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K-POLYSTABILITY OF Q-FANO VARIETIES ADMITTING
KÄHLER-EINSTEIN METRICS

ROBERT J. BERMAN

Abstract. It is shown that any, possibly singular, Fano variety X admitting
a Kähler-Einstein metric is K-polystable, thus confirming one direction of the
Yau-Tian-Donaldson conjecture in the setting of Q-Fano varieties equipped
with their anti-canonical polarization. The proof is based on a new formula
expressing the Donaldson-Futaki invariants in terms of the slope of the Ding
functional along a geodesic ray in the space of all bounded positively curved
metrics on the anti-canonical line bundle of X. One consequence is that a toric
Fano variety X is K-polystable iff it is K-polystable along toric degenerations
iff 0 is the barycenter of the canonical weight polytope P associated to X. The
results also extend to the logarithmic setting and in particular to the setting of
Kähler-Einstein metrics with edge-cone singularities. Applications to geodesic
stability, bounds on the Ricci potential and Perelman’s λ−entropy functional
on K−unstable Fano manifolds are also given.
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1. Introduction

Let (X,L) be a polarized projective algebraic manifold. i.e. L is an ample
line bundle over X. According to the fundamental Yau-Tian-Donaldson conjecture
in Kähler geometry (see the recent survey [63]) the first Chern class c1(L) con-
tains a Kähler metric ω with constant scalar curvature if and only if (X,L) is
K-polystable. This notion of stability is of an algebro-geometric nature and has its
origin in Geometric Invariant Theory (GIT). It was introduced by Tian [69] and
in its most general form, due to Donaldson [23] it is formulated in terms of polar-
ized C∗−equivariant deformations L → X → C of (X,L) called test configurations
for the polarized variety (X,L), where X1 = X. Briefly, to any test configuration
(X ,L) one associates a numerical invariant DF (X ,L), called the Donaldson-Futaki
invariant defined in terms of the polarized scheme (X0,L|X0

) and X is said to be
K-polystable if DF (X ,L) ≥ 0 with equality if and only if (X ,L) is isomorphic to a
product test configuration (the precise definitions are recalled in section 2.2). The
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test configuration (X ,L) thus plays the role of a one-parameter subgroup in GIT
and the Donaldson-Futaki invariant corresponds to the Hilbert-Mumford weight in
GIT. Accordingly, the Yau-Tian-Donaldson conjecture is sometimes also referred
to as the non-linear version of the celebrated Kobayashi-Hitchin correspondence
between Hermitian Yang-Mills metrics and polystable vector bundles.

In the case when the connected component Aut(X)0 containing the identity of
the the automorphism group is trivial, i.e. X admits no non-trivial holomorphic
vector fields, it was shown by Stoppa [66] that the existence of a constant scalar
curvature metric in c1(L) indeed implies that (X,L) is K-polystable. The case when
Aut(X)0 is non-trivial leads to highly non-trivial complications, related to the case
when DF = 0 and was treated by Mabuchi in a series of papers [44, 45] (see also
[68] where it is shown that if c1(L) contains an extremal Kähler metric, then (X,L)
is K-polystable with respect to all test configurations whose C∗−action commutes
with a maximal torus of automorphisms). In this note we will be concerned with
the special case when ω is a Kähler-Einstein metric of positive scalar curvature.
Equivalently this means that the Ricci curvature of ω is positive and constant:

Ric ω = ω,

i.e. L is the anti-canonical line bundle −KX and X is a Fano manifold. In the
seminal paper of Tian [69] it was shown, in the case when Aut(X)0 is trivial, that
X is K-stable along all test configurations X with normal central fiber X0. Here we
will show that the assumption on Aut(X)0 can be removed, as well as the normality
assumption on the central fiber X0. In fact, we will allow X to be a general, possibly
singular, Fano variety and prove the following

Theorem 1.1. Let X be a Fano variety admitting a Kähler-Einstein metric. Then
X is K-polystable.

It should be pointed out that, following Li-Xu [42], we assume that the total
space X of the test configuration is normal to exclude some pathological test-
configurations that had previously been overlooked in the literature (as explained
in [42] ). As follows from the results of Ross-Thomas [64] this does not affect the
notion of K semi-stability. Moreover, by a remark of Stoppa [67] K-polystability
for all normal test configuration is equivalent to having DF (X ,L) ≥ 0 for all test
configurations with equality iff (X ,L) is isomorphic to a product test configuration
away from a subvariety of codimension at least two.

We recall that, by definition, X is a Fano variety if it is normal and the anti-
canonical divisor −KX is defined as an ample Q−line bundle (such a variety is also
called a Q−Fano variety in the literature) and, following [4], ω is said to be a Kähler-
Einstein metric on X if ω is a bona fide Kähler-Einstein metric on the regular locus
Xreg of X and the volume of ω on Xreg coincides with the top-intersection number
c1(−KX)

n[X ]. The existence of such a metric actually implies that the singularities
are rather mild in the sense of the Minimal Model Program (MMP) in birational
geometry [4], more precisely the singularities of X are (Kawamata) log terminal
(klt, for short). In fact, even if X itself is smooth we will show that the singularity
structure of the central fiber X0 of a given test configuration forX (or more precisely
the log canonical threshold of X0) plays an important role in the metric analysis of
the Donaldson-Futaki invariant DF (X ,L), through the Lelong number l0 at 0 of
the L2− type metric on a certain adjoint direct image sheaf over the base of the test
configuration. Interestingly, this will single out test configurations X whose central
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fibers have log canonical singularities as the “minimal” ones, in the sense that l0 = 0.
This appears to give a new metric incarnation of the appearance of log canonical
singularities in the log MMP (which is reminiscent of the algebro-geometric results
in [42]; compare Remark 3.1).

One motivation for considering singular Kähler-Einstein varieties X is that they
naturally appear when taking Gromov-Hausdorff limits of smooth Kähler-Einstein
varieties [27]. This is related to the expectation that one may be able to form
compact moduli spaces of K-polystable Fano varieties if singular ones are included,
or more precisely those with log terminal singularities; compare the discussions in
[54] and [53] (where the surface case is considered).

Another motivation for allowing X to be singular comes from the toric setting
considered in [2], where it was shown that the existence of a Kähler-Einstein metric
on a toric Fano variety X is equivalent to X being K−polystable with respect to
toric test configuration. In turn, this latter property is equivalent to the canonical
rational weight polytope P associated to X having zero as its barycenter. However,
the question whether the existence of a Kähler-Einstein metric on the toric variety
X implies that X is K-polystable for general test configurations was left open in
[2]. Combining the previous theorem with the results in [2] we thus deduce the
following

Corollary 1.2. A toric Fano variety is K-polystable iff it is K-polystable with
respect to toric test configurations. In particular, if P is a reflexive lattice polytope,
then the toric Fano variety XP associated to P is K−polystable if and only if 0 is
the barycenter of P.

We recall that reflexive lattice polytopes P (i.e. those for which the dual P ∗ is
also a lattice polytope) correspond to toric Fano varieties whose singularities are
Gorenstein, i.e −KX is an ample line bundle (and not only a Q−line bundle). This
huge class of lattice polytopes plays an important role in string theory, as they
give rise to many examples of mirror symmetric Calabi-Yau manifolds [1]. Already
in dimension three there are 4319 isomorphism classes of such polytopes [40] and
hence including singular Fano varieties leads to many new examples of K-polystable
and K-unstable Fano threefolds (recall that there are, all in all, only 105 families
of smooth Fano threefolds).

As explained in section 4.3 the theorem above extends to the logarithmic setting
of Kähler-Einstein metrics on log Fano varieties (X,D), as considered in [4]. In
particular, this shows that if D is an effective Q−divisor with simple normal cross-
ings, and coefficients < 1, on a projective manifold X such that the logarithmic first
Chern class of (X,D) contains a Kähler-Einstein metric ω with edge-cone singular-
ities along D in the sense of [26, 13, 34], then the pair (X,D) is log K-polystable
in the sense of [26, 41, 52].

The starting point of the proof of Theorem 1.1 is the following result of indepen-
dent interest, which expresses the Donaldson-Futaki invariant in terms of the Ding
functional D (see formula 3.1):

Theorem 1.3. Let X be a Fano variety with log terminal singularities, (X ,L) a
test configuration for (X,−KX) (assumed to have normal total space) and φ a
locally bounded metric on L with positive curvature current. Setting t := − log |τ |2

and denoting by φt = ρ(τ)∗φτ the corresponding ray of locally bounded metrics on
3



−KX the following formula holds:

(1.1) DF (X ,L) = lim
t→∞

d

dt
D(φt) + q,

where q is a non-negative rational number determined by the polarized scheme
(X0,L|X0

) with the following properties, if X is smooth:

• q = 0 iff X is Q−Gorenstein with L isomorphic to −KX/C and X0 is reduced
and its normalization has log canonical singularities.

• In particular, if X0 is normal then q = 0 iff X0 is reduced and has log
canonical singularities (and in particular q = 0 if it has log terminal singu-
larities).

More precisely, we will give an explicit expression for the number q in terms
of a given log resolution (X ,X0) (see Theorem 3.11). In order to prove Theorem
1.1 we apply Theorem 1.3 to a weak geodesic ray φt, emanating from the Kähler-
Einstein metric on −KX (which is a critical point of the Ding functional). We can
then exploit a result of Berndtsson [10] (and its generalization to singular Fano
varieties in [4]) concerning the convexity of the Ding functional D, also using a
new triviality result for certain flat direct image sheaves, of independent interest
(Proposition 3.3).

As for the proof of Theorem 1.3 it is based on the observation that D(φt) extends
to define a singular positively curved metric on a certain line bundle over the base
C of the given test configuration, that we will accordingly call the Ding line bundle.
To make the connection to DF (X ,L) we use a result of Phong-Ross-Sturm [59]
which expresses DF (X ,L) in terms of the weight over 0 of another line bundle
η over the base C, involving certain Deligne pairings. This is also closely related
to the intersection theoretic formulation of the Donaldson-Futaki invariant due to
Wang [77] and Odaka [51], independently. The error term q in formula 1.1 can then
be decomposed into two pieces where the first piece is the Lelong number l0 at 0 of
Ding metric referred to above, which is shown to coincide with the Lelong number
at 0 of an L2−type metric on a certain direct image sheaf. The non-negativity of l0
then follows from the positivity results of Berndtsson-Paun for the L2−metrics on
direct images of adjoint line bundles [8, 11]. We show how to express l0 explicitly in
terms of a certain log canonical threshold of the central fiberX0 (Proposition 3.8).
Finally, the vanishing properties of q are obtained using inversion of adjunction [38]
(which can be seen as an algebro-geometric incarnation of the Ohsawa-Takegoshi
extension theorem in complex analysis [19, 39]).

It should be pointed out that the information about the vanishing properties of
q in Theorem 1.3 are not used in the proof of Theorem 1.1, but they appear to give
a new link between differential geometry and the MMP (see Remark 3.1). More-
over, as discussed in section 5, the second point in Theorem 1.3 fits naturally into
Tian’s program [71] for establishing the existence part of the Yau-Tian-Donaldson
conjecture - in particular when generalized to the setting of singular Fano varieties
(compare Corollary 5.1).

We also give some applications of Theorem 1.3 to bounds on the Ricci potential
and Perelman’s λ−entropy functional [55] (see section 4.2), which can be seen as
analogs of Donaldson’s lower bound on the Calabi functional [24]. In particular, we
obtain the following
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Theorem 1.4. Let X be an n−dimensional Fano manifold and set V := c1(X)n.
If X is K−unstable, then Perelman’s λ−entropy functional satisfies

sup
ω∈K(X)

λ(ω) < nV,

where K(X) denotes the space of all Kähler metrics in c1(X).

As is well-known λ(ω) ≤ nV on the space K(X) and, as recently shown by
Tian-Zhang [72] in their study of the Kähler-Ricci flow, if a Fano manifold X
admits a Kähler-Einstein metric ωKE then λ(ωKE) = nV, or more generally: if
Mabuchi’s K-energy is bounded from below on K(X), then supremum of λ is equal
to nV. In the light of the Yau-Tian-Donaldson conjecture it seems thus natural to
conjecture that X is K−semistable if and only if the supremum of λ is equal to nV
(the “if direction” is the content of the previous theorem). In fact, a more precise
version of Theorem 1.4 will be obtained, where the supremum of λ is explicitly
bounded in terms of minus the supremum of the Donaldson-Futaki invariants over
all (normalized) destabilizing test configurations for (X,L) (see Cor 4.5).

During the revision of the present paper the existence of Kähler-Einstein metrics
on K-polystable smooth Fano varieties was finally settled by Chen-Donaldson-Sun
[16] based on a modification of Tian’s original program introduced by Donaldson
[26], which uses metrics with conical singularities. In fact the proofs in [16] show
that a Kähler-Einstein metric exists as soon as X is K-polystable with respect to
special test configurations and hence combining the results in [16] with the main
result of the present paper yields a new proof - not involving MMP - of the recent
result of Li-Xu [42], saying that to test the K−polystability of a Fano manifolds
it is enough to test it on special test configurations. Moreover, one also obtains
a proof of an analog of a conjecture of Donaldson concerning “geodesic stability”
saying that either a Fano manifold X admits a Kähler-Einstein metrics, or there
exists a geodesic ray along which the Ding functional eventually becomes strictly
decreasing (Theorem 4.1).

In section 5 we have included an outlook on the existence problem on singular
Fano varieties, which is thus the missing piece in the Yau-Tian-Donaldson conjec-
ture for projective varieties X polarized by −KX . The opposite case of varieties
polarized by KX was very recently established in [6], building on [51].

