THE YAU-TIAN-DONALDSON CONJECTURE
FOR GENERAL POLARIZATIONS

TOSHIKI MABUCHI*

ABSTRACT. In this paper, assuming that a polarized algebraic manifold
(X, L) is strongly K-stable in the sense of [8], we shall show that the
class ci1(L)r admits a constant scalar curvature Kéhler metric. Since
strong K-stability implies asymptotic Chow-stability (cf. [11]), we have
a sequence {w;} of balanced metrics in the class ¢i1(L)r. Replace the
sequence by its suitable subsequence if necessary. Then if {w;} were not
convergent, the associated sequence {u;} of polarized test configurations
would satisfy the inequality

Fi({ui}) >0

in contradiction to strong K-stability for (X, L). Hence the sequence
{w;} converges to a constant scalar curvature Kahler metric in ¢1 (L)g.

1. INTRODUCTION

By a polarized algebraic manifold (X, L), we mean a pair of a nonsingular
irreducible projective algebraic variety X, defined over C, and a very am-
ple line bundle L over X. Replacing L by its positive integral multiple if
necessary, we may assume that

HY(X,L®% = {0}, (=1,2,...;9=1,2,...,n,

where n is the complex dimension of X. In this paper, we fix once for all
such a pair (X, L). For the affine line A! := {z € C}, let the algebraic torus
T := C* act on A! by multiplication of complex numbers

T x Al = Al (t, 2) > tz.

By fixing a Hermitian metric h for L such that w := ¢;(L; h) is Kéhler, we
endow the space V; := HO(X, L®*) of holomorphic sections for L& with the
Hermitian metric py defined by

<0/70”>Pe :_/ (UI,UH)h wn’ U/,U” e Vé,
X

where (0’,0");, denotes the pointwise Hermitian inner product of ¢’ and
o” by the ¢-multiple of h. For the Kodaira embedding ®, : X — P*(V})
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associated to the complete linear system |[L®| on X, we put X, := ®y(X).
Let ¢ : C* — GL(V;) be an algebraic group homomorphism such that the
compact subgroup S C C* (= T) acts isometrically on (Vj, ps). Take the
irreducible algebraic subvariety X% of A! x P*(V}) obtained as the closure
of Usec- XY in Al x P*(V;). Here we set

XY = {2} x h(2)®y(X),  ze€C,
and v (z) in GL(V;) acts naturally on the space P*(V;) of all hyperplanes in
V, passing through the origin. We then consider the map
XY o Al

induced by the projection of A! x P*(V}) to the first factor A'. Moreover,
for the hyperplane bundle Op-(y,)(1) on P*(V}), we consider the pullback

LY = pra OP*(W)(1)|X¢7

where pry : Al x P*(V;) — P*(V},) denotes the projection to the second
factor. For the dual space V" of V;, the C*-action on Al x V" defined by

C* x (A X V) = ANV (8 (2,p) = (12,9 (t)p),

naturally induces the C*-action on A! x P*(V;) and Op-(y,)(—1), where
GL(V;) acts on V;* by the contragradient representation. This then induces
C*-actions on X% and £¥, and 7 : X¥ — Al is a C*-equivariant projective
morphism with relative very ample line bundle £¥ such that

(X4, %) = (X, L%), 240,

where £¥ is the restriction of £¥ to X;ﬁ := 77 1(2). Then a triple (X, L, ) is
called a test configuration for (X, L), if we have both X = X¥ and £ = LY.
Here ¢ is called the exponent of (X, L,1). From now on until the end of
Step 1 of Section 4, for (X, L,1) to be a test configuration, we make an
additional assumption that v is written in the form

P C* — SL(Vp).

Then (X, L,) is called trivial, if ¢ is a trivial homomorphism. We now
consider the set M of all sequences {1} of test configurations

i = (Xja£j7¢j)v j:1727"'a
for (X, L) such that for each j, the exponent ¢; of the test configuration s
satisfies the following condition:
l; — 00, asj— o0.

In [8], for each {u;} € M, we defined the Donaldson-Futaki invariant
Fi({pj}) € RU{—oo}. Then we have the strong version of K-stability

and K-semistability as follows:
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Definition 1.1. (1) The polarized algebraic manifold (X, L) is called strongly
K -semistable, if Fi({p;}) <0 for all {u;} € M.

(2) A strongly K-semistable polarized algebraic manifold (X, L) is called
strongly K -stable, if for every {u;} € M satisfying Fi({;}) = 0, there
exists a jo such that p; are trivial for all j with j > jo.

