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On Calabi’s conjecture for complex surfaces with
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It is known by classification theory of complex surfaces that
CP?# nCP?(0 < n < 8)and CP! x CP* are only compact differential 4-manifolds
on which there is a complex structure with positive first Chern class. In [TY], the
authors proved that for any n between 3 and 8, there is a compact complex surface
M diffeomorphic to CP? # nCP? such that C,(M) > 0 and M admits a Kéhler-
Einstein metric. This paper is the continuation of my joint work with professor
S.T. Yau [TY]. The main result of this paper is the following.

Main theorem. Any compact complex surface M with C,(M)>0 admits
a Kahler-Einstein metric if Lie (Aut(M)) is reductive.

This theorem solves one of Calabi’s conjectures in case of complex surfaces. The
conjecture says that there is a Kédhler-Einstein metric on any compact Kéhler
manifold with positive first Chern class and without holomorphic vector field. Our
proof of the above theorem is based on a partial C%-estimate of the solutions of
some complex Monge-Ampére equations we will develop in this paper (Theorem
2.2, Theorem 5.1) and the previous work of the author in [T1] and the joint work
with S.T. Yau in [TY].

Let M be a compact Kéhler manifold with positive first Chern class and g be
a Kiéhler metric with its associated Kéhler class w, in C,(M). Then, the existence of
a Kihler-Einstein metric on M is equivalent to the solvability of the following
complex Monge-Ampére equations

<wg+ > "laa'q;) = e/ "l

2n

/1 _
(cong 3 68¢>>0

i

on M 0.1),

where n = dim:M, e C*(M, R*),0 < t £ 1 and fis a smooth function determined
by equations

/1
Ric(g) — w, = -2~7—T—~66f and [e/wj= [wj=C (M)
M M
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Since Yau’s solution of Calabi’s conjecture for Kédhler manifolds with vanishing
first Chern class, it has been known that the solvability of (0.1), for 0 <t < 1 would
follow from an a prior C°-estimate of the solutions of (0.1),. The difficulty is that
such a C%estimate does not exist in general due to those obstructions found by
Matsushima [Ma], Futaki [Fu]. In [T1], the author reduces such a C’-estimate to
some integral bound on the solutions of (0.1),. There are two ways of obtaining
such an integral bound on the solutions. One of them is to evaluate the optimal
constant of some linearized versions of Moser-Trudinger inequalities for almost
plurisubharmonic functions on M as the author did in [T1]. Another is to obtain
more informations about the solutions of (0.1), and relate the above integral bound
of the solutions to the geometry on M, specially, the geometry of plurianticanonical
divisors in M. This second approach is our major motivation in this paper to
develop an a prior partial C%estimate for the solutions of (0.1), in case of complex
surfaces.

Our partial C%estimate for (0.1), is based on the following observation. The
solvability of (0.1), for 0 <t £ 1 does not depend on the choice of a particular
Kihler metric g, that is, there is some “gauge” group of the complex Monge-
Ampére equations (0.1),. The author’s belief is that such a “gauge” group should
play a role in obtaining the C°-estimate for the solutions of (0.1),. To understand
this “gauge” group, we first recall some natural classes of Kdhler metric with its
Kihler form in C,(M). Note that the anticanonical line bundle K" is ample.
Therefore, by Kodaira’s embedding theorem, for m sufficiently large, the plurian-
ticanonical line bundle Kj! is very ample, that is, any basis of the group
H°(M, Ky™) gives an embedding of M into some projective space CP"™, where
N, + 1 = dim H®(M, K;™). Then we have a collection C,, of Kéhler metrics

consisting of the restrictions of the —multiple of Fubini-Study metric on CP*" to
m

the embeddings of M induced by the bases of H°(M, K5™). These Kahler metrics
are parametrized by the group PGL(N,, + 1). Thus one can consider PGL(N,, + 1)
for m large as a “gauge” group of (0.1),. Now let us see how this group plays a role in
our partial C°-estimate for solutions of (0.1),. The differences of the metrics in €,
from the fixed Kihler one g provide a natural set %, of smooth functions i in

1
C*(M, R") with v, + 5 80y > 0 on M and supy = 0. One can regard the
n M

functions in C/, as the generalized polynomials on M of degree m. For instance, if
M = CP", then the sections in H°(M, K;™) correspond one-to-one to the homo-
geneous polynomials of degree m and any function in %, is determined by a basis of
the linear space of all homogeneous m-polynomials. We now propose the following
estimate for the solution of (0.1),: there is a m > 0, depending only on the geometry
of M, such that for any solution ¢ of (0.1),, there is a function ¥ in %,, satisfying

lo —supo — '//“CO(M) £C 0.2)
M

where C is a constant independent of o, ¢. In particular, (0.2) implies that for any
solution ¢ of (0.1),, there is a subvariety ¥, = M away from which ¢ — supy ¢ is
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uniformly bounded and the degree ¥, with respect to K ;' is bounded independent

of ¢. Therefore, we can call (0.2) a partial C%-estimate for (0.1),.
We further observe (cf. Lemma 2.2) that (0.2) is equivalent to the following

Nm
log< ISy Hé,) 2C (0.3)
v=0

where C’ is a constant depending only on the geometry of M, the metric g, is given

< —1
2n

by its Kahler form o, + 339, | "I, is the hermitian metric of K™ with

Ve
2n
with respect to the inner product induced by g, and || - |,,. To prove (0.3), it suffices
to construct plurianticanonical sections on M with its norm bounded from below
at any assigned point. In this paper, it is done for ¢t = 1 and complex surfaces, i.e.,
n = 2, by using L2-estimate for d-operators, Gromov’s compactness theorem and
Uhlenbeck’s theory for Yang-Mills connections (cf. Theorem 2.2, 5.1). Moreover,
we can take m in either (0.2) or (0.3) to be less than 7 for t = 1 and on compact
complex surfaces with positive first Chern class. In general, we believe that the
estimate (0.3) is also true on higher dimensional Kédhler manifolds with positive
first Chern class. Note that the group PGL(N,, + 1) contains the automorphism
group Aut(M) of M. The obstructions of Matsushima and Futaki are from this

latter group.

Next, we assume that M is always a complex surface with positive first Chern
class. In order to prove the existence of Kahler-Einstein metric on M, we need to
evaluate the supremum «,(M) of those exponents a such that the function
exp( — ay) for  in €, are uniformly L!-bounded, where m < 6 appears in the
partial C%estimate (0.2). If such an «,, (M) is strictly larger than 2/3, then by [T1]
and the partial C%estimate (0.2) for solutions of (0.1),, there is a Kédhler-Einstein
metric on M. But sometimes the number «,,(M) could be exactly 2/3, then we need
to further study the generalized polynomial functions i in the partial C°-estimate
(0.2) for the solutions of (0.1), and improve the main theorem in [T1] (cf. section
2 for details). All these lead to the proof of our main theorem stated above.

The organization of this paper is as follows. In section 1, we give some prelimi-
nary discussions and reduce the proof of our main theorem to some a prior
CP-estimate for the solutions of complex Monge-Ampére equations. The argu-
ments here are standard. In section 2, we prove our main theorem under the
assumption of Theorem 2.2 (strong partial C°-estimate). Some interesting improve-
ments of the main result in [T1] are given. In sections 3 and 4, we begin our first
step of the proof of the strong CC-estimate, i.e., Theorem 2.2. Gromov’s compact-
ness theorem and Uhlenbeck’s theory for Yang-Mills connections are applied for
this purpose. In section 5, we use Hémmander’s L2-estimate for 6_-operators on
plurianticanonical line bundles to prove a weaker version of Theorem 2.2, ie.,
partial C°%-estimate stated in either (0.2) or (0.3). We also apply LZ-estimate for
o-operators to making reductions of the singular points of some 2-dimensional
Kahler-Einstein orbifolds. In particular, we prove that if a Kdhler-Einstein orbifold

w, + d0¢p as its curvature form and {ST"}, <.y, is an orthonormal basis
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is the limit of some sequence of Kihler-Einstein surfaces with positive scalar
curvature, then it has at most some Hirzebruch-Jung singularities of special type
besides rational double points (Theorem 5.2). In sections 6, 7, by studying the
plurianticanonical divisors of some rational surfaces, we complete the proof of
Theorem 2.2 (strong partial C%estimate). There are two appendices, in which we
prove one lemma (Lemma 2.4) and one proposition (Proposition 2.1) stated in
section 2. The lemma concerns the singularities of plurianticanonical divisors on
a complex surface with positive first Chern class and diffeomorphic to either

CP? # SCP? or CP? # 6CP2. The proposition should be a classical and elementary
result. In the course of the proof of our main theorem, we also obtain some results
on the degeneration of Kéhler-Einstein surfaces (Theorem 7.1). We refer readers to
the end of section 7 for details.

I would like to specially thank Professor S.T. Yau for his continuous encouragement and
stimulating conversations during the course of this work. Actually, he brought Gromov’s
compactness theorem and Uhlenbeck’s theory to my attention more than two years ago. I would
also like to thank Professor R. Schoen from whom the author learned his solution of Yamabi
problem in U.C.S.D. His work on Yamabi problem has indefinite influence in my program for the
proof of the main theorem here. I would also be grateful to Professor K.C. Chang and Professor
W. Ding for some stimulating conversations. Finally, T would also like to thank Harvard
University and Institute for Advanced Study for their generous financial support during the
course of this work.

1. Preliminaries

Let M be a complex surface with positive first Chern class C,(M). It is known
(cf. [GH]) that M is of form either CP! x CP! or CP2 #nCP2(0 < n < 8),ie., the
surface obtained by blowing up CP? at n generic points, where “generic” means
that no three of these points are colinear and no six of them are on the same
quadratic curve. As symmetric spaces, CP! x CP! and CP? admit the standard
invariant metrics. These invariant metrics are Kihler-Einstein metrics. An easy
computation shows that for n = 1 or 2, CP? # nCP? has non-trivial holomorphic
vector fields and the Lie algebra of these holomorphic vector fields is not reductive.
Thus Matsushima’s theorem [Ma] excludes the existence of Kihler-Einstein
metrics on these CP? # nCP? (n = 1, 2). The following theorem is proved in [TY]
by estimating the lower bound of the holomorphic invariant introduced in [T1].

Theorem 1.1. For each integer n between 3 and 8, there is a complex surface M of
Jorm CP? # nCP? such that M admits a Kihler-Einstein metric with positive scalar
curvature.

Remark. By a completely different method, Professor Siu [Si] also proved the
existence of Kéhler-Einstein metrics on CP? # 3CP? and Fermat surface in CP>.
His proof requires that the manifolds considered must have many symmetries,
while ours does not.

Denote by J, the collection of all complex surfaces of form CP? # nCP? with
positive first Chern class, in other words, those complex structures on the under-
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lying differential manifold CP? # nCP? such that the first Chern class is positive.
One can easily prove that for n = 3 or 4, J, consists of only one element, i.e. the one
on which there is a Kihler-Einstein metric constructed in Theorem 1.1. Hence, in
order to prove our main theorem, we may assume that 5 <n < 8.

Lemma 1.1. 3, is connected in the sense that for any M, M’ in 3, there is a family of
{M,}o<ns such that My =M, M, = M', M,€3, and M, depends smoothly on t.

Proof. By induction, we may assume that M, M’ are the surfaces obtained by
blowing up CP? at generic points p,, ..., p,; P1, - - - , Pu, T€spectively and p, = p;
fori=1,...,n— 1. Let D be the union of lines p;p;in CP*for 1 <i,j <n — land
the quadratic curves in CP? passing through five of p,,..., p,—;. CP2\D is
connected. Now it is easy to see how to connect M to M’ smoothly in J,.

Lemma 1.2. For n 2 5, each M in 5, has no non-trivial holomorphic vector field.

Proof. Tt suffices to prove that the identity component Auty(M) of the auto-
morphism group is discrete. It is clear that

Aut,(M) = {6 € Aut(CP?)|o interchanges p,, ..., p,}

where p,, . . ., p, are the blowing-up points of M in CP%. Then the lemma follows
from a straightforward calculation.

We fix a n between 5 and 8 and let M, be the complex surface with
Kaihiler-Einstein metric g, in Theorem 1.1. Then M, is in J,,. In order to prove our
main theorem, we pick an arbitrary smooth family {M, }, <, <, from J,. It suffices to
prove that any M, admits a Kihler-Einstein metric with positive scalar curvature.
We will use the continuous method. Let

I = {te[0, £]|M; admits Kéihler-Einstein metric for ¢’ <t} .

Then I contains 0, in particular, I is nonempty. We need to prove that I is both
open and closed. In this section, we will prove that I is open. The next several
sections are devoted to the proof of the closedness. As in [Y1], [T1], etc., we first
convert the existence of Kihler-Einstein metrics into solvability of some complex
Monge-Amperé equation. Since the entire family {M,} is in J,, there is a smooth
family of Kéhler metrics §, on M, with 0 < ¢ < 1. Let w;, be the associated Kéhler
form of §,, then in local coordinates (z,, z,) of M,

/ 1 2 . 2 .
w; = Y Gurdz; Adz; where g, = ), gudz; ® dz;
Lj=1 Li=1
We choose §, such that its Kdhler form w;, represents the first Chern class of M,.
Then by solving a family of elliptic equations, we can have a smooth family of
functions { f,}o<. < such that

Ric(§,) = w, + Y laa‘f,, [ eldV; =9 —n
t 21.[ o, t

where dV; = w? = w; A w; is the associated volume form of g, and Ric(g,) is the
Ricci form, i.e., in local coordinates (z,, z,), if we denote by (R,;) the Ricci curvature
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tensor, then

o
M

. T
R, ;dz; A dz;
1

Ric(g,) =

i

It is well-known that the existence of Kéhler-Einstein metrics on M, is equi-
valent to the solvability of the following complex Monge-Amperé equation on M,

(cf. [Y1]).
1 \2 _
(wg,—% > 68(p> =l 7w}
— (1.1),
<wg,+ ~2n 66(p>>0

We remark that if (1.1), has a solution ¢,, then the corresponding Kéhler-Einstein
-1
2n
We first prove the openness of I by applying Implicit Function Theorem to the
equation (1.1),.

Lemma 1.3. Let {M,}, I be defined as above. Then I is open.

metric has w; + d0¢ , as its Kihler form.

Proof. Let (1.1), has a solution ¢, . The linearized operator of (1.1), at t = ¢, is
L, =4, —id, ie, for any smooth function v, L, v = 4, v — v, where 4, is the
Laplacian associated to the Kéhler-Einstein metric g, on M, .

By Lemma 1.2 and the standard Bochner’s formula, one can prove that the first
nonzero eigenvalue of 4, is strictly greater than one (cf. [Au]). It follows that the
linearized operator L, is invertible. Then this lemma follows from Implicit Func-
tion Theorem.

Therefore, it suffices to prove that I is closed in the interval [0, 1]. Without
losing the generality, we may assume that [0, 1)e I. By the standard elliptic theory,
to show that 1 € I, it suffices to prove the uniform C3-estimate of the solutions of the
equations (1.1),.

Lemma 1.4. There is a constant C independent of t such that for any solution ¢ of
some equation (1.1),, we have

sup {IV,0l5,(x), | V2ol (x), I V2 olls,(x)} < Csup {lo()|}

zeM, zeM,

where V, is the gradient with respect to the metric §, and |-|; is the norm induced by

g

Proof. 1t follows from same computations as the corresponding ones in [Y1].
By this lemma, we only need to prove the uniform C°-estimate of the solutions

of equations (1.1),. This will be done in the following sections. We should mention

that obtaining such an a prior C°-estimate is the hardest part of solving this

conjecture of E. Calabi.
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2. The proof of main theorem

In this section, we will prove our main theorem under the assumption of Theorem
2.2. We postpone the proof of this theorem to the next several sections due to its
length. Basically, this theorem provides us a strong partial C%-estimate of the
solutions of the complex Monge-Amperé equations (1.1),. Let {M,}o<, <, be the
smooth family in J, given in last section, where S < n < 8. Then each M, fort < 1
has a Kihler-Einstein metric g, with Ric(g,) = w,. It follows that each equation
(1.1), for ¢ < 1 has a solution ¢,. Note that such a solution ¢, is unique by Bando
and Mabuchi’s uniqueness theorem [BM]. By the discussions in last section, in
order to prove the main theorem, it suffices to show the uniform C°-estimate of
those solutions ¢,.

In [T1], the author reduces the C°-estimate of the solution ¢, to the evaluation
of some integral of ¢,. By evaluating this integral, the author proves in [T1] the
existence of Kihler-Einstein metrics on Fermat hypersurfaces in CP"*! of degree
n or n+ 1 and the authors in [TY] prove Theorem 1.1. Here we develop an
effective method to evaluate the integral posed in [T1] for the C%-estimate of o,.
We start with the following theorem, which is essentially the main theorem proved
in [T1].

Theorem 2.1. Let {M,} be the family in I, given as above. Then the Kahler manifold
M = M, admits a Kahler-Einstein metric with positive scalar curvature if and only if
one of the following holds.

(1) There are constants ¢, C > 0 and a subsequence {t;}, in the interval [0, 1) with
lim; . ., t; = 1, such that for all i and any solution @, of (1.1),,

j‘ e—(2/3+6)(¢r,—539¢t,)dl/gl <cC @.1)
Mr‘ n ]
(2) There are constants ¢, C > 0 and a subsequence {t;}, , in the interval [0, 1) with
lim;, ,, t; = 1, such that for all i and any solution ¢, of (1.1),,

—infe, £ (2 —¢supe, + C 2.2)
M ' M,

t t,

and moreover for any A < %, there is a constant C(4), depending only on A, such

that J ;
e (<Pr,--s;l‘wr,->dVgh < C() 2.3)
M,‘

Proof. Consider complex Monge-Amper¢ equations

/1 \?
(wgl + 66(p> =el 7]

2n

<w5,+ > _168—¢>>0

2n

(2.4),s

where s < 1. By Lemma 1.2 and uniqueness theorem in [BM], the solution of
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equation (1.1), for each ¢ is unique. Thus by the same argument as in [BM] for the
proof of the uniqueness, one can produce a family {¢, ;}o<,,.; of smooth func-
tions, such that the function ¢, ; solves the equation (2.4), ; and lim,_; ¢, s = o,.
Thus in case (1), the theorem follows from the proof of the main theorem in [T1].

2 . .
¢ and —, then as in [T1], by the concavity

In the case (2), choose A between 3, 3

of the logarithm function, we have
1-4
supp, S —— | (—¢@)dV, +C'(4) (2.5)
Ml. l Mt. l

where C’(4) is a constant depending only on 4. Combining this with (2.2), we obtain
the uniform C%estimate of the solution ¢,. The theorem follows. We refer readers
to [T1] for more details.

By this theorem, we see that, to prove the main theorem, it suffices to find
a subsequence {t;} having the estimates either (2.1) or (2.2), (2.3).

For t <1, we choose an orthonormal basis {S,s}o<s<n, Of the group
H°(M,, K%,) with respect to the metric g,, whenm = 1 and N,, + 1is the dimension
of H*(M,, K’%,). By Kodaira’s embedding theorem, those bases {Skg }o <5< », define
embeddings ®{t, m) from M, into CP™ for m large. In fact, when n =5, 6, the
embeddings @(t, 1) are well-defined.

Theorem 2.2. (Strong partial C%-estimate). There are constants c(n, m) > 0, depend-
ing only on n, m, and a subsequence {t;} in the interval [0, 1) with lim; ,  t; = 1, such
that for m =6k (k= 1) incasen=35,6,and m =2k (k =z 1) in case n =17, 8,

inf { sz 1S s llj,,(X)} 2 c(n, m) (2.6)

xeM, Lg=0

where || - ||, is the norm on the line bundle K™ induced by the metric g,.

Remark. In case n = 5, 6,7, the estimate (2.6) should also hold for m = 1. This can
be used to simplify the proof of our main theorem, but the simplification is not
substantial.

The proof of Theorem 2.2 will be given in the following sections. We will first
prove a weak version of this theorem, i.e., Theorem 5.1, in §5. Then we deduce
Theorem 2.2 from that weak version.

Let us now see the implications of Theorem 2.2. For each 1€[0, 1), we further
choose an orthonormal basis {§';}o<s<n of HO(M,, K5™) with respect to the
metric §,. Such a basis gives an embedding ¥(z, m) of M, into CP"™ whenever the
basis {S,;} does. Two embeddings ¥(t, m), ®(t, m) are different by an auto-
morphism o(t, m) in CP*~, ie. o(t,m)e PGL(N,,+,) and

(t,m) = o(t,m) - ¥(t, m) 27

By changing the orthonormal bases {S%;}o<p<n » {Shslo<psn, if necessary, we
may assume that each o(t, m) is represented by a diagonal matrix diag(4;())o <; <,
with0< i) ... S, 0O =1

The following lemma is actually an observation on which the whole proof is
based.
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Lemma 2.1. Let M,, ¢,, {Shslo<sp<n,» {Ststo<p<n, be given as above, where t < 1.
Then for m =6k(k = 1) incasen=>5,6 or m =2k (k= 1)in case n=1, 8,

1, [ 1, [ .
I —10g< Y 1S Hf,) + ~10g< Y 1A @OF 185 3,) +a® (28
m 5=0 m 5=0

where a(t) is a constant depending only on t.

Proof. We remark that under the assumption on m, the group H°(M,, K ;™) is free
of base point. Thus the left-handed side of (2.8) is a well-defined function on M,. We
denote it by ¢;. One can check that ¢; satisfies the equation

Vz—laa—tp.’

s

Wy, = Wy, +

On the other hand, the solution ¢, of (1.1), also satisfies the same equation. The
lemma follows.

From now on, in this section, we fix the subsequence {t;} in Theorem 2.2. For
simplicity, in the following, we will replace t; by i whenever ¢; appear as subscripts
or superscripts. The following lemma is a corollary of Theorem 2.2 and also
explains why we call (2.6) in Theorem 2.2 “partial C®-estimate”.

Lemma 2.2. Let {(M,, g;)} be the subsequence of Kahler-Einstein manifolds given in
Theorem 2.2. Definev==6incasen=15,6 and v=2 in case n = 7, 8. Then there is
a constant C independent of i, such that for any solution ¢, of (1.1),,

<C (2.9)

1 Ny . ~,
Sup|@; — sup@; — _103< Z |/1p(l)|2 1S mp ”g2,>
M, 4 g=0

M

'

where {A4(i)}o< p< n, are defined by those automorphisms a(t;, v) in (2.7).

Proof. Note that both metrics g, (resp. functions f;) converge to a smooth metric
g (resp. a smooth function f'} equal to g,(resp. f;) with t = 1. Then the lemma follows
from Lemma 2.1 and Theorem 2.2.

Remark. This lemma implies that the normalizations ¢, — supy, ¢; are uniformly
bounded away from some subvarieties in M;. One should be able to derive from it
that @, — supy, @; either are uniformly bounded or converge to a function G on
M\D, where M =lim M, and D is a subvariety of M contained in anticanonical

/—1 _ \?
divisors, such that G satisfies the equation (wg + 00 G) = 0 outside D and

has logarithmic singularity along D. This singular function G can be regarded as
a Green function of the complex Monge-Amperé operator. This Green function
must impose some analytic structures on M. Hopefully, by studying these struc-
tures, one can determine when ¢, converge to a bounded function on M.

Let v be defined as in the above lemma. We define rational integrals I(«, i) as
follows,

N, - —afv
Hoi)= | < DI !Ig,(2)> dv;,(2) (2.10)
M; \p=0
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Then by Lemma 2.2, we see that the estimates (2.1) and (2.3) are equivalent to
I{o, i) < C for a = 2/3 + & and 4, respectively. Thus we are bound to estimate the
integrals in (2.10). This will be done in the following lemmas.

Let {§5}0< <, be the limit of the bases {Si;},< <~ as i goes to infinity, Then
this limit is an orthonormal basis of H°(M, K*) with respect to the metric §,
where M = M, for t = 1. By taking the subsequence if necessary, we may assume
that lim; ., ,, 44(i) = 45 = O for each f. Note that Ay,=land 4o < ... S Ay,

Lemma 2.3. We adopt the notations given above. Let N = N,. Then we have the
following estimates,

(i) if n =28, then I(o, i) < C, for any o < 2.
(i) if n =717, then I(a, i) < C, for any a < 3.