1.1. Further relations to previous work. In the case when X is a smooth
Fano manifold Theorem 1.3 (and its more precise version Theorem 3.11) should be
compared with previous results of Ding-Tian [21] who considered the case when
φt is a Bergman geodesic, induced by a fixed embedding in PN by −kKX (and
a C∗−action on PN). In the case when the central fiber X0 is normal the results
of Ding-Tian say that DF (X ,L) is equal to the asymptotic slope of the Mabuchi
functional (without any further restrictions on the nature of the singularities of X0).
We also recall that in another direction Paul-Tian [56, I, Cor 1.2] and Phong-Ross-
Sturm [59] considered the case of a general smooth and positively curved metric φ
on L → X , for a given test configuration (X ,L) for a polarized manifold (X,L),
but assumed that the total space X be smooth and then obtained a formula for
DF (X ,L) as the slope of the Mabuchi functional plus a correction term which
vanishes if X0 is reduced.

It may also be illuminating to compare our proof of Theorem 1.1 with the original
approach of Tian [69] in the case of a non-singular Fano variety. As shown by Tian
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[69] assuming that the central fiber of test configuration is normal, and using the
slope formula of Ding-Tian [21] referred to above, the Donaldson-Futaki invariant
DF is expressed in terms of the asymptotics of Mabuchi’s K-energy functional
along a one-parameter family φtk of Bergman metrics, i.e. a Bergman geodesic.
The positivity properties of DF are then determined using that, in the presence of
a Kähler-Einstein metric, the Mabuchi’s K-energy functional is proper (if there are
no non-trivial holomorphic vector fields on X), which is the content of deep result
of Tian [69]. Here we thus show that the Mabuchi functional and the Bergman
geodesic may be replaced by the Ding functional and a weak (bounded) geodesic,
respectively, and the properness result with Berndtsson’s convexity result. One
technical advantage of the Ding functional is that, unlike the Mabuchi functional,
it is indeed well-defined along a weak geodesic, as previously exploited in [10, 4]
in the context of the uniqueness problem for Kähler-Einstein metrics. Thus the
approach in this paper is in line with the programs of Phong-Sturm [60] and Chen-
Tang [15] for calculating Donaldson-Futaki invariants by using (weak) geodesic rays
associated to test configurations.

In the case when X is a smooth Kähler-Einstein Fano variety with Aut(X)0 triv-
ial the properness of the Ding functional was shown by Tian [69] as a consequence
of his properness result for the Mabuchi functional. It was later shown in [61] that
if center of the group Aut(X)0 is finite then the Ding functional is still proper (in an
appropriate sense), but the properness in the case of general Kähler-Einstein man-
ifold is still open. The generalization of the properness result (even when Aut(X)0
is trivial) to singular Fano varieties and more generally log Fano varieties also ap-
pears to be a challenging open problem. Anyway, these subtle issues are bypassed
in the present approach.

Organization. After having recalled some preliminary material in Section 2 the
formula relating the Donaldson-Futaki invariant (Theorem 1.3 above) to the Ding
function is established in Section 3 and then used, by exploiting positivity results for
L2−type metrics on direct images, to prove Theorem 1.1 concerning K-polystability.
Section 3.3 also contains a detailed study of the singularities of the L2−type metrics
which is of independent interest, but not needed for the proof of Theorem 1.1. In
section 4.2 various ramifications and applications are given to (i) an analog of
conjecture of Donaldson (ii) bounds on the Ricci potential and Perelman’s entropy
functional and (iii) the log Fano setting. The paper is concluded with an outlook
in Section 5 on the existence problem for Kähler-Einstein metrics on singular Fano
varieties is given.

Acknowledgments. Thanks to Bo Berndtsson, Sébastien Boucksom, Dennis Eriks-
son, Yuji Odaka, Julius Ross and Song Sun for helpful discussions and comments.
In particular, thanks to Tomoyuki Hisamoto and David Witt-Nyström for discus-
sions on norms of test configurations and the relations to their works [36] and [50]
(compare Remark 4.4). Finally, thanks to the referees for many useful comments.
This work was supported by grants from the Swedish Research Council and the
European Research Council.

2. Preliminaries

In this section we will setup the notation and recall the basic tools to be used in
the proofs of the main results.
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2.1. Kähler-Einstein metrics on Fano varieties and log pairs.

2.1.1. Fano varieties and log pairs. Let X be an n−dimensional normal compact
projective algbraic variety. In analytic terms normality just means that any holo-
morphic function f on U ∩ Xreg, where Xreg denotes the regular locus of X and
U ⊂ X is open, extends holomorphically to U in the strong sense, i.e. f is the re-
striction to U of holomorphic function in Cm under some local holomorphic embed-
ding F : U →֒ Cm (after perhaps shrinking U). In particular, codim(X−Xreg) ≥ 2.
More generally, the corresponding strong extension property holds for any plurisub-
harmonic (psh, for short) function φ on U (see [6] and references therein for
a more detailed discussion of pluripotential theory on singular analytic spaces).
By definition, X is said to be a Fano variety if the anti-canonical line bundle
−KX := det(TX) defined on the regular locus Xreg of X extends to an ample
Q−line bundle on X, i.e. there exists a positive integer m such that the mth ten-
sor power −mKXreg extends to an ample line bundle over X. Since X is normal
this equivalently means that the anti-canonical divisor −KX of X defines an ample
Q−line bundle. More generally we will (in particular in Section 4.3) consider log
pairs (X,D) in the sense of birational geometry [39]: i.e. X is normal and D is a
Q−divisor on X such that KX + D is a Q−Cartier, i.e. defines a Q−line bundle
(called the log canonical bundle of (X,D). By definition, a log resolution of a log
pair (X,D) is a proper birational morphism X ′ → X such that p∗D+E has simple
normal crossings, where E is the exceptional divisor of p. Then

(2.1) p∗(K +D) = KX′ +D′,

for a Q−divisor D′ on X ′ (by Hironaka’s theorem we may and will assume that p
is an isomorphism away from p−1(Xsing ∪ SuppDsing). A log pair (X,D) is said to
be log canonical, or lc for short, if the coefficients ci of D′ (along the correspond-
ing prime divisors) satisfy ci ≤ 1. Similarly, (X,D) is said to be (Kawamata) log
terminal, or klt for short, if ci < 1. Setting D = 0 these notations also apply to the
normal variety X, which is thus said to have log canonical (log terminal) singulari-
ties if (X, 0) is log canonical (log terminal). In practice we will in what follows only
consider Fano varieties X with log terminal singularities (the corresponding ana-
lytical characterization will be recalled below), but even if X is smooth the notion
of log canonical singularities will be important in the study of test configurations
X for X.

2.1.2. Singular metrics on line bundles and (multi-) sections. Throughout the pa-
per we will use additive notation for line bundles, as well as metrics. This means
that a metric ‖·‖ on a line bundle L → X is represented by a collection of local
functions φ(:= {φU}) defined as follows: given a locally trivializing section of L,
i.e. a local generator sU of the invertible sheaf O(L) on an open subset U ⊂ X we

set φU := − log ‖sU‖
2
, where φU is upper semi-continuous. It will be convenient to

identify the additive object φ with the metric it represents. Of course, φU depends
on sU but the curvature current

ddcφ :=
i

2π
∂∂̄φU

is globally well-defined on X and represents the first Chern class c1(L), which
with our normalizations lies in the integer lattice of H2(X,R). We will say that a
(singular) metric φ is psh (or have positive curvature current), φ ∈ PSH(X,L), if
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φU is always psh (and in particular ddcφ ≥ 0 holds in the sense of currents). By
the normality of X the injection Xreg →֒ X alows us to identity PSH(X,L) =
PSH(Xreg, L) and hence, given a smooth resolution π : X ′ → X, we can also
identify PSH(X,L) with PSH(X ′, π∗L), using the pull-back π∗. We will denote
by Hb(X,L) the subspace of PSH(X,L) consisting of all locally bounded metrics.
Fixing φ0 ∈ Hb(X,L) and setting ω0 := ddcφ0 the map φ 7→ v := φ− φ0 thus gives
an isomorphism between the space Hb(X,L) and the space PSH(X,ω0) ∩ L

∞(X)
of all bounded ω0−psh functions, i.e. the space of all bounded usc functions v on
X such that ddcv + ω0 ≥ 0. Similarly, a metric φ will be said to be smooth if φU
is the restriction to U of a smooth function under a local embedding as above. A
special class of smooth metrics with strictly positive curvature is given by Bergman
metrics, i.e. metrics of the form φk/k, where φk is obtained by restricting the
Fubini-Study metric φFS on PN under a given Kodaira embedding of X in PN

induced by kL, for some k sufficiently large.
In particular, if s is a holomorphic section of L → X then φs := log |s|2 defines

a singular metric on L with positive curvature current [D], i.e. integration along
the zero divisor of s (taking multiplicities into account). More generally, it will
often be convenient to use the terminiology of holomorphic multisections of L,
which by definition consists of a pair (r, sr), where r is a positive integer r and
sr ∈ H0(X, rL) and where two pairs (r, sr) and (r′, sr′), where r′ ≥ r, are identified
if there exists a positive integer p such that r′ = pr and sr′ = s⊗pr . Denoting by
s such an equivalence class φs := 1

r log |sr|
2 defines a singular metric on L with

curvature current [D], where D is the Q−divisor defined by the zero-divisor of s
(i.e. D is, by definition, equal to 1/r times the zero divisor of sr). Accordingly we
will occasionally also write φD := φs. More generally, abusing notation slightly, the
statement “let s be a holomorphic multisection of L” will in the follopwing mean
that we tacitly fix a pair (r, sr) defining s and work with the bona fide section sr
and then make the appropriate scalings by r.

2.1.3. Canonical measures. In the special case when L = −KX any given metric
on φ ∈ Hb(X,L) induces a measure µφ on X, which may be concretely defined
as follows: if U is a coordinate chart in Xreg with local holomorphic coordinates
z1, ..., zn we let φU be the representation of φ with respect to the local trivialization
of −KX which is dual to dz := dz1 ∧ · · · ∧ dzn. Then we define the restriction of µφ
to U ⊂ Xreg as

µφ = e−φU in
2

dz ∧ dz̄

This expression is readily verified to be independent of the local coordinates z and
hence defines a measure µφ on Xreg which we then extend by zero to all of X. Note
that since −KX is assumed Q−Cartier we may cover X with a finite number of
open sets V (not necessarily contained in Xreg) such that the restriction to V of µφ
is given by 1Xreg i

n2

αU ∧αUe
−φU , where αU is a trivializing section of KX|U (whose

restriction to U ∩Xreg may thus be identified with a holomorphic (n, 0)−form) and

where φU = − log ‖s‖2 for s the dual of α. The Fano variety X has log terminal
singularities (as defined above) precisely when the total mass of µφ is finite for
some and hence any φ ∈ Hb(X,L) (see Lemma 3.7). Abusing notation slightly
we will often use the suggestive notation e−φ for the measure µφ. This notation
is compatible with the usual notation used in the context of adjoint bundles: if
s is a holomorphic section of L + KX → X and φ is a metric on L then |s|2e−φ
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(sometimes written as in
2

s ∧ s̄e−φ) may be naturally identified with a measure on
X. In particular, letting L = −KX and taking s to be the canonical section 1
in the trivial line bundle L + KX gives us back the measure µφ. More generally,
if (X,D) is a log pair (see section 4.3 below) and φ is a locally bounded metric
on −(KX + D) then one obtains a measure µ(X,D,φ) on X by using the natural
identification between −(KX + D) and −KX on the complement of the support
of D in X and extending by zero to all of X (compare [4]). Abusing notation,

we will sometimes write µ(X,D;φ) = e−(φ+log |sD |2), where sD is the (multi-) section
cutting out D. These constructions are compatible with taking resolutions p, as
in 2.1: if φ is a metric on −(KX +D) then p∗φ is a metric on −(KX′ +D′) and
p∗(µ(X′,D′;p∗φ)) = µ(X,D;φ).

In the relative setting of a morphism π : X → C from a normal Q−Gorenstein
variety such that π is smooth over C∗ (or more generally, Xτ is reduced and defines
a variety Xτ with log terminal singularities for τ 6= 0) we denote by KX/C := KX −
π∗KC the relative canonical line bundle (viewed as a Q−line bundle). Denoting
by τ the standard affine coordinate on C we will use π∗dτ to trivialize π∗KC over
X . Accordingly, we will identify an element s ∈ O(U,KX/C) with a holomorphic

(n + 1)−form α on U ∩ Xreg (i.e. s = α ⊗ π∗ ∂
∂τ ). Moreover, if U = π−1(V ) for

V ⊂ C∗, then the natural isomorphism KX/C|Xτ
≈ KXτ allows us to identify the

restrictions sτ of s ∈ O(U,KX/C) to Xτ with a family of holomorphic n−forms on
Xτ (i.e. α = sτ ∧ π

∗dτ). Similarly, replacing KX/C with L+KX/C for a given line

bundle L → X equipped with a metric φ we will use the symbolic notation |s|2e−φ

for the corresponding measures on U ⊂ X and |sτ |
2e−φτ for the corresponding

family of measures over V ⊂ C∗.

2.1.4. Kähler-Einstein metrics. Following [4] ω is said to be a Kähler-Einstein met-
ric on X if it is Kähler metric on Xreg with constant Ricci curvature, i.e. Ric ω = ω
on Xreg and

´

Xreg
ωn = c1(−KX)

n. By [4, Lemma 3.6 and Proposition 3.8] this

equivalently means that the Fano variety X in fact has log terminal singularities
and ω extends to a Kähler current defined on the whole Fano variety X, such that
ω is the curvature current of a locally bounded (and in fact continuous) metric φKE
on the Q−line bundle −KX such that

(2.2) (ddcφKE)
n = V e−φKE/

ˆ

X

e−φKE .

