Kobayashi-Lübke inequalities for Chern classes of Hermite-Einstein vector bundles and Guggenheimer-Yau-Bogomolov-Miyaoka inequalities for Chern classes of Kähler-Einstein manifolds

Let (X, ω) be a compact Kähler manifold, $n=\operatorname{dim} X$, and let E be a holomorphic vector bundle over $X, r=\operatorname{rank} E$. We suppose that E is equipped with a hermitian metric, h and denote by $D_{E, h}$ the Chern connection on (E, h). The Chern curvature form is

$$
\Theta_{E, h}=D_{E, h}^{2}
$$

In a (local) orthonormal frame $\left(e_{\alpha}\right)_{1 \leq \alpha \leq r}$ of E, we write

$$
\Theta_{E, h}=\left(\Theta_{\alpha \beta}\right)_{1 \leq \alpha, \beta \leq r}
$$

where the $\Theta_{\alpha \beta}$ are complex valued (1,1)-forms satisfying the hermitian condition $\bar{\Theta}_{\alpha \beta}=\Theta_{\beta \alpha}$. We denote

$$
\Theta_{\alpha \beta}=i \sum_{1 \leq \alpha, \beta \leq r, 1 \leq j, k \leq n} \Theta_{\alpha \beta j k} d z_{j} \wedge d z_{k}
$$

The hermitian symmetry condition can then be read $\bar{\Theta}_{\alpha \beta j k}=\Theta_{\beta \alpha k j}$. If at some point $x_{0} \in X$ the coordinates $\left(z_{j}\right)$ are chosen so that $\left(d z_{j}\left(x_{0}\right)\right)$ is an orthonormal basis of $T_{X, x_{0}}^{\star}$, we define

$$
\operatorname{Tr}_{\omega} \Theta_{E, h}=\left(\sum_{j} \Theta_{\alpha \beta j j}\right) \in C^{\infty}(X, \operatorname{hom}(E, E))
$$

Definition. The hermitian vector bundle (E, h) is said to be Hermite-Einstein with respect to the Kähler metric ω if there is a constant $\lambda>0$ such that $\operatorname{Tr}_{\omega} \Theta_{E, h}=\lambda \operatorname{Id}_{E}$.

Recall that the Chern forms $c_{k}(E)_{h}$ are defined by the formula

$$
\operatorname{det}\left(I+t \Theta_{E, h}\right)=\operatorname{det}\left(\delta_{\alpha \beta}+t \Theta_{\alpha \beta}\right)=1+t c_{1}(E)_{h}+\ldots+t^{r} c_{r}(E)_{h}
$$

This gives in particular the identities

$$
\begin{aligned}
& c_{1}(E)_{h}=\sum_{\alpha} \Theta_{\alpha \alpha} \\
& c_{2}(E)_{h}=\sum_{\alpha<\beta} \Theta_{\alpha \alpha} \wedge \Theta_{\beta \beta}-\Theta_{\alpha \beta} \wedge \Theta_{\beta \alpha}=\frac{1}{2} \sum_{\alpha, \beta} \Theta_{\alpha \alpha} \wedge \Theta_{\beta \beta}-\Theta_{\alpha \beta} \wedge \Theta_{\beta \alpha}
\end{aligned}
$$

The trace $\operatorname{Tr}_{\omega} \Theta_{E, h}$ can be computed by the formula

$$
\Theta_{E, h} \wedge \frac{\omega^{n-1}}{(n-1)!}=\operatorname{Tr}_{\omega} \Theta_{E, h} \frac{\omega^{n}}{n!}
$$

By taking the trace with respect to the indices α in E and taking the Hermite-Einstein equation into account, we find

$$
c_{1}(E)_{h} \wedge \frac{\omega^{n-1}}{(n-1)!}=\lambda r \frac{\omega^{n}}{n!}
$$