Proof. Since the proof for (ii) is identical to that for (i), we only prove (i) here. Put

1 3 S
v, = -log( Y 1250 15 Hi)
v =0

Denote by &; the Kéhler form associated to the metric §;. Then &, + 00y ; define
positive, d-closed, (1.1)-currents w; on M;. When i tends to infinity, we may assume
/1 .
00 log(IS 4|?
——0dlog (ISP
denoted by w/,, where |-| is the absolute value. Now I(x, i) is just the integral
j mie ¥'dV; . By the discussion in §2 of [TY], we have

Fact (1). If z;e M; with lim;_, , z; = ze M and the Lelong number L;(c,, z) £ 1,
then there is a r > 0 independent of i, such that

that ; converge weakly to a positive, d-closed, (1.1)-current

| e ™dV, £C, forany a<1 (2.11)

B,(z;, 57,-)

where B,(z;, ;) is the geodesic ball in M; with radius r and the center at z;. For
more about the Lelong number, one can refer to [Le].

Let D be the zero divisor of §y. If z is either in the complement of D or a point of
D with multiplicity 2, the Lelong number L;(®,, z) < 1. Therefore, we only need to
estimate the integral in (2.11) near those points z;e M, with lim;,, ., z; = z being
a singular point of D with multiplicity = 3.

Since C,(M)? = 1, D has no singular point with the multiplicity greater than 2 if
it is irreducible. It implies that the Lelong number L, (&, z) < 1 at every point z in
M if D is irreducible. So we may write S, = §;-S5. Since C,(M)* = 1, one can
easily derive (2.11) by Fact (1) so long as S} is not colinear to . So we may assume
that §; = S, and both 87, S5 are in H°(M, K;;'). Also by Fact (%), it suffices to
estimate the integral in (2.11) at the singular points of the divisor
{xeM|S'(x) = 0}. Let n;: M;+> CP? n: M+ CP? be the natural projections in-
duced by blowing-ups. Then each m;, (S%) is a sextic curve in CP?, converging to
n*(§ v) = m,(S1)? as i goes to infinity. Now 7,(S}) is an irreducible singular cubic
curve in CP?. Each n, (S;) has only one singular point x, which is either an ordinary
double point or a cusp, and is not one of blowing-up points. Without losing
generality, we may assume that x is a cusp. Let U be a small neighborhood of x in
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CP?, determined later. Then

[ e™av, < C<1 + [—5d ) (2.12)
M, |f |
where f; is the local holomorphic function defining 7, (S S4)in U, dV is the volume
form of the euclidean metric on U and C is a constant depending only on U. We
will always use C to denote a constant independent of i in this proof, although the
quantity of this could be changed in different places. We normalize those f; such
that the limit f = lim, ., , f; exists and defines n*(§ ~)1n U. Choose local coordinates
(z, w) with x = (0, 0) and

f=@ —w (2.13)

where f is the local defining function of the divisor D in U. By holomorphic
transformations of form (z, w)(z + b, + b,w + bw?, w), we may assume that

fi=f+ Y au@®Fw+ Y au()tw

3k+2<12 3k+20212
k%3
=f+fw+/fir (2.14)
where lim; .,  fiy, = 0, lim; ., o, f;zr = 0. Define
1
=40 max {|ay()Tz=3%=27} (2.15)
k+2<12

We denote by J; the integral on the right side of (2.12) and split J; into three parts
Ji1, Jiz, Ji3 as follows,

av

2
j2l* < wl® |f,| *

1zwzs
B |w|dV
e Ifi(W3 ¢, Wz)ila

=t

Jiy =

(2.16)

3 |wB~12%dw A dw A dE A dE
- |w1§§1 (€2 — 17 + w™O(fi(wW>E, w?) + fir (w3 &, w?) >

lerst

By the definition of f;;, fiz and 8;, for i sufficiently large, one can easily see
WS (fiw?E, w?) + firW W) 3 for sl st (217)

It follows that for any fixed w with |w| <6, the holomorphic functions
(E2 — 1) + w™o(fi, + fir) have exactly four distinct zeroes in {|¢] < 1} for all i
moreover, these four zeroes are disjoint from each other by a uniform distance.
Therefore, we conclude that the integral J;; is uniformly bounded independent of
ifor & < 2,1ie., J;; £ C,. Similarly, we also have
Jo= | -‘il—l—:— <C, forany« <§ (2.18)
a2 e, 1A 6

12pz6
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It remains to estimate J;3, which is equal to J,—J;; — J;;. By scaling
(z, w) = (022, 62w), we have
5}0 - 12adV
B |z|j§1 |67 12£(67 2, OFw)|**

Iwi<1

Jia

Put g, = 6 '2f,(6?z, 5?w), then by taking a subsequence, we may assume that g,
converge to a polynomial g. Note that by the expansion of f; in (2.14), we have

g=@*—w+ Y byzw! (2.19)
3k -;21; 12

where b, are constants and at least one of them is nonzero. This new polynomial
g is less singular than the function f. For example, one can compute

dv 11
—— < 4+ 00 foranya<— 2.20
|z|j§1 |g|2a Y 24 ( )
Iwi <1
while
v 10 5§
— > == e
j; e + oo for any a = 5= D (2.21)
WY

Also, the multiplicity of g at any pointin {|z| < 1,|w| < 1} is less than that of fat the
origin. Therefore, by induction we can prove that J;; < C, for a < 2. Case (i) is
proved. The same arguments can be identically applied to case (ii). Then the lemma
is proved.

As a consequence of above lemma and Theorem 2.1, we have

Corollary 2.1. If n =7 or 8, then M admits a Kahler-Einstein metric with positive
scalar curvature.

In order to complete the proof of main theorem, it remains to consider the case
that n = 5 or 6. In fact, by the same arguments in the proof of Lemma 2.3, one can
have analogous estimates of the integrals I{o, i) in (2.10) (cf. Lemma 2.5 in the proof
in the following). Of course, the involved computations are more complicated.
Instead, we give an alternative discussion here.

Proposition 2.1. Let {f;} be a sequence of holomorphic functions on the unit ball
B, = {ze C?||z| < 1} such that lim;_, , = f,f + 0. Let B > 0 be such that the integral
fi<i1f1?2dV is finite, then for any « < B, we have
av dv
| m=lm | —=
|Z|§ilfl i-’w‘zlé_ilf;l

where dV is the standard volume form on C2.

2.22)

Remark. In fact, Lemma 2.3 is a corollary of Proposition 2.1 and some properties
of plurianticanonical divisors. We gave a separated proof because it is much
simpler and transparent. The above proposition should be a classical result. But



On Calabi’s conjecture 113

since I could not find its proof in literature to my limited knowledge, I include
a sketched proof in Appendix 2. Actually, the proof is based on the modification of
the above arguments in that of Lemma 2.3. The key point is how to make induction
in general as we did before. The induction, as well as the proof for the following
lemma, is completed by means of Newton polyhedrons associated to holomorphic
functions (see Appendix 1 for details).

Lemma 2.4. Letn = 5or6and S be a global sectionin H*(M, K 3,%). Then there is an
&> 0, such that (1) if n = 6, we have
2+e

JUSI=797dV; < o0 (2.23)

M

unless the reduced divisor {S = 0} .4 is an anticanonical divisor and the union of three
lines on M intersecting at a common point, where by a line on M, we mean an
irreducible curve of degree 1 with respect to the anticanonical line bundle K 5. (ii) if
n = 5, we also have (2.23) unless either {S = 0} contains a curve with multiplicity 9 or
{S = 0},cq is an anticanonical divisor and the union of two lines and a curve of degree
2 intersecting transversally at a common point,

In order to avoid distracting the readers from the main stream in the proof of
our main theorem, we postpone the proof of this lemma in Appendix 1.

Lemma 2.5. Let n = 5 or 6 and I(a, i) be defined as in (2.10). Then there are constants
¢ > 0 and C, > 0 depending on «, where 0 < a < 3, such that (i) For o < %, we have

I(0,) £C, (2.24)

(i) For o = %, we have

wl R

Ha i) £ G v -1 ()" (2.25)

where N = Ng as in Lemma 2.2. Note that €, C, are independent of i.

Proof. Choose ¢ > 0 such that 4¢ is given in Lemma 2.4. First we assume that
n = 6. As before, put D = {Sy = 0}. If D,4 is not an anticanonical divisor consist-
ing of three lines intersecting at a common point, then by Lemma 2.4(), for
asi+e

- 2a

5 dV, < o (2.26)

Fusyl
M

By Proposition 2.1, we have for x < % +¢

-2a

lim I(e, i) £ lim | |Siy) 76 dV,
i—= o i—+ o M;
~ - 2a
= [ IS\ s a¥; < o0 @27)
M

Hence, there are constants C, depending on « such that I{a, i) < C, for all i and
a < £ + ¢ Thus we may assume that S, = (5)®, where S is an anticanonical section
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which zero divisor is the union of three lines intersecting at a common point. One
can easily check that for « < %,
—2a

[ISyIs av; < o (2.28)
M

Then (1) follows from (2.28) and Proposition 2.1 as above.

Let p be the intersection point of the three lines in {S = 0}, then for any open
neighborhood U of pand 0 < a < % + ¢,

—2a
[ ISy d¥; < o0 (2.29)
M\U

It is true simply because {§ = 0} is smooth outside p. On the other hand, by the
fact that no four~lines of M intersect at a common point and Sy_; is linearly
independent of Sy, one can easily show that if the neighborhood U of p is
sufficiently small, then for « < % + ¢,

= I
JUSN-1IITe <0 (2.30)

U
Now applying Proposition 2.1, we have for x £ % + ¢,

. . 1
lim (A2 1(e, 9)) < lim | zdV;

i i oo Mo (S v -y 17 + 1S i ]12)5

A

1im<§n§v"n_1u7dvg,.+ ) ||S“¢’~quVg,)
i»w \U, MAU;

-2 - —2a
AV, + | ISyl dV; < 2.31)

M\U

FISh-1]
4

where U, are open sets of M; and converge to U as i — co. Thus (i) is proved.

Next we assume that n = 5. If neither D contains a curve with multiplicity 9 nor
D,.q4 is an anticanonical divisor consisting of two lines and a curve of degree
2 intersecting at a common point, then both (i) and (ii) follows from Proposition 2.1
and Lemma 2.4 as before. Therefore, we may assume that S is the section listed in
Lemma 2.4(ii) as an exceptional case. If D contains a curve with multiplicity 9, then
D=9L; +3(L,+ ... + Lg), where L,(1<i<6) are lines in M satisfying:
L -L;j=1(j22), Li:L;=0for i, j = 2. It follows that there are exactly sixteen
such divisors of K®. If D does not contain any curve with multiplicity 9, then
D=6(L,+ L,+ E), where L,, L, are lines in M and E is a curve of degree
2 satisfying: L,, L,, E intersect to each other at a common point. There are exactly
40 such sections. We will call a section described as above the one of special type in
H°(M, K ;;®). Take any two different sections S7, S5 in H°(M, K°) described as
above, by the fact that each point of M can lie in at most two lines, one can easily
check the following estimate « < 2,

[ (18585 17%)dV; < oo (2.32)
M



On Calabi’s conjecture 115

If Sy_, is not a section of special type in H°(M, K3°), then by lemma 2.4(ii) and
Proposition 2.1, for ¢t £ % + ¢

im (hy— (03 ) < tim | 1STw-y 3 dV; = [ ISy-a 3 d¥ <o (233)
M

i—w iooo M;
If Sy_, is a section of special type, by Proposition 2.1 and (2.32), we have that for
a<$+e<s

fim (iy— (P I (o, 1) < lim { (ISx- (2 + [Six 125 dV;,

i-w i o0 M,

<2% lim | |Siv- Syl & dV;,

i—> oo M,
=25 [ [Sy- Syl ® d¥; < (2.34)
M

Now (ii) of this lemma follows from (2.33) and (2.34).

Lemma 2.6. Suppose that M is one of complex surfaces of form either CP* # 5CP%or
CP? # 6CP? with positive first Chern class. Then we have

supg, < — 6" og(iy- (i) + C 2.35)
M,

where 8, C are constants independent of .

Proof. By Lemma 2.2, 2.4, there are two constants ¢ > 0 and C’ > 0 such that for
all i

2 z e
[ e ‘(i”)(“" ‘?,f’“)d%, SCAv-1()7573 (2.36)
M,
Using the equation (1.1),, we can rewrite (2.36) as
2 1 2 ¢
J‘ e<§ + e)s:;?(p. + (5 - e)tp,dygi < C/es:lpf;. An1()7973 (2.37)
M;

where f; = f, are given in (1.1),. By the concavity of logarithmic functions, we
obtain

(2 + 3e)supy, @; < — (1 — 3e)infy, @; — G + &)logy(i) + C” (2.38)

where C” is a constant independent of i. On the other hand, it is proved in [T1]
(also cf. [T2] for stronger form) that

—infe;, £ 2supg, + C” (2.39)
M;

M;
where C' is a constant independent of i. Then (2.35) follows from (2.38) and (2.39)
by taking 6 = (6g)"'(3 + ¢) and C =¢~ 1(C" + C").

Corollary 2.2. Let M be given as in Lemma 2.5. If Ay_; # 0, then M admits
a Kahler-Einstein metric with positive scalar curvature.
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Proof. Since Ay #* 0, all numbers — log Ay _ (i) are uniformly bounded indepen-
dent of i. Then by Lemma 2.5, there are uniform C°-estimates of the solutions ¢,, of
(1.1),,. So the corollary follows from the discussion in §1.

Lemma 2.7. Let M be as in Lemma 2.5 and Ay_, = 0. Then there is an & > 0, such
that for any solution ¢, of (1.1),,, we have

—inf¢, < (2 — ¢&)sup + C (2.40)

M, M;

where C is a constant independent of i.

Proof. We define two functionals first considered by Aubin in [Au] (see also [BM],

[T1]) as follows,
Lw=| u(a)j — <a) A ! o6 >2>

” 2n

su)

I

where the metric §, is just §,. Note that §; converge to a Kahler metric § on M.
Then by the proof for Proposition 2.3 in [T1], we have

j (— ¢, £ L) ~ Ji()) (2.41)

where g, is the unique Kéhler-Einstein metric on M, and w,, = w;,

As in the proof of Lemma 2.2 in [T1], we compute

;= JINe) = j _ lad)i A 5_¢1 A <%wg +g y.)

T 3%
1 2
+ j‘ ¢i(wg. e wg‘)<'3‘wgl + §(Dg‘>
M,

=21 g0i+3] b0l -3 L Sebn i n,
3M|‘ 3M!’ 3

2n
(2.42)
It follows from this and (2.41) that
{ (= ¢)w} < 2sup ¢, — Y— j 0, A 0P, A w;, (2.43)
M, M,

Take a smooth point x_, on the zero divisor D of the section Sy in M, where N = N,
and v = 6. Let x; be on the divisor {§'ly = 0} in M, such that lim, _, ,, x; = x,, as M,
converge to M. Let n > 0 be small. Then one can choose neighborhoods U; of x;
in M;, U, of x_ in M and local coordinates (z;,, w;) at x;, (z, w) at x,, such
that x,=(0,0)€U, = {|zd <n, lw,| <n}, X =(0,0eU, ={lzl <nIwl <n},
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lim;, , z; = z, lim;, , w, = w and w; = Sy in U, w = S, in U_. Then for i suffi-
ciently large such that Ay _, (i) < n*, by the choice of the above (z,, w;), one can have
the estimate

/ 1 N o _ N .
~—— [ dlog| X 12,(0S3ll7 | A dlog| 3. 14,0815 | A
2n g, g=0 p=0
SV 1 i C™Hlwyl* — Ciy-1())

27 Pl < (w;l> + Clany - )P

iy <l < o

2 —"log(Ay—1 ()

where C, ¢” > 0 are some constants independent of i.
On the other hand, by Lemma 2.2, we have

=1 _ N .
5 0¢; A 0¢; — dlog Z H/}vﬁ(i)siﬁ \Iﬁ,
2n M, =0

N
A 8]og< DA ONS: ||§l> A
=0

dw; A dw; A dz; A dZ,

< |

N
¢, —sup¢; — 10g< Z “/g(l)sipng)
M, M, =0
an N
X <wq + 20y, + 15310g< Z ||/lﬁ(i)Sf,ﬂ ||5)>

2n =0

< C for some constant independent of i

Recall that — infy, ¢, is dominated by the average {u, ( — ¢;)w? (cf. [T1]). Then it
follows from (2.41) and the above inequalities

—inf¢ £ 2sup ¢; + &"log(An- (D)) + C’ (2.44)

M, M,

where C' is a constant independent of i. Now (2.40) follows from (2.44), Lemma 2.5.
Now our main theorem follows from Corollary 2.1, 2.2, Theorem 2.1 and

Lemma 2.5(i)) and Lemma 2.7.

3. An application of Gromov’s compactness theorem

In this section, we wiil apply Gromov’s compactness theorem ([GLP], [GW]) and
Uhlenbeck’s curvature estimate for Yang-Mills equation to studying the degener-
ation of Kéhler-Einstein metrics for compact complex surfacesin 3,(5 £ n < 8). It
is the first step towards the proof of Theorem 2.2 (strong partial C°-estimate). The
more general version of the result in this section, i.e., Proposition 3.2, is stated in
[An] and [Na]. But for reader’s convenience and our own sake, we include
a complete and independent proof here for our special case of Kéhier-Einstein
metrics.
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Let {{M;,g;)} be a fixed sequence of compact Kihler surfaces in J, with
positive first Chern class and Kéhler-Einstein metric g;, where 5 <n < 8. We
normalize each metric g; such that Ric(g;) = w,.

For each Kahler-Einstein manifold (M, g;), one can define a tensor T({) on M;,
which measures the deviation of Kihler manifold (M,, g;) from being of constant
holomorphic sectional curvature. In local coordinates (z,, z,) of M,, define

T(i)aﬁyé_ = R(i)aﬁyé— - %(gmﬁgwg + glx(;gzyﬁ) . (31)
(1o 8,7,0<2)

where R(i) denotes the bisectional curvature tensor of the metric g;.
A straightforward computation as in [Y2] shows the following equality for
each (M, g;) with M;in 3, (3 < n <),
FITGIZdV, =36C, (M) — CHM,) =30 —n). (3.2)
M;
where ||T(i), is the norm of the tensor T(i) with respect to g,, that is in local
coordinates (z,, z,),

1TG30) = g7 977 g7 9% T(@agys T(Wwgos () - (3.3)

One may also see [Ban] for reference of (3.2), too.
In particular, it implies that the L*-integral of ||R(i)|,, is uniformly bounded
from above by a uniform constant.

Lemma 3.1. Let (M, g;) be a Kahler-Einstein surface given as above. Then there are
uniform constants C', C" such that for any fin C*(M,, R)

1
C’<§ |f|4dVg,>2—C”f If12dV,, £ [ |VfI2dV, (34
m; M;

M;
where Vf denotes the gradient of f.

Proof. Since Ric(yg;) = w,, and Vol, M; =9 — n is a constant, the lemma follows
from a combination of results in C. Croke [Cr] and P. Li [Li].
The following lemma is essentially due to K. Uhlenbeck [Uh2].

50
Lemma 3.2, Let N be the integer I:Wj, + 1, where C' is the Sobolev constant given
in (3.4), [a] denotes the integer part of the real number a. Then there is a universal
constant C 2 0, such that for any re(0, 1) and any Kahler-Einstein surface (M, g;)
given as above, there are finite many points xi,, . . ., xi, in M, such that

1
. C . 2 N
IR@ g, (x) = r—;( | IIR(l)Ilﬁ.-(x)dVgi> for any xeM;\ {J B,(xi5,g). (3.9
Brix, g;) p=1
where B,(x[g, g;) is the geodesic ball with radius r and center at x[g and | R(i)||, is the
norm of R(i) with respect to g;.
Proof. A straightforward computation shows

— 45(IRM.) = 1RGN + IRG,) (3.6)
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where 4,, is the laplacian of g; and u is a positive constant independent of i, which
actual value is not important to us. Define

Eiz{xeMi\ { IRGIZ4Y, >s} 3.7
Br(x,g.)
Then by (3.2) and the well-known covering lemma, E; can be covered by N geodesic

balls of radius % Take x7;, ..., xiy to be the centers of these balls. Then for any

xXe MAU?’: 1 B,(xis, g:),

§OIR®IGAV, z & (3.8)
Br(x.g)

Letn:RY - R = {teR'|t = 0} be a cut-off function satisfying # = 1 fort < 1;
n=0fort=22and |n'() £ 1.

For any xeM ,.\Ug -1 B,(x}, g;), denote by p,(-) the distance function on M,
from x.

Put f= ||R(})l,,. Multiplying » <8fx) f on both sides of (3.6) and then integra-

ting by parts, one obtains
J VaN)IPdy, < J n’f2aV, + [\ f2dV, + [ n*f*dv,  (39)
M; M,

By Lemma 3.1 and Hélder inequality,
1

5 2
c(f lnfl“d%,)z _ ¢ InfPdV, < | < 64"7' )m av, +
M; M; M;

( f lnfl“dVg.>7( | |f|2dV,>7 (3.10)

Br(x,9.)
Therefore, for some universal constant C = 0, we have
1
| |f|4dVg,.) Ty |f1dV, (3.11)
<Bi(x, g;) 2 \/;: B (X ;)

Similarly, by multiplying #2f* on both sides of (3.6) and processing as above, we
have

1
f |f|8dVi> <s— = [ |f;a, (3.12)
<Bg(&m) ' 2(C' Je) B, (9 ’
Combining (3.11) and (3.12), and letting ¢ < 3,
1 1
8 8 c 2 2
§oftdv, ) S| § 1MV, (3.13)
Br(x.0) T \Brx g

Then (3.3) follows from Moser’s iteration as in the proof of Theorem 8.17 in [GT].
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r r
We further observe that we may take the set {x},, ..., x%} contained in the
union of the balls B,(x}, g;). Let {r;},~, be a decreasing sequence of positive

ri-

and if we write x/; as xiﬁ and define

1
numbers such that r; < il <A

T
Q= MiUg'-‘ 1 BZr,(x{ﬂa g9:) (3.14)
Then

aic Q(T) and Ujs @ = M\ (s - xon)

where x;; = lim;, , x{,; forany 1 < <N,
Q) = {xe QT dist, (x, Q{7 1) > &}

The following proposition is essentially a special case of the famous Gromov’s
compactness theorem (cf. [GP], [GWT]).

Proposition 3.1. Let {(X,, h;)} be a sequence of n-dimensional Kahler-Einstein
manifolds (maybe noncompact) and 2, be a sequence of domains in X, with boundary
0Q,; for each i =z 1. Suppose that all i,

(i) The norm ||R(h;)||4,(x) of the bisectional curvatures R(h;) are uniformly bounded
for x in Q..
(1) InjRad(x) = C for xe Q, and some uniform constant C.
(1) 0 £ C"' € Vol (Q,) £ C” for some uniform constants C', C”".

Then given any &> 0, there is a subsequence {Q:.(e), hi, }i > of Kahler-Einstein
manifolds {Q,(c), h;},> 1, where Q,(e) = {xeQ,|dist,, (x 69 ) > ¢}, and a Kahler-
Einstein manifold (8, (€), h, ) such that for the compact subset K = Q_(¢), there is an
& > ¢ such that for k sufficiently large, there are diffeomorphisms ¢, of Q, (¢) into
Q. (¢) satisfying
(1) K < ¢, (Q,(£)) for any k 2 1.

(2) (¢, ")*h,, converge uniformly to h,, on K.
() (@, )y J, (@ '), converge uniformly to J,, on K, whereJ, J,, are the almost
complex structures of Q;, Q_ (¢), respectively.

Proof. By some standard computations and the assumption that (X, h;) are
Kihler-Einstein manifolds, the bisectional curvature tensor R(h,) satisfies a quasi-
linear elliptic system. The assumption (i), (ii), and (iii) imply that the Sobolev
inequalities hold on €,(g) with uniform Sobolev constant. It follows from some
well-known elliptic estimates (cf. [GT], [Uh1]) that

ID'R()In () S CU), 1=1,2,..., 0. (3.16)

where D'R(h;) denotes the I covariant derivative of R(h;) on 2; and C(l) are
uniform constants depending only on L Then by Gromov’s compactness theorem
(LGP], [GW]), there are a subsequence {(Q2; (¢), 4, )} and a Riemannian manifold
(2_(e), h,,) such that the above (1) and (2) hold. Let K be any compact subset in
Q(¢) and ¢, defined as in the statement of this proposition. For the almost
complex structure J; on Q, , it is clear that (¢, ), J,: (¢, 1), is an almost complex
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on K. By taking subsequence of {i, }, we may assume that (¢, ), - J, - (¢,. ') converge
on K. Since K is arbitrary, we obtain an aimost complex structure J_, on £, (¢). It is
easy to check that this J_ is integrable and h_ is a Kédhler-Einstein metric with
respect to this J .