The measure appearing the left hand side above is the Monge-Ampère measure
of φKE defined in sense of pluripotential theory, i.e. using the Bedford-Taylor
product between positive closed currents with locally bounded potentials (see [4]
and references therein for the general singular setting).

2.2. K-polystability and test configurations. Let us start by recalling Donald-
son’s general definition [23] of K-stability of a polarized variety (X,L) generalizing
the original definition of Tian [69]. First, a general test configuration (X ,L, π, ρ)
for (X,L) consists of a scheme X with a C∗−equivariant flat surjective morphism
π : X → C (where the base C is equipped with its standard C∗−action) and
a relatively ample line bundle L → X with a C∗−action ρ on L and such that
(X1,L|X1

) = (X, rL) for some integer r. In fact, by allowing L to be a Q−line

bundle we may as well assume that r = 1. More specifically, following [42] we will
9



assume that the total space X is normal. Then the morphism π is automatically
flat [35, Prop 9.7 ]).

To simplify the notation we will usually surpress the dependence on π and ρ
denote a test configuration by (X ,L). Occasionally we will use the notation X0 for
the reduction of the central fiber X0, i.e. the projective variety X0 underlying the
scheme theoretic central fiber X0. For a semi-test configuration we only require that
L be relatively semi-ample. We recall that the total space X of a test configuration
may, using the relative linear systems defined by rL for r sufficiently large, be
equivariantly embedded as a subvariety of PN × C so that rL becomes the pull-
back of the relative O(1)−hyperplane line bundle over PN × C. We will denote by
φFS the metric on L obtained by restriction of the fiberwise Fubini-Study metrics
on PN × {τ} (see [64, Proposition 3.7] and the beginning of Section 5 [24] ).

The Donaldson-Futaki invariant DF (X ,L) of a test configuration is defined as
follows: consider the Nk−dimensional spaceH0(X0, kL|X0

) over the central fiber X0

and let wk be the weight of the C∗−action on the complex line H0(X0, kL|X0
). Then

the Donaldson-Futaki invariant of DF (X ,L) is defined as minus the sub-leading
coefficient in the expansion of wk/kNk in powers of 1/k (up to normalization):

wk(detH
0(X0, kL|X0

))

kNk
= c0 −

1

k

1

2
DF (X ,L) +O(

1

k2
),

where Nk := dim(H0(X0, kL0). The polarized variety (X,L) is said to be K-
semistable if, for any test configuration, DF (X ,L) ≥ 0 and K-(poly)stable if more-
over equality holds iff (X ,L) is (equivariantly) isomorphic to (X × C, p∗1L). We
also recall that (X,L) is said to be K−unstable if it is not K-semistable, i.e. there
exists a destabilizing test configuration in the sense that DF (X ,L) < 0.

Example 2.1. Let V be a holomorphic vector field on X of type (1, 0) with a fixed
lift to L→ X. We will say that V generates a C∗−action on X, denoted by ρ(X,V ),

if d
dtρ(X,V )(e

−t/2) = etReV , for t ∈ R (in other words the standard additive group
(C,+) action onX determined by the complex flow of V descends to a multiplicative
action of C∗ on (X,L) under the homomorphism C → C∗, t 7→ e−t/2). Such a vector
field V determines a product test configuration (X ,L, π, ρ) by setting (X ,L, π) =
(X × C,L =p∗1L, p2) and defining the action ρ : C∗ × X → X by (λ, (x, τ)) 7→
(ρV (x), λτ). Note that the original action of ρ(X.V ) on X may be identified with
the restricted action of ρ on X0 and DF (X ,L, ρ) coincides with Futaki’s invariant
F (X,V ). Since, F (X,V ) = −F (X,V ) a necessary condition for the K-polystability
of (X,L) is that DF (X ,L, ρ) = 0 for any V as above and a necassary condition for
K-stability is thatX admits no holomorphic vector fields as above (since, (X ,L, ρ) is
equivariantly isomorphic to (X ,L, ρtriv), where ρtriv(λ, (x, τ) = (x, λτ), iff V = 0).

In this paper we will be concerned with test configurations (X ,L) for a Fano
variety with its anti-canonical polarization, i.e. X is a Fano variety and L = −KX

so that the restriction of L to the complement X ∗ of the central fiber coincides with
the Q−line bundle defined by the dual of the relative canonical divisor KX ∗/C :=
KX ∗ − π∗KC.

2.2.1. Q−Gorenstein and special test configurations. In general, KX/C does not
extend as a Q−line bundle over the central fiber, but following [42] we say that a
normal variety X with a C∗−equivariant surjective morphism π to C is a special test
configuration for the Fano variety X if X1 = X, the total space X is Q−Gorenstein

10



and the central fiber is reduced and irreducible and defines a Fano variety X0 with
log terminal singularities.

Lemma 2.2. Let (X ,L) be a general test configuration (with a priori non-normal
total space) for (X,−KX), where X is a Fano variety. Assume that the central
fiber X0 is normal. Then X and X0 are both normal Q−Gorenstein varieties and
L|X0

is isomorphic to −KX0, i.e. L is isomorphic to −KX/C. Moreover, if X0 has
log terminal singularities, then so has X . In other words, a test configuration is
special iff the central fiber is reduced and the underlying variety X0 has log terminal
singularities.

Proof. This is essentially well-known, but for completeness we provide a proof
(thanks to Yuji Odaka for his help in this matter). It follows from general com-
mutative algebra that if π : X → C is a morphism projective and flat over C,
with normal fibers, then X is also normal [29, Theorem 1.101 ]. In particular, the
canonical divisor KX is a well-defined Weil divisor. By assumption −KX and L are
Q−Cartier and linearly equivalent on X ∗ and hence KX +L is linearly equivalent to
a Weil Q−divisor D supported in the central fiber. But the central fiber is Cartier
(since it is cut out by the function π∗τ) and hence, since it is assumed irreducible
−m(KX + L) is linearly equivalent to a multiple of X0, which means that −mKX

is a sum of Cartier divisors, hence Cartier, i.e. X is Q−Gorenstein. More precisely,
−mKX is linearly equivalent to L modulo a pull back from the base and thus it
follows from adjunction that the restriction of L to X0 is linearly equivalent to
−mKX0, which concludes the proof of the first statement. Finally, if X0 has log
terminal singularities it follows from inversion of adjunction that X also has log
terminal singularities [39, Theorem 7.5] (see also the beginning of Section 3). �

Since the Donaldson-Futaki is independent of the lift of the C∗−action on X
we may and will in the case when L := −KX/C assume that the C∗−action on
L := −KX/C is the canonical lift of the C∗−action on X to −KX/C.

2.3. Deligne pairings, the energy functional E and the line bundle η. The
Donaldson-Futaki invariant may also be expressed in terms of Deligne pairings [59]
(also called intersection bundles [48]). First recall that if π : X → B is a proper
flat projective morphism of relative dimension n (between normal schemes) and
L0, ..., Ln are line bundles over X then the Deligne pairing 〈L0, ..., Ln〉 is a line
bundle over B, which depends in a multilinear fashion on Li [75, ?] and satisfies

c1 〈L0, ..., Ln〉 = π∗ (c1(L0) ∧ · · · ∧ c1(Ln))

In particular, if B is a non-singular projective curve then

(2.3) deg 〈L0, ..., Ln〉 = L0 · · ·Ln

In our case X will be a normal variety (defined over C) and B = C. Given Hermitian
metrics φ0, ..., φn on L0, ..., Ln there is a natural Hermitian metric 〈φ0, ..., φn〉 on
〈L0, ..., Ln〉 [75] which has the following fundamental properties1:

(1) Its curvature is given by

(2.4) ddc 〈φ0, ..., φn〉 = π∗(dd
cφ1 ∧ · · · ∧ ddcφn)

1Following [32] the construction in [75] seems to require that π be Cohen-Macaulay in order
to define the metric on 〈L0, ..., Ln〉 by induction over the dimension n. Anyway all our arguments
will be carried out on a non-singular resolution of X where the constructions in [75, 32] apply.
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(2) If φ and ψ are metrics in H(L) with 〈φ〉 and 〈ψ〉 denoting the induced
metrics on the top Deligne pairing 〈L, ..., L〉 in the absolute case when B
is a point, then we have the following “change of metric formula”:

〈φ〉 − 〈ψ〉 =

n
∑

j=0

ˆ

X

(φ − ψ)(ddcφ)n−j ∧ (ddcψ)j

In order to define 〈φ〉 for φ merely locally bounded, i.e. in Hb(L), we fix a reference
metric ψ0 in H(L) and first set

(2.5) E(φ) := E(φ, ψ0) :=
1

(n+ 1)

n
∑

j=0

ˆ

X

(φ− ψ)(ddcφ)n−j ∧ (ddcψ)j

The functional E(φ, ψ) is well-defined and finite for any φ, ψ ∈ H(L)b, using the
Bedford-Taylor product between the corresponding currents, and the functional
E(φ) on Hb(L) coincides with the restriction to Hb(L) of the functional E in [3, 4,
Section 1.4] defined on the whole space of singular metrics on L with positive
curvature current. In particular, the functional E(φ) is a primitive for the one-form
on Hb(L) defined by the Monge-Ampère measure, i.e.

(2.6)
d

dt |t=0
E(φ0(1− t) + φ1t) =

ˆ

(φ1 − φ0)(dd
cφ0)

n

Now, for any φ ∈ Hb(L) we can simply define the corresponding metric 〈φ〉 on the
Deligne pairing by

〈φ〉 := 〈ψ〉+ (n+ 1)E(φ, ψ)

for any fixed ψ ∈ H(L). It follows immediately from the cocycle formula for E(φ, ψ)
(which in turn follows from the variational property 2.6) that 〈φ〉 is independent of
the choice of ψ and still satisfies the change of metric formula above, i.e.

(2.7) 〈φ〉 − 〈ψ〉 = (n+ 1)E(φ, ψ)

Similarly, the first property 1 above also holds in the singular setting of locally
bounded metrics, by approximation, since the Bedford-Taylor product is local and
continuous under local decreasing limits.

Remark 2.3. More generally, by the results in [3] the metric φD can be defined as
long as φ0, ..., φn are in the finite energy space E1(X,L), but the locally bounded
setting above will be adequate for our purposes.

Let us now come back to the general setting of a test configuration L → X → C

for a polarized variety (X,L). Under appropriate regularity assumptions it was
shown in [59] that the Donaldson-Futaki invariant of a test configuration (X ,L) is
the weight over 0 :

(2.8) DF (X ,L) = w0(η)

of the following Q−line bundle over C :
(2.9)

η :=
1

(n+ 1)Ln
(

µ 〈L, ...,L〉 − (n+ 1)
〈

−KX/C,L...,L
〉)

, µ := n(−KX) · Ln−1/Ln
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where in the case when L = −KX we have µ = n. More precisely, it was shown
in [59] that, up to natural isomorphisms, the Knudson-Mumford expansion of the
determinant line bundle det(π∗(kL)) → C (with fibers detH0(Xτ , kLτ )) satisfies

det(π∗(kL))/kNk =
1

(n+ 1)Ln
〈L, ...,L〉 −

1

k

1

2
η +O(

1

k2
)

and η is thus naturally isomorphic to Tian’s CM-line bundle [56]. The proofs in
[59] were carried out under the assumption that the total space X and the central
fiber X0 be non-singular (in particular, there are no multiple fibers), but as pointed
out in [59] the regularity assumptions can be relaxed. Here we observe that the
formula 2.8 holds as long as X is Q−Gorenstein as a consequence of the intersection
theoretic expression for the Donaldson-Futaki invariant recalled in the following
proposition. The expression involves the “C∗−equivariant compactification” L̄ →
X̄ → P1 of L → X → C obtained by using the given C∗−action ρ on (X ,L) to
identify (X ∗,L|X ∗) with (X×C, p∗1L), which trivially extends to (X×P1−{0}, p∗1L)

so that ρ̄ acts trivially over ∞ ∈ P1.

Proposition 2.4. Let (X ,L, ρ) be a test configuration (in particular, X is normal)
and denote by L̄ → X̄ → P1 the corresponding C∗−equivariant compactification
over P1. Then

(2.10) (n+ 1)Ln(DF (X ,L)) = µL̄ · L̄ · · · L̄+ (n+ 1)KX̄/P1 · L̄ · · · L̄,

where KX̄/P1 is the relative canonical divisor (viewed as a Weil divisor).

The previous formula is shown in [77, Proposition 17] under the assumption that
X is Q−Gorenstein, so that KX/C is well-defined as a Q−line bundle and in [51,
Theorem 3.2] for X normal (or more generally, Gorenstein in codimension one. See
also [42, Proposition 6] for a simple direct proof.

Proposition 2.5. Let (X ,L) be a test configuration such that X is Q−Gorenstein.
Then DF (X ,L) = w0(η), where η is the Q−line bundle defined by formula 2.9.

Proof. If KX̄ is well-defined as a Q−Cartier divisor (i.e. as a Q−line bundle) then
it follows from the previous proposition and the standard push-forward formula
that

(n+ 1)Ln(DF (X ,L)) =

ˆ

P1

µπ∗(µ(c1(L̄)
n+1) + (n+ 1)c1(KX̄/P1) ∧ c1(L̄)

n),

which, according to 2.3 coincides with the degree of the corresponding sum η̄ → P1

of extended Deligne pairings. But, this is nothing but the weight over 0 of the
C∗−action on η|τ=0. Indeed, if F is a line bundle over P1 equipped with a C∗−action

covering the standard action on P1 (viewed as a compactification of C∗) acting
trivially on the line F|∞, then

(2.11) w0(F ) = deg(F ),

�

2.3.1. A singular Kempf-Ness formula for weights involving the Lelong number.
Next we give a generalization of the Kempf-Ness type formula for the weight appear-
ing in Geometric Invariant Theory [49], which is essentially equivalent to Lemma
6 in [59]. Its formulation involves the classical notion of a Lelong number l0(Φ) at
zero of a subharmonic function Φ on the unit-disc in C, which may be defined as
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the sup over all numbers λ such that Φ(τ) ≤ λ log |τ |2 close to τ = 0 (equivalently,
l0(Φ) is the mass of curvature current of Φ at the origin:

(2.12) l0(Φ) =

ˆ

{0}

(ddcΦ).