This implies that the number λ in the definition of Hermite-Einstein metrics is a purely numerical invariant, namely

$$
\lambda=\frac{n}{r} \int_{X} c_{1}(E) \wedge \omega^{n-1} / \int_{X} \omega^{n} .
$$

Kobayashi-Lübke inequality. If E admits a Hermite-Einstein metric h with respect to ω, then

$$
\left[(r-1) c_{1}(E)_{h}^{2}-2 r c_{2}(E)_{h}\right] \wedge \omega^{n-2} \leq 0
$$

at every point of X. Moreover, the equality holds if and only if

$$
\Theta_{E, h}=\frac{1}{r} c_{1}(E)_{h} \otimes \operatorname{Id}_{E} .
$$

Observe that the equality holds pointwise already if we have the numerical equality

$$
\int_{X}\left[(r-1) c_{1}(E)^{2}-2 r c_{2}(E)\right] \wedge \omega^{n-2}=0
$$

If we introduce the (formal) vector bundle $\widetilde{E}=E \otimes(\operatorname{det} E)^{-1 / r}(\widetilde{E}$ is the "normalized" vector bundle such that $\operatorname{det} \widetilde{E}=\mathcal{O}$), then $c_{1}(\widetilde{E})_{h}=0$ and

$$
\Theta_{\widetilde{E}, h}=\left(\Theta_{E, h}-\frac{1}{r} c_{1}(E)_{h} \otimes \operatorname{Id}_{E}\right) \otimes \operatorname{Id}_{(\operatorname{det} E)^{-1 / r}}
$$

By the formula for the chern classes of $E \otimes L$, the Kobayashi-Lübke inequality can be rewritten as

$$
c_{2}(\widetilde{E})_{h} \wedge \omega^{n-2} \leq 0,
$$

with equality if and only if \widetilde{E} is unitary flat. In that case, we say that E is projectively flat. Proof. By the above,

$$
(r-1) c_{1}(E)_{h}^{2}-2 r c_{2}(E)_{h}=\sum_{\alpha, \beta}-\Theta_{\alpha \alpha} \wedge \Theta_{\beta \beta}+r \Theta_{\alpha \beta} \wedge \Theta_{\beta \alpha}
$$

Taking the wedge product with $\omega^{n-2} /(n-2)$! means taking the trace, i.e. the sum of coefficients of the terms $i d z_{j} \wedge d \bar{z}_{j} \wedge i d z_{k} \wedge d \bar{z}_{k}$ for all $j<k$. For this, we have to look at products of the type $\left(i d z_{j} \wedge d \bar{z}_{j}\right) \wedge\left(i d z_{k} \wedge d \bar{z}_{k}\right)$ or $\left(i d z_{j} \wedge d \bar{z}_{k}\right) \wedge\left(i d z_{k} \wedge d \bar{z}_{j}\right)$. This yields

$$
\begin{aligned}
& 2\left[(r-1) c_{1}(E)_{h}^{2}-2 r c_{2}(E)_{h}\right] \wedge \frac{\omega^{n-2}}{(n-2)!} \\
& \quad=\sum_{\alpha, \beta, j, k}-\left(\Theta_{\alpha \alpha j j} \Theta_{\beta \beta k k}-\Theta_{\alpha \alpha j k} \Theta_{\beta \beta k j}\right)+r\left(\Theta_{\alpha \beta j j} \Theta_{\beta \alpha k k}-\Theta_{\alpha \beta j k} \Theta_{\beta \alpha k j}\right) .
\end{aligned}
$$

The initial factor 2 comes from the fact that the final sum is taken over all unordered indices j, k (terms with $j=k$ cancel). The Hermite-Einstein condition yields $\sum_{j} \Theta_{\alpha \beta j j}=\lambda \delta_{\alpha \beta}$, so we get

$$
\begin{aligned}
\sum_{\alpha, \beta, j, k}-\Theta_{\alpha \alpha j j} \Theta_{\beta \beta k k}+r \Theta_{\alpha \beta j j} \Theta_{\beta \alpha k k} & =\sum_{\alpha, \beta}-\lambda^{2} \delta_{\alpha \alpha} \delta_{\beta \beta}+r \lambda^{2} \delta_{\alpha \beta} \delta_{\beta \alpha} \\
& =-r^{2} \lambda^{2}+r^{2} \lambda^{2}=0 .
\end{aligned}
$$