Combining this proposition with lemma 3.2, we have the following corollary.

Lemma 3.3. Let {(M,, g;)} be the sequence of Kahler-Einstein surfaces in Theorem

3.1. By taking a subsequence of {(M,, g;)}, we may assume that (M ;,\ {Xis}1 <p<n> 9:)

converge to a Kdihier-Einstein manifold (M _, g, ) in the following sense: for any

compact subset K < M, there is a r > 0 such that there are diffeomorphisms ¢, from

MAUS=1B.(xi5, 9;) into M, with K in the images and satisfying:

(1) (¢ M)*g; converge to g, uniformly on K.

(2) ¢igoJ;o(pi ), converge to J uniformly on K, where J,, J,, are the almost
complex structures of M;, M, respectively.

Moreover, the limit M _, has only finite many connected components and the curvature

tensor R(g.) of g., is L*>-bounded by a universal constant.

Proof. For any j = 1, by Lemma 3.2, the curvature tensor R(i) of g; are uniformly
bounded on the domains @/ in (3.14), and Vol (©}) uniformly approximte to
(9 — m=*. Since Ric(g,) = w,, for all i, the diameters diam(M;, g;) are bounded

from above by \/§n. By Volume Comparison Theorem [Bi], we have for any
O<r<. /3nand xeM,,

Vol(B,(x, g,)) = cr* (3.17)

where ¢ is a uniformly constant. Thus by the estimate on injectivity radius in
[CGT], we prove that those assumptions (i)—(iii) in Proposition 3.1 are satisfied by
(@, g,), i,j= 1. Then by Proposition 3.1, we have a sequence of open
Kihler-Einstein surfaces (€4, g, ). By the properties (1)3) in that proposition, we
can naturally identify @/, with a domain in Q4! such that the restriction of g/ * to
@ is just gi,. Thus we glue {(€),,¢%)},>, together to obtain the required
(M, g,) with properties (1) and (2) as stated in this lemma. It is clear by Fatou’s
lemma that R(g,) is L?*-bounded by the universal constant for the L>-bounded of
R(g,). The finiteness of the connected components of M follows from Lemma 3.4
we will prove in the following.

Let p, be the distance function on M; x M, induced by the metric g;, and p, be
the limit of p,. Note that to make p, = lim p; meaningful, we may need to take the
subsequence of {i}. Obviously, this function p, is a Lipschitz function on
M, x M. Also for each f§ between 1 and N, the function plx;g) converge to
a Lipschitz function p ;. According to [GLP], one may attach finite many points
X1y e+ -y Xon to M such that M_ U {Xy;, ..., X,n} becomes a complete
length space with length function p_ extending that p, on M, x M,

puo(xooﬂa ) = pco(.’xooﬂ) = pcoﬂ~

Lemma 3.4. For any r > 0, put Eg(r) = {xeM | pog(x) <r}, then there is a con-
stant L independent of r such that the number of the connected components in E4(r) is
less than L for any 1 £ B < N.
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Proof. By the construction of M, it is easy to show that any point in E(r) can be
connected to a point in E,(r') by a path within E,(r) for any ' > 0. Thus it suffices
to prove the lemma for sufficiently small r. Choose r, > 0 such that for r < r,,
Eg(r)n Ep(r) = & for B + f’. By Volume Comparison Theorem [Bi] and positiv-
ity of the Ricci curvatures of (M, g;), by taking limit of B, (x4, g;), Bi(xi,,, g;) etc., as

i goes to infinity, we have for L £ f < N,
Vol (Eg(r)) = Cr* (3.18)

Vol (B;(x,g.,)) 2 C™'r*  for xeaEﬁG) (3.19)

where C is some constant independent of r.
Put L = [C?] + 2. We claim that the number of connected components in E 5(r)
is less than L. In fact, if not, by taking r smaller, we may have y,,..., y, in

different components of 6E,,<%> such that B%(yj, geo) O B%(yj,, d,)= O forj+j
and B%(yi, d.) < E4(r). Thus by (3.18) and (3.19), we have

L
C_lr4L é Z VOlgao(Bi(yj, goo)) é VOIgoo(Eﬂ(r)) é Cr4
j=1

J

ie. L £ C? A contradiction. Therefore, our claim is true and the lemma is proved.

Lemma 3.5. There is a decreasing positive function &(r), satisfying lim, _, e(r) = 0,
such that for any point x in M ., we have

e(r(x))

r?(x)

[R(g) (x) =

where r(x) = min; ¢; <y {Po (X w0j> X)}-
Proof. 1t simply follows from Lemma 3.2 by taking limit on i and using Lemma 3.3.

1
< |z| < k } in euclidean space C2.

Put 4 = | J, 5, »04(4r, 2r'), then 4} is the punctured ball in C? with radius r. Also
denote by g, the standard euclidean metric on C2.

1
Denote by A(E’ k) the truncated ball {z

Lemma 3.6. Let E be one of connected components in U§=1Eﬁ(ro), where r, is
chosen as in the proof of Lemma 3.4 such that Eg(ro) N Eg(ro) = & for B+ . Then
there are a ¥ > 0 and a diffeomorphism ¢ from A¥ into the universal covering E of
En UL 1E4(P) such that the covering map nE:E—> E is finite and for r 2 F,

max (g d)* g, — grly, < :(r) (3.21)
4ar
where €,(r) is a decreasing function of r with lim, ., . &,(r) = 0.

Proof. For any integer k = 2, kr < r,, we define an open manifold D(r, k) with
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Kahler metric g(r, k),

D k) =En C) <Eﬂ(kr)\5ﬂ<£>>.
1

ﬁ:

1
g(r, k) = ;igoo|D(r,k)

Then by Lemma 3.5,
IR(g(r, k))lge, 1) < k?e(kr) (3.22)

Claim 1. For any fixed integer k > 0 and any sequence {r(i)}, ( with kr(i) < r, and
limr(i) = 0, there is a subsequence {i;} of {i} such that Kéhler-Einstein manifolds
(D(r(i)), k), g(r(i;), k)) converge to a flat Kéhler manifold D, . Here the meaning of
convergence is as that in Lemma 3.3.

This is simply a consequence of Proposition 3.1 and (3.22) and the fact that each
(D(r, k), g(r, k)) is Kdhler-Einstein.

For simplicity, we assume that the subsequence {r(i))} is just {r(i)} in the above
claim. By the diagonal method and taking subsequence of {r(i)} if necessary, we
may assume that for any k' = 2, (D(r(i), k'), g{(r(i), k') converge to a flat Kahler
manifold D, ,.. We can naturally identify D, ;- as an open set of D, ;- if kK’ < k”.
Thus each manifold D, , in claim 1 is contained as open subset in a flat Kdhler

. ) 1 .
manifold D, = Uk‘ 22D+« As before, the distance function r_(i)—zpw of the dilated
1 . . .
metric Wg(r(i), k) converge to the distance function p; of the flat metricgon D,,.
r(i
1 . . .
Let E be in E(ry), then Wp,, also converge to a Lipschitz function, formally
1
denoted by p,(0,"). One may think o as an attached point to D,. Note that

1 ~ . . .
Dy = {zeDw — < pp(0,2) < k}. Let D be the universal covering of D . Since

k
D, is flat and simple-connected, we may assume that D is an open subset in Cc2.

Claim 2. The fundamental group 7, (D) is finite. In fact, the number of elements in
n,(D,) is bounded by a uniform constant.

By the construction of D, it is easy to find a point y in D, with pp(0, y) = 1 and
a geodesic ray y in D, such that y(1) = y and p(0, 7(t)) = t. For any R > 0, define
a modified geodesic ball of radius R > 0 by

Bi(y(3R), g5) = {ze D, |pr(y(3R), z) < R and 3 a unique
geodesic jointing z to y(3R)} (3.22)

1 .
Then the closure of BRE(y(3R), gf) is the limit of the balls B"(yiR’;f:'—)ig”) in
E < E4(r,), where all y;g lic on a geodesic y, < E, whose dilations by r{i)™!
converge to the previous ray y as i goes to infinity. It follows from Volume
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Comparison Theorem [Bi] that

Volyr(BR(y(3R), g¢)) = Vol,r(Bx(y(3R), gr))

. 1
= Illm VOlgw<B%<yiR, WQOO)) g CR4

where C is a uniform constant. Let 7 be a lifting of y to 500 such that
7(§ (1)) = (1) = y, where 7121500 - D_ is natural projection. Also n(¥(3R)) = y(3R).
Since BR(y(3R), gF) is contractible by definition, there is an open subset ER < 500
such that =|z is an isometry from B, onto BR(y(3R), gr)- In particular,
VolgF(B )2 CR“ with C given above. Any element ¢ in 7, (D, ) can be considered
as a deck transformation on D_ . By definition of By, we have a(Bg) n Bg = .
Denote by Bg (5 (1)) the standard ball in C? with center at § (1). Then

(36m)2 R* = Vol r(Ber(7 (1)) = ¥ Volyr(a(BR))

dist(a(F (1)), 7(1)) < R
2 CR*" # {oen,(D,)|dist(a(7 (1), 7(1)) < R}
By letting R go to infinity, we conclude
36m)?
(36m) <

# {aenl(Dm)} é

Claim 2 is proved.

Any element in 7, (D) is an isometry of the open subset D »in C2 Thus n,(D,)
can be considered as a subgroup in the linear automorphism group of C2. Since
7,(D,) is finite, we may further assume that (D, ) is in the unitary group U{2).

Claim 3. The Kihler manifold D, = C? coincides with C?\ {0}. Moreover, the
pullback n*pr(o,-) coincides with the euclidean distance function from the origin
in C2,

We adopt the notations in the proof of Claim 2. Let g = lim,, , o 7(t). Let D_ be
the closure of D, in C2, and pei);;\ﬁw. Then there is a sequence {p;} < D, such
that p =limp; in C? It is clear that {n(p;)} has no limit point in D, so
lim;_, ,, pp(0, n(p;)) = 0. Each n(p;) can be connected to a y(t;) by a path y; with
length l(y;) and lim;.. ., I(y;) = 0. Thus for each j, there is another lifting p; of n(p;) in
Duo such that lim;. ., p; =q in C2. For each j, there is a o;€n,(D,) such that
p; = 0;(B;). By taking a subsequence of {;} if necessary, we may assume that all o;
are the same, denoted by o¢. Then p=oa(q). Thus we proved that
D = C:\n,(D,)" g. Let o be the origin of C?, then o¢ D since n, (D) < U(2)acts
on D, freely. It follows that ¢ = 0 and D, = C?\{o}.

Claim 4. For any ¢€(0, 1), there is a r,> 0 such that for any r > r,, there is
a diffeomorphism ¢, from 4(ir, 2r) into =g '(D(r, 2)) with its image containing
ng '(D(r, 2 — ¢)) and

maX{lldJi“ﬂEgm — grllg(X)Ixe 4 (%r 2r>} =e (3.23)

where g, is induced by the euclidean metric on C>.
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We prove it by contradiction. Suppose that the claim is not true, then there is
a sequence {r(i)} with limr(i) = O such that for any (i) no diffeomorphism with the
above properties exists. But by previous three claims, we can easily find a subsequ-

ence of {r(i)}, for simplicity, say {r(i)} itself, such that ( (2, (i), prE gw> converge

to 4(4,2)/I in D, = C*\{0}/T for some finite group I'e U(2) with # I' £ C, where
Cis a uniform constant given in Claim 2. Since the estimate (3.23) is invariant under
scaling, by the definition of the convergence given in Proposition 3.1, we may have
the diffeomorphisms ¢, from 4(3r(i), 2r(i)) into nz '(D(r(i), 2)) for i large satisfying
{3.23) above. A contradiction. We proved this claim.

This above claim implies immediately that there is a decreasing function &'(r) on
r with lim, ., ,&'(r) = 0, such that for any r < r,, we can replace ¢ by &'(r) in (3.23) of
Claim 4.

It remains to glue all ¢, together to obtain the required local diffeomorphism
¢ in the statement of our lemma. Put r, = 47, r, = 4r,_, for i = 2, where 7 is
sufficiently small. Let ¢; = ¢,, be the diffcomorphism from 4(ir;, 2r,) into
ng Y(D(r;, 2)) given by Claim 4. Then for any i = 2, the composition ¢;_}; o ¢, is
a diffeomorphism from (nzo;,) *(D(r;,2)N(ri—1,2)) onto (mgod;—;)"*
(D(r;, 2 " D(r;~, 2)) and satisfies

sup { (¢ © 9:)*gr ~ gr llo, () x€(mo $)) ™ (D(r:, 2) N D(rizy, 2))} < 4€'(ri- 1)
(3.24)

sup {[{¢: ' e di-1)*gr — grllg,(MIx (Mo im1) (D, 2N D(rizy,2))} £ 48(ri-y)
(3.25)

By (3.24) and (3.25) and letting 7 small enough, one can easily modify ¢;_%; o ¢, to be
a smooth diffeomorphism ¢, from (r o $;)” ' (D(r;, 2) 0 D(r;—,, 2)) into A} such
that

v, = ditiod;  in (o) H(D(ri-1, 2) N D(Fo7i-1, 2)
i Id ln (nE d)) 1(D( 1’ )nD(%ri—l’z))

and the estimates
sup{ ¥ *gr — grll,, | xe(mg &) ' (D(r;, 2) N D(ri-y, 2))} < 400e(r;-,) (3.26)
Now we define a diffeomorphism ¢:4¥ — E by

¢|A(gr,,2r,) = ¢y, ¢|A(gr,.,ﬁr,) =¢i(iz2)
¢’A(§ra+hg";) = ¢iol‘[/i+1 for iz L.

Then ¢ satisfies (3.21) for some decreasing function &(r) with lim,_.s¢,(r) =0
The finiteness of 7, follows directly from Claim 2. The lemma is proved.

By this lemma, we can compactify M topologically by adding a point x4 to
E4(7) for each B between 1 and N. Denote by M, the compactification of M_.
Then M, has the following properties: for any x4, there is a neighborhood U, of

Xpp 1N M such that any connected component L]p_’(l gjsl)of UynM,
covered by a smooth manifold U,; with the covering group I'p; 1somorph1c to
a finite group in U(2), and Uy; is diffeomorphic to a punctured ball 4% in C2. Let
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¢;; be the diffeomorphism from 4# onto Uy; and n; be the covering map from Uy;
onto Uy;. Then by Lemma 3.6, the pull-back metric ¢};-nf(g,) extends to
a C°metric on the ball 4; with the estimate (3.21). Note that the metric
¢7i°m}i(g,) is an Einstein one outside the origin.

Such a M with the metric g, is called a generalized topological orbifold with
C°-metric g,,. The previous discussions in this section yields.

Proposition 3.2. Let {(M,, g;)} be a sequence of compact Kahler-Einstein surface in
3,.(5 < n £ 8) as given at the beginning of this section. Then by taking a subsequence
if necessary, we may assume that (M,, g;) converge to an open Kahler-Einstein surface
(M, g,) with M, = M_\{xpp} <p<n in the sense of Lemma 3.3, where M, is
a generalized topological orbifold such that g, can be extended to be a C%-metric on
M described as above.

The differential structure on M can be extended to M and the extension may
not be unique. But there is at most one with which the metric g, on M can be
extended smoothly to M_. In next section, we will prove that there is such an
extension by using Uhlenbeck’s theory of removing singularities of Yang-Mills
connections. We would like to point out that Proposition 3.2 also holds for
a sequence of real 4-dimension Einstein manifolds as claimed and proved in [An]
and [Na]. We refer readers to these papers.

4. Removing isolated singularities of Kéhler-Einstein metrics

In [Uh1], K. Uhlenbeck invented a beautiful theory of removing isolated singular-
ities of Yang-Mill connections on real 4-dimensional manifolds. The purpose of
this section is to apply this theory of Uhlenbeck to the Kéhler-Einstein metric g,
on M constructed in the last section and prove that g can be smoothly extended
to the generalized topological orbifold M with some differential structure (cf.
Proposition 3.2 for details). The latter M, is considered as a compactification of
M, and the complement M \M_, consists of finitely many points {x,z},<p<n-

Let Ug; be any connected component in UpnM (1S B<N,15j<1p),
where U, is a small neighborhood of x5 in M . Recall that each Uy is covered by
A¥ in C? with the covering group I'y; isomorphic to a finite group in U(2) and
n};9, extends to a C%-metric on the ball 4; with the estimate (3.21). The smooth
extension of g, to M is local in nature. Therefore, we may

Fix fand j (1 £ B < N,1£j <1, and denote nfjg,, by g for simplicity. We
need to construct a homeomorphism ¥ of 4; into itself, such that the restriction of
¥ to A¥ has its image in A and is C*-smooth and y *g extends smoothly across the
origin in 4¥.

The first step towards this goal is to prove the boundedness of the curvature
tensor R(g). The proof here is identical to that for Yang-Mill connections in {Uh1]
with some modifications. However, for reader’s convenience, we include a sketched
proof here. We will just consider 4* as a real 4-dimensional manifold for being,
where F is given in Lemma 3.6. In the proof of Lemma 3.6, we observe that by the
definition of the metric g, we may choose the diffeomorphism ¢ = ¢;4; properly
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such that for 7 sufficiently small, the following estimate hold,

( £1(r(x)) « .
”dgij”yF(x)éw’ EA?’ 1 él’ ]’§4
ag;; < alrx) N
3 <ijk<
< “ <an> < rr €A¥, 1546, j,kZ4 (4.1)
0%gy; e(r(x))
< N - <
“ (axkaxl () = r(x)?*”’ €dr, 1=hik 1=4
where d is the exterior differential on C? = R*, ||- ||,z is the norm on T'R* with

. . J 0

respect to the euclidean metric g, and g;; = 5 " x > for the standard coordin-
ates (x,, x,, X3, x,) for R*.

_ Let A be the connection form uniquely associated to the metric g on 4%, that is,
D =d + A is the covariant derivative with respect to g. Clearly, we can regard A
as a function in C1*(4%, so(4) x R*) for ae(0, 1).

The following lemma is essentially Theorem 2.8 in [Uh1].

Lemma 4.1. Let 7 be sufficiently small. Then there is a gauge transformation u in
C®(A(r, 2r), so(4)) satisfying: if D =e D -e* =d + A, then d*4 =0 on A(r, 2r),
dyA, =0 on 0A(r, 2r) and j‘A(,,  A(VEr(x))dV, = 0, where d*, dj are the adjoint
operators of the exterior differentials on A(r,2r) or dA(r, 2r) with respect to g,
respectively, and Vi denotes the standard gradient, dV, is the volume form of g.

Moreover, we have &,(r)
sup (|l4],(x) £ 2=
Ar, 2r) r

(4.2)

where &,(r) is a decreasing function on r with lim,_¢¢&,(r) = 0.

Proof. As in [Uh1], the proof follows from an application of Implicit Function
Theorem. For reader’s convenience, we sketch a proof here.

_ 1
By scaling, we may take r =1 and Q = 4(1,2) (1, 2) with the scaled metric 29 is

sufficiently close to the flat metric g on Q if r is small enough. Let C>*(Q, 82 T3)
be the collection of C? %smooth covariant symmetric tensors on Q. Then for any
he C**(, §?T%) sufficiently close to the zero tensor, we have a new metric
gr + h = g,, consequently, it induces a unique so(4)-connection A, on Q. As we

have pointed out in the above (4.1), the difference of the scaled metric ’ég from g, is
small in C**(Q, §>T4) whenever r is small. We define operators
Q:C%%(Q, so(4)) x C**(Q, > TE) - C%%(Q, so(4)) x C3*(02, so(4))
(u, h) —> (d¥(e”"de” + e "A,e"), diy (e "d,e" + e " Ay e"))
f:CE*Q, so(4)) x C**(Q, S*T%)— so(4)
(u, h) - [ (e7"de" + e A,e*)(Vr)dV,,

Q
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where 0 < a < 1, the subspace C§*(-,-) consists of all functions orthogonal to
constant ones (k = 0, 2), and d}, 4, are the adjoint operators of d, d, with respect
to the metric g,, respectively.

1
To prove the lemma, it suffices to find a u such that (Q, f )(u, g = gF> =0.
r

One can easily check that the partial derivative of the operator (Q, f) with respect
to u is an isomorphism at the point (0, 0), so the lemma follows from Implicit
Function Theorem.

Lemma 4.2, Let A be the connection for given in Lemma 4.1, then for r small, we have

sup [A],(x) < Cr sup R, ],(x) (4.3)
A(r, 2r) Alr, 2r)
§lAlZxav, s Crr § IR NE(x)dV, (4.4)
Alr, 2r) Ar, 2r)

Proof. Both (4.3) and (4.4) are invariant under scaling. So it suffices to prove the

1
lemma on Q = A(1,2) with the scaling metric -5¢g. By Lemma 3.6, the metric
r

1 -
r—zg converge uniformly to g, on £ as r goes to zero. Thus by the proof of Corollary

2.9 in [Uh!], we conclude that

[1df13,av,

Ar) = inf “—2— feCH@, Tk ® so(d)), d*f =0, dxf| =0,
[, 4,
Q r

j:f(Vr(x) dV;lfg =0

has a uniform lower bound A independent of r. By the equation dA + [4, A] =
DA = R,, where D is the covariant derivative associated to 4, we have

A § o lAlzav, s | 1dAJZAV, 2§ IRZAV,+2 [ LA, AllzdV,
A1, 2) A1, 2) A1, 2) A1, 2)

By the estimate on ||4], in Lemma 4.1, the last integral is bounded by
Ce,(r) f a1, 2) |Al2dV, for some constant C independent of r. Then (4.4) follows
when r is sufficiently small.

On the other hand, by Lemma 4.1 and the equation d4 + [4, A} = R, we

have
dAll(x) £ IR 4lI;(x) + Ce,(r) | All;(x) (4.5)
where C is some uniform constant. Then (4.3) follows easily from (4.4), (4.5) and the

1 . ——_
fact that d*4 = 0 and the scaled metric — g is close to the flat metric g on Q if r is
r

sufficiently small.
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Lemma 4.3. Given any 1> 6 > 0, there is a r(0) > 0, r(d) < F such that

1

IR@I,0) <

on Ak {4.6)

Proof. The proof is essentially same as that of Proposition 4.7 in [Uh1]. So we just

r r ri-
sketch the proof here. Choose a small r <7, putr, =§, r, =§1’ R S '2 L
Let A; be the connection on A(r;,r,-;) given by Lemma 4.1. Then
dy Aiglose,r_ =0, dy Ai-1yloac.r._,) = 0, it follows that the restrictions A,, and

A;_yy to 04,  are distinct by a constant gauge on 04, So we may assume
that Ay los_, = Ai-1yloar_,. Put Q; = A(r;, ;- 1), then we have

;j; “RA, ||3th = ‘J; <dAi + [Ai’ Ai], RAi>ngg

§ <DiA; — [4;, A;], Ry>,dV, @.7)
3

]

- _[ <[Ai9 Ai]:' RA.')ng/g - I <Ai5 D:k RAi>ng/g
Q Q,

'_I<Aul/a(RA Jru D40, + I (Aiy, Ry )y ,do,

-1

where D; =d + A;, S; = 04,, and do is the induced volume form on S, S;_,, etc.

Because the metric g is Einstein and 4, is equivalent to A by gauge transformation,
we have D*R,, = 0. On the other hand, by (4.1) and Lemma 4.1, one can easily
Cealrl) 1o 1 < S0

r(x) r(x)
pendent of i and x in €,. Thus by summing equations (4.7); over i = 1 and observing
that (R,,),y = (E4, )y On §;, we obtain

show that [|4;]l,(x) € —— for some constant C inde-

S [IR(@I2dY,

i=1Q,

il

JIR(9)NZ4dV,

I
W Mg

J IR 174V, (4.8)
19

- i J (Ra [ A, + [ CAros (Radrid,

i=1Q,

By Lemma 4.2 and the previous estimate on ||R || g(x), we have

[ (R, [Ai A15,4V,| < C'sup (IR 4, 11,00) [ 1 4:113 aV,
Q Q2 Q

< Ce,(r) | R4, 124Y, (49)
Q

where C, C' are some constants independent of i.
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1
By Lemma 3.6, one can see that <5A,, ;—2—g> converge uniformly on (S3, g;), i.e.

the unit sphere with the standard metric. Then by the proof of corollary 2.6 in
[Uh1], one can find a decreasing function &'(r) on r with lim, o ¢'(r) = 0 such that

F 1A FdV, <2 — @) 72 [ I(Fa)w 2V, (4.10)
a4,

a4,

Combining (4.8), (4.9) and (4.10), we have
1/2
JIR@IZAV, <2 —e@) (1 + Csz(r))r< § IR 4, Dy ||g2dVg>

<j IR, o 12 dV)” §(2+8’(r))_1:(21 + Cey()r
o4

é
§£<1 + E)A, IR(@)I3dV,.

whenever r(8) is sufficiently small and r < r(J).
Then it is standard to conclude from above inequality that

r

§ IR(1ZdV,
a4,

&
IR(g)I2dV, <r*"2 for r < r(d) (@4.11)
g g

4

r

The estimate (4.6) follows from (4.11) and the fact that g is Einstein and close to the
flat metric on 4;.