Lemma 2.6. Let F be a line bundle over the unit-disc ∆ in C equipped with a
C∗−action ρ compatible with the standard one on ∆ and fix an S1−invariant metric
Φ on F with positive curvature current. Then the weight w0 of the C∗ action on
the complex line F0 is given by the following formula involving right derivatives:

(2.13) w0 = − lim
t→∞

d

dt
log ‖ρ(τ)s1‖

2
Φ + l0(Φ)

for t = − log |τ |2 and s1 a fixed element in the complex line F1.

Proof. This can be proved exactly as in Lemma 6 in [59], using that l0(φ) =
− limt→∞

d
dtφ(e

−t/2) if φ is subharmonic on ∆ and S1−invariant. Alternatively,
a highbrow proof can be given as follows, using the equivariant compactification
F̄ → P1, as in the discussion preceeding Proposition 2.4 (and by extending Φ to a
metric on F̄ → P, smooth close to ∞ ∈ P1) : the section sτ := ρ(τ)s1 defines a trivi-

alizing holomorphic section of F̄ → C and hence, setting v(τ) := − log ‖ρ(τ)s1‖
2
Φ on

C∗ we can decompose deg F̄ =
´

P1 dd
cΦ =

´

C∗ dd
cv +

´

{0}
ddcΦ. But

´

C
ddcv(τ) =

´∞

−∞ d(dv(e
−t/2)
dt ) = limt→∞ dv(t)/dt − 0, which concludes the proof using formulae

2.12 and 2.11. �

2.4. The Monge-Ampère equation on X and geodesic rays. Next we explain
how to attach a canonical metric on the line bundle L → X over a test configuration
to a given metric φ on L→ X and the relation to weak geodesic rays. This builds
on ideas introduced in the work of Phong-Sturm [60, 62] and Chen-Tang [15].

Let (X,L) be a polarized normal variety and (X ,L, ρ) a test configuration for
X (recall that X is assumed normal). Denote by M the variety with boundary
obtained by restricting X to the unit-disc ∆ ⊂ C. Given a locally bounded metric
φ1 with positive curvature on L we let φ be the metric on L → M defined as the
following envelope:

(2.14) φ := sup{ψ : ψ ≤ φ1 on ∂M}

where ψ ranges over all locally bounded metrics with positive curvature form on
L → M and φ1 is identified with the S1−invariant metric on ∂M induced by the
given metric (since we are not a priori assuming that ψ is continuous the boundary
condition above means that, locally, lim supzi→z ψ(zi) ≤ φ1(z) for any sequence zi
approaching a boundary point z). Occasionally, we will use the logarithmic real co-
ordinate t = − log |τ |2 on the punctured disc ∆∗. We note that since X is identified
with the fiber X1 of X we can use the action ρ to identify the metrics φτ on Xτ

with a curve of metric

(2.15) φt := ρ(τ)∗φτ , t := − log |τ |2

on L. Next we will show that the metric φ above can be seen as a solution to a
Dirichlet problem for the Monge-Ampère operator on M. In fact, it will be conve-
nient to formulate the result for any test configuration:

Proposition 2.7. Let (X ,L) be a test configuration for the polarized variety (X,L)
with normal total space X . Then the following holds:
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• φ is S1−invariant
• φ is locally bounded with positive curvature current and upper semi-continuous

in M
• φτ → φ1 uniformly as |τ | → 1 (with respect to any fixed trivializing of L

close to a given boundary point).
• In the interior of M we have that (ddcφ)n+1 = 0 in the sense of pluripo-

tential theory.

Proof. The first point follows immediately from the extremal defining of φ. It will
be convenient to identify the metric φ1 with a C∗−invariant metric on L over the
punctured unit-disc ∆∗ using the action ρ. We will also, abusing notation slightly,
identify the coordinate τ with the psh function on π∗τ on X . Let us first construct
a barrier, i.e. a continuous metric φ̃ on L with positive curvature current such
that φ̃ = φ1 on ∂M and φ̃τ → φ1 as |τ | → 1. To this end first observe that for
ǫ > 0 sufficiently small there exist a continuous metric φU with positive curvature
on L → U over the open set U := {|τ | ≤ ǫ} ⊂ X . Indeed, we can set φU = φFS for
the Fubini-Study metric induced by a fixed embedding of X (see the end of section

2.2). Finally, we set φ̃ := max{φ1 + log |τ |, φU −C} for C sufficiently large so that

φ̃ = φU −C for |τ | sufficiently small and φ̃ = φ1 + log |τ | for |τ | > ǫ/2. Since φ̃ is a
candidate for the sup defining φ we conclude that

(2.16) φ ≥ φ̃ ≥ φ1 + log |τ |

Next, let us show that φ is locally bounded from above or equivalently that there
exists a constant C′ such that

(2.17) φ ≤ φFS + C′

Accepting this for the moment we deduce that the envelope φ is finite with positive
curvature current. Moreover, the upper bound also implies that the upper semi-
continuous regularization φ∗ of φ is a candidate for the sup defining φ, forcing
φ = φ∗ in the interior of M, i.e. φ is upper semi-continuous there. To prove the
previous upper bound we note that since any candidate ψ for the sup defining φ
satisfies ψ ≤ φFS + C on the set E := ∂M it follows from general compactness
properties of positively curved metrics (or more generally, ω−psh functions) that
there is a constant C′ such that ψ ≤ φFS + C′ on all of M. Indeed, by a simple
extension argument we may as well assume that u := ψ−φFS extends as an ω−psh
function to some compactification X̂ of X for some semi-positive form current ω
with continuous potentials. But since u ≤ C on the non-pluripolar set E it then
follows from Cor 5.3 in [30] that u ≤ C′ on all of X̂ (strictly speaking the variety

X̂ is assumed non-singular in [30], but we may as well deduce the result by pulling

back u to a smooth resolution of X̂ ). Alternatively, u can be shown to be bounded
from above by using the maximum principle to bound it by a solution to a Dirichlet
type problem for the Laplace operator with respect to a fixed Kähler metric on a
resolution of M (compare the argument for the upper bound in [62]).

Let us next consider the behavior of φ on ∆∗ by identifying φτ with φt as above
for t ∈ [0,∞[. Since φ is positively curved and S1−invariant it follows that φt is

convex in t on ]0,∞[ and in particular the right derivative φ̇(t) with respect to t

exist and define an increasing function on ]0,∞[. Hence, φ̇(t) ≤ C1 := φ̇(t1) as
t→ 0. Combined with the lower bound 2.16 this means that there exists a constant

CT such that
∣

∣

∣
φ̇
∣

∣

∣
≤ CT for any t ∈ [0, T ] and thus |φt−φt

′

| ≤ CT |t− t′| for t and t′
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sufficiently small positive numbers. But then it follows that φt converges uniformly
to the correct boundary values as t→ 0 (again using the lower bound 2.16).

As for the final point, the vanishing of the Monge-Ampère measure (ddcφ)n+1

on the regular part of the interior of M is a standard local argument, which follows
from comparison with the solution of the homogenuous Monge-Ampère equation
on small balls. Since, the Monge-Ampère measure on a locally bounded metric
does not charge pluripolar sets and in particular not the singular locus of M this
concludes the proof. �

According to the previous proposition the envelope φ thus induces a weak geodesic
ray φt (formula 2.15) in the space Hb(X,L) of all bounded positively curved metrics,
starting at a given metric (compare [60]). For much more precise regularity results
(given suitably smooth data on ∂M) expressed on a smooth resolution of X we refer
to the paper [62] and to [15]. However, the point here is that the modest regularity
results above will be adequate for our purposes and that are valid for any given
locally bounded positively curved metric φ1.

Example 2.8. Given (X,L) and a metric φL in Hb(L) we set (X ,L, π) = (X ×
C, p∗1L, p2) and equip L with the metric φ := p∗1φL ∈ Hb(L). Then φ is the unique so-
lution to the Dirichlet problem for the complex Monge-Ampère equation on π−1(∆)
with boundary data p∗1φL. This example fits into the setting above if one equips
(X ,L) with the “trivial” action ρtriv covering the standard C∗−action on C and
then the ray φt, as defined by formula 2.15, is constant in t : φt = φL, since ρtriv
preserves φ. On the other hand, if we are given a non-trivial holomorphic vector
field V generating a C∗−action on (X,L), such that the corresponding S1−action
preserves φL, then we can endow (X ,L) with the corresponding non-trivial action
ρ (in the sense of Example 2.1), which still preserves the boundary data. The cor-
responding ray φt determined by φ and ρ is then given by φt = (etV )∗φL. Note that
ρtriv = ρ ◦ ρ(X,−V ) in the notation of Example 2.1 and hence φ is invariant under
ρ ◦ ρ(X,−V ) in the sense that (ρ ◦ ρ(X,−V ))

∗φ = φ.

3. Proofs of the main results

Recall that the Ding functional introduced in [20], in the setting of smooth Fano
manifolds X, is the functional on the space of all smooth positively curved metrics
on −KX defined, in our notation, by

(3.1) D(φ) := −
1

(−KX)n
E(φ) + log

ˆ

X

e−φ.

It follows immediately from the variational property 2.6 of E that the critical points
of D are Kähler-Einstein metrics. More generally, the functional D(φ) is well-defined
and finite on the space Hb(−KX) of bounded metrics on −KX as long as X has
log terminal singularities (see Lemma 3.7 for the finiteness of the integral piece).
Moreover, for any curve φt in Hb(−KX) such that φ0 is a (singular) Kähler-Einstein

metric and the right derivative dφt

dt |t=0+
exists we have

(3.2)
dD(φt)

dt |t=0+
≥ 0

as follows from the affine concavity of E and the Kähler-Einstein equation (see [3,
Formula 6.5]).
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3.0.1. Sketch of the proofs of Theorem 3.11 and Theorem 1.1 in the Q−Gorenstein
case. First note that in the case when the total space X of the test configura-
tion is Q−Gorenstein and L = −KX/C (as is, for example, the case for a spe-
cial test configuration) the line bundle η → C, whose weight w0(η) over zero
is equal to DF (X ,L) (Section 2.3), is simply given by the top Deligne pairing
− 1

(−KX)n(n+1)

〈

−KX/C, ...,−KX/C

〉

. 2Given a locally bounded metric φ on L → C

we define the corresponding Ding metric Φ on η as the induced Deligne metric 〈φ〉
plus the function

(3.3) vφ(τ) := − log

ˆ

Xτ

e−φτ

(using, as before, additive notation for metrics) on C∗, which, as will be explained
in the next section extends to a unique subharmonic function on C. By the change
of metrics formula 2.7 the Ding metric Φ(τ) may, as the name suggest, be identi-
fied with the Ding functional D(φt) (formula 3.1) along the corresponding ray of
metric φt on −KX . More generally, when X is Q−Gorenstein and L is a general
polarization for X → C the idea is to replace η with another line bundle δ, that we
shall call the Ding line bundle, defined by

δ := −
1

Ln(n+ 1)
〈L, ...,L〉+ π∗(L+KX/C) → C,

where π∗(L+KX/C) is the corresponding adjoint direct image sheaf. In this more
general case we define the corresponding Ding metric Φ as the Deligne metric 〈φ〉
plus the natural L2−type metric on π∗(L +KX/C) induced by φ. Even if δ is, in
general not isomorphic to η we will show that

(DF (X ,L) =)w0(η) = w0(δ) + p, p ≥ 0

where p = 0 iff L is isomorphic to −KX/C. Applying the Kempf-Ness type Lemma
2.6 to w0(δ) then gives

(3.4) DF (X ,L) = lim
t→∞

d

dt
D(φt) + q, q = p+ l0,

where l0 is the Lelong number l0 at zero of the Ding metric, which in turn is
shown to coincides with the non-negative Lelong number of the L2−type metric on
π∗(L +KX/C). As a consequence the error term q is non-negative. Finally, taking

φt to be the geodesic ray associated to (X ,L) emanating from a given Kähler-
Einstein metric and using convexity properties of D(φt) then proves Theorem 1.1.
In the case of a general test configuration (X ,L) the idea is to apply the previous
argument to a log resolution of X .

Remark 3.1. It should be pointed out that, by a recent result of Li-Xu [42] which
uses recent advances in MMP, a Fano variety X is K-polystable iff it is K-polystable
for all special test configurations and hence, if one invokes [42], it is enough to con-
sider special test configurations in the proof of Theorem 1.1. Anyway, as indicated
above the proof in the general case is not much more involved and combined with
the existence results in [16] it yields an analytical/differential geometric proof of
the result of Li-Xu referred to above, at least for X smooth (since it is shown in
[16] that if a Fano manifold X is K-polystable for all special test configuration,

2When making the identifications between L = −KX/C we have to take the lift ρ of the

C∗−action on X to be the canonical lift to −KX/C (compare the beginning of Section 2.2.1).
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then X admits a Kähler-Einstein metrics). We recall that an important ingredi-
ent in the proof in [42] is to show that DF (X ,L) decreases along a relative MMP
(first without and then with scaling) which, after an initial base change, modifies
(X0,L|X0

) so that (i) (X ,X0) has log canonical singularities and (ii) L is isomorphic
to −KX/C. Interestingly, as we will show (independently of [42]) that (i) holds iff
l0 = 0 and (ii) holds iff p = 0 and thus the error term q in formula 3.4 achieves it
minimal value 0 iff (X ,L) is a test configuration of the form produced by the MMP
procedure in [42].