Hence, using the hermitian symmetry of $\Theta_{\alpha \beta j k}$, we find

$$
\begin{aligned}
2\left[(r-1) c_{1}(E)_{h}^{2}\right. & \left.-2 r c_{2}(E)_{h}\right] \wedge \frac{\omega^{n-2}}{(n-2)!} \\
& =\sum_{\alpha, \beta, j, k} \Theta_{\alpha \alpha j k} \bar{\Theta}_{\beta \beta j k}-r\left|\Theta_{\alpha \beta j k}\right|^{2} \\
& =-r \sum_{\alpha \neq \beta, j, k}\left|\Theta_{\alpha \beta j k}\right|^{2}+\sum_{j, k}\left(\sum_{\alpha, \beta} \Theta_{\alpha \alpha j k} \bar{\Theta}_{\beta \beta j k}-r \sum_{\alpha}\left|\Theta_{\alpha \alpha j k}\right|^{2}\right) \\
& =-r \sum_{\alpha \neq \beta, j, k}\left|\Theta_{\alpha \beta j k}\right|^{2}-\frac{1}{2} \sum_{\alpha, \beta, j, k}\left|\Theta_{\alpha \alpha j k}-\Theta_{\beta \beta j k}\right|^{2} \leq 0
\end{aligned}
$$

This proves the expected inequality. Moreover, the equality holds if and only if we have

$$
\Theta_{\alpha \beta j k}=0 \quad \text { for } \quad \alpha \neq \beta, \quad \Theta_{\alpha \alpha j k}=\gamma_{j k} \quad \text { for all } \alpha
$$

where $\gamma=i \sum_{j, k} \gamma_{j k} d z_{j} \wedge d \bar{z}_{k}$ is a (1,1)-form (take e.g., $\gamma_{j k}=\Theta_{11 j k}$). Hence $\Theta_{E, h}=\gamma \otimes \operatorname{Id}_{E}$. By taking the trace with respect to E in this last equality, we get $c_{1}(E)_{h}=r \gamma$. Therefore the equality occurs if and only if

$$
\Theta_{E, h}=\frac{1}{r} c_{1}(E)_{h} \otimes \operatorname{Id}_{E}
$$

Corollary 1. Let (E, h) be a Hermite-Einstein vector bundle with $c_{1}(E)=0$ and $c_{2}(E)=0$. Then E is unitary flat for some hermitian metric $h^{\prime}=h e^{-\varphi}$.

Proof. By the assumption $c_{1}(E)=0$, we can write $c_{1}(E)_{h}=\frac{i}{2 \pi} \partial \bar{\partial} \psi$ for some global function ψ on X. The equality case of the Kobayashi-Lübke inequality yields

$$
\Theta_{E, h e^{\psi / r}}=\Theta_{E, h}-\frac{1}{r} \frac{i}{2 \pi} \partial \bar{\partial} \psi \otimes \operatorname{Id}_{E}=0
$$