With help of Lemma 4.3, we can now regularize the extension of the metric
g across the origin in 4; = C2.

Lemma 4.4. Let g, 4:, g have the meanings as above. Then if ¥ is sufficiently small,
there is a self-diffeomorphism  of 4} such that  extends to be a homeomorphism of
4; and

3
*g — grllgr(x) S 7r(x)2 xedf (4.12)
1
dW*gMllor(x) S r(x)2 xeAF (4.13)

Proof. We first construct y, with properties analogous to (4.12) and (4.13) in the
annulus 4(G — ¢)r, 3 + &)r) for some small ¢ > 0 independent of r. By scaling, we

1 .
may construct  on 43 — &, 3 + &) = Q = 4(1, 2) with metric 29 still denoted by

g for simplicity. Then by previous lemma, if r < 7 is small, we have

,
sup([R(g)ll,(x)) = r* (4.14)
Q

and also sup,{|R(g)ll,(x)} < ¢, where & can be very small if we want.
For any point xe (M%, using the harmonic coordinates constructed in [Jo], one

can find a diffeomorphism y, from the euclidean ball B%(x) into @ such that
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l//x(Bé(x)) is very close to B%(x) in Hausdorff distance and

.
sup{[V¥g — gellgr(y)  lldYEgller(y)lye BLx)} < Cr3 (4.15)

where C is a constant independent of r and x.
Our ¥, is obtained by gluing finitely many lpxi(xie(')zl%). We just sketch this

gluing process here. Let (¥1, ¥2» Y3, ¥a) be the euclidean coordinates, then

o43 = {(y,, A Z [y = } For any fixed a, b with a* + b* < 3, we

choose finitely many pomts xl, ..., Xy on the circle S(a, b) < 6A% consisting of all

points (¥, Y2, V3, ¥s) With (y3, y4)=(a, by pgiven above, such that
B%(xi) N B%(xj) = @ if|i —j| > 1 and the union of let.(xi)(l < i £ N) contains the

neighborhood Bé(S(a, b)) of S(a, b). Note that the number N of {x;} is bounded

independent of (y,, y,) and r. Now we glue /., . . . , ¥, together as in the proof of
Lemma 3.6 and obtain a diffeomorphism y, , from B%(S {a, b)} into € such that the

estimate (4.15) holds for this diffeomorphism on B%(S (a, b)). Note that the constant

C may be different, but still independent of r. Next, fix b < 2, choose ay, ..., an

such that a,=—-/i-b<a,< ... <ay=./3-b and
BL(0,0,a,,b)n BL(S(ay, b)) = & for j 2 3; BL(S(a;, b)) " BL(S(a;, b)) = & for

li—jlz2; B%(S(aj, b)) nB%(O, 0,ay., b) = & forj £ N — 2, also the union of them
covers the neighborhood Bl_lé(S(b)) of S(b) = {(y1, ¥2: V3> y4)eﬁA%|y4 = b}. Then

we glue Y o o, 5 Y0,0.4,,5 a0d those Y, p(2 S i S N — 1) construct in step one to
obtain a dlffeomorphlsm Y, from B 1 (S (b)) into Q such that (4.15) holds for ¥, on

B L (s(b}) Finally, we choose ﬁmtely many points b, ..., by in the interval
[ — 3,3] and repeat the above gluing process for Bl((O 0,0, — ), Bl((O 0,0,%)
and B1_16_( Jfor2 <i < N” — 1. We then have the diffeomorphism y, from 4%, %8)

into Q. By scaling, we may consider ¥, as a diffeomorphism from A($r, $r) into
Q such that the image contains 4((33 + &(r))r, (33 — £(r))r) in w and

t 47 49 3
Sup{; ¥ g — gr llgr(x), Ildl//:"gligr(X)MEA(ﬁn ﬁr)} Crt (416)

where & (r) is a decreasing function with lim,_o&(r) = 0.

Now let r, = 7, riry = 3¢r,fori = 1. We have constructed diffeomorphisms y,
from A(%r,, r;) into Q with properties described above. Then the required Y is
obtained by gluing these ; properly as in the proof of Lemma 3.6. The estimates
(4.12) and (4.13) follows from (4.16) if 7 is sufficiently small.

Lemma 45. Let g, 4; be as in Lemma 4.4. Then there is a diffeomorphism i from
A¥ into A¥* such that Y*qg extends to be a C*-metric on 4;. Moreover, if J is the
almost complex structure on A} such that g is Kahler with respect to J, then
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(¥~ 1), o J oy, extends to be an integrable almost complex structure on 4; such that
Vg is Kahler-Einstein with respect to it.

Proof. By Lemma (4.4), we may assume

3
lg — grllgr(x) = r(x)2,  lldgllgr(x) = r(X)% on 4¥ (4.17)

Then g is a C'*-metric on 4;. Let x,,..., x, be the euclidean coordinate

functions on 4; and
[4,%x;{(x) < Cr(x)'?, xed; (4.18)

where 4, is the Laplacian of the metric g and C is a constant independent of x, 7.
Solving Dirichlet prablems for k;,

{Agki= —A4,x; on 4,

g

ki 1 4 = 5.-

where 8, are constants of order O(7 *) such that k,(0) = 0. By the standard elliptic
theory [GT], we have C? *-solutions k; of (4.19) such that sup,.(||dk;l|,r) = OF *).
It follows that {I,, ..., l,), where [, = x;, — k;, is a harmonic coordinate system in
A; with respect to the metric g when 7 is sufficiently small. Let y:4; — 4,; be the
difffomorphism by mapping (x,, ..., x,) to (/;(x), ..., [,(x)) and {g;;} be the
tensor representing the metric §*g. Then {g;;} are C'*-smooth and as in [KT],
the Einstein condition on g implies

(4.19)

2
- %Z g"sgl'g'l’s + lower order term = — g;; on 4; (4.20)
By elliptic regularity theory [GT], we conclude that {g;;} are C*-smooth. In fact,
{gi;} are real analytic. Now it is clear that Y, 'oJ oy, is extendable and y*g is
a Kihler-Einstein metric with respect to the extended complex structure on 4;.

Recall that M is obtained by adding finitely many points to the limit (M, g,,,)
of the sequence of Kéhler-Einstein manifolds {(M,, g;)} in Lemma 3.3. Summariz-
ing the above discussions and using Proposition 3.2, we have actually proved that
the compactification M of (M, g,) has the properties: for any added point
x,€M_\M_, there is a neighbourhood U of x_, in M, such that any connected
component U; of Uu M, is covered by a punctured ball A¥ in C? with the
covering group isomorphic to a finite group in U(2). Moreover, if n;: 4¥ — U, is the
covering map, then n* g, extends to be a Kihler-Einstein metric on 4; in C? with
respect to the standard complex structure. Therefore, we have

rs

Proposition 4.2. Let {(M,, g;)} be the sequence of compact Kahler-Einstein manifolds
given at beginning of this section. Then by taking a subsequence if necessary, we may
assume that (M, g;) converge to a Kahler-Einstein manifold (M \Sing(M ), ¢,) in
the sense of Lemma 3.3, where (M, g.) is a connected Kahler-Einstein orbifold
(maybe reducible) and Sing(M ) is the finite set of singular points of M .

Here a complex orbifold is defined in the general sense as described before this
proposition. Moreover, from now on, we will say that the sequence of Kéhler-
Finstein manifolds converge to a Kéhler-Einstein orbifold (M, g..) if the con-
clusion in the above proposition is true for {(M,, g;)}.
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5. Application of L*-estimate for J-operators on Kdhler-Einstein orbifolds

Let {(M,, g;)}:», be a sequence of Kdhler-Einstein surfaces in 3, with Ric(g;) = Wy,
In previous two sections, it is proved that some subsequence of {(M;, ¢,)},z,
converge to a Kéhler-Einstein orbifold (M , g, ) in the sense of Proposition 4.2. In
this section, we will apply L?-estimate for 6-operators to studying the properties of
this limiting orbifold M. We will prove that the plurianticanonical group
H°(M;, K;™)converge to HO(Mw, K ;™) for any integer m > 0 as (M, g;) converge
to (M,,9,)and M is an irreducible normal surface with only rational double
points and some special Hirzebruch-Jung singularities as singular points (cf.
[BPV]).
We first recall the definition of a line bundle on M (cf. [Bai]).

Definition 5.1. A line bundle on the complex orbifold M _ is a line bundle L on the
regular part M_\ Sing(M ) such that for each local unlformnzatxon T, U - M
of a singular point p, the pull-back 7} L on U ,\7, ! (p) can be extended to the whole
U,

’ On the Kahler-Einstein orbifold M, we have natural line bundles in the sence
of Definition 5.1 such as pluricanonical line bundles K7, and plurianticanonical
line bundles Ky™(meZ,). A global sectlon of Ky M is an element in

H°(M \Sing(M ) Ky™). Let H*(M , Ky™) denote the linear space of all these
global sections of K ™. Note that the metrlc d., induces natural hermitian orbifold
metrics A7, on Ky .

Lemma 5.1. Let {(M,, g;)} be the sequence of Kahler-Einstein surfaces given at the
beginning of this section and S* be a global holomorphic section in H°(M;, Ky™) with
e ISH12.dV,, = 1, where m is a fixed positive integer. Then there is a subsequence {i, }
of {i} such that the sections S™ converge to a global holomorphic section S in
H°(M ., Ky™). In particular, if {Sj}o < s < n, is an orthonormal basis of H*(M,, Ky™)
with respect to the induced inner product by g;, then by taking a subsequence, we may
assume that {Splo<p<n, converge to an orthonormal basis of a subspace in
H°(M_, Ky™), where N,, + 1 = dim H°(M,, K7

Remark. Before we prove this lemma, we should justify the meaning of the
convergence of {S'} in the above lemma since these sections are no longer on
a same Kahler manifold. Recall that Lemma 3.3 says: for any compact subset
K = M _\Sing(M ), there are diffecomorphisms ¢, from compact subsets K; = M,
onto K such that (¢; !)*g; and ¢y, 0J;o(¢; '), converge to g, and J on K,
respectively. Now with ¢, as above, we can push the sections S' down to the
sections ¢;,(S?) of ®(A2(T,M ® T,M)) on K. The convergence in Lemma 5.1
means that for any compact subset K of M _\Sing(M_) and ¢; as above, the
sections ¢;.(S™) converge to a section S of K;;! on K in C*-topology. Note that
the limit S* is automatically holomorphic.

Proof of Lemma 5.1. Let 4; be the laplacian of the metric g;, then by a direct
computation, we have

4,1 12)(x) = I1D;S"13,(x) — 2m|S*]|7,(x) 5.1
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where D, is the covariant derivative with respct to g;. Since [y, |S°]| 2 (x)dV,, = 1, by
Lemma 3.1 and applying Moser’s iteration to (5.1), there is a constant C(m)
depending only on m such that

sup([IS*(17,(x)) < C(m) (5.2)
M;

Let K be a compact subset in M\ Sing(M .} and ¢, be diffeomorphism from
K; onto K as in the above remark. To prove the lemma, it suffices to show (*): for
any integer ! > 0, the I'"* convariant derivatives of ¢;,(S’) with respect to g are
bounded in K by a constant C; depending only on ! and K. There is a r > 0,
depending only on K, such that for any point x in K,, the geodesic ball B,(x, g;) is
uniformly biholomorphic to an open subset in C2. On each B,(x, g;), the section S,
is represented by a holomorphic function f; .. By (5.1), the function f; , are
uniformly bounded. Therefore, by the well-known Cauchy integral formula, one
can easily prove that at x the ["* covariant derivative of S* are uniformly bounded
by a constant depending only on [, K. It follows (*) since (¢; *)*g; uniformly
converge to g, in K. The lemma is proved.

Remark. One can easily prove the existence of hermitian orbifold metrics on a line
bundle as above by unit partition. The following proposition can be easily proved
by modifying the proof of ([Ho] p. 92, Theorem 4.4.1) with the use of the
Bochner-Kodaira Laplacian formula (see e.g. [KM]).

Proposition 5.1. Suppose that (X, g) be a complete Kdahler orbifold of complex
dimension n, L be a line bundle on X with the hermitian orbifold metric h, and  be
a function on X, which can be approximated by a decreasing sequence of smooth
Sunction {Y,}1 <1<+ . If, for any tangent vector v of type (1, 0) at any point of X and
for each |,

. 2
< 08y, + —
v —1
where C is a constant independent of | and <, ), is the inner product induced by g.

Then for any C* L-valued (0, 1)-form w on X with dw = 0 and [ |\w|*e”VdV, finite,
there exists a C* L-valued function u on X such that ou = w and

(Ric(h) + Ric(g)), v A 17> > Cllv||? (5.3)

g

1 -
3(( lul?e™vdV, < E,j( lwli2e™dV, (54)

where || - || is the norm induced by h and g.

Lemma 5.2. Any section S in H*(M ,, Ky™) is the limit of some sequence {S'} with S’
in H°(M,;, Kii™). In particular, it implies that the dimension of H*(M ., Ky™) is same
as that of H*(M;, Kyi™), that is, plurianticanonical dimensions are invariant under the
degeneration of Kahler-Einstein manifolds with positive scalar curvature.

Proof. We may assume that [y _|IS||2 (x)dV,, = 1. Let {r;} be a sequence of
positive numbers with lim,_, ,, r; = 0 such that for each i, there is a diffeomorphism
¢; from M\ -1 B,.(xi, g;) into M _\Sing(M ) as given in Lemma 3.3, where
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N 1is defined in Lemma 3.2 and (x;;) are defined in (3.14). Then ¢, satisfy (1)
lim; ., , (Im(¢,)) is just M _\Sing(M_); (2) (¢; })*g; uniformly converge to g on
any compact subset of M_\Sing(M ) in C®-topology; (3) ¢y J;o(¢: '), con-
verge to J, where J,, J_ are almost complex structures on M;, M _, respectively.
Define a cut-off function #: R* — R, satisfying: n(t) = Ofort £ I;5n(t) = 1 fort = 2
and 4] £1. Also let =, be the natural projection from the bundle

®™AHTM,® TM;) onto Ky™ = ®™(A>TM,). For each i, we have a smooth
section v; = ’7<¥) (97 "), S) of Ky™ on M, where p,(x) is a Lipschitz

function defined by p,(x) = min, < ;< 5 {dist, (x, x;5)}. Then by the facts (2) and (3)
above, there is a decreasing function ¢,(r) on r with lim,_¢¢;(r) = 0 such that

N
sup {10m((¢ )y SMg () x e MA J Bar (xig, 91} < £5(r) (5.5)
g=1

§ ol Z.00dv,, — 1‘ < es(ry) (5.6)
M,
where ¢, is the corresponding d-operator on M,.

By (5.5), we have
[REEA R

M,

N
< &5(r) Vol (M) + Z f

B=1 By, (xp9)

2

(x)dv,

g
gi

éi(n(zf;{))ni((as;‘)*S)

1
Y 3 Vol(Bar (i 90) sup{ (677, S13.(0)|xe M,
p=1

N
\ U Bar, (xips )} + £3(r;) Vol (M) (5.7
=1

lIA

As in the proof of Lemma 5.1, one may bound supr(HSngoo(x)) by the constant
C(m)in (5.2). Thus by (5.7), Volume Comparison Theorem and the convergence of
(¢ 1)*g, in the above fact (2), there is a constant C independent of i such that

§ 100,113,004V, < CO? + e3(ry)) - (5.8)

g =
M,

Now applying Proposition 5.1 ie, L2-estimate of J-operators, we have
a C*-smooth K,"-valued function u; such that

ou, = v, (5.9)

[ 200V £ — | 1802000V S — (7 + e(ry) (5.10)
M; M;

m+ 1, m+1
By (5.9), the norm function ||u;||2 for each i satisfies an elliptic equation

Al 17,00 = 1D 13,00) — 2mlu; 1 7,(x) + 2Re(hP(u;, G F0,0))(x)  (5.11)
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where J ¥ is the adjoint operator of d; on K 3;™-valued function with respect to g;.
As in (5.5), we also have

sup{15#8,0,12001x€ M\ Bay,(xip, 9.)} >0 as i o0 (5.12)

Combining (5.9) and (5.10), we see that u, converge uniformly to zero in the sense of
the remark after Lemma 5.1 as i goes to infinity. Put

(v;(x) = u;(x)) § (5.13)
< _f lv; — u; || 7.(x)aV, f)i

Then {S} is the required sequence.

Si(x) =

Lemma 5.3. Let {(M,, g;)} and (M, g,) be given in Proposition 4.2. For each
integer m > 0, we have othonormal bases {Sys}o <5< n, (resp. {Sws}) of H*(M, K3(T)
(resp. H*(M ,,, K3s™)). Then

Nm Nm
lim (inf{ Y [1Shs n;(x)}) = inf{ S 1S5 uzw(x)} . (5.14)
im0 \M; (=0 Mg B=0
Proof. By direct computations, we have

A;(ID;Spll7)(x) = 1D;D; S l15,(x) — (4m — 1) D;Speg |1 7.x) (5.15)

where 4, (resp. D;) is laplacian (resp. covariant derivative) with respect to g;. Then
by (5.1), Lemma 2.1 and standard Moser’s iteration, there is a constant C’(m)
depending only on m such that

sup{||D,S4512(x)|0 £ B £ N,,, xe M;} < C'(m) . (5.16)

Combining it with (5.2), we conclude that the first derivatives of Y 37 ¢ [|SksllZ(x)
are uniformly bounded independent of i. Then (5.14) follows from this and Lemma
51,52

As a corollary of this lemma, we have the following weak partial C%-estimates
of the solution of (1.1),.

Theorem 5.1. There are a universal integer my > 0 and a universal constant C > 0
such that for any Kahler-Einstein surface (M', g’') in J,(5 £ n £ 8), we have

Nm
inf{ Y [IS;,II}} 2C>0 (5.17)
M (=0

where N,, + 1 is the complex dimension of H®(M’, Ky"°) and {Sp}o<p<n is an
orthonormal basis of H°(M’, K 3°) with respect to the inner product induced by g'.

Proof. Tt suffices to prove that for any sequence of Kéhler-Einstein surface
{(M;, g;)} converging to a Kdihler-Einstein orbifold (M, g,) in the sense of
Proposition 4.2, there are m, > 0 and C > 0 such that (5.17) holds for these (M, g,).
By Lemma 5.3, it is sufficient to find a large m such that

inf{Nm ||S,‘:,°y||2(x)|xeMw}>0 (5.18)
y=0
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where {Sy,}, N,, are given as in Lemma 5.3. It is equlvalent to that for any point
xin M there is a holomorphic global section S in H*(M,, K™ ) such that
S(x) + 0. The latter can be achieved by the application of L2-estimate (Proposition
5.1) as follows. Let x4, . .., x,n be the singular points of M. There is a smali
positive number r independent of f such that for any x., in M, the closure of
each connected component in B,(X g, ., )\ {X s } is locally umformlzed by a neigh-
borhood U,g #(1 £j £ 1) of the origin o in C? with finite uniformization group I’.
Let mg;: U,,J - B (xw,,, d,) be the natural projection with 74;(0) = x5, and
g =[li<psn{(]isisr, 955 Where gg; is the order of the finite group Iy;. Let
m = pq. We will choose p later. We may take r to be sufficiently small such that the
function pf = dist(, xe;)? is smooth on B,(Xep, g)\{Xxp} for any B. Now fix
a X,z and Uy;.

Let (z,, z,) be a coordinate system on U,,,, define an n-anticanonical section
v by

0 d \? ~
tMF=ZG<QZAEJ>WLyGWr

gely,

By the definition of g, we have v(0) # 0. Let n: R' — R, be a cut-off function such
4
that y(t) = 1fort £ Ln()=0fort = 2.1 (t)) £ 1. Thenw = n(rLzﬁ)(n,,j)*(v”) is

a C*-global section of the line bundle K™ . Choose a large p depending only on
r such that for tangent vector v of type (1, 0),

4pp pB 2np _
<88 <811< >log<r—2>> + =Wy, V A v> 2 vk (5.19)
~/ -1 goo

Applying Proposition 5.1, we obtain a C® smooth K™ -valued function u satisfy-
ing du = ow and

| lulzaewnos(58)av,.. < 13w 1Zae - 5o8(%)a¥,.. < + o0 .
Moo
It follows that the pull-back n};u of u vanishes up to order 3 at the origin in
= C? Put
w—u

Sp; = (5.20)

1

2

< j ”W - u“goodVgoo)
M o

then Sg;€ HO(M ,, K% ) and infg, {n};]1Sg;lls0(x)} > 0. By the same arguments as
in the proof of Lemma 5.3, one can bound the first derivatives of these Sj; by
a uniform constant. So if r is taken sufficiently small, we have

mf{ Z 187 13 (X)X € B,(X0p, g )y 1 S B < N,,,}

2 inf{[|Sg; 1 20(x) | xems;(Tg;), 1 SBS N, 1 <j S 1}
0.

\%
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For any point x in M\ J}=1B,(Xp, g ), define p, = dist(-, x)>. As above,
applying Proposition 5.1 to K7 -valued o-equation with the weight function

8;1< >log( > one can easily construct a holomorphic section S, in

HM , Kyu™) such that S,(x) + 0. Thus the inequality (5.18) is proved. So is
Theorem 5.1,

Proposition 5.2. The Kahler-Einstein orbifold (M ,, g, ) in Proposition 4.2 is locally
irreducible, that is, for any r >0 and any point x in M, the punctured ball
B,(x, 9., )\{x} is connected. In particular, the orbifold M _ is irreducible.

Proof. Tt suffices to check the local irreducibility at a singular point x, say x = x4,
in M. Suppose that M, is not locally irreducible at x = x,,,, then we have open
subsets U, .. U“, (l 2) uniforming the closures of the connected compon-
ents in B,(x, g00 \{x} In the above proof of Theorem 5.1, we construct a § in
H(M , K% ) for m=m, such that it can be decomposed into v+ u in
B (x, gm)\{x} Both v, u are holomorphic in B~ (xw,gw)\{x 1} and satisfy (1)

v=0 on (U222, and inf{{o(y)lllyen,; (U)2c >0 (2
lull,e( ) < Cdist(y, x,)* for a constant C. In particular, it implies that for any

’

. . C . .
sufficient small ' > 0, we have a uniform lower bound 5 of the oscillation,

’

@,(S, 9) = sup{{ISl,,,(») — ISl @ ¥, z€0B,(x;, 9.)} 2%

By Lemma 5.2, there is a sequence {S'} with S* in H°(M,, K5™) such that S'
converge to S as M, converge to M. Then for any fixed small

lim (5%, g) = 00(5,9.,) 2 5 - (521)
On the other hand, in the proof of Lemma 5.3, we proved that there is a constant
C(m) depending only on m, such that

sup (| G(I5ll4)l5.) < C(m) .

M;

It follows that w,(S', g;) < 2C(m)r". It certainly contradicts to (5.21) when r' is
sufficiently small. So M, is locally irreducible at x,, similarly at x,; (2 <j < [)).
The proposition is proved.

Remark. Let x;;e Mi(1 £ f < N)be given in (3.14), and B, ,(xig, g;) be the universal
covering of the ball B, (x4, g;) in M. Then, as Proposition 4.2, for any fixed f, these
B,(x,,,, g;) converge to an open Kihler-Einstein orbifold B (r). The above
arguments also prove that this B _(r) is locally irreducible, in particular irreducible.
As a consequence, it implies that 65,(xiﬁ, g;) is connected if r is small and the
fundamental group =, (B,(x;s, g;)) is a quotient group of n,(dB,(x:s, g;)) by some
normal subgroups.