3.1. The Ding line bundle and the Ding metric. Let (X ,L) be a test configu-
ration for a Fano variety (X,−KX) and fix an equivariant log resolution p : X ′ → X
of (X ,X0) and write L′ := p∗L. Then (X ′,L′) is a semi-test configuration for
(X,−KX). First assume, to fix ideas, that the original Fano variety X is smooth
with L a line bundle over X and define a the Ding line bundle δ′ → C by

(3.5) δ′ := −
1

Ln(n+ 1)
〈L′, ...,L′〉+ π′

∗(L
′ +KX ′/C) → C,

(when X is smooth the direct image sheaf π′
∗(L

′+KX ′/C) is indeed a line bundle, as
explained below). Given a metric φ on L → X we denote by Φ′ the generalized Ding
metric on δ′, defined as the Deligne metric on the top Deligne pairing of L twisted
by the L2−metric on π′

∗(L
′ +KX ′/C), induced by φ′ := p∗φ. Note that in general

L is only assumed to be a Q−line bundle, i.e. rL is a line bundle for some positive
integer r and then we may simply define π′

∗(L
′ + KX ′/C) := π′

∗(r(L
′ + KX ′/C)/r

as a Q−line bundle (which is easily seen to be independent of r) and let Φ′ be the
metric defined by the corresponding L2/r−norm

‖sτ‖L2/r
φ

:=

(
ˆ

Xτ

|sτ |
2/re−φ

′
τ

)r/2

,

where we have identified the restriction sτ of s ∈ H0(X ′,L′ +KX ′/C) with a holo-
morphic (n, 0)−form on Xτ with values in L′

|Xτ
(compare the notation in Section

2.1.3).
Turning to the case of a general Fano variety X with log terminal singularities

first recall that, since the variety X ∗(:= X −X0) has log terminal singularities, we
have p∗KX = KX ′ +D∗ on X ′ − X ′

0 for a (sub) klt Q−divisor D∗, whose closure
in X ′ we will denote by D. We can decompose D = D′ − E′ as a difference of
effective Q−divisors where E′ has integral coefficients (but we are not claiming
that the D′ and E′ have no common components) . We may and will assume that
the log resolution is such that the support of D has simple normal crossings and is
transversal to X ′

0. We then define

δ′ := −
1

Ln(n+ 1)
〈L′, ...,L′〉+ π′

∗(L
′ +D′ +KX ′/C) → C,

and denote by Φ′ the corresponding metric on δ′, which is defined using the log
adjoint L2/r−metric on π′

∗(L
′ +D′ +KX ′/C)

‖sτ‖L2/r
φ

:=

(
ˆ

Xτ

|s′τ |
2/re−(φ′

τ+φD′ )

)r/2

To see that π′
∗(L

′+D′+KX ′/C) is indeed a line bundle over C first note that over C∗,

where the sheaf is globally free, any fiber may be identified with H0(X ′, E′), where
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X ′ = p∗X and E′ is p−exceptional, so that dimH0(X ′, E′) = 1. The extension
property to all of C then follows from general principles. Indeed, the direct image
sheaf is clearly torsion-free and since the base is a curve any torsion-free sheaf is
automatically locally free (indeed, to get a local generator for the sheaf close to
0 ∈ C one simply takes an element with minimal vanishing order at 0).

3.2. Positivity/continuity properties of the Ding metric. In this section
we assume given a Fano variety X (with log terminal singularities) and a locally
bounded metric φ1 on −KX with positive curvature current. Fixing a test config-
uration (X ,L) for (X,−KX) and a resolution (X ′,L′), as in the previous section,
we denote by φ the induced S1−invariant locally bounded metric on L →M(⊂ X )
(compare Section 2.4), by φt the corresponding weak geodesic in Hb(−KX) and by
Φ the corresponding Ding type metric on the Ding line bundle δ′ → ∆.

The study of the positivity properties of the Ding metric relies on the following
fundamental positivity result of Berndtsson-Paun for direct image vector bundles
(applied the rank one case):

Lemma 3.2. Let X be a non-singular projective variety with a morphism π : X →
C which is smooth (i.e. a submersion) over C∗ and a Q−line bundle L → X
equipped with with a singular metric φ with positive curvature and such that the
restriction φτ to each fiber Xτ , for τ ∈ C∗, satisfies e−φτ ∈ L1

loc. If π∗(L+KX/C) →

C is defined as a Q−line bundle (i.e. if dimH0(L|Xτ
+KXτ ) = 1 for τ ∈ C∗) then

the corresponding L2/r−metric on the line bundle π∗(L+KX/C) → C has positive
curvature in the sense of currents (where r is a positive integer such that rL is a
line bundle).

Proof. The positivity over C∗ is a special case of the main results in [8, 11] (note
that by assumption the L2/r−metric is finite over C∗). The positivity over a neigh-
borhood of 0 also follows from the arguments in [11]. But as the latter positivity
was not stated explicitly in [11] we provide a detailed proof3. Fix a local trivializing
section of π∗(r(L + KX/C)) → C over a small neighborhood V of 0 ∈ C. It may
be identified with a global holomorphic section s of r(L +KX/C) → X|V with the
property that τ does not divide s. Fix a local coordinate τ on C and let

(3.6) v(τ) := −
1

r
log ‖s‖

2

L
2/r
φ

(= − log ‖s‖
2/r

L
2/r
φ

)

be the corresponding local weight of the L2/r−metric on the Q−line bundle 1
rπ∗(r(L+

KX/C)). By basic properties of subharmonic functions the positivity in question is
equivalent to an upper bound on v(τ) on V or equivalently a lower bound

(3.7) ‖s‖
2/r

L
2/r
φ

:=

ˆ

Xτ

|sτ |
2/re−φτ ≥ ǫ > 0, τ ∈ V

where we have identified |s|2/re−φ with a family of measures over X ∗ := π−1(C∗)
(as in Section 2.1.3). A subtle point is that the assumptions of the lemma do not
exclude that the holomorphic section s vanishes identically on the reduction of X0

(i.e. on the underlying variety); for example, this can happen if X0 has components
with different multiplicities. On the other hand it follows from a local application

3The positivity in question is also a special case of the very general positivity results in [58,
Theorem 1.1], which appeared during the revision of the present paper, whose proof uses among
other things, semi-stable reduction.
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of the generalized Ohsawa-Takegoshi extension theorem in [11, Lemma 1.1] that
there exists a uniform constant C (i.e. independent of τ) such that

ˆ

V

|s|2/re−φ ≤ C

ˆ

Xτ

|sτ |
2/re−φτ , τ ∈ V

But since s is non-vanishing over V − {0} this implies the desired lower bound
3.7. �

In particular, by the previous proposition the function vφ(τ) is subharmonic, i.e

vφ(e
−t/2) is convex, as long as φ is psh (as already observed in [3, 10] for X non-

singular and in [4] in general). Next, we will show that if the curvature of the line
bundle π∗(L + KX/C) vanishes identically, then - in the presence of a C∗−action
as in the definition of a test configuration - X has to be a product. This will be
crucial when considering the case DF (X ,L) = 0 in the proof of Theorem 1.1.

Proposition 3.3. Let X be a Fano variety with log terminal singularities and
(X ,L) a test configuration for (X,−KX) such that X is Q−Gorenstein and L =
−KX/C. Assume that L is equipped with an S1−invariant locally bounded metric φ
with positive curvature current such that the induced curvature current of the direct
image sheaf π∗(L+KX/C) vanishes identically on C (or more generally, over some
neighbourhood of 0 ∈ C). Then X is isomorphic to X × C.

Proof. First recall that it was shown in [10, Theorem 6.1] in the case of X smooth
and [4, Theorem 5.1] in the general case, that if vφ(τ) is harmonic, for τ ∈ ∆∗ (i.e.
vφ(e

−t) is affine in t), then there is a family of biholomorphic maps F t indexed by
t ∈ R such that

(3.8) (F t)∗ddcφt = ddcφ0,

where φt denotes the ray of metric on −KX corresponding to φ, i.e. φt = ρ(τ)∗φτ ,
for t = − log |τ |2 (compare Section 2.4). Moreover, as shown in [10, Section 4.1]
F t = exp (tReV )for a holomorphic (1, 0)−vector field V on X such that the flow
of its imaginary part ImV preserves ddcφ0. In fact, in the present setting we even
have

(3.9) (F t)∗φt = φ0,

where we have used the same notation F t for the canonical lift of F t to −KX . To
see this first note that the relation 3.8 implies that (F t)∗φt = φ0 + a(t) for some
function a(t) and since vφ(e

−t) = − log
´

X
e−φ0 + a(t) is assumed affine it follows

that a(t) is also affine, i.e. a(t) = at+ c for some real numbers a and c. But then it
follows that vφ(τ) = − log

´

X e
−φ0 +a log |τ |2+c and hence a is equal to the Lelong

number l0 of vφ(τ) at 0. Now, l0 coincides with the mass at 0 of the curvature
current on π∗(L+KX/C) (see formula 2.12) which is assumed to vanish and hence

a = 0 and since F 0 is the identity this means that c also vanishes, which proves
3.9. Next, we make the following

(3.10) Claim:V generates a C∗−action ρ(X,V )on X

(i.e. the flow of ImV has period 2π). This is obvious if X admits no non-trivial
holomorphic vector fields (since V = 0 then) and in the general case the claim
follows from Lemma 3.4 below, by observing that X0 is reduced. Indeed, as ob-
served above, the Lelong number l0 = 0 and hence it follows from Proposition 3.8
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below that X0 is indeed reduced.4 We will write Fτ := ρ(X,V )(τ) for the family of

biholomorphic maps on X, indexed by τ ∈ C∗, generated by V (so that Fτ = F t

for τ = e−t/2). Next, we set

Gτ := ρτ ◦ F
−1
τ ; X0 → Xτ

so that

(3.11) G∗
τφτ = φ1

Using an equivariant embedding into PN (see section 2.2) we can identify Gτ with
a family of holomorphic embeddings

Gτ : X → PN , Xτ := Gτ (X), G∗
τO(1) = −KX , τ ∈ C∗

Since φ is a locally bounded metric on L → X we have that |φ− p∗1φFS | ≤ C over
∆, where φFS denotes the Fubini-Study metric on O(1) → PN and p1 the natural
projection PN ×∆ → PN . Hence, 3.11 gives

(3.12) sup
X

|G∗
τφFS − φ1| ≤ C

for τ ∈ ∆∗. We claim that the corresponding holomorphic map G from X ×∆∗ to
PN×∆ extends to a holomorphic map X×∆ → PN×∆. To see this introduce local
coordinates on an open set U ⊂ X centered at a given point x0 in X and fix an
affine piece CN of PN such that G1(U) ⊂ CN . Then there exists a bounded subset
B of CN+1such that Gτ (U) ⊂ B for any τ ∈ C∗. Indeed, by the very definition of
the Fubini-Study metric φFS the bound 3.12 gives that there exists a constant C′

such that |Gτ (z)| ≤ C′ for any z ∈ U and τ ∈ C∗ and hence B can be taken as as
ball of radius C′. Hence, applying Harthog’s extension theorem (coordinatewise)
thus gives that G|U×∆∗ extends to a unique holomorphic map of U×∆ into CN×∆
and since the point x0 was arbitrary this proves the claim. Moreover, since X is
normal and in particular closed and irreducible, it follows that G maps X × ∆
surjectively onto X ⊂ PN × ∆. We claim that G is a finite map. Since G is, by
construction, injective on X × ∆∗ it will be enough to prove that the restriction
of G to X × {0}, that we denote by G0, defines a finite map from X to PN . To
this end we note that that G0 pulls back the cohomology class c1(O(1)) on PN to
c1(L)(= c1(−KX)). Indeed, by construction

(3.13) G∗
τ c1(O(1)) = c1(L)

for any τ ∈ C∗ and since Gτ → G0 as τ → 0 (in the sense established above) it
follows that 3.13 also holds for τ = 0 and hence G0 pulls back a Kähler class on
Pn to a Kähler class on X. But then G0 has to be finite, since otherwise G0 would
contract some p- dimensional subvariety Vp of X. This would mean that the p th
intersection number of c1(L) with Vp vanishes, contradicting the fact that c1(L) is
a Kähler class. All in all this means that G defines a finite birational morphism
from X×C to X and since X is assumed normal it then follows from Zariski’s Main
Theorem that G is a biholomorphism, as desired. The same argument also applies
if τ = 1 is replaced with any τ0 6= 0 such that vφ(τ) is harmonic for |τ | ≤ |τ0|. �

4In fact, one does not have to use the fact that X0 is reduced if one instead performs a
base change followed by a normalization to get a new normal test configuration X ′ with reduced
central fiber to which Lemma 3.4 can be applied; this corresponds to replacing V with mV for
some positive integer m.

21



The previous proposition can be seen as a partial generalization to singular
fibrations of a result in [9] (see Theorem 1.2 and the discussion in Section 4.1 in [9]
where the fibration is assumed to be a submersion, but without any assumptions
on C∗−equivariance). In the proof we used the following lemma of independent
interest:

Lemma 3.4. Assume given a non-trivial holomorphic vector field V on a normal
variety X of type (1, 0) with a fixed lift to L→ X and a metric φ0 ∈ Hb(L), which
is invariant under the flow ImV. Then V generates a C∗−action on X iff there
exists a (normal) test configuration (X ,L, π, ρ) with reduced central fiber X0 such

that (etReV )∗φ0 = ρ(τ)∗φτ , where φτ = φ|Xτ
for some φ ∈ Hb(π

−1(∆),L).

