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Abstract. These lectures are devoted to the study of various contemporary problems
of algebraic geometry, using fundamental tools from complex potential theory, namely
plurisubharmonic functions, positive currents and Monge-Ampère operators. Since their
inception by Oka and Lelong in the mid 1940’s, plurisubharmonic functions have been
used extensively in many areas of algebraic and analytic geometry, as they are the func-
tion theoretic counterpart of pseudoconvexity, the complexified version of convexity. One
such application is the theory of L2 estimates via the Bochner-Kodaira-Hörmander tech-
nique, which provides very strong existence theorems for sections of holomorphic vector
bundles with positive curvature. One can mention here the foundational work achieved
by Bochner, Kodaira, Nakano, Morrey, Kohn, Andreotti-Vesentini, Grauert, Hörmander,
Bombieri, Skoda and Ohsawa-Takegoshi in the course of more than 4 decades. Another
development is the theory of holomorphic Morse inequalities (1985), which relate certain
curvature integrals with the asymptotic cohomology of large tensor powers of line or
vector bundles, and bring a useful complement to the Riemann-Roch formula.

We describe here the main techniques involved in the proof of holomorphic Morse in-
equalities (chapter I) and their link with Monge-Ampère operators and intersection the-
ory. Chapter II, especially, gives a fundamental approximation theorem for closed (1, 1)-
currents, using a Bergman kernel technique in combination with the Ohsawa-Takegoshi
theorem. As an application, we study the geometric properties of positives cones of
an algebraic variety (nef and pseudo-effective cone), and derive from there some results
about asymptotic cohomology functionals in chapter III. The last chapter IV provides an
application to the study of the Green-Griffiths-Lang conjecture. The latter conjecture
asserts that every entire curve drawn on a projective variety of general type should satisfy
a global algebraic equation; via a probabilistic curvature estimate, holomorphic Morse
inequalities imply that entire curves must at least satisfy a global algebraic differential
equation.
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Chapter I

Holomorphic Morse inequalities

Holomorphic Morse inequalities provide asymptotic bounds for the cohomology of
tensor powers of holomorphic line bundles. They are a very useful complement to the
Riemann-Roch formula in many circumstances. They were first introduced in [Dem85],
and were largely motivated by Siu’s solution [Siu84, Siu85] of the Grauert-Riemen-
schneider conjecture, which we reprove here as a special case of a stronger statement. The
basic tool is a spectral theorem which describes the eigenvalue distribution of complex
Laplace-Beltrami operators. The original proof of [Dem85] was based partly on Siu’s
techniques and partly on an extension of Witten’s analytic proof of standard Morse in-
equalities [Wit82]. Somewhat later Bismut [Bis87] and Getzler [Get89] gave new proofs,
both relying on an analysis of the heat kernel in the spirit of the Atiyah-Bott-Patodi proof
of the Atiyah-Singer index theorem [ABP73]. Although the basic idea is simple, Bismut
used deep results arising from probability theory (the Malliavin calculus), while Getz-
ler relied on his supersymmetric symbolic calculus for spin pseudodifferential operators
[Get83].

We present here a slightly more elementary and self-contained proof which was sug-
gested to us by Mohan Ramachadran on the occasion of a visit to Chicago in 1989.
The reader is referred to [Dem85, Dem91] for more details.

0. Introduction

0.A. Real Morse inequalities

Let M be a compact C∞ manifold, dimRM = m, and h a Morse function, i.e. a
function such that all critical points are non degenerate. The standard (real) Morse
inequalities relate the Betti numbers bq = dimHq

DR(M,R) and the numbers

sq = # critical points of index q ,

where the index of a critical point is the number of negative eigenvalues of the Hessian
form (∂2h/∂xi∂xj). Specifically, the following “strong Morse inequalities” hold :

(0.1) bq − bq−1 + · · ·+ (−1)qb0 6 sq − sq−1 + · · ·+ (−1)qs0

for each integer q > 0. As a consequence, one recovers the “weak Morse inequalities”
bq 6 sq and the expression of the Euler-Poincaré characteristic

(0.2) χ(M) = b0 − b1 + · · ·+ (−1)mbm = s0 − s1 + · · ·+ (−1)msm .
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These results are purely topological. They are obtained by showing that M can be
reconstructed from the structure of the Morse function by attaching cells according to
the index of the critical points; real Morse inequalities are then obtained as a consequence
of the Mayer-Vietoris exact sequence (see [Mil63]).

0.B. Dolbeault cohomology

Instead of looking at De Rham cohomology, we want to investigate here Dolbeault
cohomology, i.e. cohomology of the ∂-complex. Let X be a compact complex manifold,
n = dimCX and E be a holomorphic vector bundle over X with rankE = r. Let us
recall that there is a canonical ∂-operator

(0.3) ∂ : C∞(X,Λp,qT ∗
X ⊗ E) −→ C∞(X,Λp,q+1T ∗

X ⊗E)

acting on spaces of (p, q)-forms with values in E. By the Dolbeault isomorphism theorem,
there is an isomorphism

(0.4) Hp,q

∂
(X,E) := Hq

∂
(C∞(X,Λp,•T ∗

X ⊗ E)) ≃ Hq(X,ΩpX ⊗ O(E))

from the cohomology of the ∂-complex onto the cohomology of the sheaf of holomorphic
p-forms with values in E. In particular, we have

(0.5) H0,q

∂
(X,E) ≃ Hq(X,O(E)),

and we will denote as usual hq(X,E) = dimHq(X,O(E)).

0.C. Connections and curvature

Leut us consider first a C∞ complex vector bundle E → M on a real differential
manifold M (without necessarily any holomorphic structure at this point). A connection

D on E is a linear differential operator

(0.6) D : C∞(M,ΛqT ∗
M ⊗ E) → C∞(M,Λq+1T ∗

M ⊗ E)

satisfying the Leibniz rule

(0.7) D(f ∧ s) = df ∧ s+ (−1)deg ff ∧Ds

for all forms f ∈ C∞(X,ΛpT ∗
M ), s ∈ C∞(X,ΛqT ∗

M ⊗E). On an open set U ⊂M where
E is trivial, E|U ≃ U × Cr, the Leibniz rule shows that a connection D can be written
in a unique way

(0.8) Ds ≃ ds+ Γ ∧ s

where Γ ∈ C∞(U,Λ1T ∗
M ⊗ Hom(Cr,Cr)) is an arbitrary r × r matrix of 1-forms and d

acts componentwise. It is then easy to check that

(0.9) D2s ≃ (dΓ + Γ ∧ Γ) ∧ s on U.

Therefore D2s = θD ∧ s for some global 2-form θD ∈ C∞(M,Λ2T ∗
M ⊗Hom(E,E)), given

by θD ≃ dΓU + ΓU ∧ ΓU on any trivializing open set U with a connection matrix ΓU .
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(0.10) Definition. The (normalized) curvature tensor of D is defined to be ΘD = i
2π θD,

in other words
i

2π
D2s = ΘD ∧ s

for any section s ∈ C∞(M,ΛqT ∗
M ⊗E).

The main reason for the introduction of the factor i
2π

is the well known formula for
the expression of the Chern classes in the ring of differential forms of even degree: one
has

det(Id+λΘD) = 1 + λγ1(D) + λ2γ2(D) + . . .+ λrγr(D),

where γj(D) is a d-closed differential form of degree 2j. Moreover, γj(D) has integral
periods, i.e. the De Rham cohomology class {γj(D)} ∈ H2j(M,R) is the image of an
integral class, namely the j-th Chern class cj(E) ∈ H2j(M,Z).

0.D. Hermitian connections

Assume now that the fibers of E are endowed with a C∞ Hermitian metric h, and
that the isomorphism E|U ≃ U × Cr is given by a C∞ frame (eλ). Then we have a
canonical sesquilinear pairing

C∞(M,ΛpT ∗
M ⊗ E)× C∞(M,ΛqT ∗

M ⊗ E) −→ C∞(M,Λp+qT ∗
M )

(u, v) 7−→ {u, v}h
given by

{u, v}h =
∑

λ,µ

uλ ∧ vµ〈eλ, eµ〉h for u =
∑

uλ ⊗ eλ, v =
∑

vµ ⊗ eµ.

The connection D is said to be Hermitian (or compatible with the Hermitian metric h)
if it satisfies the additional property

(0.11) d{u, v}h = {Du, v}h + (−1)deg u{u,Dv}h.

Assuming that (eλ) is h-orthonormal, one easily checks that D is Hermitian if and only
if the associated connection matrix Γ is skew-symmetric, i.e. Γ∗ = −Γ. In this case
θD = dΓ + Γ ∧ Γ also satisfies θ∗D = −θD, thus

(0.12) ΘD =
i

2π
θD ∈ C∞(M,Λ2T ∗

M ⊗Herm(E,E)).

(0.13) Special case. For a bundle E of rank r = 1, the connection matrix Γ of a
Hermitian connection D can be more conveniently written Γ = −iA where A is a real

1-form. Then we have

ΘD =
i

2π
dΓ =

1

2π
dA.

Frequently, especially in physics, the real 2-form B = dA = 2πΘD ∈ C∞(M,Λ2T ∗
M )

is referred to as the magnetic field, and the 1-form A as its potential. A phase change
s̃(x) = s(x)eiα(x) in the isomorphism E|U ≃ U × C replaces A with the new connection

form Ã = A+ dα.
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0.E. Connections on a Hermitian holomorphic vector bundle

If M = X is a complex manifold, every connection D can be split in a unique way as
the sum D = D′ +D′′ of a (1, 0)-connection D′ and a (0, 1)-connection D′′ :

D′ : C∞(M,Λp,qT ∗
X ⊗E) −→ C∞(M,Λp+1,qT ∗

X ⊗E),

D′′ : C∞(M,Λp,qT ∗
X ⊗E) −→ C∞(M,Λp,q+1T ∗

X ⊗E).

In a local trivialization given by a C∞ frame, one can write

D′u = d′u+ Γ′ ∧ u ,
D′′u = d′′u+ Γ′′ ∧ u ,

with Γ = Γ′ + Γ′′ and d′ = ∂, d′′ = ∂. If (E, h) is a C∞ Hermitian structure, the
connection is Hermitian if and only if Γ′ = −(Γ′′)∗ in any h-orthonormal frame. Thus
there exists a unique Hermitian connection corresponding to a prescribed (0, 1) part D′′.

Assume now that the Hermitian bundle (E, h) has a holomorphic structure. The
unique Hermitian connection D for which D′′ = ∂ is called the Chern connection of
(E, h). In a local holomorphic frame (eλ) of E|U , the metric h is given by some Hermitian
matrix H = (hλµ) where hλµ = 〈eλ, eµ〉h. Standard computations yield the expression
of the Chern connection :





D′s = ∂s+H
−1
∂H ∧ s,

D′′s = ∂s,

θD ∧ s = D2s = (D′D′′ +D′′D′)s = −∂(H−1
∂H) ∧ s.

(0.14) Definition. The Chern curvature tensor of (E, h) is the curvature tensor of its

Chern connection, denoted

θE,h = D′D′′ +D′′D′ = −∂(H−1
∂H).

In the special case of a rank 1 bundle E, the matrix H is simply a positive function,
and it is convenient to introduce its weight ϕ such that H = (e−ϕ) where ϕ ∈ C∞(U,R)
depends on the given trivialization E|U ≃ U × C. We have in this case

(0.15) ΘE,h =
i

2π
θE,h =

i

2π
∂∂ϕ on U,

and therefore ΘE,h is a closed real (1, 1)-form.

0.F. Fundamental facts of Hodge theory

Assume here thatM is a Riemannian manifold with metric g =
∑
gijdxi⊗dxj . Given

q-forms u, v on M with values in E , we consider the global L2 norm and inner product

(0.16) ‖u‖2 =

∫

M

|u(x)|2dσ(x), 〈〈u, v〉〉 =
∫

M

〈u(x), v(x)〉 dσ(x),
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where |u| is the pointwise Hermitian norm and dσ the Riemannian volume form. The
Laplace Beltrami operator associated with the connection D is

∆ = DD∗ +D∗D,

acting on any of the spaces C∞(M,ΛqT ∗
M ⊗E); here

(0.17) D∗ : C∞(M,ΛqT ∗
M ⊗ E) −→ C∞(M,Λq−1T ∗

M ⊗E)

is the (formal) L2 adjoint of D. The complex Laplace operators ∆′ = D′D′∗ + D′∗D′

and ∆′′ = D′′D′′∗+D′′∗D′′ are defined similarly when M = X is a complex manifold. In
degree 0 we simply have ∆ = D∗D. A well-known calculation shows that the principal
symbol of ∆ is σ∆(x, ξ) = −|ξ|2 Id (while σ∆′(x, ξ) = σ∆′′(x, ξ) = −1

2 |ξ|2 Id). As a
consequence ∆, ∆′, ∆′′ are always elliptic operators.

When M is compact, the operator ∆ acting on any of the spaces C∞(M,ΛqT ∗
M ⊗E)

has a discrete spectrum
λ1 6 λ2 6 · · · 6 λj 6 · · ·

and corresponding eigenfunctions ψj ∈ C∞(M,ΛqT ∗
M ⊗ E), depending of course on q.

Our main goal is to obtain asymptotic formulas for the eigenvalues. For this, we will
make an essential use of the heat operator e−t∆. In the above setting, the heat operator
is the bounded Hermitian operator associated to the heat kernel

(0.18) Kt(x, y) =

+∞∑

ν=1

e−λν tψν(x)⊗ ψ∗
ν(y),

i.e.

〈〈u, e−t∆v〉〉 =
∫

M×M
〈u(x), Kt(x, y) · v(y)〉 dσ(x) dσ(y).

Standard results of the theory of elliptic operators show that

Kt ∈ C∞( ]0,+∞[×M ×M,Hom(E,E))

and that Kt(x, y) is the solution of the differential equation

(0.19)
∂

∂t
Kt(x, y) = −∆xKt(x, y), lim

t→0+

Kt(x, y) = δy(x) (Dirac at y),

as follows formally from the fact that ∂
∂te

−t∆ = −∆e−t∆ and e−0∆ = Id. The asymptotic
distribution of eigenvalues can be recovered from the straightforward formula

(0.20)

+∞∑

ν=1

e−λν t =

∫

M

trEKt(x, x)dσ(x) .

In the sequel, we are especially interested in the 0-eigenspace:

(0.21) Definition. The space of ∆-harmonic forms is defined to beHq
∆(M,E) = Ker∆ =

{
u ∈ C∞(M,ΛqT ∗

M ⊗E) ; ∆u = 0
}
.



8 J.-P. Demailly Applications of Pluripotential theory to Algebraic Geometry

When M is compact, an integration by part shows that

〈〈∆u, u〉〉 = ‖Du‖2 + ‖D∗u‖2,
hence u is ∆-harmonic if and only if Du = D∗u = 0. Moreover, as ∆ is a self-ajoint
operator, standard elliptic theory implies that

(0.22) C∞(M,ΛqT ∗
M ⊗ E) = Ker∆⊕ Im∆ = Hq

∆(M,E)⊕ Im∆,

and Ker∆ = Hq
∆(M,E), Im∆ are orthogonal with respect to the L2 inner product.

Clearly Im∆ ⊂ ImD+ImD∗, and both images ImD, ImD∗ are orthogonal to the space
of harmonic forms by what we have just seen. As a consequence, we have

(0.23) Im∆ = ImD + ImD∗.

(0.24) Hodge isomorphism theorem. Assume that M is compact and that D is an
integrable connection, i.e. D2 = 0 (or θD = 0). Then D defines on spaces of sections
C∞(M,ΛqT ∗

M ⊗ E) a differential complex which can be seen as a generalization of the
De Rham complex. The condition D2 = 0 immediately implies that ImD ⊥ ImD∗ and
we conclude from the above discussion that there is an orthogonal direct sum

(0.25) C∞(M,ΛqT ∗
M ⊗ E) = Hq

∆(M,E)⊕ ImD ⊕ ImD∗.

If we put u = h+Dv +D∗w according to this decomposition, then Du = DD∗w = 0 if
and only if ‖D∗w‖ = 〈〈DD∗w,w〉〉 = 0, thus

KerD = Hq
∆(M,E)⊕ ImD.

This implies the Hodge isomorphism theorem

(0.26) Hq
DR(M,E) := KerD/ ImD ≃ Hq

∆(M,E).

In case M = X is a compact complex manifold, (E, h) a Hermitian holomorphic vector
bundle and D = D′+D′′ the Chern connection, the integrability condition D′′2 = ∂2 = 0
is always satisfied. Thus we get an analogous isomorphism

(0.27)0,q Hq(X,O(E)) ≃ H0,q

∂
(X,E) ≃ H0,q

∆′′(M,E),

and more generally

(0.27)p,q Hq(X,ΩpX ⊗ O(E)) ≃ Hp,q

∂
(X,E) ≃ Hp,q

∆′′(M,E),

where Hp,q
∆′′(M,E) is the space of ∆′′-harmonic forms of type (p, q) with values in E.

(0.28) Corollary (Hodge decomposition theorem). If (X,ω) is a compact Kähler mani-

fold and (E, h) is a flat Hermitian vector bundle over X (i.e. D2
E,h = 0), then there is

an isomorphism

Hk
DR(M,E) ≃

⊕

p+q=k

Hp,q

∂
(X,E).

In fact, under the condition that ω is Kähler, i.e. dω = 0, well-known identities of Kähler
geometry imply ∆′ = ∆′′ = 1

2∆, and as a consequenceHk
∆(M,E) =

⊕

p+q=k

Hp,q
∆′′(X,E).
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1. Holomorphic Morse inequalities

1.A. Main statements

Let X be a compact complex n-dimensional manifold, L → X a holomorphic line
bundle and E → X a holomorphic vector bundle of rank r = rankE. We assume
that L is equipped with a smooth Hermitian metric h and denote accordingly ΘL,h its
curvature form; by definition this is a closed real (1, 1)-form and its cohomology class
c1(L)R = {ΘL,h} ∈ H2

DR(X,R) is the first Chern class of L.

(1.1) q-index sets. We define the q-index sets and {6 q}-index sets of (L, h) to be

X(L, h, q) =

{
x ∈ X ; ΘL,h(x) has

q

n− q

negative eigenvalues

positive eigenvalues

}

X(L, h,6 q) =
⋃

16j6q

X(L, h, j) .

Clearly X(L, h, q) and X(L, h,6 q) are open subsets of X , and we have a partition into
“chambers” X = S ∪ ⋃

06q6nX(L, h, q) where S = {x ∈ X ; ΘL,h(x) = 0} is the
degeneration set. The following theorem was first proved in [Dem85].

(1.2) Main Theorem. The cohomology groups of tensor powers E ⊗ Lk satisfy the

following asymptotic estimates as k → +∞ :

(1.2)WM Weak Morse inequalities :

hq(X,E ⊗ Lk) 6 r
kn

n!

∫

X(L,h,q)

(−1)qΘnL,h + o(kn) .

(1.2)SM Strong Morse inequalities :

∑

06j6q

(−1)q−jhj(X,E ⊗ Lk) 6 r
kn

n!

∫

X(L,h,6q)

(−1)qΘnL,h + o(kn) .

(1.2)RR Asymptotic Riemann-Roch formula :

χ(X,E ⊗ Lk) :=
∑

06j6n

(−1)jhj(X,E ⊗ Lk) = r
kn

n!

∫

X

ΘnL,h + o(kn) .

The weak Morse form (1.2)WM follows from strong Morse (1.2)SM by adding conse-
cutive inequalities for the indices q − 1 and q, since the signs (−1)q−j and (−1)q−1−j

are opposite. Also, (1.2)RR is just a weaker formulation of the existence of the Hilbert
polynomial, and as such, is a consequence of the Hirzebruch-Riemann-Roch formula;
it follows formally from (1.2)SM with q = n and q = n+1, since hn+1 = 0 identically and
the signs are reversed. Now, by adding (1.2)SM for the indices of opposite parity q + 1
and q − 2, we find

hq+1(X,E ⊗ Lk)− hq(...) + hq−1(...) 6 r
kn

n!

∫

X(L,h,{q−1,q,q+1})
(−1)q+1ΘnL,h + o(kn),
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where X(L, h, {q − 1, q, q + 1}) is meant for the union of chambers of indices q − 1, q,
q + 1. As a consequence, we get lower bounds for the cohomology groups:

(1.3) hq(X,E ⊗ Lk) > hq − hq+1 − hq−1 > r
kn

n!

∫

X(L,h,{q−1,q,q+1})
(−1)qΘnL,h − o(kn).

Another important special case is (1.2)SM for q = 1, which yields the lower bound

(1.4) h0(X,E ⊗ Lk) > h0 − h1 > r
kn

n!

∫

X(L,h,61)

ΘnL,h − o(kn).

As we will see later in the applications, this lower bound provides a very useful criterion
to prove the existence of sections of large tensor powers of a line bundle. �

1.B. Heat kernel and eigenvalue distribution

We introduce here a basic heat equation technique, from which all asymptotic eigen-
value estimates can be derived via an explicit formula, known as Mehler’s formula.

We start with a compact Riemannian manifold (M, g) with dimRM = m, and denote
by dσ its Riemannian volume form. Let (L, hL) (resp. (E, hE)) be a Hermitian complex
line (resp. vector bundle) on M , equipped with a Hermitian connection DL (resp. DE).

We denote by Dk = DE⊗Lk the associated connection on E⊗Lk, and by ∆k = D∗
kDk

the Laplace-Beltrami operator acting on sections of E⊗Lk (i.e. forms of degree 0). As in
(0.13), we introduce the (local) connection form ΓL = −iA of L and the corresponding
(global) curvature 2-form B = dA ∈ C∞(M,Λ2T ∗

M ), i.e. the “magnetic field” (ΓE and the
corresponding curvature tensor ΘE of DE will not play a significant role here). Finally,
we assume that an additional section V ∈ C∞(M,Herm(E,E)) is given (“electric field”) ;
for simplicity of notation, we still denote by V the operator V ⊗ IdLk acting on E ⊗ Lk.

If Ω ⊂M is a smoothly bounded open subset of M , we consider for u in the Sobolev
space W 1

0 (Ω, E ⊗ Lk) the quadratic form

(1.5) Qk,Ω(u) =

∫

Ω

1

k
|Dku|2 − 〈V u, u〉.

Here W 1
0 (Ω, E⊗Lk) is the closure of the space of smooth sections with compact support

in Ω, taken in the Hilbert space W 1
loc(M,E⊗Lk) of sections that have L2

loc coefficients as
well as their first derivatives. In other words, we consider the densily defined self adjoint
operator

(1.6) �k =
1

k
D∗
kDk − V

acting in the Hilbert spaceW 1
0 (Ω, E⊗Lk), i.e. with Dirichlet boundary conditions. Again,

�k acting on W 1
0 (Ω, E ⊗ Lk) has a discrete spectrum whenever Ω is relatively compact

(and also sometimes when Ω is unbounded, according to the behavior of B and V at
infinity; except otherwise stated, we will assume that we are in this case later on). Then,
there is an associated “localized” heat kernel

(1.7) Kt,k,Ω(x, y) =
+∞∑

ν=1

e−λν,k,Ωtψν,k,Ω(x)⊗ ψ∗
ν,k,Ω(y)
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where ψν,k,Ω ∈W 1
0 (Ω, E ⊗ Lk) are the eigenfunctions and λν,k,Ω their eigenvalues.

We want to study the asymptotic eigenvalue distribution of �k as k → +∞, and more
precisely get an asymptotic formula for the corresponding heat kernel e−t�k . The basic
idea is to decompose the proof in three steps :

(α) convince ourselves that the asymptotic estimates can be “localized”, up to lower
order error terms.

(β) show that the local estimates can be obtained by freezing the coefficients of the
operators involved at any given point.

(γ) compute explicitly the heat kernel in the case of connections with constant curvature,
assuming moreover that Ω ≃ Rm with the flat euclidean metric.

(α) In order to see that the situation can be localized, we fix a partition of unity (τj)
relative to an arbitrarily fine finite covering (Ωj) of Ω, such that

∑
τ2j = 1 near Ω.

We consider the continuous injection

IΩ,Ωj
:W 1

0 (Ω, E ⊗ Lk) →
⊕

j

W 1
0 (Ω ∩ Ωj , E ⊗ Lk), u 7→ (τju)j ,

the inverse of which is (uj) 7→ u =
∑
τjuj . As

∑
τjdτj = 0 on Ω, we find

(1.8)
∑

j

Qk,Ωj
(τju)−Qk,Ω(u) =

1

k

∫

Ω

(∑
|dτj|2

)
|u|2 6 O

(1
k

)
|u|2.

By the minimax principle, it follows that the eigenvalues of
⊕
Qk,Ωj| Im IΩ,Ωj

and those
of Qk,Ω differ by at most O(1/k) as k → +∞. This explains why a localization process is
possible, at least as far as the eigenvalue distribution is concerned. For the related heat
kernels on small geodesic balls, one can use the following localization principle.

(1.9) Proposition. Let Ωρ = B(x0, ρ) be a geodesic ball of (M, g) of radius ρ where

ρ < injectivity radius. Then there exist constants C1 and ε1 > 0 such that for all

t ∈ ]0,min(kε1, kρ
2/2m)] and every x0 ∈M we have

∣∣Kt,k,M (x0, x0)−Kt,k,Ωρ
(x0, x0)

∣∣ 6 C1

(k
t

)m/2
exp

(
− kρ2

4t
+ 2t sup

Ωρ

‖V ‖
)
.

A proof of this technical result is given in Thierry Bouche’s PhD thesis (cf. [Bou90]). It
relies on a use of Kato’s inequality (cf. [HeSU80]), which amounts to say that we get an
upper bound for Kt,k,M in the case when the curvature is trivial; one can then use the
calculations given below to get the explicit bound, see e.g. (1.10′).

(β) Now, let x0 ∈ M be a given point. We choose coordinates (x1, . . . , xm) centered at
x0 such that (∂/∂x1, . . . , ∂/∂xm) is orthonormal at x0 with respect to the Riemannian
metric g. By changing the orthonormal frame of L as in (0.13), we can adjust the
connection form ΓL = −iA of L to be given by any local potential A(x) =

∑
j Aj(x) dxj

such that B = dA, and we can therefore arrange that A(x0) = 0. Similarly, we can fix
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a unitary frame of E such that ΓE(x
0) = 0. Set x0 = 0 for simplicity. The first term of

our Laplace operator �k = 1
k
D∗
kDk − V is the square of the first order operator

k−1/2Dku(x) = k−1/2
(
du(x) + k IdE ⊗ΓL(x) · u(x) + IdLk ⊗ΓE(x) · u(x)

)

= k−1/2
∑

j

( ∂u
∂xj

− ik1/2Aj(x)u(x)
)
dxj + k−1/2 IdLk ⊗ΓE(x) · u(x).

If we use a rescaling x = k−1/2x̃ and set ũ(x̃) = u(x) = u(k−1/2x̃), this operator takes
the form

D̃kũ(x̃) =
∑

j

( ∂ũ
∂x̃j

− ik1/2Aj(k
−1/2x̃) ũ(x̃)

)
dxj +O(k−1/2|x̃|) ũ(x̃) dx.

As Aj(0) = 0, the term k1/2Aj(k
−1/2x̃) converges modulo O(k−1/2|x̃|2) terms to the

linearized part Ãj(x̃) =
∑
i,j

∂Aj

∂xi
(0) x̃i. Observe also that the connection form ΓE of E

only contributes for terms of the form O(k−1/2|x̃|) (and thus will be negligible in the
end, together with the quadratic terms of Aj). Our initial operator �k = 1

k
D∗
kDk − V

becomes
�̃k = D̃∗

kD̃k − Ṽ

where Ṽ (x̃) = V (k−1/2x̃) and where the ajoint is computed with respect to the rescaled
metric g̃(x) =

∑
gij(k

−1/2x̃) dx̃jdx̃j ; here g̃ → ∑
(dx̃j)

2 as k → +∞ thanks to the

assumption that gij(0) = δij . Modulo lower order terms O(k−1/2|x̃|2), D̃k is given by a
linear connection form

Ã(x̃) =
∑

Bij x̃i dx̃j

assciated with the constant magnetic field B(x0) =
∑
i,j Bij dxi ∧ dxj frozen at x0 = 0.

We can moreover choose orthonormal coordinates so that B(x0) takes the standard form

B(x0) =
s∑

j=1

Bj dxj ∧ dxj+s

where 2s 6 m is the rank of the alternate 2-form B(x0) and Bj the curvature eigenvalues
with respect to g(x0). The corresponding linearized potential is

Ã(x̃) =
s∑

j=1

Bj x̃j dx̃j+s.

The intuition from Physics is that the eigenfunctions represent “waves” of heat propa-
gation of a certain typical wave length λ in the coordinates x̃, and of a corresponding
(much shorter) wave length λ k−1/2 in the original coordinates. At that scale, our space
behaves as if the metrics were flat and the curvature constant.

(γ) Let us consider the operators obtained by “freezing” the coefficients at any point x0, as
explained at step (β), although we will not perform the rescaling here. More specifically,
we assume that
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• L has constant curvature B =
∑s
j=1Bjdxj ∧ dxj+s. Then there is a local trivializa-

tion in which

DLu = du− iA ∧ u, A =

s∑

j=1

Bjxjdxj+s.

• Ω ≃ Rm and the metric g is flat : g =
∑
dxj ⊗ dxj .

• E ≃ Ω× Cr is a trivial (flat) Hermitian bundle.

• the Hermitian form V is constant. We choose an orthonormal frame of E in which
V is diagonal, i.e.

〈V u, u〉 =
∑

16λ6r

Vλ|uλ|2.

In this ideal situation, the connection Dk on E ⊗Lk can be written Dku = du− ikA∧ u
and the quadratic form Qk,Ω is given by

Qk,Ω(u) =

∫

Rm

1

k



∑

16j6s
16λ6r

(∣∣∣∂uλ
∂xj

∣∣∣
2

+
∣∣∣ ∂uλ
∂xj+s

− ikBjxjuλ

∣∣∣
2
)
+
∑

j>2s
16λ6r

∣∣∣duλ
dxj

∣∣∣
2


−

∑

16λ6r

Vλ|uλ|2.

In this situation, Qk,Ω is a direct sum of quadratic forms acting on each component uλ
and the computation of e−t�k is reduced to the following model cases (1.10), (1.11) in
dimension 1 or 2 :

(1.10) Q(f) =

∫

R

∣∣∣ df
dx

∣∣∣
2

, �f = −d
2f

dx2

As is well known (and although the spectrum is not discrete in that case) the kernel of
the “elementary” heat operator e−t� is given by

(1.10′) Kt,R(x, y) =
1√
4πt

e−(x−y)2/4t,

as follows from solving equation (0.19). The second model case is :

(1.11) Q(f) =

∫

R2

∣∣∣ df
dx1

∣∣∣
2

+
∣∣∣ df
dx2

− iax1f
∣∣∣
2

.

A partial Fourier transform f̂(x1, ξ2) =
1√
2π

∫
R
f(x1, x2) e

−ix2ξ2 dx2 gives

Q(f) =

∫

R2

∣∣∣ df̂
dx1

(x1, ξ2)
∣∣∣
2

+ a2
(
x1 −

ξ2
a

)2
|f̂(x1, ξ2)|2

and the change of variables x′1 = x1 − ξ2/a, x
′
2 = ξ2 leads (after dropping the second

variable x′2) to the so called “harmonic oscillator” energy functional

(1.12) q(g) =

∫

R

∣∣∣dg
dx

∣∣∣
2

+ a2x2|g|2 , � = − d2

dx2
+ a2x2.



14 J.-P. Demailly Applications of Pluripotential theory to Algebraic Geometry

The heat kernel of this operator is given by Mehler’s formula :

(1.12′) kt,R(x, y) =

√
a

2π sinh 2at
exp

(
− a

2
(coth 2at)(x− y)2 − a(tanhat)xy

)
,

which actually reduces to (1.10′) when a → 0. One way of obtaining this relation is to
observe that the unitary eigenfunctions of � are

(
2pp!

√
π

a

)−1/2

Φp(
√
ax), p = 0, 1, 2, . . . ,

with associated eigenvalues (2p+1)a, where (Φp) is the sequence of functions associated
with Hermite polynomials:

Φp(x) = ex
2/2 d

p

dxp
(e−x

2

).

In fact, for a = 1, easy calculations bearing on derivatives of ex
2/2 show that

(
− d2

dx2
+ x2

)
Φp(x) = −ex2/2 d

p+2

dxp+2
(e−x

2

)− 2x ex
2/2 d

p+1

dxp+1
(e−x

2

)− ex
2/2 d

p

dxp
(e−x

2

).

We can now replace the first term by ex
2/2 dp+1

dxp+1 (2x · e−x2

) and use the Leibniz formula
for the differentiation of the product to see that �Φp(x) = (2p+ 1)Φp(x). Therefore

kt,R(x, y) =

√
a

π
ea(x

2+y2)/2
+∞∑

p=0

e−(2p+1)at

2pp!ap
dp

dxp
(e−ax

2

)
dp

dyp
(e−ay

2

).

The above summation Σ(x, y) =
∑+∞
p=0 ... can be computed via its Fourier transform

Σ̂(ξ, η) =
1

2a
e−at

+∞∑

p=0

1

p!

(e−2at

2a

)p
(iξ)p(iη)pe−ξ

2/4ae−η
2/4a

=
1

2a
e−at exp

(
− 1

4a
(ξ2 + η2 + 2 e−2atξη)

)
,

thus

Σ(x, y) =
e−at√

1− e−4at
exp

(
− a

1− e−4at
(x2 + y2 − 2 e−2atxy)

)
.

and Mehler’s formula (1.12′) follows. Through our change of variables, the heat operator
of Q is given by

̂Kt,R2f(x1, ξ2) =

∫

R

kt,R

(
x1 −

ξ2
a
, y1 −

ξ2
a

)
f̂(y1, ξ2)dy1.

By an inverse partial Fourier transform left to the reader, we obtain the desired heat
kernel expression

Kt,R2(x1, x2; y1, y2) =
a

4π sinh at
exp

(
− a

4
(coth at)

(
(x1 − y1)

2 + (x2 − y2)
2
))

× exp
( i
2
a(x1 + y1)(x2 − y2)

)
.(1.11′)
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The heat kernel associated with a sum of (pairwise commuting) operators �1, . . . ,�m
acting on disjoint sets of variables is the product of the corresponding heat kernels e−t�j .
Let Kλ

t,k,Ω be the heat kernel of the component of Qk,Ω acting on each single entry uλ.
The factor in the heat kernel corresponding to each pair of variables (xj , xj+s), 1 6 j 6 s,
is obtained by substituting kBj to a and t/k to t (the latter rescaling comes from the
initial factor 1

k
in the expression of Qk,Ω). For the other coordinates j > 2s where B has

no coefficients, the kernel falls back to the “elementary” heat kernel (1.10′). Finally, the
constant term −Vλ|uλ|2 contributes to multiplying the heat kernel by etVλ . Therefore we
get for the global heat kernel on Ω = Rn the explicit formula

Kλ
t,k,Rn(x, y) =

s∏

j=1

kBj
4π sinhBjt

exp
(
− kBj

4
(cothBjt)

(
(x2j−1 − y2j−1)

2 + (x2j − y2j)
2
)

+
i

2
kBj(x2j−1 + y2j−1)(x2j − y2j)

)

× etVλ × 1

(4πt/k)m−2s/2
exp

(
− k

∑

j>2s

(xj − yj)
2/4t

)
.(1.13)

On the diagonal of Rn × Rn, the global heat kernel Kt,k,Rn is thus given by the rather
simple (Herm(E)⊗ IdLk)-valued tensor depending only on B, V and t/k :

(1.14) Kt,k,Rn(x, x) =
( k

4πt

)m/2
etV

s∏

j=1

Bjt

sinhBjt
.

(1.15) Theorem. Consider the general (variable coefficient) case. For δ > 0 small,

the heat kernel of �k over M admits an asymptotic estimate

Kt,k,M(x, x) =
( k

4πt

)m/2
etV (x)

s∏

j=1

Bj(x) t

sinhBj(x) t

(
1 +O(k−1/2+δ)

)

as k → +∞, where O(k−1/2+δ) is uniform with respect to x ∈ M and t in a bounded

interval ]0, T ] ⊂ ]0,+∞[ (moreover, for every open set Ω ⊂ M , a similar estimate is

valid for Kt,k,Ω on relatively compact subsets of Ω).

Proof. Notice first that (t, x) 7→ ∏s
j=1

Bj(x) t
sinhBj(x) t

extends as a smooth positive function

on [0,+∞[×M , equal to 1 when t = 0 : this is in fact the inverse of the square root of
the determinant of the positive definite symmetric matrix

sin(tb(x))

tb(x)
=

+∞∑

p=0

t2p(−b(x)2)p
(2p+ 1)!

> Id,

where b(x) is the antisymmetric endomorphism of TM associated with the alternate
2-form B(x) and −b(x)2 = b(x)†b(x) > 0.

The only thing one has still to get convinced of is that the kernel of e−t�k − e−t�0
k is

(k/t)m/2O(k−1/2+δ) uniformly along the diagonal at any point (x0, x0) ∈M ×M , where
�0
k is the operator �k “freezed” at x0. We can do this in a canonical way by using normal

coordinates from the Riemannian exponential mapping

expx0 : Rm ≃ TM,x0 →M,
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and trivializations of E and L produced by parallel transport along geodesics from x0

to any point x ∈ B(x0, ρ0), where ρ0 = injectivity radius of M . In this way, we actually
get automatically that ΓL(x

0) = ΓE(x
0) = 0. When Supp u ⊂ Ωρ := B(x0, ρ), a Taylor

expansion yields Dku−D0
ku = O(|x|+ k|x|2) · u and we get the estimates

Qk,Ωρ
(u)−Q0

k,Ωρ
(u) =

∫

M

1

k

(
|Dku|2 − |D0

ku|2
)
− 〈(V − V 0)u, u〉

= O
(∫

M

1

k

(
(ρ+ kρ2)|D0

ku||u|+ (ρ+ kρ2)2|u|2
)
+ ρ|u|2

)

= O
(∫

M

ε

k
|D0

ku|2 +
((ρ+ kρ2)2

kε
+ ρ
)
|u|2

)
,

= O
(
εQ0

k,Ωρ
(u) +

( (ρ+ kρ2)2

kε
+ ρ+ ε

)
|u|2
)

whenever ε < 1, hence there is a constant Cρ,k,ε = O
( (ρ+kρ2)2

kε
+ ρ+ ε

)
such that

(1− ε)Q0
k,Ωρ

(u)− Cρ,k,ε|u|2 6 Qk,Ωρ
(u) 6 (1 + ε)Q0

k,Ωρ
(u) + Cρ,k,ε|u|2.

From this, we conclude that e−t�k is squeezed (as a positive bounded self-adjoint opera-

tor) between e−Cρ,k,εte−t(1+ε)�
0
k and eCρ,k,εte−t(1−ε)�

0
k . By definition of the heat kernel

we have

Kt,k,Ωρ
(x0, x0) = lim

ν→+∞

∫

Ωρ×Ωρ

Kt,k,Ωρ
(x, y)uν(x)uν(y)dσ(x) dσ(y)

= lim
ν→+∞

〈〈e−t�kuν , uν〉〉

when uν −→
L1

δx0 (Dirac measure), thus

e−Cρ,k,εTK0
(1+ε)t,k,Ωρ

(x0, x0)−K0
t,k,Ωρ

(x0, x0) 6 Kt,k,Ωρ
(x0, x0)−K0

t,k,Ωρ
(x0, x0)

6 eCρ,k,εTK0
(1−ε)t,k,Ωρ

(x0, x0)−K0
t,k,Ωρ

(x0, x0).

We take here ρ = ε = k−1/2+δ, so that Cρ,k,ε = O(k−1/2+δ). The expected uni-
form bounds are then obtained by an application of Proposition 1.9, where the choice
ρ = k−1/2+δ ≫ k−1/2 ensures that the relative errors

Kt,k,M −Kt,k,Ωρ
and K0

t,k,Rm −K0
t,k,Ωρ

are very small, namely of the order of magnitude O(exp(−kδ/4T )). �

As a consequence, we obtain the following estimate for the eigenvalues :

(1.16) Corollary. The eigenvalues λν,k,Ω of Qk,Ω satisfy for every t > 0 the estimate

+∞∑

ν=1

e−tλν,k,Ω = (1 +O(k−1/2))
( k

4πt

)m/2 ∫

Ω

tr(etV (x))
s∏

j=1

Bj(x) t

sinhBj(x) t
dσ(x).
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This result can be also interpreted in terms of the counting function

Nk,Ω(λ) = #{ν ; λν,k,Ω 6 λ}

and of the spectral density measure (a sum of Dirac measures on the real line)

µk,Ω = k−m/2
d

dλ
Nk,Ω(λ).

Notice that the measures µk,Ω are all supported in the fixed interval [−v0,+∞[, where v0
is an upper bound for the eigenvalues of V (x), x ∈M . In these notations, Corollary 1.16
can be restated :

lim
k→+∞

∫ +∞

−∞
e−tλdµk,Ω(λ) =

1

(4πt)m/2

∫

Ω

tr(etV (x))
s∏

j=1

Bj(x) t

sinhBj(x) t
dσ(x).

We thus see that the sequence of measures µk,Ω converges weakly to a measure µΩ whose
Laplace transform is given by the right hand side. Inverting the formula, one obtains :

(1.17) Corollary. For almost all λ ∈ R

(1.18) lim
k→+∞

k−m/2Nk,Ω(λ) = µΩ(]−∞, λ]) =

∫

Ω

r∑

j=1

νB(x)(Vj(x) + λ)dσ(x)

where νB(x)(λ) is the function on M × R defined by

(1.19) νB(λ) =
2s−mπ−m/2

Γ(m2 − s+ 1)
B1 · · ·Bs

∑

(p1,...,ps)∈Ns

[
λ−

∑
(2pj + 1)Bj

]m
2 −s

+
.

Proof. We leave as an exercise to the reader to check that the Laplace transform

∫ +∞

−∞
e−tλdνB(v + λ) = etv

∫ +∞

−∞
e−tλdνB(λ)

is actually equal to

etv

(4πt)m/2

s∏

j=1

Bj(x) t

sinhBj(x) t
.

1.C. Proof of the holomorphic Morse inequalities

Let X be a compact complex manifold, L and E holomorphic Hermitian vector
bundles of rank 1 and r over X . If X is endowed with a Hermitian metric ω, Hodge
theory shows that the Dolbeault cohomology group Hq(X,E ⊗ Lk) can be identified
with the space of harmonic (0, q)-forms with respect to the Laplace-Beltrami operator

∆′′
k = ∂k∂

∗
k + ∂

∗
k∂k acting on E ⊗ Lk. We thus have to estimate the zero-eigenspace

of ∆′′
k .
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In order to apply corollary 1.17, we first have to compute ∆′′
k in terms of the Hermi-

tian connection ∇k on E⊗Lk⊗Λ0,qT ∗
X deduced from the Chern connections of L,E, TX .

What plays now the role of E is the (non holomorphic) bundle E ⊗ Λ0,qT ∗
X .

The relation between ∆′′
k and ∇k is most easily obtained by means of the Bochner-

Kodaira-Nakano identity. In order to simplify the exposition, we assume here that the
metric ω on X is Kähler. For any Hermitian holomorphic line bundle G on X , the
operators ∆′ and ∆′′ associated with the Chern connection D = DG are related by the
B-K-N identity (cf. [Boc48], [Kod53], [AN54], [Nak55])

(1.20) ∆′′ = ∆′ + [iθG,Λ]

where θG = D2
G ∈ C∞(X,Λ1,1T ∗

X ⊗ Hom(G,G)) is the curvature tensor and Λ = L∗ is
the adjoint of the Lefschetz operator Lu = ω ∧ u.

The Leibniz rule implies θE⊗Lk = kθL ⊗ IdE +θE ⊗ IdLk (omitting the Hermitian
metrics for simplicity of notation), thus

∆′′
k = ∆′

k + k[iθL,Λ] + [iθE ,Λ].

At a given point z0 ∈ X , we can find a coordinate system (z1, . . . , zn) such that (∂/∂zj)
is an orthonormal basis of TX diagonalizing iθL(z

0), in such a way that

ω(z0) =
i

2

∑

16j6n

dzj ∧ dzj , iθL(z
0) =

i

2

∑

16j6n

αjdzj ∧ dzj

where α1, . . . , αn are the curvature eigenvalues of iθL(z
0). A standard formula gives

the expression of the curvature term [iθL,Λ]u for any (p, q)-form u. In fact, for u =∑
uI,J,λdzI ∧ dzJ ⊗ eλ, we have

〈[iθL,Λ]u, u〉 =
∑

I,J,λ

(αJ − α∁I)|uI,J,λ|2

where αJ =
∑
j∈J αj. In the case of a (0, q)-form u =

∑
uJ,λdzJ ⊗ eλ we simply have

∆′
ku = D′∗

k D
′
ku = ∇′∗

k ∇′
ku and

(1.21′) ∆′′
k = ∇′∗

k ∇′
k − kV ′ + [iθE ,Λ] ,

〈V ′u, u〉 =
∑

J,λ

α∁J |uJ,λ|2 (here I = ∅).

