@a’r’p)h“_l A d@a,T,p A\ dc@a,T,p

— ‘r‘p‘r|+1e(|r‘p_1)90a,r,p (ddc@a,’r’,p)"d_l A ddce@a,r,p,

thanks to the homogeneity relation (ddcgoayr’p)w = (. Putting everything together, we
find

(Ir| = VP £(2) (ddz, )"
11

I, = / :
P ece pu <o (g lzs[PP/ae)InI= e L Ly gl 2 | 2re(1=p/as)

A standard calculation in polar coordinates with z, = psus, us € S?" =1, yields

Pe dpus (us)

S

where p is the U(r,)-invariant probability measure on S2"s~!. Therefore

2prs/as dpg
I = / (‘T‘ — 1)!Pk_1f(,017i1, .. ~7Pkuk) H 2:0 ora/ p d:uS(us)
P s 010 (Dicacp 21/ Dl
(Ir] = 1) p~Lf(t al/qul,...,tZ’“/quk) s dt, dps (us)

/useS”sl,Ztsd (Z1< <k )' rl=1/p (rs = lag®

S

by putting t, = |zs|?P/% = pP/ e py =12 ¢ € ]0,1]. We use still another change
of variable t; = txs with t =, ., ts and x5 € ]0,1], > 5, ) ¥s = 1. Then

dt; A ... ANdt = tF L dz dt where dx = dxy A ... A dzg_1.

The C* invariance of f shows that

rs—1
as/2 a/2 xls d,us(us) da dt
[p - /“36527“3—1 OT‘ - 1)'f( / Pay ...,xkk/ puk) H —

re — Dlaks pti-1/p
Sw.=1, t€]0,1] 1<s<k (7s )as® p

rs—1
= (1] = D2, a2y T T aln)

useS2rs—1 Tre — 1 !ars
Soae1 1<s<k (rs = Dlag
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This is equivalent to the formula given in Proposition 1.13. We have xsas/ P 51 as

p — +oo, and by Lebesgue’s bounded convergence theorem and Fubini’s formula, we get

rbl

1)
lim 7, = =1

= fu) oy da dp(u).
p—)"'oo P HS ag [w,u)GAk_1XH S2'rsfl 1<]1k ( S - 1)
It can be checked by elementary integrations by parts and induction on k, 71, ..., r; that
1
(1.14) / H ity o dry g = H (rs —1)!.
TEAK-1 1<s<k (| |- 1)! 1<s<k
This implies that (|r| — 1)!T[; <.« (Tr_l), dx is a probability measure on Ag_; and that
lim I, = [ F () dp(w)
im = u u).
p—r+oc0 p s ags UGH §2rs—1 H

Even without an explicit check, Formula (1.14) also follows from the fact that we must

have equality for f(z) = 1 in the latter equality, if we take into account the volume
formula (1.11). O

2. Probabilistic estimate of the curvature of k-jet bundles

Let (X,V) be a compact complex directed non singular variety. To avoid any tech-
nical difficulty at this point, we first assume that V' is a holomorphic vector subbundle
of Tx, equipped with a smooth Hermitian metric h.

According to the notation already specified in the introduction, we denote by J*V
the bundle of k-jets of holomorphic curves f : (C,0) — X tangent to V' at each point. Let
us set n = dim¢c X and r = rankc V. Then J k’V — X is an algebraic fiber bundle with
typical fiber C™ (see below). It has a canonical C*-action defined by A- f : (C,0) — X,
(A f)(t) = f(At). Fix a point g in X and a local holomorphic coordlnate system
(21,...,2n) centered at xy such that V,, is the vector subspace (0/0z1,...,0/0z,) at .
Then, in a neighborhood U of zg, V admits a holomorphic frame of the form

(2.1) —+ D aap(x)5—,  1<BEr aap(0)=0.
r+1<asn @

Let f(t) = (f1(t),..., fu(t)) be a k-jet of curve tangent to V starting from a point f(0) =
x € U. Such a curve is entirely determined by its initial point and by the projection
f(t) == (fi(t),..., fr(t)) to the first r-components, since the condition f'(t) € V)
implies that the other components must satisfy the ordinary differential equation

fa®) = aas(FO)S4(1):

1<Bsr

This implies that the k-jet of f is entirely determined by the initial point x and the
Taylor expansion

(2.2) Flt) =T =&t + 62+ .+ &tP + O
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where & = ({sa)1<a<r € C". The C* action (A, f) — A-f is then expressed in coordinates
by the weighted action

(23> A (517527"'7&16) - (Agla)‘2£27"'7)‘k€k)

associated with the weight a = (11,207 . El"]). The quotient projectivized k-jet bun-
dle

(2.4) XFC6 .= (J*V {o})/C*

considered by Green and Griffiths [GGT79] is therefore in a natural way a
P(l[r], ol ., k[’"]) weighted projective bundle over X. As such, it possesses a canonical
sheaf @ ycc (1) such that Oxca (m) is invertible when m is a multiple of lem(1, 2, ..., k).