Corollary 2. Let X be a compact Kähler manifold with $c_{1}(X)=c_{2}(X)=0$. Then X is a finite unramified quotient of a torus.
Proof. By the Aubin-Calabi-Yau theorem, X admits a Ricci-flat Kähler metric ω. Since $\operatorname{Ricci}(\omega)=\operatorname{Tr}_{\omega} \Theta_{\omega}\left(T_{X}\right)$, we see that $\left(T_{X}, \omega\right)$ is a Hermite-Einstein vector bundle, and $c_{1}\left(T_{X}\right)_{\omega}=$ $\operatorname{Ricci}(\omega)=0$. By the Kobayashi-Lübke inequality, we conclude that $\left(T_{X}, \omega\right)$ is unitary flat, given by a unitary representation $\pi_{1}(X) \rightarrow U(n)$. Let \tilde{X} be the universal covering of X and $\widetilde{\omega}$ the induced metric. Then $\left(T_{\widetilde{X}}, \widetilde{\omega}\right)$ is a trivial vector bundle equipped with a flat metric. Let $\left(\xi_{1}, \ldots, \xi_{n}\right)$ be an orthonormal parallel frame of T_{X}. Since $\nabla \xi_{j}=0$, we conclude that $d \xi_{j}^{\star}=0$, and it is easy to infer from this that $\left[\xi_{j}, \xi_{k}\right]=0$. The flow of each vector field $\sum \lambda_{j} \xi_{j}$ is defined for all times (this follows from the fact the length of a trajectory is proportional to the time, and $\widetilde{\omega}$ is complete). Hence we get an action of \mathbb{C}^{n} on \widetilde{X}, and it follows easily that $(\widetilde{X}, \widetilde{\omega}) \simeq\left(\mathbb{C}^{n}\right.$, can $)$. Now, $\pi_{1}(X)$ acts by isometries on this \mathbb{C}^{n}. The classification of subgroups of affine transformations acting freely (and with compact quotient) shows that $\pi_{1}(X)$ must be a semi-direct product of a finite group of isometries by a group of translations associated to a lattice $\Lambda \subset \mathbb{C}^{n}$. Hence there is an exact sequence

$$
0 \longrightarrow \Lambda \longrightarrow \pi_{1}(X) \longrightarrow G \longrightarrow 0
$$

where G is a finite group of isometries. It follows that there is a finite unramified covering map $\mathbb{C}^{n} / \Lambda \rightarrow \widetilde{X} / \pi_{1}(X) \simeq X$ of X by a torus.

We now discuss the special case of the tangent bundle T_{X} in case (X, ω) is a compact Kähler-Einstein manifold. The Kähler-Einstein condition means that $\operatorname{Ricci}(\omega)=\lambda \omega$ for some real constant λ, i.e., $\operatorname{Tr}_{\omega} \Theta_{\omega}\left(T_{X}\right)=\lambda \operatorname{Id}_{T_{X}}$. In particular, $\left(T_{X}, \omega\right)$ is a Hermite-Einstein vector bundle. Here, however, the coefficients $\left(\Theta_{\alpha \beta j k}\right)_{1 \leq \alpha, \beta, j, k \leq n}$ of the curvature tensor $\Theta_{\omega}\left(T_{X}\right)$ satisfy the additional symmetry relations

$$
\Theta_{\alpha \beta j k}=\Theta_{j \beta \alpha k}=\Theta_{\alpha k j \beta}=\Theta_{j k \alpha \beta} .
$$

These relations follow easily from the identity $\Theta_{\alpha \beta j k}=-\partial^{2} \omega_{\alpha \beta} / \partial z_{j} \partial \bar{z}_{k}$ in normal coordinates, when we apply the Kähler condition $\partial \omega_{\alpha \beta} / \partial z_{j}=\partial \omega_{j \beta} / \partial z_{\alpha}$. It follows that the Chern forms satisfy a slightly stronger inequality than the general inequality valid for Hermite-Einstein bundles. In fact $\left(T_{X}, \omega\right)$ satisfies a similar inequality where the rank $r=n$ is replaced by $n+1$.

