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1. Introduction

Setting-up: (X,L) : a polarized algebraic manifold, i.e.,

X : non-singular irreducible algebraic variety

L : very ample line bundle on X
In this talk, Donaldson-Tian-Yau's Conjecture for general polarization
will be considered:

Conjecture:. If (X L) is strongly K-stable, then the polarization class
C,(L) admits a CSC Kiihler metric.



2. Background Materials



A test configuration (,4,¢) for (X,L)

Let 4 C CxP*(V) be a C*-invariant subset for the C*-action
C*x(CxP*(V)) 3 (¢, (z,p)) — (z,9(1)p),

fora 1-PS ¢: C* — SL(V), where SL(V) acts naturally on the

set P*(V) of all hyperplanes in V' passing through the origin,

and we usually take V= V,= T'(X,L) assuming that /" has a

natural metric structure such that S' C C*acts isometrically on V.

A triple (4,4, @) is called a test configuration for (X,L) if

(1) £ is the restriction to 7 of the pullback pr,*6p.;,(1) of the

hyperplane bundle on P*(¥7) on which C* acts naturally;

(2) (%, £) = (X, L'), 1#0,

for some positive integer / independent of the choice of .

This [ is called the exponent of the test configuration u = (%,<4,).



The Chow norm on W, by Zhang

d(k) := degree of X'in P*(V,) embedded by |L™|, where
V,:=T(XL"), m=kl, n=dimX, W, :={SU(y,) e
Let 0#CH, (X) € W, be the Chow form for the
irreducible reduced algebraic cycle X on P*(V)),

so that [CH, (X)] € P(W,) is the Chow point for the

cycle X. Consider the Chow norm || || : W,— R,

O<|w||ER, wEW,



The Donaldson-Futaki invariant
F, = F(u) for u = (%,4,9)

« N,:=dim T(XLF) =dim I['(Z,4,"), where k =1m.
- w, ;= weight of the C*-action on det I'(%,..£,")

w,/ (kN ) (k>>1)
= Fo(W)+ Fy(w) b1+ Fy(u) k2 + ..

F,=F,(u) is called the Donaldson-Futaki invariant
for test configuration u = (%,4,¢) of (X,L).



K-stability and Li-Xu’s pathology

- A test configuration u = (%,4,¢) for (X,L) is called trivial if  is trivial.
- (X,L) is called K-stable if the following conditions are satisfied:

(1) F,(u) =< O for all test configurations w = (%,<,¢) for (X,L).

(2) If F{(u) = 0, then the normalization test configuration of w is trivial.

- In the original definition of K-stability by Donaldson, (2) is stated as
“If F{(n) =0, then u is trivial.” However, Li-Xu gave an example of

a nontrivial test configuraton u = (%,<4,¢) for (P1,05,(3)) such that
F,(u) vanishes, and that the normalization of u is trivial. Hence
the definition of K-stability is reformulated as above.



Characterization of F,and the Chow weight
in terms of the Chow norm

For a test configuration u = (%4,<4,¢), we consider the homogeneous ideal
I=®, 1 forZ,in P*(V), where V:=V, For k= [m, we put

V,=Ss""IIl, m=12, ..,
where S¥(V) denotes the k-th symmetric tensor product of V.
Then ¢: C* — SL(V) induces a represemntation ¢, : C* — GL(V,).
For its special linear form ¢,5-: C* — SL(V,) (modulo finite group), by
using the Chow norm || ||, we set

vils) := log || @,H(exp(s)): CH,(X)]],

Let ¢, be the (possibly rational) Chow weight of the C*-action by ¢, 5"
on the line C-CH,(%,). Then by writing F(u) as F; shortly, we obtain

g, =lim_ _dv(s)ds=(n+1) c (Ly[X] (F, k" + Fo k" '+ Fykn2+ ... ).