Under the natural projection 7 : Xo¢ — X the direct image (7 )«@ ycc (m) coincides
with the sheaf of sections of the bundle E,?SnV* of jet differentials of order k and degree
m, namely polynomials

(2.5) P(z: &, 6) = D Gay.a(2) &80 G0

€N, 1<e<k

of weighted degree |a| + 2|ag| + ... + klag| = m on J*V with holomorphic coefficients.
The jet differentials operate on germs of curves as differential operators

(2.6) P(f)(t) =D ayar (F(0) F/(0)* . P ()%

In the sequel, we do not make any further use of coordinate frames as (2.1), because they
need not be related in any way to the Hermitian metric h of V. Instead, we choose a
local holomorphic coordinate frame (e4(z))1<a<r of V on a neighborhood U of xg, such
that

(2.7) (ea(2), e5(2)) = dap + > CijapziZ; + O(|2])

1<i,jsn, 1Sa, Br

for suitable complex coefficients (cijag). It is a standard fact that such a normalized
coordinate system always exists, and that the Chern curvature tensor #D%} , of (V. h)
at xg is then given by

i .
(2.8) @V’h(x(ﬂ = —% Z Cijaf dz; N d?j Ke, ®egs.
i’j’a’/B

Also, instead of defining the vectors &5 € C” as in (2.2), we consider a local holomorphic
connection V on V| (e.g. the one which turns (e,) into a parallel frame), and take
& = VP f(0) € V, defined inductively by V1 f = f" and V*f = V (V71 f). This is just
another way of parametrizing the fibers of J*V over U by the vector bundle V|’f] Notice
that this is highly dependent on V (the bundle J*V actually does not carry a vector
bundle or even affine bundle structure); however, the expression of the weighted action
(2.3) is unchanged in this new setting. Now, we fix a finite open covering (U, )aer of X
by open coordinate charts such that V|, is trivial, along with holomorphic connections
Vq on Vg, . Let 0, be a partition of unity of X subordinate to the covering (Uy,). Let
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us fix p > 0 and small parameters 1 =& > e3> ... > ¢, > 0. Then we define a global
weighted exhaustion on J*V by putting for any k-jet f € JEV

(2.9) Uppe(f) = (Zea(g;) N Vi f(o )Ilff(’gﬁf)

acl 1<s<k

where || ||;(z) is the Hermitian metric h of V' evaluated on the fiber V., z = f(0). The
function ¥y, ), . satisfies the fundamental homogeneity property

(2.10) hpeAf) = Tnpe(f) [N

with respect to the C* action on J*V, in other words, it induces a Hermitian metric on
the dual L* of the tautological Q-line bundle L, = @ ch(l) over XF¢. The curvature
of Ly is given by

(2.11) TOL, vy = dd®log Uy p

where 7, : JKV {0} — X,?G is the canonical projection. Our next goal is to compute
precisely the curvature and to apply holomorphic Morse inequalities to L — X ,SG with
the above metric. It might look a priori like an untractable problem, since the definition of
U}, p.e is a rather unnatural one. However, the “miracle” is that the asymptotic behavior
of Uy, , - as €5/e5_1 — 0 is in some sense uniquely defined and very natural. It will lead
to a computable asymptotic formula, which is moreover simple enough to produce useful
results.

(2.12) Lemma. On each coordinate chart U equipped with a holomorphic connection V
of Viu, let us define the components of a k-jet [ € JRV by & = V2 £(0), and consider
the rescaling transformation

pV,E(glv 527 s 7€k) = (5%617 5%627 cee 75££k> on J§V7 relU

(it commutes with the C*-action but is otherwise unrelated and not canonically defined
over X as it depends on the choice of V). Then, if p is a multiple of lem(1,2,...,k) and
€s/€s—1 — 0 forall s =2,...,k, the rescaled function ¥y, , . o pg’le(fl, ..., &) converges

towards 2y 1/p
(3 ne)

1<s<k
on every compact subset of JkWU ~ {0}, uniformly in C*° topology.

Proof. Let U C X be an open set on which Vi is trivial and equipped with some
holomorphic connection V. Let us pick another holomorphic connection V=V+T
where I' € HO(U, Q% @ Hom(V, V). Then V2f = V2f +T(f)(f')- f/, and inductively we
get -

VEf=Vof+P(f; Vf,....,V* 1)

where P(x; &1,...,&—1) is a polynomial with holomorphic coefficients in x € U which is
of weighted homogeneous degree s in (£1,...,&5—1). In other words, the corresponding
change in the parametrization of J kV|U is given by a C*-homogeneous transformation

€ =&+ Po(x; 61,0 65 )
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Let us introduce the corresponding rescaled components

(51,87 sy gk,s) = (5%517 <. 782516)7 (El,sv <. 75’6,6) = (5%517 sy 525:)
Then _
fs,e = Es,e + 5:: Ps(x; 61_151,67 <€ _(S 1)55 1 s)
=&t Oles/es—1)" O(

and the error terms are thus polynomials of fixed degree with arbitrarily small coefficients
as €5/€s—1 — 0. Now, the definition of ¥}, ,, . consists of glueing the sums