This is not yet what was needed, since only the (1, 0) part ∇′
k appears. To get the (0, 1)

component, we consider u as a (n, q) form with values in E ⊗ Lk ⊗ ΛnTX . We then get
∆′
ku = D′

kD
′∗
k u where

D′∗
k u = −

∑
∂uI,J,λ/∂zjdz1 ∧ · · · d̂zj · · · ∧ dzn ∧ dzJ ⊗ eλ

in normal coordinates. Thus ∆′
ku = ∇′′∗

k ∇′′
ku and

(1.21′′) ∆′′
k = ∇′′∗

k ∇′′
k + kV ′′ + [iθE⊗ΛnTX

,Λ] ,
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〈V ′′u, u〉 =
∑

J,λ

αJ |uJ,λ|2 (here I = {1, . . . , n}).

If the metric ω is non Kähler, we get additional torsion terms, but these terms are
independent of k. A combination of (1.21′) and (1.21′′) yields

(1.22)
2

k
∆′′
k =

1

k
∇∗
k∇k − V +

1

k
W

where W is a Hermitian form independent of k and

〈V u, u〉 =
∑

J,λ

(α∁J − αJ)|uJ,λ|2.

Now apply Theorem 1.15 and observe that W does not give any significant contribution
to the heat kernel as k → +∞. We write here zj = xj + iyj and the “magnetic field”

B = iθL =
∑

16j6n

αjdxj ∧ dyj .

The curvature eigenvalues are given by Bj = |αj |. We denote s = s(x) the rank of B(x)
and order the eigenvalues so that

|α1| > · · · > |αs| > 0 = αs+1 = · · · = αn.

The eigenvalues of V acting on E ⊗ ΛnT ∗
X are the coefficients α∁J − αJ , counted with

multiplicity r. Therefore

(1.23) Theorem. The heat kernel associated with e−
2t
k
∆′′

k in bidegree (0, q) satisfies

Kk
t (x, x) ∼ kn

r
∑

|J|=q e
t(α∁J (x)−αJ (x))

(4π)ntn−s

s∏

j=1

|αj(x)|
sinh |αj(x)|t

as k → +∞. In particular, if λk,q1 6 λk,q2 6 · · · are the eigenvalues of 1
k∆

′′
k in bidegree

(0, q), we have

+∞∑

ν=1

e−2tλk,q
ν ∼ rkn

∑

|J|=q

∫

X

et(α∁J (x)−αJ (x))

(4π)ntn−s

s∏

j=1

|αj(x)|
sinh |αj(x)|t

for every t > 0.

At this point, the main idea is to use the eigenspaces to construct a finite dimen-
sional subcomplex of the Dolbeault complex possessing the same cohomology groups.
This was already the basic idea in Witten’s analytic proof of the standard Morse in-
equalities [Wit82]. We denote by Hk,q

λ , resp. Hk,q
6λ
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the λ-eigenspace of 1
k∆

′′
k acting on C∞(X,Λ0,qT ∗

X ⊗ E ⊗ Lk), resp. the direct sum of

eigenspaces corresponding to all eigenvalues 6 λ. As ∂k and ∆′′
k commute, we see that

∂(Hk,q
λ ) ⊂ Hk,q+1

λ , thus Hk,•
λ and Hk,•

6λ are finite dimensional subcomplexes of the Dol-
beault complex

∂ : C∞(X,Λ0,•T ∗
XE ⊗ Lk).

Since ∂k∂
∗
k + ∂

∗
k∂k = ∆′′

k = kλ Id on Hk,•
λ , we see that Hk,•

λ has trivial cohomology

for λ 6= 0. Since Hk,•
0 is the space of harmonic forms, we see that Hk,•

6λ has the same
cohomology as the Dolbeault complex for λ > 0. We will call this complex the Witten
∂-complex. We need an elementary lemma of linear algebra.

(1.24) Lemma. Set hqk = dimHq(X,E ⊗ Lk). Then for every t > 0

hqk − hq−1
k + · · ·+ (−1)qh0k 6

q∑

ℓ=0

(−1)q−ℓ
+∞∑

j=1

e−tλ
k,ℓ

j .

Proof. The left hand side is the contribution of the 0 eigenvalues in the right hand
side. All we have to check is that the contribution of the other eigenvalues is > 0. The
contribution of the eigenvalues such that λk,ℓj = λ > 0 is

e−tλ
q∑

ℓ=0

(−1)q−ℓ dimHk,ℓ
λ .

As Hk,•
λ is exact, one easily sees that the last sum is equal to the dimension of ∂Hk,q

λ ⊂Hk,q+1
λ , hence > 0. �

Combining Theorem 1.23 with Lemma 1.24, we get

hqk − hq−1
k + · · ·+ (−1)qh0k 6 o(kn)+

rkn
q∑

ℓ=0

(−1)q−ℓ
∑

|J|=ℓ

∫

X

∏
j6s |αj| · et(α∁J−αJ−

∑
|αj|)

22n−sπntn−s
∏
j6s(1− e−2t|αj |)

.

This inequality is valid for any t > 0, so we can let t tend to +∞. It is clear that
α∁J − αJ −∑ |αj| is always 6 0, thus the integrand tends to 0 at every point where
s < n. When s = n, we have α∁J(x)− αJx)−

∑ |αj(x)| = 0 if and only if αj(x) > 0 for
every j ∈ ∁J and αj(x) < 0 for every j ∈ J . This implies x ∈ X(L, h, ℓ) ; in this case
there is only one multi-index J satisfying the above conditions and the limit is

(2π)−n|α1 · · ·αn| = (2π)−n|(iθL,h)n| = |ΘnL,h|,

as ΘL,h = i
2π
θL,h by definition. By the monotone convergence theorem, our sum of

integrals converges to

q∑

ℓ=0

(−1)q−ℓ
∫

X(L,h,ℓ)

(2π)−n|α1 · · ·αn|dσ =
1

n!

∫

X(L,h,6q)

(−1)qΘnL,h .

The Main Theorem 1.2 follows. �
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2. Applications to algebraic geometry

2.A. Solution of the Grauert-Riemenschneider conjecture

Let L be a holomorphic line bundle over a compact connected complex manifold X
of dimension n and Vk = H0(X,Lk). Denote by Z(Vk) the set of common zeroes of all
sections in Vk, and fix a basis (σ0, . . . , σN) of Vk. There is a canonical holomorphic map

(2.1) ΦkL : X r Z(Vk) −→ P(Vk), x 7→ [σ0(x) : . . . : σN (x)]

sending a point x ∈ X r Z(Vk) to the hyperplane H ⊂ Vk of sections σ =
∑
λjσj ∈ Vk

such that σ(x) =
∑
λjσj(x) = 0; it is therefore given by x 7→ [σ0(x) : . . . : σN (x)] in

projective coordinates on P(Vk) ≃ PN . The pull-back Φ∗
kLO(d) can be identified with the

restriction of Lkd toXrZ(Vk); indeed, to any homogeneous polynomial P (w0, . . . , wN ) ∈
H0(PN ,O(d)) of degree d, one can associate a section

(2.2) s = P (σ0, . . . , σN ) ∈ H0(X,Lkd).

When L possesses a smooth Hermitian metric h with ΘL,h > 0, one can construct
many sections of high tensor powers Lk (e.g. by Hörmander’s L2 estimates [Hör65],
[AV65] for ∂). For k > k0 large enough, the “base locus” Z(Vk) is empty, the sections
in Vk separate any two points of X and generate all 1-jets at any point. Then ΦkL gives
an embedding of X in some projective space PN , for N = N(k) and k > k0. In this way,
the theory of L2 estimates implies the Kodaira embedding theorem : a compact complex
manifold X is projective algebraic if and only if X possesses a Hermitian line bundle
(L, h) with C∞ positive curvature.

The Grauert-Riemenschneider conjecture [GR70] is an attempt to characterize the
more general class of Moishezon varieties in terms of semi-positive line bundles. Let us
first recall a few definitions. The algebraic dimension a(X) is the transcendence degree of
the field M(X) of meromorphic functions on X . A well-known theorem of Siegel [Sie55]
asserts that 0 6 a(X) 6 n (see Corollary 2.6 below). A compact manifold or variety X
is said to be Moishezon if a(X) = n.

By definition, the Kodaira dimension κ(L) is the supremum of the dimension of
the images Yk = ΦkL(X r Z(Vk)) ⊂ P(V ∗

k ) for all integers k > 0 [one defines κ(L) =
−∞ when Vk = 0 for all k, in which case we always have Yk = ∅]. Since the field of
meromorphic functions on X obtained by restriction of rational functions of P(V ∗

k ) to Yk
has transcendence degree at least equal to dimYk, we infer that

(2.3) −∞ 6 κ(L) = sup dimYk 6 a(X) 6 n.

(2.4) Definition. The line bundle L → X is said to be big if κ(L) is maximal, i.e.

κ(L) = n = dimX.

The following standard lemma is needed (cf. [Ser54], [Sie55]).

(2.5) Lemma (Serre-Siegel). For every line bundle L → X, there exist constants

C > c > 0 and k0 ∈ N∗ such that

dimH0(X,Lk) 6 C kκ(L) for all k > 1,

dimH0(X,Lk) > c kκ(L) for all k > 1 multiple of k0.
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Proof. The lower bound is obtained by taking k0 such that p := dimYk0 = κ(L). Then,
by the rank theorem, there exists a point x0 ∈ X r Z(Vk0) and a basis (σ0, . . . , σN ) of
H0(X,Lk0) such that σ0(x0) 6= 0 and

(
d(σ1/σ0)∧. . .∧d(σp/σ0)

)
(x0) 6= 0. Then by taking

s = P (σ0, . . . , σp, 0, . . . , 0) in (2.2), we obtain an injection of the space of homogeneous
polynomials of degree d in p+ 1 variables into H0(X,Lk0d), whence

h0(X,Lk0d) >

(
d+ p

p

)
> dp/p!.

The proof of the upper bound proceeds as follows : select a Hermitian metric h,
on L and a finite family of coordinate balls Bj = B(zj, rj) such that B′

j = B(zj, rj/2)
cover X , and L|Bj

is trivial for each j. By moving a little bit the points zj , we may
assume that ΦkL has maximal rank at all points zj for all k (the bad set is at most a
countable union of analytic sets, so it is nowhere dense). If Lk has many sections, one
can solve a linear system in many unknowns to get a section s vanishing at a high order
m at all centers zj . Then the Schwarz lemma gives

‖s‖h,∞ = sup
j

‖s‖h,B′
j
6 2−mC(h)k sup

j
‖s‖h,Bj

6 2−mC(h)k‖s‖h,∞

where C(h) is a bound for the oscillation of the metric h on Bj, which we may assume
to be finite after possibly shrinking Bj . Thus m 6 k logC(h)/ log 2 if s 6= 0. Since
the sections of Lk are constant along the fibers of ΦkL, only mdimYk#{zj} equations
transversally to the fibers are needed to make s vanish at order m. Therefore we can
choose m ≈ (h0(X,Lk)/#{zj})1/dimYk and still get a non zero section, so that

h0(X,Lk) ≈ #{zj} ·mdimYk 6 C kκ(L). �

(2.6) Corollary (Siegel). For every compact complex manifold X

a(X) := tr degCM(X) 6 n.

Proof. Fix s algebraically independent elements f1, . . . , fs ∈ M(X) and let D be the
sup of the pole divisors of the fj ’s. To every polynomial P (f1, . . . , fs) of degree 6 k
corresponds injectively a section σP = P (f1, . . . , fs) ∈ H0(X,O(kD)). A dimension
count implies

ks

s!
6

(
k + s

s

)
6 C kκ(O(D)) 6 C kn

by Lemma 2.5. Therefore s 6 n. �

Now, the Grauert-Riemenschneider conjecture [GR70] can be stated as follows.

(2.7) Grauert-Riemenschneider conjecture. A compact complex variety Y is Moi-

shezon if and only if there is a proper non singular modification X → Y and a Hermitian

line bundle (L, h) over X such that the curvature form ΘL,h is > 0 on a dense open

subset of X.
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Proof. When Y is Moishezon, it is well known that there exists a projective algebraic
modification X ; therefore we can even take L to be ample and then there exists h such
that ΘL,h > 0 everywhere on X .

The converse statement was proved by Siu in [Siu84, Siu85], assuming only ΘL,h > 0
everywhere and ΘL,h > 0 in at least one point. Morse inequalities provide in fact a much
stronger criterion, requiring only the positivity of some curvature integral:

(2.8) Theorem. If a Hermitian line bundle (L, h) on X satisfies the integral condition

∫

X(L,h,61)

(ΘL,h)
n > 0,

then κ(L) = n, in particular X is Moishezon.

In fact, the lower bound (1.4) applied with E = OX implies immediately that
h0(X,Lk) > c kn, hence κ(L) = n. Now, if X is a modification of Y , we have M(Y ) ≃M(X), so a(X) = a(Y ), and Y has to be Moishezon. �

2.B. Cohomology estimates for nef line bundles

On a projective algebraic manifold X , a line bundle L is said to be nef if L · C > 0
for every algebraic curve C ⊂ X . If ω is a given Kähler or Hermitian (1, 1)-form on X ,
it can be shown (cf. [Dem90]) that L is nef if and only if for every ε > 0 there exists a
smooth Hermitian metric hε such that ΘL,hε

> −εω on X ; in fact, the latter property
clearly implies

L · C =

∫

C

ΘL,hε
> −ε

∫

C

ω =⇒ L · C > 0

for every curve C. Conversely, if L · C > 0 for every curve C, the well-known Kleiman
criterion (cf. [Har70]) implies that kL + A is ample for every ample divisor A. Hence
there exists a smooth Hermitian metric hk on L such that

ΘkL+A = kΘL,hk
+ΘA,hA

> 0 =⇒ ΘL,hk
> −1

k
ω, where ω = ΘA,hA

> 0.

Therefore, one can introduce the following definition of nefness on an arbitrary compact
complex manifold.

(2.9) Definition. Let X be a compact complex manifold and ω a given smooth positive

(1, 1)-form on X. A line bundle L→ X is said to be nef if for every ε > 0 there exists a

smooth Hermitian metric hε on L such that ΘL,hε
> −εω everywhere on X.

(2.10) A consequence of holomorphic Morse inequalities. If X is compact Kähler

and L is nef, for every holomorphic vector bundle E on X one has

hq(X,O(E)⊗ O(kL)) = o(kn) for all q > 1.

Proof. Let ω be a Kähler metric. The nefness of L implies that there exists a smooth
Hermitian metric hε on L such that ΘL,hε

> −εω. On X(L, hε, 1) we have exactly
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1 negative eigenvalue λ1 which is belongs to [−ε, 0[ and the other ones λj (j > 2) are
positive. The product λ1 · · ·λn satisfies |λ1 · · ·λn| 6 ε

∏
j>2(λj + ε), hence

1

n!

∣∣ΘnL,hε

∣∣ 6 1

(n− 1)!
εω ∧ (ΘL,hε

+ εω)n−1 on X(L, hε, 1).

By integrating, we find

∫

X(L,hε,1)

ΘnL,hε
6 nε

∫

X

ω ∧ (c1(L) + εω)n−1

and the result follows. �

(2.11) Note. When X is non Kähler, D. Popovici [Pop08] has announced bounds for
the Monge-Ampère masses of ΘL,hε

which still imply the result, but the proof is much
harder in that case. On the other hand, when X is projective algebraic, an elementary
hyperplane section argument and an induction on dimension easily implies the stronger
upper bounds

(2.12) hq(X,O(E)⊗ O(kL)) = O(kn−q) for all q > 0.

Hint. By Serre duality, it is enough to show that

hq(X,O(F )⊗ O(−kL)) = O(kq) for every q > 0

and every holomorphic vector bundle F . Choose a very ample line bundle A so big that
F ′ = F ∗ ⊗ O(A) is Nakano positive, and apply the Nakano vanishing theorem and Serre
duality to see that Hq(X,O(F )⊗O(−A)⊗O(−kL)) = 0 for all k and q > 1. Use the exact
sequence 0 → OX(−A) → OX → OA → 0, take the tensor product with O(F )⊗ O(−kL)
and apply induction. �

It is unknown whether the accurate bound (2.12) holds true on a general compact complex
manifold, even when X is assumed to be Kähler.

2.C. Distortion inequalities for asymptotic Fubini-Study metrics

Another application of the heat kernel estimates is a generalization of G. Kempf’s
distortion inequalities ([Kem89], [Ji89]) to all projective algebraic manifolds. In this
generality, the result was obtained by Th. Bouche [Bou90], and in less generality (but
with somewhat stronger estimates) by G. Tian [Tia90].

Let L be a positive Hermitian line bundle over a projective manifold X , equipped
with a Hermitian metric ω. Then Vk = H0(X,Lk) has a natural Hermitian metric given
by the global L2 norm of sections. For k > k0 large enough, ΦkL is an embedding and
Lk can be identified to the pull-back Φ∗

kO(1). We want to compare the original metric
| • | of L and the metric | • |FS induced by the Fubini-Study metric of O(1).

Let (s1, . . . , sN) be an orthonormal basis of H0(X,Lk). It is not difficult to check
that

|ξ|2FS =
|ξ|2

|s1(x)|2 + · · ·+ |sN (x)|2
for ξ ∈ Lkx ,



Chapter I, Holomorphic Morse inequalities 25

thus all that we need is to get an estimate of
∑ |sj(x)|2. However, this sum is the

contribution of the 0 eigenvalue in the heat kernel

Kk
t (x, x) =

+∞∑

j=1

e−2tλk
j |ψj(x)|2

associated to 2
k�

′′
k in bidegree (0, 0). We observe that non zero eigenvalues λkj are also

eigenvalues in bidegree (0, 1), since ∂ is injective on the corresponding eigenspaces. The

associated eigenfunctions are ∂ψj/
√
kλkj , for

‖∂ψj‖2 = 〈〈∆′′
kψj , ψj〉〉 = kλkj .

Thus the summation
+∞∑

j=1

e−2tλk
j |∂ψj(x)|2

is bounded by the heat kernel in bidegree (0, 1), which is itself bounded by kne−ct with
c > 0 (note that α∁J − αJ −∑ |αj | < 0 on X for |J | = 1). Taking t = kε with ε small,
one can check that all estimates remain uniformly valid and that the contribution of the
non zero eigenfunctions in Kk

t (x, x) becomes negligible in C0 norm. Then theorem 1.23
shows that ∑

|sj(x)|2 ∼ Kk
t (x, x) ∼ kn(2π)−n|α1(x) · · ·αn(x)|

as t = kε → +∞. For ξ ∈ Lkx we get therefore the C0 uniform estimate

(2.13)
|ξ|2
|ξ|2FS

∼
( k
2π

)n
|α1(x) · · ·αn(x)| as k → +∞.

As a consequence, the Fubini-Study metric on L induced by ΦkL converges uniformly to
the original metric. G. Tian [Tia90] proved that this last convergence statement holds
in norm C4. It is now known that there is in fact an asymptotic expansion in 1/k, and
therefore C∞ convergence; this holds true even in the almost complex setting, see [BU00]
and [SZ02].

2.D. Algebraic counterparts of the holomorphic Morse inequalities

One difficulty in the application of the analytic form of the inequalities is that the cur-
vature integral is in general quite uneasy to compute, since it is neither a topological nor
an algebraic invariant. However, the Morse inequalities can be reformulated in a more
algebraic setting in which only algebraic invariants are involved. We give here two such
reformulations – after they were found via analysis in [Dem94], F. Angelini [Ang96] gave
a purely algebraic proof (see also [Siu93] and [Tra95] for related ideas).

(2.14) Theorem. Let L = F −G be a holomorphic line bundle over a compact Kähler

manifold X, where F and G are numerically effective line bundles. Then for every

q = 0, 1, . . . , n = dimX, there is an asymptotic strong Morse inequality

∑

06j6q

(−1)q−jhj(X, kL) 6
kn

n!

∑

06j6q

(−1)q−j
(
n

j

)
Fn−j ·Gj + o(kn).
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Proof. By adding ε times a Kähler metric ω to the curvature forms of F and G, ε > 0
one can write ΘL = Θ̃F,ε − Θ̃G,ε where Θ̃F,ε =

i
2π

ΘF + εω and Θ̃G,ε =
i
2π

ΘG + εω are

positive definite. Let λ1 > · · · > λn > 0 be the eigenvalues of Θ̃G,ε with respect to Θ̃F,ε.

Then the eigenvalues of i
2π

ΘL with respect to Θ̃F,ε are the real numbers 1− λj and the
set X(L, h,6 q) is the set {λq+1 < 1} of points x ∈ X such that λq+1(x) < 1. The strong
Morse inequalities yield

∑

06j6q

(−1)q−jhj(X, kL) 6
kn

n!

∫

{λq+1<1}
(−1)q

∏

16j6n

(1− λj)Θ̃
n
F,ε + o(kn).

On the other hand we have

(
n

j

)
Θ̃n−jF,ε ∧ Θ̃jG,ε = σjn(λ) Θ̃

n
F,ε,

where σjn(λ) is the j-th elementary symmetric function in λ1, . . . , λn , hence

∑

06j6q

(−1)q−j
(
n

j

)
Fn−j ·Gj = lim

ε→0

∫

X

∑

06j6q

(−1)q−jσjn(λ) Θ̃
n
F,ε.

Thus, to prove the lemma, we only have to check that

∑

06j6n

(−1)q−jσjn(λ)− 1l{λq+1<1}(−1)q
∏

16j6n

(1− λj) > 0

for all λ1 > · · · > λn > 0, where 1l{...} denotes the characteristic function of a set.
This is easily done by induction on n (just split apart the parameter λn and write
σjn(λ) = σjn−1(λ) + σj−1

n−1(λ)λn). �

In the case q = 1, we get an especially interesting lower bound (this bound has been
observed and used by S. Trapani [Tra95] in a similar context).

(2.15) Consequence. h0(X, kL)− h1(X, kL) > kn

n!
(Fn − nFn−1 ·G)− o(kn).

Therefore some multiple kL has a section as soon as Fn − nFn−1 ·G > 0.

(2.16) Remark. The weaker inequality

h0(X, kL) >
kn

n!
(Fn − nFn−1 ·G) − o(kn)

is easy to prove if X is projective algebraic. Indeed, by adding a small ample Q-divisor
to F and G, we may assume that F , G are ample. Let m0G be very ample and let k′

be the smallest integer > k/m0. Then h0(X, kL) > h0(X, kF − k′m0G). We select k′

smooth members Gj , 1 6 j 6 k′ in the linear system |m0G| and use the exact sequence

0 → H0(X, kF −
∑

Gj) → H0(X, kF ) →
⊕

H0(Gj , kF|Gj
).
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Kodaira’s vanishing theorem yields Hq(X, kF ) = 0 and Hq(Gj , kF|Gj
) = 0 for q > 1 and

k > k0. By the exact sequence combined with Riemann-Roch, we get

h0(X, kL) > h0(X, kF −
∑

Gj)

>
kn

n!
Fn −O(kn−1)−

∑( kn−1

(n− 1)!
Fn−1 ·Gj −O(kn−2)

)

>
kn

n!

(
Fn − n

k′m0

k
Fn−1 ·G

)
−O(kn−1)

>
kn

n!

(
Fn − nFn−1 ·G

)
−O(kn−1).

(This simple proof is due to F. Catanese.) �

(2.17) Corollary. Suppose that F and G are nef and that F is big. Some multiple of

mF −G has a section as soon as

m > n
Fn−1 ·G
Fn

.

In the last condition, the factor n is sharp: this is easily seen by taking X = Pn1 and
F = O(a, . . . , a) and G = O(b1, . . . , bn) over Pn1 ; the condition of the corollary is then
m >

∑
bj/a, whereas k(mF − G) has a section if and only if m > sup bj/a; this shows

that we cannot replace n by n(1− ε).

3. Morse inequalities on q-convex varieties

Thierry Bouche [Bou89] has obtained an extension of holomorphic Morse inequalities
to the case of strongly q-convex manifolds. We explain here the main ideas involved.

A complex (non compact) manifold X of dimension n is strongly q-convex in the
sense of Andreotti and Grauert [AG62] if there exists a C∞ exhaustion function ψ on
X such that i∂∂ψ has at least n − q + 1 positive eigenvalues outside a compact subset
of X . In this case, the Andreotti-Grauert theorem shows that all cohomology groups
Hm(X,F) with values in a coherent analytic sheaf are finite dimensional for m > q.

(3.1) Theorem. Let L, E be holomorphic vector bundles over X with rankL = 1,
rankE = r. Assume that X is strongly q-convex and that L has a Hermitian metric h
for which ΘL,h has at least n − p + 1 nonnegative eigenvalues outside a compact subset

K ⊂ X. Then for all m > p+ q − 1 the following strong Morse inequalities hold :

n∑

ℓ=m

(−1)ℓ−m dimHℓ(X,E ⊗ Lk) 6 r
kn

n!

∫

X(L,h,>m)

(−1)mΘnL,h + o(kn).

Proof. For every c ∈ R, we consider the sublevel sets

Xc = {x ∈ X ; ψ(x) < c}.
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Select c0 such that i∂∂ψ has n− q + 1 positive eigenvalues on X rXc. One can choose
a Hermitian metric ω0 on X in such a way that the eigenvalues γ01 6 · · · 6 γ0n of i∂∂ψ
with respect to ω0 satisfy

(3.2) − 1

n
6 γ01 6 · · · 6 γ0q−1 6 1 and γ0q = · · · = γ0n = 1 on X rXc0 ;

this can be achieved by taking ω0 equal to i∂∂ψ on a C∞ subbundle of TX of rank
n − q + 1 on which i∂∂ψ is positive, and ω0 very large on the orthogonal complement.
We set ω = eρω0 where ρ is a function increasing so fast at infinity that ω will be
complete.

More important, we multiply the metric of L by a weight e−χ◦ψ where χ is a convex
increasing function. The resulting Hermitian line bundle is denoted (Lχ, hχ). For any
(0, m) form u with values in E ⊗ Lk, viewed as an (n,m) form with values in E ⊗ Lk ⊗
ΛnTX , the Bochner-Kodaira-Nakano formula implies an inequality

〈〈∆′′
ku, u〉〉 >

∫

X

k〈[iθLχ,hχ
),Λ]u, u〉+ 〈Wu, u〉

where W depends only on the curvature of E ⊗ ΛnTX and the torsion of ω. By the
formulas of §1.C, we have

〈[iθLχ,hχ
),Λ]u, u〉 > (α1 + · · ·+ αm)|u|2

where α1 6 · · · 6 αn are the eigenvalues of

iθLχ,hχ
= iθL,h + i∂∂(χ ◦ ψ) > iθL,h + (χ′ ◦ ψ)i∂∂ψ.

If β is the lowest eigenvalue of iθL,h with respect to ω, we find

αj > β + (χ′ ◦ ψ)γ0j /eρ ,
α1 + · · ·+ αm > mβ + (χ′ ◦ ψ)(γ01 + · · ·+ γ0m)/e

ρ ,

and by (3.2) we get for all m > q :

α1 + · · ·+ αm > mβ +
1

n
e−ρχ′ ◦ ψ on X rXc0 .

It follows that one can choose χ increasing very fast in such a way that the Bochner
inequality becomes

(3.3) 〈∆′′
ku, u〉 > k

∫

XrXc0

A(x)|u(x)|2 − C1

∫

X

|u(x)|2

where A > 1 is a function tending to +∞ at infinity on X and C1 > 0. Now, Rellich’s
lemma easily shows that ∆′′

k has a compact resolvent. Hence the spectrum of ∆′′
k is

discrete and its eigenspaces are finite dimensional. Standard arguments also show the
following :
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(3.4) Lemma. When χ increases sufficiently fast at infinity, the space Hm(X,Lkχ ⊗E)
of L2-harmonic forms of bidegree (0, m) for ∆′′

k is isomorphic to the cohomology group

Hm(X,E ⊗ Lk) for all k ∈ N and m > q.

For a domain Ω ⊂⊂ X , we consider the quadratic form

Qk,mΩ (u) =
1

k

∫

Ω

|∂ku|2 + |∂∗ku|2

with Dirichlet boundary conditions on ∂Ω. We denote by Hk,m
6λ,Ω the direct sum of all

eigenspaces of Qk,mΩ corresponding to eigenvalues 6 λ (i.e. 6 kλ for ∆′′
k).

(3.5) Lemma. For every λ > 0 and ε > 0, there exists a domain Ω ⊂⊂ X and an

integer k0 such that

dimHk,m
6λ,Ω 6 dimHk,m

6λ,X 6 dimHk,m
6λ+ε,Ω for k > k0.

Proof. The left hand inequality is a straightforward consequence of the minimax principle,
because the domain of the global quadratic form Qk,mΩ is contained in the domain of Qk,mX .

For the other inequality, let u ∈ Hk,m
6λ,X . Then (3.3) gives

k

∫

XrXc0

A|u|2 − C1

∫

Xc0

|u|2 6 kλ

∫

X

|u|2.

Choose c2 > c1 > c0 so that A(x) > a on XrXc1 and a cut-off function ϕ with compact
support in Xc2 such that 0 6 ϕ 6 1 and ϕ = 1 on Xc1 . Then we find

∫

XrXc1

|u|2 6
C1 + kλ

ka

∫

X

|u|2.

For a large enough, we get
∫
XrXc1

|u|2 6 ε‖u‖2. Set Ω = Xc2 . Then

Qk,mΩ (ϕu) =
1

k

∫

Ω

|∂ϕ ∧ u+ ϕ∂ku|2 + |ϕ∂∗ku− ∂ϕ u|2

6 (1 + ε)Qk,mX (u) +
C2

k

(
1 +

1

ε

)
‖u‖2

6 (1 + ε)(λ+
C2

kε
)‖u‖2.

As ‖ϕu‖2 >
∫
Xc1

|u|2 > (1− ε)‖u‖2 , we infer

Qk,mΩ (ϕu) 6
1 + ε

1− ε

(
λ+

C2

kε

)
‖ϕu‖2.

If ε is replaced by a suitable smaller number and k taken large enough, we obtain
Qk,mΩ (v) 6 (λ+ ε)‖v‖2 for all v ∈ ϕHk,m

6λ,X . Then the right hand inequality in lemma 3.5
follows by the minimax principle. �
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Now, Corollary 1.17 easily computes the counting function Nk,m
Ω for the eigenvalues :

lim
λ→0+

lim
k→+∞

k−nNk,m
Ω (λ) =

r

n!

∫

X(Lχ,hχ,m)

(−1)m
( i

2π
θLχ,hχ

)
)n
.

Applying this to the Witten complex Hk,•
6λ,X , we easily infer the inequality of theorem

3.1, except that c(L) is replaced by c(Lχ). However, up to now, the inequality is valid
for all m > q. Take the convex function χ equal to 0 on ]−∞, c0]. Then

ΘLχ,hχ
=

i

2π
θLχ,hχ

= ΘL,h +
i

2π
∂∂(χ ◦ ψ)

coincides with ΘL,h on Xc0 and has at most (p − 1) + (q − 1) negative eigenvalues on
X r Xc0 . Hence X(Lχ, hχ, m) = X(L, h,m) for m > p + q − 1 and ΘLχ,hχ

= ΘL,h on
these sets. Theorem 3.1 is proved. �

As a corollary, one obtains a general a priori estimate for the Monge-Ampère operator
(i∂∂)n on q-convex manifolds.

(3.6) Corollary: calculus inequalities. Let X be a strongly q-convex manifold and ϕ a

C∞ function on X, weakly p-convex outside a compact subset of X. For ℓ = 0, 1, . . . , n,
let Gℓ be the open set of points where i∂∂ϕ is non degenerate and admits ℓ negative

eigenvalues. Then for all m > p = q − 1

n∑

ℓ=m

∫

Gℓ

(i∂∂ϕ)m has the sign of (−1)m.

This result has been first obtained by Y.T. Siu [Siu90] for q-convex domains in a
Stein manifold. At that time, the q-convex case of the inequalities was not yet available
and Siu had to rely on a rather sophisticated approximation argument of Stein manifolds
by algebraic varieties ; the proof could then be reduced to the compact case.

The general statement given above is in fact a direct consequence of Theorem 3.1 :
take for L the trivial bundle L = OX equipped with the metric defined by the weight e−ϕ

and E = OX . SinceHm(X,Lk) = Hm(X,OX) is independent of k and finite dimensional,
Theorem 3.1 implies

kn
n∑

ℓ=m

∫

Gℓ

(−1)m(i∂∂ϕ)n > constant − o(kn)

for all k > k0 and m > p+ q − 1, whence the result. �

4. Holomorphic Morse inequalities for vector bundles

A natural question arising in connection with our Morse inequalities is whether one
can extend the inequalities to high tensor powers of a vector bundleW of rank > 2. Since
W⊗k is decomposable for k > 2 (e.g. W⊗2 = S2W ⊕ Λ2W ) we are led to consider only
irreducible tensor powers of W , i.e. the irreducible representations of the linear group
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GL(W ). This is done by Getzler [Get87], in the general framework of Lie group theory
and representations. As we are only dealing with the case of the full linear group, we
will give here an elementary presentation. We first recall some ideas from the Borel-Weil
theory and a special case of Bott’s formula [Bot57].

Let V be a complex vector space of dimension r and F (V ) the flag manifold of V ,
i.e. the set of all (r + 1)-tuples z = (V0, V1, . . . , Vr) with V = V0 ⊃ V1 ⊃ · · · ⊃ Vr = {0}
and codimVj = j. On F (V ) we have canonical line bundles Qj such that

Qj,z = Vj−1/Vj , 1 6 j 6 r.

For any r-tuple (a1, . . . , ar) ∈ Zr, we set

Qa = Qa11 ⊗ · · · ⊗Qarr .

As GL(V ) acts equivariantly on Qa → F (V ), the spaces of sections

(4.1) ΓaV = H0
(
F (V ), Qa

)

are equipped with a natural GL(V ) action. Observe that Q(1,...,1) is isomorphic to the
trivial bundle F (V )× detV (but of course the action of GL(V ) on detV is non trivial).
To describe ΓaV , we can therefore assume that all aj are nonnegative. Then any section
σ ∈ ΓaV can be viewed as a polynomial Pσ(ξ1, . . . , ξr) on (V ∗)r as follows : if ξ1, . . . , ξr ∈
V ∗ are linearly independent, one can associate to (ξj) the flag z = (Vj) defined by

Vj = ξ−1
1 (0)∩· · ·∩ξ−1

j (0). Then ξj induces a well defined linear form ξ̃j on Qj,z = Vj−1/Vj
and we set

Pσ(ξ1, . . . , ξr) = (ξ̃a11 ⊗ · · · ⊗ ξ̃arr ) · σ(z).
It is clear that Pσ remains locally bounded on a neighborhood of the hypersurface
det(ξ1, . . . , ξr) = 0 ; therefore Pσ extends to a polynomial on (V ∗)r that is homoge-
neous of degree aj in the variable ξj . Also, neither the flag z nor the linear forms ξ̃j are
modified if we replace ξj by ξj +

∑
k<j λjkξk. It follows that Pσ satisfies the relation

Pσ(ξj +
∑

k<j

λjkξk) = Pσ(ξ1, . . . , ξr), ∀λjk ∈ C ,

and conversely any polynomial P of multidegree (a1, . . . , ar) satisfying this condition
yields a (unique) section σ ∈ ΓaV . Hence ΓaV is the subspace of tensors in Sa1V ⊗· · ·⊗
SarV enjoying the above additional antisymmetry properties. In particular we have

SkV = Γ(k,0,...,0)V ,

ΛkV = Γ(1,...,1,0,...,0)V, (k first integers = 1).

We will see soon that ΓaV = {0} unless a1 > a2 > · · · > ar. The spaces (ΓaV )a1>···>ar
can be seen to be irreducible representations of GL(V ). As is well known in representation
theory, (ΓaV ) is in fact the complete list of irreducible representations of GL(V ) up to
isomorphism.

Assume now that V is equipped with a Hermitian metric. Then any flag z0 ∈ F (V )
is represented by an orthonormal basis (v1, . . . , vr) such that V 0

j = Vect(vj+1, . . . , vr).

Now z0 is contained in the affine chart of points z = (Vj) with

Vj = Vect(vj+1, . . . , vr), vk = vk +
∑

j<k

zjkvj
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where (zjk) ∈ Cn(n−1)/2 are the affine coordinates of z. The canonical metric on Qa

induced by V has curvature

(4.2) c(Qa)z0 =
∑

16j<k6n

(aj − ak)dzjk ∧ dzjk

(we leave this computation as an exercise to the reader). By homogeneity, we see that
Qa is positive as soon as a1 > a2 > · · · > ar. On the other hand, when aj−1 < aj , we see
that Qa is negative along the P1 line in F (V ) obtained by fixing all Vk = V 0

k except Vj .
Therefore ΓaV = H0

(
F (V ), Qa

)
= {0} in this case.

Assume from now on that a1 > · · · > ar, and more specifically that

a1 = · · · = as1 > as1+1 = · · · = as2 > · · · > asm−1+1 = · · · = asm ,

where sm = r. As Qj+1,z ⊗ · · · ⊗Qk,z ≃ det(Vj/Vk), we see that Qa is the pull back of
the bundle

Qas = det(V/Vs1)
as1 ⊗ · · · ⊗ det(Vsm−1

/Vsm)asm

over the manifold Fs(V ) of partial flags

V ⊃ Vs1 ⊃ · · · ⊃ Vsm = {0} ,

via the obvious projection πs : F (V ) → Fs(V ). On Fs(V ) we have a formula completely
analogous to (4.2), where the only indices (j, k) involved are those for which aj > ak.
Thus Qas is ample and Qa = π∗

sQ
a
s , in particular

(4.3) H0
(
Fs(V ), Qas

)
= H0

(
F (V ), Qa

)
= ΓaV.

Now let E, W be holomorphic vector bundles over a compact manifold X and let

n = dimCX, r = rankE, r′ = rankW.

We want to get asymptotic estimates for the dimension of cohomology groups

Hq(X,ΓkaW ⊗ E) as k → +∞.

For this, we introduce the flag bundle

Fs(W ) → X ,

where s = (s1, . . . , sm) is defined as above, and we consider the universal line bundle Qas
over Fs(W ). As Qas is ample along the fibers of πs : Fs(W ) → X , the higher direct
images

Rq(πs)∗(Q
ka
s ⊗ π∗

sE), q > 1

vanish for k > k0. By (4.3) we get

(πs)∗(Q
ka
s ⊗ π∗

sE) = ΓkaW ⊗ E.
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The Leray spectral sequence gives the isomorphism

(4.4) Hq(X,ΓkaW ⊗E) ≃ Hq(Y,Qkas ⊗ π∗
sE), Y = Fs(W ),

and we are reduced to applying Morse inequalities to tensor powers of the line bundle
L = Qas . We still need a formula for the curvature of Qas with the metric induced by
a given Hermitian metric on W . Let z0 ∈ Fs(Wx0) be a point in Fs(W ). Choose
a holomorphic frame (w1, . . . , wr) of W such that the flag z0 is given by the basis
(w1(x

0), . . . , wr(x
0)) (supposed to be orthonormal). Assume also (wλ) chosen such that

Dwλ(x
0) = 0 and consider the curvature tensor

c(W )x0 =
∑

16j,k6n
16λ,µ6r

cjkλµdxj ∧ dxk ⊗ w∗
λ ⊗ wµ.

It can be shown that the associated curvature of Qas is

c(Qas)z0 =
∑

16j,k6n
16λ6r

aλcjkλλdxj ∧ dxk +
∑

aλ>aµ

(aλ − aµ) dzλµ ∧ dzλµ

where (zλµ) are the affine coordinates along the fiber Fs(Wx0). Finally, let N(s) be the
dimension of the fibers Fs(Wx). Using the isomorphism (4.4), the strong Morse inequality
becomes

q∑

m=0

(−1)q−m dimHm(X,ΓkaW ⊗ E) 6 r
kn+N(s)

(n+N(s))!

∫

Y (Qa
s ,6q)

Θ
n+N(s)
Qa

s
+ o(kn+N(s)).

The most interesting case is the case of symmetric powers SkW . Then we simply have
Fs(W ) = P(W ) := P (W ∗), N(s) = r − 1, Qas = OP(W )(1).





Chapter II

Approximation of currents and intersection theory

0. Introduction

Many concepts described in this chapter (e.g. pseudo-effectivity) are quite general
and make sense on an arbitrary compact complex manifold X – no projective or Kähler
assumption is needed. In this general context, it is better to work with ∂∂-cohomology
classes instead of De Rham cohomology classes: we define the Bott-Chern cohomology

of X to be

(0.1) Hp,q
BC(X,C) =

{
d-closed (p, q)-forms}/

{
∂∂-exact (p, q)-forms}.

It is easily shown that these cohomology groups are finite dimensional and can be com-
puted either with spaces of smooth forms or with currents ; in fact, they can be computed
by certain complexes of sheaves of forms or currents that both provide fine resolutions
of the same sheaves of holomorphic or anti-holomorphic forms. Our statement therefore
follows formally from general results of sheaf theory. Also, finiteness can be obtained by
the usual Cartan-Serre proof based on Montel’s theorem for Čech cohomology. In both
cases, the quotient topology of Hp,q

BC(X,C) induced by the Fréchet topology of smooth
forms or by the weak topology of currents is Hausdorff. Clearly, H•

BC(X,C) is a bigraded
algebra, and it is trivial by definition that there are always canonical morphisms

(0.2) Hp,q
BC(X,C) → Hp,q

∂
(X,C),

⊕

p+q=k

Hp,q
BC(X,C) → Hk

DR(X,C).

By Hodge decomposition and by the well-known ∂∂-lemma of Kähler geometry, these
morphisms are isomorphisms when X is Kähler; especially, we get a canonical algebra
isomorphism

(0.3) H•
DR(X,C) ≃

⊕

p,q

Hp,q

∂
(X,C) if X is Kähler.

We will see in Section 5 (Remark 5.15) that this is true more generally if X is in the
Fujiki class C, i.e., the class of manifolds bimeromorphic to Kähler manifolds.

1. Pseudo-effective line bundles and singular Hermitian metrics

Let L be a holomorphic line bundle on a compact complex manifold X . It is impor-
tant for many applications to allow singular Hermitian metrics.
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(1.1) Definition. A singular Hermitian metric h on L is a Hermitian metric such that,

for any trivialisation L|U ≃ U × C, the metric is given by h = e−ϕ, ϕ ∈ L1
loc(U).

The curvature tensor

(1.2) ΘL,h =
i

2π
∂∂ϕ = − i

2π
∂∂ logh

can then be computed in the sense of distributions, and defines in this way a (global)
closed (1, 1)-current on X . It defines a (real) cohomology class {ΘL,h} ∈ H1,1

BC(X,C)
which is mapped to the first Chern class c1(L) by the canonical morphisms (0.2). We
will therefore still denote this Bott-Chern class by c1(L). The positive case is of special
interest.

(1.3) Definition. We say that L pseudo-effective if c1(L) ∈ H1,1
BC(X,C) is the coho-

mology class of some closed positive current T , i.e. if L can be equipped with a singular

Hermitian metric h with T = ΘL,h > 0 as a current, in other words, if the weight

functions ϕ can be chosen to be plurisubharmonic on each trivialization open set U .

The locus where h has singularities turns out to be extremely important. One way is to
introduce multiplier ideal sheaves following A. Nadel [Nad89]. The main idea actually
goes back to the fundamental works of Bombieri [Bom70] and H. Skoda [Sko75].

(1.4) Definition. Let ϕ be a psh (plurisubharmonic) function on an open subset Ω ⊂ X.

To ϕ we associate the ideal subsheaf I(ϕ) ⊂ OΩ of germs of holomorphic functions

f ∈ OΩ,x such that |f |2e−ϕ is integrable with respect to the Lebesgue measure in some

local coordinates near x.

The zero variety V (I(ϕ)) is thus the set of points in a neighborhood of which e−ϕ

is non integrable. The following result implies that this is always an analytic set.

(1.5) Proposition ([Nad89]). For any psh function ϕ on Ω ⊂ X, the sheaf I(ϕ) is a

coherent sheaf of ideals over Ω. Moreover, if Ω is a bounded Stein open set, the sheafI(ϕ) is generated by any Hilbert basis of the L2 space H2(Ω, ϕ) of holomorphic functions

f on Ω such that
∫
Ω
|f |2e−ϕ dλ < +∞.

Proof. Since the result is local, we may assume that Ω is a bounded pseudoconvex open
set in Cn. By the strong noetherian property of coherent sheaves, the family of sheaves
generated by finite subsets of H2(Ω, ϕ) has a maximal element on each compact subset
of Ω, hence H2(Ω, ϕ) generates a coherent ideal sheaf J ⊂ OΩ. It is clear that J ⊂ I(ϕ);
in order to prove the equality, we need only check that Jx + I(ϕ)x ∩m

s+1
Ω,x = I(ϕ)x for

every integer s, in view of the Krull lemma. Let f ∈ I(ϕ)x be defined in a neighborhood
V of x and let θ be a cut-off function with support in V such that θ = 1 in a neighborhood
of x. We solve the equation ∂u = g := ∂(θf) by means of Hörmander’s L2 estimates
[Hör65, AV65], applied with the strictly psh weight

ϕ̃(z) = ϕ(z) + (n+ s) log |z − x|2 + |z|2.