Recall that these stabilities are independent of the choice of the Hermitian
metric h for L (see [12]). The purpose of this paper is to show the following:

Main Theorem. If (X, L) is strongly K-stable, then the class c1(L)r admits

a constant scalar curvature Kahler metric.

2. THE DONALDSON-FUTAKI INVARIANT F; ON M
Definition 2.1. For a complex vector space V', let ¢ : T — GL(V) be an
algebraic group homomorphism. For the real Lie subgroup
T = {teT;teR:}

of the algebraic torus T' = {t € C*}, we define the associated Lie group
homomorphism ¢S : Tr — SL(V) by

SL (1)
t) = —————— t €I,
7O Getlol) 7 :
where N := dim V. Let by, bo, ..., by be the weights of the action by ¢

on the dual vector space V* of V', so that we have the equalities
ngL(t)-aa = t7bag,, a=1,2,...,N,
for some basis {o1,092,...,0n} of V. Then we define ||¢]|; and ||¢|lec by
¢l = %o lbal  and  [|¢]|oc := max{[bi], [bal, ... [bx]}-
Definition 2.2. Put d := £"¢y(L)"[X]. For (V4, pe) in the introduction, we
define a space Wy by
Wy = {Sym?(V;)}*"*,

where Sym?(V}) is the d-th symmetric tensor product of V,. Then the dual
space W, of W, admits the Chow norm (cf. [16])

Wi sw = fwlgn,) €Rso

associated to the Hermitian metric p, on V;. For the Kodaira embedding
Oy : X — P*(Vp) as in the introduction, let

0# X, e W,
be the associated Chow form for X, = ®,(X) viewed as an irreducible

reduced algebraic cycle on the projective space P*(V}).
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Let puj = (X5, L;,v;), j = 1,2,..., be a sequence of test configurations
for (X, L). We then define ||p;|[1 and ||p;]lc by

(2.3) il == [lsll /5t and glleo = l[5ll0 /4
where ¢; denotes the exponent of the test configuration p;. Let d(u;) be

123110/ lIjlla or 1 according as |[pllee 7 0 or [ljllec = 0. If [lujlloc 7 O,
we write t € Tk as t = exp(s/||pj]|oc) for some s € R, while we require no
relation between s € R and ¢t € Tk if ||pj]/oc = 0. Note that

5" : T — SL(V,)

is just the restriction of ¥; to Tk. Since the group SL(ng) acts naturally on
Wy, we can define a real-valued function f; = f;(s) on R by

(2.4) fils) = 8(uj) ;" log [45(t) - Ko llomgp, o 5 ER:

Put fj := dfj/ds. Here, once h is fixed, the derivative fj(()) is bounded
from above by a positive constant C' independent of the choice of j (see [8]).
Hence we can define F;({¢;}) € RU{—o0} by

(2.5) Fil{m)) = Jim {1m fi(9)} < C.

since the function lim, , fj(s) is non-decreasing in s by convexity of the

function f; (cf. [16]; see also [5], Theorem 4.5).

3. TEST CONFIGURATIONS ASSOCIATED TO BALANCED METRICS

Hereafter, we assume that the polarized algebraic manifold (X, L) is
strongly K-stable. Then by [11], (X, L) is asymptotically Chow-stable, and
hence for some £y > 1, for all £ > £y, there exists a Hermitian metric hy
for L such that wy := ¢1(L; hy) is a balanced Kéhler metric (cf. [1], [16]) on
(X, L®) in the sense that

(3.1) o1 |7, +loalh, + -+ low, 7, = Ne/er(L)"[X],

where {0, ; a =1,2,..., N} is an arbitrarily chosen orthonormal basis for

(Vi pg)- Let pg be the associated Hermitian metric on V; defined by
(a’,a”%z = /X (o', 0", Wit o' o eV,

where (¢/,0")p, denotes the pointwise Hermitian inner product of o and o’
by the ¢-multiple of hy. Now we can find orthonormal bases

{04,17 0¢25--- aae,N,g} and {Tz,p T2 - 77'4,N2}
for (V,, p,) and (V,, p,), respectively, such that
(32) JZ,a = )\E,OLTZ,OU o = 1727...,N£7
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for some positive real numbers Ay ,. Multiplying h, by a positive real con-
stant which possibly depends on ¢, we may assume that

Y Ao = 1.