2p/s 2p/s
STl = 3wl

1<s<k 1<s<k

1/(5—1))5

corresponding to { = V2 f(0) by means of the partition of unity > 0,(x) = 1. We
see that by using the rescaled variables {, . the changes occurring when replacing a
connection V, by an alternative one Vg are arbitrary small in C'* topology, with error
terms uniformly controlled in terms of the ratios e /53 1 on all compact subsets of
V* < {0}. This shows that in C* topology, ¥}, , - 0 Py, ' (&1,...,&) converges uniformly
towards (D¢ <y kaHQP *)1/P_ whatever the trivializing open set U and the holomorphic
connection V used to evaluate the components and perform the rescaling are. O

Now, we fix a point ¢ € X and a local holomorphic frame (en(2))1<a<r satisfying
(2.7) on a neighborhood U of 3. We introduce the rescaled components £, = €3V?* f(0)
on J k’V|U and compute the curvature of

1/p
_ 2p/s
Unpeopehizi 8= (Y Iali)
1<s<k

(by Lemma 2.12, the errors can be taken arbitrary small in C*° topology). We write
s = Z1<Q<T €sata- By (2.7) we have

l&lh =D lesal® + D cijapziZisatas + O E%).
e i’j7a7/8

The question is to evaluate the curvature of the weighted metric defined by

1/p
v et = (3 16IE)

1<s<k
2 N AN 3
(Z (Tl + X cumpmiziteats)””) - 00I
1<s<k «a 5,08

We set [&5]2 =, [€sal?®. A straightforward calculation yields
IOg\I/(Z7 517' . 7§/€> =

L s s s~ 1l Eabas | o1
Og Z |€S| + Z _Zt |€t|2p/t Z C’L]Ot,BZZZ] |§ |2 (|Z| )

1<s<k 1<s<k i,7,0,0
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By (2.11), the curvature form of L) = @XSG<1) is given at the central point xo by the
following formula.

(2.13) Proposition. With the above choice of coordinates and with respect to the
rescaled components £ = e3V°f(0) at x¢p € X, we have the approximate expression

Z' ]_ 6 p/ fsags —
@Lk’qu,p,g (.TO, [g]) >~ Wa,r,p(é) + 2_ Z | | Z Cija5|§7|25 dZi A\ de

2p/t
TGk’ 221 [l AL i,4,a,B

where the error terms are O(maxocs<k(€s/€s—1)%) uniformly on the compact variety
XEC. Here wy, is the (degenerate) Kihler metric associated with the weight a =
(1[7“], ol ., k[r]) of the canonical C* action on J*V .

Thanks to the uniform approximation, we can (and will) neglect the error terms in
the calculations below. Since w, ,, is positive definite on the fibers of X,SG — X (at
least outside of the axes {5 = 0), the index of the (1,1) curvature form O, v- ) (=, [€])

is equal to the index of the (1, 1)-form

. /s -
e1) o= Y S S oS e

2p/t 2
W1<S<k82t|£t| p/ i,j,a,B |£8|

depending only on the differentials (dz;)1<j<n on X. The g-index integral of (Ly, ¥}, )
on X ,?G is therefore equal to

@n—i—kr*—l —
(n+kr—1)! / / er—1
= Warrp (§) Dy q(2,€)1(2,€)"
”' kr—1)! J.ex Jeepam,.. kin) P e

where 1., ,(2,&) is the characteristic function of the open set of points where v;(z, ) has
signature (n —gq, ¢) in terms of the dz;’s. Notice that since v;(z, &)™ is a determinant, the
product 1, ,(2,&)vk(z, €)™ gives rise to a continuous function on XF¢. Formula 1.14
with r1 = ... =17, =r and as = s yields the slightly more explicit integral

/ @n—Hﬂ"—l — (n+ kr — 1)'
X§S(Lyq) 7 hee nl(R)T
(21...2%)" 1

/ / g, .q(2 2, u)gr(z, @, u)" 1_— dx dp(u),
z€X J(zu)EAE_1 X (S2r—1)k (7‘ 1)

where gi(z,z,u) = Yk (z, x}/qul, e ,xi/quk) is given by
(2.15) gk (2,2, u) Z —xs Z Cijap(2) Usalsp dz; N dZ;j
1<s<k: i,7,0,0

and 1, ,(z,x,u) is the characteristic function of its g-index set. Here

(.’B ka)r—l

(2.16) dvip (@) = (r = D}

dx
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is a probability measure on Ap_7, and we can rewrite

/ @n—l—kr—l _ (TL + kr — 1)'
XSG(Lk,q) Lk"l};apas n!(k!),r(kr - 1)!