We get a solution u such that
∫
Ω
|u|2e−ϕ|z − x|−2(n+s)dλ < ∞, thus F = θf − u is

holomorphic, F ∈ H2(Ω, ϕ) and fx−Fx = ux ∈ I(ϕ)x∩ms+1
Ω,x . This proves the coherence.
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Now, J is generated by any Hilbert basis of H2(Ω, ϕ), because it is well-known that the
space of sections of any coherent sheaf is a Fréchet space, therefore closed under local L2

convergence. �

Another important way of measuring singularities is via Lelong numbers – a natural
generalization of the concept of multiplicity to psh functions. Recall that the Lelong
number of a function ϕ ∈ Psh(Ω) at a point x0 is defined to be

(1.6) ν(ϕ, x0) = lim inf
z→x0

ϕ(z)

log |z − x0|
= lim
r→0+

supB(x0,r)
ϕ

log r
.

In particular, if ϕ = log |f | with f ∈ O(Ω), then ν(ϕ, x0) is equal to the vanishing order

ordx0
(f) = sup{k ∈ N ;Dαf(x0) = 0, ∀|α| < k}.

The link with multiplier ideal sheaves is provided by the following standard result due
to Skoda [Sko72].

(1.7) Lemma. Let ϕ be a psh function on an open set Ω and let x ∈ Ω.

(a) If ν(ϕ, x) < 2, then e−ϕ is Lebesgue integrable on a neighborhood of x, in particularI(ϕ)x = OΩ,x.

(b) More generally, if ν(ϕ, x) > 2(n+ s) for some integer s > 0, then

e−ϕ > c|z − x|−2n−2s, c > 0

in a neighborhood of x, and I(ϕ)x ⊂ m
s+1
Ω,x , where mΩ,x is the maximal ideal of OΩ,x.

In particular e−ϕ is non integrable at x if ν(ϕ, x) > 2n.

(c) The zero variety V (I(ϕ)) of I(ϕ) satisfies
V2n(ϕ) ⊂ V (I(ϕ)) ⊂ E2(ϕ)

where Ec(ϕ) = {x ∈ X ; ν(ϕ, x) > c} is the c-upperlevel set of Lelong numbers of ϕ.

The only non trivial part is 1.7 (a); the proof relies on the Bochner-Martinelli represen-
tation formula for T = i

π∂∂ϕ (see [Sko72]). One should observe that 1.7 (a) (resp. (b))
is optimal, as one can see by taking ϕ(z) = λ log |z1|, resp. ϕ(z) = λ log |z|, on Ω = Cn.

2. Hermitian metrics with minimal singularities and analytic
Zariski decomposition

We show here by a general “abstract” method that a pseudo-effective line bundle
always has a Hermitian metric hmin with minimal singularities among those with nonneg-
ative curvature ΘL,h > 0 in the sense of currents. The following definition was introduced
in [DPS01].

(2.1) Definition. Let L be a pseudo-effective line bundle on a compact complex man-

ifold X. Consider two Hermitian metrics h1, h2 on L with curvature ΘL,hj
> 0 in the

sense of currents.
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(a) We will write h1 4 h2, and say that h1 is less singular than h2, if there exists a

constant C > 0 such that h1 6 Ch2.

(b) We will write h1 ∼ h2, and say that h1, h2 are equivalent with respect to singularities,

if there exists a constant C > 0 such that C−1h2 6 h1 6 Ch2.

Of course h1 4 h2 if and only if the associated weights in suitable trivializations
locally satisfy ϕ2 6 ϕ1 +C. This implies in particular ν(ϕ1, x) 6 ν(ϕ2, x) at each point.
The above definition is motivated by the following observation.

(2.2) Theorem. For every pseudo-effective line bundle L over a compact complex mani-

fold X, there exists up to equivalence of singularities a unique class of Hermitian metrics

h with minimal singularities such that ΘL,h > 0.

Proof. The proof is almost trivial. We fix once for all a smooth metric h∞ (whose
curvature is of random sign and signature), and we write singular metrics of L under
the form h = h∞e−ψ. The condition ΘL,h > 0 is equivalent to i

2π∂∂ψ > −u where
u = ΘL,h∞

. This condition implies that ψ is plurisubharmonic up to the addition of the
weight ϕ∞ of h∞, and therefore locally bounded from above. Since we are concerned
with metrics only up to equivalence of singularities, it is always possible to adjust ψ by
a constant in such a way that supX ψ = 0. We now set

hmin = h∞e
−ψmin , ψmin(x) = sup

ψ
ψ(x)

where the supremum is extended to all functions ψ such that supX ψ = 0 and i
2π∂∂ψ >

−u. By standard results on plurisubharmonic functions (see Lelong [Lel69]), ψmin still
satisfies i

2π∂∂ψmin > −u (i.e. the weight ϕ∞+ψmin of hmin is plurisubharmonic), and hmin

is obviously the metric with minimal singularities that we were looking for. [In principle
one should take the upper semicontinuous regularization ψ∗

min of ψmin to really get a
plurisubharmonic weight, but since ψ∗

min also participates to the upper envelope, we
obtain here ψmin = ψ∗

min automatically]. �

(2.3) Remark. In general, the supremum ψ = supj∈I ψj of a locally dominated family
of plurisubharmonic functions ψj is not plurisubharmonic strictly speaking, but its “up-
per semi-continuous regularization” ψ∗(z) = lim supζ→z ψ(ζ) is plurisubharmonic and
coincides almost everywhere with ψ, with ψ∗ > ψ. However, in the context of (2.3), ψ∗

still satisfies ψ∗ 6 0 and i
2π∂∂ψ > −u, hence ψ∗ participates to the upper envelope. As

a consequence, we have ψ∗ 6 ψ and thus ψ = ψ∗ is indeed plurisubharmonic. Under a
strict positivity assumption, namely if L is a big line bundle (i.e. the curvature can be
taken to be strictly positive in the sense of currents, see Definition (3.3 d) and Theorem
(3.4 b), then hmin can be shown to possess some regularity properties. The reader may
consult [BmD09] for a rather general (but certainly non trivial) proof that ψmin pos-
sesses locally bounded second derivatives ∂2ψmin/∂zj∂zk outside an analytic set Z ⊂ X ;
in other words, ΘL,hmin

has locally bounded coefficients on X r Z. �

(2.4) Definition. Let L be a pseudo-effective line bundle. If h is a singular Hermitian

metric such that ΘL,h > 0 and

H0(X,mL⊗ I(h⊗m)) ≃ H0(X,mL) for all m > 0,
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we say that h is an analytic Zariski decomposition of L.

In other words, we require that h has singularities so mild that the vanishing condi-
tions prescribed by the multiplier ideal sheaves I(h⊗m) do not kill any sections of L and
its multiples.

(2.5) Exercise. A special case is when there is an isomorphism pL = A + E where A
and E are effective divisors such that H0(X,mpL) = H0(X,mA) for all m and O(A) is
generated by sections. Then A possesses a smooth Hermitian metric hA, and this metric
defines a singular Hermitian metric h on L with poles 1

pE and curvature 1
pΘA,hA

+ 1
p [E].

Show that this metric h is an analytic Zariski decomposition.
Note: when X projective and there is a decomposition pL = A + E with A nef (see
(I 2.9)), E effective and H0(X,mpL) = H0(X,mA) for all m, one says that the Q-
divisor equality L = 1

pA + 1
pE is an algebraic Zariski decomposition of L. It can be

shown that Zariski decompositions exist in dimension 2, but in higher dimension they do
not exist in general. �

(2.6) Theorem. The metric hmin with minimal singularities provides an analytic Zariski

decomposition.

It follows that an analytic Zariski decomposition always exists (while algebraic decom-
positions do not exist in general, especially in dimension 3 and more).

Proof. Let σ ∈ H0(X,mL) be any section. Then we get a singular metric h on L by
putting |ξ|h = |ξ/σ(x)1/m| for ξ ∈ Lx, and it is clear that |σ|hm = 1 for this metric.
Hence σ ∈ H0(X,mL⊗I(h⊗m)), and a fortiori σ ∈ H0(X,mL⊗I(h⊗mmin)) since hmin is
less singular than h. �

3. Description of the positive cones (Kähler and projective cases)

Let us recall that an integral cohomology class in H2(X,Z) is the first Chern class of
a holomorphic (or algebraic) line bundle if and only if it lies in the Neron-Severi group

(3.1) NS(X) = Ker
(
H2(X,Z) → H2(X,OX))

(this fact is just an elementary consequence of the exponential exact sequence
0 → Z → O → O∗ → 0). If X is compact Kähler, as we will suppose from now on
in this section, this is the same as saying that the class is of type (1, 1) with respect to
Hodge decomposition.

Let us consider the real vector space NSR(X) = NS(X)⊗Z R, which can be viewed
as a subspace of the space H1,1(X,R) of real (1, 1) cohomology classes. Its dimension is
by definition the Picard number

(3.2) ρ(X) = rankZ NS(X) = dimR NSR(X).

We thus have 0 6 ρ(X) 6 h1,1(X), and the example of complex tori shows that all
intermediate values can occur when n = dimX > 2.
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The positivity concepts for line bundles considered in section I 2.B and II 1 possess in
fact natural generalizations to (1, 1) classes which are not necessarily integral or rational –
and this works at least in the category of compact Kähler manifolds (in fact, by using
Bott-Chern cohomology, one could even extend these concepts to arbitrary compact
complex manifolds).

(3.3) Definition. Let (X,ω) be a compact Kähler manifold.

(a) The Kähler cone is the set K ⊂ H1,1(X,R) of cohomology classes {ω} of Kähler

forms. This is an open convex cone.

(b) The closure K of the Kähler cone consists of classes {α} ∈ H1,1(X,R) such that for

every ε > 0 the sum {α+εω} is Kähler, or equivalently, for every ε > 0, there exists

a smooth function ϕε on X such that α+ i∂∂ϕε > −εω. We say that K is the cone

of nef (1, 1)-classes.

(c) The pseudo-effective cone is the set E ⊂ H1,1(X,R) of cohomology classes {T} of

closed positive currents of type (1, 1). This is a closed convex cone.

(d) The interior E◦ of E consists of classes which still contain a closed positive current

after one subtracts ε{ω} for ε > 0 small, in other words, they are classes of closed

(1, 1)-currents T such that T > εω. Such a current will be called a Kähler current,
and we say that {T} ∈ H1,1(X,R) is a big (1, 1)-class.KE K = Kähler cone in H1,1(X,R) [open]K = nef cone in H1,1(X,R) [closure of K]E = pseudo-effective cone in H1,1(X,R) [closed]E◦ = big cone in H1,1(X,R) [interior of E]
The openness of K is clear by definition, and the closedness of E is a consequence of

the fact that bounded sets of currents are weakly compact (as follows from the similar
weak compactness property for bounded sets of positive measures). It is then clear thatK ⊂ E.

In spite of the fact that cohomology groups can be defined either in terms of forms
or currents, it turns out that the cones K and E are in general different. To see this, it
is enough to observe that a Kähler class {α} satisfies

∫
Y
αp > 0 for every p-dimensional

analytic set. On the other hand, if X is the surface obtained by blowing-up P2 in
one point, then the exceptional divisor E ≃ P1 has a cohomology class {α} such that∫
E
α = E2 = −1, hence {α} /∈ K, although {α} = {[E]} ∈ E.
In case X is projective, all Chern classes c1(L) of line bundles lie by definition in

NS(X), and likewise, all classes of real divisors D =
∑
cjDj , cj ∈ R, lie in NSR(X). In
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order to deal with such algebraic classes, we therefore introduce the intersectionsKNS = K ∩ NSR(X), ENS = E ∩ NSR(X),

and refer to classes of H1,1(X,R) not contained in NSR(X) as transcendental classes.KNSENS

NSR(X)

A very important fact is that all four cones KNS, ENS, KNS, E◦
NS have simple

algebraic interpretations.

(3.4) Theorem. Let X be a projective manifold. Then

(a) KNS is equal to the open cone Amp(X) generated by classes of ample (or very

ample) divisors A (recall that a divisor A is said to be very ample if the linear

system H0(X,O(A)) provides an embedding of X in projective space).

(b) The interior E◦
NS is the cone Big(X) generated by classes of big divisors, namely

divisors D such that h0(X,O(kD)) > c kdimX for k large.

(c) ENS is the closure Eff(X) of the cone generated by classes of effective divisors, i.e.

divisors D =
∑
cjDj , cj ∈ R+.

(d) The closed cone KNS consists of the closure Nef(X) of the cone generated by nef
divisors D (or nef line bundles L), namely effective integral divisors D such that

D · C > 0 for every curve C, also equal to Amp(X).

In other words, the terminology “nef”, “big”, “pseudo-effective” used for classes of
the full transcendental cones appear to be a natural extrapolation of the algebraic case.

Proof. First notice that since all of our conesC have non empty interior in NSR(X) (which
is a rational vector space in terms of a basis of elements in H2(X,Q)), the rational pointsCQ := C ∩ NSQ(X), NSQ(X) = NS(X)⊗Z Q, are dense in each of them.

(a) is therefore just Kodaira’s embedding theorem when we look at rational points, and
properties (b) and (d) are obtained easily by passing to the closure of the open cones.
We will now give details of the proof only for (b) which is possibly slightly more involved.

By looking at points of E◦
Q = E◦ ∩ NSQ(X) and multiplying by a denominator, it

is enough to check that a line bundle L such that c1(L) ∈ E◦ is big. However, this
means that L possesses a singular Hermitian metric hL such that ΘL,hL

> εω for some
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Kähler metric ω. For some integer p0 > 0, we can then produce a singular Hermitian
metric with positive curvature and with a given logarithmic pole hp0L e

−θ(z) log |z−x0|2 in
a neighborhood of every point x0 ∈ X (here θ is a smooth cut-off function supported on
a neighborhood of x0). Then Hörmander’s L2 existence theorem [Hör65, AV65] can be
used to produce sections of Lk which generate all jets of order (k/p0) − n at points x0,
so that L is big.

Conversely, if L is big and A is a (smooth) very ample divisor, the exact sequence
0 → OX(kL−A) → OX(kL) → OA(kL↾A) → 0 and the estimates h0(X,OX(kL)) > ckn,
h0(A,OA(kL↾A)) = O(kn−1) imply that OX(kL − A) has a section for k large, thus
kL−A ≡ E for some effective divisor E. This means that there exists a singular metric
hL on L such that

ΘL,hL
=

1

k

(
ΘA,hA

+ [E]
)
>

1

k
ω

where ω = ΘA,hA
, hence c1(L) ∈ E◦. �

(3.5) Corollary. If L is nef, then L is big (i.e. κ(L) = n) if and only if Ln > 0.
Moreover, if L is nef and big, then for every δ > 0, L has a singular metric h = e−ϕ

such that maxx∈X ν(ϕ, x) 6 δ and iΘL,h > ε ω for some ε > 0. The metric h can

be chosen to be smooth on the complement of a fixed divisor E, with logarithmic poles

along E.

Proof. By (I 2.10) and the Riemann-Roch formula, we have

h0(X, kL) = χ(X, kL) + o(kn) = knLn/n! + o(kn),

whence the first statement. By the proof of Theorem 3.4 (b), there exists a singular
metric h1 on L such that

i

2π
ΘL,h1

=
1

k

( i

2π
ΘA,hA

+ [E]
)
>

1

k
ω, ω =

i

2π
ΘA,hA

.

Now, for every ε > 0, there is a smooth metric hε on L such that i
2πΘL,hε

> −εω. The
convex combination of metrics h′ε = hkε1 h

1−kε
ε is a singular metric with poles along E

which satisfies
i

2π
ΘL,h′

ε
> ε(ω + [E])− (1− kε)εω > kε2ω.

Its Lelong numbers are εν(E, x) and they can be made smaller than δ by choosing ε > 0
small. �

We still need a few elementary facts about the numerical dimension of nef line bun-
dles.

(3.6) Definition. Let L be a nef line bundle on a compact Kähler manifold X. One

defines the numerical dimension of L to be

nd(L) = max
{
k = 0, . . . , n ; c1(L)

k 6= 0 in H2k(X,R)
}
.

Notice that if L is nef, each power c1(L)
k can be represented by a closed positive

current Θk ∈ c1(L)
k obtained as a weak limit of powers of smooth positive forms

Θk = lim
m→+∞

(
α+

1

m
ω + ∂∂ϕm

)k
, α ∈ c1(L).
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Such a weak limit exists since
∫
X

(
α + 1

m
ω + ∂∂ϕm

)k ∧ ωn−k is uniformly bounded as
m→ +∞. Then we see that∫

X

c1(L)
k ∧ ωn−k =

∫

X

Θk ∧ ωn−k > 0 ⇐⇒ Θk 6= 0 ⇐⇒ c1(L)
k 6= 0.

By Corollary 3.5, we have κ(L) = n if and only if nd(L) = n. In general, we merely have
an inequality.

(3.7) Proposition. If L is a nef line bundle on a compact Kähler manifold (X,ω), then
κ(L) 6 nd(L).

Proof. We consider arbitrary irreducible analytic subsets Z ⊂ X and prove by induction
on p = dimZ that κ(L|Z) 6 nd(L|Z) where nd(L|Z) is the supremum of all integers k

such that c1(L|Z)
k 6= 0, i.e.

∫
X
[Z] ∧ c1(L)k ∧ ωp−k > 0. This will prove our statement

when Z = X , p = n. The statement is trivial if p = 0, so we suppose now that p > 0. We
can also assume that r = κ(L|Z) > 0, otherwise there is nothing to prove. This implies
that a sufficient large multiple m0L has at least two independent sections σ0, σ1 on Z.
Consider the linear system |a0σ0 + a1σ1|, a = [a0 : a1] ∈ P1

C, and take Y = Ya ⊂ Z to
be an irreducible component of the divisor of σa := a0σ0 + a1σ1 which is not a fixed
component when a varies. For m sufficiently divisible, ΦmL|Z

has rank r at a generic

(smooth) point of Z, hence the rank of (ΦmL|Z
)|Y is > r′ := min(r, p − 1) if a ∈ P1

C is
itself generic. A fortiori rank(ΦmL|Y

) > r′ (we may even have sections on Y which do
not extend to Z). By the induction hypothesis we find

∫

X

[Y ] ∧ c1(L)r
′ ∧ ωp−1−r′ > 0.

Now, we use the fact that [Z] ∧ c1(m0L) − [Y ] can be represented by an effective cycle
(the sum of all components 6= Y in the divisor of our generic section σa). This implies

∫

X

[Z] ∧ c1(L)r
′+1 ∧ ωp−1−r′ >

1

m0

∫

X

[Y ] ∧ c1(L)r
′ ∧ ωp−1−r′ > 0.

If r = p, we have r′ = p− 1, hence r′ + 1 = r and we are done. If r < p, we have r′ = r
and then we use the obvious inequality α 6 C0ω for some representative α ∈ c1(L) and
some C0 > 0 to conclude that∫

X

[Z] ∧ c1(L)r ∧ ωp−r >
1

C0

∫

X

[Z] ∧ c1(L)r+1 ∧ ωp−1−r > 0. �

(3.8) Remark. It may happen that κ(L) < nd(L): take e.g.

L→ X = X1 ×X2

equal to the total tensor product of an ample line bundle L1 on a projective manifold
X1 and of a unitary flat line bundle L2 on an elliptic curve X2 given by a representation
π1(X2) → U(1) such that no multiple kL2 with k 6= 0 is trivial. Then H0(X, kL) =
H0(X1, kL1) ⊗ H0(X2, kL2) = 0 for k > 0, and thus κ(L) = −∞. However c1(L) =
pr∗1c1(L1) has numerical dimension equal to dimX1. The same example shows that the
Kodaira dimension may increase by restriction to a subvariety (if Y = X1 × {point},
then κ(L↾Y ) = dimY ). �
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4. Approximation of plurisubharmonic functions via Bergman
kernels

We prove here, as an application of the Ohsawa-Takegoshi L2 extension theorem
[OT87], that every psh function on a pseudoconvex open set Ω ⊂ Cn can be approximated
very accurately by functions of the form c log |f |, where c > 0 and f is a holomorphic
function. The main idea is taken from [Dem92]. For other applications to algebraic
geometry, see [Dem93] and Demailly-Kollár [DK01]. We first recall the statement of
the generalized L2 extension theorem; its proof relies on a subtle enhancement of the
Bochner-Kodaira technique, and we refer to the litterature for details.

(4.1) Theorem (Ohsawa-Takegoshi [OT87], Manivel [Man93]). Let X be a complex

n-dimensional manifold possessing a smooth plurisubharmonic exhaustion function

(”weakly pseudoconvex” or “weakly 1-convex” manifold), and a Kähler metric ω. Let

L (resp. E) be a Hermitian holomorphic line bundle (resp. a Hermitian holomorphic vec-

tor bundle of rank r over X), and s a global holomorphic section of E. Assume that s is

generically transverse to the zero section, and let

Y =
{
x ∈ X ; s(x) = 0,Λrds(x) 6= 0

}
, p = dimY = n− r.

Finally, let ϕ be an arbitrary plurisubharmonic function on X. Assume that the (1, 1)-
form ΘL + r i

2π ∂∂(log |s|2 + ϕ) is semi-positive and that there is a continuous function

α > 1 such that the following two inequalities hold everywhere on X :

(a) ΘL + r
i

2π
∂∂(log |s|2 + ϕ) > α−1 {ΘEs, s}

|s|2 ,

(b) |s| 6 e−α.

Then for every holomorphic section fY of the line bundle ΛnT ∗
X ⊗ L over Y such that∫

Y
|fY |2e−ϕ|Λr(ds)|−2dVω < +∞, there exists a holomorphic extension fX of fY over X

such that ∫

X

|fX |2e−ϕ
|s|2r(− log |s|)2 dVX,ω 6 Cr

∫

Y

|fY |2e−ϕ
|Λr(ds)|2dVY,ω ,

where Cr is a numerical constant depending only on r.

(4.2) Theorem. Let ϕ be a plurisubharmonic function on a bounded pseudoconvex open

set Ω ⊂ Cn. For every m > 0, let HΩ(mϕ) be the Hilbert space of holomorphic functions

f on Ω such that
∫
Ω
|f |2e−2mϕdλ < +∞ and let ϕm = 1

2m
log
∑ |σℓ|2 where (σℓ) is an

orthonormal basis of HΩ(mϕ). Then there are constants C1, C2 > 0 independent of m
such that

(a) ϕ(z)− C1

m
6 ϕm(z) 6 sup

|ζ−z|<r
ϕ(ζ)+

1

m
log

C2

rn
for every z ∈ Ω and r < d(z, ∂Ω). In

particular, ϕm converges to ϕ pointwise and in L1
loc topology on Ω when m→ +∞

and

(b) ν(ϕ, z)− n

m
6 ν(ϕm, z) 6 ν(ϕ, z) for every z ∈ Ω.

Proof. (a) Note that
∑ |σℓ(z)|2 is the square of the norm of the evaluation linear form

evz : f 7→ f(z) on HΩ(mϕ), since σℓ(z) = evz(σℓ) is the ℓ-th coordinate of evz in the
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orthonormal basis (σℓ). In other words, we have

∑
|σℓ(z)|2 = sup

f∈B(1)

|f(z)|2

where B(1) is the unit ball of HΩ(mϕ) (The sum is called the Bergman kernel associated
with HΩ(mϕ)). As ϕ is locally bounded from above, the L2 topology is actually stronger
than the topology of uniform convergence on compact subsets of Ω. It follows that the
series

∑ |σℓ|2 converges uniformly on Ω and that its sum is real analytic. Moreover, by
what we just explained, we have

ϕm(z) = sup
f∈B(1)

1

m
log |f(z)|.

For z0 ∈ Ω and r < d(z0, ∂Ω), the mean value inequality applied to the psh function |f |2
implies

|f(z0)|2 6
1

πnr2n/n!

∫

|z−z−0|<r
|f(z)|2dλ(z)

6
1

πnr2n/n!
exp

(
2m sup

|z−z0|<r
ϕ(z)

) ∫

Ω

|f |2e−2mϕdλ.

If we take the supremum over all f ∈ B(1) we get

ϕm(z0) 6 sup
|z−z0|<r

ϕ(z) +
1

2m
log

1

πnr2n/n!

and the second inequality in (a) is proved – as we see, this is an easy consequence of
the mean value inequality. Conversely, the Ohsawa-Takegoshi L2 extension theorem 4.1
applied to the 0-dimensional subvariety {z0} ⊂ Ω and to the trivial bundles L = Ω× C

and E = Ω× Cn, with the section s(z) = z − z0 of E, shows that for any a ∈ C there is
a holomorphic function f on Ω such that f(z0) = a and

∫

Ω

|f |2e−2mϕdλ 6 C3|a|2e−2mϕ(z0),

where C3 only depends on n and diamΩ. We fix a such that the right hand side is 1.
Then ‖f‖ 6 1 and so we get

ϕm(z0) >
1

m
log |f(z0)| =

1

m
log |a| = ϕ(z) − logC3

2m
.

The inequalities given in (a) are thus proved. Taking r = 1/m, we find that

lim
m→+∞

sup
|ζ−z|<1/m

ϕ(ζ) = ϕ(z)

by the upper semicontinuity of ϕ, and thus limϕm(z) = ϕ(z), since lim 1
m log(C2m

n) = 0.

(b) The above estimates imply

sup
|z−z0|<r

ϕ(z) − C1

m
6 sup

|z−z0|<r
ϕm(z) 6 sup

|z−z0|<2r

ϕ(z) +
1

m
log

C2

rn
.
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After dividing by log r < 0 when r → 0, we infer

sup|z−z0|<2r ϕ(z) +
1
m log C2

rn

log r
6

sup|z−z0|<r ϕm(z)

log r
6

sup|z−z0|<r ϕ(z)− C1

m

log r
,

and from this and definition (1.6), it follows immediately that

ν(ϕ, x)− n

m
6 ν(ϕm, z) 6 ν(ϕ, z). �

Theorem 4.2 implies in a straightforward manner the deep result of [Siu74] on the
analyticity of the Lelong number upperlevel sets.

(4.3) Corollary ([Siu74]). Let ϕ be a plurisubharmonic function on a complex mani-

fold X. Then, for every c > 0, the Lelong number upperlevel set

Ec(ϕ) =
{
z ∈ X ; ν(ϕ, z) > c

}

is an analytic subset of X.

Proof. Since analyticity is a local property, it is enough to consider the case of a psh
function ϕ on a pseudoconvex open set Ω ⊂ Cn. The inequalities obtained in Theorem
4.2 (b) imply that

Ec(ϕ) =
⋂

m>m0

Ec−n/m(ϕm).

Now, it is clear that Ec(ϕm) is the analytic set defined by the equations σ
(α)
ℓ (z) = 0 for all

multi-indices α such that |α| < mc. Thus Ec(ϕ) is analytic as a (countable) intersection
of analytic sets. �

(4.4) Remark. It can be easily shown that the Lelong numbers of any closed positive
(p, p)-current coincide (at least locally) with the Lelong numbers of a suitable plurisub-
harmonic potential ϕ (see [Sko72]). Hence Siu’s theorem also holds true for the Lelong
number upperlevel sets Ec(T ) of any closed positive (p, p)-current T .

Theorem 4.2 motivates the following definition.

(4.5) Definition. A plurisubharmonic function ϕ on a complex manifold X is said to

have analytic singularities if it can be written locally near every point x0 ∈ X as

ϕ(z) = c log
∑

16j6N

|gj(z)|2 +O(1), i.e. up to equivalence of singularities,

with a family of holomorphic functions (gj) defined near x0 and c > 0. Also, a closed

positive (1, 1) current T is said to have analytic singularities if its plurisubharmonic

potential has analytic singularities. We also refer to this situation by saying that ϕ or T
have logarithmic poles. When X is algebraic, we say that the singularities are algebraic

if c ∈ Q+ and the (gj) are sections of some algebraic line bundle O(D), x0 /∈ SuppD.

Notice that by Noetherianity, a convergent series log
∑

j∈N |gj|2 can be replaced by a
finite sum up to equivalence of singularities, thus Theorem 4.2 always produces plurisub-
harmonic functions ϕm with analytic singularities.
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5. Global approximation of closed (1,1)-currents on a compact
complex manifold

We take here X to be an arbitrary compact complex manifold (no Kähler assumption
is needed). Now, let T be a closed (1, 1)-current onX . We assume that T is quasi-positive,
i.e. that there exists a (1, 1)-form γ with continuous coefficients such that T > γ ; the
case of positive currents (γ = 0) is of course the most important.

(5.1) Lemma. There exists a smooth closed (1, 1)-form α representing the same ∂∂-
cohomology class as T and a quasi-psh function ϕ on X such that T = α+ i

π∂∂ϕ. (We

say that a function ϕ is quasi-psh if its complex Hessian is bounded below by a (1, 1)-form
with locally bounded coefficients, that is, if i∂∂ϕ is quasi-positive).

Proof. Select an open covering (Uj) of X by coordinate balls such that T = i
π
∂∂ϕj

over Uj , and construct a global function ϕ =
∑
θjϕj by means of a partition of unity

{θj} subordinate to Uj . Now, we observe that ϕ − ϕk is smooth on Uk because all
differences ϕj − ϕk are smooth in the intersections Uj ∩ Uk, and we have the equality
ϕ− ϕk =

∑
θj(ϕj − ϕk). Therefore α := T − i

π∂∂ϕ is smooth. �

By replacing T with T−α and γ with γ−α, we can assume without loss of generality
that {T} = 0, i.e. that T = i

π∂∂ϕ with a quasi-psh function ϕ on X such that i
π∂∂ϕ > γ.

Our goal is to approximate T in the weak topology by currents Tm = i
π
∂∂ϕm

such their potentials ϕm have analytic singularities in the sense of Definition 4.5, more
precisely, defined on a neighborhood Vx0

of any point x0 ∈ X in the form ϕm(z) =
cm log

∑
j |σj,m|2 +O(1), where cm > 0 and the σj,m are holomorphic functions on Vx0

.

We select a finite covering (Wν) of X with open coordinate charts, and shrink them a
little to be on the safe side. Given δ > 0, we take in each Wν a maximal family of points
with (coordinate) distance to the boundary > 3δ and mutual distance > δ/2. In this way,
we get for δ > 0 small a finite covering of X by open balls U ′

j of radius δ (actually every
point is even at distance 6 δ/2 of one of the centers, otherwise the family of points would
not be maximal), such that the concentric ball Uj of radius 2δ is relatively compact in
the corresponding chart Wν . Let τj : Uj −→ B(aj, 2δ) be the isomorphism given by the
coordinates of Wν ; by taking δ > 0 small enough, we can assume that the coordinates
of Uj extend to Uj ∪ Uk whenever Uj ∩ Uk 6= ∅. Let ε(δ) be a modulus of continuity for
γ on the sets Uj , such that limδ→0 ε(δ) = 0 and γx − γx′ 6 1

2ε(δ)ωx for all x, x′ ∈ Uj .
We denote by γj the (1, 1)-form with constant coefficients on B(aj, 2δ) such that τ∗j γj
coincides with γ − ε(δ)ω at τ−1

j (aj). Then we have

(5.2) 0 6 γ − τ∗j γj 6 2ε(δ)ω on Uj

for δ > 0 small. We set ϕj = ϕ◦τ−1
j on B(aj, 2δ) and let qj be the homogeneous quadratic

function in z − aj such that i
π
∂∂qj = γj on B(aj, 2δ). Then ϕj − qj is plurisubharmonic

on B(aj, 2δ) since

(5.3)
i

π
∂∂((ϕj − qj) ◦ τj) = T − τ∗j γj > γ − τ∗j γj > 0.

We let U ′
j ⊂⊂ U ′′

j ⊂⊂ Uj be the concentric balls of radii δ, 1.5 δ, 2δ respectively. On
each open set Uj the function ψj := ϕ − qj ◦ τj = (ϕj − qj) ◦ τj is plurisubharmonic, so
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Theorem 4.2 applied with Ω = Uj ≃ B(aj, 2δ) produces functions

(5.4) ψj,m =
1

2m
log
∑

ℓ

|σj,ℓ|2, (σj,ℓ) = basis of HUj
(mψj).

The functions ψj,m + qj ◦ τj on Uj then have to be glued together by a partition of
unity technique. For this, we rely on the following “discrepancy” lemma, estimating the
variation of the approximating functions on overlapping balls.

(5.5) Lemma. There is a constant C independent of m and δ such that the quasi-psh

functions wj,m = 2m(ψj,m + qj ◦ τj), i.e.

wj,m(x) = 2mqj ◦ τj(x) + log
∑

ℓ

∣∣σj,ℓ(x)
∣∣2, x ∈ U ′′

j ,

satisfy

|wj,m − wk,m| 6 C
(
log δ−1 +mε(δ)δ2

)
on U ′′

j ∩ U ′′
k .

Proof. The details will be left as an exercise to the reader. The main idea is the following:
for any holomorphic function fj ∈ HUj

(mψj), a ∂ equation ∂u = ∂(θfj) can be solved on
Uk, where θ is a cut-off function with support in U ′′

j ∩U ′′
k , on a ball of radius < δ/4, equal

to 1 on the ball of radius δ/8 centered at a given point x0 ∈ U ′′
j ∩U ′′

k , with |∂θ| = O(δ−1).

We apply the L2 estimate with respect to the weight (n+ 1) log |x− x0|2 + 2mψk, where
the first term is picked up so as to force the solution u to vanish at x0, in such a way
that Fk = u − θfj is holomorphic and Fk(x0) = fj(x0). The discrepancy between the
weights on U ′′

j and U ′′
k is given by

ψj − ψk = −
(
qj ◦ τj − qk ◦ τk

)
.

By re-centering the quadratic functions at τj(x0), resp. τk(x0), we can write

qj ◦ τj − qk ◦ τk = ReGjk +Rjk

where Gjk is holomorphic on Uj ∪Uk [equal to a difference of linear forms in the coordi-
nates of B(aj, 2δ) and B(ak, 2δ)], Gjk(x0) = qj ◦τj(x0)−qk ◦τk(x0) and Rjk = O(ε(δ)δ2)
is a remainder term coming from the change of coordinates and the slight discrepancy
between ∂∂(qj ◦ τj) and ∂∂(qk ◦ τk) at the common point x0, with Rjk(x0) = 0. In this
way, we get

|emGjk |2e−mψk = e−mψj−2mRjk ,

so that we have a uniform control of the L2 norm of the solution fk = emGjkFk =
emGjk(u− θfj) of the form

∫

Uk

|fk|2e−2mψk 6 Cδ−2n−4emO(ε(δ)δ2)

∫

Uj

|fj|2e−2mψj .

The required estimate follows, using the equality

e2mψj,m(x) =
∑

ℓ

|σj,ℓ(x)|2 = sup
f∈HUj

(mψj), ‖f‖61

|f(x)|2 on Uj ,
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and the analogous equality on Uk. �

Now, the actual glueing of our quasi-psh functions is performed using the following
elementary partition of unity calculation.

(5.6) Lemma. Let U ′
j ⊂⊂ U ′′

j be locally finite open coverings of a complex manifold X
by relatively compact open sets, and let θj be smooth nonnegative functions with support

in U ′′
j , such that θj 6 1 on U ′′

j and θj = 1 on U ′
j. Let Aj > 0 be such that

i(θj∂∂θj − ∂θj ∧ ∂θj) > −Ajω on U ′′
j r U ′

j

for some positive (1, 1)-form ω. Finally, let wj be quasi-psh functions on Uj with the

property that i∂∂wj > γ for some real (1, 1)-form γ on M , and let Cj be constants such

that

wj(x) 6 Cj + sup
k 6=j, U ′

k
∋x
wk(x) on U ′′

j r U ′
j .

Then the function w = log
(∑

θ2j e
wj
)
is quasi-psh and satisfies

i∂∂w > γ − 2
(∑

j

1lU ′′
j
rU ′

j
Aje

Cj

)
ω.

Proof. If we set αj = θj∂wj + 2∂θj, a straightforward computation shows that

∂w =

∑
(θ2j∂wj + 2θj∂θj)e

wj

∑
θ2j e

wj
=

∑
θje

wjαj∑
θ2j e

wj
,

∂∂w =

∑(
αj ∧ αj+θ2j∂∂wj+2θj∂∂θj−2∂θj∧∂θj

)
ewj

∑
θ2j e

wj
−
∑
j,k θje

wjθke
wkαj∧αk

(∑
θ2j e

wj

)2

=

∑
j<k

∣∣θjαk−θkαj
∣∣2ewjewk

(∑
θ2j e

wj

)2 +

∑
θ2j e

wj∂∂wj∑
θ2j e

wj
+

∑(
2θj∂∂θj−2∂θj∧∂θj

)
ewj

∑
θ2j e

wj

by using the Legendre identity. The first term in the last line is nonnegative and the
second one is > γ. In the third term, if x is in the support of θj∂∂θj − ∂θj ∧ ∂θj, then
x ∈ U ′′

j rU ′
j and so wj(x) 6 Cj +wk(x) for some k 6= j with U ′

k ∋ x and θk(x) = 1. This
gives

i

∑(
2θj∂∂θj − 2∂θj ∧ ∂θj

)
ewj

∑
θ2j e

wj
> −2

∑

j

1lU ′′
j
rU ′

j
eCjAjω.

The expected lower bound follows. �

We apply Lemma 5.6 to functions w̃j,m which are just slight modifications of the
functions wj,m = 2m(ψj,m + qj ◦ τj) occurring in Lemma 5.5 :

w̃j,m(x) = wj,m(x) + 2m
(C1

m
+ C3ε(δ)(δ

2/2− |τj(x)|2)
)

= 2m
(
ψj,m(x) + qj ◦ τj(x) +

C1

m
+ C3ε(δ)(δ

2/2− |τj(x)|2)
)
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where x 7→ z = τj(x) is a local coordinate identifying Uj to B(0, 2δ), C1 is the constant
occurring in Lemma 5.5 and C3 is a sufficiently large constant. It is easy to see that we
can take Aj = C4δ

−2 in Lemma 5.6. We have

w̃j,m > wj,m + 2C1 +m
C3

2
ε(δ)δ2 on B(xj, δ/2) ⊂ U ′

j ,

since |τj(x)| 6 δ/2 on B(xj , δ/2), while

w̃j,m 6 wj,m + 2C1 −mC3ε(δ)δ
2 on U ′′

j r U ′
j .

For m > m0(δ) = (log δ−1/(ε(δ)δ2), Lemma 5.5 implies |wj,m − wk,m| 6 C5mε(δ)δ
2 on

U ′′
j ∩ U ′′

k . Hence, for C3 large enough, we get

w̃j,m(x) 6 sup
k 6=j, B(xk ,δ/2)∋x

wk,m(x) 6 sup
k 6=j, U ′

k
∋x
wk,m(x) on U ′′

j r U ′
j ,

and we can take Cj = 0 in the hypotheses of Lemma 5.6. The associated function

w = log
(∑

θ2j e
w̃j,m

)
is given by

w = log
∑

j

θ2j exp
(
2m
(
ψj,m + qj ◦ τj +

C1

m
+ C3ε(δ)(δ

2/2− |τj|2)
))
.

If we define ϕm = 1
2mw, we get

ϕm(x) :=
1

2m
w(x) > ψj,m(x) + qj ◦ τj(x) +

C1

m
+
C3

4
ε(δ)δ2 > ϕ(x)

in view of Lemma 5.5, by picking an index j such that x ∈ B(xj, δ/2). In the opposite
direction, the maximum number N of overlapping balls Uj does not depend on δ, and
we thus get

w 6 logN + 2m
(
max
j

{
ψj,m(x) + qj ◦ τj(x)

}
+
C1

m
+
C3

2
ε(δ)δ2

)
.

By definition of ψj we have sup|ζ−x|<r ψj(ζ) 6 sup|ζ−x|<r ϕ(ζ)− qj ◦ τj(x) +C5r thanks
to the uniform Lipschitz continuity of qj ◦ τj , thus by Lamme 5.5 again we find

ϕm(x) 6
logN

2m
+ sup

|ζ−x|<r
ϕ(ζ) +

C1

m
+

1

m
log

C2

rn
+
C3

2
ε(δ)δ2 + C5r.

By taking for instance r = 1/m and δ = δm → 0, we see that ϕm converges to ϕ. On the
other hand (5.2) implies i

π
∂∂qj ◦ τj(x) = τ∗j γj > γ − 2ε(δ)ω, thus

i

π
∂∂w̃j,m > 2m

(
γ − C6ε(δ)ω

)
.

Lemma 5.6 then produces the lower bound

i

π
∂∂w > 2m

(
γ − C6ε(δ)ω

)
− C7δ

−2ω,
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whence
i

π
∂∂ϕm > γ − C8ε(δ)ω

for m > m0(δ) = (log δ−1)/(ε(δ)δ2). We can fix δ = δm to be the smallest value of
δ > 0 such that m0(δ) 6 m, then δm → 0 and we have obtained a sequence of quasi-psh
functions ϕm satisfying the following properties.

(5.7) Theorem. Let ϕ be a quasi-psh function on a compact complex manifold X such

that i
π∂∂ϕ > γ for some continuous (1, 1)-form γ. Then there is a sequence of quasi-psh

functions ϕm such that ϕm has the same singularities as a logarithm of a sum of squares

of holomorphic functions and a decreasing sequence εm > 0 converging to 0 such that

(a) ϕ(x) < ϕm(x) 6 sup
|ζ−x|<r

ϕ(ζ) + C
( | log r|

m
+ r + εm

)

with respect to coordinate open sets covering X. In particular, ϕm converges to ϕ
pointwise and in L1(X) and

(b) ν(ϕ, x)− n

m
6 ν(ϕm, x) 6 ν(ϕ, x) for every x ∈ X ;

(c)
i

π
∂∂ϕm > γ − εmω.

In particular, we can apply this to an arbitrary positive or quasi-positive closed
(1, 1)-current T = α+ i

π∂∂ϕ.

(5.8) Corollary. Let T be a quasi-positive closed (1, 1)-current on a compact complex

manifold X such that T > γ for some continuous (1, 1)-form γ. Then there is a sequence

of currents Tm whose local potentials have the same singularities as 1/m times a logarithm

of a sum of squares of holomorphic functions and a decreasing sequence εm > 0 converging

to 0 such that

(a) Tm converges weakly to T ,

(b) ν(T, x)− n

m
6 ν(Tm, x) 6 ν(T, x) for every x ∈ X ;

(c) Tm > γ − εmω.

We say that our currents Tm are approximations of T with logarithmic poles.

By using blow-ups of X , the structure of the currents Tm can be better understood.
In fact, consider the coherent ideals Jm generated locally by the holomorphic functions

(σ
(k)
j,m) on Uk in the local approximations

ϕk,m =
1

2m
log
∑

j

|σ(k)
j,m|2 +O(1)

of the potential ϕ of T on Uk. These ideals are in fact globally defined, because the

local ideals J(k)
m = (σ

(k)
j,m) are integrally closed, and they coincide on the intersections

Uk∩Uℓ as they have the same order of vanishing by the proof of Lemma 5.5. By Hironaka
[Hir64], we can find a composition of blow-ups with smooth centers µm : X̃m → X such



52 J.-P. Demailly Applications of Pluripotential theory to Algebraic Geometry

that µ∗
mJm is an invertible ideal sheaf associated with a normal crossing divisor Em.

Now, we can write

µ∗
mϕk,m = ϕk,m ◦ µm =

1

m
log |sEm

|+ ϕ̃k,m

where sEm
is the canonical section of O(−Em) and ϕ̃k,m is a smooth potential. This

implies

(5.9) µ∗
mTm =

1

m
[Em] + βm

where [Em] is the current of integration over Em and βm is a smooth closed (1, 1)-form
which satisfies the lower bound βm > µ∗

m(γ − εmω). (Recall that the pull-back of a
closed (1, 1)-current by a holomorphic map f is always well-defined, by taking a local
plurisubharmonic potential ϕ such that T = i∂∂ϕ and writing f∗T = i∂∂(ϕ◦ f)). In the
remainder of this section, we derive from this a rather important geometric consequence,
first appeared in [DP04]). We need two related definitions.

(5.10) Definition. A Kähler current on a compact complex space X is a closed positive

current T of bidegree (1, 1) which satisfies T > εω for some ε > 0 and some smooth

positive Hermitian form ω on X.

(5.11) Definition. A compact complex manifold is said to be in the Fujiki classC if it is

bimeromorphic to a Kähler manifold (or equivalently, using Hironaka’s desingularization

theorem, if it admits a proper Kähler modification).

(5.12) Theorem. A compact complex manifold X is bimeromorphic to a Kähler mani-

fold (i.e. X ∈ C) if and only if it admits a Kähler current.

Proof. If X is bimeromorphic to a Kähler manifold Y , Hironaka’s desingularization
theorem implies that there exists a blow-up Ỹ of Y (obtained by a sequence of blow-ups
with smooth centers) such that the bimeromorphic map from Y to X can be resolved

into a modification µ : Ỹ → X . Then Ỹ is Kähler and the push-forward T = µ∗ω̃ of a
Kähler form ω̃ on Ỹ provides a Kähler current on X . In fact, if ω is a smooth Hermitian
form on X , there is a constant C such that µ∗ω 6 Cω̃ (by compactness of Ỹ ), hence

T = µ∗ω̃ > µ∗(C
−1µ∗ω) = C−1ω.