3. The Donaldson-Futaki invariant I
is generalized to f,



Norms for the the infinitesimal generator u

For a test configuration u = (%, £,¢), we consider the infinitesimal
generator u of ¢ satisfying exp (2muv-1) = id,, so that

p(exp s) = exp(su), s € C.
Then o is called the 1-PS generated by u, and is written as ¢, Let
by, bs, ..., by be the weights of the C*-action for ¢, so that each

¢(2), t € C*, is written as a diagonal matrix with the y-th diagonal
elements Y, y=1,2,..., N. Let n be the dimension of X, and / be
the exponent of the test configuration u = (4,<,¢). Define

july == E71C b4 | + (bl + ... + byl ),
lul,, = It max{|byl, |by], ..., 1byl}-



Definition of f,: % —-RU{-o}

Consider a sequence {u;} of test configurations u,= (%,<;,¢))
such that the exponent /; of u; satisfies [, = +w as j — .
Let 72 be the set of all such sequences {u}. For s € R, we define
vi(s) = (I lu/luly) 7 Tog llen)- CHX)I
= (lujloollujl‘])lj-n log ||exp(Suj/|uj|oo).CHj(X)”,
where ¢ = exp(s/|uj..). We can then define
fiw}) = lim_ _lim, .. dv;/ds.
If the double limit commutes and if lim,_, |u;|, exists as a positive
real number » > 0, then by characterization of F, in terms of the
Chow norm, we obtain (compare this with Szekelyhidi’'s approach)

filwd) =r(n+ 1)l ey (L) [X] im, ., F (w).



Some remark on f;

For instance, for a test configuration u = (%,<£,¢) for (X,L)
of exponent 1, let u.= (1,<,¢,),j =1,2, ... , be the test
configurations such that
=% £ =4
and that ¢,: C* — SL(V)) is induced by ¢: C* — SL(V), where
V.= T(%o,<4y) and V= I'(%,,4,)- Replacing {u} by its subsequence
if necessary, we may assume that » = lim_,, ||, = O exists.
For this sequence, if » > 0, then the double limit commutes, so that
fiGud) = (n+ ) ey (L) [X] Fy(w).

Note that, for the test configuration in Li-Xu’s pathology, r = 0.



4. Stabilities



Asymptotic Chow-stability

Let G, := SL(V,) which naturally acts on V,and also on W,.
For the Chow form CH, (X) for X C P*(V,), we consider its orbit

G, CH,(X) in W,

Definition: (1) (X,L¥) is called Chow-stable, if G,- CH,(X) is closed
in W, and the isotropy subgroup of G,at CH,(X) is finite.

(2) (X,L) is called asymptotically Chow-stable, if for all k >> 1,
(X,L¥) is Chow-stable.



Hilbert-Mumford stability criterion

Definition: (1) Fix a Hermitian metric p, on V,. We define (s1,), as
the set of all u € s1(V,) such that exp(2nv-1u) = 1,, and that the
circle group exp(2ntv-1su), s € R, acts isometrically on (V,,p,).

(2) For each u € s1(V,), let G, denote the 1-dimensional algebraic
torus in SL(V,) generated by u.

Then by the Hilbert-Mumford stability criterion, in order to show the
closedness of G,*CH,(X) in W,, it suffices to show the closedness
of the orbit G, - CH,(X)in W forall 0 = u € (sl,),, i.e., suffices to

show that the Chow weight g(u) at lim__,__exp(2nv-1su) = CH,(X)
Is negative forall 0 = u € (s1,), .



Strong K-stability

For each u € (s1,),, we consider the 1-PS ¢,: C*— SL(V))
generated by u, and let (1*,.£%,¢,) be the associated test

configuration obtained as the DeContini Procesi family.
Let 72 be the set of all sequences w,; = (3¥,£%,¢,,),j =12, ...,
of test configurations for (X,L) such that u;& (s1,),, and that

the exponent /, of u; satisfies /; — +x as j — .

Definition: (1) (X,L) is strongly K-semistable, if f; ({w}) < O for
all{w} e 7.

(2) Let (X,L) be strongly K-semistable. Then (X,L) is called
strongly K-stable, if the equality f; ({u}) = O for {u} € ZZimplies that
there exists a j, such that y, is trivial for all j satisfying ;j = j,.