(2.17) / / Ny, o(z, 2, u)gr(2, z,u)" dvg »(x) dp(u).
2€X J(z,u)EAL_1 X (S2r—1)k

Now, formula (2.15) shows that gx(z, z,u) is a “Monte Carlo” evaluation of the curvature
tensor, obtained by averaging the curvature at random points u, € S?"~! with certain
positive weights zs/s; we should then think of the k-jet f as some sort of random
parameter such that the derivatives V¥ f(0) are uniformly distributed in all directions.
Let us compute the expected value of (z,u) — gi(z,x,u) with respect to the probability
measure dv . (x)dp(u). Since [go, 1 UsaTspdp(us) = 1605 and fAIc—l Tsdvg, () = 1,
we find

1 1 4 _
1<s<k 1,50
In other words, we get the normalized trace of the curvature, i.e.
1 1 1
(218) E(Qk(z7 o, .)) = E (1 + 5 Tt E)Qdet(v*),det h* >

where Oget(v+),deth+ is the (1,1)-curvature form of det(V*) with the metric induced
by h. It is natural to guess that gx(z, x,u) behaves asymptotically as its expected value
E(gx(z, e,0)) when k tends to infinity. If we replace brutally g by its expected value in
(2.17), we get the integral

(n+kr—1)! 1 1 1 ”/
I L A E
2 (D) (er — 1)) (kr)”( t3tet ) s

where 1 := Ogeq(v+),det h+ and 1 4 is the characteristic function of its g-index set in X.
The leading constant is equivalent to (logk)™/n!(k!)” modulo a multiplicative factor
14 O(1/logk). By working out a more precise analysis of the deviation, we will prove
the following result.

(2.19) Probabilistic estimate. Fiz smooth Hermitian metrics h on V and w =
5= > wijdz; Adzj on X. Denote by Oy, = —5= ) cijapdzi N dz; @ e}, ® eg the cur-
vature tensor of V' with respect to an h-orthonormal frame (e,), and put

? _
(%) = Odet(v+),det h* = o Z Nijdzi N\ dzj, Nij = Z Cijaa-

1<4,5<n 1<agr

Finally consider the k-jet line bundle Ly = @X,SG(D — X,SG equipped with the induced
metric Wy, . (as defined above, with 1 = &1 > €2 > ... > €y > 0). When k tends to
infinity, the integral of the top power of the curvature of Ly on its g-index set X,?G(Lk, q)
1S given by

e

_ log k)™ -
@n—l-kr* 1 _ (7 </ 1 nn +0 logk; 1 )
/)‘(’?G(Lk’q) LeYipe — pl(k) \ [y ™9 (( )7)
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forallqg=0,1,...,n, and the error term O((logk)™1) can be bounded explicitly in terms
of Oy, n and w. Moreover, the left hand side is identically zero for ¢ > n.

The final statement follows from the observation that the curvature of Ly is positive
along the fibers of X ,?G — X, by the plurisubharmonicity of the weight (this is true even
when the partition of unity terms are taken into account, since they depend only on the
base); therefore the g-index sets are empty for ¢ > n. We start with three elementary
lemmas.

(2.20) Lemma. The integral
T n
hon= [ (X %) dusto
Aro1 \1eek O

1s given by the expansion

Z 1 (kr —1)! Hléiék(r_l—Fﬁi)!.

I rn =
(a) o $182...8, (r—1)Ik (kr +n —1)!

1<51,82,...,8n <k
where B; = Bi(s) = card{j; s; =i}, > B =n, 1 <i< k. The quotient

,r.n

1 1\7
Iy rom 1+-4+...+ -
k”/kr(k;r—l—l)...(kr—i—n—l)( +2+ +k;>

18 bounded below by 1 and bounded above by

n

(b) 1+%;2%(1+%+...+%)_ — 14 0((logk)™)

As a cons equence

(c) Ly = kin ((1+ % TR %)n +0((logk)"~))
_ (logk +7)" + O((logk)"?)
kn

where v is the Euler-Mascheroni constant.

Proof. Let us expand the n-th power (Zlgsgk ‘%)n This gives

1
I = — .fC'Bl . xﬁk dv X
kr,n Z S$182...5p Ak—l ! K k,T( )

1<317827“'78n<k

and by definition of the measure v, we have

kr —1)! _ ot B —
/ xfl xf’“ dvi () = %/ x§+51 L. .xk+6k Vdzy ... dxy.
Ak,1 (T - ]‘) Ak,1
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By Formula (1.14), we find

— , ; —1)!
B1 B 4 _ (kr — 1) Theicr(r + B
/Akl Ty ... Ty Vk,r(-T) (r—l)!k (k’r—l—n—l)!

VS I C .
kr(kr+1)...(kr +n—1) ’

and (2.20a) follows from the first equality. The final product is minimal when r = 1,
thus

T.’I’L

B1 Bk
< 2P du
kr(kr +1)...(kr +n—1) /Akl oyt dvg ()

T H1<z’<k Bil

< .
kr(kr+1)...(kr +n—1)

(2.21)

Also, the integral is maximal when all 8; vanish except one, in which case one gets

n _or(r+1)...(r+n—1)
(2:22) /A T W (@) = T ) Gt — 1)

By (2.21), we find the lower and upper bounds

r" 1 1\"
2.23 Ln > (1+—+...+—) ,
(2:23) s kr(kr+1)...(kr+n—1) 2 k
r’ Bi!... 0!
(2.24) Tprm < > =
kr(kr+1)...(kr +n—1) Lo < S1eeSn
In order to make the upper bound more explicit, we reorganize the n-tuple (sq,...,s,)
into those indices ¢; < ... < t, which appear a certain number of times a; = §;, > 2,
and those, say ty411 < ... < tyim, which appear only once. We have of course > 3; =
n—m, and each choice of the ¢;’s corresponds to n!/aq!...ay! possibilities for the n-tuple
($1,-..,5n). Therefore we get
L. B! - 1 1
$ Pl Bt o ,
S1...8np tl tg tg+1...tg+m