Now we come to study the singularities {x,z},<s<n~ Of the Kéhler-Einstein
orbifold (M, g.,) in Proposition 4.2, where N is given as in Lemma 3.2. Precisely,
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we want to make reduction of those local uniformization groups I, for
{Xwplizpsn

Choose a small 7 > 0, such that for any ff between 1 and N, the ball B; (x4, ¢,,)
is geodesically convex and is locally uniformized by an open subset U pin C? with
the local uniformization group I 5 We identify I'; with the induced action of I’y
on T Uﬁ, where o is the preimage of x,, under the natural prOJectlon
Ty U,, — B;(Xp,9,,)- Then I'y can be considered as a finite subgroup in U(2).
Let {r;} be a decreasing sequence with lim, ,r; = 0, they by Proposition 4.2,
there are diffeomorphisms ¢; from M;/\ )}~ 1 By, (Xwps 9o,) and (¢ )*g; converge

pointwisely to g_, in C*-topology. We may assume that all r; < %

Fix a singular point x = x4, say f = 1 for simplicity, we define S,(i) to be
¢;7 Y (0B,(x, g,)) for 2r; < r < F. Then each S, (i) is isomorphic to a generalized lens
space S3/T" with I' = I'; and covers a domain B,(i) such that B,(i) converge to
B.(x, g,,) as i goes to infinity in the sense of Proposition 4.2. By taking 7 smaller, we
may assume that each B,(i) is geodesically convex. As mentioned in the above
remark, by the same proof as that for Theorem 5.1, one can prove that foranyr > 0
and i, the fundamental group =, (B,(i)) is the quotient group of I'; by its normal
subgroup. In particular, the group =, (B,(i)) is a finite group with its order uni-
formly bounded. We may assume that the orders of these m,(B,(i)) are all same.

Lemma 54. Let pr,:B;(i) — B; (i) be the universal covering and §, = pr¥g,. Then
(B:(i), § ;) converge to an open Kdihler-Einstein orbifold (B (B:(o0), §) in the sense of
Proposition 4.2. Moreover, there is a natural projection p, Br-(goo) - B;(x, w0 ) of
order #m, (B;(i))and § , = p¥ g,.and B;()has a rational double point as the only
singular point.

Proof. The convergence of {(B (i), g;)} follows from Proposition 4.2 and the
definitions of B, (i) and B (i). It is clear that B (0) has only one singular point. So
it suffices to prove that this singular point is a rational double point. By Theorem
5.1, we have holomorphic sections S' in H°(M,, K3™) such that when r > 0 is
sufficiently small, there is a positive number ¢ > 0,

0<c<{SYA(x)<1 for xeB,() (.21

Then each pr¥S‘ is a holomorphic mg-anticanonical section on B.(i). Since the
preimage (p,,)” *(B,(i)) is simply-connected, the m,-root of p;“S' exists as a holo-
morphic anticanonical section on ((pr;)~*(B,(i)), denoted by S’ Then

1

0<cm < |S2M 1 for xe(p,) " (B,) (5.22)

By (5.22), we may assume that St converge to a nonvanishing holomorphlc
anticanonical section § in )" 1(B (x, g, ) The local uniformization U, of x in
M, is also the one for (p, )~ 1(x) in B, (0), and we have the following commutative
diagram, .

v, — B ()
my

B;(X, goo)

p?

@
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Let I'" be the local uniformization group of (p, )~ 1(x) in B;(0). Then #% S is
a I"-invariant holomorphic anticanonical section on =y '(B,(x,¢,)) = U,. Since
#% S + 0, the induced action of I'" on A*(T,U,) is trivial. This means that I" is
a finite group in SU(2) if we identify I'’ with its induced group on 7,U, = C2 So
the singular point p,_'(x) is a rational double point. The lemma is proved.

Lemma 5.5. The induced group of I on Toﬁl =~ C? is either a finite subgroup in
SU(2) or one of the following cyclic group Z, , , defined as follows, where p, q are
coprime, let (z,, z,) be the euclidean coordinates in C?, define

G,,I,,q:CZ - Cz,

J -1 2n,/—1+2nq./—1 )
z
p 2

2n
al'p.q((zpzz)):(e TR 2P 2T

then Z, , , is generated by a, , ,.

Proof. Let ¢, be the diffeomorphisms given before Lemma 5.4. There is a decreas-
ing sequence {¢; };», with lim;_ . ¢ = 0 such that

sup {1@7)*g: — 9o ls, (3, ID*(67 VMg, (1)} S 5 - (5.23)

1Sk<S
ye Mm\Uy=lBr,~(xmﬂ; 9s)

. . L. . 1
where D is the covariant derivative with respect to g . Put g4, = 7 Then
T

sup DT )*(1:9) — HiG oo g, (9 1DADT ) * (1190 g, (M} S &

IsksN
¥& Br(x, g.0)\ Br (%, 9.0)
(5.24)

where D, is the covariant derivative with respect to g, . Since the curvature tensor
R(g,) of g, is uniformly bounded on M _, the dilated manifolds (B:(x, g, ), 4;9.,)
converge to the flat cone C?/I'; with complete flat metric g.. So it follows from
(5.23) that (B; (i), u;9;) converge to (C?/I';, ;). Similarly, the Kihler-Einstein mani-
folds (B; (i), w;pr¥g;) converge to the cone (C*/I", g;) with I'" = SU(2). The funda-
mental groups 7, (B;(i)) can be regarded as the finite isometry groups on B ().
Then the actions of these =, (B;(i)) converge to the linear action of r=r /T on
C?/I"". Note that I'" is a normal subgroup of I'.

It is classical result by Klein that C?/I” is one of the following normal

hypersrfaces in C? with euclidean coordinates (w,, w,, w;),
A1 nZ 2 wowy, +wh=0o0rwi+wi+wli=0
D,nz4:wi+w,wWi+wi =0
Egwi+wi+wi=0
E;:wi+w,(wi+w3)=0

Eg:wi+wi+wi=0 (5.25)
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Claim 1. The finite group I has a faithful representation in SL(3, C) such that the
action of I' on C?/I" coincides with its restriction to the hypersurface correspond-
ing to C?/I"".

Aithough this claim should be the special case of a more general theorem, we
give an elementary proof here.

As before, let (z,, z,) be the euclidean coordinates of C2. Let C,-[z,, z,] be the
algebra of all I'-invariant polynomials in C[z,, z,]. Then the result of Klein
actually says that C[z,, z,] is generated by three homogeneous polynomials, i.e.
induced ones by restriction to C2?/I" of coordinates w; on C>. We still denote them
by w,, w,, w,. Since ' is a normal subgroup of I', any o€l preserves the
subalgebra C,-[z,, z,] of the polynomial algebra C[z,, z,]. Thus I has a holomor-
phic action on C? with its restriction to C%/I' equal to the original action of I'. We
need to prove that this induced action ¢* on C? is linear. By the explicit forms of
the defining polynomials in (5.25), one can easily prove that as polynomials of
(215 2,)

deg(w,) = deg(w,) < deg(w,)deg{w;) < 2deg(w,) (5.26)

If deg(w,) = deg(w,), then o*w;, is a linear combination of w,, w, and w, for any
oel. Thus we may assume that deg(w,) > deg(w,). If deg(w,) = deg(w,), then for
any o eI, 0*w, depends linearly on w,, w, for any i = 1, 2. On the other hand, 6*w,
can not contain w,, w, since ¢* preserves the defining equations in (5.25), so ¢* is
linear. If deg(w, ) < deg(w,), then by the second inequality in (5.26), the polynomial
o*(w,) does not depend on w, and o*(w;) does not depend on w, for i = 1, 2. Thus
by the fact that ¢* preserves one of the equations in (5.25), one can easily see that
o*(w;) = 4;w; for some constants 4; (j = 1, 2, 3), in particular, the action of I' is
linear. The final case is that deg(w, ) = deg(w,), deg(w,) < deg(w,). In this case, the
group I'" is of type A,(n = 2), ie., the hypersurface C*/I" is defined by A,-type
polynomials in (5.25). Then w, =z}, w, = z,2,, wy = 25. By the I"-invariance of
o*w;, one can easily prove that ¢* is linear. The faithfulness can be easily proved.
The claim is proved.

Note that I'" is the subgroup of I' consisting of all elements with determinant
one, so I = I'/T" is a cyclic group. Let ¢ be one of its generators. By the above
proof of Claim1, we actually proved that the induced action ¢* on C? is diagonal
except that I is of type A,. But if I is of type A4, all w; have the same degree on
(2, 2,), so by a linear transformation of (w, w,, w;), we may also assume that the
action of I' is a diagonal and the defining equation of C*/I"" is of form given in
(5.25).

. 2n,/ — 1 .
Write ¢ = diag<e<&>, e(gl), e(%)), where e(%) = ¢—, — Consider the
p P

representation of I' in S’ e C* defined as follows:

p:rel —»det(t)eS! = C*

where the determinant is taken with respect to (z,, z,). Then ker(p) = I'" and the
induced representation of p on I'/T" is faithful. We still denote it by p. We may

that (o)—a—/\i o - (2L AL So u;=w iAin
assume that p 0z, 0z, =€ p 822/\622' 77Nz, 0z,
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(j =1, 2, 3) are I'-invariant holomorphic local sections of Kcz/, on C*/I".

Let ¢, be the diffeomorphisms as those at the beginning of this proof. Put
0;(¥) = p,, o d.(y), where p_ is the square of the standard distance function on C2.
Then for i sufficiently large, the function p, is plurisubharmonic on B,/ (i)/Ba, (i),

and these p; converge to p .
As in the proof of Lemma 5.3, we let 0 ; be the d-operator associated to M, and

7; be the projection from ®*(A*(TM; ® TM,)) onto Ky*. Define

v = 5;‘(’7(%)”;'((@_ ! )*(uj))>

where 7 is a cut-off function on R! with y(t) =0fort < land p(t)=1fort = 1,
[#'(H)] = 1. Let i be an increasing function on ( — oo, 4) such that () =0fort < 1
and y(t) goes to + oo very fast as t — 4. As in the proof of Lemma 5.3, we apply
L?-estimate of 0-operators with weight function v o p, (Proposition 5.1) to the
equations J;u = v;; on ¢; ! (B: J(Xx1594)) U B, (i) and obtain local holomorphic
anticanonical sections u;; on (B (i), p,9,) j = 1, 2, 3) such that u;; converge to u; as
(B VAt 7(), u;9;)  converge to  ({p, <1},gr) =(C*I,gp). Recall that
pr;:B \/—(l) - B 3/ (i) are universal coverings and there are nonvanishing holomor-
phic sections $* of K5 4 (cf. the proof of Lemma 5.4). Without losing generality, we
may assume that S converge to 5‘2: A 5(2_2 on C%/I" as i goes to infinity. Thus the
holomorphic functions w;; = pr¥(u;)/(S')” on (B /n(0), w;g;) converge to w; on
cr.

Claim 2. For any sufficiently large i, the functions {w;;}, <, < ; give an embedding ¥,
of B /(i) into C? satisfying:

(1) A generator ¢ in w,(B;(i)) can be taken such that it acts on C* by a diagonal
matrix o*(w;;) = e %)wﬁ. Note that 7, (B;(i)) is a cyclic group.
() .8 (D) converge to the open subset {p,, < 1} in C?/T in Hausdorff topol-
ogy. '
The map ¥, is defined by assigning y in Bf( i) to (wi1 (), Wiz (), wia(p)) in C3.
Since {(¢; 1)* w,j}1<,$3 converge uniformly to {w;}, ;<3 on {¢ £ p,, <1} for any
e > 0, the map ¥, is an embedding on B ()/B, /(i) for the sufficiently large i.

Because K ;! is ample and there is a section in H°(M;, K") vanishing nowhere in
B /n(i) for a large m (Theorem 5.1), there is no complete holomorphic curve in
B s(0). Tt follows that ¥, fails to be injective at most at finitely many points in
B /(). If ¥, is not injective, then there are two points y,, y, in B /r(i) such that
Y.(y,)= ¥:(y,). Choose a very small r>0, such that the geodesic balls
B,(y;, pr¥, §;) do not intersect to each other and ¥, is an embedding at any point of
these balls except y,, y,. Let f; be the local defining function of Im(¥;) at ¥,(y,).
Then f; is reducible. Let f (resp. f;") be the irreducible component of f; such that
{f{ = 0} (resp. { fi" = 0}) corresponds to ¥,(B,(y,, prg;)) (resp. ¥,(B,(y,, pr¥g:))).
Then { f/ = 0} (resp. { fi" = 0}) is smooth outside ¥,(y,) (resp. ¥:(y,)). Let D be the
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curve defined by f/ = 0 and f;” = 0. Then ¥, fails to be injective along ¥ (D).
A contradiction. Therefore, ¥; is an embedding from B s (i) into C°.

In order to prove the statement (1), it suffices to check that for any r in 7, (B; (i)),
we have r*(w;;) = iiﬂji ; for some real numbers 4;;(1 £j < 3). By definition, we can
write w;; = pr¥(u;)/(S;)”. Since each pr¥(u;;) is I'-invariant, we have

prwy) (SN
T*Wl‘j = : ~i” - 5 wij = /“ijwij
(T*§H» *8§

where /;; are holomorphic functions on B/ (i). Because 1 is an isometric of the

metric pr¥g, and S*is the my-root of a I-invariant my-anticanonical section, the
absolute values of 4;; are identically one, so 4;; are constants.

The statement (2) is then trivially true. The claim is proved.

Now we can complete the proof of this lemma. We identify each =, (B;(i)) with

I'/T"” such that ¢ = diag(e(%), e(%), e(%)) as a linear transformation on C3.

Letf, f,, be the defining equations of ¥,(B (i) and C?/I"in C3, respectively. Then
f., 1s one of the polynomials in (5.25) and lim,.. ., f; = f, . Since o preserves the
hypersurfaces { f; = 0} and {f,, = 0}, we have that o*f, = A}, 6*f,, = f,,, where
/18 a nonzero constant. If 4 * 1, then any f; has no constant term, in particular, the
origin of C? is in { f; = 0}. It follows that the group =,(B;()) = I',/T"” does not act
on B /(i) freely. A contradiction. So A = 1 and each f; must have nonzero constant
term. It follows that { f; = 0, w; = 0} is non empty forany i 2 1and 1 £j £ 3. We
remark that 7, (B;(i)) acts on { f; = 0} freely, so if kp; = 0 for (mod p) for some ',
then kp; = 0 (mod p) for all j, where k is an integer. Thus we may assume that
0<p;<pforallj=1,23.1f I'"is of type other than A,, then 2p, = 0 (mod p), so
by the above remark, we have 2p;=p for all j Tt follows that
o =diag( — 1, — 1, — 1). Itis certainly impossible since the latter diagonal matrix
does not preserve the equation of type D, E4, E,, E in (5.25). Therefore, I'" must
be of type A,

If the defining polynomial f, is of form w3 + w? + w3 = 0, then the same
argument as above shows that o = diag(— 1, — 1, — 1).

Now we assume that f,_ is of form w, w; + w} = 0.

Claim 3. The element ¢ in 7, (B;(i)) is one of g, , , described in the statement of this
lemma. In particular, the lemma follows from this claim.

By the fact that the action of n, (B;(i)) is free of fixed point, we may assume that
pi=1 and p,p, are coprime. Then n=pn by o*f =f . Recall that
w, = 2%, wy = 2%, w, = z,z, for euclidean coordinates (z,, z,) in C2. As an element
L+ pql’ — L+ pay + &) Let m be the largest

n np p
common factor of 1 + pg, and np, then m, p are coprime. Write 1 + pg, = ml,,
np = n'p* = mlp?, where I, is coprime to both ! and p. Let m,, m, be such that

in U(2), we can write ¢ = diag<

. . . 1 1
myl, + mylp?> = 1 and m, is coprime to /, p. So o™ = d1ag<l~3, =t m1p2>.
D 14 p
Thus we may assume that ¢ = g, , ,. The claim is proved, and so is the lemma.
We summarize the above discussion in the following
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Theorem 5.2. Let {(M,, g;)} be a sequence of Kihler-Einstein surfaces in 3, with

Ric(g;) = w,,. Then by taking a subsequence if necessary, we may have that (M,g;)
converge to an irreducible Kahler-Einstein orbifold (M, g ., ) (in the sense of Proposi-
tion 4.2) satisfying
1
(1) For all integers m > 0, (M, Kz™) = h%(M,, Ki™) = 1 + T('”T’L—)@ —n).
(2) M, has finitely many isolated singularities. Each of these singularities is either
a rational double point (cf. [BPV], p87) or a singular point of type C*/Z, , , with

48

a cyclic group Z, , , defined in Lemma 5.5. Moreover, Ip* < s The latter
—n

singular point is a Hirzebruch-Jung singularity (cf. [BPV], p80).

Proof. By Proposition 4.2, Lemma 5.2 and Lemma 5.5, it suffices to prove the
upper bound of Ip? required in the above (2).
By Bonnet-Myers Theorem ([CE]), we have

diameter of (M,, g,) £ /3n for all i (5.27)
It follows
diameter of (M ,g9,) = /37 (5.28)

For any fixed i and x;e M,;, by Bishop’s Volume Comparison Theorem [Bi], we
have

VOlgi(Br(xi’ gl)) > VOlgi(Mi)

for r small (5.29)
9VoI(B r (0,g5:) ° VOISY
V3
where (%, g,) is the sphere with standard metric gs«, and o is the north pole in S*.
Taking x; in M, such that lim,_,,, x; = x, is a singular point of type C*/Z, , ,,
then it follows from (5.29) that
1 9 —n) 9—n

P2~ 18Vol(SH) ~ 48

ie. 2 48
b < 9—n ( )

The theorem is proved.

Remark.

(i) In case n = 5, there are three possible (/, p, g) for Z, , , in Theorem 5.1, i,
Lp.g=(1,2,1),(2 2 1),(1, 3, 1). Note that Z; 3.1y = Z;,3,2)-

(ii) In case n = 6, there are four possibilities: (I, p, ) =(1,2, 1), (2,2, 1), (3,2, 1),
(1,3, 1)

(iii) In case n = 7, the triple (/, p,q) could be (I, 2, 1) for 1 <I<5, (I, 3,1) for
1g1<2and (1, 4, 1).

(iv) In case n = 8, the triple (, p, q) could be (I,2,1) for 1 <1< 11, (], 3, 1) for
1215514, )for1£1£2,(1,5 1),(1,5,2),and (1, 6, 1).
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6. Anticanonical divisors on some Kihler-Einstein orbifolds

We still denote by (M, g,,) the irreducible Kihler-Einstein orbifold in Proposi-
tion 4.2. Then this M is 2 normal surface with finitely many singular points. Each
of these singularities is either a rational double point or a Hirzebruch-Jung
singularity (cf. [BPV]). The purpose of this section is to study the plurianticanoni-
cal divisors on M. Although the results here should hold in more general
situation, we will confine our discussions to our special case.

Lemma 6.1. (Poincaré Duality Formula) Let (M, g,,) be as above and w,_be the
Kahler form associated to the metric g_,. Then

(1) For any pluri-anti-canonical section Se H*(M ,, K™ ), we have

o =m| o} =0 —nm 6.1
{§ =0} M,
(2) Let D be a divisor in M ,, Se H*(M ,, Ky;™) and Dy is the divisor defined by the

section S such that D and Dg have no common component, then

mlw, =
1{ o ZA:« deg(,)
where n:U —~M_ is a local uniformization of x with m(0o)=x and
i,(n¥ D, n¥Dyg) is the intersection multiplicity of n¥D and n}Dg at the origin (cf.
[BPV]). Note that x is smooth iff deg(n,) = 1.

i,(n¥ D, n3 Dy) (6.2)

Proof. The proof is standard. For example, in the case (1),

/1 .
m | o] =lm | o, A (mcugm + a0 log(e + l|S||§m)> )
M

e+ 0 M, 2n

@©

One can easily check that the right-handed side is just fi5_q o, . The case (2) can
be similarly proved.

Let n:M , — M_, be the minimal resolution. Then for each singular point x in
M, the exceptional curve n~'(x) is either an 4 — D — E curve or a Hizeb-
ruch-Jung string according to whether x is a rational double point or not (cf.
[BPV]). In particular, any singular point is rational. It is easy to show that
WM , Ki™) = h°(M ,, Ky™) for any m. For any integer m > 0,

Ki" =8B, +D,, Ky" =B, + D, (6.3)

where B, (resp. B,,) consists of all one dimensional components in the base locus of
Ki™(resp. Ky™). Then n(B,) = B,,, n(D,)) = D,,. We denote by |D,,| the linear
system of the divisor D, etc.

We will first prove that the generic divisor in |D, | is irreducible. If n = 8, then
dim|D, | = h°(M, D,) — 1 = 1, it follows that the generic divisor in |D,| is irredu-
cible.

Lemmg 6.2. Let n=S5, 6, 7. Then if the generic divisor in ID~1| is reducible, we can
write D, = (9 — n)E with E* =0 and h®(M _, E) = 2.
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Proof. We can write D, = i _, o, E; such that E; is not linearly equivalent to E ; for
i +j, any |E;| is free of one dimensional component in its base locus and the
addition map: []/=,|E;|* - |D,| is generically surjective. We need to prove that
I = 1. Suppose that | = 2. We may assume that E, can not be decomposed into the
sum of E, and an effective divisor. We remark that the addition map:
|[E;| X |E,| = |E{ + E,]is also generically surjective. Choose an irreducible divisor
in |E,|, say E, for simplicity. Then for any point x in E, outside the base iocus of
|[E, + E,|, we have a divisor in |E,| intersecting E, at x. Thus
E,-E, 21+ # {base points of |[E, + E,|} (count multiplicity). By Bertini’s the-
orem (cf. {GH]), the generic divisor E in |E, + E,| is smooth outside the base locus
of [E, + E,|. So E can not be written as the sum of divisors in [E,| and |E,|.
A contradiction. Thus [ = 1, D = aF (« = 2). The above arguments also show that
ho(M ,, E) = 2. Since h°(M00 .) = 10 — n and the generic divisor in |D 1| can be
written as the sum of « divisor in |E|, we must have ¢« =9 —n. Then by
Riemann-Roch Theorem [GH], 10 — n =1 + «*E?2, so E* =0. The lemma is
proved.

Denote by IP(l, p, 1) be the germ of all holomorphic functions f at the origin of

1 )
C? such that ¢}, ,f = e(—) £ One can easily compute
p

pl—2 w©
IP(Lp, )= {feC*{z;,z,}|f= 3 (Z'i ) fjk(Z’fl_l,Zz)) (6.4)
k=0 \ j=0
f} are homogeneous polynomials of degree j, + jp*I}

where j,=(p—1)pl, jis1=j.+ (@l +1) (modp*l) and 0<j, <p?l for
0sk=spl -2

The 51gn1ﬁcance of IP(I, p, 1) in our context is the following. If x is a singularity
in M, of type C*/Z; 1, let m, U - U, M_ be a local umformlzatlon where
U, c C? U,(0) = x, then the local holomorphlc sections of K in U, correspond
to one-to-one the functions in IP(l, p, 1).

We list some simple lemmas in the following.

Lemma 6.3. Let IP(l, p, 1) be defined as in (6.4). Then

(1) The monomials in IP(l,2,1) of degree <2l are z¥ z3',z,z,,2323, ...,

Z3EH 122kt where k = lil——z—l]

9l
2) If 1=1, 2, then the monomials in IP(l,3,1) of degree < 5 are among
23, 2,2,, 2125,
(3) The monomials in IP(1, 4, 1) of degree < 8 are z,z,, 25, z225.
In particular, if p*l < 24, then for each (A, p) being either (4, 0), or (0,4) or 4 = 2,
2

U = 2, there are at most two monomials in IP(l, p, 1) with degree < %- and contain-

ing the factor z4z4.

This follows directly from (6.4) and some simple computations.
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Lemma 6.4. Let f, g be holomorphic functions at o€ C* and have no common
component. We further assume that o, | f = c¢f and { f = 0} is smooth at 0. Then we
have

B({f=0}{g=0p)2

inf{A(p?l — pl + 1) + pulziz4 is in g}, if =2z, + O(|z)*)
inf{A + u(pl — 1)|z124 is in g}, if f=2z,+ 0(z?
where i (-,") is the intersection multiplicity (cf. [BPV]) and |2|* = |z,|* + [z,|*.

4.13)

Proof. We assume that f =z, + 0(|z|?). The proof for the other case is same. Write
f— 2.01(z4, 2,) + f>(2,), then f; (0, 0} + 0 and ord,(f,) = 2. By the assumption that
ofp1f=cf, we have ord,/(f,)= pzl——pl + 1. Put w, =z, fi(z,,2,) + f2(z,),
w, = z,, then z, = w,f,(w,, w,) + fo(w,) with ord,(f,) = p*l — pl + 1. Now by
the definition of the intersection multiplicity, we have

io({f =0}, {g = 0}) = ord, (gl o) = 0rd,(g(F2(w,), w2)) .