Conversely, assume that X admits a Kähler current T > εω. By Theorem 5.8 (c), there

exists a Kähler current T̃ = Tm > ε
2
ω (with m≫ 1 so large that εm 6 ε/2) in the same

∂∂-cohomology class as T , possessing logarithmic poles. Observation (5.9) implies the

existence of a composition of blow-ups µ : X̃ → X such that

µ∗T̃ = [Ẽ] + β̃ on X̃,

where Ẽ is a Q-divisor with normal crossings and β̃ a smooth closed (1, 1)-form such

that β̃ > ε
2µ

∗ω. In particular β̃ is positive outside the exceptional locus of µ. This is not

enough yet to produce a Kähler form on X̃, but we are not very far. Suppose that X̃ is
obtained as a tower of blow-ups

X̃ = XN → XN−1 → · · · → X1 → X0 = X,
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where Xj+1 is the blow-up ofXj along a smooth center Yj ⊂ Xj . Denote by Sj+1 ⊂ Xj+1

the exceptional divisor, and let µj : Xj+1 → Xj be the blow-up map. Now, we use the
following simple

(5.13) Lemma. For every Kähler current Tj on Xj, there exists εj+1 > 0 and a smooth

form uj+1 in the ∂∂-cohomology class of [Sj+1] such that

Tj+1 = µ∗
jTj − εj+1uj+1

is a Kähler current on Xj+1.

Proof. The line bundle O(−Sj+1)|Sj+1 is equal to OP (Nj)(1) where Nj is the normal
bundle to Yj in Xj . Pick an arbitrary smooth Hermitian metric on Nj , use this metric
to get an induced Fubini-Study metric on OP (Nj)(1), and finally extend this metric as
a smooth Hermitian metric on the line bundle O(−Sj+1). Such a metric has positive
curvature along tangent vectors of Xj+1 which are tangent to the fibers of Sj+1 =
P (Nj) → Yj . Assume furthermore that Tj > δjωj for some Hermitian form ωj on Xj

and a suitable 0 < δj ≪ 1. Then

µ∗
jTj − εj+1uj+1 > δjµ

∗
jωj − εj+1uj+1

where µ∗
jωj is semi-positive on Xj+1, positive definite on Xj+1 r Sj+1, and also positive

definite on tangent vectors of TXj+1|Sj+1
which are not tangent to the fibers of Sj+1 → Yj .

The statement is then easily proved by taking εj+1 ≪ δj and by using an elementary
compactness argument on the unit sphere bundle of TXj+1

associated with any given
Hermitian metric. �

End of proof of Theorem 5.12. If ũj is the pull-back of uj to the final blow-up X̃, we

conclude inductively that µ∗T̃ −∑ εj ũj is a Kähler current. Therefore the smooth form

ω̃ := β̃ −
∑

εj ũj = µ∗T̃ −
∑

εj ũj − [Ẽ]

is Kähler and we see that X̃ is a Kähler manifold. �

(5.14) Remark. A special case of Theorem 5.12 is the following characterization of
Moishezon varieties (i.e. manifolds which are bimeromorphic to projective algebraic va-
rieties or, equivalently, whose algebraic dimension is equal to their complex dimension):

A compact complex manifold X is Moishezon if and only if X possesses a Kähler current

T such that the De Rham cohomology class {T} is rational, i.e. {T} ∈ H2(X,Q).

In fact, in the above proof, we get an integral current T if we take the push forward
T = µ∗ω̃ of an integral ample class {ω̃} on Y , where µ : Y → X is a projective model
of Y . Conversely, if {T} is rational, we can take the εj ’s to be rational in Lemma 5.13.
This produces at the end a Kähler metric ω̃ with rational De Rham cohomology class
on X̃ . Therefore X̃ is projective by the Kodaira embedding theorem. This result was
already observed in [JS93] (see also [Bon93, Bon98] and Section III 6 for a more general
perspective based on a singular holomorphic Morse inequalities).



54 J.-P. Demailly Applications of Pluripotential theory to Algebraic Geometry

(5.15) Remark. Hodge decomposition also holds true for manifolds X ∈ C. In fact let

µ : X̃ → X be a modification such that X̃ is Kähler. Then there are natural morphisms

µ∗ : Hp,q

∂
(X,C) → Hp,q

∂
(X̃,C), µ∗ : Hp,q

∂
(X̃,C) → Hp,q

∂
(X,C)

induced respectively by the pull-back of smooth forms (resp. the direct image of currents).
Clearly, µ∗ ◦ µ∗ = Id, therefore µ∗ is injective and µ∗ surjective, and similar results hold
true for Bott-Chern cohomology or De Rham cohomology. It follows easily from this that
the ∂∂-lemma still holds true for X ∈ C, and that there are isomorphisms

Hp,q
BC(X,C) → Hp,q

∂
(X,C),

⊕

p+q=k

Hp,q
BC(X,C) → Hk

DR(X,C).

6. Zariski decomposition and mobile intersections

Let X be compact Kähler and let α ∈ E◦ be in the interior of the pseudo–effective
cone. In analogy with the algebraic context such a class α is called “big”, and it can
then be represented by a Kähler current T , i.e. a closed positive (1, 1)-current T such
that T > δω for some smooth Hermitian metric ω and a constant δ ≪ 1. We first need
a variant of the approximation theorem proved in Section 5.

(6.1) Regularization theorem for currents. Let X be a compact complex manifold

equipped with a Hermitian metric ω. Let T = α + i∂∂ϕ be a closed (1, 1)-current on X,

where α is smooth and ϕ is a quasi-plurisubharmonic function. Assume that T > γ
for some real (1, 1)-form γ on X with real coefficients. Then there exists a sequence

Tm = α+ i∂∂ϕm of closed (1, 1)-currents such that

(a) ϕm (and thus Tm) is smooth on the complement X rZm of an analytic set Zm, and

the Zm’s form an increasing sequence

Z0 ⊂ Z1 ⊂ · · · ⊂ Zm ⊂ · · · ⊂ X.

(b) There is a uniform estimate Tm > γ − δmω with lim ↓ δm = 0 as m tends to +∞.

(c) The sequence (ϕm) is non increasing, and we have lim ↓ ϕm = ϕ. As a consequence,

Tm converges weakly to T as m tends to +∞.

(d) Near Zm, the potential ϕm has logarithmic poles, namely, for every x0 ∈ Zm, there

is a neighborhood U of x0 such that ϕm(z) = λm log
∑
ℓ |gm,ℓ|2 + O(1) for suitable

holomorphic functions (gm,ℓ) on U and λm > 0. Moreover, there is a (global) proper

modification µm : X̃m → X of X, obtained as a sequence of blow-ups with smooth

centers, such that ϕm ◦ µm can be written locally on X̃m as

ϕm ◦ µm(w) = λm
(∑

nℓ log |g̃ℓ|2 + f(w)
)

where (g̃ℓ = 0) are local generators of suitable (global) divisors Eℓ on X̃m such that∑
Eℓ has normal crossings, nℓ are positive integers, and the f ’s are smooth functions

on X̃m.
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Sketch of proof. We essentially repeat the proofs of Theorems 4.2 and 5.7 with additional
considerations. One fact that does not follow readily from these proofs is the monotonicity
of the sequence ϕm (which we will not really need anyway – it can be obtained by applying
Theorem 4.2 with 2m instead of m, and by using the Ohsawa-Takegoshi L2 extension
theorem 4.1 for potentials 2mϕ(x) + 2mϕ(y) on the diagonal of X × X , so that the
restriction is 2m+1ϕ(x) on the diagonal; we refer e.g. to [DPS01] for details). The map
µm is obtained by blowing-up the (global) ideals Jm defined by the holomorphic functions
(gj,m) in the local approximations ϕm ∼ 1

2m
log
∑
j |gj,m|2. By Hironaka [Hir64], we can

achieve that µ∗
mJm is an invertible ideal sheaf associated with a normal crossing divisor.

�

(6.2) Corollary. If T is a Kähler current, then one can write T = limTm for a sequence

of Kähler currents Tm which have logarithmic poles with coefficients in 1
m
Z, i.e. there

are modifications µm : Xm → X such that

µ∗
mTm = [Em] + βm

where Em is an effective Q-divisor on Xm with coefficients in 1
mZ (the “fixed part”) and

βm is a closed semi-positive form (the “mobile part”).

Proof. We apply Theorem 6.1 with γ = εω and m so large that δm 6 ε/2. Then Tm has
analytic singularities and Tm > ε

2
ω, so we get a composition of blow-ups µm : Xm → X

such
µ∗
mTm = [Em] + βm,

where Em is an effective Q-divisor and βm > ε
2µ

∗
mω. In particular, βm is strictly positive

outside the exceptional divisors, by playing with the multiplicities of the components
of the exceptional divisors in Em, we could even achieve that βm is a Kähler class on
Xm. Notice also that by construction, µm is obtained by blowing-up the multiplier ideal
sheaves I(mT ) = I(mϕ) associated to a potential ϕ of T . �

The more familiar algebraic analogue would be to take α = c1(L) with a big line
bundle L and to blow-up the base locus of |mL|, m≫ 1, to get a Q-divisor decomposition

(6.3) µ∗
mL ∼ Em +Dm, Em effective, Dm base point free.

(One says that Dm is base point free if H0(X,O(Dm) is generated by sections, in other
words if Dm is entirely “mobile” in the linear system |Dm|). Such a blow-up is usually
referred to as a “log resolution” of the linear system |mL|, and we say that Em +Dm is
an approximate Zariski decomposition of L. We will also use this terminology for Kähler
currents with logarithmic poles.KNSENS

NSR(Xm)

α̃

[Em]
βm

α̃ = µ∗
mα = [Em] + βm
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(6.4) Definition. We define the volume, or mobile self-intersection of a class α ∈
H1,1(X,R) to be

Vol(α) = sup
T∈α

∫

XrSing(T )

Tn = sup
T∈α

∫

X̃

βn > 0,

where the supremum is taken over all Kähler currents T ∈ α with logarithmic poles, and

µ∗T = [E] + β with respect to some modification µ : X̃ → X. Correspondingly, we set

Vol(α) = 0 if α /∈ E◦.

In the special case where α = c1(L) is an integral class, we have the following interpre-
tation of the volume.

(6.5) Theorem. If L is a big line bundle and µ∗
mL ∼ Em + Dm is a log resolution

of |mL|, we have

Vol(c1(L)) = lim
m→+∞

Dn
m = lim

m→+∞
n!

mn
h0(X,mL),

Sketch of proof. Given a Kähler current T ∈ c1(L) with logarithmic pole, we can always

take a blow-up µ : X̃ → X so that µ∗T = [E] + β where E is an effective R-divisor and
β > 0. By using a perturbation technique as in Lemma 5.13, we can always assume that
E is a Q-divisor and that β is Kähler. Then {β} = µ∗c1(L) − {[E]} is a rational class
and therefore β is the first Chern class c1(A) of an ample Q-divisor on X̃. When m is
a multiple of a suitable denominator m0 and m = qm0 + r, 0 6 r < m0, we get by the
elementary Riemann-Roch formula

h0(X,mL) > h0(X̃,mµ∗L−m0[m/m0]E) = h0(X̃,m0[m/m0]A+ rµ∗L) ∼ mn

n!

∫

X̃

βn,

hence lim inf n!
mnh

0(X,mL) > Vol(c1(L)) by taking the supremum over all such cur-

rents T . In the other direction, the inequality lim sup n!
mnh

0(X,mL) 6 Vol(c1(L)) is
obtained by subtracting a small rational multiple εA of an ample line bundle A. One
shows that multiples of L− εA roughly have the same number of sections as those of L
by an exact sequence argument similar to what was done in the proof of 3.4 (b). By a
result of Fujita [Fuj94] (cf. also [DEL00]), the volume of the base point free part Dm,ε
in a log resolution of |m(L− εA)| approximates lim sup n!

mnh
0(X,m(L− εA)), so we get

µ∗
m,εL = Em,ε + (Dm,ε + εA) where Dm,ε + A is ample. The positive (1, 1)-current
Tm,ε = (µm,ε)∗ΘDm,ε+εA is a Kähler current with logarithmic poles and its volume ap-

proaches lim sup n!
mnh

0(X,mL) when ε≪ 1 and m is large. �

In these terms, we get the following statement.

(6.6) Proposition. Let L be a big line bundle on the projective manifold X. Let ε > 0.
Then there exists a modification µ : Xε → X and a decomposition µ∗(L) = E + β with

E an effective Q-divisor and β a big and nef Q-divisor such that

Vol(L)− ε 6 Vol(β) 6 Vol(L).
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It is very useful to observe that the supremum in Definition 6.4 is actually achieved
by a collection of currents whose singularities satisfy a filtering property. Namely, if
T1 = α + i∂∂ϕ1 and T2 = α + i∂∂ϕ2 are two Kähler currents with logarithmic poles in
the class of α, then

(6.7) T = α + i∂∂ϕ, ϕ = max(ϕ1, ϕ2)

is again a Kähler current with weaker singularities than T1 and T2. One could define as
well

(6.7′) T = α+ i∂∂ϕ, ϕ =
1

2m
log(e2mϕ1 + e2mϕ2),

where m = lcm(m1, m2) is the lowest common multiple of the denominators occuring in
T1, T2. Now, take a simultaneous log-resolution µm : Xm → X for which the singularities
of T1 and T2 are resolved as Q-divisors E1 and E2. Then clearly the associated divisor in
the decomposition µ∗

mT = [E]+β is given by E = min(E1, E2). By doing so, the volume∫
Xm

βn gets increased, as we shall see in the proof of Theorem 6.8 below.

(6.8) Theorem (Boucksom [Bck02]). Let X be a compact Kähler manifold. We denote

here by Hk,k
>0 (X) the cone of cohomology classes of type (k, k) which have non-negative

intersection with all closed semi-positive smooth forms of bidegree (n− k, n− k).

(a) For each integer k = 1, 2, . . . , n, there exists a canonical “mobile intersection prod-

uct” E× · · · ×E→ Hk,k
>0 (X), (α1, . . . , αk) 7→ 〈α1 · α2. · · · .αk−1 · αk〉

such that Vol(α) = 〈αn〉 whenever α is a big class.

(b) The product is increasing, homogeneous of degree 1 and superadditive in each argu-

ment, i.e.

〈α1 · · · (α′
j + α′′

j ) · · ·αk〉 > 〈α1 · · ·α′
j · · ·αk〉+ 〈α1 · · ·α′′

j · · ·αk〉.

It coincides with the ordinary intersection product when the αj ∈ K are nef classes.

(c) The mobile intersection product satisfies the Hovanskii-Teissier inequalities ([Hov79],
[Tei79, Tei82])

〈α1 · α2. · · · .αn〉 > (〈αn1 〉)1/n · · · (〈αnn〉)1/n (with 〈αnj 〉 = Vol(αj) ).

(d) For k = 1, the above “product” reduces to a (non linear) projection operatorE→ E1, α→ 〈α〉

onto a certain convex subcone E1 of E such that K ⊂ E1 ⊂ E. Moreover, there is

a “divisorial Zariski decomposition”

α = {N(α)}+ 〈α〉
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where N(α) is a uniquely defined effective divisor which is called the “negative diviso-

rial part” of α. The map α 7→ N(α) is homogeneous and subadditive, and N(α) = 0
if and only if α ∈ E1.

(e) The components of N(α) always consist of divisors whose cohomology classes are

linearly independent, especially N(α) has at most ρ = rankZ NS(X) components.

Proof. We essentially repeat the arguments developped in [Bck02], with some simplifica-
tions arising from the fact that X is supposed to be Kähler from the beginning.

(a) First assume that all classes αj are big, i.e. αj ∈ E◦. Fix a smooth closed
(n − k, n − k) semi-positive form u on X . We select Kähler currents Tj ∈ αj with

logarithmic poles, and a simultaneous log-resolution µ : X̃ → X such that

µ∗Tj = [Ej ] + βj .

We consider the direct image current µ∗(β1 ∧ · · ·∧βk) (which is a closed positive current
of bidegree (k, k) on X) and the corresponding integrals

∫

X̃

β1 ∧ · · · ∧ βk ∧ µ∗u > 0.

If we change the representative Tj with another current T ′
j , we may always take a simulta-

neous log-resolution such that µ∗T ′
j = [E′

j]+β
′
j , and by using (6.7′) we can always assume

that E′
j 6 Ej . Then Dj = Ej−E′

j is an effective divisor and we find [Ej]+βj ≡ [E′
j ]+β

′
j ,

hence β′
j ≡ βj + [Dj ]. A substitution in the integral implies

∫

X̃

β′
1 ∧ β2 ∧ · · · ∧ βk ∧ µ∗u

=

∫

X̃

β1 ∧ β2 ∧ · · · ∧ βk ∧ µ∗u+

∫

X̃

[D1] ∧ β2 ∧ · · · ∧ βk ∧ µ∗u

>

∫

X̃

β1 ∧ β2 ∧ · · · ∧ βk ∧ µ∗u.

Similarly, we can replace successively all forms βj by the β′
j , and by doing so, we find

∫

X̃

β′
1 ∧ β′

2 ∧ · · · ∧ β′
k ∧ µ∗u >

∫

X̃

β1 ∧ β2 ∧ · · · ∧ βk ∧ µ∗u.

We claim that the closed positive currents µ∗(β1 ∧ · · · ∧ βk) are uniformly bounded in
mass. In fact, if ω is a Kähler metric in X , there exists a constant Cj > 0 such that
Cj{ω} − αj is a Kähler class. Hence Cjω − Tj ≡ γj for some Kähler form γj on X . By
pulling back with µ, we find Cjµ

∗ω − ([Ej] + βj) ≡ µ∗γj, hence

βj ≡ Cjµ
∗ω − ([Ej] + µ∗γj).

By performing again a substitution in the integrals, we find

∫

X̃

β1 ∧ · · · ∧ βk ∧ µ∗u 6 C1 · · ·Ck
∫

X̃

µ∗ωk ∧ µ∗u = C1 · · ·Ck
∫

X

ωk ∧ u
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and this is true especially for u = ωn−k. We can now arrange that for each of the
integrals associated with a countable dense family of forms u, the supremum is achieved
by a sequence of currents (µm)∗(β1,m∧· · ·∧βk,m) obtained as direct images by a suitable
sequence of modifications µm : X̃m → X . By extracting a subsequence, we can achieve
that this sequence is weakly convergent and we set

〈α1 · α2. · · · .αk〉 = lim ↑
m→+∞

{(µm)∗(β1,m ∧ β2,m ∧ · · · ∧ βk,m)}

(the monotonicity is not in terms of the currents themselves, but in terms of the integrals
obtained when we evaluate against a smooth closed semi-positive form u). By evaluating
against a basis of positive classes {u} ∈ Hn−k,n−k(X), we infer by Serre duality that
the class of 〈α1 · α2. · · · .αk〉 is uniquely defined (although, in general, the representing
current is not unique).

(b) It is indeed clear from the definition that the mobile intersection product is
homogeneous, increasing and superadditive in each argument, at least when the αj ’s are
in E◦. However, we can extend the product to the closed cone E by monotonicity, by
setting

〈α1 · α2 · · ·αk〉 = lim ↓
δ↓0

〈(α1 + δω) · (α2 + δω). · · · .(αk + δω)〉

for arbitrary classes αj ∈ E (again, monotonicity occurs only where we evaluate against
closed semi-positive forms u). By weak compactness, the mobile intersection product
can always be represented by a closed positive current of bidegree (k, k).

(c) The Hovanskii-Teissier inequalities are a direct consequence of the fact that they
hold true for nef classes, so we just have to apply them to the classes βj,m on X̃m and
pass to the limit.

(d) When k = 1 and α ∈ E0, we have

α = lim
m→+∞

{(µm)∗Tm} = lim
m→+∞

(µm)∗[Em] + {(µm)∗βm}

and 〈α〉 = limm→+∞{(µm)∗βm} by definition. However, the images Fm = (µm)∗
Fm are effective Q-divisors inX , and the filtering property implies that Fm is a decreasing
sequence. It must therefore converge to a (uniquely defined) limit F = limFm := N(α)
which is an effective R-divisor, and we get the asserted decomposition in the limit.

Since N(α) = α − 〈α〉 we easily see that N(α) is subadditive and that N(α) = 0 if
α is the class of a smooth semi-positive form. When α is no longer a big class, we define

〈α〉 = lim
δ↓0

↓ 〈α+ δω〉, N(α) = lim
δ↓0

↑ N(α+ δω)

(the subadditivity of N implies N(α + (δ + ε)ω) 6 N(α + δω)). The divisorial Zariski
decomposition follows except maybe for the fact that N(α) might be a convergent count-
able sum of divisors. However, this will be ruled out when (e) is proved. As N(•) is
subadditive and homogeneous, the set E1 = {α ∈ E ; N(α) = 0} is a closed convex
cone, and we find that α 7→ 〈α〉 is a projection of E onto E1 (according to [Bck02], E1

consists of those pseudo-effective classes which are “nef in codimension 1”).
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(e) Let α ∈ E◦, and assume that N(α) contains linearly dependent components Fj .
Then already all currents T ∈ α should be such that µ∗T = [E] + β where F = µ∗E
contains those linearly dependent components. Write F =

∑
λjFj , λj > 0 and assume

that ∑

j∈J
cjFj ≡ 0

for a certain non trivial linear combination. Then some of the coefficients cj must be
negative (and some other positive). Then E is numerically equivalent to

E′ ≡ E + tµ∗
(∑

λjFj

)
,

and by choosing t > 0 appropriate, we obtain an effective divisor E′ which has a zero
coefficient on one of the components µ∗Fj0 . By replacing E with min(E,E′) via (6.7′),
we eliminate the component µ∗Fj0 . This is a contradiction since N(α) was supposed to
contain Fj0 . �

(6.9) Definition. For a class α ∈ H1,1(X,R), we define the numerical dimension nd(α)
to be nd(α) = −∞ if α is not pseudo-effective, and

nd(α) = max{p ∈ N ; 〈αp〉 6= 0}, nd(α) ∈ {0, 1, . . . , n}

if α is pseudo-effective.

By the results of [DP04], a class is big (α ∈ E◦) if and only if nd(α) = n. Classes of
numerical dimension 0 can be described much more precisely, again following Boucksom
[Bck02].

(6.10) Theorem. Let X be a compact Kähler manifold. Then the subset D0 of irre-

ducible divisors D in X such that nd(D) = 0 is countable, and these divisors are rigid

as well as their multiples. If α ∈ E is a pseudo-effective class of numerical dimension 0,
then α is numerically equivalent to an effective R-divisor D =

∑
j∈J λjDj , for some fi-

nite subset (Dj)j∈J ⊂D0 such that the cohomology classes {Dj} are linearly independent

and some λj > 0. If such a linear combination is of numerical dimension 0, then so is

any other linear combination of the same divisors.

Proof. It is immediate from the definition that a pseudo-effective class is of numerical
dimension 0 if and only if 〈α〉 = 0, in other words if α = N(α). Thus α ≡ ∑

λjDj
as described in 6.10, and since λj〈Dj〉 6 〈α〉, the divisors Dj must themselves have
numerical dimension 0. There is at most one such divisor D in any given cohomology
class in NS(X) ∩ E ⊂ H2(X,Z), otherwise two such divisors D ≡ D′ would yield a

blow-up µ : X̃ → X resolving the intersection, and by taking min(µ∗D, µ∗D′) via (6.7′),
we would find µ∗D ≡ E + β, β 6= 0, so that {D} would not be of numerical dimension 0.
This implies that there are at most countably many divisors of numerical dimension 0,
and that these divisors are rigid as well as their multiples. �

(6.11) Remark. If L is an arbitrary holomorphic line bundle, we define its numerical
dimension to be nd(L) = nd(c1(L)). Using the canonical maps Φ|mL| and pulling-back
the Fubini-Study metric it is immediate to see that nd(L) > κ(L).
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The above general concept of numerical dimension leads to a very natural formulation
of the abundance conjecture for Kähler varieties.

(6.12) Generalized Abundance Conjecture. Let X be an arbitrary compact Kähler

manifold X.

(a) The Kodaira dimension of X should be equal to its numerical dimension: κ(KX) =
nd(KX).

(b) More generally, let ∆ be a Q-divisor which is klt (Kawamata log terminal, i.e. such

that cX(∆) > 1). Then κ(KX +∆) = nd(KX +∆).

(6.13) Remark. It is obvious that abundance holds in the case nd(KX) = −∞ (if L
is not pseudo-effective, no multiple of L can have sections), or in the case nd(KX) = n
which implies KX big (the latter property follows e.g. from the solution of the Grauert-
Riemenschneider conjecture in the form proven in [Dem85], see also [DP04]).

In the remaining cases, the most tractable situation is the case when nd(KX) = 0. In
fact Theorem 6.10 then gives KX ≡∑λjDj for some effective divisor with numerically
independent components, nd(Dj) = 0. It follows that the λj are rational and therefore

(∗) KX ∼
∑

λjDj + F where λj ∈ Q+, nd(Dj) = 0 and F ∈ Pic0(X).

If we assume additionally that q(X) = h0,1(X) is zero, thenmKX is linearly equivalent to
an integral divisor for some multiple m, and it follows immediately that κ(X) = 0. The
case of a general projective manifold with nd(KX) = 0 and positive irregularity q(X) > 0
has been solved by Campana-Peternell [CP04], Proposition 3.7. It would be interesting
to understand the Kähler case as well.

7. The orthogonality estimate

The goal of this section is to show that, in an appropriate sense, approximate Zariski
decompositions are almost orthogonal.

(7.1) Theorem. Let X be a projective manifold, and let α = {T} ∈ E◦
NS be a big class

represented by a Kähler current T . Consider an approximate Zariski decomposition

µ∗
mTm = [Em] + [Dm]

Then

(Dn−1
m · Em)2 6 20 (Cω)n

(
Vol(α)−Dn

m

)

where ω = c1(H) is a Kähler form and C > 0 is a constant such that ±α is dominated

by Cω (i.e., Cω ± α is nef ). In other words, Em and Dm become “more and more

orthogonal” as Dn
m approaches the volume.

Proof. For every t ∈ [0, 1], we have

Vol(α) = Vol(Em +Dm) > Vol(tEm +Dm).
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Now, by our choice of C, we can write Em as a difference of two nef divisors

Em = µ∗α−Dm = µ∗
m(α+ Cω)− (Dm + Cµ∗

mω). �

(7.2) Lemma. For all nef R-divisors A, B we have

Vol(A−B) > An − nAn−1 ·B

as soon as the right hand side is positive.

Proof. In case A and B are integral divisors, this is a consequence of holomorphic Morse
inequalities (cf. (I 2.15)). If A and B are Q-divisors, we conclude by the homogeneity
of the volume. The general case of R-divisors follows by approximation (actually, as
it is defined to be a supremum, the volume function can easily be shown to be lower
semi-continuous, but it is in fact even continuous, cf. [Bck02, 3.1.26]). �

(7.3) Remark. We hope that Lemma 7.2 also holds true on an arbitrary Kähler mani-
fold for arbitrary nef (non necessarily integral) classes. This would follow from Conjecture
(III 2.11) generalizing holomorphic Morse inequalities to non integral classes, exactly by
the same proof as Theorem (I 2.14).

(7.4) Lemma. Let β1, . . . , βn and β′
1, . . . , β

′
n be nef classes on a compact Kähler manifold

X̃ such that each difference β′
j−βj is pseudo-effective. Then the n-th intersection products

satisfy

β1 · · ·βn 6 β′
1 · · ·β′

n.

Proof. We can proceed step by step and replace just one βj by β
′j ≡ βj +Tj where Tj is

a closed positive (1, 1)-current and the other classes β′
k = βk, k 6= j are limits of Kähler

forms. The inequality is then obvious. �

End of proof of Theorem 7.1. In order to exploit the lower bound of the volume, we write

tEm +Dm = A−B, A = Dm + tµ∗
m(α+ Cω), B = t(Dm + Cµ∗

mω).

By our choice of the constant C, both A and B are nef. Lemma 7.2 and the binomial
formula imply

Vol(tEm+Dm) > An − nAn−1 ·B

= Dn
m + ntDn−1

m · µ∗
m(α+ Cω) +

n∑

k=2

tk
(
n

k

)
Dn−k
m · µ∗

m(α+ Cω)k

− ntDn−1
m · (Dm + Cµ∗

mω)

− nt2
n−1∑

k=1

tk−1

(
n− 1

k

)
Dn−1−k
m · µ∗

m(α+ Cω)k · (Dm + Cµ∗
mω).

Now, we use the obvious inequalities

Dm 6 µ∗
m(Cω), µ∗

m(α+ Cω) 6 2µ∗
m(Cω), Dm + Cµ∗

mω 6 2µ∗
m(Cω)
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in which all members are nef (and where the inequality 6 means that the difference
of classes is pseudo-effective). We use Lemma 7.4 to bound the last summation in the
estimate of the volume, and in this way we get

Vol(tEm +Dm) > Dn
m + ntDn−1

m · Em − nt2
n−1∑

k=1

2k+1tk−1

(
n− 1

k

)
(Cω)n.

We will always take t smaller than 1/10n so that the last summation is bounded by
4(n− 1)(1 + 1/5n)n−2 < 4ne1/5 < 5n. This implies

Vol(tEm +Dm) > Dn
m + ntDn−1

m · Em − 5n2t2(Cω)n.

Now, the choice t = 1
10n (D

n−1
m · Em)((Cω)n)−1 gives by substituting

1

20

(Dn−1
m · Em)2
(Cω)n

6 Vol(Em +Dm)−Dn
m 6 Vol(α)−Dn

m

(and we have indeed t 6 1
10n by Lemma 7.4), whence Theorem 7.1. Of course, the

constant 20 is certainly not optimal. �

(7.5) Corollary. If α ∈ ENS, then the divisorial Zariski decomposition α = N(α) + 〈α〉
is such that

〈αn−1〉 ·N(α) = 0.

Proof. By replacing α with α+ δc1(H), one sees that it is sufficient to consider the case
where α is big. Then the orthogonality estimate implies

(µm)∗(D
n−1
m ) · (µm)∗Em = Dn−1

m · (µm)∗(µm)∗Em

6 Dn−1
m ·Em 6 C(Vol(α)−Dn

m)1/2.

Since 〈αn−1〉 = lim(µm)∗(Dn−1
m ), N(α) = lim(µm)∗Em and limDn

m = Vol(α), we get the
desired conclusion in the limit. �

8. Dual of the pseudo-effective cone

We consider here the Serre duality pairing

(8.1) H1,1(X,R)×Hn−1,n−1(X,R) −→ R, (α, β) 7−→ α · β =

∫

X

α ∧ β.

When restricted to real vector subspaces generated by integral classes, it defines a perfect
pairing

(8.2) NSR × NSn−1,n−1
R (X) −→ R

where NSR ⊂ H1,1(X,R) and NSn−1,n−1
R (X) ⊂ Hn−1,n−1(X,R). Next, we introduce the

concept of mobile curves.
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(8.3) Definition. Let X be a smooth projective variety.

(a) One defines NE(X) ⊂ NSn−1,n−1
R (X) to be the convex cone generated by cohomology

classes of all effective curves in Hn−1,n−1(X,R).

(b) We say that C is a mobile curve if C = Ct0 is a member of an analytic family

{Ct}t∈S such that
⋃
t∈S Ct = X and, as such, is a reduced irreducible 1-cycle. We

define the mobile cone ME(X), to be the convex cone generated by all mobile curves.

(c) If X is projective, we say that an effective 1-cycle C is a strongly mobile if we have

C = µ∗(Ã1 ∩ · · · ∩ Ãn−1)

for suitable very ample divisors Ãj on X̃, where µ : X̃ → X is a modification. We

let MEs(X) be the convex cone generated by all strongly mobile effective 1-cycles

(notice that by taking Ãj general enough these classes can be represented by reduced

irreducible curves; also, by Hironaka, one could just restrict oneself to compositions

of blow-ups with smooth centers).

Clearly, we have

(8.4) MEs(X) ⊂ ME(X) ⊂ NE(X) ⊂ NSn−1,n−1
R (X).

Another simple observation is:

(8.5) Proposition. One has α ·C > 0 whenever {α} ∈ E and {C} ∈ ME(X). In other

words ENS = E ∩ NSR(X) is contained in the dual cone (ME(X))∨.

Proof. If the class {α} is represented by a closed positive current T and C = Ct0
belongs to a covering family (Ct)t∈S, it is easy to see that T|Ct

is locally well defined and
nonnegative as soon as Ct is not contained in the set of poles of a local potential ϕ of T .
However, this occurs only when t belongs to a pluripolar set P ⊂ S, hence for t ∈ S r P
we have

α · C =

∫

Ct

T|Ct
> 0. �

The following statement was first proved in [BDPP04].

(8.6) Theorem. If X is projective, the cones ENS = Eff(X) and MEs(X) are dual with

respect to Serre duality, and we have MEs(X) = ME(X).

In other words, a line bundle L is pseudo-effective if (and only if) L · C > 0 for
all mobile curves, i.e., L · C > 0 for every very generic curve C (not contained in a
countable union of algebraic subvarieties). In fact, by definition of MEs(X), it is enough
to consider only those curves C which are images of generic complete intersection of
very ample divisors on some variety X̃ , under a modification µ : X̃ → X. By a standard
blowing-up argument, it also follows that a line bundle L on a normal Moishezon variety
is pseudo-effective if and only if L · C > 0 for every mobile curve C.
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Proof. By (8.5) we have ENS ⊂ (ME(X))∨ and (8.4) implies (ME(X))∨ ⊂ (MEs(X))∨,
therefore

(8.7) ENS ⊂ (MEs(X))∨.

If we show that ENS = (MEs(X))∨, we get at the same time (MEs(X))∨ = (ME(X))∨,
and therefore by biduality (Hahn-Banach theorem) we will infer MEs(X) = ME(X).
Now, if the inclusion were strict in (8.7), there would be an element α ∈ ∂ENS on the
boundary of ENS which is in the interior of MEs(X)∨.EENS M∨

(MNS)
∨

NSR(X) H1,1(X,R) Hn−1,n−1(X,R)

MNS

M
α− εω

α
α+ δω

ω

Γ

Nn−1
NS (X)

Let ω = c1(H) be an ample class. Since α ∈ ∂ENS, the class α + δω is big for every
δ > 0, and since α ∈ ((MEs(X))∨)◦ we still have α − εω ∈ (MEs(X))∨ for ε > 0 small.
Therefore

(8.8) α · Γ > εω · Γ

for every strongly mobile curve Γ, and therefore for every Γ ∈ MEs(X). We are going to
contradict (8.8). Since α + δω is big, we have an approximate Zariski decomposition

µ∗
δ(α+ δω) = Eδ +Dδ.

We pick Γ = (µδ)∗(D
n−1
δ ) ∈ MEs(X). By the Hovanskii-Teissier concavity inequality

ω · Γ > (ωn)1/n(Dn
δ )

(n−1)/n.

On the other hand

α · Γ = α · (µδ)∗(Dn−1
δ )

= µ∗
δα ·Dn−1

δ 6 µ∗
δ(α+ δω) ·Dn−1

δ

= (Eδ +Dδ) ·Dn−1
δ = Dn

δ +Dn−1
δ · Eδ.

By the orthogonality estimate, we find

α · Γ
ω · Γ 6

Dn
δ +

(
20(Cω)n(Vol(α+ δω)−Dn

δ )
)1/2

(ωn)1/n(Dn
δ )

(n−1)/n

6 C′(Dn
δ )

1/n + C′′ (Vol(α+ δω)−Dn
δ )

1/2

(Dn
δ )

(n−1)/n
.
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However, since α ∈ ∂ENS, the class α cannot be big so

lim
δ→0

Dn
δ = Vol(α) = 0.

We can also take Dδ to approximate Vol(α+δω) in such a way that (Vol(α+δω)−Dn
δ )

1/2

tends to 0 much faster than Dn
δ . Notice that Dn

δ > δnωn, so in fact it is enough to take

Vol(α+ δω)−Dn
δ 6 δ2n,

which gives (α · Γ)/(ω · Γ) 6 (C′ + C′′)δ. This contradicts (8.8) for δ small. �



Chapter III

Asymptotic cohomology functionals
and Monge-Ampère operators

The goal of this chapter is to show that there are strong relations between certain
Monge-Ampère integrals appearing in holomorphic Morse inequalities, and asymptotic
cohomology estimates for tensor powers of holomorphic line bundles. Especially, we prove
that these relations hold without restriction for projective surfaces, and in the special
case of the volume, i.e. of asymptotic 0-cohomology, for all projective manifolds. These
results can be seen as a partial converse to the Andreotti-Grauert vanishing theorem.

0. Introduction and main definitions

Throughout this chapter, X denotes a compact complex manifold, n = dimCX its
complex dimension and L → X a holomorphic line bundle. In order to estimate the
growth of cohomology groups, it is interesting to consider appropriate “asymptotic co-
homology functions”. Following partly notation and concepts introduced by A. Küronya
[Kür06, FKL07], we introduce

(0.1) Definition. Let X be a compact complex manifold and let L→ X be a holomorphic

line bundle.

(a) The q-th asymptotic cohomology functional is defined as

ĥq(X,L) := lim sup
k→+∞

n!

kn
hq(X,L⊗k).

(b) The q-th asymptotic holomorphic Morse sum of L is

ĥ≤q(X,L) := lim sup
k→+∞

n!

kn

∑

06j6q

(−1)q−jhj(X,L⊗k).

When the lim sup’s are limits, we have the obvious relation

ĥ≤q(X,L) =
∑

06j6q

(−1)q−jĥj(X,L).
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Clearly, Definition 0.1 can also be given for a Q-line bundle L or a Q-divisor D, and in
the case q = 0 one gets by (II 6.5) what is called the volume of L (see also [DEL00],
[Bck02], [Laz04]):

(0.2) Vol(X,L) := ĥ0(X,L) = lim sup
k→+∞

n!

kn
h0(X,L⊗k).

1. Extension of the functionals to real cohomology classes

We are going to show that the ĥq functional induces a continuous map

(1.1) DNSR(X) ∋ α 7→ ĥqDNS(X,α),

which is defined on the “divisorial Néron-Severi space” DNSR(X) ⊂ H1,1
BC(X,R), i.e.

the vector space spanned by real linear combinations of classes of divisors in the real
Bott-Chern cohomology group of bidegree (1, 1). Here Hp,q

BC(X,C) is defined as the quo-
tient of d-closed (p, q)-forms by ∂∂-exact (p, q)-forms, and there is a natural conjugation
Hp,q

BC(X,C) → Hq,p
BC(X,C) which allows us to speak of real classes when q = p. Notice

that Hp,q
BC(X,C) coincides with the usual Dolbeault cohomology group Hp,q(X,C) when

X is Kähler, and that DNSR(X) coincides with the usual Néron-Severi space

(1.2) NSR(X) = R⊗Q

(
H2(X,Q) ∩H1,1(X,C)

)

when X is projective (the inclusion can be strict in general, e.g. on complex 2-tori which
only have indefinite integral (1, 1)-classes, cf. [BL04]).

For α ∈ NSR(X) (resp. α ∈ DNSR(X)), we set

ĥqNS(X,α)
(
resp. ĥqDNS(X,α)

)
= lim sup
k→+∞, 1

k
c1(L)→α

n!

kn
hq(X,L)

= inf
ε>0, k0>0

sup
k>k0,‖ 1

k
c1(L)−α‖6ε

n!

kn
hq(X,L).(1.3)

when the pair (k, L) runs over N∗ × Pic(X), resp. over N∗ × PicD(X) where PicD(X) ⊂
Pic(X) is the subgroup generated by “divisorial line bundles”, i.e. line bundles of the

form OX(D). Similar definitions can be given for the Morse sum functionals ĥ6qNS(X,α)

and ĥ6qDNS(X,α). Clearly ĥ6qDNS(X,α) 6 ĥ6qNS(X,α) on DNSR(X), but we do not know
at this point whether this is always an equality. From the very definition, ĥqNS , ĥ6qNS

(and likewise ĥqDNS , ĥ6qDNS) are upper semi-continuous functions which are positively
homogeneous of degree n, namely

(1.4) ĥqNS(X, λα) = λnĥqNS(X,α)

for all α ∈ NSR(X) and all λ > 0. Notice that ĥqNS(X,α) and ĥ
6q
NS(X,α) are always finite

thanks to holomorphic Morse inequalities (see below).

(1.5) Proposition.
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(a) For L ∈ PicD(X), one has ĥq(X,L)=ĥq(X, c1(L)) and ĥ6q(X,L)=ĥ6qDNS(X, c1(L)),
in particular asymptotic cohomology depends only on the numerical class of L.

(b) The map α 7→ ĥqDNS(X,α) is (locally) Lipschitz continuous on DNSR(X).

(c) When q = 0, ĥ0DNS(X,α) and ĥ
0
NS(X,α) coincide on DNSR(X) and the limsups are

limits.

The proof is derived from arguments quite similar to those already developed in
[Kür06] (see also [Dem10a] for the non projective situation). If D =

∑
pjDj is an

integral divisor, we define its norm to be ‖D‖ =
∑ |pj|Volω(Dj), where the volume of

an irreducible divisor is computed by means of a given Hermitian metric ω on X ; in
other words, this is precisely the mass of the current of integration [D] with respect to ω.
Clearly, since X is compact, we get equivalent norms for all choices of Hermitian metrics
ω on X . We can also use ω to fix a normalized metric on H1,1

BC(X,R). Elementary
properties of potential theory show that ‖c1(O(D))‖ 6 C‖D‖ for some constant C > 0
(but the converse inequality is of course wrong in most cases). Proposition 1.5 is a simple
consequence of the more precise cohomology estimates (1.9) which will be obtained below.

The special case q = 0 is easier, in fact, one can get non zero values for ĥ0(X,L) only
when L is big, i.e. when X is Moishezon (so that we are always reduced to the divisorial
situation); the fact that limsups are limits was proved in II (6.5). We postpone the
proof to section 19, which will provide stronger results based on approximate Zariski
decomposition.

(1.6) Lemma. Let X be a compact complex n-fold. Then for every coherent sheaf F
on X, there is a constant CF > 0 such that for every holomorphic line bundle L on X
we have

hq(X,F⊗ OX(L)) 6 CF(‖c1(L)‖+ 1)p

where p = dimSuppF.

Proof. We prove the result by induction on p ; it is indeed clear for p = 0 since we
then have cohomology only in degree 0 and the dimension of H0(X,F ⊗ OX(L)) does
not depend on L when F has finite support. Let us consider the support Y of F and a
resolution of singularity µ : Ŷ → Y of the corresponding (reduced) analytic space. ThenF is an OY -module for some non necessarily reduced complex structure OY = OX/J
on Y . We can look at the reduced structure OY,red = OX/I, I =

√J, and filter F
by IkF, k > 0. Since IkF/Ik+1F is a coherent OY,red-module, we can easily reduce
the situation to the case where Y is reduced and F is an OY -module. In that case the
cohomology

Hq(X,F⊗ OX(L)) = Hq(Y,F⊗ OY (L|Y ))

just lives on the reduced space Y .

Now, we have an injective sheaf morphismF→ µ∗µ∗F whose cokernel G has support
in dimension < p. By induction on p, we conclude from the exact sequence that

∣∣hq(X,F⊗ OX(L))− hq(X, µ∗µ
∗F⊗ OX(L))

∣∣ 6 C1(‖c1(L)‖+ 1)p−1.

The functorial morphisms

µ∗ : Hq(Y,F⊗ OY (L|Y )) → Hq(Ŷ , µ∗F⊗ O
Ŷ
(µ∗L)|Y ),

µ∗ : Hq(Ŷ , µ∗F⊗ O
Ŷ
(µ∗L)|Y ) → Hq(Y, µ∗µ

∗F⊗ OY (L|Y ))
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yield a composition

µ∗ ◦ µ∗ : Hq(Y,F⊗ OY (L|Y )) → Hq(Y, µ∗µ
∗F⊗ OY (L|Y ))

induced by the natural injection F→ µ∗µ∗F. This implies

hq(Y,F⊗ OY (L|Y )) 6 hq(Ŷ , µ∗F⊗ O
Ŷ
(µ∗L|Y )) + C1(‖c1(L)‖+ 1)p−1.

By taking a suitable modification µ′ : Y ′ → Y of the desingularization Ŷ , we can assume
that (µ′)∗F is locally free modulo torsion. Then we are reduced to the case where F′ =
(µ′)∗F is a locally free sheaf on a smooth manifold Y ′, and L′ = (µ′)∗L|Y . In this case,
we apply Morse inequalities to conclude that hq(Y ′,F′ ⊗ OY ′(L′)) 6 C2(‖c1(L′)‖+ 1)p.
Since ‖c1(L′)‖ 6 C3‖c1(L)‖ by pulling-back, the statement follows easily. �

(1.7) Corollary. For every irreducible divisor D on X, there exists a constant CD such

that

hq(D,OD(L|D)) 6 CD(‖c1(L)‖+ 1)n−1

Proof. It is enough to apply Lemma 1.6 with F = (iD)∗OD where iD : D → X is the
injection. �

(1.8) Remark. It is very likely that one can get an “elementary” proof of Lemma 1.6
without invoking resolutions of singularities, e.g. by combining the Cartan-Serre finiteness
argument along with the standard Serre-Siegel proof based ultimately on the Schwarz
lemma. In this context, one would invoke L2 estimates to get explicit bounds for the
homotopy operators between Čech complexes relative to two coverings U = (B(xj, rj)),U′ = (B(xj, rj/2)) of X by concentric balls. By exercising enough care in the estimates,
it is likely that one could reach an explicit dependence CD 6 C′‖D‖ for the constant
CD of Corollary 1.7. The proof would of course become much more technical than the
rather naive brute force approach we have used.