Then for each ¢ > £y, we have a sequence of points Y, = (Vk;1, Yk:2s - - - » Vh:N, )
k=1,2,..., in Q¢ such that £ 44, = 0 for all k, and that
(3.3) A — —(log Ay, log Ao, ...y log Ay y,),  as k — oo.
Let agj be the smallest positive integer such that a4 is integral. By
rewriting ag Y, as v = (W’k;17'7k;2v . v7k;Ng) for simplicity, we now define
an algebraic group homomorphism v, , : T'= {t € C*} — SL(V;) by setting

Vop(t) - Too =t o1, a=1,2,..., Ny,
for all t € C*. Let {TZQ; a = 1,2,...,Ny} be the basis for V;* dual to
{T&a; a=1,2,..., Ny} defined by

( ‘) 1, if =0,
Ty T, =
Lo TLB 0, ifa4.

Then ¢, ,(t) - 77, = t'ke7] . Each 7= (21,22,...,2n,) € CNe\ {0} sitting

over (21 : zg : -+ : zy,) € PNemY(C) = P*(V,) is expressible as Zivilzanika,

and hence the action by t € C* on 7 is written in the form
(Z17 2y enny ZNZ) — (t%?lzl, t’Yk;QZQ, e ,tPYk;NKZNZ).

We now identify X with the subvariety X, := ®,(X) in the projective space

P*(Vy) =PNemY(C) = {(21 : 22 : - - - : 2n,)} via the Kodaira embedding
Dp(z) i= (11 (2) s Tpo(@) - i mp(x), weX

For each ¢ > {y, we observe that SL(V;) acts naturally on W;. Then by

considering the sequence of test configurations

peg, = (XVek, L0 4y 1), k=1,2,...,

associated to v, ., we define a real-valued function f,, = f,,(s) on the real
line R = {—o00 < s < +00} by

for(s) = 0(pgp) € 10g [|the 1 (8) - Xellemp,)-
Here s € R and t € Ry are related by ¢t = exp(s/||peklloo) for ||1eeklloo # 0,
while we require no relations between s € R and ¢t € Ry if || x|/oc = 0. Put
Fo = dfy/ds and Oy = (1/27) log{(S5L, (n/€7) ¥k |7, [H)V/*}. Then
on X, viewed also as X via ®,, we can write

(3.4) wak(t)*(wFS/g) = ﬁ@é@s;g,k,
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where wpg = (v/—1 /2%)85log{(Egil(n!/ﬁ")|zal2)1/z}, and 1y (t) is re-
garded as a mapping from X, = (XYer); to Yo r(t)(Xe) = (X¥er),. In
view of [16] (see also [5] and [13]), we obtain

(3.5) Fon(s) = €6(uer) /X (00s;0/05) (V—100050)".

., N¢ }, where for the

time being, we vary ¢ and k independently. Then

N N A~
Yot1 Vs eXp(_QWk;a) |T€,O¢|2

X . .
ml Vo .4 exp(—2fyk;a) |TZ,a|2

(3.6) (005,06 05) |s= =

“Vok

Now for each integer r, let O(¢") denote a function u satisfying the inequality
lu| < Col™ for some positive constant Cp independent of the choices of &, ¢,
and a. We now fix a positive integer £ > 1. Then by (3.3), we obtain

(3.7) )\Zi exp(—2%ka) — 1 = O("72), k> 1.

Moreover, in view of (3.1) and (3.2), the Ké&hler form w, is written as
(\/7/277)8810g{( (n'/ﬂ”))\fahea\ )4}, Now by (3.3), as k — oo,
we have F@@Hs;g,k‘sz,ye’k — wy in C'°°. In particular for k£ > 1, we can
further assume that

(38) ||\/—718(§95;g7k|51_ue’k —wy HCm(X) — O(g—n—Q)’

where we fix an arbitrary integer m satisfying m > 5. Hence for each £ > 1,
we can find a positive integer k(¢) > 1 such that both (3.7) and (3.8) hold
for k = k(¢). From now on, we assume

(3.9) k = k(0),
and v, = Yy k(o) will be written as v for simplicity. Then, since v, > ]’yk; ol

for all o, we have (06.01/0s) = O(1) by (3.6). Hence

|s=—v,
(310) [ (@000/09) { (VT000,00)" — '}y, = O,

Put Iy := wly, Egil )\%,a |7'£7a|2 and I = mly, Egil exp(—Q‘yk;a)he,a]Q.
Ny 2 Ne - .

Put also J; = X%, vk;a)\zah'&ap and Jo := X% Yka exp(—2vk;a)|7&a12.