1<81,...,8n <k m=0 {, Ya;=n—m (t;)

A trivial comparison series vs. integral yields

s<t<+o0
and in this way, using successive integrations in ty, t;_1, ..., we get inductively
> . < ! <1
1<t <... <ty <+oo0 t(ll1 .- 't?e h H1<¢<g(a£—i+1 + ... +ap— Z) S
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since o; > 2 implies ay—;41 + ...+ ap — i > i. On the other hand

1 1 1 1 1 1\
I<tosr <o <toyml EHL e tEm My kPl Sme T

Since partitions a3 + ... + ay = n — m satisfying the additional restriction «; > 2
correspond to o = a; — 2 satisfying > o) = n — m — 2¢, their number is equal to

n—m-—20+/¢—1 _ n—m-4¥¢-—1 <2n_m_£_1
-1 /-1

and we infer from this

Bil. .. B! gn-—m—t=1p| 1 1\™ 1 1\"
— KL e 14—+, . +=
> P > togteetg) Ty
1<Sl,...,8n<l€ 2££%n1<n

where the last term corresponds to the special case £ = 0, m = n. Therefore
61/2 1 n—2

51 —2 gn—my| 1 1\™ 1 1\"
l+=f ... 4= I+ .. 4=
> 5 > — tottr ) (gt

1<s;<k m=0

<1 " 9mp! 1+1+ +1 ”‘m+ 1+1+ +1 "
3 (n —m)! 2 Tk 2 k)
m=2

/

This estimate combined with (2.23, 2.24) implies the upper bound (2.20 b) (the lower
bound 1 being now obvious). The asymptotic estimate (2.20 c) follows immediately. O

(2.25) Lemma. If A is a Hermitian n x n matriz, set 14 4 to be equal to 1 if A has
signature (n — q,q) and 0 otherwise. Then for all n x n Hermitian matrices A, B we
have the estimate

’]IA,q det A —1p, detB’ < ||A - B| Z ||A||i||B||n—1_7;7

0<is<n—1
where ||Al|, || B|| are the Hermitian operator norms of the matrices.

Proof. We first check that the estimate holds for |det A — det B|. Let \; < ... <\, be
the eigenvalues of A and A} < ... < X, be the eigenvalues of B. We have |\;| < || 4],
|A;| < ||B]| and the minimax principle implies that [A; — ;| < ||A — B||. We then get the
desired estimate by writing

det A—detB =X\ ... A, =N ... A= > Ap.. — ANDN A

1<i<n

This already implies (2.25) if A or B is degenerate. If A and B are non degenerate we
only have to prove the result when one of them (say A) has signature (n — ¢, ¢) and the
other one (say B) has a different signature. If we put M (t) = (1 —t¢)A +tB, the already
established estimate for the determinant yields

n—1
|- et M (1| < nll A~ BI [M(1)]| < nll 4~ BI (1~ D]|A] +¢]B])
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However, since the signature of M (t) is not the same for ¢ = 0 and ¢ = 1, there must exist
to € ]0,1] such that (1 —t9)A + toB is degenerate. Our claim follows by integrating the
differential estimate on the smallest such interval [0, ¢o], after observing that M (0) = A,
det M(ty) = 0, and that the integral of the right hand side on [0, 1] is the announced
bound. O

(2.26) Lemma. Let Q4 be the Hermitian quadratic form associated with the Hermitian
operator A on C™. If u is the rotation invariant probability measure on the unit sphere
S2n=1 of C™ and \; are the eigenvalues of A, we have

[ @u@r ) = o (S (S0)7),

The norm ||A|| = max |\;| satisfies the estimate

1
—[|A|* < 2d < 1412
< [ 1A an) < 141

Proof. The first identity is an easy calculation, and the inequalities follow by computing
the eigenvalues of the quadratic form > \? + (Z )\1)2 — c)\?o, ¢ > 0. The lower bound is

attained e.g. for Qa(¢) = [C1]? — 2 (|¢G2]*+. ..+ [¢a]?) when we take ig =1 and ¢ = 1+ L.
U

Proof of the Probabilistic estimate 2.19. Take a vector ¢ € Tx ., ( = ZQ%, with
<]l = 1, and introduce the trace free sesquilinear quadratic form

~ = _ - 1
Qzc(u) = Z Cijap(2) GiCj ualip, Cijap = CijaB — ;7713'5055, ueCr
i7j7a75

where 7;; = >, <a<r Cijaa We consider the corresponding trace free curvature tensor

~ 7 _ .
(227) @V = % Z CijapB dZi VAN dEj X € & €g-
i’j7a7/8

As a general matter of notation, we adopt here the convention that the canonical corre-
spondence between Hermitian forms and (1, 1)-forms is normalized as ) a;;dz; ® dZ; <>
i > a;jdz; \NdZ;, and we take the liberty of using the same symbols for both types of ob-
jects; we do so especially for gi(z, z, u) and n(2) = 5= > 1;;(2)dz; Adz; = Tr Oy (z). First
observe that for all k-tuples of unit vectors u = (u1, ..., ux) € (S ¥ us = (Usa)1<a<r
we have