(1.9) Theorem. Let X be a compact complex manifold. Fix a finitely generated subgroup

Γ of the group of Z-divisors on X. Then there are constants C, C′ depending only on X,

its Hermitian metric ω and the subgroup Γ, satisfying the following properties.

(a) Let L and L′ = L ⊗ O(D) be holomorphic line bundles on X, where D ∈ Γ is an

integral divisor. Then

∣∣hq(X,L′)− hq(X,L)
∣∣ 6 C(‖c1(L)‖+ ‖D‖)n−1‖D‖.

(b) On the subspace DNSR(X), the asymptotic q-cohomology function ĥqDNS satisfies a

global estimate

∣∣ĥqDNS(X, β)− ĥqDNS(X,α)
∣∣ 6 C′(‖α‖+ ‖β‖)n−1‖β − α‖.

In particular (without any further assumption on X), ĥqDNS is locally Lipschitz continuous

on DNSR(X).
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Proof. (a) We want to compare the cohomology of L and L′ = L ⊗ O(D) on X . For
this we write D = D+ − D−, and compare the cohomology of the pairs L and L1 =
L⊗ O(−D−) one one hand, and of L′ and L1 = L′ ⊗ O(−D+) on the other hand. Since
‖c1(O(D))‖ 6 C‖D‖ by elementary potential theory, we see that is is enough to consider
the case of a negative divisor, i.e. L′ = L⊗O(−D), D > 0. If D is an irreducible divisor,
we use the exact sequence

0 → L⊗ O(−D) → L→ OD ⊗ L|D → 0

and conclude by Corollary 1.7 that

∣∣hq(X,L⊗ O(−D))− hq(X,L)
∣∣ 6 hq(D,OD ⊗ L|D) + hq−1(D,OD ⊗ L|D)

6 2CD(‖c1(L)‖+ 1)n−1.

For D =
∑
pjDj > 0, we easily get by induction

∣∣hq(X,L⊗ O(−D))− hq(X,L)
∣∣ 6 2

∑

j

pjCDj

(
‖c1(L)‖+

∑

k

pk‖∇k‖+ 1
)n−1

.

If we knew that CD 6 C′‖D‖ as expected in Remark 1.6, then the argument would be
complete without any restriction on D. The trouble disappears if we fix D in a finitely
generated subgroup Γ of divisors, because only finitely many irreducible components
appear in that case, and so we have to deal with only finitely many constants CDj

.
Property 1.9 (a) is proved.

(b) Fix once for all a finite set of divisors (∆j)16j6t providing a basis of DNSR(X)⊂
H1,1

BC(X,R). Take two elements α and β in DNSR(X), and fix ε > 0. Then β − α can
be ε-approximated by a Q-divisor

∑
λjDj , λj ∈ Q, and we can find a pair (k, L) with k

arbitrary large such that 1
k
c1(L) is ε-close to α and n!/knhq(X,L) approaches ĥqDNS(X,α)

by ε. Then 1
kL+

∑
λj∆j approaches β as closely as we want. When approximating β−α,

we can arrange that kλj is an integer by taking k large enough. Then β is approximated
by 1

k c1(L
′) with L′ = L⊗ O(∑ kλj∆j). Property (a) implies

hq(X,L′)− hq(X,L) > −C
(
‖c1(L)‖+

∥∥∥
∑

kλj∆j

∥∥∥
)n−1∥∥∥

∑
kλj∆j

∥∥∥
> −Ckn

(
‖α‖+ ε+ ‖β − α‖+ ε)n−1(‖β − α‖+ ε).

We multiply the previous inequality by n!/kn and get in this way

n!

kn
hq(X,L′) > ĥqDNS(X,α)− ε− C′(‖α‖+ ‖β‖+ ε)n−1(‖β − α‖+ ε).

By taking the limsup and letting ε→ 0, we finally obtain

ĥqDNS(X, β)− ĥqDNS(X,α) > −C′(‖α‖+ ‖β‖)n−1‖β − α‖.

Property 1.9 (b) follows by exchanging the roles of α and β. �
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2. Transcendental asymptotic cohomology functions

Our ambition is to extend the function ĥqNS in a natural way to the full cohomology
group H1,1

BC(X,R). The main trouble, already when X is projective algebraic, is that

the Picard number ρ(X) = dimR NSR(X) may be much smaller than dimRH
1,1
BC(X,R),

namely, there can be rather few integral classes of type (1, 1) on X . It is well known
for instance that ρ(X) = 0 for a generic complex torus of dimension n > 2, while
dimRH

1,1
BC(X,R) = n2. However, if we look at the natural morphism

H1,1
BC(X,R) → H2

DR(X,R) ≃ H2(X,R)

to de Rham cohomology, then H2(X,Q) is dense in H2(X,R). Therefore, given a class
α ∈ H1,1

BC(X,R) and a smooth d-closed (1, 1)-form u in α, we can find an infinite sequence
1
kLk (k ∈ S ⊂ N) of topological Q-line bundles, equipped with Hermitian metrics hk and
compatible connections ∇k such that the curvature forms 1

kΘ∇k
converge to u. By

using Kronecker’s approximation with respect to the integral lattice H2(X,Z)/torsion ⊂
H2(X,R), we can even achieve a fast diophantine approximation

(2.1) ‖Θ∇k
− ku‖ 6 Ck−1/b2

for a suitable infinite subset k ∈ S ⊂ N of multipliers. Then in particular

(2.2) ‖Θ0,2
∇k

‖ = ‖Θ0,2
∇k

− k u0,2‖ 6 Ck−1/b2 ,

and we see that (Lk, hk,∇k) is a C
∞ Hermitian line bundle which is extremely close to

being holomorphic, since (∇0,1
k )2 = Θ0,2

∇k
is very small. We fix a Hermitian metric ω on

X and introduce the complex Laplace-Beltrami operator

k,q = (∇0,1
k )(∇0,1

k )∗ + (∇0,1
k )∗(∇0,1

k ) acting on L2(X,Λ0,qT ∗
X ⊗ Lk).

We look at its eigenspaces with respect to the L2 metric induced by ω onX and hk on Lk.
In the holomorphic case, Hodge theory tells us that the 0-eigenspace is isomorphic to
Hq(X,O(Lk)), but in the “almost holomorphic case” the 0-eigenvalues deviate from 0,
essentially by a shift of the order of magnitude of ‖Θ0,2

∇k
‖ ∼ k−1/b2 (see also the PhD

thesis of L. Laeng [Lae02], Chapter 4, for more details). It is thus natural to introduce
in this case

(2.3) Definition. Let X be a compact complex manifold and α ∈ H1,1
BC(X,R) an arbi-

trary Bott-Chern (1, 1)-class. We define the “transcendental” asymptotic q-cohomology

functions to be

(a) ĥqtr(X,α) = inf
u∈α

lim sup
ε→0, k→+∞, Lk, hk,∇k,

1
k
Θ∇k

→u

n!

kn
N( k,q,6 kε)

(b) ĥ6qtr (X,α) = inf
u∈α

lim sup
ε→0, k→+∞, Lk, hk,∇k,

1
k
Θ∇k

→u

n!

kn

∑

06j6q

(−1)q−jN( k,j ,6 kε)

where the lim sup runs over all 5-tuples (ε, k, Lk, hk,∇k), and where N( k,q, kε) denotes
the sum of dimensions of all eigenspaces of eigenvalues at most equal to kε for the Laplace-
Beltrami operator k,q on L2(X,Λ0,qT ∗

X ⊗Lk) associated with (Lk, hk,∇k) and the base

Hermitian metric ω.
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The word “transcendental” refers here to the fact that we deal with classes α of type
(1, 1) which are not algebraic or even analytic. Of course, in the definition, we could have
restricted the limsup to families satisfying a better approximation property ‖ 1

kΘ∇k
−u‖ 6

Ck−1−1/b2 for some large constant C (this would lead a priori to a smaller limsup, but
there is enough stability in the parameter dependence of the spectrum for making such
a change irrelevant). The minimax principle easily shows that Definition 2.1 does not
depend on ω, as the eigenvalues are at most multiplied or divided by constants under a
change of base metric. When α ∈ NSR(X), by restricting our families {(ε, k, Lk, hk,∇k)}
to the case of holomorphic line bundles only, we get the obvious inequalities

ĥqNS(X,α) 6 ĥqtr(X,α), ∀α ∈ NSR(X),(2.4a)

ĥ6qNS(X,α) 6 ĥ6qtr (X,α), ∀α ∈ NSR(X).(2.4b)

It is natural to raise the question whether these inequalities are always equalities. Hope-
fully, the calculation of the quantities limk→+∞

n!
knN( k,q,6 kε) is a problem of spectral

theory which is completely understood thanks to Chapter I (see also [Dem85, 91]). In
fact, by Corollary I (1.13), the above limit can be evaluated explicitly for any value of
ε ∈ R, except possibly for a countable number of values of ε for which jumps occur;
one only has to take care that the non-integrability of ∂ due to the diophantine approx-
imation does not contribute asymptotically to the eigenvalue distribution, a fact which
follows immediately from (2.2) (cf. [Lae02]).

(2.5) Theorem. With the above notations and assumptions, let us introduce at each

point x in X the “spectral density function”, defined as a finite sum

νu(λ) =
n! (4π)s−n

(n− s)!
|u1| . . . |us|

∑

(p1,...,ps)∈Ns

(
λ−

s∑

j=1

(2pj + 1)|uj|
)n−s
+

where s = s(x) is the rank of the real (1, 1)-form u at x, and uj, 1 6 j 6 s, its non

zero eigenvalues with respect to the base Hermitian metric ω, and us+1 = . . . = un = 0.
For each multi-index J ⊂ {1, 2, . . . , n}, let us set uJ =

∑
j∈J uj. Then the asymptotic

spectrum of k,q admits the estimate

lim
k→+∞

n!

kn
N( k,q,6 kλ) =

∫

X

∑

|J|=q
νu(λ+ u∁J − uJ) dVω

except possibly for a countable number of values of λ which are discontinuities of the right

hand integral as an increasing integral of λ.

(2.6) Corollary. We have (as a limit rather than just a lim sup ) the spectral estimate

lim
ε→0, k→+∞, Lk, hk,∇k,

1
k
Θ∇k

→u

n!

kn
N( k,q,6 kε) =

∫

X(u,q)

(−1)qun.

Coming back to the transcendental asymptotic cohomology functions, we get the follow-
ing fundamental result, which gives in some sense an explicit formula for ĥqtr(X,α) and
ĥ6qtr (X,α) in terms of Monge-Ampère operators.
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(2.7) Theorem. The lim sup’s defining ĥqtr(X,α) and ĥ
6q
tr (X,α) are limits, and we have

(a) ĥqtr(X,α) = inf
u∈α

∫

X(u,q)

(−1)qun (u smooth).

(b) ĥ6qtr (X,α) = inf
u∈α

∫

X(u,6q)

(−1)qun (u smooth).

Now, if L→ X is a holomorphic line bundle, we have by definition

(2.8) ĥ6q(X,L) 6 ĥ6qDNS(X, c1(L)) 6 ĥ6qNS(X, c1(L)) 6 inf
u∈c1(L)

∫

X(u,6q)

(−1)qun

(u smooth), where the last inequality is a consequence of holomorphic Morse inequalities.
We hope for the following conjecture which would imply that we always have equalities.

(2.9) Conjecture. For every holomorphic line bundle L → X on a compact complex

manifold X, we have

(a) ĥq(X,L) = inf
u∈α

∫

X(u,q)

(−1)qun, u smooth,

(b) ĥ6q(X,L) = inf
u∈α

∫

X(u,6q)

(−1)qun, u smooth.

Since the right hand side is easily seen to depend continuously on α ∈ H1,1
BC(X,C), one

would get :

(2.10) Corollary of the conjecture. If (2.9) holds true, then

(a) ĥqNS(X,α) = ĥqtr(X,α) and (b) ĥ6qNS(X,α) = ĥ6qtr (X,α)

for all classes α ∈ NSR(X).

In general, equalities 2.9 (a, b) seem rather hard to prove. In some sense, they would
stand as an asymptotic converse of the Andreotti-Grauert theorem [AG62] : under a
suitable q-convexity assumption, the latter asserts the vanishing of related cohomology
groups in degree q; here, conversely, assuming a known growth of these groups in degree q,
we expect to be able to say something about the q-index sets of suitable Hermitian metrics
on the line bundles under consideration. The only cases where we have a positive answer
to Question 2.8 are when X is projective and q = 0 or dimX 6 2 (see Theorems 4.1 and
5.1 below). In the general setting of compact complex manifolds, we also hope for the
following “transcendental” case of holomorphic Morse inequalities.

(2.11) Conjecture. Let X be a compact complex n-fold and α an arbitrary cohomology

class in H1,1
BC(X,R). Then the volume, defined as the supremum

(2.12) Vol(α) := sup
0<T∈α

∫

XrSing(T )

Tn,
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extended to all Kähler currents T ∈ α with analytic singularities (see Definition II (4.4)),
satisfies

(2.13) Vol(α) > sup
u∈α

∫

X(u,0)∪X(u,1)

un

where u runs over all smooth closed (1, 1) forms. In particular, if the right hand side is

positive, then α contains a Kähler current.

By the holomorphic Morse inequalities, Conjecture 2.11 holds true in case α is an
integral class. Our hope is that the general case can be attained by the diophantine
approximation technique described earlier; there are however major hurdles, see [Lae02]
for a few hints on these issues.

3. Invariance by modification

We end this section by the observation that the asymptotic cohomology functions
are invariant by modification, namely that for every modification µ : X̃ → X and every
line bundle L we have e.g.

(3.1) ĥq(X,L) = ĥq(X̃, µ∗L).

In fact the Leray spectral sequence provides an E2 term

Ep,q2 = Hp(X,Rqµ∗OX̃(µ∗L⊗k)) = Hp(X,OX(L⊗k)⊗Rqµ∗OX̃).
Since Rqµ∗OX̃ is equal to OX for q = 0 and is supported on a proper analytic subset of

X for q > 1, one infers that hp(X,OX(L⊗k ⊗ Rqµ∗OX̃) = O(kn−1) for all q > 1. The
spectral sequence implies that

hq(X,L⊗k)− ĥq(X̃, µ∗L⊗k) = O(kn−1).

We claim that the Morse integral infimums are also invariant by modification.

(3.2) Proposition. Let (X,ω) be a compact Kähler manifold, α ∈ H1,1(X,R) a real

cohomology class and µ : X̃ → X a modification. Then

inf
u∈α

∫

X(u,q)

(−1)qun = inf
v∈µ∗α

∫

X(v,q)

(−1)qvn,(a)

inf
u∈α

∫

X(u,6q)

(−1)qun = inf
v∈µ∗α

∫

X(v,6q)

(−1)qvn.(b)

Proof. Given u ∈ α on X , we obtain Morse integrals with the same values by taking
v = µ∗u on X̃, hence the infimum on X̃ is smaller or equal to what is on X . Conversely,
we have to show that given a smooth representative v ∈ µ∗α on X̃, one can find a
smooth representative u ∈ X such that the Morse integrals do not differ much. We can
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always assume that X̃ itself is Kähler, since by Hironaka [Hir64] any modification X̃ is
dominated by a composition of blow-ups of X . Let us fix some u0 ∈ α and write

v = µ∗u0 + ddcϕ

where ϕ is a smooth function on X̃ . We adjust ϕ by a constant in such a way that ϕ > 1
on X̃ . There exists an analytic set S ⊂ X such that µ : X̃ r µ−1(S) → X r S is a
biholomorphism, and a quasi-psh function ψS which is smooth on X r S and has −∞
logarithmic poles on S (see e.g. [Dem82]). We define

(3.3) ũ = µ∗u0 + ddcmaxε0(ϕ+ δ ψS ◦ µ, 0) = v + ddcmaxε0(δ ψS ◦ µ, −ϕ)

where maxε0 , 0 < ε0 < 1, is a regularized max function and δ > 0 is very small. By
construction ũ coincides with µ∗u0 in a neighborhood of µ−1(S) and therefore ũ descends
to a smooth closed (1, 1)-form u on X which coincides with u0 near S, so that ũ = µ∗u.

Clearly ũ converges uniformly to v on every compact subset of X̃ r µ−1(S) as δ → 0, so
we only have to show that the Morse integrals are small (uniformly in δ) when restricted
to a suitable small neighborhood of the exceptional set E = µ−1(S). Take a sufficiently

large Kähler metric ω̃ on X̃ such that

−1

2
ω̃ 6 v 6

1

2
ω̃, −1

2
ω̃ 6 ddcϕ 6

1

2
ω̃, −ω̃ 6 ddcψS ◦ µ.

Then ũ > −ω̃ and ũ 6 ω̃ + δ ddcψS ◦ µ everywhere on X̃. As a consequence

|ũn| 6
(
ω̃ + δ(ω̃ + ddcψS ◦ µ)

)n
6 ω̃n + nδ(ω̃ + ddcψS ◦ µ) ∧

(
ω̃ + δ(ω̃ + ddcψS ◦ µ)

)n−1

thanks to the inequality (a+b)n 6 an+nb(a+b)n−1. For any neighborhood V of µ−1(S)
this implies ∫

V

|ũn| 6
∫

V

ω̃n + nδ(1 + δ)n−1

∫

X̃

ω̃n

by Stokes formula. We thus see that the integrals are small if V and δ are small. The
reader may be concerned that Monge-Ampère integrals were used with an unbounded
potential ψS, but in fact, for any given δ, all the above formulas and estimates are still
valid when we replace ψS by maxε0(ψS,−(M + 2)/δ) with M = max

X̃
ϕ, especially

formula (3.3) shows that the form ũ is unchanged. Therefore our calculations can be
handled by using merely smooth potentials. �

4. Proof of the infimum formula for the volume

We prove here

(4.1) Theorem. Let L → X be a holomorphic line bundle on a projective algebraic

manifold X. Then

Vol(X,L) = inf
u∈c1(L)

∫

X(u,0)

un.
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It is enough to show the inequality

(4.1′) inf
u∈c1(L)

∫

X(u,0)

un 6 Vol(X,L)

and for this, we have to construct metrics approximating the volume. Let us first assume
that L is a big line bundle, i.e. that Vol(X,L) > 0. We have seen in II (6.4–6.5) (cf. also
[Bck02]) that Vol(X,L) is obtained as the supremum of

∫
XrSing(T )

Tn for Kähler currents
T = − i

2π∂∂h with analytic singularities in c1(L); this means that locally h = e−ϕ where
ϕ is a strictly plurisubharmonic function which has the same singularities as c log

∑ |gj|2
where c > 0 and the gj are holomorphic functions. By [Dem92], there exists a blow-up

µ : X̃ → X such that µ∗T = [E] + β where E is a normal crossing divisor on X̃ and
β > 0 smooth. Moreover, by [BDPP04] we have the orthogonality estimate

(4.2) [E] · βn−1 =

∫

E

βn−1 6 C
(
Vol(X,L)− βn

)1/2
,

while

(4.3) βn =

∫

X̃

βn =

∫

XrSing(T )

Tn approaches Vol(X,L).

In other words, E and β become “more and more orthogonal” as βn approaches the
volume (these properties are summarized by saying that µ∗T = [E] + β defines an ap-
proximate Zariski decomposition of c1(L), cf. also [Fuj94]). By subtracting to β a small
linear combination of the exceptional divisors and increasing accordingly the coefficients
of E, we can achieve that the cohomology class {β} contains a positive definite form β′

on X̃ (i.e. the fundamental form of a Kähler metric); we refer e.g. to ([DP04], proof of
Lemma 3.5) for details. This means that we can replace T by a cohomologous current
such that the corresponding form β is actually a Kähler metric, and we will assume for
simplicity of notation that this situation occurs right away for T . Under this assumption,
there exists a smooth closed (1, 1)-form v belonging to the Bott-Chern cohomology class
of [E], such that we have identically (v − δβ) ∧ βn−1 = 0 where

(4.4) δ =
[E] · βn−1

βn
6 C′(Vol(X,L)− βn

)1/2

for some constant C′ > 0. In fact, given an arbitrary smooth representative v0 ∈ {[E]},
the existence of v = v0 + i∂∂ψ amounts to solving a Laplace equation ∆ψ = f with
respect to the Kähler metric β, and the choice of δ ensures that we have

∫
X
f βn = 0 and

hence that the equation is solvable. Then ũ := v+β is a smooth closed (1, 1)-form in the
cohomology class µ∗c1(L), and its eigenvalues with respect to β are of the form 1 + λj
where λj are the eigenvalues of v. The Laplace equation is equivalent to the identity∑
λj = nδ. Therefore

(4.5)
∑

16j6n

λj 6 C′′(Vol(X,L)− βn
)1/2

.

The inequality between arithmetic means and geometric means implies

∏

16j6n

(1 + λj) 6
(
1 +

1

n

∑

16j6n

λj

)n
6 1 + C3(Vol(X,L)− βn

)1/2
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whenever all factors (1 + λj) are nonnegative. By 2.2 (i) we get

inf
u∈c1(L)

∫

X(u,0)

un 6

∫

X̃(ũ,0)

ũn

6

∫

X̃

βn
(
1 + C3(Vol(X,L)− βn

)1/2)

6 Vol(X,L) + C4(Vol(X,L)− βn
)1/2

.

As βn approches Vol(X,L), this implies inequality (4.1).

We still have to treat the case when L is not big, i.e. Vol(X,L) = 0. Let A be an
ample line bundle and let t0 > 0 be the infimum of real numbers such that L + tA is a
big Q-line bundle for t rational, t > t0. The continuity of the volume function implies
that 0 < Vol(X,L + tA) 6 ε for t > t0 sufficiently close to t0. By what we have just
proved, there exists a smooth form ut ∈ c1(L + tA) such that

∫
X(ut,0)

unt 6 2ε. Take a

Kähler metric ω ∈ c1(A) and define u = ut − tω. Then clearly
∫

X(u,0)

un 6

∫

X(ut,0)

unt 6 2ε,

hence

inf
u∈c1(L)

∫

X(u,0)

un = 0.

Inequality (4.1) is now proved in all cases. �

5. Estimate of the first cohomology group on a projective surface

Our goal here is to show the following result.

(5.1) Theorem. Let L → X be a holomorphic line bundle on a complex projective

surface. Then both weak and strong inequalities (1.3) (i) and (1.3) (ii) are equalities for

q = 0, 1, 2, and the lim sup’s involved in ĥq(X,L) and ĥ≤q(X,L) are limits.

We start with a projective non singular variety X of arbitrary dimension n, and will
later restrict ourselves to the case when X is a surface. The proof again consists of using
(approximate) Zariski decomposition, but now we try to compute more explicitly the
resulting curvature forms and Morse integrals; this will turn out to be much easier on
surfaces.

Assume first that L is a big line bundle on X . As in section 3, we can find an
approximate Zariski decomposition, i.e. a blow-up µ : X̃ → X and a current T ∈ c1(L)

such µ∗T = [E] + β, where E an effective divisor and β a Kähler metric on X̃ such that

(5.2) Vol(X,L)− η < βn < Vol(X,L), η ≪ 1.

(On a projective surface, one could even get exact Zariski decomposition, but we want
to remain general as long as possible). By blowing-up further, we may assume that E is
a normal crossing divisor. We select a Hermitian metric h on O(E) and take

(5.3) uε =
i

2π
∂∂ log(|σE |2h + ε2) + ΘO(E),h + β ∈ µ∗c1(L)
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where σE ∈ H0(X̃,O(E)) is the canonical section and ΘO(E),h the Chern curvature form.
Clearly, by the Lelong-Poincaré equation, uε converges to [E] + β in the weak topology
as ε→ 0. Straightforward calculations yield

uε =
i

2π

ε2D1,0
h σE ∧D1,0

h σE
(ε2 + |σE |2)2

+
ε2

ε2 + |σE |2
ΘE,h + β.

The first term converges to [E] in the weak topology, while the second, which is close
to ΘE,h near E, converges pointwise everywhere to 0 on X̃ r E. A simple asymptotic
analysis shows that

( i

2π

ε2D1,0
h σE ∧D1,0

h σE
(ε2 + |σE |2)2

+
ε2

ε2 + |σE|2
ΘE,h

)p
→ [E] ∧Θp−1

E,h

in the weak topology for p > 1, hence

(5.4) lim
ε→0

unε = βn +
n∑

p=1

(
n

p

)
[E] ∧Θp−1

E,h ∧ βn−p.

In arbitrary dimension, the signature of uε is hard to evaluate, and it is also non trivial
to decide the sign of the limiting measure limunε . However, when n = 2, we get the
simpler formula

lim
ε→0

u2ε = β2 + 2[E] ∧ β + [E] ∧ΘE,h.

In this case, E can be assumed to be an exceptional divisor (otherwise some part of it
would be nef and could be removed from the poles of T ). Hence the matrix (Ej · Ek)
is negative definite and we can find a smooth Hermitian metric h on O(E) such that
(ΘE,h)|E < 0, i.e. ΘE,h has one negative eigenvalue everywhere along E.

(5.5) Lemma. One can adjust the metric h of O(E) in such a way that ΘE,h is negative

definite on a neighborhood of the support |E| of the exceptional divisor, and ΘE,h+β has

signature (1, 1) there. (We do not care about the signature far away from |E|).

Proof. At a given point x0 ∈ X , let us fix coordinates and a positive quadratic form q on
C2. If we put ψε(z) = εχ(z) log(1+ ε−1q(z)) with a suitable cut-off function χ, then the
Hessian form of ψε is equal to q at x0 and decays rapidly to O(ε log ε)|dz|2 away from
x0. In this way, after multiplying h with e±ψε(z), we can replace the curvature ΘE,h(x0)
with ΘE,h(x0)±q without substantially modifying the form away from x0. This allows to
adjust ΘE,h to be equal to (say)−1

4β(x0) at any singular point x0 ∈ Ej∩Ek in the support
of |E|, while keeping ΘE,h negative definite along E. In order to adjust the curvature
at smooth points x ∈ |E|, we replace the metric h with h′(z) = h(z) exp(−c(z)|σE(z)|2).
Then the curvature form ΘE,h is replaced by ΘE,h′(x) = ΘEh

(x)+ c(x)|dσE |2 at x ∈ |E|
(notice that dσE(x) = 0 if x ∈ Sing|E|), and we can always select a real function c so
that ΘE,h′ is negative definite with one negative eigenvalue between −1/2 and 0 at any
point of |E|. Then ΘE,h′ + β has signature (1, 1) near |E|. �

With this choice of the metric, we see that for ε > 0 small, the sum

ε2

ε2 + |σE |2
ΘE,h + β
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is of signature (2, 0) or (1, 1) (or degenerate of signature (1, 0)), the non positive definite
points being concentrated in a neighborhood of E. In particular the index set X(uε, 2)
is empty, and also

uε 6
i

2π

ε2D1,0
h σE ∧D1,0

h σE
(ε2 + |σE |2)2

+ β

on a neighborhood V of |E|, while uε converges uniformly to β on X̃ r V . This implies
that

β2 6 lim inf
ε→0

∫

X(uε,0)

u2ε 6 lim sup
ε→0

∫

X(uε,0)

u2ε 6 β2 + 2β · E.

Since
∫
X̃
u2ε = L2 = β2 + 2β · E + E2 we conclude by taking the difference that

−E2 − 2β · E 6 lim inf
ε→0

∫

X(uε,1)

−u2ε 6 lim sup
ε→0

∫

X(uε,1)

−u2ε 6 −E2.

Let us recall that β · E 6 C(Vol(X,L) − β2)1/2 = 0(η1/2) is small by (5.3) and the

orthogonality estimate. The asymptotic cohomology is given here by ĥ2(X,L) = 0 since
h2(X,L⊗k) = H0(X,KX ⊗ L⊗−k) = 0 for k > k0, and we have by Riemann-Roch

ĥ1(X,L) = ĥ0(X,L)− L2 = Vol(X,L)− L2 = −E2 − β · E +O(η).

Here we use the fact that n!
knh

0(X,L⊗k) converges to the volume when L is big. All this
shows that equality occurs in the Morse inequalities (1.3) when we pass to the infimum.
By taking limits in the Neron-Severi space NSR(X) ⊂ H1,1(X,R), we further see that
equality occurs as soon as L is pseudo-effective, and the same is true if −L is pseudo-
effective by Serre duality.

It remains to treat the case when neither L nor −L are pseudo-effective. Then
ĥ0(X,L) = ĥ2(X,L) = 0, and asymptotic cohomology appears only in degree 1, with

ĥ1(X,L) = −L2 by Riemann-Roch. Fix an ample line bundle A and let t0 > 0 be the
infimum of real numbers such that L + tA is big for t rational, t > t0, resp. let t

′
0 > 0

be the infimum of real numbers t′ such that −L + t′A is big for t′ > t′0. Then for t > t0
and t′ > t′0, we can find a modification µ : X̃ → X and currents T ∈ c1(L + tA),
T ′ ∈ c1(−L+ t′A) such that

µ∗T = [E] + β, µ∗T ′ = [F ] + γ

where β, γ are Kähler forms and E, F normal crossing divisors. By taking a suitable
linear combination t′(L+ tA)− t(−L+ t′A) the ample divisor A disappears, and we get

1

t+ t′

(
t′[E] + t′β − t[F ]− tγ

)
∈ µ∗c1(L).

After replacing E, F , β, γ by suitable multiples, we obtain an equality

[E]− [F ] + β − γ ∈ µ∗c1(L).

We may further assume by subtracting that the divisors E, F have no common compo-
nents. The construction shows that β2 6 Vol(X,L+ tA) can be taken arbitrarily small
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(as well of course as γ2), and the orthogonality estimate implies that we can assume β ·E
and γ · F to be arbitrarily small. Let us introduce metrics hE on O(E) and hF on O(F )
as in Lemma 5.5, and consider the forms

uε =+
i

2π

ε2D1,0
hE
σE ∧D1,0

hE
σE

(ε2 + |σE |2)2
+

ε2

ε2 + |σE |2
ΘE,hE

+ β

− i

2π

ε2D1,0
hF
σF ∧D1,0

hF
σF

(ε2 + |σF |2)2
− ε2

ε2 + |σF |2
ΘF,hF

− γ ∈ µ∗c1(L).

Observe that uε converges uniformly to β−γ outside of every neighborhood of |E| ∪ |F |.
Assume that ΘE,hE

< 0 on VE = {|σE | < ε0} and ΘF,hF
< 0 on VF = {|σF | < ε0}. On

VE ∪ VF we have

uε 6
i

2π

ε2D1,0
hE
σE ∧D1,0

hE
σE

(ε2 + |σE |2)2
− ε2

ε2 + |σF |2
ΘF,hF

+ β +
ε2

ε20
Θ+
E,hE

where Θ+
E,hE

is the positive part of ΘE,hE
with respect to β. One sees immediately that

this term is negligible. The first term is the only one which is not uniformly bounded,
and actually it converges weakly to the current [E]. By squaring, we find

lim sup
ε→0

∫

X(uε,0)

u2ε 6

∫

X(β−γ,0)
(β − γ)2 + 2β ·E.

Notice that the term − ε2

ε2+|σF |2 ΘF,hF
does not contribute to the limit as it converges

boundedly almost everywhere to 0, the exceptions being points of |F |, but this set is of
measure zero with respect to the current [E]. Clearly we have

∫
X(β−γ,0)(β − γ)2 6 β2

and therefore

lim sup
ε→0

∫

X(uε,0)

u2ε 6 β2 + 2β · E.

Similarly, by looking at −uε, we find

lim sup
ε→0

∫

X(uε,2)

u2ε 6 γ2 + 2γ · F.

These lim sup’s are small and we conclude that the essential part of the mass is concen-
trated on the 1-index set, as desired. �

(5.6) Remark. It is interesting to put these results in perspective with the algebraic
version (I 2.14) of holomorphic Morse inequalities. When X is projective, the algebraic
Morse inequalities used in combination with the birational invariance of the Morse inte-
grals imply the inequalities

(a) inf
u∈c1(L)

∫

X(u,q)

(−1)qun ≤ inf
µ∗(L)≃O(F−G)

(
n

q

)
Fn−q ·Gq ,

(b) inf
u∈c1(L)

∫

X(u,6q)
(−1)qun ≤ inf

µ∗(L)≃O(F−G)

∑

06j6q

(−1)q−j
(
n

j

)
Fn−j ·Gj ,
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where the infimums on the right hand side are taken over all modifications µ : X̃ → X
and all decompositions µ∗L = O(F −G) of µ∗L as a difference of two nef Q-divisors F, G
on X̃. Again, a natural question is to know whether these infimums derived from algebraic
intersection numbers are equal to the asymptotic cohomology functionals ĥq(X,L) and
ĥ≤q(X,L). A positive answer would of course automatically yield a positive answer to
the equality cases in 2.9 (a) and (b). However, the Zariski decompositions involved in
our proofs of equality for q = 0 or n 6 2 produce certain effective exceptional divisors
which are not nef. It is unclear how to write those effective divisors as a difference of nef
divisors. This fact raises a lot of doubts upon the sufficiency of taking merely differences
of nef divisors in the infimums 5.6 (a) and 5.6 (b), and it is likely that one needs a more
subtle formula. �

6. Singular holomorphic Morse inequalities

The goal of this short section is to extend holomorphic Morse inequalities to the
case of singular Hermitian metrics, following Bonavero’s PhD thesis [Bon93] (cf. also
[Bon98]).We always assume that our Hermitian metrics h are given by quasi-psh
weights ϕ. By Theorem (II 5.7), one can always approximate the weight by an arbi-
trary close quasi-psh weight ϕ with analytic singularities, modulo smooth functions.

(6.1) Theorem. Let (L, h) be a holomorphic line bundle on a compact complex n-
fold X, and let E be an arbitrary holomorphic vector bundle of rank r. Assume that

locally h = e−ϕ has analytic singularities, and that ϕ is quasi-psh of the form

h = c log
∑

|gj|2 modC∞, c > 0,

in such a way that for a suitable modification µ : X̃ → X one has µ∗ΘL,h = [D] + β
where D is an effective divisor and β a smooth form on X̃. Let S = µ(SuppD) be the

singular set of h. Then we have the following asymptotic estimates for the cohomology

twisted by the appropriate multiplier ideal sheaves :

(a) hq(X,E ⊗ Lk ⊗ I(hk)) 6 r
kn

n!

∫

X(L,h,q)rS

(−1)qΘnL,h + o(kn) .

(b)
∑

06j6q

(−1)q−jhj(X,E ⊗ Lk ⊗ I(hk)) 6 r
kn

n!

∫

X(L,h,6q)rS

(−1)qΘnL,h + o(kn) .

Proof. For this, we observe that the Morse integrals are given by
∫

X̃(β,q)

(−1)qβn,

thanks to a change of variable z = µ(x). In fact, by our assumption ΘL,h is smooth on
X r S, and its pull-back µ∗ΘL,h coincides with the smooth form β on the complement
X̃rSuppD (and SuppD is a negligible set with respect to the integration of the smooth
(n, n) form βn on X̃.) Now, a straightforward L2 argument in the change of variable (cf.
[Dem01]) yields the direct image formula

(6.2) KX ⊗I(hk) = µ∗
(
K
X̃
⊗ I(µ∗hk)

)
.
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Let us introduce the relative canonical sheaf K
X̃/X

= K
X̃
⊗µ∗K−1

X = O(div(Jacµ)) and
let us put

L̃ = µ∗L, h̃ = µ∗h, Ẽ = µ∗E ⊗K
X̃/X

.

Then h̃ has divisorial singularities and therefore I(h̃k) = O(−⌊kD⌋) where ⌊...⌋ means
the integral part of a divisor. The projection formula for direct images yields

µ∗
(
Ẽ ⊗ L̃k ⊗ I(h̃k)) = E ⊗ Lk ⊗I(hk),

Rqµ∗
(
Ẽ ⊗ L̃k ⊗ I(h̃k)) = E ⊗ Lk ⊗K−1

X ⊗Rqµ∗
(
K
X̃
⊗ I(h̃k)).

However, for k > k0 large enough, the multiplicities of ⌊kD⌋ are all > 0 for each of
the components of D, hence I(hk) = O(−⌊kD⌋) is relatively ample with respect to the

morphism µ : X̃ → X . From this, e.g. by an application of Hörmander’s L2 estimates
(see [Bon93] for more details), we conclude that Rqµ∗

(
K
X̃
⊗I(h̃k)) = 0 for k > k0. The

Leray spectral sequence then implies

(6.3) Hq
(
X,E ⊗ Lk ⊗I(hk)) ≃ Hq

(
X̃, Ẽ ⊗ L̃k ⊗ I(h̃k)).

This reduces the proof to the case of divisorial singularities. Let us next assume that D
is a Q-divisor. Let a be a denominator for D, and put k = aℓ+ b, 0 6 b 6 a− 1. Then

Ẽ ⊗ L̃k ⊗ I(h̃k) = Ẽ ⊗ L̃aℓ+b ⊗ O(−aℓD − ⌊bD⌋) = Fb ⊗Gℓ

where
Fb = Ẽ ⊗ L̃b ⊗ O(−⌊bD⌋), G = L̃a ⊗ O(−aD).

By construction, we get a smooth Hermitian metric hG on G such that ΘG,hG
= aβ. In

this case, the proof is reduced to the standard case of holomorphic Morse inequalities,
applied to the smooth Hermitian line bundle (G, hG) on X̃ and the finite family of rank r
vector bundles Fb, 0 6 b 6 a − 1. The result is true even when D is a real divisor. In
fact, we can then perturb the coefficients of D by small ε’s to get a rational divisor Dε,
and we then have to change the smooth part of Θ

L̃,̃h
to βε = β + O(ε) (again smooth);

actually βε − β can be taken to be a linear combination by coefficients O(ε) of given
smooth forms representing the Chern classes c1(O(Dj)) of the components of D. The
Morse integrals are then perturbed by O(ε). On the other hand, Theorem 1.9 shows that
the cohomology groups in the right hand side of (6.3) are perturbed by εkn. The result
follows as ε→ 0, thanks to the already settled rational case. �

Using singular holomorphic Morse inequalities, we can easily convert Theorem 2.8
from Chapter I into a necessary and sufficient condition characterizing Moishezon mani-
folds.

(6.4) Theorem. A compact n-dimensional complex manifold is Moishezon if and only

if it possesses a Hermitian line bundle (L, h) whose metric has at most analytic singu-

larities, satisfying the integral condition

∫

X(L,h,61)rZ

(ΘL,h)
n > 0

in the complement of the set Z ⊂ X of poles of h.
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Proof. The necessity comes from the fact that X has a projective desingularization
µ : X̃ → X . The image D = µ∗(A) of an ample devisor on X̃ yields a big line bundle
L = O(D) on X , and the direct image h = µ∗hA of a metric such that ΘA,hA

> 0 satisfies
ΘL,h > 0 outside the set of poles Z = µ(E) ⊂ X , if E is the exceptional divisor. The
sufficiency is obtained exactly in the same way as Theorem 2.8, if we use Theorem 6.1
instead of the regular holomorphic Morse inequalities. �

7. Cohomology estimates for effective divisors

To state the precise result, we need the notion of nefness for a real (1, 1) cohomology
class which does not necessarily belong to NSR(X): we say that {u} ∈ H1,1(X,R) is nef
if {u} belongs to the closure of the convex cone generated by classes of Kähler forms (the
so-called Kähler cone of H1,1(X,R)).

(7.1) Theorem. Suppose that there is a nef cohomology class {u} in H1,1(X,R) such

that c1
(OTX

(1)
)
+ π∗{u} is nef over the hyperplane bundle P(TX) := P (T ∗X). Suppose

moreover that L is equipped with a singular metric h such that T = ΘL,h > 0. For

p = 1, 2, . . . , n, n+ 1 set

bp = inf{c > 0 ; codimEc(T ) > p},
with bn+1 = maxx∈X ν(T, x). Then for any holomorphic vector bundle E of rank r over X
we have

hq
(
X,E ⊗ O(kL)) 6 Aqr k

n + o(kn)

where Aq is the cup product

Aq =
1

q! (n− q)!

(
bn−q+1{u}

)q ·
(
c1(L) + bn−q+1{u}

)n−q

in H2n(X,R), identified to a positive number.

(7.2) Remark. When X is projective algebraic and κ(L) = n, the proof of (6.2b) shows
that mL ≃ O(A+D) with A ample and D effective, for some m > 1. Then we can choose
a singular metric h on L such that T = ΘL,h = ω +m−1[D], where ω = m−1ΘA,hA

) is a
Kähler metric. As ν(T, x) = m−1ν(D, x) at each point, the constants bj of theorem 7.1
are obtained by counting the multiplicities of the singular points of D ; for example, if D
only has isolated singularities, then b1 = 0, b2 = . . . = bn = 1/m. Observe moreover that
the nefness assumption on OTX

(1) is satisfied with {u} = c1(G) if G is a nef Q-divisor
such that O(TX)⊗O(G) is nef, e.g. if O(SmTX)⊗O(mG) is spanned by sections for some
m > 1.

Proof of theorem 7.1. By definition, we have 0 = b1 6 b2 6 . . . 6 bn 6 bn+1, and for
c ∈ ]bp, bp+1], Ec(T ) has codimension > p with some component(s) of codimension p
exactly. Let ω be a fixed Kähler metric on X . By adding εω to u if necessary, we
may assume that u > 0 and that OTX

(1) has a smooth Hermitian metric such that
c
(OTX

(1)
)
+ π∗u > 0.

Under this assumption, the main approximation theorem of [Dem91] shows that the
metric of L can be approximated by a sequence of smooth metrics such that the associated
curvature forms Tj satisfy the uniform lower bound

(7.3) Tj > −λj(x) u(x)− εj ω(x)
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where lim↓ j→+∞εj = 0 and (λj)j>0 is a decreasing sequence of continuous functions on
X such that limj→+∞ λj(x) = ν(T, x) at each point.

Morse inequalities cannot be used directly with T = ΘL,h because wedge products of
currents do not make sense in general. Therefore, we replace T with its approximations
Tj and try to find an upper bound for the limit.

(7.4) Lemma. Let Uj = X(Tj, q) be the q-index set associated to Tj and let c be a

positive number. On the open set Ωc,j = {x ∈ X ; λj(x) < c} we have

(−1)q1lUj
Tnj 6

n!

q! (n− q)!

(
c u+ εj ω

)q ∧
(
Tj + c u+ εj ω

)n−q
.

Proof. Write v = c u+ εj ω > 0 and let α1,j 6 . . . 6 αn,j be the eigenvalues of Tj with
respect to v at each point. Then Tnj = α1,j . . . αn,j v

n and

vq ∧ (Tj + v)n−q =
q! (n− q)!

n!

∑

16i1<...<in−q6n

(1 + αi1,j) . . . (1 + αin−q,j) v
n.

On Ωc,j we get Tj > −v by inequality (7.3), thus αi,j > −1; moreover, we have α1 6
. . . 6 αq < 0 and 0 < αq+1 6 . . . 6 αn on Uj . On Ωc,j we thus find

0 6 (−1)q1lUj
α1,j . . . αn,j 6 1lUj

αq+1,j . . . αn,j 6 (1 + αq+1,j) . . . (1 + αn,j),

therefore (−1)q1lUj
Tnj 6

(
n!/q! (n− q)!

)
vq ∧ (Tj + v)n−q. �

End of the proof of theorem 7.1. Set Λ = maxX λ1(x). By lemma 7.4 applied with an
arbitrary c > Λ we have

(−1)q1lUj
Tnj 6

n!

q!(n− q)!
(Λu+ ε1ω)

q ∧ (Tj +Λu+ ε1ω)
n−q on X.

Then holomorphic Morse inequalities imply

hq
(
X,E ⊗ O(kL)) 6 r

kn

n!

∫

X

(−1)q1lUj
Tnj + o(kn)

6
r kn

q! (n− q)!