Then by (3.6), we obtain

(3.11) / (00,4/05) o _,, wi* = A+ B + P,
X
where A := [({(Jo/L2) — (Jo/I1)}wi, B := [ {(Jo/I1) — (J1/11)} w* and

P := [, (Ji/Ti)w/". Note that Jp/Iy = O(1) by lv, > [Yk.0|> while by (3.7),
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(I — I)/I; = O({~"=2). Then

J 6L -1
(3.12) A= ; Tj 111 2 = o2,

On the other hand by (3.7), Jo — J; = 0(67"*2)(2gi1 \’?k;a\)\za ‘Tz’a|2).
From this together with fv, > [4;.,|, we obtain

(3.13) B = / J2 = wl = O(L™"2).

x h
By (3.2), I = nly, Zgil |a£7a]2 and Jy := Zgil Ve ‘O—Z,a|2' Note also that
ag = 0(py ) satisfies 0 < ay < £". Put a1 := ¢1(L)"[X]. In view of (3.1)
and (3.5), by adding up (3.10), (3.11), (3.12) and (3.13), we obtain

fZ,k(_VZ) = Lag [y{(90s/0s) (ﬁages;é,k)nhs:fué

a ENf Yialo, |2
(314) { = ag{LP + O™y} = [ emtitelTehe g o)

N
TV N0 2110y hy

= agar (BN, Apa) (T, Np) ™4 + O(L7Y) = O™,

where in the last line, we used the equality Eévil Akia = 0. In the next
section, the sequence of test configurations y, ko) = (wavk(f) , LY XUp k(@))’
> Ly, for (X, L) will be considered.

4. PROOF OF MAIN THOREM

In this section, under the same assumption as in the previous section, we
shall show that ¢ (L) admits a constant scalar curvature Kahler metric. Put

12

' = Sup v,
¢

where the supremum is taken over all positive integers ¢ satisfying £ > /.
Then the following cases are possible:

Case 1: v = +oo. Case 2: v < 4o00.

Step 1. If Case 1 occurs, then an increasing subsequence {/¢;; j =1,2,...}
of {{ € Z; ¢ > Ly} can be chosen in such a way that {1/6]_} is a monotone
increasing sequence satisfying
(4.1) lim v, = 4o0.
j—ooo
For simplicity, the functions f, k(;) will be written as f;, while we write the
70 J
test configurations
— Xwej,k(ej) ij,k(zj) i~ 1.9
/ng7k((j) - ( ) 7w£j,k(zj))7 J=L4..
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as pu; = (Xj,L5,v5). Now by (3.14), there exists a positive constant C
independent of j such that

—C/t; < fi(=w,)
for all j. On the other hand, for all positive integers j' satisfying j' > j,
we have —v, < —y, by monotonicity. Since the function fj,(s) in s is

non-decreasing, we obtain
(4.2) ~Clty < fp(=w,) < fil-u,).

We here observe that —C/¢; — 0 as j' — oo. It now follows from (4.2)
that, for each fixed j,

@ f‘j/(—V[) Z 0.
j'—o0 !

Since the function lim;_, fj,(s) in s is non-decreasing, we therefore obtain

lim fj/(s) > 0 forall s> -y,
j'—o0 !

while this holds for all positive integers j. Then by (4.1), lim, _, fj,(s) is

a nonnegative function in s on the whole real line R. Hence
Fi({g}) = lim { lim f;(s)} > 0.
S—>—00 j/—>OO

Now by the strong K-stability of (X, L), we obtain F;({x;}) = 0, so that pu;
are trivial for all j > 1. Then vy, x(,) are trivial for all j > 1. This usually
gives us a contradiction. Even if not, however, by assuming the triviality of
p; for all j > 1, we proceed as follow. By (3.4), for all s € R, we obtain

V=1000,, k(e;) = (wrs/))ix,, = ®r,(wrs/lj), ji>1,

by identfying X, with X via ®;,, where by [15], ||<I>Z (wrs/lj) — w ||C5(X) =
0(6;2). From this together with (3.8), we obtain

(4.3) lw = wy, lomxy = 052, §>1.
Let S, be the scalar curvature function for w. Then by [4] (see also [15]),
we obtain the following asymptotic expansion:

Ny.
(4.4) L+ (Su/2)0 1+ 0(6;%) = 8,2 nl/e) |7, |} = By, (w),

J

where for every Kéhler form 0 in c1(L)g, By, (0) denotes the £;-th asymptotic
Bergman kernel for (X,#0). On the other hand, for £ > 1, we observe that
Ny is a polynomial in /. Since each wy, is balanced, by setting £ = £; in (3.1)
and dividing both sides of the equality by £7/n!, we obtain (cf. [7], (1.4))

Ny.
(45) 1+ Colit+ 0% = S5/ oy, o]}
8

= ij (ng),

]



where C| is a real constant independent of the choice of j. In view of (4.3),
by comparing (4.4) with (4.5), we now conclude that S, /2 = Cy. Hence w
is a constant scalar curvature Kéahler metric in the class ¢;(L)g.