Strong K-stability and Li-Xu’s pathology

Li-Xu’s pathology doesn’t occur in our new definition of .
Actually, for their example of a test configuration, we have f; = -
(see arXiv: 1305.6411). Hence the following conjecture in the
introduction is proposed:

Conjecture: If (X,L) is strongly K-stable, then the polarization class
C4(L) admits a CSC Kiihler metric.



Strong K-stability implies asymptotic Chow-stability

Our strong K-stability concept seems to be natural in the
sense that we have the following result (“Strong K-stability
and asymptotic Chow-stability”, joint work with Y. Nitta,
arXiv: 1307.1959):

Theorem: If (X,L) is strongly K-stable, then (X,L) is
asymptotically Chow-stable.



Outline of proof for the Theorem

We here explain how, for / >> 1, the Chow weight ¢(u) is shown to
satisfy: g(u) <0 forall 0 = u € (s1,),. Assume, for contradiction, that
there exists a sequence
Lh<ly<..<[<..
with 0 = u; € (s1,), such that ¢(u;) = O for all positive integers ;.
Now we consider the test configurations
(X.<.9), j=12,..,
associated to u; above. By the characterization of 7, and the Chow
weight in terms of the Chow norm, we obtain
0 =</"uly q(u) = lim__dv(s)/ds
By convexity of the function v, we have dv(s)/ds = 0 on -co<s<-co.
Then by taking lim__,_lim, ., we obtain f;({w}) = 0. Hence by strong
K-stability, it follows that /;({w}) = 0 and y, is trivial for j >> 1.
This is a contradiction to the fact that u;, = 0 for all ;.



9. Existence of CSC Kiihler metrics



Geometry of Hermitian metrics
on a complex vector space V

Let p,, p, be Hermitian metrics on a vector space V. Then for a
suitable orthonormal basis (eq,e,, ... ,ey) for (V, p,), we can write

P2 (epep) =0, a=p,

p,(ee,) =M, a=12 ...,N,
where A are positive real numbers. Replacing p, by its positive
constant multiple, we may assume that [, A, = 1. Put b_= log V.
Then the 1-PS g(exp s) = > exp(b,s) e, ®e,* from R, to SL(V)
interpolates p, and p,in the sense that @(exp s) - p,is p,0r p,
accodingass=0ors=1.
The (multiplicative) C’-distance d(p,,p,) between p, and p, is defined as

d(p1,pp) = Cmax{|p,|;a=12, ... .N}

where C is a positive real constant depending only on V. We often
reparametrize @(exp s) by replacing s by d(p4,p,)'s. Namely,
plexp s) =3 exp(b d(p4,p,)s) e, ®e * is C'-distance parametrized in
the sense that ¢(exp s) - p4is p,0r p,accodingas s =0 ors = d(p,p,)-



An outline of our approach (I)

Assume that (X,L) is strongly K-stable relative to 7. By the joint work with Nitta,

(X,L) is asymptotically Chow-stable. Then replacing L by its positive integral multiple,
we may assume that (X,L/) are Chow-stable for all positive integers j. Hence we
have a sequence of balanced metrics w;in the sense that it is a critical point of the
Chow norm satisfying B, (w;) = constant.

Fix a Hermitian metric # on L such that w = c,(L,4) is Kahler.
Let w; = ¢,(L,A;) be a balanced metric. Then V.= HO(X, L/) has Hermitian metrics
ps and p; defined by
p1(t,T) =[x (r,T),w" and p; (T,T) =fX(T’T,)hj ;"
fort, T € V;. We then have the interpolation of p, and p, by a 1-PS ¢, of SL(V)),
where replacing s by d(p,,p,)'s, we may assume that @, is CO-distance parametrized.



An outline of our approach (1)

- |f [3]. = (b4, by, ..., ij) is a rational vector, then 1-PS ¢, comes from
a C*-action. If not, approximating 3, by a sequence of rational vectors,
we may assume that f3; is a rational vector.