/5'27‘ 1)k

where V(Q,.¢) is the variance of @, on S* 1. This is so because we have a sum
over s of independent random variables on (52" ~1)*_ all of which have zero mean value
(Lemma 2.26 shows that the variance V(Q) of a trace free Hermitian quadratic form

2

du(w) = > SV(Qx0)

1<s<k

Z —CCS Z cljaﬁ CiZjusaﬂsﬁ

1<s<k i,7,0,3
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Q(u) = > lcasr Aa|tal? on the unit sphere S ! i.s equal to m S~ A2, but we only
give the formula to fix the ideas). Formula (2.22) yields

+1
xidukr T) = 7“7‘
Akl ’ ( ) k‘(k‘?‘—l—l)

Therefore, according to notation (2.15), we obtain the partial variance formula

/ 982 2, ) (€) — T (2 2) (O) Pl () dpa(w)
Aj_q1x(82r—1)k

it (2 S )anBric o

1<s<k
in which
_ 1 1 - 1 1
Ti(22)(O) = Y wa Y cijaalily = D —wa ) 0(2)(Q),
1<s<k ijo 1<s<k

POV (COP = V(s Ou(Cuu) = [ (O (C ().

By integrating over ( € §?"~1 C C" and applying the left hand inequality in Lemma
2.26 we infer

/ 19k (2, 2, 0) — i (2, 2) |12 dve () dpa()
Aj_1x(82r—1)k
n?(r+1) 1 ~
2.2 < — 7 il "
(2:28) k(kr +1) <1<Z<k 52)" #(Ov)

where aw,h(év) is the standard deviation of év on §2n—1 x §2r—1.

Gun(By)? = / (O (¢, O, uhn|du() dulw).

IClw=1, Julp=1

On the other hand, brutal estimates give the Hermitian operator norm estimates

(2.29) gzl < (X Lo ) Lol

T
1<s<k

w,h

(2.30) lontz ol < (3 o) lev]

1<s<k

where
1Ovwr= sup  [(Ov((,Q)u,u)n|.
¢lw=1, [uln=1
We use these estimates to evaluate the g-index integrals. The integral associated with
J5(z, ) is much easier to deal with than g (z,z,u) since the characteristic function of
the g-index set depends only on z. By Lemma 2.25 we find

’]lgkyq(z,x,u) det gi (2, ,u) — 1, 4(2) det §k(z,x)}

n—1—1

9k (z 2, 0) = Gz, 2) ||, Y llgw(z 2, w)|Ll[gx(z, )17
o<i<n—1

<
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The Cauchy-Schwarz inequality combined with (2.28 — 2.30) implies
/ [y 0) det g (2,,0) = Iy (2) det i (2,2)] i (o))
Akilx(szr—l)k
, 1/2
<(/ Jow(3.00) = Gy L)) )
Ap_1x(S2r=1)k

( /Ak_lx(smk( > Hgk<z,x,u>r\a|rak<z,x>|rz—1—i)Qdyk,r@)du(u))

0<i<n—1

1/2

n(141/r)/? 1\'? - .1 n—1-i
S ek + 1/r)172 . =) owan®v) Y ||@v|w,h(;||n(Z)llw>
1<s<k 1<ign—1
2n—2 1/2 _1
Ts log k)™
X (/ ( Z ?) dyk,r(x)) — O<< kn) )
Ak—l 1SS§]€

by Lemma 2.20 with n replaced by 2n — 2. This is the essential error estimate. As one
can see, the growth of the error mainly depends on the final integral factor, since the
initial multiplicative factor is uniformly bounded over X. In order to get the principal
term, we compute

et (2. ) v () = = det (2 > 2 o (o)
L.

Ak—1 N 1<s<k
(log k)"

rnkn

~

detn(z).

From there we conclude that

Lo, Mmoo 0 o ) )
z€E T, u)EAL_1 X (S2r—1

_ (log k)™ / n (log k)" *
- pnkn X]ln’qn +O< kn )

The probabilistic estimate 2.19 follows by (2.17). O

(2.31) Remark. If we take care of the precise bounds obtained above, the proof gives
in fact the explicit estimate

_ +k?’l“—1)']k
guikr—1 _ (1 n /11 "4 e
/X,?Guk,q) LW p.e n! (kN (kr —1)! X "l Tt Ek.r,

where

1 1/2 ~ — i 7 n—1-—17 n
T=n (L 5) [ un®) X eriLalnlz

1=1
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and

m _oN1/2
1 2n—2 2™ (2n—2)! 1 1\—m
(1+§Zngm(1+§+m+z) ) 1
1+5+...+5 log k

<

by the lower and upper bounds of Iy ,,, Ijr2n—2 obtained in Lemma 2.20. As
(2n —2)!/(2n —2 —m)! < (2n — 2)™, one easily shows that