Step 2. Suppose that Case 2 occurs. Put 5\&0‘ = —(1/¢)log A\r,o. Then by
(3.3), we may assume that k = k(¢) in (3.9) is chosen in such a way that

(4.6) ’Ayk(g);a -1 65\476, < ’A}/k(g);a +1, a=1,2,..., Ny,

for all ¢ with ¢ > ¢y3. Then for each ¢, by using the notation in Definition
5.3 in Appendix, we have an ¢-th root

V9,09 DO vy, >4,

of the test configuration ) in Section 3. Let Xe.6> 6 =1,2,...,Nq,
be the weights of the Tg-action via @3“ on Vj*, where V; := H(X, L).
Put x, 5 := X&ﬁ/a&k(@. For ¢ with ¢ > £y, let « and 3 be arbitrary integers
satisfying 1 < < Ny and 1 < a < Ny. By (4.6) together with the definition
of vy 1, we easily see from the inequality v, < +o0 that

(4.7) Mol <C1 and [Xe 5l < Ch,

where C] is a positive real constant independent of the choices of ¢, o and
B (see [12] for the second inequality of (4.7); see also [10]). Let Z, :=
(pp)«(t0/0t) € sl(V7) be the infinitesimal generator for the one-parameter
group 3L, Then by setting Z; := Zy/ay ey, We obtain

Zé‘ﬂe,g = —Xe,gﬁe,ga B=1,2...,N,

for a suitable orthonormal basis {k¢1,K¢2,...,ken, } for (Vi,p1). For the
sequence { Zy; ¢ > {y }, by choosing its suitable subsequence

{Zﬂj;jzl,Q""}a

we obtain real numbers )Zooﬁ €eR, =1,2,...,Nq, and an orthonormal
basis {Kog 15 Koo 25+ /{OO,NI} for Vi such that, for all 3,

g8 Foog  aDd Xy, g = Xoo g5

as j — oco. Hence we can define Z,, € s[(V7) such that oo - Foop =
— Xoo Moo 3 for all 5. Then we have the following convergence in C'*:

(4.8) Z}j — Zoo» as j — oo.
For each ¢, in view of the relation t = exp(s/|| ¢ x(s)|lo0), 8 = —v¢ corresponds

to t = t;, where 1y := exp(—ve/|| 1 (o) lloo) = exp(—1/ay k(). Until the end
of this section, test configurations , k(0) for (X, L) will be written simply as

He = (X(E)aﬁ(e)ﬂ/}z), l > EO-
9



For the test configuration puy, each t € T not as a complex number but as an

element of the group T' of transformations on g, will be written as g,, ().

For the Kodaira embedding ®, : X — PN¢=1(C) in Section 3, we consider

CNe\ {0} = {(21, 22, ..., 2n,) # 0} over PV¢(C), so that 2z = (21, 22, . . ., 2n,)

sits over [z] = (21 : 22 : --- : zn,). Since the restriction of Opn,-1(C) to X,

is viewed as L by identifying X with its image X, := ®4(X), we can write
Za|X, = Tl a=1,2,..., Ny,

for the orthonormal basis {71,7¢2,...,7¢,n,} of (Vi, pe). We now define a
Hermitian metric ¢y for L™! by setting, for all [2] = ®,(x) in X,

de([2]) = { (/) SeLy |z 1V = { (/)T I (@) 1Y,
where the line bundle L= on X is viewed as the dual {E(€)|X£}_1 of the line

bundle £ restricted to Xl(ﬁ) (= Xy). Let K, t # 0, denote the set of all
Hermitian metrics on the line bundle {£(®) 1 }~1. Then the action by g, (t)
t

takes Iy to K. For instance, g,,(t) takes the point z = (21,22,...,2n,)
to gy, (t) - 2z = (RO, t%O229 . tTRONezy ) while for each [z] € Xy,
¢¢([2]) is mapped to the point g,,(t) - ¢¢([z]) defined by