(∫

Ωc,j

(c u+ εj ω)
q ∧ (Tj + c u+ εj ω)

n−q

+

∫

XrΩc,j

(Λu+ ε1ω)
q ∧ (Tj +Λu+ ε1ω)

n−q
)
+ o(kn).(7.5)

Since λj(x) decreases to ν(T, x) as j → +∞, the set X rΩc,j decreases to Ec(T ). Now,
Tj + Λu+ ε1ω is a closed positive (1, 1)-form belonging to a fixed cohomology class, so
the mass of any wedge power (Tj + Λu+ ε1ω)

p with respect to ω is constant. By weak
compactness, there is a subsequence (jν) such that (Tjν +Λu+ ε1ω)

p converges weakly
to a closed positive current Θp of bidegree (p, p), for each p = 1, . . . , n. For c > bp+1, we
have codimEc(T ) > p+1, hence 1lEc(T )Θp = 0. It follows that the integral over XrΩc,j
in (7.5) converges to 0 when c > bn−q+1. For the same reason the integral over Ωc,j
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converges to the same limit as its value over X : observe that (Tj + c u + εj ω)
n−q can

be expressed in terms of powers of u, ω and of the positive forms (Tj +Λu+ ε1ω)
p with

p 6 n− q ; thus the limit is a linear combination with smooth coefficients of the currents
Θp, which carry no mass on Ec(T ). In the limit, we obtain

hq
(
X,E ⊗ O(kL)) 6 r kn

q! (n− q)!
(c{u})q ·

(
c1(L) + c{u}

)n−q
+ o(kn),

and since this is true for every c > bn−q+1, Theorem 7.1 follows. �



Chapter IV

Morse inequalities and
the Green-Griffiths-Lang conjecture

The goal of this section is to study the existence and properties of entire curves
f : C → X drawn in a complex irreducible n-dimensional varietyX , and more specifically
to show that they must satisfy certain global algebraic or differential equations as soon
as X is projective of general type. By means of holomorphic Morse inequalities and a
probabilistic analysis of the cohomology of jet spaces, we are able to prove a significant
step of a generalized version of the Green-Griffiths-Lang conjecture on the algebraic
degeneracy of entire curves.

0. Introduction

Let X be a complex n-dimensional manifold ; most of the time we will assume that
X is compact and even projective algebraic. By an “entire curve” we always mean a non
constant holomorphic map defined on the whole complex line C, and we say that it is
algebraically degenerate if its image is contained in a proper algebraic subvariety of the
ambient variety. If µ : X̃ → X is a modification and f : C → X is an entire curve whose
image f(C) is not contained in the image µ(E) of the exceptional locus, then f admits
a unique lifting f̃ : C → X̃ . For this reason, the study of the algebraic degeneration of
f is a birationally invariant problem, and singularities do not play an essential role at
this stage. We will therefore assume that X is non singular, possibly after performing
a suitable composition of blow-ups. We are interested more generally in the situation
where the tangent bundle TX is equipped with a linear subspace V ⊂ TX , that is, an
irreducible complex analytic subset of the total space of TX such that

(0.1) all fibers Vx := V ∩ TX,x are vector subspaces of TX,x.

Then the problem is to study entire curves f : C → X which are tangent to V , i.e. such
that f∗TC ⊂ V . We will refer to a pair (X, V ) as being a directed variety (or directed

manifold). A morphism of directed varieties Φ : (X, V ) → (Y,W ) is a holomorphic map
Φ : X → Y such that Φ∗V ⊂ W ; by the irreducibility, it is enough to check this condition
over the dense open subset X r Sing(V ) where V is actually a subbundle. Here Sing(V )
denotes the indeterminacy set of the associated meromorphic map α : X > Gr(TX) to
the Grassmannian bbundle of r-planes in TX , r = rankV ; we thus have V|XrSing(V ) =
α∗S where S → Gr(TX) is the tautological subbundle of Gr(TX). In that way, we get a



88 J.-P. Demailly Applications of Pluripotential theory to Algebraic Geometry

category, and we will be mostly interested in the subcategory whose objects (X, V ) are
projective algebraic manifolds equipped with algebraic linear subspaces. Notice that an
entire curve f : C → X tangent to V is just a morphism f : (C, TC) → (X, V ).

The case where V = TX/S is the relative tangent space of some fibration X → S is of
special interest, and so is the case of a foliated variety (this is the situation where the sheaf
of sections O(V ) satisfies the Frobenius integrability condition [O(V ),O(V )] ⊂ O(V ));
however, it is very useful to allow as well non integrable linear subspaces V . We refer
to V = TX as being the absolute case. Our main target is the following deep conjecture
concerning the algebraic degeneracy of entire curves, which generalizes similar statements
made in [GG79] (see also [Lang86, Lang87]).

(0.2) Generalized Green-Griffiths-Lang conjecture. Let (X, V ) be a projective

directed manifold such that the canonical sheaf KV is big (in the absolute case V = TX ,

this means that X is a variety of general type, and in the relative case we will say that

(X, V ) is of general type). Then there should exist an algebraic subvariety Y ( X such

that every non constant entire curve f : C → X tangent to V is contained in Y .

The precise meaning of KV and of its bigness will be explained below – our definition
does not coincide with other frequently used definitions and is in our view better suited
to the study of entire curves of (X, V ). One says that (X, V ) is Brody-hyperbolic when
there are no entire curves tangent to V . According to (generalized versions of) conjectures
of Kobayashi [Kob70, Kob76] the hyperbolicity of (X, V ) should imply that KV is big,
and even possibly ample, in a suitable sense. It would then follow from conjecture (0.2)
that (X, V ) is hyperbolic if and only if for every irreducible variety Y ⊂ X , the linear
subspace V

Ỹ
= T

ỸrE
∩ µ∗−1V ⊂ T

Ỹ
has a big canonical sheaf whenever µ : Ỹ → Y is a

desingularization and E is the exceptional locus.

The most striking fact known at this date on the Green-Griffiths-Lang conjecture
is a recent result of Diverio, Merker and Rousseau [DMR10] in the absolute case, con-
firming the statement when X ⊂ Pn+1

C is a generic non singular hypersurface of large
degree d, with a (non optimal) sufficient lower bound d > 2n

5

. Their proof is based in an
essential way on a strategy developed by Siu [Siu02, Siu04], combined with techniques of
[Dem95]. Notice that if the Green-Griffiths-Lang conjecture holds true, a much stronger
and probably optimal result would be true, namely all smooth hypersurfaces of degree
d > n+3 would satisfy the expected algebraic degeneracy statement. Moreover, by results
of Clemens [Cle86] and Voisin [Voi96], a (very) generic hypersurface of degree d > 2n+1
would in fact be hyperbolic for every n > 2. Such a generic hyperbolicity statement has
been obtained unconditionally by McQuillan [McQ98, McQ99] when n = 2 and d > 35,
and by Demailly-El Goul [DEG00] when n = 2 and d > 21. Recently Diverio-Trapani
[DT10] proved the same result when n = 3 and d > 593. By definition, proving the alge-
braic degeneracy means finding a non zero polynomial P on X such that all entire curves
f : C → X satisfy P (f) = 0. All known methods of proof are based on establishing first
the existence of certain algebraic differential equations P (f ; f ′, f ′′, . . . , f (k)) = 0 of some
order k, and then trying to find enough such equations so that they cut out a proper
algebraic locus Y ( X .

Let JkV be the space of k-jets of curves f : (C, 0) → X tangent to V . One defines the
sheaf O(EGG

k,mV
∗) of jet differentials of order k and degreem to be the sheaf of holomorphic

functions P (z; ξ1, . . . ξk) on JkV which are homogeneous polynomials of degree m on
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the fibers of JkV → X with respect to local coordinate derivatives ξj = f (j)(0) (see
below in case V has singularities). The degree m considered here is the weighted degree
with respect to the natural C∗ action on JkV defined by λ · f(t) := f(λt), i.e. by
reparametrizing the curve with a homothetic change of variable. Since (λ · f)(j)(t) =
λjf (j)(λt), the weighted action is given in coordinates by

(0.3) λ · (ξ1, ξ2, . . . , ξk) = (λξ1, λ
2ξ2, . . . , λ

kξk).

One of the major tool of the theory is the following result due to Green-Griffiths [GG79]
(see also [Blo26], [Dem95, Dem97], [SY96a, SY96b], [Siu97]).

(0.4) Fundamental vanishing theorem. Let (X, V ) be a directed projective vari-

ety and f : (C, TC) → (X, V ) an entire curve tangent to V . Then for every global

section P ∈ H0(X,EGG
k,mV

∗ ⊗ O(−A)) where A is an ample divisor of X, one has

P (f ; f ′, f ′′, . . . , f (k)) = 0.

Let us give the proof of (0.4) in a special case. We interpret here EGG
k,mV

∗ ⊗ O(−A)
as the bundle of differential operators whose coefficients vanish along A. By a well-
known theorem of Brody [Bro78], for every entire curve f : (C, TC) → (X, V ), one
can extract a convergent “renormalized” sequence g = lim f ◦ hν where hν are suitable
homographic functions, in such a way that g is an entire curve with bounded derivative
supt∈C ‖g′(t)‖ω < +∞ (with respect to any given Hermitian metric ω on X); the image

g(C) is then contained in the cluster set f(C), but it is possible that g(C) ( f(C).
Then Cauchy inequalities imply that all derivatives g(j) are bounded, and therefore, by
compactness of X , u = P (g ; g′, g′′, . . . , g(k)) is a bounded holomorphic function on C.
However, after raising P to a power, we may assume that A is very ample, and after
moving A ∈ |A|, that SuppA intersects g(C). Then u vanishes somewhere, hence u ≡ 0
by Liouville’s theorem. The proof for the general case is more subtle and makes use of
Nevanlinna’s second main theorem (see the above references).

It is expected that the global sections of H0(X,EGG
k,mV

∗⊗O(−A)) are precisely those
which ultimately define the algebraic locus Y ( X where the curve f should lie. The
problem is then reduced to the question of showing that there are many non zero sections
of H0(X,EGG

k,mV
∗ ⊗ O(−A)), and further, understanding what is their joint base locus.

The first part of this program is the main result of this chapter.

(0.5) Theorem. Let (X, V ) be a directed projective variety such that KV is big and let

A be an ample divisor. Then for k ≫ 1 and δ ∈ Q+ small enough, δ 6 c(log k)/k, the
number of sections h0(X,EGG

k,mV
∗ ⊗ O(−mδA)) has maximal growth, i.e. is larger that

ckm
n+kr−1 for some m > mk, where c, ck > 0, n = dimX and r = rankV . In particular,

entire curves f : (C, TC) → (X, V ) satisfy (many) algebraic differential equations.

The statement is very elementary to check when r = rankV = 1, and therefore when
n = dimX = 1. In higher dimensions n > 2, only very partial results were known at
this point, concerning merely the absolute case V = TX . In dimension 2, Theorem 0.5
is a consequence of the Riemann-Roch calculation of Green-Griffiths [GG79], combined
with a vanishing theorem due to Bogomolov [Bog79] – the latter actually only applies to
the top cohomology group Hn, and things become much more delicate when extimates
of intermediate cohomology groups are needed. In higher dimensions, Diverio [Div08,
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Div09] proved the existence of sections of H0(X,EGG
k,mV

∗ ⊗ O(−1)) whenever X is a
hypersurface of Pn+1

C of high degree d > dn, assuming k > n and m > mn. More recently,
Merker [Mer10] was able to treat the case of arbitrary hypersurfaces of general type, i.e.
d > n + 3, assuming this time k to be very large. The latter result is obtained through
explicit algebraic calculations of the spaces of sections, and the proof is computationally
very intensive. Bérczi [Ber10] also obtained related results with a different approach
based on residue formulas, assuming d > 27n logn.

All these approaches are algebraic in nature, and use only the algebraic version of
holomorphic Morse inequalities (section I 2.D). Here, however, our techniques are based
on more elaborate curvature estimates in the spirit of Cowen-Griffiths [CG76]. They
require the stronger analytic form of holomorphic Morse inequalities (see Chapter I and
Section III 6) – and we do not know how to translate our method in an algebraic setting.
Notice that holomorphic Morse inequalities are essentially insensitive to singularities, as
we can pass to non singular models and blow-up X as much as we want: if µ : X̃ → X is
a modification then µ∗OX̃ = OX and Rqµ∗OX̃ is supported on a codimension 1 analytic
subset (even codimension 2 if X is smooth). As already observed in Section III 3,
it follows from the Leray spectral sequence that the cohomology estimates for L on X or
for L̃ = µ∗L on X̃ differ by negligible terms, i.e.

hq(X̃, L̃⊗m)− hq(X,L⊗m) = O(mn−1).

Finally, singular holomorphic Morse inequalities (see Setion III 6) allow us to work with
singular Hermitian metrics h; this is the reason why we will only require to have big line
bundles rather than ample line bundles. In the case of linear subspaces V ⊂ TX , we
introduce singular Hermitian metrics as follows.

(0.6) Definition. A singular Hermitian metric on a linear subspace V ⊂ TX is a metric

h on the fibers of V such that the function logh : ξ 7→ log |ξ|2h is locally integrable on the

total space of V .

Such a metric can also be viewed as a singular Hermitian metric on the tautological
line bundle OP (V )(−1) on the projectivized bundle P (V ) = V r{0}/C∗, and therefore its
dual metric h∗ defines a curvature current ΘOP (V )(1),h∗ of type (1, 1) on P (V ) ⊂ P (TX),
such that

p∗ΘOP (V )(1),h∗ =
i

2π
∂∂ log h, where p : V r {0} → P (V ).

If logh is quasi-plurisubharmonic (or quasi-psh, which means psh modulo addition of a
smooth function) on V , then log h is indeed locally integrable, and we have moreover

(0.7) ΘOP (V )(1),h∗ > −Cω

for some smooth positive (1, 1)-form on P (V ) and some constant C > 0 ; conversely, if
(0.7) holds, then log h is quasi-psh.

(0.8) Definition. We will say that a singular Hermitian metric h on V is admissible if

h can be written as h = eϕh0|V where h0 is a smooth positive definite Hermitian on TX
and ϕ is a quasi-psh weight with analytic singularities on X, as in (0.6). Then h can
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be seen as a singular Hermitian metric on OP (V )(1), with the property that it induces a

smooth positive definite metric on a Zariski open set X ′ ⊂ X r Sing(V ) ; we will denote

by Sing(h) ⊃ Sing(V ) the complement of the largest such Zariski open set X ′.

If h is an admissible metric, we define Oh(V ∗) to be the sheaf of germs of holomorphic
sections sections of V ∗

|XrSing(h) which are h∗-bounded near Sing(h); by the assumption
on the analytic singularities, this is a coherent sheaf (as the direct image of some co-
herent sheaf on P (V )), and actually, since h∗ = e−ϕh∗0, it is a subsheaf of the sheafO(V ∗) := Oh0

(V ∗) associated with a smooth positive definite metric h0 on TX . If r is
the generic rank of V and m a positive integer, we define similarly Km

V,h to be sheaf of

germs of holomorphic sections of (detV ∗
|X′)⊗m = (ΛrV ∗

|X′)⊗m which are det h∗-bounded,
and Km

V := Km
V,h0

.

If V is defined by α : X > Gr(TX), there always exists a modification µ : X̃ → X
such that the composition α ◦ µ : X̃ → Gr(µ

∗TX) becomes holomorphic, and then
µ∗V|µ−1(XrSing(V )) extends as a locally trivial subbundle of µ∗TX which we will simply
denote by µ∗V . If h is an admissible metric on V , then µ∗V can be equipped with the
metric µ∗h = eϕ◦µµ∗h0 where µ∗h0 is smooth and positive definite. We may assume that
ϕ◦µ has divisorial singularities (otherwise just perform further blow-ups of X̃ to achieve
this). We then see that there is an integer m0 such that for all multiples m = pm0 the
pull-back µ∗Km

V,h is an invertible sheaf on X̃ , and det h∗ induces a smooth non singular
metric on it (when h = h0, we can even take m0 = 1). By definition we always have
Km
V,h = µ∗(µ∗Km

V,h) for any m > 0. In the sequel, however, we think of KV,h not really
as a coherent sheaf, but rather as the “virtual” Q-line bundle µ∗(µ∗Km0

V,h)
1/m0 , and we

say that KV,h is big if h0(X,Km
V,h) > cmn for m > m1, with c > 0 , i.e. if the invertible

sheaf µ∗Km0

V,h is big in the usual sense.

At this point, it is important to observe that “our” canonical sheaf KV differs from
the sheaf KV := i∗O(KV ) associated with the injection i : X r Sing(V ) →֒ X , which
is usually referred to as being the “canonical sheaf”, at least when V is the space of
tangents to a foliation. In fact, KV is always an invertible sheaf and there is an obvious
inclusion KV ⊂ KV . More precisely, the image of O(ΛrT ∗

X) → KV is equal to KV ⊗OX J
for a certain coherent ideal J ⊂ OX , and the condition to have h0-bounded sections on
X r Sing(V ) precisely means that our sections are bounded by Const

∑ |gj| in terms of
the generators (gj) of KV ⊗OX J, i.e. KV = KV ⊗OX J where J is the integral closure
of J. More generally,

Km
V,h = Km

V ⊗OX Jm/m0

h,m0

where Jm/m0

h,m0
⊂ OX is the (m/m0)-integral closure of a certain ideal sheaf Jh,m0

⊂ OX ,
which can itself be assumed to be integrally closed; in our previous discussion, µ is chosen
so that µ∗Jh,m0

is invertible on X̃.

The discrepancy already occurs e.g. with the rank 1 linear space V ⊂ TPn
C
consisting

at each point z 6= 0 of the tangent to the line (0z) (so that necessarily V0 = TPn
C
,0). As a

sheaf (and not as a linear space), i∗O(V ) is the invertible sheaf generated by the vector
field ξ =

∑
zj∂/∂zj on the affine open set Cn ⊂ PnC, and therefore KV := i∗O(V ∗) is

generated over Cn by the unique 1-form u such that u(ξ) = 1. Since ξ vanishes at 0,
the generator u is unbounded with respect to a smooth metric h0 on TPn

C
, and it is easily

seen that KV is the non invertible sheaf KV = KV ⊗ mPn
C
,0. We can make it invertible

by considering the blow-up µ : X̃ → X of X = PnC at 0, so that µ∗KV is isomorphic to
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µ∗KV ⊗ O
X̃
(−E) where E is the exceptional divisor. The integral curves C of V are of

course lines through 0, and when a standard parametrization is used, their derivatives do
not vanish at 0, while the sections of i∗O(V ) do – another sign that i∗O(V ) and i∗O(V ∗)
are the wrong objects to consider. Another standard example is obtained by taking a
generic pencil of elliptic curves λP (z) + µQ(z) = 0 of degree 3 in P2

C, and the linear
space V consisting of the tangents to the fibers of the rational map P2

C
> P1

C defined
by z 7→ Q(z)/P (z). Then V is given by

0 −→ i∗O(V ) −→ O(TP2
C

)
PdQ−QdP→ OP2

C

(6)⊗ JS −→ 0

where S = Sing(V ) consists of the 9 points {P (z) = 0} ∩ {Q(z) = 0}, and JS is the
corresponding ideal sheaf of S. Since detO(TP2) = O(3), we see thatKV = O(3) is ample,
which seems to contradict (0.2) since all leaves are elliptic curves. There is however no
such contradiction, because KV = KV ⊗ JS is not big in our sense (it has degree 0 on
all members of the elliptic pencil). A similar example is obtained with a generic pencil
of conics, in which case KV = O(1) and cardS = 4.

For a given admissible Hermitian structure (V, h), we define similarly the sheaf
EGG
k,mV

∗
h to be the sheaf of polynomials defined over XrSing(h) which are “h-bounded”.

This means that when they are viewed as polynomials P (z ; ξ1, . . . , ξk) in terms of
ξj = (∇1,0

h0
)jf(0) where ∇1,0

h0
is the (1, 0)-component of the induced Chern connection on

(V, h0), there is a uniform bound

(0.9)
∣∣P (z ; ξ1, . . . , ξk)

∣∣ 6 C
(∑

‖ξj‖1/jh

)m

near points of X r X ′ (see section 2 for more details on this). Again, by a direct
image argument, one sees that EGG

k,mV
∗
h is always a coherent sheaf. The sheaf EGG

k,mV
∗

is defined to be EGG
k,mV

∗
h when h = h0 (it is actually independent of the choice of h0, as

follows from arguments similar to those given in section 2). Notice that this is exactly
what is needed to extend the proof of the vanishing theorem 0.4 to the case of a singular
linear space V ; the value distribution theory argument can only work when the functions
P (f ; f ′, . . . , f (k))(t) do not exhibit poles, and this is guaranteed here by the boundedness
assumption.

Our strategy can be described as follows. We consider the Green-Griffiths bundle of
k-jets XGG

k = JkV r{0}/C∗, which by (0.3) consists of a fibration in weighted projective

spaces, and its associated tautological sheaf

L = OXGG
k

(1),

viewed rather as a virtualQ-line bundle OXGG
k

(m0)
1/m0 withm0 = lcm(1, 2, ... , k). Then,

if πk : XGG
k → X is the natural projection, we have

EGG
k,m = (πk)∗OXGG

k
(m) and Rq(πk)∗OXGG

k
(m) = 0 for q > 1.

Hence, by the Leray spectral sequence we get for every invertible sheaf F on X the
isomorphism

(0.10) Hq(X,EGG
k,mV

∗ ⊗ F ) ≃ Hq(XGG
k ,OXGG

k
(m)⊗ π∗

kF ).
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The latter group can be evaluated thanks to holomorphic Morse inequalities. In fact we
can associate with any admissible metric h on V a metric (or rather a natural family)
of metrics on L = OXGG

k
(1). The space XGG

k always possesses quotient singularities if
k > 2 (and even some more if V is singular), but we do not really care since Morse
inequalities still work in this setting. As we will see, it is then possible to get nice
asymptotic formulas as k → +∞. They appear to be of a probabilistic nature if we take
the components of the k-jet (i.e. the successive derivatives ξj = f (j)(0), 1 6 j 6 k)
as random variables. This probabilistic behaviour was somehow already visible in the
Riemann-Roch calculation of [GG79]. In this way, assuming KV big, we produce a lot of
sections σj = H0(XGG

k ,OXGG
k

(m) ⊗ π∗
kF ), corresponding to certain divisors Zj ⊂ XGG

k .
The hard problem which is left in order to complete a proof of the generalized Green-
Griffiths-Lang conjecture is to compute the base locus Z =

⋂
Zj and to show that

Y = πk(Z) ⊂ X must be a proper algebraic variety. Although we cannot address this
problem at present, we will indicate a few technical results and a couple of potential
strategies in this direction.

1. Hermitian geometry of weighted projective spaces

The goal of this section is to introduce natural Kähler metrics on weighted projective
spaces, and to evaluate the corresponding volume forms. Here we put dc = i

4π (∂ − ∂)

so that ddc = i
2π∂∂. The normalization of the dc operator is chosen such that we

have precisely (ddc log |z|2)n = δ0 for the Monge-Ampère operator in Cn; also, for every
holomorphic or meromorphic section σ of a Hermitian line bundle (L, h) the Lelong-
Poincaré can be formulated

(1.1) ddc log |σ|2h = [Zσ]−ΘL,h,

where ΘL,h = i
2π
D2
L,h is the (1, 1)-curvature form of L and Zσ the zero divisor of σ.

The closed (1, 1)-form ΘL,h is a representative of the first Chern class c1(L). Given a
k-tuple of “weights” a = (a1, . . . , ak), i.e. of integers as > 0 with gcd(a1, . . . , ak) = 1, we
introduce the weighted projective space P (a1, . . . , ak) to be the quotient of Ck r {0} by
the corresponding weighted C∗ action:

(1.2) P (a1, . . . , ak) = Ck r {0}/C∗, λ · z = (λa1z1, . . . , λ
akzk).

As is well known, this defines a toric (k− 1)-dimensional algebraic variety with quotient
singularities. On this variety, we introduce the possibly singular (but almost everywhere
smooth and non degenerate) Kähler form ωa,p defined by

(1.3) π∗
aωa,p = ddcϕa,p, ϕa,p(z) =

1

p
log

∑

16s6k

|zs|2p/as ,

where πa : Ck r {0} → P (a1, . . . , ak) is the canonical projection and p > 0 is a positive
constant. It is clear that ϕp,a is real analytic on Ck r {0} if p is an integer and a
common multiple of all weights as. It is at least C2 if p is real and p > max(as), which
will be more than sufficient for our purposes (but everything would still work for any
p > 0). The resulting metric is in any case smooth and positive definite outside of the
coordinate hyperplanes zs = 0, and these hyperplanes will not matter here since they are
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of capacity zero with respect to all currents (ddcϕa,p)
ℓ. In order to evaluate the volume∫

P (a1,...,ak)
ωk−1
a,p , one can observe that

∫

P (a1,...,ak)

ωk−1
a,p =

∫

z∈Ck, ϕa,p(z)=0

π∗
aω

k−1
a,p ∧ dcϕa,p

=

∫

z∈Ck, ϕa,p(z)=0

(ddcϕa,p)
k−1 ∧ dcϕa,p

=
1

pk

∫

z∈Ck, ϕa,p(z)<0

(ddcepϕa,p)k.(1.4)

The first equality comes from the fact that {ϕa,p(z) = 0} is a circle bundle over
P (a1, . . . , ak), together with the identities ϕa,p(λ · z) = ϕa,p(z) + log |λ|2 and∫
|λ|=1

dc log |λ|2 = 1. The third equality can be seen by Stokes formula applied to the

(2k − 1)-form

(ddcepϕa,p)k−1 ∧ dcepϕa,p = epϕa,p(ddcϕa,p)
k−1 ∧ dcϕa,p

on the pseudoconvex open set {z ∈ Ck ; ϕa,p(z) < 0}. Now, we find

(ddcepϕa,p)k =
(
ddc

∑

16s6k

|zs|2p/as
)k

=
∏

16s6k

( p
as

|zs|
p
as

−1
)
(ddc|z|2)k,(1.5)

∫

z∈Ck, ϕa,p(z)<0

(ddcepϕa,p)k =
∏

16s6k

p

as
=

pk

a1 . . . ak
.(1.6)

In fact, (1.5) and (1.6) are clear when p = a1 = . . . = ak = 1 (this is just the standard
calculation of the volume of the unit ball in Ck); the general case follows by substituting
formally zs 7→ z

p/as
s , and using rotational invariance together with the observation that

the arguments of the complex numbers z
p/as
s now run in the interval [0, 2πp/as[ instead

of [0, 2π[ (say). As a consequence of (1.4) and (1.6), we obtain the well known value

(1.7)

∫

P (a1,...,ak)

ωk−1
a,p =

1

a1 . . . ak
,

for the volume. Notice that this is independent of p (as it is obvious by Stokes theorem,
since the cohomology class of ωa,p does not depend on p). When p tends to +∞, we
have ϕa,p(z) 7→ ϕa,∞(z) = logmax16s6k |zs|2/as and the volume form ωk−1

a,p converges to
a rotationally invariant measure supported by the image of the polycircle

∏{|zs| = 1}
in P (a1, . . . , ak). This is so because not all |zs|2/as are equal outside of the image of the
polycircle, thus ϕa,∞(z) locally depends only on k−1 complex variables, and so ωk−1

a,∞ = 0
there by log homogeneity.

Our later calculations will require a slightly more general setting. Instead of looking
at Ck, we consider the weighted C∗ action defined by

(1.8) C|r| = Cr1 × . . .× Crk , λ · z = (λa1z1, . . . , λ
akzk).

Here zs ∈ Crs for some k-tuple r = (r1, . . . , rk) and |r| = r1 + . . .+ rk. This gives rise to
a weighted projective space

P (a
[r1]
1 , . . . , a

[rk]
k ) = P (a1, . . . , a1, . . . , ak, . . . , ak),

πa,r : C
r1 × . . .× Crk r {0} −→ P (a

[r1]
1 , . . . , a

[rk]
k )(1.9)
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obtained by repeating rs times each weight as. On this space, we introduce the degenerate
Kähler metric ωa,r,p such that

(1.10) π∗
a,rωa,r,p = ddcϕa,r,p, ϕa,r,p(z) =

1

p
log

∑

16s6k

|zs|2p/as

where |zs| stands now for the standard Hermitian norm (
∑

16j6rs
|zs,j|2)1/2 on Crs . This

metric is cohomologous to the corresponding “polydisc-like” metric ωa,p already defined,
and therefore Stokes theorem implies

(1.11)

∫

P (a
[r1]

1 ,...,a
[rk ]

k
)

ω|r|−1
a,r,p =

1

ar11 . . . arkk
.

Since (ddc log |zs|2)rs = 0 on Crs r {0} by homogeneity, we conclude as before that the

weak limit limp→+∞ ω
|r|−1
a,r,p = ω

|r|−1
a,r,∞ associated with

(1.12) ϕa,r,∞(z) = log max
16s6k

|zs|2/as

is a measure supported by the image of the product of unit spheres
∏
S2rs−1 in

P (a
[r1]
1 , . . . , a

[rk]
k ), which is invariant under the action of U(r1)× . . .× U(rk) on

Cr1 × . . .× Crk , and thus coincides with the Hermitian area measure up to a constant
determined by condition (1.11). In fact, outside of the product of spheres, ϕa,r,∞ locally
depends only on at most k − 1 factors and thus, for dimension reasons, the top power
(ddcϕa,r,∞)|r|−1 must be zero there. In the next section, the following change of variable
formula will be needed. For simplicity of exposition we restrict ourselves to continu-
ous functions, but a standard density argument would easily extend the formula to all
functions that are Lebesgue integrable with respect to the volume form ω

|r|−1
a,r,p .

(1.13) Proposition. Let f(z) be a bounded function on P (a
[r1]
1 , . . . , a

[rk]
k ) which is

continuous outside of the hyperplane sections zs = 0. We also view f as a C∗-invariant
continuous function on

∏
(Crs r {0}). Then

∫

P (a
[r1]

1
,...,a

[rk ]

k
)

f(z)ω|r|−1
a,r,p

=
(|r| − 1)!∏

s a
rs
s

∫

(x,u)∈∆k−1×
∏

S2rs−1

f(x
a1/2p
1 u1, . . . , x

ak/2p
k uk)

∏

16s6k

xrs−1
s

(rs − 1)!
dx dµ(u)

where ∆k−1 is the (k−1)-simplex {xs > 0,
∑
xs = 1}, dx = dx1∧. . .∧dxk−1 its standard

measure, and where dµ(u) = dµ1(u1) . . . dµk(uk) is the rotation invariant probability

measure on the product
∏
s S

2rs−1 of unit spheres in Cr1 × . . .× Crk . As a consequence

lim
p→+∞

∫

P (a
[r1]

1 ,...,a
[rk ]

k
)

f(z)ω|r|−1
a,r,p =

1∏
s a

rs
s

∫
∏

S2rs−1

f(u) dµ(u).

Proof. The area formula of the disc
∫
|λ|<1

ddc|λ|2 = 1 and a consideration of the unit
disc bundle over P (a

[r1]
1 , . . . , a

[rk]
k ) imply that

Ip :=

∫

P (a
[r1]

1 ,...,a
[rk ]

k
)

f(z)ω|r|−1
a,r,p =

∫

z∈C|r|,ϕa,r,p(z)<0

f(z) (ddcϕa,r,p)
|r|−1 ∧ ddceϕa,r,p .
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Now, a straightforward calculation on C|r| gives

(ddcepϕa,r,p)|r| =
(
ddc

∑

16s6k

|zs|2p/as
)|r|

=
∏

16s6k

( p
as

)rs+1

|zs|2rs(p/as−1)(ddc|z|2)|r|.

On the other hand, we have (ddc|z|2)|r| = |r|!
r1!...rk!

∏
16s6k(dd

c|zs|2)rs and

(ddcepϕa,r,p)|r| =
(
p epϕa,r,p(ddcϕa,r,p + p dϕa,r,p ∧ dcϕa,r,p)

)|r|

= |r|p|r|+1e|r|pϕa,r,p(ddcϕa,r,p)
|r|−1 ∧ dϕa,r,p ∧ dcϕa,r,p

= |r|p|r|+1e(|r|p−1)ϕa,r,p(ddcϕa,r,p)
|r|−1 ∧ ddceϕa,r,p ,

thanks to the homogeneity relation (ddcϕa,r,p)
|r| = 0. Putting everything together, we

find

Ip =

∫

z∈C|r|, ϕa,r,p(z)<0

(|r| − 1)! pk−1f(z)

(
∑
s |zs|2p/as)|r|−1/p

∏

s

(ddc|zs|2)rs
rs! a

rs+1
s |zs|2rs(1−p/as)

.

A standard calculation in polar coordinates with zs = ρsus, us ∈ S2rs−1, yields

(ddc|zs|2)rs
|zs|2rs

= 2rs
dρs
ρs

dµs(us)

where µs is the U(rs)-invariant probability measure on S2rs−1. Therefore

Ip =

∫

ϕa,r,p(z)<0

(|r| − 1)! pk−1f(ρ1u1, . . . , ρkuk)

(
∑

16s6k ρ
2p/as
s )|r|−1/p

∏

s

2ρ
2prs/as
s

dρs
ρs
dµs(us)

(rs − 1)! ars+1
s

=

∫

us∈S2rs−1,
∑

ts<1

(|r| − 1)! p−1f(t
a1/2p
1 u1, . . . , t

ak/2p
k uk)

(
∑

16s6k ts)
|r|−1/p

∏

s

trs−1
s dts dµs(us)

(rs − 1)! arss

by putting ts = |zs|2p/as = ρ
2p/as
s , i.e. ρs = t

as/2p
s , ts ∈ ]0, 1]. We use still another change

of variable ts = txs with t =
∑

16s6k ts and xs ∈ ]0, 1],
∑

16s6k xs = 1. Then

dt1 ∧ . . . ∧ dtk = tk−1 dx dt where dx = dx1 ∧ . . . ∧ dxk−1.

The C∗ invariance of f shows that

Ip =

∫
us∈S2rs−1

Σxs=1, t∈]0,1]

(|r| − 1)!f(x
as/2p
1 u1, . . . , x

ak/2p
k uk)

∏

16s6k

xrs−1
s dµs(us)

(rs − 1)! arss

dx dt

p t1−1/p

=

∫
us∈S2rs−1

Σxs=1

(|r| − 1)!f(x
as/2p
1 u1, . . . , x

ak/2p
k uk)

∏

16s6k

xrs−1
s dµs(us)

(rs − 1)! arss
dx.
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This is equivalent to the formula given in Proposition 1.13. We have x
2as/p
s → 1 as

p→ +∞, and by Lebesgue’s bounded convergence theorem and Fubini’s formula, we get

lim
p→+∞

Ip =
(|r| − 1)!∏

s a
rs
s

∫

(x,u)∈∆k−1×
∏

S2rs−1

f(u)
∏

16s6k

xrs−1
s

(rs − 1)!
dx dµ(u).

It can be checked by elementary integrations by parts and induction on k, r1, . . . , rk that

(1.14)

∫

x∈∆k−1

∏

16s6k

xrs−1
s dx1 . . . dxk−1 =

1

(|r| − 1)!

∏

16s6k

(rs − 1)! .

This implies that (|r| − 1)!
∏

16s6k
xrs−1
s

(rs−1)!
dx is a probability measure on ∆k−1 and that

lim
p→+∞

Ip =
1∏
s a

rs
s

∫

u∈
∏

S2rs−1

f(u) dµ(u).

Even without an explicit check, Formula (1.14) also follows from the fact that we must
have equality for f(z) ≡ 1 in the latter equality, if we take into account the volume
formula (1.11). �

2. Probabilistic estimate of the curvature of k-jet bundles

Let (X, V ) be a compact complex directed non singular variety. To avoid any tech-
nical difficulty at this point, we first assume that V is a holomorphic vector subbundle
of TX , equipped with a smooth Hermitian metric h.

According to the notation already specified in the introduction, we denote by JkV
the bundle of k-jets of holomorphic curves f : (C, 0) → X tangent to V at each point. Let
us set n = dimCX and r = rankC V . Then JkV → X is an algebraic fiber bundle with
typical fiber Crk (see below). It has a canonical C∗-action defined by λ · f : (C, 0) → X ,
(λ · f)(t) = f(λt). Fix a point x0 in X and a local holomorphic coordinate system
(z1, . . . , zn) centered at x0 such that Vx0

is the vector subspace 〈∂/∂z1, . . . , ∂/∂zr〉 at x0.
Then, in a neighborhood U of x0, V admits a holomorphic frame of the form

(2.1)
∂

∂zβ
+

∑

r+16α6n

aαβ(z)
∂

∂zα
, 1 6 β 6 r, aαβ(0) = 0.

Let f(t) = (f1(t), . . . , fn(t)) be a k-jet of curve tangent to V starting from a point f(0) =
x ∈ U . Such a curve is entirely determined by its initial point and by the projection
f̃(t) := (f1(t), . . . , fr(t)) to the first r-components, since the condition f ′(t) ∈ Vf(t)
implies that the other components must satisfy the ordinary differential equation

f ′
α(t) =

∑

16β6r

aαβ(f(t))f
′
β(t).

This implies that the k-jet of f is entirely determined by the initial point x and the
Taylor expansion

(2.2) f̃(t)− x̃ = ξ1t+ ξ2t
2 + . . .+ ξkt

k +O(tk+1)
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where ξs = (ξsα)16α6r ∈ Cr. The C∗ action (λ, f) 7→ λ·f is then expressed in coordinates
by the weighted action

(2.3) λ · (ξ1, ξ2, . . . , ξk) = (λξ1, λ
2ξ2, . . . , λ

kξk)

associated with the weight a = (1[r], 2[r], . . . , k[r]). The quotient projectivized k-jet bun-
dle

(2.4) XGG
k := (JkV r {0})/C∗

considered by Green and Griffiths [GG79] is therefore in a natural way a
P (1[r], 2[r], . . . , k[r]) weighted projective bundle over X . As such, it possesses a canonical
sheaf OXGG

k
(1) such that OXGG

k
(m) is invertible when m is a multiple of lcm(1, 2, . . . , k).

Under the natural projection πk : XGG
k → X , the direct image (πk)∗OXGG

k
(m) coincides

with the sheaf of sections of the bundle EGG
k,mV

∗ of jet differentials of order k and degree
m, namely polynomials

(2.5) P (z ; ξ1, . . . , ξk) =
∑

αℓ∈Nr , 16ℓ6k

aα1...αk
(z) ξα1

1 . . . ξαk

k

of weighted degree |α1|+ 2|α2|+ . . .+ k|αk| = m on JkV with holomorphic coefficients.
The jet differentials operate on germs of curves as differential operators

(2.6) P (f)(t) =
∑

aα1...αk
(f(t)) f ′(t)α1 . . . f (k)(t)αk .

In the sequel, we do not make any further use of coordinate frames as (2.1), because they
need not be related in any way to the Hermitian metric h of V . Instead, we choose a
local holomorphic coordinate frame (eα(z))16α6r of V on a neighborhood U of x0, such
that

(2.7) 〈eα(z), eβ(z)〉 = δαβ +
∑

16i,j6n, 16α,β6r

cijαβzizj +O(|z|3)

for suitable complex coefficients (cijαβ). It is a standard fact that such a normalized
coordinate system always exists, and that the Chern curvature tensor i

2πD
2
V,h of (V, h)

at x0 is then given by

(2.8) ΘV,h(x0) = − i

2π

∑

i,j,α,β

cijαβ dzi ∧ dzj ⊗ e∗α ⊗ eβ .

Also, instead of defining the vectors ξs ∈ Cr as in (2.2), we consider a local holomorphic
connection ∇ on V|U (e.g. the one which turns (eα) into a parallel frame), and take

ξk = ∇kf(0) ∈ Vx defined inductively by ∇1f = f ′ and ∇sf = ∇f ′(∇s−1f). This is just
another way of parametrizing the fibers of JkV over U by the vector bundle V k|U . Notice
that this is highly dependent on ∇ (the bundle JkV actually does not carry a vector
bundle or even affine bundle structure); however, the expression of the weighted action
(2.3) is unchanged in this new setting. Now, we fix a finite open covering (Uα)α∈I of X
by open coordinate charts such that V|Uα

is trivial, along with holomorphic connections
∇α on V|Uα

. Let θα be a partition of unity of X subordinate to the covering (Uα). Let
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us fix p > 0 and small parameters 1 = ε1 ≫ ε2 ≫ . . .≫ εk > 0. Then we define a global
weighted exhaustion on JkV by putting for any k-jet f ∈ JkxV

(2.9) Ψh,p,ε(f) :=
(∑

α∈I
θα(x)

∑

16s6k

ε2ps ‖∇s
αf(0)‖

2p/s
h(x)

)1/p

where ‖ ‖h(x) is the Hermitian metric h of V evaluated on the fiber Vx, x = f(0). The
function Ψh,p,ε satisfies the fundamental homogeneity property

(2.10) Ψh,p,ε(λ · f) = Ψh,p,ε(f) |λ|2

with respect to the C∗ action on JkV , in other words, it induces a Hermitian metric on
the dual L∗ of the tautological Q-line bundle Lk = OXGG

k
(1) over XGG

k . The curvature
of Lk is given by

(2.11) π∗
kΘLk,Ψ

∗
h,p,ε

= ddc logΨh,p,ε

where πk : JkV r {0} → XGG
k is the canonical projection. Our next goal is to compute

precisely the curvature and to apply holomorphic Morse inequalities to L → XGG
k with

the above metric. It might look a priori like an untractable problem, since the definition of
Ψh,p,ε is a rather unnatural one. However, the “miracle” is that the asymptotic behavior
of Ψh,p,ε as εs/εs−1 → 0 is in some sense uniquely defined and very natural. It will lead
to a computable asymptotic formula, which is moreover simple enough to produce useful
results.

(2.12) Lemma. On each coordinate chart U equipped with a holomorphic connection ∇
of V|U , let us define the components of a k-jet f ∈ JkV by ξs = ∇sf(0), and consider

the rescaling transformation

ρ∇,ε(ξ1, ξ2, . . . , ξk) = (ε11ξ1, ε
2
2ξ2, . . . , ε

k
kξk) on JkxV , x ∈ U

(it commutes with the C∗-action but is otherwise unrelated and not canonically defined

over X as it depends on the choice of ∇). Then, if p is a multiple of lcm(1, 2, . . . , k) and
εs/εs−1 → 0 for all s = 2, . . . , k, the rescaled function Ψh,p,ε ◦ ρ−1

∇,ε(ξ1, . . . , ξk) converges
towards ( ∑

16s6k

‖ξs‖2p/sh

)1/p

on every compact subset of JkV|U r {0}, uniformly in C∞ topology.

Proof. Let U ⊂ X be an open set on which V|U is trivial and equipped with some

holomorphic connection ∇. Let us pick another holomorphic connection ∇̃ = ∇ + Γ
where Γ ∈ H0(U,Ω1

X ⊗Hom(V, V ). Then ∇̃2f = ∇2f +Γ(f)(f ′) · f ′, and inductively we
get

∇̃sf = ∇sf + Ps(f ; ∇1f, . . . ,∇s−1f)

where P (x ; ξ1, . . . , ξs−1) is a polynomial with holomorphic coefficients in x ∈ U which is
of weighted homogeneous degree s in (ξ1, . . . , ξs−1). In other words, the corresponding
change in the parametrization of JkV|U is given by a C∗-homogeneous transformation

ξ̃s = ξs + Ps(x ; ξ1, . . . , ξs−1).
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Let us introduce the corresponding rescaled components

(ξ1,ε, . . . , ξk,ε) = (ε11ξ1, . . . , ε
k
kξk), (ξ̃1,ε, . . . , ξ̃k,ε) = (ε11ξ̃1, . . . , ε

k
k ξ̃k).

Then
ξ̃s,ε = ξs,ε + εss Ps(x ; ε

−1
1 ξ1,ε, . . . , ε

−(s−1)
s−1 ξs−1,ε)

= ξs,ε +O(εs/εs−1)
sO(‖ξ1,ε‖+ . . .+ ‖ξs−1,ε‖1/(s−1))s

and the error terms are thus polynomials of fixed degree with arbitrarily small coefficients
as εs/εs−1 → 0. Now, the definition of Ψh,p,ε consists of glueing the sums

∑

16s6k

ε2ps ‖ξk‖2p/sh =
∑

16s6k

‖ξk,ε‖2p/sh

corresponding to ξk = ∇s
αf(0) by means of the partition of unity

∑
θα(x) = 1. We

see that by using the rescaled variables ξs,ε the changes occurring when replacing a
connection ∇α by an alternative one ∇β are arbitrary small in C∞ topology, with error
terms uniformly controlled in terms of the ratios εs/εs−1 on all compact subsets of
V k r {0}. This shows that in C∞ topology, Ψh,p,ε ◦ ρ−1

∇,ε(ξ1, . . . , ξk) converges uniformly
towards (

∑
16s6k ‖ξk‖

2p/s
h )1/p, whatever the trivializing open set U and the holomorphic

connection ∇ used to evaluate the components and perform the rescaling are. �

Now, we fix a point x0 ∈ X and a local holomorphic frame (eα(z))16α6r satisfying
(2.7) on a neighborhood U of x0. We introduce the rescaled components ξs = εss∇sf(0)
on JkV|U and compute the curvature of

Ψh,p,ε ◦ ρ−1
∇,ε(z ; ξ1, . . . , ξk) ≃

( ∑

16s6k

‖ξs‖2p/sh

)1/p

(by Lemma 2.12, the errors can be taken arbitrary small in C∞ topology). We write
ξs =

∑
16α6r ξsαeα. By (2.7) we have

‖ξs‖2h =
∑

α

|ξsα|2 +
∑

i,j,α,β

cijαβzizjξsαξsβ +O(|z|3|ξ|2).

The question is to evaluate the curvature of the weighted metric defined by

Ψ(z ; ξ1, . . . , ξk) =

( ∑

16s6k

‖ξs‖2p/sh

)1/p

=

( ∑

16s6k

(∑

α

|ξsα|2 +
∑

i,j,α,β

cijαβzizjξsαξsβ

)p/s)1/p

+O(|z|3).