-Since the Chow norm is critical at balanced metrics, we have

dv (s)/ds = 0 at s corresponding to the Chow norm, i.e., at s = - d(p,,p;).
*Then we consider the sequence of test configurations w, = (%;,<,,¢))
associated to ¢,.

Put d,, = sup, d(p4.p))

Then the following two cases are possible:

(Case 1) d_ < +x,

(Case 2) d_= +x,



An outline of our aproach (111)

- If Case 1 occurs, then the CO-distances d(p4,p;) are uniformly
bounded from above, and hence it is not difficult to show that a suitable
subsequence of the balanced Kahler metrics W, J =1,2, ..., converges
to a CSC Kahler metric.

- If Case 2 occurs, replacing {w;} by its subsequence if necessary,

we may assume that the sequence d(p1,pj),j =1,2, ..., is monotone-
increasing (to + x), asj — .

Note that dv (s)/ds =0 at s = - d(p4,p,). Then for every ;' with j’= j, since
dv;(s)/ds is non-decreasing in s,

0 = dv(s)/ds|s=-d(pq,p;) = dv,(s)/ds|s=-d(p4.p))

Hence the non-decreasing function lim,._,, dv;(s)/ds satisfies = 0 on the
interval -d(p4,p;) = s. Since d(p4,p;) — + « as j — o, it now follows that
lim;._,.,dv,{s)/ds = 0 on the whole real line - o< s < + . Then
fi{w}) = I|mP LM, dv.(s)/ds = 0. Now by strong K-stability of (X,L),
f({w;})=0and . are trivial for j>>1.

Thus {0} converges to a CSC Kahler metric.



6. Concluding remarks



Why strong K-stability ?

E :irreducible holomorphic vector bundle over a
compact Kahler manifold (M,w)
w(Ss) : =deg(s)/rk(s) for s below.

E is stable (in the sense of Mumford-Takemoto)
< u(8) <w) V coherent subsheaf s of 0(F)
with 0 < rk(S) < rk(E)

Remark: If dim. M =1, then S can be chosen as a vector
subbundle of E.

Hitchin-Kobayashi correspondence (Narasimhan-Seshadri,
Kobayashi, Lubke, Donaldson, Uhlenbeck-Yau):
E is stable < 3 Hermitian-Einstein metric on E



Manifolds case versus vector bundles case
in the Hitchin-Kobayashi correspondence

holomorphic vector bundles polarized algebraic manifolds

vector subbundles test configurations

rank of a vector subbundle exponent of a test configuration

coherent subsheaf ?

slope v(5) = deg(s)/rk(s) the Donaldson-Futaki invariant
v(8) < v(E) F,(u)=< 0

the Mumford-Takemoto stability (strong) K-stability
compact Riemann surfaces case Kahler-Einstein case

This indicates the necessity of considering a suitable compactification
7 of the moduli space of test configurations for (X,L).



K-stability versus strong K-stability

Recent results by Tian and Chen-Donaldson-Sun show that
K-stability is equivalent (up to Li-Xu’'s pathology) to strong K-
stability for Kahler-Einstein case, i.e., for anti-canonical polarization.
Donaldson’s result for toric case shows also that these two
stability concepts coincide for toric case.

However, for general polarization L on a general X, the graded C-
algebra associated to the limit n,, in the compactified moduli space 7

is not finitely generated in general. Hence we proposed the concept of
strong K-stability.



Extremal Kahler case

By taking a maximal algebraic torus 7' in Aut(X), we see that
the arguments above is valid not only for non-discrete
automorphisms cases but also for extremal Kahler cases.

For extremal Kdhler cases,

(1) balanced metrics, the Chow norm, asymptotic Chow stability,
CSC Kdhler metrics, strong K-stability, the Kodaira embedding
have to be replaced by

(2) polybalanced metrics, the weighted Chow norm, asymptotic
relative Chow stability, extremal Kdhler metrics, strong relative
K-stability, the weighted Kodaira embedding, respectively.



Thank you.