{ (/0 ER 19, (8) - 2o Y° = { (/€ ZRL PV |20 Y7,
and this defines g, (t) - ¢¢ € K¢. Now by [15], u := (1/27) log(¢e/h*) viewed
as a function on X can be estimated in the form

(4.9) gl om2(xy) = O(L72),

where the dual A* of h is viewed as a Hermitian metric for the line bundle

L7 Put w(l,t) := (vV—1/2m)0010g(gu, (t)* {9y, (t) - h*}), t # 0. For the
Fubini-Study form wpg in Section 3, its restriction to X, (= X) is written as

wrs |x, = (V=1£/2m)001log ¢y.
Since ¢y (t)*(wrs /) = (V=1/2m)0010g(gy, (t)* {9y, (t)-Pe}) on Xy (see (3.4)),

we can rewrite it in the form (see [9])
(4.10) ¢g(t)*(wFS/€) X, = w(ﬁ, t) + v-1 85’&(

Let us consider the test configuration fi, := (Y, QW »,) for (X,L) of
exponent 1. Each t € T, not as a complex number but as an element of the
group T of transformations on fiz, will be denoted by gz, (t). Then by (5.8)
in Appendix, we also have the expression

(4.11) w(t,t) = (V=1/2m)001og(gp, () {gp,(t) - 1*}),  t € Tk,

since for each such ¢, the action of g, (t) on |£|** coincides with the action
of gz, (t) on |QJ? up to constant scalar multiplication, where constant scalar

multiplication arises from the action on the factor |¢|?/¢. Since w(¢,t) doesn’t
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change even if gz, (t) - h* in (4.11) is replaced by C(t)gg,(t) - h* for a positive
real constant C(t) possibly depending on ¢t. Hence we may consider the
action by gz,(t) on |£]|*/Y modulo constant scalar multiplication. In this
sense, for each t € TR, the action by gg,(t) in (4.11) is induced by the action
by the element ¢ (¢) in SL(V;). In particular for ¢ = %,

(412) g, (fs)’s action is induced by ¢§%(#)) = exp(—Z;) € SL(V1).

For Oy ey = (1/2m) log{(Egil(n!/E”) t27k(f>§a|7£a\2)1/€} in Section 3, at
the point s = —1y, we see from (3.4) that

(413) \Z _18693;5,16(@) ls=—vy — W(fe)*(WFS/E) | X~
Then by (3.8), (4.10) and (4.13),
(4.14) ng — w(f,fg) — v/ —1aéUg||Cm(X) = O(ﬂiniQ).

For the element Z,, of sl(V}) in (4.8), we now define a subset yﬂ(;") of
R x P*(V7) as the closure of

U {£exps} x exp(sZx0)(X1)
seR

in the real manifold R x P*(V}), where X is the image ®1(X) of X under
the Kodaira embedding
o : X - P*(WV)

associated to the complete linear system |L| on X. By the projection of
R x P*(V1) to the first factor R, we see that yﬂg’") has a natural structure
of a fiber space over R. Let Q(O") denote the restriction to yﬂ({)o) of the
pullback prj Op«(v;)(1), where pry : R x P*(V1) — P*(V4) is the projection
to the second factor. Then the Tr-action on J/IEQOO) induced by

Tr X (R xP*(V1)) = RxP*(V1), (exps,(r,z))— ((exps)r, exp(sZoo) -x),

naturally lifts to a Tr-action on Q(%°)  This action is induced by the Lie
group homomorphism ¢ : Ry — SL(V}) defined by

Ooo(t) = exp((logt)Zss ),  teRy.

For jiso = (yﬂ(f), Q(OO),cpoo), each t € Tk not as a real number but as
an element of the group Tr of transformations on jis, will be written as
i (t). Consider the action by gz (f,) on |Q*)|?> modulo constant scalar
multiplication. For s, := 1/e, we have poo(f,) = exp(—Zs), and hence

(4.15) gu..(fo0) s action is induced by ¢oo(fs) = exp(—Zoo) € SL(V1).
t

(
Put woo = (v=1/271)9910g(gz.. (too)* {97 (fss) - h*}) (cf. Remark 5.9). By
(4.11), (4.12) and (4.15), it follows from (4.8) that

(4.16) w(ﬁj,fgj) — Weo In C°, as j — oo.
11



Then by (4.9), (4.14) and (4.16),
(4.17) we; = Woo in C™, as j — oo.
By (4.17), given a sufficiently small £ > 0, there exists a jp > 1 such that
HSWJ_ — Swellco(xy < e for all j > jo. Hence by [4] (see also [15]),
| 6{ By, (we;) — Noy} — 4i{ By, (weo) — Noy } | < €/2 + O(1/4;),  § > jo,

where Ngj = (n!/€7)Ny; /e1(L)"[X]. On the other hand, since each wy; is
balanced, we have By, (we;) = Ngj for all j. It then follows that

| 4{Br; (woo) = Ny} | < /2 + O(1/45), > jo.