Guggenheimer-Yau inequality. Let $\left(T_{X}, \omega\right)$ be a compact n-dimensional Kähler-Einstein manifold, with constant $\lambda \in \mathbb{R}$. If $\lambda=0$, then $c_{2}\left(T_{X}\right)_{\omega} \wedge \omega^{n-2} \geq 0$. If $\lambda \neq 0$, we have the inequality

$$
\left[n c_{1}(X)^{2}-(2 n+2) c_{2}(X)\right] \cdot\left(\lambda c_{1}(X)\right)^{n-2} \leq 0,
$$

and the equality also holds pointwise if we replace the Chern classes by the Chern forms $c_{k}\left(T_{X}\right)_{\omega}$. The equality occurs in the following cases:
(i) If $\lambda=0$, then (X, ω) is a finite unramified quotient of a torus.
(ii) If $\lambda>0$, then $(X, \omega) \simeq\left(\mathbb{P}^{n}\right.$, Fubini Study $)$.
(iii) If $\lambda<0$, then $(X, \omega) \simeq\left(\mathbb{B}_{n} / \Gamma\right.$, Poincaré metric), i.e. X is a compact unramified quotient of the ball in \mathbb{C}^{n}.

Corollary (Bogomolov-Miyaoka-Yau). Let X be a surface of general type with K_{X} ample. Then there is an inequality $c_{1}(X)^{2} \leq 3 c_{2}(X)$, and the equality occurs if and only if X is a quotient of the ball \mathbb{B}_{2}.

Miyaoka has shown that the inequality holds in fact as soon as X is a surface with general type.
Proof. As in the proof of the Kobayashi-Lübke inequality, we find

$$
n c_{1}\left(T_{X}\right)_{\omega}^{2}-(2 n+2) c_{2}\left(T_{X}\right)_{\omega}=\sum_{\alpha, \beta}-\Theta_{\alpha \alpha} \wedge \Theta_{\beta \beta}+(n+1) \Theta_{\alpha \beta} \wedge \Theta_{\beta \alpha}
$$

Taking the wedge product with $\omega^{n-2} /(n-2)$!, we get

$$
\begin{aligned}
& 2\left[n c_{1}\left(T_{X}\right)_{\omega}^{2}-(2 n+2) c_{2}\left(T_{X}\right)_{\omega}\right] \wedge \frac{\omega^{n-2}}{(n-2)!} \\
& \quad=\sum_{\alpha, \beta, j, k}-\left(\Theta_{\alpha \alpha j j} \Theta_{\beta \beta k k}-\Theta_{\alpha \alpha j k} \Theta_{\beta \beta k j}\right)+(n+1)\left(\Theta_{\alpha \beta j j} \Theta_{\beta \alpha k k}-\Theta_{\alpha \beta j k} \Theta_{\beta \alpha k j}\right)
\end{aligned}
$$

If we had the factor $r=n$ instead of $(n+1)$ in the right hand side, the terms in $j j$ and $k k$ would cancel (as they did before). Hence we find

$$
\begin{aligned}
2\left[n c_{1}\left(T_{X}\right)_{\omega}^{2}\right. & \left.-(2 n+2) c_{2}\left(T_{X}\right)_{\omega}\right] \wedge \frac{\omega^{n-2}}{(n-2)!} \\
& =\sum_{\alpha, \beta, j, k} \Theta_{\alpha \alpha j k} \Theta_{\beta \beta k j}+\Theta_{\alpha \beta j j} \Theta_{\beta \alpha k k}-(n+1) \Theta_{\alpha \beta j k} \Theta_{\beta \alpha k j} \\
& =\sum_{\alpha, \beta, j, k} 2 \Theta_{\alpha \alpha j k} \Theta_{\beta \beta k j}-(n+1) \Theta_{\alpha \beta j k} \Theta_{\beta \alpha k j} .
\end{aligned}
$$