We set |ξs|2 =
∑
α |ξsα|2. A straightforward calculation yields

logΨ(z ; ξ1, . . . , ξk) =

=
1

p
log

∑

16s6k

|ξs|2p/s +
∑

16s6k

1

s

|ξs|2p/s∑
t |ξt|2p/t

∑

i,j,α,β

cijαβzizj
ξsαξsβ
|ξs|2

+O(|z|3).
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By (2.11), the curvature form of Lk = OXGG
k

(1) is given at the central point x0 by the
following formula.

(2.13) Proposition. With the above choice of coordinates and with respect to the

rescaled components ξs = εss∇sf(0) at x0 ∈ X, we have the approximate expression

ΘLk,Ψ
∗
h,p,ε

(x0, [ξ]) ≃ ωa,r,p(ξ) +
i

2π

∑

16s6k

1

s

|ξs|2p/s∑
t |ξt|2p/t

∑

i,j,α,β

cijαβ
ξsαξsβ
|ξs|2

dzi ∧ dzj

where the error terms are O(max26s6k(εs/εs−1)
s) uniformly on the compact variety

XGG
k . Here ωa,r,p is the (degenerate) Kähler metric associated with the weight a =

(1[r], 2[r], . . . , k[r]) of the canonical C∗ action on JkV .

Thanks to the uniform approximation, we can (and will) neglect the error terms in
the calculations below. Since ωa,r,p is positive definite on the fibers of XGG

k → X (at
least outside of the axes ξs = 0), the index of the (1, 1) curvature form ΘLk,Ψ

∗
h,p,ε

(z, [ξ])

is equal to the index of the (1, 1)-form

(2.14) γk(z, ξ) :=
i

2π

∑

16s6k

1

s

|ξs|2p/s∑
t |ξt|2p/t

∑

i,j,α,β

cijαβ(z)
ξsαξsβ
|ξs|2

dzi ∧ dzj

depending only on the differentials (dzj)16j6n on X . The q-index integral of (Lk,Ψ
∗
h,p,ε)

on XGG
k is therefore equal to

∫

XGG
k

(Lk,q)

Θn+kr−1
Lk,Ψ

∗
h,p,ε

=

=
(n+ kr − 1)!

n!(kr − 1)!

∫

z∈X

∫

ξ∈P (1[r],...,k[r])

ωkr−1
a,r,p (ξ)1lγk,q(z, ξ)γk(z, ξ)

n

where 1lγk,q(z, ξ) is the characteristic function of the open set of points where γk(z, ξ) has
signature (n−q, q) in terms of the dzj ’s. Notice that since γk(z, ξ)

n is a determinant, the
product 1lγk,q(z, ξ)γk(z, ξ)

n gives rise to a continuous function on XGG
k . Formula 1.14

with r1 = . . . = rk = r and as = s yields the slightly more explicit integral

∫

XGG
k

(Lk,q)

Θn+kr−1
Lk,Ψ

∗
h,p,ε

=
(n+ kr − 1)!

n!(k!)r
×

∫

z∈X

∫

(x,u)∈∆k−1×(S2r−1)k
1lgk,q(z, x, u)gk(z, x, u)

n (x1 . . . xk)
r−1

(r − 1)!k
dx dµ(u),

where gk(z, x, u) = γk(z, x
1/2p
1 u1, . . . , x

k/2p
k uk) is given by

(2.15) gk(z, x, u) =
i

2π

∑

16s6k

1

s
xs

∑

i,j,α,β

cijαβ(z) usαusβ dzi ∧ dzj

and 1lgk,q(z, x, u) is the characteristic function of its q-index set. Here

(2.16) dνk,r(x) = (kr − 1)!
(x1 . . . xk)

r−1

(r − 1)!k
dx
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is a probability measure on ∆k−1, and we can rewrite

∫

XGG
k

(Lk,q)

Θn+kr−1
Lk,Ψ

∗
h,p,ε

=
(n+ kr − 1)!

n!(k!)r(kr − 1)!
×

∫

z∈X

∫

(x,u)∈∆k−1×(S2r−1)k
1lgk,q(z, x, u)gk(z, x, u)

n dνk,r(x) dµ(u).(2.17)

Now, formula (2.15) shows that gk(z, x, u) is a “Monte Carlo” evaluation of the curvature
tensor, obtained by averaging the curvature at random points us ∈ S2r−1 with certain
positive weights xs/s ; we should then think of the k-jet f as some sort of random
parameter such that the derivatives ∇kf(0) are uniformly distributed in all directions.
Let us compute the expected value of (x, u) 7→ gk(z, x, u) with respect to the probability
measure dνk,r(x) dµ(u). Since

∫
S2r−1 usαusβdµ(us) = 1

r δαβ and
∫
∆k−1

xs dνk,r(x) = 1
k ,

we find

E(gk(z, •, •)) =
1

kr

∑

16s6k

1

s
· i

2π

∑

i,j,α

cijαα(z) dzi ∧ dzj .

In other words, we get the normalized trace of the curvature, i.e.

(2.18) E(gk(z, •, •)) =
1

kr

(
1 +

1

2
+ . . .+

1

k

)
Θdet(V ∗),deth∗ ,

where Θdet(V ∗),deth∗ is the (1, 1)-curvature form of det(V ∗) with the metric induced
by h. It is natural to guess that gk(z, x, u) behaves asymptotically as its expected value
E(gk(z, •, •)) when k tends to infinity. If we replace brutally gk by its expected value in
(2.17), we get the integral

(n+ kr − 1)!

n!(k!)r(kr − 1)!

1

(kr)n

(
1 +

1

2
+ . . .+

1

k

)n ∫

X

1lη,qη
n,

where η := Θdet(V ∗),deth∗ and 1lη,q is the characteristic function of its q-index set in X .
The leading constant is equivalent to (log k)n/n!(k!)r modulo a multiplicative factor
1 + O(1/ log k). By working out a more precise analysis of the deviation, we will prove
the following result.

(2.19) Probabilistic estimate. Fix smooth Hermitian metrics h on V and ω =
i
2π

∑
ωijdzi ∧ dzj on X. Denote by ΘV,h = − i

2π

∑
cijαβdzi ∧ dzj ⊗ e∗α ⊗ eβ the cur-

vature tensor of V with respect to an h-orthonormal frame (eα), and put

η(z) = Θdet(V ∗),deth∗ =
i

2π

∑

16i,j6n

ηijdzi ∧ dzj , ηij =
∑

16α6r

cijαα.

Finally consider the k-jet line bundle Lk = OXGG
k

(1) → XGG
k equipped with the induced

metric Ψ∗
h,p,ε (as defined above, with 1 = ε1 ≫ ε2 ≫ . . . ≫ εk > 0). When k tends to

infinity, the integral of the top power of the curvature of Lk on its q-index set XGG
k (Lk, q)

is given by

∫

XGG
k

(Lk,q)

Θn+kr−1
Lk,Ψ

∗
h,p,ε

=
(log k)n

n! (k!)r

(∫

X

1lη,qη
n +O((log k)−1)

)
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for all q = 0, 1, . . . , n, and the error term O((log k)−1) can be bounded explicitly in terms

of ΘV , η and ω. Moreover, the left hand side is identically zero for q > n.

The final statement follows from the observation that the curvature of Lk is positive
along the fibers of XGG

k → X , by the plurisubharmonicity of the weight (this is true even
when the partition of unity terms are taken into account, since they depend only on the
base); therefore the q-index sets are empty for q > n. We start with three elementary
lemmas.

(2.20) Lemma. The integral

Ik,r,n =

∫

∆k−1

( ∑

16s6k

xs
s

)n
dνk,r(x)

is given by the expansion

(a) Ik,r,n =
∑

16s1,s2,...,sn6k

1

s1s2 . . . sn

(kr − 1)!

(r − 1)!k

∏
16i6k(r − 1 + βi)!

(kr + n− 1)!
.

where βi = βi(s) = card{j ; sj = i}, ∑βi = n, 1 6 i 6 k. The quotient

Ik,r,n

/
rn

kr(kr + 1) . . . (kr + n− 1)

(
1 +

1

2
+ . . .+

1

k

)n

is bounded below by 1 and bounded above by

(b) 1 +
1

3

n∑

m=2

2mn!

(n−m)!

(
1 +

1

2
+ . . .+

1

k

)−m
= 1 +O((log k)−2)

As a consequence

Ik,r,n =
1

kn

((
1 +

1

2
+ . . .+

1

k

)n
+O((log k)n−2)

)
(c)

=
(log k + γ)n +O((log k)n−2)

kn

where γ is the Euler-Mascheroni constant.

Proof. Let us expand the n-th power
(∑

16s6k
xs

s

)n
. This gives

Ik,r,n =
∑

16s1,s2,...,sn6k

1

s1s2 . . . sn

∫

∆k−1

xβ1

1 . . . xβk

k dνk,r(x)

and by definition of the measure νk,r we have

∫

∆k−1

xβ1

1 . . . xβk

k dνk,r(x) =
(kr − 1)!

(r − 1)!k

∫

∆k−1

xr+β1−1
1 . . . xr+βk−1

k dx1 . . . dxk.
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By Formula (1.14), we find

∫

∆k−1

xβ1

1 . . . xβk

k dνk,r(x) =
(kr − 1)!

(r − 1)!k

∏
16i6k(r + βi − 1)!

(kr + n− 1)!

=
rn
∏
i, βi>1(1 +

1
r )(1 +

2
r ) . . . (1 +

βi−1
r )

kr(kr + 1) . . . (kr + n− 1)
,

and (2.20 a) follows from the first equality. The final product is minimal when r = 1,
thus

rn

kr(kr + 1) . . . (kr + n− 1)
6

∫

∆k−1

xβ1

1 . . . xβk

k dνk,r(x)

6
rn
∏

16i6k βi!

kr(kr + 1) . . . (kr + n− 1)
.(2.21)

Also, the integral is maximal when all βi vanish except one, in which case one gets

(2.22)

∫

∆k−1

xnj dνk,r(x) =
r(r + 1) . . . (r + n− 1)

kr(kr + 1) . . . (kr + n− 1)
.

By (2.21), we find the lower and upper bounds

Ik,r,n >
rn

kr(kr + 1) . . . (kr + n− 1)

(
1 +

1

2
+ . . .+

1

k

)n
,(2.23)

Ik,r,n 6
rn

kr(kr + 1) . . . (kr + n− 1)

∑

16s1,...,sn6k

β1! . . . βk!

s1 . . . sn
.(2.24)

In order to make the upper bound more explicit, we reorganize the n-tuple (s1, . . . , sn)
into those indices t1 < . . . < tℓ which appear a certain number of times αi = βti > 2,
and those, say tℓ+1 < . . . < tℓ+m, which appear only once. We have of course

∑
βi =

n−m, and each choice of the ti’s corresponds to n!/α1! . . . αℓ! possibilities for the n-tuple
(s1, . . . , sn). Therefore we get

∑

16s1,...,sn6k

β1! . . . βk!

s1 . . . sn
6 n!

n∑

m=0

∑

ℓ,Σαi=n−m

∑

(ti)

1

tα1
1 . . . tαℓ

ℓ

1

tℓ+1 . . . tℓ+m
.

A trivial comparison series vs. integral yields

∑

s<t<+∞

1

tα
6

1

α − 1

1

sα−1

and in this way, using successive integrations in tℓ, tℓ−1, . . . , we get inductively

∑

16t1<...<tℓ<+∞

1

tα1
1 . . . tαℓ

ℓ

6
1∏

16i6ℓ(αℓ−i+1 + . . .+ αℓ − i)
6

1

ℓ!
,
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since αi > 2 implies αℓ−i+1 + . . .+ αℓ − i > i. On the other hand

∑

16tℓ+1<...<tℓ+m6k

1

tℓ+1 . . . tℓ+m
6

1

m!

∑

16s1,...,sm6k

1

s1 . . . sm
=

1

m!

(
1 +

1

2
+ . . .+

1

k

)m
.

Since partitions α1 + . . . + αℓ = n − m satisfying the additional restriction αi > 2
correspond to α′

i = αi − 2 satisfying
∑
α′
i = n−m− 2ℓ, their number is equal to

(
n−m− 2ℓ+ ℓ− 1

ℓ− 1

)
=

(
n−m− ℓ− 1

ℓ− 1

)
6 2n−m−ℓ−1

and we infer from this

∑

16s1,...,sn6k

β1! . . . βk!

s1 . . . sn
6

∑

ℓ>1
2ℓ+m6n

2n−m−ℓ−1n!

ℓ!m!

(
1 +

1

2
+ . . .+

1

k

)m
+

(
1 +

1

2
+ . . .+

1

k

)n

where the last term corresponds to the special case ℓ = 0, m = n. Therefore

∑

16si6k

β1! . . . βk!

s1 . . . sn
6
e1/2 − 1

2

n−2∑

m=0

2n−mn!

m!

(
1+

1

2
+ . . .+

1

k

)m
+

(
1+

1

2
+ . . .+

1

k

)n

6
1

3

n∑

m=2

2mn!

(n−m)!

(
1+

1

2
+ . . .+

1

k

)n−m
+

(
1+

1

2
+ . . .+

1

k

)n
.

This estimate combined with (2.23, 2.24) implies the upper bound (2.20 b) (the lower
bound 1 being now obvious). The asymptotic estimate (2.20 c) follows immediately. �

(2.25) Lemma. If A is a Hermitian n × n matrix, set 1lA,q to be equal to 1 if A has

signature (n − q, q) and 0 otherwise. Then for all n × n Hermitian matrices A, B we

have the estimate

∣∣1lA,q detA− 1lB,q detB
∣∣ 6 ‖A−B‖

∑

06i6n−1

‖A‖i‖B‖n−1−i,

where ‖A‖, ‖B‖ are the Hermitian operator norms of the matrices.

Proof. We first check that the estimate holds for | detA − detB|. Let λ1 6 . . . 6 λn be
the eigenvalues of A and λ′1 6 . . . 6 λ′n be the eigenvalues of B. We have |λi| 6 ‖A‖,
|λ′i| 6 ‖B‖ and the minimax principle implies that |λi−λ′i| 6 ‖A−B‖. We then get the
desired estimate by writing

detA− detB = λ1 . . . λn − λ′1 . . . λ
′
n =

∑

16i6n

λ1 . . . λi−1(λi − λ′i)λ
′
i+1 . . . λ

′
n.

This already implies (2.25) if A or B is degenerate. If A and B are non degenerate we
only have to prove the result when one of them (say A) has signature (n− q, q) and the
other one (say B) has a different signature. If we put M(t) = (1− t)A+ tB, the already
established estimate for the determinant yields

∣∣∣ d
dt

detM(t)
∣∣∣ 6 n‖A−B‖ ‖M(t)‖ 6 n‖A−B‖

(
(1− t)‖A‖+ t‖B‖

)n−1
.
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However, since the signature ofM(t) is not the same for t = 0 and t = 1, there must exist
t0 ∈ ]0, 1[ such that (1− t0)A+ t0B is degenerate. Our claim follows by integrating the
differential estimate on the smallest such interval [0, t0], after observing that M(0) = A,
detM(t0) = 0, and that the integral of the right hand side on [0, 1] is the announced
bound. �

(2.26) Lemma. Let QA be the Hermitian quadratic form associated with the Hermitian

operator A on Cn. If µ is the rotation invariant probability measure on the unit sphere

S2n−1 of Cn and λi are the eigenvalues of A, we have

∫

|ζ|=1

|QA(ζ)|2dµ(ζ) =
1

n(n+ 1)

(∑
λ2i +

(∑
λi

)2)
.

The norm ‖A‖ = max |λi| satisfies the estimate

1

n2
‖A‖2 6

∫

|ζ|=1

|QA(ζ)|2dµ(ζ) 6 ‖A‖2.

Proof. The first identity is an easy calculation, and the inequalities follow by computing

the eigenvalues of the quadratic form
∑
λ2i +

(∑
λi
)2 − cλ2i0 , c > 0. The lower bound is

attained e.g. for QA(ζ) = |ζ1|2− 1
n (|ζ2|2+ . . .+ |ζn|2) when we take i0 = 1 and c = 1+ 1

n .
�

Proof of the Probabilistic estimate 2.19. Take a vector ζ ∈ TX,z , ζ =
∑
ζi

∂
∂zi

, with
‖ζ‖ω = 1, and introduce the trace free sesquilinear quadratic form

Qz,ζ(u) =
∑

i,j,α,β

c̃ijαβ(z) ζiζj uαuβ , c̃ijαβ = cijαβ − 1

r
ηijδαβ , u ∈ Cr

where ηij =
∑

16α6r cijαα. We consider the corresponding trace free curvature tensor

(2.27) Θ̃V =
i

2π

∑

i,j,α,β

c̃ijαβ dzi ∧ dzj ⊗ e∗α ⊗ eβ .

As a general matter of notation, we adopt here the convention that the canonical corre-
spondence between Hermitian forms and (1, 1)-forms is normalized as

∑
aijdzi ⊗ dzj ↔

i
2π

∑
aijdzi∧dzj , and we take the liberty of using the same symbols for both types of ob-

jects; we do so especially for gk(z, x, u) and η(z) =
i
2π

∑
ηij(z)dzi∧dzj = TrΘV (z). First

observe that for all k-tuples of unit vectors u = (u1, . . . , uk) ∈ (S2r−1)k, us = (usα)16α6r,
we have

∫

(S2r−1)k

∣∣∣∣
∑

16s6k

1

s
xs

∑

i,j,α,β

c̃ijαβ(z) ζiζjusαusβ

∣∣∣∣
2

dµ(u) =
∑

16s6k

x2s
s2

V(Qz,ζ)

where V(Qz,ζ) is the variance of Qz,ζ on S2r−1. This is so because we have a sum
over s of independent random variables on (S2r−1)k, all of which have zero mean value
(Lemma 2.26 shows that the variance V(Q) of a trace free Hermitian quadratic form
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Q(u) =
∑

16α6r λα|uα|2 on the unit sphere S2r−1 is equal to 1
r(r+1)

∑
λ2α , but we only

give the formula to fix the ideas). Formula (2.22) yields
∫

∆k−1

x2sdνk,r(x) =
r + 1

k(kr + 1)
.

Therefore, according to notation (2.15), we obtain the partial variance formula
∫

∆k−1×(S2r−1)k

∣∣gk(z, x, u)(ζ)− gk(z, x)(ζ)|2dνk,r(x)dµ(u)

=
(r + 1)

k(kr + 1)

( ∑

16s6k

1

s2

)
σh(Θ̃V (ζ, ζ))

2

in which

gk(z, x)(ζ) =
∑

16s6k

1

s
xs

1

r

∑

ijα

cijααζiζj =

( ∑

16s6k

1

s
xs

)
1

r
η(z)(ζ),

σh(Θ̃V (ζ, ζ))
2 = V

(
u 7→ 〈Θ̃V (ζ, ζ)u, u〉h

)
=

∫

u∈S2r−1

∣∣〈Θ̃V (ζ, ζ)u, u〉h
∣∣2dµ(u).

By integrating over ζ ∈ S2n−1 ⊂ Cn and applying the left hand inequality in Lemma
2.26 we infer

∫

∆k−1×(S2r−1)k

∥∥gk(z, x, u)− gk(z, x)‖2ωdνk,r(x)dµ(u)

6
n2(r + 1)

k(kr + 1)

( ∑

16s6k

1

s2

)
σω,h(Θ̃V )

2(2.28)

where σω,h(Θ̃V ) is the standard deviation of Θ̃V on S2n−1 × S2r−1 :

σω,h(Θ̃V )
2 =

∫

|ζ|ω=1, |u|h=1

∣∣〈Θ̃V (ζ, ζ)u, u〉h
∣∣2dµ(ζ) dµ(u).

On the other hand, brutal estimates give the Hermitian operator norm estimates

‖gk(z, x)‖ω 6

( ∑

16s6k

1

s
xs

)
1

r
‖η(z)‖ω,(2.29)

‖gk(z, x, u)‖ω 6

( ∑

16s6k

1

s
xs

)
‖ΘV ‖ω,h(2.30)

where
‖ΘV ‖ω,h = sup

|ζ|ω=1, |u|h=1

∣∣〈ΘV (ζ, ζ)u, u〉h
∣∣.

We use these estimates to evaluate the q-index integrals. The integral associated with
gk(z, x) is much easier to deal with than gk(z, x, u) since the characteristic function of
the q-index set depends only on z. By Lemma 2.25 we find

∣∣1lgk,q(z, x, u) det gk(z, x, u)− 1lη,q(z) det gk(z, x)
∣∣

6
∥∥gk(z, x, u)− gk(z, x)

∥∥
ω

∑

06i6n−1

‖gk(z, x, u)‖iω‖gk(z, x)‖n−1−i
ω .
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The Cauchy-Schwarz inequality combined with (2.28 – 2.30) implies

∫

∆k−1×(S2r−1)k

∣∣1lgk,q(z, x, u) det gk(z, x, u)− 1lη,q(z) det gk(z, x)
∣∣ dνk,r(x)dµ(u)

6

(∫

∆k−1×(S2r−1)k

∥∥gk(z, x, u)− gk(z, x)
∥∥2
ω
dνk,r(x)dµ(u)

)1/2

×
(∫

∆k−1×(S2r−1)k

( ∑

06i6n−1

‖gk(z, x, u)‖iω‖gk(z, x)‖n−1−i
ω

)2

dνk,r(x)dµ(u)

)1/2

6
n(1 + 1/r)1/2

(k(k + 1/r))1/2

( ∑

16s6k

1

s2

)1/2

σω,h(Θ̃V )
∑

16i6n−1

‖ΘV ‖iω,h
(1
r
‖η(z)‖ω

)n−1−i

×
(∫

∆k−1

( ∑

16s6k

xs
s

)2n−2

dνk,r(x)

)1/2

= O
((log k)n−1

kn

)

by Lemma 2.20 with n replaced by 2n − 2. This is the essential error estimate. As one
can see, the growth of the error mainly depends on the final integral factor, since the
initial multiplicative factor is uniformly bounded over X . In order to get the principal
term, we compute

∫

∆k−1

det gk(z, x) dνk,r(x) =
1

rn
det η(z)

∫

∆k−1

( ∑

16s6k

xs
s

)n
dνk,r(x)

∼ (log k)n

rnkn
det η(z).

From there we conclude that

∫

z∈X

∫

(x,u)∈∆k−1×(S2r−1)k
1lgk,q(z, x, u)gk(z, x, u)

n dνk,r(x)dµ(u)

=
(log k)n

rnkn

∫

X

1lη,qη
n +O

( (log k)n−1

kn

)

The probabilistic estimate 2.19 follows by (2.17). �

(2.31) Remark. If we take care of the precise bounds obtained above, the proof gives
in fact the explicit estimate

∫

XGG
k

(Lk,q)

Θn+kr−1
Lk,Ψ

∗
h,p,ε

=
(n+ kr − 1)! Ik,r,n
n!(k!)r(kr − 1)!

(∫

X

1lη,qη
n + εk,r,nJ

)

where

J = n (1 + 1/r)1/2
( k∑

s=1

1

s2

)1/2 ∫

X

σω,h(Θ̃V )

n−1∑

i=1

ri+1‖ΘV ‖iω,h‖η(z)‖n−1−i
ω ωn
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and

|εk,r,n| 6

(∫

∆k−1

( k∑

s=1

xs
s

)2n−2

dνk,r(x)

)1/2

(k(k + 1/r))1/2
∫

∆k−1

( k∑

s=1

xs
s

)n
dνk,r(x)

6

(
1 + 1

3

∑2n−2
m=2

2m(2n−2)!
(2n−2−m)!

(
1 + 1

2
+ . . .+ 1

k

)−m)1/2

1 + 1
2
+ . . .+ 1

k

∼ 1

log k

by the lower and upper bounds of Ik,r,n, Ik,r,2n−2 obtained in Lemma 2.20. As
(2n− 2)!/(2n− 2−m)! 6 (2n− 2)m, one easily shows that

(2.32) |εk,r,n| 6
(31/15)1/2

log k
for k > e5n−5.

Also, we see that the error terms vanish if Θ̃V is identically zero, but this is of course a
rather unexpected circumstance. In general, since the form Θ̃V is trace free, Lemma 2.23
applied to the quadratic form u 7→ 〈Θ̃V (ζ, ζ)u, u〉 on Cr implies

σω,h(Θ̃V ) 6 (r + 1)−1/2‖Θ̃V ‖ω,h.

This yields the simpler bound

(2.33) �J 6 n r1/2
( k∑

s=1

1

s2

)1/2 ∫

X

‖Θ̃V ‖ω,h
n−1∑

i=1

ri‖ΘV ‖iω,h‖η(z)‖n−1−i
ω ωn.

It will be useful to extend the above estimates to the case of sections of

(2.34) Lk = OXGG
k

(1)⊗ π∗
kO( 1

kr

(
1 +

1

2
+ . . .+

1

k

)
F
)

where F ∈ PicQ(X) is an arbitrary Q-line bundle on X and πk : XGG
k → X is the natural

projection. We assume here that F is also equipped with a smooth Hermitian metric hF .
In formulas (2.17–2.19), the renormalized curvature ηk(z, x, u) of Lk takes the form

(2.35) ηk(z, x, u) =
1

1
kr (1 +

1
2 + . . .+ 1

k )
gk(z, x, u) + ΘF,hF

(z),

and by the same calculations its expected value is

(2.36) η(z) := E(ηk(z, •, •)) = Θdet V ∗,deth∗(z) + ΘF,hF
(z).

Then the variance estimate for ηk − η is unchanged, and the Lp bounds for ηk are still
valid, since our forms are just shifted by adding the constant smooth term ΘF,hF

(z).
The probabilistic estimate 2.19 is therefore still true in exactly the same form, provided
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we use (2.34 – 2.36) instead of the previously defined Lk, ηk and η. An application of
holomorphic Morse inequalities gives the desired cohomology estimates for

hq
(
X,EGG

k,mV
∗ ⊗ O(m

kr

(
1 +

1

2
+ . . .+

1

k

)
F
))

= hq(XGG
k ,OXGG

k
(m)⊗ π∗

kO(mkr(1 + 1

2
+ . . .+

1

k

)
F
))
,

provided m is sufficiently divisible to give a multiple of F which is a Z-line bundle.

(2.37) Theorem. Let (X, V ) be a directed manifold, F → X a Q-line bundle, (V, h)
and (F, hF ) smooth Hermitian structure on V and F respectively. We define

Lk = OXGG
k

(1)⊗ π∗
kO( 1

kr

(
1 +

1

2
+ . . .+

1

k

)
F
)
,

η = Θdet V ∗,deth∗ +ΘF,hF
.

Then for all q > 0 and all m≫ k ≫ 1 such that m is sufficiently divisible, we have

hq(XGG
k ,O(L⊗m

k )) 6
mn+kr−1

(n+ kr − 1)!

(log k)n

n! (k!)r

(∫

X(η,q)

(−1)qηn +O((log k)−1)

)
,(a)

h0(XGG
k ,O(L⊗m

k )) >
mn+kr−1

(n+ kr − 1)!

(log k)n

n! (k!)r

(∫

X(η,61)

ηn −O((log k)−1)

)
,(b)

χ(XGG
k ,O(L⊗m

k )) =
mn+kr−1

(n+ kr − 1)!

(log k)n

n! (k!)r
(
c1(V

∗ ⊗ F )n +O((log k)−1)
)
.(c)

Green and Griffiths [GG79] already checked the Riemann-Roch calculation (2.37 c)
in the special case V = T ∗

X and F = OX . Their proof is much simpler since it relies
only on Chern class calculations, but it cannot provide any information on the individual
cohomology groups, except in very special cases where vanishing theorems can be applied;
in fact in dimension 2, the Euler characteristic satisfies χ = h0−h1+h2 6 h0+h2, hence
it is enough to get the vanishing of the top cohomology group H2 to infer h0 > χ ; this
works for surfaces by means of a well-known vanishing theorem of Bogomolov which
implies in general

Hn

(
X,EGG

k,mT
∗
X ⊗ O(m

kr

(
1 +

1

2
+ . . .+

1

k

)
F
)))

= 0

as soon as KX ⊗ F is big and m≫ 1.

In fact, thanks to Bonavero’s singular holomorphic Morse inequalities [Bon93], ev-
erything works almost unchanged in the case where V ⊂ TX has singularities and h is an
admissible metric on V (see (0.8)). We only have to find a blow-up µ : X̃k → Xk so that
the resulting pull-backs µ∗Lk and µ∗V are locally free, and µ∗ det h∗, µ∗Ψh,p,ε only have
divisorial singularities. Then η is a (1, 1)-current with logarithmic poles, and we have to
deal with smooth metrics on µ∗L⊗m

k ⊗O(−mEk) where Ek is a certain effective divisor on
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Xk (which, by our assumption (0.8), does not project onto X). The cohomology groups
involved are then the twisted cohomology groups

Hq(XGG
k ,O(L⊗m

k )⊗ Jk,m)
where Jk,m = µ∗(O(−mEk)) is the corresponding multiplier ideal sheaf, and the Morse
integrals need only be evaluated in the complement of the poles, that is on X(η, q)r S
where S = Sing(V ) ∪ Sing(h). Since

(πk)∗
(O(L⊗m

k )⊗ Jk,m) ⊂ EGG
k,mV

∗ ⊗ O(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
))

we still get a lower bound for the H0 of the latter sheaf (or for the H0 of the un-twisted
line bundle O(L⊗m

k ) on XGG
k ). If we assume that KV ⊗F is big, these considerations also

allow us to obtain a strong estimate in terms of the volume, by using an approximate
Zariski decomposition on a suitable blow-up of (X, V ). The following corollary implies
in particular Theorem 0.5.

(2.38) Corollary. If F is an arbitrary Q-line bundle over X, one has

h0
(
XGG
k ,OXGG

k
(m) ⊗ π∗

kO(mkr(1 + 1

2
+ . . .+

1

k

)
F
))

>
mn+kr−1

(n+ kr − 1)!

(log k)n

n! (k!)r

(
Vol(KV ⊗ F )−O((log k)−1)

)
− o(mn+kr−1),

when m≫ k ≫ 1, in particular there are many sections of the k-jet differentials of degree
m twisted by the appropriate power of F if KV ⊗ F is big.

Proof. The volume is computed here as usual, i.e. after performing a suitable modifi-
cation µ : X̃ → X which converts KV into an invertible sheaf. There is of course nothing
to prove if KV ⊗ F is not big, so we can assume Vol(KV ⊗ F ) > 0. Let us fix smooth
Hermitian metrics h0 on TX and hF on F . They induce a metric µ∗(det h−1

0 ⊗ hF )
on µ∗(KV ⊗ F ) which, by our definition of KV , is a smooth metric. By the result of
Fujita [Fuj94] on approximate Zariski decomposition, for every δ > 0, one can find a
modification µδ : X̃δ → X dominating µ such that

µ∗
δ(KV ⊗ F ) = O

X̃δ
(A+E)

where A and E are Q-divisors, A ample and E effective, with

Vol(A) = An > Vol(KV ⊗ F )− δ.

If we take a smooth metric hA with positive definite curvature form ΘA,hA
, then we get

a singular Hermitian metric hAhE on µ∗
δ(KV ⊗ F ) with poles along E, i.e. the quotient

hAhE/µ
∗(deth−1

0 ⊗ hF ) is of the form e−ϕ where ϕ is quasi-psh with log poles log |σE |2
(mod C∞(X̃δ)) precisely given by the divisor E. We then only need to take the singular
metric h on TX defined by

h = h0e
1
r
(µδ)

∗ϕ
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(the choice of the factor 1
r is there to correct adequately the metric on detV ). By

construction h induces an admissible metric on V and the resulting curvature current
η = ΘKV ,deth∗ +ΘF,hF

is such that

µ∗
δη = ΘA,hA

+ [E], [E] = current of integration on E.

Then the 0-index Morse integral in the complement of the poles is given by

∫

X(η,0)rS

ηn =

∫

X̃δ

ΘnA,hA
= An > Vol(KV ⊗ F )− δ

and (2.38) follows from the fact that δ can be taken arbitrary small. �

(2.39) Example. In some simple cases, the above estimates can lead to very ex-
plicit results. Take for instance X to be a smooth complete intersection of multidegree
(d1, d2, . . . , ds) in Pn+sC and consider the absolute case V = TX . Then

KX = OX(d1 + . . .+ ds − n− s− 1).

Assume that X is of general type, i.e.
∑
dj > n+ s+ 1. Let us equip V = TX with the

restriction of the Fubini-Study metric h = ΘO(1) ; a better choice might be the Kähler-
Einstein metric but we want to keep the calculations as elementary as possible. The
standard formula for the curvature tensor of a submanifold gives

ΘTX ,h = (ΘT
Pn+s ,h)|X + β∗ ∧ β

where β ∈ C∞(Λ1,0T ∗
X ⊗ Hom(TX ,

⊕O(dj))) is the second fundamental form. In other
words, by the well known formula for the curvature of projective space, we have

〈ΘTX ,h(ζ, ζ)u, u〉 = |ζ|2|u|2 + |〈ζ, u〉|2 − |β(ζ) · u|2.

The curvature ρ of (KX , deth
∗) (i.e. the opposite of the Ricci form TrΘTX ,h) is given by

(2.40) ρ = −TrΘTX ,h = Tr(β ∧ β∗)− (n+ 1)h > −(n + 1)h.

We take here F = OX(−a), a ∈ Q+, and we want to determine conditions for the
existence of sections

(2.41) H0

(
X,EGG

k,mT
∗
X ⊗ O(− a

m

kr

(
1 +

1

2
+ . . .+

1

k

)))
, m≫ 1.

We have to choose KX ⊗ OX(−a) ample, i.e.
∑
dj > n + s + a + 1, and then (by an

appropriate choice of the metric of F = OX(−a)), the form η = ΘKX⊗OX (−a) can be
taken to be any positive form cohomologous to (

∑
dj− (n+ s+a+1))h. We use remark

2.31 and estimate the error terms by considering the Kähler metric

ω = ρ+ (n+ s+ 2)h ≡
(∑

dj + 1
)
h.
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Inequality (2.40) shows that ω > 2h and also that ω > Tr(β ∧ β∗). From this, one easily
concludes that ‖η‖ω 6 1 by an appropriate choice of η, as well as ‖ΘTX ,h‖ω,h 6 1 and

‖Θ̃TX ,h‖ω,h 6 2. By (2.33), we obtain for n > 2

J 6 n3/2 π√
6
× 2

nn − 1

n− 1

∫

X

ωn <
4π√
6
nn+1/2

∫

X

ωn

where
∫
X
ωn =

(∑
dj + 1

)n
deg(X). On the other hand, the leading term

∫
X
ηn equals(∑

dj−n−s−a−1
)n

deg(X) with deg(X) = d1 . . . ds. By the bound (2.32) on the error
term εk,r,n, we find that the leading coefficient of the growth of our spaces of sections is
strictly controlled below by a multiple of

(∑
dj − n− s− a− 1

)n
− 4π

(31
90

)1/2 nn+1/2

log k

(∑
dj + 1

)n

if k > e5n−5. A sufficient condition for the existence of sections in (2.41) is thus

(2.42) k > exp
(
7.38nn+1/2

( ∑
dj + 1∑

dj − n− s− a− 1

)n)
.

This is good in view of the fact that we can cover arbitrary smooth complete intersections
of general type. On the other hand, even when the degrees dj tend to +∞, we still get
a large lower bound k ∼ exp(7.38nn+1/2) on the order of jets, and this is far from being
optimal : Diverio [Div08, Div09] has shown e.g. that one can take k = n for smooth
hypersurfaces of high degree. It is however not unlikely that one could improve estimate
(2.42) with more careful choices of ω, h. �

3. On the base locus of sections of k-jet bundles

The final step required for a complete solution of the Green-Griffiths conjecture
would be to calculate the base locus Bk ⊂ XGG

k of the space of sections

H0(XGG
k ,OXGG

k
(m)⊗ π∗

kO(−mδkA)), A ample on X , δk 6 c
log k

k
, c≪ 1,

and to show that Yk = πk(Bk) is a proper algebraic subvariety of X for k large, under the
assumption that KV is big. This does not look completely hopeless, since the statistics of
curvature in the Morse inequalities do involve currents for which the sets of poles depend
only on the bigness of KV and therefore project onto a proper subvariety S of X (see
the last step of the proof in section 2). It is not unreasonable to think that a further
analysis of the asymptotic behavior of sections, e.g. through estimates of the Bergman
kernel, might lead to such results.

Even if the required property of the base locus cannot be obtained directly, it would
be enough, for a suitable irreducible analytic set Z ⊂ XGG

k contained in the base locus
at some stage, to construct non zero sections in

H0(Z,OXGG
k

(m)|Z ⊗ π∗
kO(−mδkA)|Z)
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whenever πk(Z) = X , and then to proceed inductively to cut-down the base locus until
one reaches some Z ′ ⊂ Z with πk(Z

′) ( X . Hence we have to estimate the cohomology
groups H0 and Hq not just on XGG

k , but also on all irreducible subvarieties Z ⊂ XGG
k

such that πk(Z) = X . We are not able to do this in such a generality, but our method
does provide interesting results in this direction.

(3.1) Theorem. Let (X, V ) be a compact directed n-dimensional manifold, let r=rank V
and F be a holomorphic line bundle on X. Fix an irreducible analytic set Zk0 ⊂ XGG

k0
or equivalently some C∗-invariant set Z ′

k0
⊂ Jk0V , and assume that πk0(Zk0) = X. For

k ≫ k0, denote by Zk ⊂ XGG
k the irreducible set corresponding to the inverse image of

Z ′
k0

by the canonical morphism JkV → Jk0V . Let h be an admissible metric on V , hF a

metric with analytic singularities on F and

Lk = OXGG
k

(1)⊗ π∗
kO( 1

kr

(
1 +

1

2
+ . . .+

1

k

)
F
)
,

η = ΘKV ,deth∗ +ΘF,hF
, S = Sing(η).

Then for m≫ k ≫ k0 and pk = dimZk = dimZk0 + (k − k0)r we have

h0(Zk,O(L⊗m
k )|Zk

)

>
mpk

pk!

(log k)n

n!
degXGG

k
/X(Zk)

(∫

X(η,61)rS

ηn −O((log k)−1)

)
− o(mpk)

where degXGG
k

/X(Zk) = degXGG
k0

/X(Zk0)
(
k0!
k!

)r
is the relative degree of Zk over X with

respect to the normalized weighted “Kähler metric” ωa,r,p introduced in (1.10).

We would also get similar upper and lower Morse bounds for the higher cohomology
groups, provided that the sheaves OXGG

k
(m) are twisted by the appropriate multiplier

ideal sheaves Jk,m already described. The main trouble to proceed further in the analysis
of the base locus is that we have to take k ≫ k0 and that the O(...) and o(...) bounds
depend on Zk0 . Hence the newer sections can only be constructed for higher and higher
orders k, without any indication that we can actually terminate the process somewhere,
except possibly by some extremely delicate uniform estimates which seem at present
beyond reach.

Proof. The technique is a minor variation of what has been done in section 2, hence
we will only indicate the basic idea. Essentially the k-jet of f is no longer completely
random, its projection onto the first k0 components (∇jf(0))16j6k0 is assigned to belong
to some given analytic set Z ′

k0
⊂ Jk0V . This means that in the curvature formula (2.15)

gk(z, x, u) =
i

2π

∑

16s6k

1

s
xs

∑

i,j,α,β

cijαβ(z) usαusβ dzi ∧ dzj

only the sum
∑
k0<s6k

is perfectly random. The partial sum
∑

16s6k0
remains bounded,

while the harmonic series diverges as log k. This implies that the “non randomness” of
the initial terms perturbs the estimates merely by bounded quantities, and in the end,
the expected value is still similar to (2.18), i.e.

E(gk(z, •, •)) =
1

kr

(
1 +

1

2
+ . . .+

1

k
+O(1)

)(
ΘKV ,deth∗ +ΘF,hF

)
.
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Once we are there, the calculation of standard deviation and the other estimates are
just routine, and Theorem 3.1 follows again from Proposition 2.13 when we integrate the
Morse integrals over Zk instead of the whole k-jet space XGG

k . �

Another possibility to analyze the base locus is to study the restriction maps

(3.2) ρk,m(x) : H
0(X,EGG

k,mV
∗ ⊗ O(−mδkA)) → (

EGG
k,mV

∗ ⊗ O(−mδkA))x
at generic points x ∈ X . If ρk,m(x) can be shown to be surjective at a generic point,
then a fortiori the projection Yk = πk(Bk) of the base locus does not contain x and so Yk
is a proper algebraic subvariety of X . Now, proving the surjectivity of ρk,m(x) could be
done by proving the vanishing of the H1 group of our sheaf twisted by the maximal ideal
mX,x. We cannot exactly reach such a precise vanishing result, but Morse inequalities
can be used to show that the H1 groups do not grow too fast.

In fact assume that A is an ample Q-divisor on X which is chosen so small that
KV ⊗ O(−A) is still big. By our estimates, we can then take δk = 1

kr (1 +
1
2 + . . .+ 1

k ).
Pick a very ample divisorG onX and n pencils of sections σj,t ∈ H0(X,O(G)), 1 6 j 6 n,
t ∈ P1

C, such that the divisors σj,tj (z) = 0 intersect transversally at isolated points for
generic choices of the parameters tj ∈ P1

C. We select an admissible metric h on V which
provides a strictly positive curvature current on KV ⊗ O(−A) and multiply it by the
additional weight factor (eϕ)1/rmδk where

ϕ(z) = log
∑

16j6n

∏

t∈Tj

|σj,t(z)|2nhG

and Tj ⊂ P1
C are generic finite subsets of given cardinality N . The multiplier ideal sheaf

of ϕ is precisely equal to the ideal IE of germs of functions vanishing on a certain 0-
dimensional set E = {x1, . . . , xs} ⊂ X of cardinality s = NnGn. Also the resulting
curvature form

η = ΘKV ,deth∗ −ΘA,hA
+

1

mδk
ddcϕ > ΘKV ,deth∗ −ΘA,hA

− N

mδk
ΘG,hG

can be made to be strictly positive as a current provided that N ∼ cmδk with c ≪ 1.
Then the corresponding multiplier ideal sheaf of the induced Hermitian metric onOXGG

k
(m)⊗ π∗

kO(−mδkA)
is the original multiplier sheaf Jk,m twisted by π∗

kIE above xj, provided that the xj lie
outside of Sing(V ) and outside of the projection of the support V (Jk,m). Consider the
exact sequence

0 −→ OXGG
k

(m)⊗ π∗
kO(−mδkA)⊗ Jk,m ⊗ π∗

kIE
−→ OXGG

k
(m)⊗ π∗

kO(−mδkA)⊗ Jk,m
−→ OXGG

k
(m)⊗ π∗

kO(−mδkA)⊗ Jk,m ⊗ π∗
k(OX/IE) −→ 0.

Its cohomology exact sequence yields an “almost surjective arrow”

H0
(OXGG

k
(m)⊗ π∗

kO(−mδkA)⊗ Jk,m) −→ ⊕

16j6s

(
EGG
k,mV

∗ ⊗ O(−mδkA))xj
,
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namely the image contains the kernel of the map

⊕

16j6s

(
EGG
k,mV

∗ ⊗ O(−mδkA))xj
−→ H1

(OXGG
k

(m)⊗ π∗
kO(−mδkA)⊗ Jk,m ⊗ π∗

kIE).
Now, we have a Morse upper bound

h1
(OXGG

k
(m)⊗ π∗

kO(−mδkA)⊗ Jk,m ⊗ π∗
kIE) 6 mn+kr−1

(n+ kr − 1)!

(log k)n

n! (k!)r
O
(
(log k)−1

)

since the 1-index integral
∫
X(η,1)

hn is identically zero. At the same time we have s =

NnGn ∼ c′mn(log k)n/kn, and it follows that

dim
⊕

16j6s

(
EGG
k,mV

∗ ⊗ O(−mδkA))xj
∼ s

mkr−1

(kr − 1)!(k!)r
∼ c′mn+kr−1

(kr − 1)!(k!)r
(log k)n

kn
.

By selecting a suitable point xj and by using a trivial lower semi-continuity argument,
we get the desired almost surjectivity.

(3.3) Corollary. If A is an ample Q-divisor on X such that KV ⊗ O(−A) is big and

δk = 1
kr (1 +

1
2 + . . .+ 1

k ), r = rank V , the restriction map

ρk,m(x) : H
0(X,EGG

k,mV
∗ ⊗ O(−mδkA)) → (

EGG
k,mV

∗ ⊗ O(−mδkA))x
has an image of dimension larger than (1−O((log k)−1)) dimEGG

k,mV
∗ at a generic point

x ∈ X for m≫ k ≫ 1.

Such a result puts an upper bound on the vanishing order that a generic section may
have on XGG

k above a generic point of X . Our hope is that one can then completely
“eliminate” the base locus by taking vertical derivatives along the fibers of JkV → X ;
those derivations will necessarily have some poles O(pA) which we hope to get cancelled
by the negative powers O(−mδkA). This strategy first devised by [Siu02, Siu04] has
indeed been successful in some cases for the study of generic algebraic degeneracy (e.g.
for hypersurfaces of very large degree in Pn+1

C ). This would work rather easily if the
rough error term O((log k)−1) could be replaced e.g. by O(m−εk) in Corollary (3.3), but
this is maybe too much to ask for.