Hence, since Ngj =1+ Cgﬂj_l + O(Ej_z) for a real constant Cy independent
of j, again by [4] (see also [15]) applied to weo, We obtain

| (Sww/2) = Co| < /2 + O0/t), = Jo,

so that by letting j — oo, we have | (S, /2) — Co| < €/2. Since € > 0 can
be chosen arbitrarily, we obtain S, = 2Cp, as required.

Remark 4.18. The (1,1)-form ws on X is positive-definite as follows: For
each t € Ty viewed as a real number, the fiber of yﬂ(g’) over t € R\ {0} will
be denoted by ), where )y = X biholomorphically. For simplicity, the fiber
(Q(>), of Q) over ¢ will be written as Q;, and g, (f,) will be written
as g. Then g takes )1 holomorphically onto ygm. Hence

(4.19) Weo = (V—1/271)g*0010g(g - h*).

Moreover g : Y1 — Yy lifts holomorphically to a map, denoted also by g
by abuse of terminology, of Q1 onto Q; . By choosing a local base b for

Q; on an open subset U of ), we can write h* as Hbb for some positive
real-valued function H on U. Since w = ¢;(L;h) is Kéhler, v/—190log H is
positive-definite on U. Then by g-h* = (H o g~!) g(b)g(b), we see that

V—109log(g - h*) = v—19dlog(H o g™ 1)

is positive-definite on g(U). From this together with (4.19), we now conclude
that ws is positive-definite.

5. APPENDIX

In this appendix, we consider a test configuration u = (X', £, ) for (X, L),
and let 7 : X — A! be the associated T-equivariant projective morphism.
For the exponent ¢ of p, v is an algebraic group homomorphism

¥ C" = GL(V)),
12



and by choosing a Hermitian metric h for L, we endow V; := H°(X, L®)
with the Hermitian metric p; as in the introduction.

Definition 5.1. A pair (.)E' , ﬁ) of a non-singular irreducible algebraic variety
X and an invertible sheaf £ over X is called a T’ -equivariant desingularization
of (X, L), if there exists a T-equivariant proper birational morphism ¢ : X —
X, isomorphic over X'\ Xp, such that L=uL.

Theorem 5.2. There exist a T-equivariant desingularization (22 ,/j) of
(X, L) and a test configuration (Y, Q,¢) for (X, L) of exponent 1 such that

where n : X —>Yisa T-equivariant proper birational morphism, isomorphic
over Y\ Vo, and D is a divisor on X sitting in Xy set-theoretically.

Definition 5.3. Taking the Q-divisor D := D /¢ on X, we call the quadruple
(V,9,D,p) an £-th root of the test configuration (X, L,1)).

Proof. Consider the relative Kodaira embedding
X — A xP*(Vp)

whose restriction X, < {z} x P*(V}) over each z € A! is the Kodaira
embedding of X, by the complete linear system |£,|. Let H be a general
member in the complete linear system |L| for the line bundle L on X. By
the identification X = X, we view H as a divisor on X;. Then on the
projective bundle Al x P*(V;), a T-invariant irreducible reduced divisor &
can be chosen as a projective subbundle such that

5 X = (H,

where £H is viewed as a member of the complete linear system |£1| = |L%|
on X} = X. For X, we choose its proper T-equivariant desinguralization

X = X

isomorphic over X'\ Xy. Put 7 := mo.. Consider the T-invariant irreducible
reduced divisor H on X obtained as the closure in X of the preimage of

U & xvH
teC*

under the mapping ¢, where H on X is viewd as a subset P*(V}) via the
Kodaira embedding X C P*(V}) associated to the complete linear system
|L®¢|. Then we have the following equality of divisors on X’:

(5.4) F(0-X) = D+ IH,
13



where D is an effective divisor on X with support sitting in Aj set-theoretically.
Since H is a T-invariant divisor on X, the T-action on X lifts to a T-
linearization of Q := O ;(H). Since L = Ox (- X), by (5.4), we obtain
(5.5) L = 04(D)o Q%
For the direct image sheaf F' := fr*Q over Al let F, be the fiber of F over
each z € A'. Then we have a T-equivariant rational map

n:X — P*(F)

whose restriction over each z € Al \ {0} is the Kodaira embedding 7, :
X, — P*(F.) associated to the complete linear system |Q.| on X,. Put
V. := n.(X.). Then the open subset 771 (A1\{0}) of X is naturally identified
with the T-invariant subset