Here, the symmetry relation (\star) was used in order to obtain the equality of the summation of the first two terms. Using also the hermitian symmetry relation, our sum Σ can be rewritten as

$$
\begin{aligned}
\Sigma= & -\sum_{\alpha, \beta, j, k}\left|\Theta_{\alpha \alpha j k}-\Theta_{\beta \beta j k}\right|^{2}-(n+1)\left|\Theta_{\alpha \beta j k}\right|^{2}+2 n \sum_{\alpha, j, k}\left|\Theta_{\alpha \alpha j k}\right|^{2} \\
= & -\sum_{\alpha, \beta, j, k}\left|\Theta_{\alpha \alpha j k}-\Theta_{\beta \beta j k}\right|^{2}-(n+1) \sum_{\alpha, \beta, j, k, \text { pairwise } \neq}\left|\Theta_{\alpha \beta j k}\right|^{2} \\
& -(n+1)\left[8 \sum_{\alpha \neq j<k \neq \alpha}\left|\Theta_{\alpha \alpha j k}\right|^{2}+4 \sum_{\alpha \neq j}\left|\Theta_{\alpha \alpha \alpha j}\right|^{2}+4 \sum_{\alpha<j}\left|\Theta_{\alpha \alpha j j}\right|^{2}+\sum_{\alpha}\left|\Theta_{\alpha \alpha \alpha \alpha}\right|^{2}\right] \\
& +2 n\left[2 \sum_{\alpha \neq j<k \neq \alpha}\left|\Theta_{\alpha \alpha j k}\right|^{2}+2 \sum_{\alpha \neq j}\left|\Theta_{\alpha \alpha \alpha j}\right|^{2}+2 \sum_{\alpha<j}\left|\Theta_{\alpha \alpha j j}\right|^{2}+\sum_{\alpha}\left|\Theta_{\alpha \alpha \alpha \alpha}\right|^{2}\right] \\
& -\sum_{\alpha \neq \beta, j, k}\left|\Theta_{\alpha \alpha j k}-\Theta_{\beta \beta j k}\right|^{2}-(n+1) \sum_{\alpha, \beta, j, k, \text { pairwise } \neq}\left|\Theta_{\alpha \beta j k}\right|^{2} \\
& -(4 n+8) \sum_{\alpha \neq j<k \neq \alpha}\left|\Theta_{\alpha \alpha j k}\right|^{2}-4 \sum_{\alpha \neq j}\left|\Theta_{\alpha \alpha \alpha j}\right|^{2}-4 \sum_{\alpha<j}\left|\Theta_{\alpha \alpha j j}\right|^{2} \\
& +(n-1) \sum_{\alpha}\left|\Theta_{\alpha \alpha \alpha \alpha}\right|^{2} .
\end{aligned}
$$

All terms are negative except the last one. We try to absorb this term in the summations involving the coefficients $\Theta_{\alpha \alpha j j}$. This gives

$$
\begin{aligned}
\Sigma= & -\sum_{\alpha \neq \beta, j \neq k}\left|\Theta_{\alpha \alpha j k}-\Theta_{\beta \beta j k}\right|^{2}-(n+1) \sum_{\alpha, \beta, j, k, \text { pairwise } \neq}\left|\Theta_{\alpha \beta j k}\right|^{2} \\
& -(4 n+8) \sum_{\alpha \neq j<k \neq \alpha}\left|\Theta_{\alpha \alpha j k}\right|^{2}-4 \sum_{\alpha \neq j}\left|\Theta_{\alpha \alpha \alpha j}\right|^{2} \\
& -\sum_{\alpha \neq \beta, j}\left|\Theta_{\alpha \alpha j j}-\Theta_{\beta \beta j j}\right|^{2}-4 \sum_{\alpha<j}\left|\Theta_{\alpha \alpha j j}\right|^{2}+(n-1) \sum_{\alpha}\left|\Theta_{\alpha \alpha \alpha \alpha}\right|^{2} .
\end{aligned}
$$