We finally discuss yet another approach. For this we have to introduce invariant
jet differentials along the lines of [Dem95]. In fact, to any directed manifold (X, V )
one can associate its tower of Semple k-jet spaces, which is a sequence of directed pairs
(Xk, Vk) starting with (X0, V0) = (X, V ), together with morhisms π̃k : (Xk, Vk) →
(Xk−1, Vk−1). These spaces are constructed inductively by putting Xk = P (Vk−1) and
Vk = (π̃k)

−1
∗ (OXk

(−1)) whereOXk
(−1) ⊂ (π̃k)

∗Vk−1 ⊂ (π̃k)
∗TXk−1

is the tautological subbundle (cf. [Dem95]). In the case where V is not a subbundle, we
can first construct the absolute tower (Xk, V k) by starting from V 0 = TX , and then take
Xk to be the closure in Xk of the k-step X ′

k of the relative tower (X ′
k, V

′
k) constructed
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over the dense Zariski open set X ′ = X r Sing(V ). In this way, the tower (Xk, Vk) is at
least birationally well defined – in such a birational context we can even assume that Xk

is smooth after performing a suitable modification at each stage. Even if we start with
V = TX (or an integrable subbundle V ⊂ TX), the k-jet lifting Vk will not be integrable
in general, the only exception being when rankVk = rankV = 1. Now, if

πk,0 = π̃k ◦ . . . ◦ π̃1 : Xk → X0 = X,

it is shown in [Dem95] that the direct image sheaf

πk,0OXk
(m) := Ek,mV

∗ ⊂ EGG
k,mV

∗

consists of algebraic differential operators P (f
(j)
j6k) which satisfy the invariance property

P ((f ◦ ϕ)(j)j6k) = (ϕ′)mP (f (j)
j6k) ◦ ϕ

when ϕ ∈ Gk is in the group of k-jets of biholomorphisms ϕ : (C, 0) → (C, 0). Since
we already assume C∗ invariance, it is enough to require invariance by the nilpotent
subgroup G′

k ⊂ Gk of k-jets tangent to identity. The group G′
k is a semi-direct product

of additive groups (C,+) consisting of biholomorphisms τj,a : t 7→ t + atj + O(tj+1),
2 6 j 6 k, a ∈ C. In this tower, the biholomorphisms τk,a actually generate a normal
subgroup of G′

k, and we have G′
k/{τk,a} ≃ G′

k−1. Now, assume that we have found a
section

P ∈ H0(X,EGG
k,mV

∗ ⊗ O(−mδkA))
for some ample Q-divisor A on A. Then we have an expansion

Pa(f
(j)
j6k) := P ((f ◦ τk,a)(j)j6k) =

∑

06s6m/k

asPs(f
(j)
j6k)

and the highest non zero term Ps is {τk,a}-invariant of weighted degree m − (k − 1)s ;
this comes from the fact that the homothety hλ(t) = λt satisfies

τk,a ◦ hλ = hλ ◦ τk,aλk−1 .

Then it makes sense to look at the action of {τk−1,a} on Ps, and proceeding inductively
we reach a non zero G′

k-invariant (and thus Gk-invariant) polynomial

Q ∈ H0(X,Ek,m′V ∗ ⊗ O(−mδkA))
of degree m′ 6 m (and possibly of order k′ 6 k but we can still consider it to be of order
k). By raising Q to some power p and using the Q-ampleness of A, we obtain a genuine
integral section

Qpσ
p(m−m′)δk
A ∈ H0(X,Ek,pm′V ∗ ⊗ O(−pm′δkA)).

(3.4) Corollary. Let (X, V ) be a projective directed manifold such that KV is big,

and A an ample Q-divisor on X such that KV ⊗ O(−A) is still big. Then, if we put

δk = 1
kr
(1 + 1

2
+ . . .+ 1

k
), r = rank V , the space of global invariant jet differentials

H0(X,Ek,mV
∗ ⊗ O(−mδkA))
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has (many) non zero sections for m≫ k ≫ 1.

If we have a directed projective variety (X, V ) with KV big, we conclude that there
exists k > 1 and a proper analytic set Z ⊂ Xk such that all entire curves have the image
of their k-jet f[k](C) contained in Z. Let Z ′ be an irreducible component of Z such that
πk,0(Z

′) = X (if πk,0(Z
′) ( X there is nothing more to do). Consider the linear subspace

V ′ = TZ′rZ′′ ∩ Vk where Z ′′ ⊂ Z ′ is chosen such that Z ′ r Z ′′ is non singular and the
intersection TZ′rZ′′ ∩Vk is a subbundle of TZ′rZ′′ . If f[k](C) is not contained identically
in Z ′′, then the curve g = f[k] is tangent to (Z ′, V ′). On the other hand, if f[k](C) ⊂ Z ′′

we can replace Z ′ by Z ′′ and argue inductively on dimZ ′. What we have gained here
is that we have replaced the initial directed space (X, V ) with another one (Z ′, V ′) such
that rankV ′ < rank V , and we can try to argue by induction on r = rankV .

Observe that the generalized Green-Griffiths conjecture is indeed trivial for r = 1
(assuming KV = O(V ∗) big) : in fact we get in this case a non zero section

P ∈ H0(X, V ∗⊗k ⊗ O(−A)) for some k ≫ 1

and so P (f) · (f ′)k must vanish for every entire curve f : (C, TC) → (X, V ). Therefore
f(C) ⊂ Y := {P (z) = 0} ( X . The main difficulty in this inductive approach is that
when we start with (X, V ) with KV big, it seems to be very hard to say anything about
KV ′ on (Z ′, V ′). Especially, the singularities of Z ′ and V ′ do not seem to be under
control. The only hope would be to have enough control on the sections cutting out Z ′,
and this requires anyway to understand much more precisely the behavior and vanishing
order of generic sections P ∈ H0(X,Ek,mV

∗⊗O(−mδkA)). One could try in this context
to take A to approach the positive part in the Zariski decomposition of KV , in such a
way that the sections P do not have much space to move around statistically.

4. Non probabilistic estimate of the Morse integrals

We assume here that the curvature tensor (cijαβ) satisfies a lower bound

(4.1)
∑

i,j,α,β

cijαβξiξjuαuβ > −
∑

γijξiξj |u|2, ∀ξ ∈ TX , u ∈ X

for some semipositive (1, 1)-form γ = i
2π

∑
γij(z) dzi ∧ dzj on X . This is the same as

assuming that the curvature tensor of (V ∗, h∗) satisfies the semipositivity condition

(4.1′) ΘV ∗,h∗ + γ ⊗ IdV ∗ > 0

in the sense of Griffiths, or equivalently ΘV,h− γ ⊗ IdV 6 0. Thanks to the compactness
of X , such a form γ always exists if h is an admissible metric on V . Now, instead
of replacing ΘV with its trace free part Θ̃V and exploiting a Monte Carlo convergence
process, we replace ΘV with ΘγV = ΘV −γ⊗ IdV 6 0, i.e. cijαβ by cγijαβ = cijαβ+γijδαβ .

Also, we take a line bundle F = A−1 with ΘA,hA
> 0, i.e. F seminegative. Then our

earlier formulas (2.13), (2.34), (2.35) become instead

gγk (z, x, u) =
i

2π

∑

16s6k

1

s
xs

∑

i,j,α,β

cγijαβ(z) usαusβ dzi ∧ dzj > 0,(4.2)
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Lk = OXGG
k

(1)⊗ π∗
kO(− 1

kr

(
1 +

1

2
+ . . .+

1

k

)
A
)
,(4.3)

ΘLk
= ηk(z, x, u) =

1
1
kr (1 +

1
2 + . . .+ 1

k )
gγk (z, x, u)− (ΘA,hA

(z) + rγ(z)).(4.4)

In fact, replacing ΘV by ΘV − γ ⊗ IdV has the effect of replacing Θdet V ∗ = TrΘV ∗ by
Θdet V ∗ + rγ. The major gain that we have is that ηk = ΘLk

is now expressed as a
difference of semipositive (1, 1)-forms, and we can exploit the following simple lemma,
which is the key to derive algebraic Morse inequalities from their analytic form (cf.
[Dem94], Theorem 12.3).

(4.5) Lemma. Let η = α − β be a difference of semipositive (1, 1)-forms on an n-
dimensional complex manifold X, and let 1lη,6q be the characteristic function of the open

set where η is non degenerate with a number of negative eigenvalues at most equal to q.
Then

(−1)q1lη,6q η
n 6

∑

06j6q

(−1)q−jαn−jβj ,

in particular

1lη,61 η
n > αn − nαn−1 ∧ β for q = 1.

Proof. Without loss of generality, we can assume α > 0 positive definite, so that α can
be taken as the base hermitian metric on X . Let us denote by

λ1 > λ2 > . . . > λn > 0

the eigenvalues of β with respect to α. The eigenvalues of η = α− β are then given by

1− λ1 6 . . . 6 1− λq 6 1− λq+1 6 . . . 6 1− λn,

hence the open set {λq+1 < 1} coincides with the support of 1lη,6q, except that it may
also contain a part of the degeneration set ηn = 0. On the other hand we have

(
n

j

)
αn−j ∧ βj = σjn(λ)α

n,

where σjn(λ) is the j-th elementary symmetric function in the λj ’s. Thus, to prove the
lemma, we only have to check that

∑

06j6q

(−1)q−jσjn(λ)− 1l{λq+1<1}(−1)q
∏

16j6n

(1− λj) > 0.

This is easily done by induction on n (just split apart the parameter λn and write
σjn(λ) = σjn−1(λ) + σj−1

n−1(λ)λn). �

We apply here Lemma 4.5 with

α = gγk (z, x, u), β = βk =
1

kr

(
1 +

1

2
+ . . .+

1

k

)
(ΘA,hA

+ rγ),
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which are both semipositive by our assumption. The analogue of (2.17) leads to
∫

XGG
k

(Lk,61)

Θn+kr−1
Lk,Ψ

∗
h,p,ε

=
(n+ kr − 1)!

n!(k!)r(kr − 1)!

∫

z∈X

∫

(x,u)∈∆k−1×(S2r−1)k
1lgγ

k
−βk,61 (gγk − βk)

n dνk,r(x) dµ(u)

>
(n+ kr − 1)!

n!(k!)r(kr − 1)!

∫

z∈X

∫

(x,u)∈∆k−1×(S2r−1)k
((gγk)

n − n(gγk )
n−1 ∧ βk) dνk,r(x) dµ(u).

The resulting integral now produces a “closed formula” which can be expressed solely in
terms of Chern classes (at least if we assume that γ is the Chern form of some semipositive
line bundle). It is just a matter of routine to find a sufficient condition for the positivity
of the integral. One can first observe that gγk is bounded from above by taking the trace
of (cijαβ), in this way we get

0 6 gγk 6

( ∑

16s6k

xs
s

)(
Θdet V ∗ + rγ

)

where the right hand side no longer depends on u ∈ (S2r−1)k. Also, gγk can be written
as a sum of semipositive (1, 1)-forms

gγk =
∑

16s6k

xs
s
θγ(us), θγ(u) =

∑

i,j,α,β

cγijαβuαuβ dzi ∧ dzj ,

hence for k > n we have

(gγk )
n > n!

∑

16s1<...<sn6k

xs1 . . . xsn
s1 . . . sn

θγ(us1) ∧ θγ(us2) ∧ . . . ∧ θγ(usn).

Since
∫
S2r−1 θ

γ(u) dµ(u) = 1
r Tr(ΘV ∗ + γ) = 1

rΘdet V ∗ + γ, we infer from this

∫

(x,u)∈∆k−1×(S2r−1)k
(gγk )

n dνk,r(x) dµ(u)

> n!
∑

16s1<...<sn6k

1

s1 . . . sn

(∫

∆k−1

x1 . . . xn dνk,r(x)
)(1

r
Θdet V ∗ + γ

)n
.

By putting everything together, we conclude:

(4.6) Theorem. Assume that ΘV ∗ > −γ⊗IdV ∗ with a semipositive (1, 1)-form γ on X.

Then the Morse integral of the line bundle

Lk = OXGG
k

(1)⊗ π∗
kO(− 1

kr

(
1 +

1

2
+ . . .+

1

k

)
A
)
, A > 0

satisfies for k > n the inequality

1

(n+ kr − 1)!

∫

XGG
k

(Lk,61)

Θn+kr−1
Lk,Ψ

∗
h,p,ε

>
1

n!(k!)r(kr − 1)!

∫

X

cn,r,k
(
ΘdetV ∗ + rγ

)n − c′n,r,k
(
ΘdetV ∗ + rγ

)n−1 ∧
(
ΘA,hA

+ rγ
)

(∗)
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where

cn,r,k =
n!

rn

( ∑

16s1<...<sn6k

1

s1 . . . sn

)∫

∆k−1

x1 . . . xn dνk,r(x),

c′n,r,k =
n

kr

(
1 +

1

2
+ . . .+

1

k

)∫

∆k−1

( ∑

16s6k

xs
s

)n−1

dνk,r(x).

Especially we have a lot of sections in H0(XGG
k , mLk), m≫ 1, as soon as the difference

occurring in (∗) is positive.

The statement is also true for k < n, but then cn,r,k = 0 and the lower bound (∗)
cannot be positive. By Estimate I (1.4), it still provides a non trivial lower bound for
h0(XGG

k , mLk) − h1(XGG
k , mLk), though. For k > n we have cn,r,k > 0 and (∗) will be

positive if Θdet V ∗ is large enough. By Formula 1.14 we have

(4.7) cn,r,k =
n! (kr − 1)!

(n+ kr − 1)!

∑

16s1<...<sn6k

1

s1 . . . sn
>

(kr − 1)!

(n+ kr − 1)!
,

(with equality for k = n), and Lemma 2.20 (b) provides the upper bound

c′n,k,r
cn,k,r

6
(kr + n− 1)rn−2

k/n

(
1+

1

2
+. . .+

1

k

)n[
1+

1

3

n−1∑

m=2

2m(n− 1)!

(n− 1−m)!

(
1+

1

2
+. . .+

1

k

)−m]
.

The case k = n is especially interesting. For k = n > 2 one can show (with r 6 n and
Hn denoting the harmonic sequence) that

(4.8)
c′n,k,r
cn,k,r

6
n2 + n− 1

3
nn−2 exp

(2(n− 1)

Hn
+ n logHn

)
6

1

3

(
n log(n log 24n)

)n
.

We will also need the particular values

c2,2,2 =
1

20
, c′2,2,2 =

9

16
,

c′2,2,2
c2,2,2

=
45

4
,(4.92)

c3,3,3 =
1

990
, c′3,3,3 =

451

4860
,

c′3,3,3
c3,3,3

=
4961

54
,(4.93)

which can be obtained by direct calculations.

5. Hyperbolicity properties of hypersurfaces of high degree

5.A. Global generation of the twisted tangent space of the universal family

In [Siu02, Siu04], Y.T. Siu developed a new stategy to produce jet differentials,
involving meromorphic vector fields on the total space of jet bundles – these vector
fields are used to differentiate the sections of EGG

k,m so as to produce new ones with less
zeroes. The approach works especially well on universal families of hypersurfaces in
projective space, thanks to the good positivity properties of the relative tangent bundle,
as shown by L. Ein [Ein88, Ein91] and C. Voisin [Voi96]. This allows at least to prove the
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hyperbolicity of generic surfaces and generic 3-dimensional hypersurfaces of sufficiently
high degree. We reproduce here the improved approach given by [Pau08] for the twisted
global generation of the tangent space of the space of vertical two jets. The situation of
k-jets in arbitrary dimension n is substantially more involved, details can be found in
[Mer09].

Consider the universal hypersurfaceX ⊂ Pn+1×PNd of degree d given by the equation

∑

|α|=d
Aα Z

α = 0,

where [Z] ∈ Pn+1, [A] ∈ PNd , α = (α0, . . . , αn+1) ∈ Nn+2 and

Nd =

(
n+ d+ 1

d

)
− 1.

Finally, we denote by V ⊂ X the vertical tangent space, i.e. the kernel of the projection

π : X→ U ⊂ PNd

where U is the Zariski open set parametrizing smooth hypersurfaces, and by JkV the
bundle of k-jets of curves tangent to V, i.e. curves contained in the fibers Xs = π−1(s).
The goal is to describe certain meromorphic vector fields on the total space of JkV.
Since the general calculations are extremely involved, we deal here with the special case
n = 2, k = 2, but the general case is similar by [Mer09].

We fix the affine open setU0 = {Z0 6= 0} × {A0d00 6= 0} ≃ C3 × CNd

in P3 × PNd with the corresponding inhomogeneous coordinates (zj = Zj/Z0)j=1,2,3 and
(aα = Aα/A0d00)|α|=d,α1<d. Since α0 is determined by α0 = d− (α1 + α2 + α3), with a
slight abuse of notation in the sequel, α will be seen as a multiindex (α1, α2, α3) in N3,
with moreover the convention that ad00 = 1. On this affine open set we haveX0 := X ∩U0 =

{
zd1 +

∑

|α|6d,α1<d

aα z
α = 0

}
.

We now write down equations for the open variety J2V0, where we indicated with V0

the restriction of V ⊂ TX, the kernel of the differential of the second projection, to X0:
elements in J2V0 are therefore 2-jets of germs of “vertical” holomorphic curves in X0,
that is curves tangent to vertical fibers. The equations, which live in a natural way in
C3
zj

× CNd
aα

× C3
z′
j
× C3

z′′
j
, stand as follows.

∑

|α|6d
aα z

α = 0,

∑

16j63

∑

|α|6d
aα

∂zα

∂zj
z′j = 0,

∑

16j63

∑

|α|6d
aα

∂zα

∂zj
z′′j +

∑

16j,k63

∑

|α|6d
aα

∂2zα

∂zj∂zk
z′jz

′
k = 0.
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Let W0 to be the closed algebraic subvariety of J2V0 defined byW0 = {(z, a, z′, z′′) ∈ J2V0 | z′ ∧ z′′ = 0}

and let W be the Zariski closure of W0 in J2V: we call this set the Wronskian locus of
J2V. To begin with, observe that an affine change of coordinates z 7→ 1/z induces on
jet variables the following transformation rules

z′ 7→ − z′

z2
and z′′ 7→ 2(z′)2 − zz′′

z3
.

Now, consider a general vector field in the vector space C3
zj

× CNd
aα

× C3
z′
j
× C3

z′′
j
; it is of

the form

θ =
∑

|α|6d,α1<d

vα
∂

∂aα
+
∑

16j63

vj
∂

∂zj
+
∑

16j63

ξ
(1)
j

∂

∂z′j
+
∑

16j63

ξ
(2)
j

∂

∂z′′j
.

Thus, the conditions to be satisfied by the coefficients of θ in order to belong to J2V0

are ∑

|α|6d,α1<d

vα z
α +

∑

16j63

∑

|α|6d
aα

∂zα

∂zj
vj = 0,

∑

16j63

∑

|α|6d,α1<d

vα
∂zα

∂zj
z′j

+
∑

16j,k63

∑

|α|6d
aα

∂2zα

∂zk∂zj
vkz

′
j +

∑

16j63

∑

|α|6d
aα

∂zα

∂zj
ξ
(1)
j = 0,

∑

|α|6d,α1<d


 ∑

16j63

∂zα

∂zj
z′′j +

3∑

j,k=1

∂2zα

∂zk∂zj
z′jz

′
k


 vα

+
∑

16j63

∑

|α|6d
aα




3∑

k=1

∂2zα

∂zk∂zj
z′′k +

3∑

i,k=1

∂3zα

∂zi∂zk∂zj
z′kz

′
i


 vj

+
∑

|α|6d

3∑

j,k=1

aα
∂2zα

∂zk∂zj

(
ξ
(1)
j z′k + ξ

(1)
k z′j

)
+
∑

16j63

aα
∂zα

∂zj
ξ
(2)
j = 0.

First family of tangent vector fields. For any multiindex α such that α1 > 3, consider
the vector field

θ300α =
∂

∂aα
− 3z1

∂

∂aα−δ1
+ 3z21

∂

∂aα−2δ1

− z31
∂

∂aα−3δ1

,

where δj ∈ N4 is the multiindex whose j-th component is equal to 1 and the others are
zero. For the multiindexes α which verify α1 > 2 and α2 > 1, define

θ210α =
∂

∂aα
− 2z1

∂

∂aα−δ1
− z2

∂

∂aα−δ2
+ z21

∂

∂aα−2δ1

+ 2z1z2
∂

∂aα−δ1−δ2
− z21z2

∂

∂aα−2δ1−δ2
.



124 J.-P. Demailly Applications of Pluripotential theory to Algebraic Geometry

Finally, for those α for which α1, α2, α3 > 1, set

θ111α =
∂

∂aα
− z1

∂

∂aα−δ1
− z2

∂

∂aα−δ2
− z3

∂

∂aα−δ3

+ z1z2
∂

∂aα−δ1−δ2
+ z1z3

∂

∂aα−δ1−δ3
+ z2z3

∂

∂aα−δ2−δ3

− z1z2z3
∂

∂aα−δ1−δ2−δ3
.

The pole order of these vector fields is equal to 3, as a change of variables easily shows.
Moreover, they are all tangent to J2V0 and invariant under the action of G2 (because
they do not contain any jet variable, on which the group acts). Of course, there are
similarly defined vector fields constructed by permuting the z-variables, and changing
the multiindex α as indicated by permutations: it is straightforward to see that all these
vector fields together span a codimension 7 vector space in ker(TJ2V → TJ2TP3

). The
vector fields which generate the remaining seven directions will be constructed at the
end of this section.

Second family of tangent vector fields. We construct here the holomorphic vector fields
in order to span the ∂/∂zj-directions. For j = 1, 2, 3, consider the vector field

∂

∂zj
−

∑

|α+δj |6d
(αj + 1)aα+δj

∂

∂aα
.

It is immediate to check that these vector fields, once applied to the first defining equation
of J2V0, make it identically vanish. Since the other equations of J2V0 are obtained by
taking the derivative of thhe first just with respect to the zj and z

′
j variables, they make

identically vanish the other two defining equations, too. Therefore they are tangent to
J2V0. Their pole order is one in the aα’s variables and they are G2-invariant since they
do not contain jet variables.

Third family of tangent vector fields. In order to span the jet directions, consider a vector
field of the following form:

θB =
∑

|α|6d,α1<d

pα(z, a, b)
∂

∂aα
+
∑

16j63

2∑

k=1

ξ
(k)
j

∂

∂z
(k)
j

,

where ξ(k) = B · z(k), k = 1, 2, and B = (bjk) varies among 3× 3 invertible matrices with
complex entries. The additional condition on the Wronskian z′ ∧ z′′ 6= 0 implies that the

family (θB) spans all the ∂/∂z
(k)
j -directions on W0, as it is straightforward to see. We

claim that one can choose the coefficients pα(z, a, b) to be polynomials of degree at most 2
in z and at most one in a in such a way that θB is tangent to J2V0. To see the invariance
with respect to G2, observe that the action is the following: if ϕ : (C, 0) → (C, 0) is a
2-jet of biholomorphism of the origin then the action is

ϕ · (z, a, z′, z′′) 7→ (z, a, ϕ′ · z′, (ϕ′)2 · z′′ + ϕ′′ · z′)

and the corresponding induced action on vector fields is

∂

∂z
7→ ∂

∂z
,

∂

∂a
7→ ∂

∂a
,

∂

∂z′
7→ ϕ′ ∂

∂z′
+ ϕ′′ ∂

∂z′′
,

∂

∂z′′
7→ (ϕ′)2

∂

∂z′′
.
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For θB , only the second addendum needs to be verified to be invariant: it is of the form

z′
∂

∂z′
+ z′′

∂

∂z′′
.

On the one hand, letting ϕ act on coordinates, one has

z′
∂

∂z′
+ z′′

∂

∂z′′
7→ ϕ′ · z′ ∂

∂z′
+
(
(ϕ′)2 · z′′ + ϕ′′ · z′

) ∂

∂z′′
;

on the other hand, letting ϕ act on vector fields by its differential, one has

z′
∂

∂z′
+ z′′

∂

∂z′′
7→ z′

(
ϕ′ ∂

∂z′
+ ϕ′′ ∂

∂z′′

)
+ z′′

(
(ϕ′)2

∂

∂z′′

)
,

and the invariance follows. Finally, as announced, we have to span the remaining di-
rections in the vector space ker(TJ2V → TJ2TP3

). So, consider a vector field with the
following shape:

∑

|α|62

vα
∂

∂aα
.

To be tangent to J2V0, its coefficients have to satisfy

∑

|α|62

vα z
α = 0,

∑

|α|62

∑

16j63

vα
∂zα

∂zj
z′j = 0

and

∑

α62


 ∑

16j63

∂zα

∂zj
z′′j +

3∑

j,k=1

∂2zα

∂zj∂zk
z′jz

′
k


 vα.

We place ourself outside W0 and we suppose for simplicity that z′1z
′′
2 − z′2z

′′
1 6= 0, the

other cases being analogous. Then, we can solve this system with v000, v100 and v010 as
unknowns: { v000 + z1 v100 + z2 v010 = · · ·

z′1 v100 + z′2 v010 = · · ·
z′′1 v100 + z′′2 v010 = · · ·

By the Cramer rule, we see that each of these quantities are linear combinations of
the vα’s, where |α| 6 2, α 6= (000), (100), (010), with coefficients rational functions in
z, z′, z′′. The denominator of each such coefficient is just the Wronskian z′1z

′′
2 − z′2z′′1 and

the numerator is a polynomial whose monomials have either degree at most 2 in z and
at most 1 in z′ and z′′, or degree 1 in z and three in z′; thus, the pole order here is at
most 7. Next, the system itself is G2-invariant: letting ϕ ∈ G2 act on it, we find

∑

|α|62

vα z
α = 0,
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ϕ′
∑

|α|62

∑

16j63

vα
∂zα

∂zj
z′j = 0

and

(ϕ′)2
∑

α62


 ∑

16j63

∂zα

∂zj
z′′j +

3∑

j,k=1

∂2zα

∂zj∂zk
z′jz

′
k


 vα + ϕ′′

∑

α62

∑

16j63

vα
∂zα

∂zj
z′j

︸ ︷︷ ︸
=0

= 0.

Therefore its solutions are invariant, too. Summing up, we have proved the following

(5.1) Theorem. The twisted tangent space TJ2V⊗OP3(7)⊗OPNd (1) is generated over by

its global sections over the complement J2VrW of the Wronskian locus W. Moreover,

one can choose generating global sections that are invariant with respect to the action of

G2 on J2V.

By similar, but more computationally intensive arguments [Mer09], one can investi-
gate the higher dimensional case. The following result strengthens the initial announce-
ment of [Siu04].

(5.2) Theorem. Let Jvert
k (X) be the space of vertical k-jets of the universal hypersurfaceX ⊂ Pn+1 × PNd

parametrizing all projective hypersurfaces X ⊂ Pn+1 of degree d. Then for k = n, there
exist constants cn and c′n such that the twisted tangent bundle

TJvert
k

(X) ⊗ OPn+1(cn)⊗ OPNd (c
′
n)

is generated by its global Gk-invariant sections outside a certain exceptional algebraic

subset Σ ⊂ Jvert
k (X). One can take either cn = 1

2 (n
2 + 5n), c′n = 1 and Σ defined by the

vanishing of certain Wronskians, or cn = n2 + 2n and a smaller set Σ̃ ⊂ Σ defined by

the vanishing of the 1-jet part.

5.B. General strategy of proof

Let again X ⊂ Pn+1 × PNd be the universal hypersurface of degree d in Pn+1.

(5.3)Assume that we can prove the existence of a non zero polynomial differential operator

P ∈ H0(X, EGG
k,mT

∗X ⊗ O(−A)),
where A is an ample divisor on X, at least over some Zariski open set U in the base of

the projection π : X→ U ⊂ PNd .

Observe that we now have a lot of techniques to do this; the existence of P over the
family follows from lower semicontinuity in the Zariski topology, once we know that such
a section P exists on a generic fiber Xs = π−1(s). Let Y ⊂ X be the set of points x ∈ X
where P (x) = 0, as an element in the fiber of the vector bundle EGG

k,mT
∗X ⊗ O(−A)) at x.
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Then Y is a proper algebraic subset of X, and after shrinking U we may assume that
Ys = Y ∩Xs is a proper algebraic subset of Xs for every s ∈ U .

(5.4) Assume also, according to Theorems 5.1 and 5.2, that we have enough global holo-

morphic Gk-invariant vector fields θi on JkV with values in the pull-back of some ample

divisor B on X, in such a way that they generate TJkV ⊗ p∗kB over the dense open set

(JkV)reg of regular k-jets, i.e. k-jets with non zero first derivative (here pk : JkV → X
is the natural projection).

Considering jet differentials P as functions on JkV, the idea is to produce new ones
by taking differentiations

Qj := θj1 . . . θjℓP, 0 6 ℓ 6 m, j = (j1, . . . , jℓ).

Since the θj’s are Gk-invariant, they are in particular C∗-invariant, thus

Qj ∈ H0(X, EGG
k,mT

∗X ⊗ O(−A+ ℓB))

(and Q is in fact G′
k invariant as soon as P is). In order to be able to apply the vanishing

theorems of § 8, we need A −mB to be ample, so A has to be large compared to B. If
f : C → Xs is an entire curve contained in some fiber Xs ⊂ X, its lifting jk(f) : C → JkV
has to lie in the zero divisors of all sections Qj. However, every non zero polynomial of
degree m has at any point some non zero derivative of order ℓ 6 m. Therefore, at any
point where the θi generate the tangent space to JkV, we can find some non vanishing
section Qj. By the assumptions on the θi, the base locus of the Qj ’s is contained in the
union of p−1

k (Y)∪(JkV)sing; there is of course no way of getting a non zero polynomial at
points of Y where P vanishes. Finally, we observe that jk(f)(C) 6⊂ (JkVsing (otherwise f
is constant). Therefore jk(f)(C) ⊂ p−1

k (Y) and thus f(C) ⊂ Y, i.e. f(C) ⊂ Ys = Y∩Xs.

(5.5) Corollary. Let X ⊂ Pn+1×PNd be the universal hypersurface of degree d in Pn+1.

If d > dn is taken so large that conditions (5.3) and (5.4) are met with A −mB ample,

then the generic fiber Xs of the universal family X → U satisfies the Green-Griffiths

conjecture, namely all entire curves f : C → Xs are contained in a proper algebraic

subvariety Ys ⊂ Xs, and the Ys can be taken to form an algebraic subset Y ⊂ X.

This is unfortunately not enough to get the hyperbolicity of Xs, because we would
have to know that Ys itself is hyperbolic. However, one can use the following simple
observation due to Diverio and Trapani [DT10]. The starting point is the following
general, straightforward remark. Let E → X be a holomorphic vector bundle let σ ∈
H0(X,E) 6= 0; then, up to factorizing by an effective divisor D contained in the common
zeroes of the components of σ, one can view σ as a section

σ ∈ H0(X,E⊗ OX(−D)),

and this section now has a zero locus without divisorial components. Here, when n > 2,
the very generic fiber Xs has Picard number one by the Noether-Lefschetz theorem,
and so, after shrinking U if necessary, we can assume that OX(−D) is the restriction ofOPn+1(−p), p > 0 by the effectivity of D. Hence D can be assumed to be nef. After
performing this simplification, A−mB is replaced by A−mB +D, which is still ample
if A−mB is ample. As a consequence, we may assume codimY > 2, and after shrinking
U again, that all Ys have codimYs > 2.
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(5.6) Additional statement. In corollary 5.5, under the same hypotheses (5.3) and

(5.4), one can take all fibers Ys to have codimYs > 2.

This is enough to conclude that Xs is hyperbolic if n = dimXs 6 3. In fact, this
is clear if n = 2 since the Ys are then reduced to points. If n = 3, the Ys are at most
curves, but we know by Ein and Voisin that a generic hypersurface Xs ⊂ P4 of degree
d > 7 does not possess any rational or elliptic curve. Hence Ys is hyperbolic and so is
Xs, for s generic. �

Now, suppose that we replace (5.4) by the weaker form:

(5.4′) there are global Gk-invariant vector fields θi of TJkV ⊗ p∗kB which generate the

fibers on the complement of the Wronskian locusW =
{
jk(u) ; u

′ ∧ u′′ ∧ . . . ∧ u(k)(0) = 0
}
, k 6 n.

Here the wedge product is the wedge product in TPn+1 calculated in any standard affine
open chart of Pn+1 (the condition is clearly invariant when we replace u par λu, so it
does not depend on the affine chart chosen). The advantage of (5.4)′ over (5.4) is that
we can possibly take B to be smaller. Then, in the above arguments, we also have to
consider the case where jk(f) ⊂W. This is dealt with by

(5.7) Lemma. Let f : C → CN be a holomorphic map (N = n+1). If f ′∧f ′′∧· · ·∧f (k) ≡
0, then f(C) lies inside an affine linear subspace of codimension N − k + 1.

Proof. Without loss of generality, we can suppose k > 1, f ′ ∧ f ′′ ∧ · · · ∧ f (k−1) 6≡ 0,
f ′(0) 6= 0 and (f ′ ∧ f ′′ ∧ · · · ∧ f (k−1))(0) 6= 0. Then there exists an open neighborhood
Ω ⊂ C of 0 such that for each t ∈ Ω we have a linear combination

f (k)(t) =

k−1∑

j=1

λj(t) f
(j)(t)

and the λj ’s depend holomorphically on t. By taking derivatives, one sees inductively
that, in Ω, every f (ℓ), ℓ > k, is a linear combination of the f (j)’s, 1 6 j 6 k − 1. Thus,
all the derivatives in 0 of f lie in the linear space generated by f ′(0), . . . , f (k−1)(0). The
conclusion follows by expanding f as a power series at 0. �

Lemma 5.7 shows that the image of the entire curve f lies in a subvariety Lf of X
of codimension > 2 (the intersection of X with an arbitrary linear subspace of Pn+1 of
codimension > 2 is also of codimension > 2 provided that X is generic). This is of course
weaker than our earlier corollary 5.5 where Ys did not depend on f . However, if n = 3
and d > 7, we know by Ein and Voisin that the very generic member Xs does not contain
rational or elliptic curves, so f has to be constant anyway. This is also true when n = 2,
since Ys and Lf must be 0-dimensional in that case.

(5.8) Corollary. Assume that n = 2 or n = 3, and that X ⊂ Pn+1 × PNd is the

universal hypersurface of degree d > dn > 2n+1 so large that conditions (5.3) and (5.4′)
are met with A−mB ample. Then the very generic hypersurface Xs ⊂ Pn+1 of degree d
is hyperbolic.



Chapter IV, Morse inequalities and the Green-Griffiths-Lang conjecture 129

5.C. Proof of the hyperbolicity of generic surfaces of high degree in P3

In this paragraph we treat the case of generic (hyper)surfaces in P3. For this, we need
a slight extension of the Riemann-Roch calculation performed in § 14 (see also [Pau08]),
combined with Bogomolov’s vanishing theorem 17.1. Such results were first obtained
independently in [McQ99] and [DEG00], using the results of [McQ98].

(5.9) Lemma. Let X be a projective surface of general type. Then

h0(X,E2,mT
∗
X ⊗K−δm

X ) >
m4

648

(
(54δ2 − 48δ + 13) c1(X)2 − 9 c2(X)

)
+O(m3),

provided that 0 6 δ < 1/3.

(5.10) Theorem ([McQ99], [DEG00], [Pau08]). Let X ⊂ P3 be a very generic smooth

surface of degree d > 18. Then X is Kobayashi hyperbolic.

Proof. We will in fact only give the proof for the weaker bound d > 90. We refer
to [Pau08] for the better bound d > 18; the argument then requires the full force of
McQuillan’s deep results on parabolic leaves of algebraic foliations [McQ98].

Let us fix once again the notations. We consider X ⊂ P3 a very generic smooth
surface of degree d. Its canonical bundle is then expressed in term of the hyperplane
bundle as KX = OX(d−4); thus, Kδm

X is the (ample) Q-line bundle OX(δm(d−4)). The
Chern classes of X are given by

c1(X) = (4− d) h, c2(X) = (d2 − 4d+ 6) h2,

so that the condition (54δ2 − 48δ + 13) c1(X)2 − 9 c2(X) > 0 required by Lemma 5.9
becomes

(5.11) (54δ2 − 48δ + 4) d3 + (−432δ2 + 384δ − 68) d2 + (864δ2 − 768δ + 154) d > 0.

(In particular, if 0 6 δ < 1/3 and 54δ2 − 48δ + 4 > 0, Lemma 5.9 implies the existence
of a non zero global section of E2,mT

∗
X ⊗ K−δm

X for m ≫ d ≫ 1, but we have to take
into account a constraint between d and δ here). Consider the universal hypersurfaceX ⊂ P3 × PNd of degree d in P3 and the holomorphic subbundle V ⊂ TX given by the
differential of the kernel of the second projection. By the results of § 5.A, we know that

TJ2V ⊗ OP3(7)⊗ OPNd (1)

is globally generated by its global holomorphic sections over J2V r Σ and moreover
the generating sections can be chosen to be invariant by the action of G2 on J2V. In
the general strategy discussed in § 5.B, we can take A = Kδm

X = OX(mδ(d − 4)) and
B = OP3(7)|X . The condition we need is

A−mB = OX(mδ(d− 4)− 7m) ample, i.e. δ(d− 4) > 7.

If we plainly substitute δ = 7/(d− 4) in (5.11), we obtain the condition

4 d3 − 404 d2 + 4144 d > 0,

and (5.11) will then still be true for δ = 7/(d − 4) + ε, ε small. As the largest root is
a little smaller than 90, we conclude that a very generic smooth projective surface of
P3 of degree d > 90 is hyperbolic; in that case the proof does not rely on McQuillan’s
diophantine approximation technique, and one can check that it is enough to take X
generic rather than very generic (thanks to the fact that one needs Noether-Lefschetz
only for curves of uniformly bounded degree.) �
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5.D. Proof of the Green-griffiths conjecture for generic hypersurfaces in Pn+1

The most striking progress made at this date on the Green-Griffiths conjecture itself
is a recent result of Diverio, Merker and Rousseau [DMR10], confirming the statement
whenX ⊂ Pn+1

C is a generic hypersurface of large degree d, with a (non optimal) sufficient
lower bound d > 2n

5

. Their proof is based in an essential way on Siu’s strategy as
developed in § 5.B, combined with the earlier techniques of [Dem95]. Using our improved
bounds from § 4, we obtain here a better estimate (actually of exponential order one
O(exp(n1+ε) rather than order 5).

(5.12) Theorem. A generic hypersurface X ⊂ Pn+1 of degree d > dn with

d2 = 286, d3 = 7316, dn =

⌊
n4

3

(
n log(n log(24n))

)n
⌋

for n > 4,

satisfies the Green-Griffiths conjecture.

Proof. Let us apply Theorem 4.6 with V = TX , r = n and k = n. The main starting
point is the well known fact that T ∗

Pn+1 ⊗ OPn+1(2) is semipositive (in fact, generated by
its sections). Hence the exact sequence

0 → OPn+1(−d) → T ∗
Pn+1|X → T ∗

X → 0

implies that T ∗
X ⊗ OX(2) > 0. We can therefore take γ = ΘO(2) = 2ω where ω is the

Fubini-Study metric. Moreover detV ∗ = KX = OX(d−n−2) has curvature (d−n−2)ω,
hence ΘdetV ∗ + rγ = (d+n− 2)ω. The Morse integral to be computed when A = OX(p)
is ∫

X

(
cn,n,n(d+ n− 2)n − c′n,n,n(d+ n− 2)n−1(p+ 2n)

)
ωn,

so the critical condition we need is

d+ n− 2 >
c′n,n,n
cn,n,n

(p+ 2n).

On the other hand, Siu’s differentiation technique requires m
n2 (1 +

1
2 + . . .+ 1

n )A −mB
to be ample, where B = OX(n2 + 2n) by Merker’s result 5.2. This ampleness condition
yields

1

n2

(
1 +

1

2
+ . . .+

1

n

)
p− (n2 + 2n) > 0,

so one easily sees that it is enough to take p = n4 − 2n for n > 4. Our estimates (4.8)
and (4.9) give the expected bound dn. �

Thanks to 5.6, one also obtains the generic hyperbolicity of 2 and 3-dimensional
hypersurfaces of large degree.

(5.13) Theorem. For n = 2 or n = 3, a generic hypersurface X ⊂ Pn+1 of degree

d > dn is Kobayashi hyperbolic.

By using more explicit calculations of Chern classes (and invariant jets rather than
Green-Griffiths jets) Diverio-Trapani [DT10] obtained the better lower bound d > d3 =
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593 in dimension 3. One may also wonder whether it is possible to use jets of order k < n
in the proof of 5.12 and 5.13. Diverio [Div08] observed that the answer is negative.

(5.14) Proposition ([Div08]). Let X ⊂ Pn+1 be a smooth hypersurface. Then

H0(X,EGG
k,mT

∗
X) = 0

for m > 1 and 1 6 k < n. More generally, if X ⊂ Pn+s is a smooth complete intersection

of codimension s, there are no global jet differentials for m > 1 and k < n/s.

Proof. The bundle EGG
k,mT

∗
X admits a filtration whose associated graded bundle is given

by

Gr•EGG
k,mT

∗
X =

⊕

l1+2l2+...+klk=m

Sl1T ∗
X ⊗ Sl2T ∗

X ⊗ . . .⊗ SlkT ∗
X .

Now, the terms in the right hand side can be split into irreducible Gl(T ∗
X)-representations

of the type Γ(λ1,...,λn)T ∗
X with λi = 0 for i > k : this actually follows from the classi-

cal Pieri formula for Schur fonctors (cf. [FH91]). However, by a result of Brückmann-
Rackwitz [BR90], we have H0(X,Γ(λ1,...,λn)T ∗

X) = 0 as soon as t1 + . . .+ ts < n, where
ti = #{λj ; λj > i} 6 k. In particular, we always have H0(X,Γ(λ1,...,λn)T ∗

X) = 0 for
those representations when sk < n, and by an immediate filtration argument we conclude
that H0(X,EGG

k,mT
∗
X) = 0 for sk < n. �
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[AG62] A. Andreotti, H. Grauert. — Théorèmes de finitude pour la cohomologie des espaces
complexes, Bull. Soc. Math. France, 90 (1962), 193–259.

[AV65] A. Andreotti, E. Vesentini. — Carleman estimates for the Laplace-Beltrami equation
in complex manifolds, Publ. Math. I.H.E.S., 25 (1965), 81–130.

[Ang96] F. Angelini. — An algebraic version of Demailly’s asymptotic Morse inequalities, Proc.
Amer. Math. Soc., 124 (1996), 3265-3269.
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[BDPP04] S. Boucksom, J.-P. Demailly, M. Păun, Th. Peternell. — The pseudo-effective cone
of a compact Kähler manifold and varieties of negative Kodaira dimension, manuscript
May 2004, math.AG/0405285.

[BR90] P. Brückmann, H.-G. Rackwitz. — T -Symmetrical Tensor Forms on Complete Inter-
sections, Math. Ann., 288 (1990), 627–635.

[Cle86] H. Clemens. — Curves on generic hypersurfaces, Ann. Sci. Éc. Norm. Sup, 19 (1986),
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(1982), 457–511.

[Dem85] J.-P. Demailly. — Champs magnétiques et inégalités de Morse pour la d′′-cohomologie,
Ann. Inst. Fourier (Grenoble), 35 (1985), 189–229.

[Dem90] J.-P. Demailly. — Singular Hermitian metrics on positive line bundles, Proc. Conf. Com-
plex algebraic varieties (Bayreuth, April 2–6, 1990), edited by K. Hulek, T. Peternell,
M. Schneider, F. Schreyer, Lecture Notes in Math., Vol. 1507, Springer-Verlag, Berlin,
1992.

[Dem91] J.-P. Demailly. — Holomorphic Morse inequalities, Lectures given at the AMS Summer
Institute on Complex Analysis held in Santa Cruz, July 1989, Proceedings of Symposia
in Pure Mathematics, Vol. 52, Part 2 (1991), 93–114.

[Dem92] J.-P. Demailly. — Regularization of closed positive currents and Intersection Theory, J.
Alg. Geom., 1 (1992), 361–409.

[Dem93] J.-P. Demailly. — A numerical criterion for very ample line bundles, J. Differential
Geom., 37 (1993), 323–374.

[Dem94] J.-P. Demailly. — L2 vanishing theorems for positive line bundles and adjunction theory,
Lecture Notes of the CIME Session “Transcendental methods in Algebraic Geometry”,
Cetraro, Italy, July 1994, Ed. F. Catanese, C. Ciliberto, Lecture Notes in Math., Vol. 1646,
1–97.

[Dem95] J.-P. Demailly. — Algebraic criteria for Kobayashi hyperbolic projective varieties and
jet differentials, AMS Summer School on Algebraic Geometry, Santa Cruz 1995, Proc.
Symposia in Pure Math., ed. by J. Kollár and R. Lazarsfeld, 76p.

[Dem97] J.-P. Demailly. — Variétés hyperboliques et équations différentielles algébriques, Gaz.
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