= ¥
0#£z€Al
of P*(F). Let Y be the T-invariant subvariety of P*(F') obtained as the
closure of Y° in P*(F), i.e., ) is the meromorphic image of X under the
rational map 7. Then the restriction
Ty Y — Al

to ) of the natural projection of P*(F) onto A! is a T-equivariant projective
morphism with a relatively very ample invertible sheaf

Q = Op.py()y
on the fiber space ) over Al. Note that # = Ty O 1. The T-action on
o) naturally induces a T-action on F', and it then induces a T-action on

Oy/a1(1) covering the T-action on ). By the affirmative solution of 7-
equivariant Serre’s conjecture, we have a T-equivariant trivialization

F ~ Al x F,
where this isomorphism can be chosen in such a way that the Hermitian
metric p1 (= pg=1) as in the introduction on
F, =V, = HYX,L)

is taken to a Hermitian metric on Fj which is preserved by the action of
the compact subgroup S* C T (see [3]). By this trivialization, Fy can be
identified with F} (= V1), so that the T-action on Fj induces a representation

v: T — GL(W).

Hence (Y, Q, @) is a test configuration for (X, L) of exponent 1. Since Q =
O (M), the base point set B for the subspace of H%(Xp, Qo) associated to

Fy contains no components of dimension n. However, replacing X by its
14



suitable birational model obtained from X by a sequence of T-equivariant
blowing-ups with centers sitting over B, we may assume without loss of
generality that B is purely n-dimensional, i.e., B = (). Now the rational
map 7 : X — Y C P*(F) is holomorphic, and hence

Q = 7',
as required. This together with (5.5) completes the proof of Theorem 5.2.

Remark 5.6. Note that the divisor D on X is preserved by the T-action.
Since OX(ﬁ) =7*Q® @ L', the actions of T (= C*) on Q and £ induce a
T-action on the invertible sheaf O (D). Let ¢ be a natural nonzero section
for OX(ﬁ) on X having D as the divisor zero(¢) of the zeroes. Then the

action of each element ¢ of T' on the line C( is written as

¢ = 19,
where o € Z is the weight of the T-action on C(.

For test configurations p and = (), Q,¢) above, each t € T not as
a complex number but as an element of the group T of transformation on
p and fi will be written as g,(t) and g;(t), repectively. Let Aut(£) and
Aut(Q) denote the groups of all biholomorphisms of the total spaces of L
and Q, respectively. Then for ¢ in Theorem 5.2, the T-linearization of Q

defines a T-action on the real line bundle |Q|? := Q ® Q over X by

9:(t) - lal* = lga(t) - > = [6) (),  (t.q) €T x Q,

where ¢ : T — Aut(Q) denotes the homomorphism induced by ¢. Note
also that the T-linearization of £ induces a T-action on the real line bundle
|£|? := L ® L such that

9u(t) - o := g, () - o> = [0 (@)%, (t,o) €T x L,

where 1; T — Aut(ﬁ) denotes the homomorphism induced by 1. Note that
both g,(t) and g,(t) come from the same T-action. Then for Q :=7*Q, by
Theorem 5.2, we see that

(5.7) 1LY = ¢ 0P,

where Tk acts on the real line R|¢|?/¢ with weight 2a./¢, so that g,,(t)-|¢|*/¢ =
t2/¢|¢[>/* for all t € Tg. Since birational morphisms ¢ and 7 are isomorphic
over A\ {0}, by restricting them to {z # 0}, we can identify the line bundles
£ and Q with £ and Q, respectively. Hence (5.7) restricts to

(5.8) ] = ¢k, z#£0.

Remark 5.9. The restriction of ¢ to z = 1 gives a non-vanishing holomorphic
15



section for O 4 (D)

o Define a Hermitian metric p for O )E(D)‘ % by

|C|/\?O|;2) =1

everywhere on Xy. Then by Theorem 5.2, when restricted to z = 1, we
may assume that £ and Q®’ coincides holomorphically and metrically. In
particular, any Hermitian metric for L can be viewed as a Hermitian metric

for Q

1]
2
3
]
5]
G
7
8]
9
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[12]
[13)
[14]
[15)

[16]

B via the identification of /'\?0 with X.
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