Proof. If V generates a C∗−action then the test configuration can be taken as a
product, as explained in Example 2.8. But in order to prove the converse, which is
what was used in the proof of Proposition 3.3, we will have to show that the total
space X of the given test configuration is necessarily a product. We will continue
with the notation from the Proposition 3.3. First observe that the map Gτ above
is well-defined for τ = e−t/2 ∈ [0, 1[ and set Gt := Ge−t . By the argument above
the map G0 := limtj→∞Gt still exists and defines a holomorphic map from X to

X ⊂ PN , if one uses “normal families” instead of Harthog’s extension theorem, for
some subsequence tj → ∞ (but we are not claiming that G0 is independent of the
subsequence at this point).

Step 1: X0 is reduced and irreducible, i.e. defined by a variety X0 and G0 is
finite and generically one-to-one, mapping X1 onto X0 and

(3.14) G∗
0φ0 = φ1

where φ1 is restricted metric on L|X0
.

To prove the first point we decompose the central fiber X0, viewed as a divisor
on the normal variety X , in its irreduicble components: X0 =

∑p
i=1miEi, where Ei

are distinct prime divisors on X (i.e. reduced and irreducible). Since X is assumed
irreducible it follows that G0 maps X1 onto one of the components of X0 that we
may take to be the one labeled by i = 1. By the definition of G0 we have the
following convergence in the sense of currents on PN

lim
tj

[Xtj ] = (G0)∗[X ] = d[E1],

where d is the degree of the surjective finite map G0 : X → E1. But the lhs above is
also equal to [X0] (by basic convergence properties of currents, or using the Chow
variety) and hence d[E1] =

∑p
i=1mi[Ei], which forces d = m1 and p = 1. Now, X0

was assumed reduced and hence d = m1 = 1, which implies (by basic properties of
the degree) that G0 is a finite generally one-to-one map fromX1 onto the irreducible
variety X0(= E1). Next, to prove 3.14 we fix a point x0 ∈ X0 ∩Xreg ∩ (X0)reg (i.e.
x0 ∈ X0 − Z where Z has codimension one in X0, since X is normal). Then there
exists a neighbourhood U of x0 in X with holomorphic coordinates centered at x0
of the form (z, τ). The relation 3.14 then follows from 3.11 and a simple continuity
argument at x0. This means that the two psh metrics G∗

0φ0 and φ1 on L → X
coincide on the Zariski open subset G−1

0 (X0 − Z) of X and hence everywhere, by
the local identity principle for psh functions.

Step 2: The “pull-back” ρ′ to X of the restricted action of ρ to X0 coincides with
the flow of V
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Denote by Y ν the normalization of an irreducible variety Y and by ν the nor-
malization map ν : Y ν → Y, which is a finite generically injective morphism. By
the universal property of the normalization G0 lifts to Xν

0 and hence the lifted map
Gν0 satisfies Gν∗0 ν∗φ0 = φ1. Moreover, since X is normal it follows from Zariski’s
main theorem that G0 is an isomorphism and hence X isomorphic to the normal-
ization of X0 and G0 may be identified with ν. Using the universal property of the
normalization again this means that the the pull-back G∗

0ρ which is a priori only
well-defined on a Zariski open subset of X where G0 is holomorphically invertible,
extends to give a well-defined holomorphic C∗−action ρ′ on X. To prove that ρ′ is
generated by V we will use a (singular) Hamiltonian formalism. To a given pair
(ψ,W ) consisting of a locally bounded psh metric ψ on a line bundle L → Y over
a complex variety Y and a holomorphic vector field W on Y with a fixed lift to L,
preserving ψ, we associate a function h(ψ,W ) on Y, that we will call the Hamiltonian:

h(ψ,W ) =
d

ds |s=0
(esW )∗ψ

in the sense of right derivatives (h(ψ,W ) exists and is finite since ψ is locally psh

and hence (esW )∗ψ is convex wrt s). In the particular case when W is the generator
of a C∗−action ρ we set h(ψ,ρ) := h(ψ,W ). We let h, h0 and h1 be the Hamiltonian
functions on X , X0 and X1 corresponding to (ρ, φ), (ρ|X0

, φ0) and (V, φ1), respec-
tively. Note that it follows directly from the definition that h|X0

= h0. Next we will
show that

(3.15) G∗
0h0 = h1

To this end first observe that

(3.16) h1(x) = h(Gt(x)).

Indeed, under the isomorphism X1 × C∗ → X ∗, (x, τ) 7→ xτ := ρ(τ)x determined
by ρ the action ρ on X ∗ may be identified with the “trivial” action on X1 × C∗

generated by the vector field τ ∂
∂τ and the metric φ on L may be identified with

the metric on p∗1L suggestively written as φ(x, τ) := φt(x), where t = − log |τ |2. In
the present setting we have, by assumption, that φt = exp(tV )∗φ1 where V also
determines the map Gt from X1 to Xe−t/2 defined above, which may be identified
with the map (x, 1) 7→ (exp(−tV )x, e−t/2) ∈ X1 × C∗. Using these identifications
we may write

h(Gt(x)) =
d

ds |s=0
φ(exp(−tV )x, e−(t+s)/2) =

d

ds |s=0
φt+s(exp(−tV )x) =

=
d

ds
φ1(exp(t+ sV ) exp(−tV )x) =

d

ds |s=0
φ1(exp(sV )x) =: h1(x),

which proves 3.16. Finally, setting t = ti and letting tt → ∞ gives, since G0(x) :=
limtj→∞Gtj (x) that h1(x) = h(G0(x)) and hence h1(x) = h0(G0(x)), proving 3.15.
All in all, combining the pull-back relations 3.14 and 3.15 reveals that h(φ,V ) =
h(φ,G∗

0ρ
). But for a fixed metric φ ∈ Hb(X) we have that W 7→ h(φ,W ) is injective

and hence V is the generator of the C∗−action G∗
0ρ which proves the claim 3.10.

The injectivity used above is standard under the regularity assumption that there
exists a point x ∈ X such that ddcφ is smooth and strictly positive close to x, since
ddcφ(ImV, ·) = dh(φ,V ), which may be inverted to determine Im V and hence V. In
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the general case, the injectivity follows from the general formalism in [7] (or from
Proposition 8.2 in [10]). Anyway, in the application to the proof of Theorem 1.1 φ1
will be a Kähler-Einstien metric and in particular the regularity assumption above
holds. �

Proposition 3.5. Let (X ,L) be a test configuration for a Fano variety (X,−KX)
with log terminal singularities. Then the Ding metric associated to a weak geodesic
ray φt as above has the following positivity properties:

• Its curvature defines a positive current on ∆ (and in particular the function
D(φt) is convex in t)

• If X is Q−Gorenstein, L = −KX/C and the curvature current of the Ding

metric vanishes on some disc centered at 0 (i.e. D(φt) is affine on ]T,∞[
and the Lelong number l0 of the Ding metric vanishes) then X is a product
test configuration.

Proof. First we note that the curvature of the Deligne metric 〈φ〉 on 〈L, ...,L〉
is non-negative if φ is psh and vanishes if the corresponding ray φt is a weak
geodesic, as follows from the push-forward formula 2.4 Alternatively, since 〈φ〉 is
locally bounded from above (by the continuity result in Prop 3.6) it is enough to
consider the holomorphically trivial case over ∆∗ where the result amounts to a
well-known property of the functional E (see [4]). Combined with the positivity in
the previous lemma this shows that the Ding metric has positive curvature current.
More precisely, in the case when X is singular we apply the previous lemma to
the line bundle p∗L + D′ → X equipped with the metric p∗φ + φD′ , where φD′

is the singular psh metric on the line bundle O(D′) induced by D′ which satisfies
e−φD′ ∈ L1

loc, since D′ is klt. The last point follows immediately from the previous
proposition. �

Proposition 3.6. The Ding metric associated to a weak geodesic ray is continuous
on ∆∗ up to the boundary circle.

Proof. Let us first verify that if φ is a locally bounded positively curved metric on
L → X then the Deligne metric 〈φ〉 on 〈L, ...,L〉 → C is locally bounded on ∆ and
continuous at the boundary of ∆. To this end we first recall that if ψ is a smooth
metric on L(i.e. the restriction to X of a smooth metric) then it was shown by
Moriwaki [46, Theorem A] that the corresponding Deligne metric 〈ψ〉 on the top
Deligne product on 〈L, ...,L〉 → C is continuous. But since φ is a locally bounded
metric on L we have that u := φ − ψ is a bounded function on X and hence it
follows from the change of metric formula 2.7 that

|〈φ〉 − 〈ψ〉| ≤ c1(L)n sup
X

|u|

is bounded (where L denotes the restriction of L to a generic fiber). Hence 〈φ〉
is locally bounded, as desired. Alternatively, the local boundedness of 〈φ〉 can
be verified directly by induction over the relative dimension, using the recursive
definition of 〈φ〉 [75]. Similarly, the continuity at τ = 1 follows from continuity
properties at τ = 1 of φτ . Indeed, by Prop 2.7 we have that φτ → φ1 uniformly as
τ → 1, i.e. φt → φ0 and hence it follows from the change of metrics formula that,
in a fixed local trivialization close to τ = 1, we have

|〈ρ(τ)φτ 〉 − 〈φ1〉| ≤ c(L)n sup
X

|(ρ(τ)∗φτ )− φ1| → 0,
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as τ → 1 and moreover vφ(τ) → vφ(1). This shows in particular that, over ∆∗, the
Ding metric Φ(= 〈φ〉+ vφ) may be identified with a locally bounded S1−invariant
convex function (by the previous proposition) which is continuous up to ∂∆. �

3.3. Singularity structure of the Ding metric. We continue with the setup
and notation in the previous section. We will give a detailed description of the
singularity of the Ding metric at τ = 0 (which however is not used in the proof of
Theorem 1.1). The key point is the observation that the Lelong number l0 at 0 of
L2/r- metrics as above can be expressed in terms the log canonical thresholds of
the corresponding central fiber. First recall that the complex singularity exponent
cx(v) at a point x in a complex manifold X of a local psh function v (i.e. defined
on some neighborhood Ux of x) is defined by

cx(v) := sup
c∈R

{

c : ∃Ux e
−cv ∈ L1(Ux, dV )

}

,

where dV is a local volume form. When

(3.17) v = vD :=
∑

i

ai log |fi|
2 D :=

∑

i

aiDi

where fi is a local holomorphic function determining a zero prime divisor Di the
number cx(v) coincides with the log canonical threshold at x, denoted bycx(D), of
the Q−divisor D :

(3.18) cx(v) = cx(D)

(see [39, Proposition 8.2]). The latter number admits a purely algebraic definition
valid for any log pair (X,D), i.e. without assuming X non-singular:

cx(D) := sup
c∈R

{c : cD is log canonical close to x} ,

(compare Section 2.1.1). More generally, given a log pair (X,∆) and an effective
Q−Cartier divisor D on X the log canonical threshold of (X,∆, D), along Z, may
be defined by

cZ(X,∆, D) := sup
c∈R

{c : ∆ + cD is lc close toZ}

[39, Definition 8.1]. In particular, by definition, (X,D) is lc iff cX(X, 0, D) ≥ 1. It
will be convenient to introduce the following analytic counterpart of cZ(X,∆, D)
obtained by replacing D with a psh function v defined in a neighborhood of Z :

cZ(X,∆, v) := sup
c∈R

{

c : ∃UZ e−cv ∈ L1
loc(UZ , µ(X,∆;φ0))

}

,

where φ0 is a fixed locally bounded metric on −(KX+∆) and µ(X,∆;φ0) denotes the
corresponding measure on X (see Section 2.1.3). By the boundedness assumption
on φ0 the definition above is independent of the choice of φ0. More generally, v can
be taken as a metric on a Q−line bundle L → X. The following generalization of
the identity 3.18 holds:

Lemma 3.7. Let (X,∆) be a log pair. For v = vD as in formula 3.17 we have that

cZ(X,∆, v) = cZ(X,∆, D)

In particular, (X,∆) has log terminal singularities iff µ(X,∆;φ0) gives finite volume
to X.
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Proof. This is essentially well-known, but for completeness we provide a proof
(see [19, 39] for the standard case when X is smooth and ∆ is trivial and [28,
Lemma 6.8][4, Lemma 3.2] for the last statement of the lemma). First note that
it follows directly from the definitions that it will be enough to show that e−v ∈
L1
loc(UZ , µ(X,∆;φ0)) iff (X,∆ + D) is klt (since we may then replace v by cv and

D by cD and take the sup with respect to c). To this end take a log resolution
of (X,∆ + D) and denote by π the corresponding morphism from X ′ to X. De-
note by ∆′ the divisor on X ′ such that (X ′,∆′) corresponds to (X,∆) as in for-
mula 2.1. Since D is Q−Cartier this means that (X ′,∆′ + π∗(D)) corresponds to
(X,∆+D). Next, using µ(X,∆;φ0) = µ(X′,∆′;π∗φ0) gives that v ∈ L1

loc(UZ , µ(X,∆;φ0)

iff I :=
´

π−1(UZ )
e−((v∆′+π∗(D))−v0)dV < ∞ (after perhaps shrinking UZ) for some

volume form dV on X, where v0 is a fixed locally bounded metric on the Q−line
bundle O(∆′ +π∗(D)). But X ′ is smooth and ∆′ +π∗(D) has simple normal cross-
ings and hence it follows from the basic fact that c0(log |z|

2) = 1 in C and Fubini’s
theorem that the the integral I is finite iff the coefficients of ∆′+π∗(D) are < 1 (just
as in [28, Lemma 6.8][4, Lemma 3.2]) which equivalently means that (X,∆+D) is
klt, as desired. �

Proposition 3.8. Assume that X is a normal Q−Gorenstein variety and π : X →
C a projective morphism over C which is smooth (i.e. a submersion) over C∗. Let
L → X be a semi-positive Q−line coinciding with −KX/C over C∗ and φ a locally
bounded metric on L with positive curvature current. Denote by l0 the Lelong
number l0 at τ = 0 of the induced L2/r−metric on the line bundle π∗(L+KX/C) →
C. Then

(3.19) l0 = 1− cX0(X ,−∆,X0)

where ∆ is the zero-divisor in X of any local trivialization section of π∗(L +
KX/C) → C, identified with an element of H0(U,L + KX/C). Moreover, denoting
by Ei the reduced components of X0 we define the numbers mi and ci by

X 0 =
∑

i

miEi, ∆′ =
∑

i

ciEi,

the following holds:

• If X is smooth and the central fiber X0 has simple normal crossings, then

(3.20) l0 = max
i

mi − 1− ci
mi

• If L = −KX/C, then l0 = 0 iff (X ,X0) is log canonical near X0 iff X0 is
reduced and the normalization of X0 has log canonical singularities.