Then lemma is proved.
We now come to apply these two lemmas to studying the properties the
anticanonical divisors on M .

Lemma 6.5. Let D, be defined as in (6.3). Then the generic divisor in the linear system
|D, | is irreducible unless n = 7, B, = & and M has exactly two singular points of
type C*/Z; 5 ;.

Proof. By some results in [De], we may assume that n £ 7and M _ has at least one

singular point besides rational double points. Let x,, ..., x; ({ = 1) be those
singular points in M other than rational double points, and F, ..., F, be the
exceptional curves in the minimal resolution M _ over x,, ..., x_. Suppose that

the generic divisor in |D~1| is reducible. By Lemma 6.2, we write 151 =(9 —n)E.
Claim 1. The divisor E must intersect one of F;, say F, for simplicity. Moreover,
E-F, =1

IfE-F, = 0for any j, let H be a divisor of K™ for some m > 0 such that x;¢ H
(j=1,2,...,0. Then H n(E) = Ky™-E 2 m. By Lemma 6.1 (1), we have

9—n~jw +09-n | o,

B, n(E)
[, + O mH )
B, o m '

Therefore, B, = . It follows that all x; are rational double points. A contradic-
tion. So we may assume that E-F, = 1. Let F;, be the component in F; with
F,; E = 1.1In case that 9 — n = 3 or there is another component in B, intersecting
F,; at some pomt the divisor F;; has multlphclty two in E by
— Ky Fy; = F}; + 2. Tt follows that E- F“+E Fi<B, E<2ic.E'F =1
Thus we may assume that x, is of type C?*Z, ,, and F, (B, —F,))= 0 By
adjunction formula, we have —2=Kg' - F, 2 F{ +2F,"E= -4+ 2F -E,ie,
F,-E = 1. The claim is proved.
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Claim 2. If x, is of type CZ/ZI, 2,1-thenn =7 B, = ¢ and M has exactly two
singular points of type C%/Z; , ;.
We first prove that E must intersect another exceptional curve F; other than F,.

In fact, if it is not true, then F, has multiplicity two in B By — Ky F,=F1 i+ 2
there are exactly six curves in a generic anticanonical lelSOI‘ on M intersecting
F,. Thus for any S in H(M,, K5'), the pull-back =} is locally represented by
a holomorphic function f5 in IP(1, 2, 1) with vanishing order at least 6 at o, where
n,:U, - U, is the local uniformization of x, in M. By (6.2) in Lemma 6.1, if
{S = 0} has no common component with n(E), we have

O —n
4

9—n= o, +0-n | 0,28 Dmi(s=0hz30-n.

B )
A contradiction. Therefore, the divisor E intersects with another exceptional curve,
say F,. Thenn =7and F, E = 1,s0 by Ki!*F, = F3 + 2, the singular point x,
must be of type C?/Z , . As above, by using Lemma 6.1, one can prove that
B, = . Thus there is no other singular point in M besides rational double
points. Claim 2 is proved.

Now we may assume that x, is not of type C*/Z, 5 ,, then F; has multiplicity
two in El and E intersects with no other F;(j Z 2). By (6.2) in Lemma 6.1, we have

[ @, £1 and <1ifB = . (6.5)
n(E)
Let n,: U, - U, be the local uniformization of x, with uniformization group I'y,
then as above, the section S in H(M,, Ky!) is locally represented by a f; in
IP(l, p, 1), where x, is of type C*/Z; ,. ;. It follows from (6.5) and Lemma 6.1,

({fs=0}, ni"(m(E) <p*l and <pilifB + & (6.6)
where i (-,*) is the intersection multiplicity at the origin in U,.

Claim 3. For generic E in the linear system |E|, the pull-back =y ! (n(E)) is smooth
at the origin.

Let (z,, z,) be the local coordinates of U, such that the generator o, ,, of
Iy =Z,,is diagonal in (z, z,). Also let hp be the defining function of ny Ym(E))
in UI, then 6, hy = chg for some constant c. First we prove that ord,(hg) < 2 for
generic E. If this is not true, then ord,( fs) 2 6 for any section S in H*(M ,,, K3!).

By Lemma 6.3 and the fact that h°(M ,, Ky ') 2 3, one can easily find a section S in
2

l
H°(M, Ky!), the local representation fg vanishes at o of order > 23— for those

(I, p, 1) with p?l < 24. Now we choose a generic E such that E has no common
component with {S = 0}, then we have

i,({f, = 0}, n7 " (n(E))) Z ord, (hg) ord,(fs) > p*I.

It contradicts to (6.6). So ord, (k) < 2. Using the invariance 6§ , ; by = chg and the
fact that o,,; has distinct eigenvalues, we conclude that

he(zy,2,) =z} + O(1z1***) or z,z, + O(j2)*), where A = 1, 2. In the former case 1f
A =2, thenforany Sin H'(M, K;;'), the lowest order term of f; has the fact z},
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2
by Lemma 5.3 again, we can find such a S that ord,( f;) > 22— As above, we can

deduce a contradiction to (6.6). Some arguments exclude the possibility of
hg; = z,z, + O(|z|?). Therefore A = 1 and the claim is proved.

We now want to apply the formula in Lemma 6.4 to our cases and conclude the
proof of this lemma. It suffices to find a S in H°(M , K !) such that for any term
2424 in f;, either A(p?l — pl + 1) + u > p?l for j = 1, where h; = z, + 0(|z]*), or
A+ u(pl — 1) > p?l for j =2, where hy = z, + O(|z|*). Since there is only one
monomial z}z4 in IP(l, p, 1) such that 1 + u < p*land 4 £ 1, we may find a S in
H°(M , Ky!) such that any term z{z} in f; has either 4 + > p*lor 4 2 2. So by
the fact that 2(p*! — pl + 1) > p?lfor p = 2, we may assume that hy = z, + O(|z|?).
By (6.4), any monomial ziz& in IP(, p,1) can be written z{*®WI~14z4 with
A+ u =j, thus .

A+ p(pl = 1) =k + (pl — 1)jy .
One can easily check that for those (I, p, 1) with p?l < 24, the monomials z,z,,
z8! are only ones in IP(l, p, 1) with A + u(pl — 1) £ p*l. Then by the fact that
h°(M , Ky!) = 3, we may find a S in H°(M ,,, K ') such that f; does not contain
z,z, and z%. It follows from Lemma 6.4,

io({hy = 0}, { fs = 0}) > p?lI (6.7)
Therefore, we obtain a contradiction from (6.6) and (6.7). The lemma is proved.

Proposition 6.1. Let {(M,, g,)}, (M, g,,) be given as in Proposition 4.2. Assume that
n =" Then M has only rational double points as singular points unless M ., has
exactly two singular points of type C*/Z, , 1, and |Ky| is free of one dimensional
components in its base locus. Moreover, the linear system |K y; i] is always free of base
point.

Proof. It is well-known that each M, is branched double covering of CP?, in
particular, each M, admits a nontrivial involution t; (cf. [De]). One can easily
check that the fixed point set 4; of 7, is a connected smooth divisor in |2K3,} | and 7;
preserves any anticanonical divisor. These 7, converge to a nontrivial involution
of M, as M, converge to M _ in the sense of Proposition 4.2. The fixed point set 4
of t,, is the limit of 4; and then is 2-anticanonical divisor in [2K|.

Let n:M » — M, be the minimal resolution as above and B, D, B,, D,
defined as in (6.3). We first assume that the generic divisor in |D,| is irreducible.
Choose such an irreducible one, say D, for simplicity. Fix a regular point x of M
in D{\(4, U B,). Since h®(M ,,, Ky!) = 3, we can find another divisor D} in |D, |
such that D, and D’ have no common component and xe D; n D’. Since both D,
and D are stabilized by 1, their intersection D; N D} also contains 7, (x). By
Lemma 6.1, we have

2= .f 0, + .‘ Wy,
B; Dy

1
= i, (1} Dy, DY) + iy(Dy, D) + iy (D, DY)
15[ - yESiléMw)deg(ny) y Py 1> 1 oW1 L1
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where 7, : Uy - U, is the local uniformization of y in the singular set Sing(M ). It
follows that B, = ¢J and none of singular points in M is in the base locus of
|K 3 !l. The latter implies that all singular points of M are rational double points
(cf. [BPV]).

It remains to conside the case that the generic divisor in |D, | is reducible. Then
by Lemma 6.5, it suffices to prove that the base locus of |2K ;' | does not contain
those points of type C?/Z, , ;. Now we have a natural divisor 4, in 2Ky '|. It is
smooth and irreducible since it is the fixed point set of 7, and 7, is an isometry of
(M, g.) Weclaim that 4 does not contain an singular point of type C*/Z, , ;.
In fact, if the claim is not true, both singular points p,, p, of type C*/Z, ,  are in
A, . By our assumption on D, |, we can write D, = 2E and the generic divisor in |E|
is an irreducible rational curve passing through p,, p,. On the other hand, since 7
preserves {D |, it also preserves |E|. Choose a generic divisor in |E|, say E for
simplicity, such that E intersects with 4 at a point outside p,, p,. Note that two
generic divisors in |E| do not intersect to each other outside p,, P,. Thus t must
stabilize E, then it fixes E since it fixes three points on E and E is rational. It follows
that 7, fixes the generic points in M, ie., T, is an identity. A contradiction!
Therefore, p,, p,¢ A, and [2Ky!| is free of base point. The proposition is proved.

Remark. One can also construct local nonvanishing sections of 2K ;! at the above
P:, P, and then use LZ-estimate of J-operators (Proposition 5.1) with weight
function alog(}.3-o IS5 12) to produce a section of [2K 5| which is nonzero at
P1» P2, Where {S°}o< <, is an orthonormal basis of H°(M ,, K5 ') with respect to
the inner product induced by g, . In particular, it implies that |2K ;! | is free of base
point.

Proposition 6.2. Let {(M,, g,)} and (M, g) be as in Proposition 4.2. Assume that
n = 8. Then M has at most one singular point of type C*/Z, 5 1(2 <1 £ 7) besides
rational double points. Moreover, the linear system |2K y'| is free of base point.

Proof. 1t is known (cf. [De]) that each M, is a branched double covering over
a quadratic cone in CP>. It implies that each M, admits a nontrivial involution ;.
Also, this t; preserves both anticanonical divisors and 2-anticanonical divisors.
These 7, converge to a nontrivial involution z_ of M as M, converge to M _ in the
sense of Proposition 4.2.

Let M, be minimal resolution of M and B,,, D,,, B,,, D,, be defined as in (6.3).
The involution 7 can be lifted to M »> Still denoted by 7, for simplicity (cf. [La]).
Then t_, stabilizes B,,, D,,, B,,, D,, (m = 1, 2), respectively. We assume that M has
a singular point other than rational double points.

Claim 1. D% =0

By Riemann-Roch Theorem and the fact that k(M _, D,) = 2, we have either
Di=0or DA =1and B,;-D, =0. If D} =1, then there are two irreducible
divisors D'y, D in ID~1| such that ', intersects D", at a point outside B,. By
Lemma 6.1,

l=fo, + o, z[o,+1
By Dy B,
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It follows that B, = . Thus all singular points are rational double points.
A contradiction. The claim is proved.

The same arguments also prove that D, does not intersect B, outside singular
points. Now |D,| induces a fibration T M - CP!. We clalm that the generic
divisor in |D2| has a horizontal component. In fact, if it is not true, then by
h°(M D,) =4, we have D2 =3D,. It follows that D, + B, = 2B,. Since
B, c 2B1, the divisor 2B, — B, is effective. By D? = 0, we conclude that ZB ~ B,
is vertical with respect to the fibration = : :M_ — CP!. It is easy to prove that
2B, — B2 is connected since D, is. Let E be the reduced divisor supporting
2B, — Bz, then E is a proper subset of one fiber in M_ and
2B, — B, — E= D, — E. Since 2B, — B, — E and D, — E have no common irre-
duc1b1e component, it follows that (D, — E)2 = 0. On the other hand, the divisor
D, — E is a proper subset of a fiber, then (D, — E)* < 0. We get a contradiction.
Therefore the claim is proved.

Now choose a generic D2 in |D | such that the generic divisor in ID | intersects
D at at least one point outside B1 Since t_, preserves divisors in |D | and ID |, we
have that n(D ) intersects the generic d1v1sor in [D,| at at least two smooth points
in M_. By Lemma 6.1, we can conclude that B, = ¢ and n(D,) does not pass
through the singularities of M, other than rational double points. Then there are
at most two singular points of type C%/Z, , ; in M, besides rational double points.
By adjunction formula, one can easily prove that there is at most one singular point
in M, besides rational double points. The above arguments also show that 2K ' |
is free of base point.

Corollary 6.1. Let n = 7 or 8. There are constants c(n, k) depending only onn, k = 1
such that for any Kahler-Einstein surface (M', ¢') in J,,, we have

Nm
mf{ 5 Is; ||;} > cln, k) (©8)
M’ =0

wherem = 2k, N,, + 1 = dim H°(M’, K3™) and {Sy}o < s < n, is an orthonormal basis
of HO(M', K3i™) with respect to the inner product induced by ¢'.

Proof. 1t follows from Lemma 5.3, Propositions 6.1 and 6.2 (cf. the proof of
Theorem 5.1).

7. Completion of the proof for strong partial C%-estimate

In this section, we will complete the proof of Theorem 2.2, i.e., the strong partial
CP-estimate stated in section 2. By Corollary 6.1, Lemma 5.3 and the arguments in
the proof of Theorem 5.1, Theorem 2.2 will follows from the following proposition.

Proposition 7.1. Let n =5 or 6, and (M, g,.) be the irreducible Kihler-Einstein
orbifold in Proposition 4.2 or Theorem 5.1. Then the linear system |6K ;' | is free of the
base point.

The rest of this section is devoted to the proof of this proposition. The basic
tools are still the Poincaré duality formula (Lemma 6.1) and adjunction formula we
have used in last section.
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We fix the Kéhler-Einstein orbifold (M. 9,) as in Proposition 7.1 with
C,(M_)* =9 —n, where n =5 or 6. Let n: M — M_ be the minimal resolution
and x,, ..., x, be the singular points of M bes1des ratlonal double points. The
corresponding exceptional divisors in M are denoted by F,, . .., F,. Define D,
B,,D,, B, asin (6.3). If M_ has only rational double points as singular points,
then by the results in [De], the linear system |K;, !| is free of base point. So we
suppose that k = 1. As in the proof of Proposition 6. 1, etc, we may assume that F,
intersects D,. We collect some simple facts either built up before or that can be
easily proved by using Riemann-Roch Theorem and adjunction formula (cf.
[BPV], [GH]).

(F1) The generlc divisor in IDIl is a smooth rational curve and D% =8 — n,
Kgl- D,=D% +2

(F2) For 8 —n generic distinct points { yj}1< j<s-nin M outside exceptional
curves, there is a pencil of divisors in |D,|, denoted by 1Dy, { Vitig, s -ull
such that the generic divisor in this pencil is a smooth rational curve and
I(D,, {¥;}155=8-n)l is free of base point outside {y;}i<;<s-»

(F3) Let E be an exceptional, irreducible curve, ie. EZ < 0, then if E ¢ B and
B, E >0, then E is of first kind, i.e. E> = — 1. Moreover, this E 1ntersects
exactly one irreducible component in B, .

(F4) Each singular point x;(1 < j < k) is of type either C*/Z, , (1 £1<3) or
C?/Z,,3,,. Thus the corresponding exceptional curve F; is reduced and can
be written as Fj; + ... + Fy, such that F-F, =1if li—i'|=1;, =0if
li — i'| > 1 and F}; is irreducible for each i between 1 and k;, where k; = 1, 2, 3.
If k; =1, then F} = — 4 and x; is of type C*/Z, , . If k; = 2, then either
F21 = Fﬂ =-—3or Fﬂ = —2, F, = — 5 according to that x; is of type
either C?/Z, 5, or C*/Z; 3 ,. If k;= 3, then x; is of type C%Z;,,.1, and
Fhi=Fh=-3Fh=-2
By these facts, there are three cases of M as follows.

Case 1. F,-D, =2, F.-D1=0forj>2

Case 2. F,-D, =1, F;: D, =0 for j =2, so the irreducible component in F,
intersecting D, has multlpllclty two in B,.

Case 3. F,-D, =1and F,-D, =1, FJ-~D1 =0forj=3.
We will treat these cases separatcly in the following lemmas.

Lemma7.1. Let(M, g,), Fj, Dy, etc. be given as in Proposition 7.1 and F, - D1 =2,
F;- D,=0forj=2 Then B, = &,B, = F, and D, intersects with Fy, and Fy,, at
one point, respectively. Moreover, the linear system |6KM1| is free of base point.

Proof. Let «; be the multiplicity of the irreducible component Fy; (1 £ i< k,) in
B,, then by adjunction formula and (F1), we have

22 B,-D, zFy D, + (B, - Fu) D,
D,-Fy+ (B, —Fu)F;=2 (7.1)
It follows from (7.1) and F, - D, = 2that D, - F{; < 1 unless k, = 1,i.e, x, is of type
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C%Z,,,, and D,-Fy;=1 iff (B,—F,) F;;=1 and «, = 1. Therefore
D, Fy=1fori=1,k,and(B, — F,)-F, =0,ie, x, ¢ B,. By Lemma 6.1 and the
above (F2), the generic d1v1sor D, does not intersect B, outside x, . . ., x,. On the
other hand, since (M, g )is a limit of some sequence of Kéhler-Einstein surfaces
according to Proposition 4.2, any anticanonical divisor in |K,'| must be connec-
ted, so D, n B, contains some x; for j 2 2 if B, + @ By our assumption, we have
x;¢D, for] = 2 It implies that B, =g and B

It remains to prove that |6KM:| is free of base pomt. By Lemma 6.1 and the
above (F2), one can easily prove that |[Ky!| = |D,| is free of base point outside x; .
So we only need to construct a global section of 6K ;! not vanishing at x,. It will
be done by applying Proposition 5.1. Define

Ny
Y = 610g< P ||§oo> (7.2)
p=0

where N, = dimcH°(M _,g,) — 1 and {S7} is an orthonormal basis with respect
to the inner product on H*(M , K!) induced by g,,. Since the base locus of
Ky ! is the point x,, the function ¥ is bounded and continuous outside x,. As we
remarked in §6, each section S§° is represented by a function in IP(l, p, 1) in the
local uniformization of x,, where x, is of type C*/Z, , ;. In particular, it follows
that for any neighborhood U of x, in M, we have

fevdv, =+ (7.3)
v

By the definition of  in (7.2), for any tangent vector v of type (1.0) at any point of X,
we have

14xn

<aal//+\/__1

Thus by Proposition 5.1, in order to have a global section of 6 K ' nonvanishing
at x,, it suffices to construct a nonvanishing local section of 6K ;! in neighborhood
of x,. It is obviously possible since x, is a singular point of type C%/Z, ,; with
1 £1<3,2<p=3 Then the lemma is proved.

W, , VA \7> 2 vll2. (7.4)
9

Lemma 7.2. Let (M _,9,), F Dl, etc. be given as in Proposition 7.1. Then the
irreducible component in F, mtersectmg D has the multiplicity one in B

Proof. We prove it by contradiction. Assume that the conclusion of this lemma is
not true. First let F, be irreducible, ie. x, is of type C*/Z, , ;. Then by Lemma
4.10 and ad]unctlon formula K M‘ F, = F{ + 2, there are at least five irreducible
components C, (1 £« < 5)in B, such that C,- F, = 1. Obverse that the plurian-
ticanonical divisor K°® is an ample Cartier one, so

5

51 5
>y 1.2 75
TIED o B 03)

a=1C,

Choose two generic divisors D - Dyin ]51| such that D | intersects Diyat8 —n
distinct points outside B,. Let S’ be the section in H°(M, Ky!) such that
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{§' = 0} is just the sum of m(D’;) and B,. Thus one can compute that

1 ; —-15¢/ ~1 N 1

T Geaay o 1S = 0w D)) 28—+ 5 (7.6)
where n_: U_ — U, is the local uniformization of M  at z with 7_(0) = z. Combining
(7.6) with (7.5), we get a contradiction to Lemma 6.1. So x, can not be of type
CZ/ Zya,1-

If x, is of type C%/Z, .1, then by the same arguments as above, we can prove
that B, does not contain more than three irreducible components. Write
51 =2F,, + aF,, + B} where B/ is an effective divisor having no common
component with F,. Note that any irreducible component E in B with E- F >0
can not be contracted to a point by the projection 7: M » = M, in particular,
E? = — 1. Moreover, if n(E) does not pass through a singular point of type
C?*/Zy 3,1, then j,m w, Z % and B, contains at most one irreducible component.
By adjunction formula, it contradicts to the fact that F 11 has multiplicity two in B ,
and F,-D, = 1. So for any such an E, n(E) must pass through a singular point of
type C?/Z, 3. ;. Then one can easily show that « = 1 and B, = 3n(E), where E is an
irreducible component intersecting F;;. Let n a :U,, » U,, be the local uniformiz-
ation of M, at x,. Then any section S in H° (M Ky 1) is locally presented by
a holomorphlc function fy on U, of form (h,)*f, where hy is the defining function
of ny Y(E)in U,, and deg,(f) = 1, deg, (k) = 1. Since fy is also in IP(2, 2, 1), there
is at most one monomial term in f; with degree less than 5. Thus we can choose two
divisors 51, D in Iﬁll such that n(ﬁl) intersects {S’ = 0} at 8 — n distinct points
outside B, and deg,(fs) = 5, where S’ is the section in H(M, Ky ') with
(=0} =n(D})UB,. By Lemma 6.1,

9-n=3{ o, + | o,
n(E) =(D,)

1 -
+8—n+ ———i(m (D)) {fs =0})

>1
=2 deg(n,)

1 5
SH8—ntg>9-n

1\

A contradiction! Thus x, is not of type C*/Z,, , ,, either.

Next, we assume that x, is of type C*/Z3 5,1, then n=6. Let
B, =aF, + BF,, +yF,s + B}, where F}, = F}3= —~3, F}; = -2 and B}
does not contain Fy;(1 £j < 3) any more.

Claim 1. The generic D, intersects F,.

If the claim is not true, then we may assume that D Fiy=1Lsoa=2,221f
y =1, then B = 2. By adjunction formula, we have B\-F, =2 By F,=1,
B|-F,; =0. Let E' be the exceptional curve in B intersecting with F,, then
E (B, — 2F,,) = 0.1t follows that n(E’) does not pass through any singular point
other than x, and rational double points, s0 [, @, = 3. By Lemma 6.1, it implies
that B, = n(E’) and then B = E'. 1t contradicts to B} - F,; = 2. Thus y = 2. We
observe that no E in B intersects two components of F, by adjunction formula or
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Lemma 6.1. So if we let k; be the number of irreducible components in B
intersecting with F, {1 <j < 3), then k; + k, + k3 < 3 by Lemma 6.1. By adjunc-
tion formula, we have

P—6+84+k =—1

2-2+y+k,=0 (7.7
=3y +ky=—

Summing these three equations, we derive y < 1. A contradiction. The claim is
proved.