The last line is equal to

$$
\begin{aligned}
&-\sum_{\alpha \neq \beta \neq j \neq \alpha}\left|\Theta_{\alpha \alpha j j}-\Theta_{\beta \beta j j}\right|^{2}- \\
& \quad-2 \sum_{\alpha \neq \beta}\left|\Theta_{\alpha \alpha \beta \beta}-\Theta_{\beta \beta \beta \beta}\right|^{2} \\
&=-\sum_{\alpha<\beta}\left|\Theta_{\alpha \alpha \beta \beta}\right|^{2}+(n-1) \sum_{\alpha}\left|\Theta_{\alpha \alpha \alpha \alpha}\right|^{2} \\
&-(n-1) \Theta_{\alpha \alpha j j}-\left.\Theta_{\beta \beta j j}\right|^{2} \\
&\left|\Theta_{\alpha \alpha \alpha \alpha}\right|^{2}-8 \sum_{\alpha<\beta}\left|\Theta_{\alpha \alpha \beta \beta}\right|^{2}+2 \sum_{\alpha \neq \beta} \Theta_{\alpha \alpha \beta \beta} \bar{\Theta}_{\beta \beta \beta \beta}+\bar{\Theta}_{\alpha \alpha \beta \beta} \Theta_{\beta \beta \beta \beta} \\
&=-\sum_{\alpha \neq \beta \neq j \neq \alpha}\left|\Theta_{\alpha \alpha j j}-\Theta_{\beta \beta j j}\right|^{2}-\sum_{\alpha \neq \beta}\left|\Theta_{\alpha \alpha \alpha \alpha}-2 \Theta_{\alpha \alpha \beta \beta}\right|^{2} .
\end{aligned}
$$

Therefore we find

$$
\begin{aligned}
\Sigma= & -\sum_{\alpha \neq \beta, j \neq k}\left|\Theta_{\alpha \alpha j k}-\Theta_{\beta \beta j k}\right|^{2}-(n+1) \sum_{\alpha, \beta, j, k, \text { pairwise } \neq}\left|\Theta_{\alpha \beta j k}\right|^{2} \\
& -(4 n+8) \sum_{\alpha \neq j<k \neq \alpha}\left|\Theta_{\alpha \alpha j k}\right|^{2}-4 \sum_{\alpha \neq j}\left|\Theta_{\alpha \alpha \alpha j}\right|^{2} \\
& -\sum_{\alpha \neq \beta \neq j \neq \alpha}\left|\Theta_{\alpha \alpha j j}-\Theta_{\beta \beta j j}\right|^{2}-\sum_{\alpha \neq \beta}\left|\Theta_{\alpha \alpha \alpha \alpha}-2 \Theta_{\alpha \alpha \beta \beta}\right|^{2} .
\end{aligned}
$$

This proves the expected inequality $\Sigma \leq 0$. Moreover, we have $\Sigma=0$ if and only if there is a scalar μ such that

$$
\Theta_{\alpha \alpha \beta \beta}=\Theta_{\alpha \beta \beta \alpha}=\Theta_{\alpha \beta \alpha \beta}=\mu \text { for } \alpha \neq \beta, \quad \Theta_{\alpha \alpha \alpha \alpha}=2 \mu,
$$

and all other coefficients $\Theta_{\alpha \beta j k}$ are zero. By taking the trace $\sum_{j} \Theta_{\alpha \alpha j j}$, we get $\lambda=(n+1) \mu$. We thus obtain that the hermitian form associated to the curvature tensor is
($\star \star$)

$$
\begin{aligned}
\left\langle\Theta_{\omega}\left(T_{X}\right)(\xi \otimes \eta), \xi \otimes \eta\right\rangle_{\omega} & =\frac{\lambda}{n+1} \sum_{\alpha, \beta} \xi_{\alpha} \eta_{\beta} \bar{\xi}_{\alpha} \bar{\eta}_{\beta}+\xi_{\alpha} \eta_{\beta} \bar{\xi}_{\beta} \bar{\eta}_{\alpha} \\
& =\frac{\lambda}{n+1}\left(|\xi|^{2}|\eta|^{2}+|\langle\xi, \eta\rangle|^{2}\right)
\end{aligned}
$$