Proof. Fix a local trivializing section of π∗(r(L+KX/C)) → C over a neighborhood
V of 0 ∈ C identified with a global holomorphic section s of r(L+KX/C) → X|V as
in the proof of Lemma and denote by v(τ) the corresponding weight on V (formula
3.6). By Lemma 3.2 v(τ) is subharmonic and we denote by l0 the Lelong number
of v at τ = 0 (as in Lemma 2.6). It will be very useful to represent the Lelong
number l0 as follows

(3.21) l0 = inf

{

l :

ˆ

V

e−(v(τ)+(1−l) log |τ |2)idτ ∧ dτ̄ <∞

}

(the equivalence with the ordinary definition follows immediately from c0(log |τ |
2) =

1). Next recall that νφ := |s|2/re−φ defines a measure on X|V , naturally attached
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to φ (see Section 2.1.3). The measure νφ has the property that for, any continuous
function g on C,

(3.22)

ˆ

X|V

νφπ
∗g =

ˆ

V

e−v(τ)g(τ)idτ ∧ dτ̄

The proof of formula 3.19 is simply a matter of unraveling definitions. First assume,
to fix ideas, that X is smooth. Then there exists a locally bounded metric ψ on
−KX and ‖·‖ on L such that

(3.23) νφ = ‖s‖
2
µψ

where µψ is the measure on X corresponding to ψ (see Section 2.1.3). Indeed,
fixing holomorphic coordinates w = (w0, ..., wn) on U ⊂ X and a trivialization
sL of L → U the section s of r(L + KX/C), restricted to U, may be written as

s = fUsL ⊗ dw ⊗ π∗ ∂
∂τ , for a holomorphic function fU on U and thus on U

νφU = |fU (w)|
2/re−φU (w)in

2

dw ∧ dw̄,

where, by assumption, φ is bounded on U. This proves formula 3.23 in case X is
smooth. More generally, if X is Q−Gorenstein, then νφ and µψ are still well-defined
and by the argument above above the relation 3.23 holds on the regular locus of of
X and thus everywhere since the two measures do not charge the singular locus of

X . In particular, combining formula 3.22 (for g(τ) = e−(1−l) log |τ |2)) and formula
3.23 gives

(3.24) l0 = inf

{

l :

ˆ

X|V

e−(1−l) log |τ |2) ‖s‖
2
µψ <∞

}

= 1− cX0(X ,−∆,X0)

using in the last equality Lemma 3.7 (applied to the log pair (X ,−∆) where ∆
is the zero-divisor of s and with v = log |τ |2 and D = X0) which concludes the
proof of formula 3.19. Formula 3.20 then follows immediately from basic formula
for log canonical thresholds of simple normal crossing divisors. For completeness
we provide a proof: by assumption ∆+ cX0 has simple normal crossings and

−∆+ cX0 =
∑

i

(−ci + cmi)Ei

and since cX0(X ,∆,X0) is the sup over all c such that the coefficients above are ≤ 1
we get cX0(X ,∆,X0) = mini

1+ci
mi

which, by formula 3.19, proves the formula in
the first point. To prove the second point we apply formula 3.24 to the case where
∆ = 0 and thus l0 = 0 iff 1−cX0(X ,X0) = 0, i.e. iff (X ,X0) if log canonical. Now, if
(X ,X0) is log canonical then it follows that X0 is reduced and, by adjunction, that
its normalization has log canonical singularities (see [?, 2.7]). Finally, the converse
follows from “inversion of adjunction”, i.e. from the main result of [38], previously
conjectured by Shokurov (the special case when X0 has log terminal singularities
follows from a previous result of Kollar et al [39, Theorem 7.5]). �

Combining the last point in the previous proposition with Lemma 2.2 gives the
following

Corollary 3.9. Let (X ,L) be a test configuration (with a priori non-normal total
space X ) for a smooth Fano manifold (X,−KX) such that the central fiber X0 is
normal. Then X is Q−Gorenstein with L = −KX/C and l0 = 0 iff the variety X0
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has log canonical singularities. In particular, if X is a special test configuration
then l0 = 0.

3.3.1. Interlude on Calabi-Yau degenerations. Before continuing we make a brief
detour to point out that Proposition 3.8 also has some applicatiotions to the non-
Fano case when X is Gorenstein and KX is a trivial line bundle and hence the
generic fiber Xτ is a Calabi-Yau manifold. Then F := π∗(KX/C) → C is the Hodge
line bundle and its curvature ddcv(τ) (wher v(τ) is given by formula 3.6) coincides
with the Weil-Peterson metric ωWP on the punctured base C∗ i.e. the pull-back
of the Weil-Peterson metric on the moduli space of Calabai-Yau manifolds (see
[76] and references therein). In this case v(τ) admits an expansion of the form

v(τ) = l0 log |τ |
2 + β log(

∣

∣log |τ |2
∣

∣

−1
) + O(1) as τ → 0, for some integer β ∈ [0, n],

where O(1) denotes a term which is bounded in C2
loc [76, Theorem 4.1]. Accordingly,

Proposition 3.8 applied to this case says that l0 = c(X ,X0) and l0 = 0 iff v(τ) has
at worst log log singularities, i.e.

(3.25) v(τ) = β log(
∣

∣log |τ |2
∣

∣

−1
) +O(1)

iff X0 is reduced and its normalization has log canonical singularities. This observa-
tion can be used to simplify the proof of Theorem 1.2 in [74] (which answers in the
affirmative a question of Wang) saying that if the Weil-Peterson metric ωWP on the
base of the Calabi-Yau fibration π : X ∗ → C∗ as above is not complete as τ → 0,
then, after a base change, the central fiber X0 may be modified so that X0 is reduced
and has canonical singularities. The starting point is, following [74], the recent
advances in the MMP which give that, after a base change, one can assume that
(X ,X0) is relatively minimal (i.e. divisorially log terminal, dlt) and in particular
log canonical. Hence, by Prop 3.8 l0 = 0 i.e. v(τ) has at worst a log log singularity
as in formula 3.25. The incompleteness assumption on ωWP = ddcv = βωP +O(1),
where ωP is the Poincaré form on C∗ thus forces β = 0 and hence v(τ) is bounded
as τ → 0. But then one concludes that X0 is irreducible with log terminal singu-
larities (and hence canonical singularities since KX is assumed Cartier), as desired
(the last claim is the content of the implication (c) =⇒ (a) in Theorem 1.1 in [74],

whose proof is due to Sebastien Boucksom: by Fatou’s lemma in
2 ´

X0
Ω ∧ Ω < ∞

for a non-trivial Ω ∈ H0(X0,KX0) and adjunction, using the dlt assumption, then
implies that X0 is irreducible and normal and thus log terminal by Lemma 3.7).

3.4. Expressing the Donaldson-Futaki invariant in terms of the Ding func-
tional. Consider the following Q−line bundle over C defined in terms of the fixed
log resolution:

η′ := −
1

(n+ 1)Ln
〈L′, ...,L′〉+

1

Ln
〈

L′ +KX ′/C +D′,L′...,L′
〉

,

(recall that L = −KX here so that µ = n in formula 2.9). Then

(3.26) DF (X ,L) = w0(η
′)

Indeed, combining Prop 2.4 with the push-forward formula for intersection numbers
gives

(n+1)Ln(DF (X ,L)) = np∗(L̄) · p∗(L̄) · · · p∗(L̄) + (n+1)p∗KX/P1 · p
∗(L̄) · · · p∗(L̄),
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Now, p∗KX/P1 is equal to KX ′/P1 +D′ modulo the p−exceptional divisor E′, which

give no contribution to the intersection number above, since p∗L is trivial on E′.
Formula 3.26 then follows precisely as in the proof of Prop 2.5.

Lemma 3.10. We have that DF (X ,L) = w0(η
′) ≥ w0(δ

′)

Proof. Using DF (X ,L) = w0(η
′) and decomposing

(3.27) η′ = δ′ +

(

1

Ln
〈

KX ′/C +D′ + L′,L′, ...,L′
〉

− π′
∗(L

′ +KX ′/C +D′)

)

reveals that it is enough to show that w0

(

1
Ln

〈

KX ′/C +D′+L′,L′, ...,L′
〉

− π′
∗(L

′ +KX ′/C) +D′
)

=

=
1

Ln
(KX̄ ′/P1 +D′ + L̄′) · L̄′ · · · L̄′ − deg π′

∗(L̄
′ +KX̄ ′/P1 +D′) ≥ 0,

where we have used the the compactification X̄ ′ of the resolution X ′ and the cor-
responding extension L̄′ of L′ in the first equality (together with formula 2.11). To
simplify the notation we consider the case when X is smooth so that D′ = 0, but
the general case is essentially the same. Note that the formula above involving the
degrees is invariant under L′ → L′ ⊗ π′∗OP1(m) and hence we may as well assume
that deg π′

∗(L̄
′ +KX̄ ′/P1) = 0 (this corresponds to a performing an overall twisting

of the original action ρ on L). But the latter vanishing means that the line bundle
π′
∗(L̄

′ + KX̄ ′/P1) → P1 admits a global trivializing holomorphic section s, unique
up to scaling by a non-zero complex constant. In particular, s induces a global
holomorphic section L̄′ + KX̄ ′/P1 → X̄ ′. This means that L̄′ + KX̄ ′/P1 is linearly

equivalent to an effective divisor E (whose support is contained in the central fiber).
But then it follows, since L̄′ is relatively semi-ample, that

(3.28) (KX̄ ′/P1 + L̄′) · L̄′ · · · L̄′ = E · L̄′ · · · L̄′ ≥ 0

which thus concludes the proof. �

Now we are ready to prove the following more precise version of Theorem 1.3,
stated in the introduction:

Theorem 3.11. Let X be a Fano variety with log terminal singularities and (X ,L)
a test configuration (with normal total space) for (X,−KX) with φ denoting a
locally bounded metric on L → X → ∆ with positive curvature current. Then,
setting φt := ρ(τ)∗φτ , identified with a ray of metrics on −KX we have

(3.29) DF (X ,L) = lim
t→∞

d

dt
D(φt) + q,

where q is a non-negative rational number determined by the polarized central fiber
(X0,L|X0

) with the following properties, in the case that X is smooth:

• If (X ′,X ′
0) is a given log resolution of (X ,X 0) with Ei denoting the reduced

components of X ′
0, then the following formula holds

(3.30) q = max
i

mi − 1− ci
mi

+
1

Ln

∑

i

ciL
′n · Ei,

where mi and ci are the order of vanishing along Ei of X ′
0 of π′∗τ and

any given non-trivial meromorphic (multi-)section s′ of L′ + KX ′/C → X ′,
respectively, i.e. if ∆′ denotes the zero-divisor of s′, then

X ′
0 =

∑

i

miEi, ∆′ =
∑

i

ciEi
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• q = 0 iff X is Q−Gorenstein with L isomorphic to −KX/C and X0 is reduced
and its normalization has log canonical singularities.

Proof. First observe that we may as well assume that φt is a weak geodesic ray.
Indeed, if ψt is the ray corresponding to a locally bounded metric ψ on L then
φ−ψ is uniformly bounded and hence f(t) := f1(t)−f2(t) := vφ(e

−t/2)−vψ(e
−t/2)

(compare formula 3.3) is bounded as t → ∞. But since fi(t) is convex (by Lemma
3.2) the limit of dfi(t)/dt as t → ∞ exists (a priori in ]0,∞]) and since f(t) is
bounded it follows that the limits of dfi(t)/dt coincide. Similarly, g(t) := E(φt) −
E(ψt) is a difference of convex functions (compare the proof of Prop 3.6) and hence
the limits of dE(φt)/dt and dE(ψt)/dt coincide and thus so do the limits of dD(φt)/dt
and dD(ψt)/dt.