Then =2 and « +y < 3. By the above arguments in excluding that x,
is of type C?/Z,,,, one can prove that «=1y=1 Thus
B, = Fy, + 2F,, + F,3 + E, where E is an exceptional curve of first kind and
E-F,, = 1. There are now two methods to conclude a contradiction. One of them
is to use Lemma 6.1. We can easily choose two divisors D, D} in |D,| such that
they intersect to each other exactly at 8 — n distinct points besides x, and
i(n7 Y (D), 77 (DY + B)) 2 7, where n;: Ul — U,, is a local uniformization of x, .
It will contradict to formula (6.1) in Lemma 6.1. There is another method described
as follows. Let M & be the surface obtained by blowing down E and then F 12 in
M , and FY; be the images of F,; (j = 1, 3) under the natural projection from M
onto M2 Then (F1;)? = = 2(j = 1, 3). Inductively, let M ¥ be the surface obtamed
by blowing down an exceptional curve intersecting either F§7' or F{3'. Put
F%; = m(F%71)(j = 1, 3), where nj: M %71 — M % is the natural projection. Let M7,
be the last surface obtained in such a process. Then (K M;) =4 + m. By
ho(M 0> K,@f) =4, we have m < 4. It is well-known that the relatively minimal
rational surface are exactly CP? and Hirzebruch surfaces Y (! 2 0) (cf. [BPV]). In
particular, it follows that m = 4 and (FT;)* =0(j = 1, 3) So M™ =Y ,. Now any
anticanonical divisor of K 7! descends to the one of K5, containing F1., F7y and
F7y N F75 with multiplicity 2 3. Tt follows that h"(M %') < 3. This contra-
dicts to the fact that hO(M _, Kily=4

Hence x, can only be of type C?/Z, 3 ;. By the same arguments as in proving
Claim 1, one can easily show that F, -51 =1, FIZ-D~1 =0and F?, = — 2. By
adjunction formula, we have two exceptional curves E |, E, intersecting F; outside
Fy, (E, rnay coincide with E,). In particular, it follows that any section S in
H °(M n.) is locally represented by a holomorphic function fse IP(1, 3, 1) on
U, w1th ord J(fs) = 3, where n,: U, - U, is a local uniformization of M, at x,,
moreover, we can write fg = hg, hEJS, where deg,(fs) = 1 and hg, is the deﬁnmg
function of 7 1(n( ) for i =1, 2. Then we can choose two divisors D and D} in
|D | such that D has no common component with D4 and B and mtersects with
Diat8—n pomts outside B 1> and the divisor n(Dy) + B, deﬁnes a section S in

H°(M , Ky ') with deg,(fs-) = 7. Thus by Lemma 6.1 and the fact that 6K
a Cartier divisor,
9—n:.‘.wg,+jwyx+ j Wy,
E, E, b,

+ [ o,
D,

1%
| -
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v

+@8—n+ i,y YD ), {fs = 0})

deg,(n,)

i\
Q] = LI | =

7
+(8-—n)+§>9—n

A contradiction! The lemma is proved.
Now we consider the last case that F,-D, =1, F, D, =1and Fj-ﬁl = 0 for
jz3

Lemma 7.3. Let (M, 4.), F;, D be given as in Proposition 7.1. Suppose that
F, D, =1F 2 D =1.Then M, has exactly two singular points besides rational
double points, one ofthem is oftype C*/Z, ;.1 (1 £1< 3) and another one is of type
C?*/Z, 3.,. Moreover,

B,=F, +F,+E, B,=n(E) (7.8)
where E is an exceptional curve of first kind in minimal resolution M, of M.

Proof. By adjunction formula, it can be proved that the connected component in
B, containing F, is a chain of rational curves ending at F,. Since the generic
d1v1sors in |D,| do not intersect F ;(j 2 3) if such F; exist and the anticanonical
divisor in M is connected, we conclude that B, is a cham of rational curves with
F, and F, as two ends. By Lemma 6.1, we can further conclude that
B =F, + F, + E and E is an exceptional curve in M of first kind. Also by
Lemma 6.1, one can easily prove that at least one of x,, x, in M must be of type
C?/Z, 3 ;. We assume that x, is of type C*/Z, 3, 1.

Claim. The singular point xl can not be of type C*/Z 3. ;.

In fact, if x, is of type C?/Z, 5,1, then by Lemma 6.1, one can easily show that
D -Fy=1,F Fp=1F - E=1F}=-2 Fh= = 5(=12). Let M, be
the surface obtained by blowing down E and F,, in M_ successwely If
Tyt M — M', is the natural projection, then = (D )2 = D f{=8—n and

(F“) =0,n,(Fy) n, (D 1) = 0. This 7,(F3,) 1nduces a fibration of M, over
CP with generic fiber CP* such that n,(D,)is contained in fibers. It contradlcts to
the fact that the generic D is irreducible and «, (D,)* = 2. So the claim is true.

Thus x, is of type C /Z,’z,l, where 1 <1 <3 and 1 =3 only if n=6. The
lemma is proved.

I:emma 74. Let M_,9,), E, Fi, F,, 51 be given as in last lemma and
B, =F, + F, + E. Then |6K ;| is free of base point.

Proof. We first remark that by Lemma 6.1, the generic divisor in |D,| does not
intersect B, outside the singular points x,, x,. By Lemma 7.3, we have B, = n(E),
where E is defined there.

Claim 1. B, = (J.

We prove this claim by contradiction. Suppose that B, = ¢J, then B, < B,.
Fix an irreducible divisor in |D,|, say D, for simplicity. Then a 2-anticanonical
divisor in |2K | is the sum of two antlcanomcal divisors if it contains D, . On the
other hand, by Lemma 52, we have KM, ,Ky!)=10-n,
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h°(M ,, 2K ') = 28 — 3n, where n = 5 or 6. Thus there is a global section $3 of
H°(M , 2Ky !) such that {S3 = 0} does not contain D, and intersects with D, at
17 — 2n points outside B,. By Lemma 7.3, we may assume that x, is the singular
point of type C?/Z, 5. (1 £ 1< 3). Let n: U, - U, be the local uniformization of
M, with 7, (0) = x, and f, be the holomorphic function locally representing ¥ S%°
in U,,. Then f, is invariant under the action of Z, , ,, ie., o*f, =f,, where
o€Z, 5 1sthe generator. Then we can choose a local coordinate system (z,, z,) on
U,, such that z7'(D,) = {z;, =0} and ¢ = g, , as defined in Lemma 5.5 1t
follows from o-invariance of f, and f, is a holomorphic function on z¥{', 2%, (z, z,)%,
z3*1z,, z,23'* 1. Then one can easily deduce

io({f, =0} =74 D)) =4 (7.9)
By Lemma 6.1 and the above (7.9), we have
18—2n=2faw, +2jw

B,

17——2n+1 (f, = 0}, 271 (D,)

=
- 41’

L»JI»—‘

>-+18~2n (7.10)

G| =

A contradiction! The claim is proved.
The above claim implies that the base locus of 2K ;| consists of finitely many
points. Define

N>
Y = 3log( Y ns?ﬂn;,) (7.11)
=0
where N, =h°(M_,2Ky')—1 and {§5} is an orthonormal basis of
H°(M , 2K, !) with respect to g,,. Then y is smooth outside the base locus of
|2K 5 !|. The rest of the proof is exactly same as that from (7.2) to the end in the

proof of Lemma 7.1.

Now Proposition 7.2 follows from Lemma 7.2, 7.2 and 7.4. Then the proof of
Theorem 2.2 is completed.

The discussions in previous sections also yield the following result on the
degeneration of Kéhler-Einstein surfaces with positive scalar curvature.

Theorem 7.1. Let {(M,, g;)} be a sequence of Kahler-Einstein surfaces with
C,(M)* =9 —n (55 n<8). Then by taking the subsequence, we may have that
(M — i, g;) converge to a Kihler-Einstein orbifold (M ., g,,) in the sense of Proposi-
tion 4.2 satisfying:

(1) if n = 8, then M, has at most one singular point of type C*/Z; ,,, Q<1< 7)
besides rational double points;

(2) if n =1, then M, has either only rational double points or two singular points of
type C%/Z, ;.1 besides rational double points;

(3) ifn =5, 6, M_ has at most two singular points of type C*/Z, 5 , or C*/Z 3,
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(1 £ 1 £ 3) besides rational double points, moreover, in case M, has two of such
singular points, one of them must of type C*/Z, , 1, while another one is of type
CZ/ZI , 3,1

This theorem generalizes some results of M. Anderson [An] and Nakajima
[Na] on the Hausdorff convergence of Einstein 4-manifolds with positive scalar
curvature in case of complex geometry. Precisely, this theorem gives the reduction
of quotient singular points in the limit Einstein orbifold which is the Hausdorff
limit of a sequence of Kahler-Einstein surfaces. As we have already seen, such
a reduction is, in general, completely nontrivial. In fact, we expect that M _ in
Theorem 7.1 has only rational double points as singular points. If it is true, then we
have stronger partial C°-estimate than that in Theorem 2.2 and can simplify a lot of
technical computations in section 2 and Appendices.

Appendix 1. Proof of Lemma 2.4

In this appendix, we will prove Lemma 2.4 stated in section 2. First we will prove a proposition
concerning the evaluation of rational integrals.

Let f be a holomorphic function defined in the ball Bg(o) = C? with center at the origin 0. For
simplicity, take R = 1. For any ¢e(0, 1), xeB(o) and « > 0, we write

dv
Lfan= | o

where dV denotes the standard euclidean volume form on C2.
Then we can associate a local analytic invariant a,(f) to f at any point x in B, (o) as follows,

o (f)=sup{a|Ie>0,s.t I(fio x) < o0} (A.L1)

Note that a,(f) is independent of choices of local holomorphic coordinates at x.

We would like to evaluate o ( f) in terms of the geometry of Z; at x, where Z , is the zero locus
offin B, (o). Obviously,if x¢ Z, then o, (f) = + oo . Furthermore, by some elementary computa-
tions, one can easily check that if x is the smooth point of the reduced curve (Z),., of Z, in B,(0)

1
and m is the multiplicity of Z, at x, then « (f) = —. Note that (Z ), is defined as follows, write
m

Ziy=aZ + ... +oZ, where Z(1 < i< k)are distinct irreducible components of Z, in B, (0),
then (Z,), .= Z, + ... + Z,. Therefore, it suffices to evaluate «,(f) at the singular point of
(Z),eq in By(0). Without losing generality, we may assume that o is the unique singular point of
{Z;),eq in By(0).

Given any local coordinates (z,, z,) of C? at o, one can expand fin a power series ) . a,.7, 2}
in a small neighborhood of 0. Then we define the Newton polyhedron N(f)offasthe convex hull
of the set {(i,)e R, x R, {0, + ), (+ o0, )|a; * 0} in R?. The boundary 6N(f) intersects
with the line {x = y} in R? at a point (x, y,), where x, y are euclidean coordinates of R?, x, = Vi
This x, is called in [AGV] the remotedness of N(f), denoted by r(N(f)). Since N(f) obviously

depends on the choice of local coordinates C? at o, so does r{N( f)). However, we have

Proposition A.1.1. Let fbe given as above. Then there are a sequence of coordinate system (27, 277) of
C? at o such that for the associated Newton polyhedron N,,( /) in the coordinate system (27, z7), we
have r(N,(f) S r(N.(f)) if m < m’ and o,(f) = lim, _  r(N, (/)"
1
Proof. 1t is clear that o, (f) £ —. Write f=f, + f,., + ..., where each f; is the homogeneous
m,

component of f with degree j, k = mult,(f). Obviously, ko, = m,. Take a < m, !, then for any
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&> 0,
av
§ —<+® (A.12)
B, (0)\B,(0) 1/
By a linear transformation, we may assume that f, = 2925 []'_, (z; + wz,) with p; 0
distinct, a2z b2 (i=12,...,Danda+ b+, ,¢; =k Let N(f) be the associated Newton

polyhedron in R? of fin this coordmate system.

Case 1. ON(f)n{x=y}n{x +y=k}+ . Note that in this proof we always use x, y to
denote the coordinates of R?, z,, z, to denote the coordinates of C2.
In this case, we will prove that oy(f) = 2/k. In fact, for > 0 sufficiently small, we have

Lo = | av | av i av
Ahwoy= ) Z = Tt -
Bylo) /12 Ixl = 1yl 17 I = Ixl /1

x>+ 1y 0 X2+ y* <0

(A.13)

< g dy A dj AdE A dE

=

1 2a

WET e [T @+ + Y v Mua
mzk+1
dx Adx Adn A di
+ j { 2a
WET P T U+ )+ x 7 e xm)
i=1 mzk+1

2
It follows that I;(f,a,0)< + o0 only if a< ; On the other hand, by our assumption,
k
b+l ,c;2a az2bzc,somax{c,b, a} <5 Thus both polynomials &°[]¢_, (¢ + p,)" and

k
7T Ti2, (1 + wn)" have roots with multiplicity < 5 We also have

Y oy, (Ey)=0 aty=0

mzk+1

Y xHx,xm=0 atx=0

mzk+1

2
Therefore, for & sufficiently small, both integrals in (A.1.3) are finite if a < ; So a,(f) =~

Actually, we have already proved that I,(f, o, 0) has a upper bound depending on 6, o« and the
upper bound of | f] in B, (o).

Case 2. ON(f)n{x=y}n{x+y=k} =

Nowa>b+Y!_,¢.Let L(uv)= {ux + vy = 1} be the unique line containing the segment
of N(f) having nonempty intersection with {x = y} in R% Thus o,(f) = r(N(f))" ' In the
following, we may assume that L(u, v) is not vertical. In fact, if L(u, v) is vertical, then by Fubini
theorem, one can easily check that I.( f, a, 0} is finite iff & < r(N(f))“. Note that r(N(f)) is the
distance of the line L(u, v) from y-axis in R% Let (i,j) and (i',j) be the two end points of
L{u, v) nON(f) with i > j, i < j'. We further have that i > i, j <j and i +j =i + j. A simple
computation shows

Y]

i i—i
= , b=

it it
E

,v=—and & f are coprime.

~<£1|Q1

Then there are integers &, f 7 such that u =

~2
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Define a polynomial f; by Z(k e Liw, o)~ ENCS) a,z%z,. There are at most i terms in f;. This
polynomial f;, has the decomposition,

filzinzs) = ezt 2 ] (2F + d 22y (A.14)
k=1
where ¢+0 and d,,...,d, are distinct constants. Note that Sy_, Bu +i =i
Y-, @, +j=j. For > 0 sufficiently small, let 6, = 6%, 8, = 6%, 8 = min{3,,5,}, then we
have

Leds | av _if w2~ 2w, =2 dw, A dWw, A dwy A di,
o\ % e s
T 1 0o, WP
|Zz| <4 wil =6
(A.1.5)
—& | dw, Adw | AdnAdif
- v 2a
PIE w227 =22 =202 dend TT (1 + dn)™ + w7 (W], win)
k=1
+7 i dw, AdW, A dE A dE
v 2a
|rg|§§;§ |W2‘2a37—2&— 2842 Céi' ]—[ (é + dk_)m‘ +w, if(w";‘é’ wg)
k=1
&+

where f=f— f,. It follows immediately from (A.1.5) that [;(f;«, 0) < + oo only if « < ——.
Y

By the definition of r(N(f)), we have i', j S r(N(f)) = &—-Z?. Since w7 f(wi, why) =0 at
w, =0 and w; 7 f(wig, wl)=at w, =0, one can easily show that I, (xf0)< oo if
max; o, o, {) <1 and a < #(N(f))"*. Thus if g, < r(N(f)) for all k, then I,.(z,f,0) < oo iff
a< (N, i.:‘, a,(f)=r(N(f)~" and the proposition is proved. Otherwise, there is

a u, > r(N(f)). For simplicity, say k = 1, i.e., y, > r(N(f)). Then by the fact that — z — > %, we
a
derive f =1, & = 2. Note that other y, for k = 2 are all less than r(N(f)).

Making a transformation (z,, z,) = (z, + #;2%, z,), we obtain a new local holomorphic
function g at o with f, as the first homogeneous term g, . Also we observe that all points on ON(f)
below (i, j) are unchanged and are still the ones on N (g) below (i, j)e IN(g). Put No(f) = N(f),
N,(f) = N(g). Note that g is just the function fin the new coordinate system. The above process
can be carried out successively to obtain Newton polyhedrons Ny (f), N,(f), . . ., unless for some
m, ao(f) = r(N,(f))~ ! and the proposition is proved. Suppose that such am does not exists, then
we have a sequence of Newton polyhedrons No(f), N,(f), ... in R% Moreover, the parts of
AN, (f) 0 £m < o) below the line {x = y} are all same. Then one can easily check that
lim r(N,(f)) = i. By previous discussions, I,(f, «, 0) < + co for sufficiently small é > 0 if

m—

a<i~t and a,(f) £ r(N,(f)) " for all m. Thus «,(f) =i~", the proposition is proved.

Lemma A.12. Let M be a smooth complete intersection of two quadratic polynomials in CP* and
S be a global section in H(M, K ,°) such that its zero locus Z(S) contains no curve with multiplicity
9 and Z(8),,, is not a union of two lmes and a curve of degree 2 intersecting at one point. Then there is
an ¢ > 0 such that for any a £ 4§ + ¢,

dv,

”—S‘"‘gl‘; + o (A.1.6)

where § is any fixed Kahler metric on M.

Proof. By our assumption, there are finitely many points x,, . . . , x,€ M such that for any 6 > 0,
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o < 3 (cf. Fact(}) in the proof of Lemma 2.3),

av,
f I < 4o (A.L7)

a/3
M\ Byl §) ISl

where B;(x;, §) is the geodesic ball at x; with respect to §. At each point x;, the section § is locally
represented by a holomorphic functlon f;, we define a (S) = a, { f). This a,, (S) is in fact mdepen-
dent of the choice of local representations of S. Then one can easﬂy see that the lemma is
equivalent to o, (S) >3+ 2efor 1 i < I, Suppose that the lemma is false, then there is a x;, say
x,, such that a_ (8) £ 4. We will derive a contradiction to our assumption on S.

Let (z,,2;) be the local holomorphic coordinates of M at x,, and § be represented by a local
holomorphic function f;, then

mult,(f3) 2 0,(f5) " = 2, (8)"' =9. (AL8)

Claim 1. There are at most one line of M through the point x,.

We prove it by contradiction. Suppose that there are two lines L, L, of M through x,, then
there is a unique anticanonical divisor D = L, + L, + E, here E is a curve of degree 2 with respect
to K,,;* and x, e E. Note that by smoothness of M, L,, L,, E must intersect to each other
transversally at x,. By K, - L; = 6 fori = 1,2, we have that 2L, + 2L, = Z(S). Let [, [, be local
defining functions of L,, Lz, then fs = 1212h. By Hélder inequality, the facts that o, (S) = 4 and
ao(ly1,) = 1, we derive mult, (k) 2 7. Thus 8 =(Ky®—2L) L;z9unless 3L, = Z(S) fori=1,2.
Hence, 3L, + 3L, = Z(S), i.e., S5 =(,1,)%h,. Now mult,(h) = > 6. We claim that multy(h) = 7. In
fact, if not, then by Proposition A.1.1 and o, A8 = <4, forany p > O, there is a local coordinate

system (z,, z,) such that h,{z,, z,) = Zu>ozzuzlz’2 at (0,0) and g;; = 0 if either g+ ] <1or
p

P
p - 1,j = 1. In particular, the lowest homogeneous term f, , of f; is of form 121326, Thus by
14

Proposition A.1.1, ay(f) 2 ¢ unless one of L,, L, is tangent to {z; = 0} at x,. Assume that L,
does so. If 4L, ¢ Z(S), then

9=(6Ky' —3L,)-L, =3+ {h, =0}L,
2 3 +inf{2i + jla,; + 0}
=23+13=16

A contradiction! Therefore, 4L, < Z(S). One can actually prove that 5L, < Z(S). Choose local
coordinates (zl, z,) such that L; = {z; = 0} for i = 1, 2. By Proposition A.1.1 and «,(S) < 4, if we
write fg = 24 z3h (zl, z,) where 8 2 k = 5, then h,(z,, z,) = (z, + 28)° ¥ + ki ,(2,, z,)and h, does
not have terms ziz) with i+ j/B < <9—k By some direct computations, we can obtain ozo(S) >4,
a contradiction! Thus we must have that mult,(h,) = 7, somult,( ) 2 13. Since K,,*- E = 12, we
conclude that E = Z(S),s0 S = §'- S5, where S is a global section of K ,°. By Hélder inequality,
a, (S5) = %. Repeat the above arguments for S5, we can conclude that S; =8-S, with
ay, (S4) < & Inductively, we finally obtain S = (§'). By the definition of §', it contradicts to our
assumptlon on S. Therefore, Claim 1 is proved.

Claim 2. There is no line of M through x,.

If not, by Claim 1, there is exactly one line L, of M with x, € L,. As before, 2L, < Z(S). By the
above arguments in the proof of Claim 1, it follows from %, = < 3§ that mult,(f5) = 10, where f; is
the local holomorphic representation of § at x,.

Let f, be the lowest homogeneous term of fg at x,. We may assume that there are k,, k, with
ky + k, = k satisfying

ky =max{l;, |l +1, =k, z}z% is in f;} (A.19)

In particular, k, 2 k,. Give a partial order on monomials z;'z; 12z < Al <1 Let 2i2f
be the smallest term in f, with respect to the above partial order If L = < J2» then by the proof of
Proposition A.1.1 and a, (S) <4, k= 18. Choose an anticanonical divisor S’ such that
Z(S)=L,+DandDis tangent to L, at x,. By Claim 1 and the properties of M, the divisor D is
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irreducible and smooth at x,. If Z(S) does not contain D, then
18=Z(S)D=216+2L,'D=20

A contradiction! So Z(§') = Z(8). Inductively, we can prove S = (§')°. But mult, (s ¥y =121t
contradicts to that k = 18. Thus j; > j,. In particular, k, > k,. Note that the same arguments as
above show that k < 14, By the geometric properties of M, one can easily check that there are
exactly five curves Di(1 <i <5) of degree 2 through the point x, and with distinct tangent
directions at x,. If k = 14, then Z(S) = 4L, + 25 7_, D,. It implies that «, 8y = 1, impossible! If
k =13, then 4L, + Y., D, = Z(S). One can also show that it will be agamst our assumption
a, (§) = < 4. Thus k < 12. Since «, (8) = 4,j, 2 9and j, < 3, where z/!z22 is the smallest term in f,.

' Choose an anticanonical sectlon S”suchthat Z(S"y=L, + D’ where D’ is tangent to {z, = 0}
at x,.

By Proposition A.1.1 and «, (S) < 4, we can choose (z,, z,) such that the Taylor expansion of
fs at X does not have terms 2’ ' zd w1th iO—j,—8)+j(j, —9+ ) <9 — 9, —Jj,) where
6 > 0 is sufficiently small. Then 1f D' ¢ Z(S), we have

Z(S)-D’ Zzmin{2i + j|z\z} is in f}
2 min{2i +j|z\z} is in f5, i < 8}
27 -2, —j
2184 Rg (A.1.10)
19
where 6’ is small and depends on J. First we assume that D’ is irreducible, then by (A.1.10),
D' = Z(S),s0 S =8§"-8S,, where S is a global section of K,,*. One can compute that

f il if B 3 (A.L11)
0 1 < -, L1
wls'1Z 4

Then by «, (S) <4, we have o, (Ss) < 5. In fact, one can easily prove that L, is also tangent to
{z, =0}. Inductlvely, we will ‘conclude that § = (S"®. 1t implies that o, (S) to, (S")=14.
A contradiction! Therefore, D' is reducible. It will have distinct tangent direction from that of L1
at x,. Then we have that j, =9, j, = 3 and L, = {z, = 0}. By K,*- D’ = 12, Proposition A.1.1
and D’ is tangent to {z, = 0}, one can deduce that 5D+ 2L, < Z(S) Then by the arguments in
the proof of Claim 1, we will have either a, 8 >dor9D' < Z (S). Since both cases are impossible,
we complete the proof of Claim 2.

From now on, we may assume that no line of M passes through x,. Then there is a pencil of
anticanonical divisors such that the generic one of it is irreducible and vanishes at x, of order 2. In
particular, it implies that k < 12.

By Proposition A.1.1 and oy (S) < %, we can choose local coordinates (zl,zz) such that
the Taylor expansion of fs at x, does mnot have terms ziz, with
O —06—j))i+ (G, —949), £~ j, —Jj,), where,, j, are given in the proof of Clalm 2,018
sufficiently small number. On the other hand, we have an antlcanomcal section S’ such that its
local holomorphic representation hg. is of form z, Bz, z)+ 23 R ,(z,) at x,.

Case 1. Z(S') is irreducible.
If Z(S) does not contain Z(S’), then

24 = Z(S)- Z(S)
= min{2i +j|z 2} is in f5} + min{i + jl2z}2} is in f5}
=218+9=27
A contradiction! Thus § = §"- ;. An easy computation shows that «, 2 Lsoa, (S)sH
Case 2. Z(S') is reducible.

By Claim 2, the divisor Z(S’) consists of two curves D, D, of degree 2 such that both D, and
D, are smooth at x,, D, is tangent to {z, =0}. Asin Case’ 1 we have D, < Z(S). Let g, be the
deﬁmng equation of D, at x,, then ay(g,) = 1. So if we decompose f; = g,f; then ay(f) <4,
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mult,(f) < 11. Then one can deduce 2D, < Z(S). In fact, the same arguments show that
3D, = Z(5). On the other hand, arguments in the proof of Claim 1, one can show that
k = mult ( fg) 2 10. Thus if D, ¢ Z(S), we would have

12 = D,-Z(S) = 3D, D, + D,{Z(S) — 3D,))
26+7=13

A contradiction! Therefore D, = Z(S), i.e., S = §'Ss. Also a, (5) < <A
Inductively, we can prove that § = (S’ )6 then «, (S) = I'It contradicts to our assumption.
Thus the lemma is proved.