(31/15)1/2

for k > 5n—5.
log £ or e

(2.32) lek,rn] <

Also, we see that the error terms vanish if Oy is identically zero, but this is of course a
rather unexpected circumstance. In general, since the form Oy is trace free, Lemma 2.23
applied to the quadratic form u — (O ((, {)u,u) on C" implies

oun(Ov) < (r+1)712||6

This yields the simpler bound

()5 W 0

1/2
(2.33) J < nr1/2< )

It will be useful to extend the above estimates to the case of sections of

ol Ly ] 1
(2.34) Ly = Oxgs () @mi0(—(14+5+...+7)F)

where F' € Picg(X) is an arbitrary Q-line bundle on X and 7y, : X% — X is the natural
projection. We assume here that F' is also equipped with a smooth Hermitian metric hp.
In formulas (2.17-2.19), the renormalized curvature nx(z, x,u) of Ly takes the form

1
Z(1+3i+...4+%)

(235> nk('z?x7u> = gk(Z,CL’,U) +®F,hF(Z>7

and by the same calculations its expected value is
(2.36) 1(2) = E(1i(2, ¢, 8)) = et v detn+(2) + O np (2)-
Then the variance estimate for 7, — 7 is unchanged, and the LP bounds for 7 are still

valid, since our forms are just shifted by adding the constant smooth term ©p . (z).
The probabilistic estimate 2.18 is therefore still true in exactly the same form, provided
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we use (2.34 — 2.36) instead of the previously defined Ly, nr and 7. An application of
holomorphic Morse inequalities gives the desired cohomology estimates for

hQ(X,E,SS;V* O(m( +%++%)F>>

= X g m) @m0 (12 (14 5+ 4 1) F) ),

provided m is sufficiently divisible to give a multiple of F' which is a Z-line bundle.

(2.37) Theorem. Let (X,V) be a directed manifold, F — X a Q-line bundle, (V,h)
and (F, hg) smooth Hermitian structure on 'V and F respectively. We define

;, sl 1 !
Ly = Oxca(1) ®wko(ﬁ(1+ g Tt E)F)
N = Odet V*,det h* + OF hy-

Then for all ¢ > 0 and all m > k > 1 such that m is sufficiently divisible, we have

(f (n’q)<—1>w+0<<1ogk>—1>),

)
ele] ®m m™ L (log k)™ " O((log k)~
(b) (XSS, @(LE™)) > ( /X " Ollosk >),
)
)

mn—|—kr—1 (lOg k)n

h(XFC, @LE™)) <
(a> ( k 7)( k )) (n—l—kr—l)!n‘(““

(n+ kr —1)! n! (k)"

n—‘,—kr—l (lng n
(n+kr—1)! nl (k"

() x(XFC,0Lgm) = (cr(V* @ F)" + O((log k) ™)).

Green and Griffiths [GG79] already checked the Riemann-Roch calculation (2.37 ¢)
in the special case V = T% and F' = @x. Their proof is much simpler since it relies
only on Chern class calculations, but it cannot provide any information on the individual
cohomology groups, except in very special cases where vanishing theorems can be applied;
in fact in dimension 2, the Euler characteristic satisfies x = h® —h' +h? < h°® 4+ h?, hence
it is enough to get the vanishing of the top cohomology group H? to infer h% > x; this
works for surfaces by means of a well-known vanishing theorem of Bogomolov which
implies in general

1 1
H”(X,EE%T}} ®@(kﬁ(1+ S+ —)F))) ~0
’ T

as soon as Kx ® F'is big and m > 1.

In fact, thanks to Bonavero’s singular holomorphic Morse inequalities [Bon93], ev-
erything works almost unchanged in the case where V' C T'x has singularities and h is an
admissible metric on V' (see (0.8)). We only have to find a blow-up p: X — X} so that
the resulting pull-backs p* Ly, and p*V are locally free, and p* det h*, pu* Wy, , . only have
divisorial singularities. Then 7 is a (1, 1)-current with logarithmic poles, and we have to
deal with smooth metrics on p* L™ ® @(—mE},) where Ej, is a certain effective divisor on
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X} (which, by our assumption (0.8), does not project onto X). The cohomology groups
involved are then the twisted cohomology groups

HY(XC, O(LE™) @ Fim)

where fi m = p«(O(—mE}y)) is the corresponding multiplier ideal sheaf, and the Morse
integrals need only be evaluated in the complement of the poles, that is on X (n,q) \ S
where S = Sing(V') U Sing(h). Since

1 1
(mk)« (O(LE™) ® Frm) C EEGV* ® @(% (1 gt E)F))

we still get a lower bound for the HY of the latter sheaf (or for the H? of the un-twisted
line bundle @(LY™) on X ). If we assume that Ky ® F is big, these considerations also
allow us to obtain a strong estimate in terms of the volume, by using an approximate
Zariski decomposition on a suitable blow-up of (X, V). The following corollary implies
in particular Theorem 0.5.