for all $\xi, \eta \in T_{X}$. When $\lambda=0$, the curvature tensor vanishes identically and we have already seen that X is a finite unramified quotient of a torus. Assume from now on that $\lambda \neq 0$. The formula ($(\star \star$) shows that the curvature tensor is constant and coincides with the curvature tensor of $\mathbb{P}^{n}($ case $\lambda>0)$, or of the ball $\mathbb{B}_{n}($ case $\lambda<0)$, relatively to the canonical metrics on these spaces. By a well-known result from the theory of hermitian symmetric spaces*, it follows that (X, ω) is locally isometric to \mathbb{P}^{n} (resp. \mathbb{B}_{n}). Since the universal covering \widetilde{X} is a complete and locally symmetric hermitian manifold, we conclude that $\widetilde{X} \simeq \mathbb{P}^{n}$, resp. $\widetilde{X} \simeq \mathbb{B}^{n}$. In the case $\lambda>0, X$ is a Fano manifold, thus X is simply connected and $X=\widetilde{X}$. The proof is complete.

To compute the curvature of \mathbb{P}^{n} and \mathbb{B}^{n}, we use the fact that the canonical metric is

$$
\omega=\frac{i}{2 \pi} \partial \bar{\partial} \log \left(1+|z|^{2}\right) \quad \text { on } \mathbb{P}^{n}, \quad \text { resp. } \omega=-\frac{i}{2 \pi} \partial \bar{\partial} \log \left(1-|z|^{2}\right) \quad \text { on } \mathbb{B}^{n},
$$

with respect to the non homogeneous coordinates on \mathbb{P}^{n}. We thus get

$$
\omega=\frac{i}{2 \pi}\left(\frac{d z \otimes d \bar{z}}{1+|z|^{2}}-\frac{|\langle d z, z\rangle|^{2}}{\left(1+|z|^{2}\right)^{2}}\right), \quad \text { resp. } \quad \omega=\frac{i}{2 \pi}\left(\frac{d z \otimes d \bar{z}}{1-|z|^{2}}+\frac{|\langle d z, z\rangle|^{2}}{\left(1-|z|^{2}\right)^{2}}\right)
$$

By computing the derivatives $\Theta_{\alpha \beta j k}=-\partial^{2} \omega_{\alpha \beta} / \partial z_{j} \partial \bar{z}_{k}$ at $z=0$, we easily see that the curvature is given by $(\star \star)$ with $\lambda= \pm(n+1)$. The equality also holds at any other point by the homogeneity of \mathbb{P}^{n} and \mathbb{B}^{n}.

Observe that the riemannian exponential map exp : $T_{X, 0} \rightarrow X$ at the origin of $\mathbb{C}^{n} \subset \mathbb{P}^{n}$ or \mathbb{B}^{n} is unitary invariant. It follows that the holomorphic part h of the Taylor expansion of \exp at 0 is unitary invariant. This invariance forces h to coincide with the identity map in the standard coordinates of \mathbb{P}^{n} and \mathbb{B}^{n}. From this observation, it is not difficult to justify intuitively the local isometry statement used above. In fact let X be a hermitian manifold whose curvature tensor is given by $(\star \star), \lambda \neq 0$. Then ω is proportional to $c_{1}\left(T_{X}\right)_{\omega}$ and so ω is a Kähler-Einstein metric. Since the Kähler-Einstein equation is (nonlinear) elliptic with real analytic coefficients in terms of any real analytic Kähler form, it follows that ω is real analytic, and so is the exponential map. Fix a point $x_{0} \in X$ and let $h: \mathbb{C}^{n} \simeq T_{X, x_{0}} \rightarrow X$ be the holomorphic part of the Taylor expansion of \exp at the origin. Then h must provide the holomorphic coordinates we are looking for, i.e. $h^{\star} \omega$ must coincide with the metric of \mathbb{P}^{n} (resp. \mathbb{B}^{n}) in a neighborhood of the origin.

[^0]
[^0]: * See for example, F. Tricerri et L. Vanhecke, Variétés riemanniennes dont le tenseur de courbure est celui d'un espace symétrique riemannien irréductible, C. R. Acad. Sc. Paris, 302 (1986), 233-235.