Lemma A.1.2. Let M be a smooth cubic surface in CP® and S be a section of K. Assume that
Z(S),.q is not an anticanonical divisor consisting of three lines intersecting at a common point. Then
there is an ¢ > 0 such that for « <% + ¢,

dv.

< A.1.12
Vs <= (A 112

where § is any given Kahler metric on M.

Proof. As in the proof of last lemma, it suffices to prove that o (S) >4& for 1 i<, while
«(S) > & for any x # x; (1 <i £ ). Assume that a, (S) < 4§, we will derive a contradiction. Since
the proof is identical to that of last lemma, we just sketch it. Note that there are at most two lines
through x,.

Case 1. There are exactly two lines L,, L, of M through x,.

In this case, there is an anticanonical section S’ of K5 ' with Z(S') = L, + L, + L5, where L,
is a line of M not through x,. Then as in the proof of Claim 1 in Lemma A.1.1, either 4L, + 3L, or
3L, +4L,isin Z(S).But L;-Ly=1,L, Ly =1,50 Ly = Z(8),ie, S = §'- S5. One can directly
compute that o, (S') = 1,50 a, (Ss) £ . Inductively, one can show that § = (5 )%, then o« (S) = &.
A contradiction.

Case 2. There is exactly one line L, of M through x,.

Let S’ be the section of Kjy;! with Z(S') = L, + D, where D is an irreducible curve of degree
2 containing x,. As before, 2L, < Z(S). Let f; be the local holomorphic representation of § in
some local coordinates (z,, 2, ), and I, be the defining equation of L, then f; = {3k, mult,(h,} = 7
and a,(h,) £ 4. Let fi, b, _, be the lowest homogeneous terms of fs, h, respectively. Then we may
assume that h _, =2z + ... and any term 2z} in k, _, has the properly izj,. If L, is not
tangent to {21 =0}, thenfk = Az“z“‘rz + . satlsfymg A+ Oand no z\z} in f, withi < j,. By the
proof of Proposition A.1.1, j, 2 9 so k > 11 and 3L, = Z(S). Consequently, it follows from
L,-D =2that D < Z(S),ie, S=5'-S;. If L, is indeed tangent to {z, = 0}, then we can prove
that 4L, < Z(S), so D = Z(S), otherwise,

12=D-Z(S)24L, D+(k —4)28+5=13

A contradiction!
Therefore, we always have § = §'- Ss. Then inductively, one can actually prove that § = (898,
so a, (§) = 4, (§) Z 4. A contradiction.

Case 3. There is no line of M through x,.

Let S’ be the anticanonical section vanishing at x, of order 2. Then Z(§') is irreducible. If
Z{Sy<= Z(S), then S =S~ SS, where S; is a global section of K,,*. One can directly check that
ay (S') =32, so o, (Ss) £55. In particular, S; vanishes at x, of order at least 8. Thus by
Z(SS)-Z(S )=15, we conclude Z(§)c Z(S5 Inductively, we have =(5)%, so
ax, (8) = ¢a, (S") > &. A contradiction.

Now Z(S") ¢ Z(S) It implies that k = mult,( f) = 9. By Proposmon Alland «, (§) £ 4, we
can choose local coordinates (z,, z,) such that fs does not have terms z zJ in its power series at x,

1f 5 + i < 1, where p is a sufficiently large integer. In particular, the lowest homogeneous term f; of

fs is 2. By using the holomorphic transformation of form (z,, 2,) = (z; + Yy » | by 25, 2,), we can
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eliminate the monomials z¥2, for I 2 1 in the Taylor expansion of fg at 0. Then the proof of
proposition A.1.1 implies that either «, (S) > 4 or fs contains a curve with multiplicity 9. Both
cases are impossible! Thus we also derive a contradictlon in Case 3. The lemma is proved.

The Lemma 2.4 in section 2 obviously follows from Lemma A.1.1 and A.1.2.

Appendix 2. The Proof of Proposition 2.1

Let {fi},>, be a sequence of holomorphic function in the unit ball B (o)< C? with
lim,,  f; = f+ 0. We want to prove that for « <inf, g @) yie N}

av av
‘h = | |_f|;; (A2.1)
B4(0)

where dV is the standard euclidean volume form.
As before, we denote by Z(f) the zero locus of fand Z(f),., the sum of distinct irreducible
components in Z( f). Without losing the generality, we may assume that Z( /), ., is smooth outside

1
the origin 0. Then a,(f) = — for x + 0, where m, is the multiplicity in Z(f) of the irreducible
m,

component of Z({f),., containing x, m, = 0 if x¢ Z(f),.,. On the other hand, m, is the Lelong
number of (1,1)-positive current 83 log| f |2 at x. By the estimate in [TY], for any small neighbor-
hood U of o, and any f < min, . B{(O){ a{(f)}, there is a constant C;, ; independent of i such that

av
B (jj\u 1fi1%# = Cug (A2
It implies that
av av

lim | { - (A.2.3)
i~ ByO\U i By(0\U 1P

therefore, by the famous Fatou’s lemma, in order to prove (A.2.1), it suffices to find a small
neighborhood U of o such that

lim | il < ad (A2.4)
im < 2.
ey AP LU

Lemma A.2.1. Suppose that for sequence {F.}, , of holomorphic functions in a neighborhood of
o with lim, , _F, = F + 0, there is a constant C, independent of i such that for « < o,(F)

{ v <C (A.2.5)
—=2C, < 2.
AL R

where U is a fixed small neighborhood of 0. Then (A.2.4) is valid.

Proof. Since « < «,(f), by taking U smaller if necessary and using Proposition A.1.1, we can
choose local coordinates (z,, z,) at o such that we have the following expansion of f

)
flzy, 2= zifz‘;z H (Zlil + szizz}p’ + frlzy,22)

= falz1, 22) + falz15 75) (A.2.6)

where

1
M) iy <oy =L L n(f)

(2) 4 is a line segment in the first quadrant R2 of R? and f, contains exactly terms 2%z} in the
expansion of f with (k, l)e 4.
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(3) For any term zXz, in the expansion of fy (k, !) lies on the right side of the line in R* con-
taining 4.

4 o <r(N(f))~!, where r(N(f)) is the remotedness of the associated Newton polyhedron of fin
local coordinates (z,, z,).

Define ¢; = Kmaxg {| f; — f|}, where K 2 2 is a constant determined later. Then

lim | v (A2.7)
1im VN
i+ Ulfilzz
1 av av
< lim {———Mj——z + —-2}
1o (l_ei) Ulflm [ﬂ§sllﬁ|a
U
14 av
= 2u+ m j 2
ulf] il

s |fISe
U

Therefore, it suffices to prove that the last integral in (A.2.7) tends to zero as i goes to infinity.
We may take U to be {(z,z,)e C?||z,| £ 8", |z,] £ 61}. In the following, all integrals are
taken on the subsets of U as specified.
We decompose the last integral in (A.2.7) into three parts J, (¢;), J;, (&), J;5(e;) and estimate
them individually. First we deal1 with J, (g). For that, we put z,=wh z,=w2,

m=iyiy +jij; + igjy 2 ey Py» 6, = &7, then

av
Jue)= ” (A28)
N=e il
Jz, )t £ Jz,)2
T
) i w2 =2+ 2 dw A dw A dE A dE
=J - -
Yo iz, wi[2e
S, Siwl x| £1 B
. [wUr + =1 =mgy A dw A dE A dE
= j .
5 S 1P TT (€ + AP+ wmfglwipwi) + (i = 1)
v=1
By the definitions of §; and f, for 6, S |w| < 6
W feW2Ew )+ wT (i~ SCO+ K1 (A29)
m
where C is a constant depending only on fg. Since r(N(f)) = ———, we have that ai; <1,

J1 T2
p,ra < land ma — j, + 1 — i, < 1. Thus if we choose K sufficiently large and 4 sufficiently small,
by Fubini theorem and (A.2.8), (A.2.9), one can easily see lim,_, _ J;;(¢;) = 0. Similarly, one has
lim, ,  J;,(¢;) = 0. Note that

av
Jo= | e (A.2.10)
Nge
[EALE 2,12
L)
Next, we estimate J,(g;), which is dominated by the following integral
dv 1

L= § | &i=er (A2.11)

l,} 5 97 il

215 8
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Define holomorphic functions F;, F by

F(zl,zz)—ﬁmf< l2zl,éhzz)

F(z,,z,) =fy(z,,z;) (A.2.12)

For i sufficiently large, those functions are well-defined on U with lim,,  F,=F and
a < %y(F) = r(N(f))”!. By the definition in (A.2.11) and (A.2.12), we have

Is,(f.-,a)=5i 27@1\/;(&,@ (A.2.13)

It follows from our assumption of the lemma that lim, , . I (f;, @) = 0. Then, the lemma is proved.

It remains to verify the assumption in Lemma A.2.1. We will complete it by induction. For
simplicity of notations, we assume that F; = f;, F = f. By the proof of Proposition A.1.1, there is
a local coordinate system (z,, z,) such ‘that either oo(f) = r(N(f) 1, where r{N(f)) is the
remotedness of the associated Newton polyhedron N(f) orj(zl,zz) =2z} + f(z,, 2,) with
ao(f)=i7" <j; " and pl + 1> pi, + j, for any term 2%z}, in f, where p lS a sufficiently large
integer. First we assume thatfls in the second case. Then we can write f; = f;, + z{'z}' + fip, where
., consists of all terms 2% 2, inf with pk + I < pi; + j,. By the holomorphic transformation of
form (z,, z,) = (z; + Y4 » s 25, 2,), we may further assume that f;, does not have the term 2% 'z}
with [ = j, + 1. Note that lim,, _f,, =0, lim,, _f, = fz. Furthermore, by holomorphic trans-

formation, we may assume that each f;, does not contain any term z "'z}, with [ > j,.
Iff, = ZPk+[<P‘1 v, G ())Zt 2%, we define
1 .
6=K max{lak,(i)l”i‘ Hhimekt } (A2.14)
where K is a large constant independent of i. We decompose
av dv
f—=| § + 7 + [ |—
v £l Il Slzl? il S8z s £l
2ol 2 & |z lzlze
=Ji foed + I, (fue) + L ([ ) (A.2.15)

It is easy to show (cf. the proof of Lemma A.2.1) that both J, (f;, &) and J,,(f;, ¢;) are uniformly
bounded if K is sufficiently large. Put g, = & #**J1f (ePz,, ¢;z,). Without losing generality, we
may assume that lim,_,_ g; = g. Obviously, the holomorphic function g is the sum of z/zJ! and
some monomials b,,z%z, with pk + [ < pi; + j,.

Claim 1. For any point x in B,(0), we have a,(g) = a,(f).

We may take x to be o since the translations on C? preserve the property that g is a sum of
z%'z{' and some monomials b,z* 2, with pk + | <pi; +j, and k <iy —lork=1i; — 1, I £j).
Let N,(g) be the Newton polyhedron associated to g and coordinates (z,, z,), let 4" be the line
segment in AN, (g) intersecting with the diagonal line {x = y} in R%. Define

gy= 2 byztz, where g = Y b,z 7, (A.2.16)
] k,Ded’ pk+1<py +j,
Then we can write
gy =2k 11 (@ + Az8) (A.2.17)
v=1

By the proof of Proposition A.1.1, we have

%(g).Z_( max {r(Na(g)),ii’j'zyP'v}> (A.2.18)

I svsnlg
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On the other hand, we may assume p so large that there is no integer pair (k, 1) in R? with
pk +1<pi, +j,, k> i, and k 2 I In particular, it implies that r(N,(9)), i}, /5, P, £ i,. It follows
that a,(g) = a,(f). The claim is proved.

We also observe that mult,(g,) < i, +j, and a,(g) > a,(f) whenever mult,(g) = i, + j;.
Thus by induction on o,(f), i,,i; + j;, etc., we can verify the assumption of Lemma A.2.1 in this
special case. Note that i; and i; + j; are determined by the lower endpoint of the line segment
A (cf. (A.2.6)) of ON(f) for a more coordinate system.

Next, we may assume that in the local coordinates (z,,z,), ay(f)=r(N(f))~" for the
associated Newton polyhedron N(f). Let 4 be line segment in ON (f) intersecting with {x = y} in
R? with the properties stated as in (A.2.6) of the proof of Lemma A.2.1. Note that n(f) = 1.
Furthermore, if j, 2 2, then f; does not have any monomials 2% 2, with k = i, +j,; Y 7Y%, p, — L; if
Jj1 = 1, by the transformation of form (z,, z,) — (z, + ¢z¥, z,) and using the fact that i, j, and all
p, are less than r(N(f))™ ", we may also assume that f, does not have any monomial 2%z}, with
k=i +1’123‘=”1 p,— L

We decompose f; = f,; + f,; + fiz. where f;; is the part of f; consisting of all terms 2%z}, with

L,(k, 1) < 0and L, denotes the defining equation of the line containing 4. By scaling, we may take
Utobe D, x D, in C2, where D,(r > 0) denotes the disk in C of radius r, and f to be f. It follows
that lim,_, _f,;z = 0.
Claim 2. There are local biholomorphisms ¢; = D; x D; — D, x D; such that (i) converge
uniformly to the identity as i goes to infinity; (i) the Taylor expansions of f; - ¢; at 0 do not contain
terms zXz, with either L (k,/)<0 and k>k, =i, +j, Y'_,p, or k=k —1, I>j, and
Lk, 1) # 0; (iii) lim,_,  fio¢; =fon D, x D;.

Note that (k,,j,) is the lower end point of 4 with k, = j,. We define ¢; by equations

ny ja—1
dizy,25) = (z,, L+m+ Y Y bk,(i)z';z’2> (A.2.19)

k=11=1

where n, is a large integer. Then one computes

ny j2—1 t
4 (zz i+ Y Y bk,(i)z’;z'2>
k=11=0
n j2—1
=2(z, + ) + 123 Z 2 Z by (z5(z, + 7Y~ + 0(b}?) (A.2.20)
k=1 =0
where O(|b]*) denotes a quantity bounded by CY, . qlbyl* Let fi =3, 5 ¢au()2{z; and
Jie i = Yrs 0Cul)Zh 2h be the Taylor expansions, then lim,, , a,,(i)) = O whenever L,(k, I) # 0.
Moreover, for any (k, [) with | < j, and n, > k > k,, it follows from (A.2.20) that

]
= Y ag ity bk_sj(i)<t ) I)nﬁ'f’ + O(1b?) + Ofjal) (A.2.21)
5620 =0 J
where O(]al) denotes a quantity bounded by CZLM,) sola,land weleth, _  bezeroifk —s=<0.
By Cauchy formula, one can show that those (3) "*a,(i) with L,(s,t) # 0 converge to zero
uniformly as i goes to infinity. We choose #; < 4 satisfying
lim n; =0, sup {

s+
<5> a (i)
i w Lys,0) £0

By either using Implicit Function Theorem or an iteration, it follows from (A.2.21) that there are
{b, (i)} with lim,_, _ b,,(i) = Osuch that ¢, (i) = Ofor those (k,/) withk, < k < n, and ! < j,. We use
these {b,,(i)} in the definition (A.2.19) of ¢!, then these ¢; satisfy (i), (iii) in the statement of Claim
2 and the Taylor expansions of f; ¢ ¢; do not contain terms z%2, with n > k > k,, I £ j,. Next we
construct a local biholomorphisms ¢/ of torm (z,, z,) = (z; + Y, 21 d, 2%, z,) to eliminate terms
2712 inf;c ¢ with I > j, and L(k, — 1, ) # 0. Then our biholomorphisms ¢; are the composi-
tions ¢ ¢;. The claim is proved.

} < (A.2.22)
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In particular, Claim 2 implies that the Jacobians Jac(¢;) of ¢, are uniformly bounded on
Dy x D;. Therefore, it suffices to prove that [D «p, | ficdil” 22dV are umformly bounded. For
s1mphc1ty, we still denote f; - ¢; by f;. Thus each 1 L doés not contain any term z5 2, with L(k, ) < 0
and either k > k, ork =k, — 1, 1> j,.

Since lim, f,R = 0, without losing generality, we may assume that

lf,,;lcowi by S 6 foralli (A.2.23)

where § > 0 is a sufficiently small number determined later.
Define m = i,i, +j; j, + (X~ P,)izj; and

i~ o

1

g = Kmax{|a,(i){m-ik-ii Lk, [) < 0} (A2.24)

Lemma A.22. Let h=3Y, . ,b,ziz, be a holomorphic function on D, x D, = C* such that
by =0 if Lyk, 1) <. Then we have

@) for |61 = 1, wl'* £ 4, W2¢| <4,

lh(w,, & wh)l £ W) lhlcop, « b, (A.2.25)
(i) for |81 < 1, wl? <4, wrg| £ 4,
lhw2E, wi &) < W)™ lhlcop, « p,) (A.2.26)

Proof. We just prove (i) here. The other case is analogous For any fixed & with |¢] < 1, by our
assumption on h,, the function w™™h(w*¢, w) is holomorphic in the domain E, = {|w]’* £
[w2¢] < 4}. Thus maximum principle implies that for

sup [w™"h(w,,¢, w')| < suplw "h(w2E, wh)|
Eq O,
< 2"lhlgap, x ,) (A2.27)

The inequality (A.2.20) follows from it. Similarly, we can prove (A.2.21).
We then compute

dV=J.+j+IdV

(A.2.28)

]

2a 2a
o, x 0 i VeisVi izt mise |
€.§m ‘3/Iz,|ge, z,] S ¢!
[wz+ 2 = 2-2me gy A dw A dE A AE
<
=0 Sl S Q) : 2
&S W S (3 i . - . : . .
m‘g L weE s 4 ETT € + AP+ wom(fi (wE, W) + fig (W2 & wi))
ve
. [wPa ¥ U =2=2m2 gy A dw A dE A dE
+ 12 I & 1 ] 2a
sws@E iz 2, -m iz 1 iz it
5 Liwne] % 4 |§ vlel (1 + 4,8 + w™m(fi (W2, Wi E) + fip(w'?, w/iE))
+1(f, @
= Jlg‘(ﬁi (X) + JZEi(fi’ a) + Ig,(.f;9 d)
Since the nonzero roots 4,, 4,, . . ., 4, are distinct, we have

A=min{ld, — A1, = AL AL IAL AL AT IS p<vS T >0 (A229)
1

By (A.2.19) and Lemma A.2.2, for 3)ii = |w} 2 ¢;, €] £ 1 and |w2¢| £ 4,
lw"”'(/’iL(wi‘C, wit) +fiR(wi’§, wi)l £ ny K~ 42m (A.2.30)
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where R A is the number of the integer pairs (k,!) with L,(k, 1) < 0. Choose K, & such that
ngK ™' < {5A"and 2"* 18 < {34 Then there is a constant C, ,, depending only on 4, a, such that
Ji (S ac) iC, ,- Similarly, .I25 (f, 0) £4C, ,. It follows that

V
J oSGt L) (A.2.31)
D, x D Wi

Putg, = e’"‘g (ez,, &l'z,), then by taking a subsequence, we may assume that lim,, g =g.
Note that g is a sum of f=f, and some monomials b,z%z, with L,k 1)<0 and
kgky =i, +j Y p,1Sj,ifk=k —

Lemma A.2.3. Let f, g be given as above. Then

inf  {e.(g)} 2 %,(f) (A.2.32)
xeD; x D,
Proof. Since fdoes not contain any monomial z& ~ !z, any composition of g with a translation in

C? is still a sum of f, and some monomials b,7%z, with L,(k,1)<0 and k<k,, I <j, if
k =k, — 1. Hence, we may take x to be the origin in (A.2.32). Recall

alf)
fy=2228 I @ + A5 iy 2y
v=1

Let 4’ be the line segment in dN(g) mtersectmg with the line {x = y} in R? and g, be the
polynomial consisting of all monomials b,,z* Z,, of g with (k, I)e 4". As above, we can write

g4 = zi2% ﬁ) (F + X z5p (A.2.33)
v=1
Then iy, j, ST(N(f)) = o,(f)™! and r(N(g)) < r(N(f)).
By the proof of Proposition A.1.1,'we have the estimate
a,(g) 2 min{(}) ™%, (5)" 1, r(N(g)) ™1, (P)) ™} (A.2.34)
Suppose that one of p/,, say p; for simplicity, is greater than ay(f) . By (A.2.32) and the definition
of g, we have

n(g} n(f)
i +jy X P Sii i X op, S2(N(S) (A.235)

v=1 v=1

where the equality holds iff j, = i; +j; Y."Y) p, = r(N(/)). It follows that j; = 1 and i} 2 j; = 1.
i
By local holomorphic transformations at o, we may further assume that i}, 2 —2

1
In case j; = 1, we claim that 7, = 12 Suppose that i, =i, + 1. Note that g contains the
monomial zi25 with I = j;, + i, Y "9, p.. Then by L,(i}, 5 + i3 Y02, p,) £ 0, we have

n{f} n{g)
i+ iy ) P2yl + (le + 1) Z p;)

v=1 v=1

2 iyp) > Ha(f)

ir2 n(f)
= <i1i2+jz+izz py

ip+1

v=1
A contradiction! Thus i), =i,. We define a new local coordinate system (Z,, Z,), by setting
Z, =z, + Az}, £, = z, then
o n(f) .
faBL B = — MERPELT] (B, + (4, — ADERP

v=1
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If either none of A, is equal to X or some 4,, is equal to 4} and i, +j, + ), , vo Pv > Py the
function f,(Z,, Z,) has the same properties of f, in (z,, z,). The above arguments shows that

%,(¢) Z o,(f). If some A, is equal to 2}, i, +j, + ), ., P, S p,, then by the proof of the
Proposition A.1.1, we have

2,(9) 2 p," 2 a(f)

The lemma is proved in case j, = 1. The proof of the case j, = 2 is analogous and a little bit
complicated. We omit the details and make the following remarks. If a,(g) < a,(f), then one can
choose )‘kl’ e, l,‘," + 0 with k, > k,_, > ... >k, 22 such that in local coordinates (,, 7,)

with 2, =z, +Y"_, 4, z‘;’ and Z, = z,, the associated Newton polyhedron N,(g) lies entirely

s =1

outside the triangle D,. defined by % -axis, %-axis and the line L’ through (o, (/) ™%, a,(f)~ ") and
an integer point (k’, I') in R, x R, with k' > ao(f)™* and L,(k', I') £ 0. That is, the polynomial
g(Z,, Z,) does not contain the monomials z* z,, with (k, )& D,.. On the other hand, one can easily
show that the triangle D,. contains strictly more integer points than the triangle D 4, defined by
z,-axis, z,-axis and the line containing 4, does. Moreover, the fact that g(Z,, Z,) does not contain
$¥7] with (k,[)e D, imposes sufficiently many independent equations on the coefficients in
g(z,, z5). In particular, it implies that g(z,, z,) = f,(z,, z,). A contradiction! Therefore, we always
have a,(g) 2 2,(/).

Let h be a holomorphic function in U, x e U, we define a quantity u (k) as follows. If there is
a local coordinate system such that o (h) = r(N_(f))”" for the associated Newton polyhedron

N.(f), we define i, (h ;) to be the smaller one of the x-component of the lower endpoint of A and
the y-component of the upper endpoint of 4, where 4 is the line segment in N_(f) intersecting
with {x = y} in R%. Then p,(h) is the infimum of such i, (h;) among all positive local coordinate
systems such that o (h) is the remotedness of the associated Newton polyhedron. Otherwise, there
is a local coordinate system (z,,z,) such that h =z h(z,,z,) + O((z,|* + |z,]*)"), where
h,(0, z,) # 0 and p is sufficiently large. Then we define p,(h) = i.

Now we complete our verification of the assumption in Lemma A.2.1. Obviously, we have
u.(g) < p(f)forany xe D, x D, and in case u(g) = p,(f), for simplicity, say x = o, then by the
assumption that g, does not have term Zh ~ 12 with 1 > j,, we have ay(g) 2 ao(f) + & where & is
a positive number depending only on the upper bound of «,(f)~* and mult,(f). Therefore by
induction, one can easily see that the assumption in Lemma A.2.1 holds.

The proof of Proposition 2.1 is completed.
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Note added in proof

After submitting this paper, the author found V.N. Karpushkin’s work on uniform estimates of
oscillatory integrals in R? (J. of Soviet Math., 35, 2809-2826 (1986)). A much simpler proof can be
given for the main result in Appendix 2 by using this work, in particular, Theorem 3.1 in the above
reference.