(2.38) Corollary. If F is an arbitrary Q-line bundle over X, one has

kr 2 k
mn—l—kr—l (log k)n
T (n+kr—1D!n! (kY

K <X,§G,@‘ch;(m) @mi0( e (1+ L 1)F))

(Vol(KV ® F) — O((log k)_l)) _ O(mn-i-k:r—l),

when m > k > 1, in particular there are many sections of the k-jet differentials of degree
m twisted by the appropriate power of F' if Ky ® F' s big.

Proof. The volume is computed here as usual, i.e. after performing a suitable modifi-
cation p : X — X which converts Ky into an invertible sheaf. There is of course nothing
to prove if Ky ® F' is not big, so we can assume Vol(Ky ® F') > 0. Let us fix smooth
Hermitian metrics hy on Tx and hr on F. They induce a metric p*(dethy' ® hr)
on p*(Ky ® F) which, by our definition of Ky, is a smooth metric. By the result of
Fujita [Fuj94] on approximate Zariski decomposition, for every > 0, one can find a
modification ps : X5 — X dominating p such that

ps(Ky ®@ F) = @)?S(A+E)
where A and E are Q-divisors, A ample and E effective, with
Vol(A) = A" > Vol(Ky ® F') — 0.

If we take a smooth metric hy with positive definite curvature form © 4 ,, then we get
a singular Hermitian metric hahg on pj(Ky ® F') with poles along E, i.e. the quotient
hahg/p*(det hal ® hr) is of the form e~% where ¢ is quasi-psh with log poles log |o 5|
(mod C*°(Xj)) precisely given by the divisor E. We then only need to take the singular
metric A on T defined by

B — hoe%(us)*w
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(the choice of the factor % is there to correct adequately the metric on det V). By
construction h induces an admissible metric on V' and the resulting curvature current
1N = Ok, det h* + OF, is such that
psn =0Oan, +[E], [E] = current of integration on E.

Then the 0-index Morse integral in the complement of the poles is given by

/ nn:/~ M, = A" > Vol(Ky ® F) —
X(n,0)\8 '

Xs
and (2.38) follows from the fact that 6 can be taken arbitrary small. O
(2.39) Example. In some simple cases, the above estimates can lead to very ex-

plicit results. Take for instance X to be a smooth complete intersection of multidegree
(di,da,...,ds) in IP’EJFS and consider the absolute case V = Tx. Then

KX :@X(d1+...+d8—n—8—1>.
Assume that X is of general type, i.e. > d; >n+ s+ 1. Let us equip V = Tx with the
restriction of the Fubini-Study metric h = ©¢(1); a better choice might be the Kéhler-

Einstein metric but we want to keep the calculations as elementary as possible. The
standard formula for the curvature tensor of a submanifold gives

Orx,h = (O1,, . .0)x + B8NS

where 3 € C°°(AMT% ® Hom(Tx, @ @(d;))) is the second fundamental form. In other
words, by the well known formula for the curvature of projective space, we have

(O1 1 (¢, Quy u) = [¢[*ul® + (¢, w)* = |B(C) - ul®.
The curvature p of (Kx,det h*) (i.e. the opposite of the Ricci form Tr ©r, 5) is given by
(2.40) p=—TrOp, , =Tr(BAS")—(n+1)h > —(n+1)h.

We take here F' = Ox(—a), a € Q, and we want to determine conditions for the
existence of sections

1 1
(2.41) H0<X,E§§T}®@(—a%(1+§+...+E)>), m> 1.

We have to choose Kx ® Ox(—a) ample, i.e. ) d; > n+ s+ a+ 1, and then (by an
appropriate choice of the metric of F' = Ox(—a)), the form 7 = Og g, (—q) can be
taken to be any positive form cohomologous to (> d; —(n+s+a+1))h. We use remark
2.31 and estimate the error terms by considering the Kéahler metric

w=p+n+s+2)h= (Zderl)h.
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Inequality (2.40) shows that w > 2h and also that w > Tr(5 A f*). From this, one easily
concludes that ||n||, < 1 by an appropriate choice of 7, as well as || Oy pllw,n < 1 and

||éTX,h| w.h < 2. By (2.33), we obtain for n > 2

| 47
Jgna/zi X2” /wn < _nn+1/2/ W
V6 n—1 Jx V6 X

where [ w" = (Z d; + l)n deg(X). On the other hand, the leading term [, 1™ equals
(Y dj—n—s—a—1)" deg(X) with deg(X) = di ...ds. By the bound (2.32) on the error
term €y, n, we find that the leading coefficient of the growth of our spaces of sections is
strictly controlled below by a multiple of

1/2 pnt1/2

(S -nes-aet) - an() e (S0

if K > 55, A sufficient condition for the existence of sections in (2.41) is thus

(2.42) k > exp (7.38 n”+1/2<2d‘ _z:ndi—;i — 1>n>.
J

This is good in view of the fact that we can cover arbitrary smooth complete intersections
of general type. On the other hand, even when the degrees d; tend to +oo, we still get
a large lower bound k ~ exp(7.38 n™*1/2) on the order of jets, and this is far from being
optimal: Diverio [Div08, Div09] has shown e.g. that one can take k = n for smooth
hypersurfaces of high degree. It is however not unlikely that one could improve estimate
(2.42) with more careful choices of w, h. O
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