To simplify the notation we will in the rest of the proof assume that X is smooth
so that D′ = 0, but the proof in the general case is essentially the same. Fix a
trivializing section s of π′

∗(L
′ + KX ′/C) → C. The section s induces an isomor-

phism between L and −KX ∗/C∗ over X ∗. In fact, since the formula for DF (X ,L)
is invariant under an overall twist of the action ρ on L we may as well assume
that s is an invariant section and hence, using the notation in the previous lemma
deg π′

∗(L̄
′ +KX̄ ′/P1) = 0. We also fix a trivializing (mulit-)section σ1 of the Q−line

− 1
Ln(n+1) 〈L

′, ...,L′〉|τ=1 . By Lemma 2.6

w(δ′) = − lim
t→∞

d

dt
log ‖ρ(τ)S1‖

2
Φ′ + l0,

where S1 = σ1⊗s1 ∈ δ′|τ=1 and l0 is the Lelong number of the metric Φ′ on δ′. Now,

‖ρ(τ)S1‖
2
Φ′ = ‖S1‖

2
ρ(τ)∗Φ′

|Xτ

and hence setting φt = ρ(τ)∗φτ and fixing a metric ψ

on −KX we can write

− log ‖ρ(τ)S1‖
2
Φ′ + log ‖σ1‖

2
ψD

= −
1

Ln
E(φt, ψ)− log

ˆ

X

e−φt := D(φt)

using the previous identifications and the change of metrics formula for the Deligne
pairing 2.7. Now, using DF (X ,L) = w0(η

′) and the decomposition formula in
Lemma 3.27 together with formula 3.28 and Lemma 2.6 gives

(3.31) DF (X ,L) = lim
t→∞

d

dt
D(φt) + q, q := l0 +

1

Ln

∑

i

ciL
′n ·Ei,

where ci is the order of vanishing of s along Ei, when s is viewed as a global
holomorpic section of L′ +KX ′/C → X ′. Moreover, by the trivializing assumption
on s the numbers ci above coincide with thouse appearing in the formula for l0 in
Prop 3.8 and hence formula 3.30 follows. Note that both terms appearing in the
definition of q above are non-negative and hence q ≥ 0. Indeed, by Prop 3.5 l0 ≥ 0
and the non-negativity of the second terms follows directly from the definitions
giving that ci ≥ 0 and L′ is semi-ample. Next note that a general meromorphic
section of L′ + KX ′/C → X ′ may be written as f(τ)s′ for f(τ) a meromorphic
function, whose vanishing (or pole) order at τ = 0 we denote by m. Since the
formula for q is invariant under ci → ci + m the case of a general section thus
follows. Accordingly, in the rest of the proof we will take ci to be the non-negative
numbers determined by the globally trivializing section s′.

Now, by formula 3.31 q = 0 iff the follows condition holds: l0 = 0 and ci = 0 for
all index i in the set I defined by the condition L′n · Ei > 0. But by formula 3.30
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the latter condition holds iff mi = 1 and ci = 0 for any i ∈ I, i.e. any i such that
Ei is not p−exceptional for the log resolution p (since L is assumed relative ample).
Since X is normal we may, by Hironaka’s theorem, take p to be an isomorphism on
p−1(X − Z), where Z is a subvariety of codimension at least two (containing the
singular locus of X ). Hence, if q = 0 then X0 is reduced at any point in X −Z (using
that, by the previous argument, mi = 1 for any non p−exceptional Ei). In other
words, q = 0 implies that the central fiber X0, viewed as a divisor on the normal
variety X , is reduced. But then, since q = 0 also implies that ci = 0 for any i ∈ I
it also follows that L is isomorphic to −KX/C on X −Z and since the codimension
of X −Z is at least two L is thus the unique extension of −KX/C from the regular
locus of X , which, by definition, means that X is Q−Gorenstein. Conversely, if X0

is reduced and X is Q−Gorenstein, it follows from Prop 3.8 that l0 = 0 and hence
q = 0. �

3.5. Conclusion of the proof of Theorem 1.1. Given a test configuration
(X ,L) for (X,−KX) Theorem 3.11 gives that for any weak geodesic φt ray em-
anating from any given metric on L which is associated to (X ,L) we have

DF (X ,L) = lim
t→∞

d

dt
D(φt) + q, q ≥ 0

Next, by the convexity of D(φt) the limit in the right hand side above is bounded
from below by the right derivative d

dtD(φt)|t=0+ which, by formula 3.2, is non-

negative if φ0 is taken as a Kähler-Einstein metric. Thus DF (X ,L) ≥ 0 and if
DF (X ,L) = 0 then it must, since q ≥ 0, be that limt→∞

d
dtD(φt) = 0 and hence

D(φt) is affine so that the second point in Prop 3.5 implies that X is isomorphic to
a product test configuration.

4. Ramifications and applications

4.1. An analog of Donaldson’s conjecture about geodesic stability. Com-
bining the results above with the very recent existence result in [16] one arrives at
the following analog of a conjecture of Donaldson [22] (see [14] for partial results
about Donaldson’s original conjecture):

Theorem 4.1. Let X be a Fano manifold. Then precisely one of the following two
alternatives holds:

(1) X admits a Kähler-Einstein metric
(2) For any given φ0 ∈ Hb(−KX) there exists a weak geodesic ray φt in Hb(−KX)

emenating from φ0 such that the Ding functional D(φt) is strictly descreas-
ing for sufficently large times.

Proof. If the first alternative holds, then it follows immediately, by the convexity of
D(φt) (just as in the proof of Theorem 1.1) that the second alternative cannot hold.
Now assume that the first alternative does not hold. Then, by the results in [16] X
is not K-polystable along special test configurations, i.e. there exists a special test
configuration X such that one of the following alternatives hold (a) DF (X ) < 0 or
(b) DF (X ) = 0, but X is a not a product test configuration. Now, by Theorem
3.11 DF (X ) is the large time limit of dD(φt)/dt where φt is any weak geodesic ray
attached to X . Assuming, to get a contradiction, that alternative above 2 does not
hold, there exists a sequence of ti → ∞ such that dD(φt)/dt ≥ 0. By the convexity
of D(φt) this means that there exists a T > 0 such that dD(φt)/dt ≥ 0 on [T,∞[.
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In particular, DF (X ) ≥ 0 and hence it must be that alternative (b) holds, i.e.
DF (X ) = 0 and thus by, convexity, D(φt) is affine on [T,∞[. But then it follows
from Prop 3.5 that X is a product test configuration, which contradicts (b). �

In the original conjecture of Donaldson (X,−KX) is replaced by a general po-
larized manifold (X,L) and the Ding functional with the Mabuchi functional.
Moreover, originally Donaldson’s conjecture asked for bona fide geodesic rays φt

of smooth and stricly positively curved metrics, but in view of the recent theory
about geodesics one would expect that the best regularity that one can hope for
is that ωt := ddcφt be locally bounded, if ω0 is a Kähler form. By the regularity
results in [62], this is indeed the case in Theorem 4.1 above. Finally it should be
pointed out that a weaker version of Theorem 4.1 has independently been obtained
in [18], where it is assumed that X admits no holomorphic vector fields and where
the “destabilizing” weak geodesic ray φt appearing in item 2 is merely in a finite
energy class. On the other hand the proof in [18] dos not rely on the results in [16]
(but rather estimates along the Kähler-Ricci flow).

4.2. Bounds on the Ricci potential and Perelman’s λ−entropy functional.
Let now X be a Fano manifold and denote by K(X) the space of all Kähler metrics
ω in c1(X) (equivalently, ω = ddcφ for some strictly positively curved metric φ on
−KX). In this section we will use the normalization V := c1(X)n :=

´

X ω
n. Recall

that the Ricci potential hω is the function on X defined by ddchω = Ric ω − ω
together with the normalization condition

´

ehωωn/V = 1, which in terms of the

previous notation means that hddcφ := hφ := − log( (dd
cφ)n/V

e−φ/
´

e−φ ). Note in particular

that
∥

∥1− ehω
∥

∥

L1(X,ω)
=

∥

∥

∥

∥

1

V
(ddcφ)n −

e−φ
´

e−φ

∥

∥

∥

∥

,

where the norm in the right hand side is the total variation norm on the space of
absolutely continuous probability measures on X.

Next, let (X ,L) be a test configuration of a polarized manifold (X,L) and define
its “L∞−norm” by

(4.1) ‖(X ,L)‖∞ :=

∥

∥

∥

∥

dφt

dt |t=0

∥

∥

∥

∥

L∞(X)

,

where φt is the (weak) geodesic determined by X , emanating from any fixed refer-
ence metric φ0 ∈ H(X,L). The point is that if ‖(X ,L)‖∞ 6= 0 then the normalized
Donaldson-Futaki invariant DF (X ,L)/ ‖(X ,L)‖∞ is independent of base changes
of (X ,L), induced by τ → τm (which correspond to reparametrizations of φt, in-
duced by t 7→ mt). We will be relying on the following lemma which is a special
case of a very recent result of Hisamoto [36, Theorem 1.1]:

Lemma 4.2. The number ‖(X ,L)‖∞ is well-defined, i.e. it is independent of φ0.

Now we can prove the following theorem using a slight variant of the proof of
Theorem 1.3; the result can be seen as an analog of Donaldson’s lower bound on
the Calabi functional [24],

Theorem 4.3. Let X be a Fano manifold. Then

inf
ω∈K(X)

∥

∥1− ehω
∥

∥

L1(X,ω)
≥ sup

(X ,L)

−DF (X ,L)

‖(X ,L)‖∞
,
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where (X ,L) ranges over all test configurations (X ,L) such that ‖(X ,L)‖∞ 6= 0.
Moreover, if equality holds and the infimum is attained at some ω and the supremum
is attained at (X ,L) (with X normal), then (X ,L) is isomorphic to a product test
configuration. In particular,

inf
ω∈K(X)

ˆ

hωe
hω
ωn

V
≥

1

2
sup
(X ,L)

(

DF (X ,L)

‖(X ,L)‖∞

)2

where the sup ranges over all destabilizing (X ,L) (i.e. DF (X ,L) > 0) with the
same same necessary conditions for equality as before. In particular, if X is K-
unstable then both infimums above are strictly positive.

Proof. Fix (X ,L) and φ0 ∈ H(X,−KX) and denote by φt the corresponding (weak)
geodesic. By convexity of the Ding functional, combined with Theorem 1.3 (using
that q ≥ 0), we have
(4.2)
ˆ

X

(

1

V
(ddcφ0)

n −
e−φ0

´

e−φ0

)

dφt

dt
≥ −

d

dt
D(φt)t=0 ≥ − lim

t→∞

d

dt
D(φt) ≥ −DF (X ,L).

Applying Hölder’s inequality with exponents (q, p) = (1,∞) thus gives

(4.3)
∥

∥1− ehω
∥

∥

L1(X,ω)

∥

∥

∥

∥

dφt

dt |t=0

∥

∥

∥

∥

L∞(X)

≥ −DF (X ,L)

and using the independence in the previous lemma then concludes the proof of
the first inequality of the Theorem. The second inequality then follows immedi-
ately from the classical Csiszar-Kullback-Pinsker inequality between the relative
entropy and the total variation norm [17]. As for the equality case it follows,
just as in the second proof of Theorem 1.1, from the equality cases in 4.2. Fi-
nally, if X is K−unstable then there exists, by definition, a test configuration such
that DF (X ,L) > 0 and for any such test configuration the inequality 4.3 forces
‖(X ,L)‖∞ > 0, which concludes the proof. �

Recall that in the definition of a test configuration (X ,L) we have fixed an action
ρ on L and thus the norm ‖(X ,L)‖∞ certainly depends on ρ. Indeed, twisting ρ
with a character of C∗ shifts the tangent of φt with a constant. On the other hand,
DF (X ,L) is independent of such a twist and hence the previous theorem still holds
if we replace ‖(X ,L)‖∞ with its (smaller) normalized version obtained by replacing
the L∞(X)−norm in the definition 4.1 with the quotient norm on the quotient
space L∞(X)/R.

Remark 4.4. As pointed out above Lemma 4.2 is a special case of a general result

of Hisamoto [36], saying that the measure (dφ
t

dt )∗MA(φt) on R only depends on the
test configuration (X ,L) and moreover is equal to the limiting normalized weight
measures for the C∗−action, as conjectured by Witt-Nyström [50], who settled
the case of product test configurations. In particular, by [36] all the Lp−norms

‖(X ,L)‖p of dφ
t

dt (integrating against MA(φt)) only depend on (X ,L) and coincide

with the limits of the corresponding lp−norms of the weights {λ
(k)
i }. In particular,

letting p→ ∞ gives Lemma 4.2. Using this the proof of the previous theorem shows
that the theorem holds, more generally, when ‖(X ,L)‖∞ is replaced by ‖(X ,L)‖p
for p ∈ [1,∞] and the L1−norm with the corresponding Lq−norm, where q is the
Young (Hölder) dual of p. In fact, as shown in [5] a similar argument can be used
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to give a new proof and extend to general Lp−norms Donaldson’s lower bound on
the Calabi functional [24].

Next, we recall that Perelman’s W-functional [55], when restricted to the space
all pairs (ω, f) such that ω as in the space K(X) of all Kähler metrics ω in c1(X)
and f is a smooth function such that e−fωn has unit mass, is given by

W (ω, f) :=

ˆ

X

(Rω + |∇f |2 + f)e−fωn,

where Rω is the scalar curvature of ω normalized so that
´

Rωω = n for any
ω ∈ c1(X) (as usual in the Kähler setting where the volume of the metrics is fixed
we have set Perelman’s parameter τ to be equal to 1/2 and as in [55, 72, 73, 33]
we have subtraced the universal constant 2n from Perelman’s original definition).
Then Perelman’s λ−entropy functional on K(X) is defined as

λ(ω) = inf
f∈C∞(X):

´

e−fωn=1
W (ω, f)

[55, 72, 73, 33] and in particular λ(ω) ≤W (ω, 0) = nV.

Corollary 4.5. Let X be an n−dimension Fano manifold. Then

sup
ω∈K(X)

λ(ω) ≤ nV −
1

2
sup
(X ,L)

(

DF (X ,L)

‖(X ,L)‖∞

)2

where V = c1(X)n and (X ,L) ranges of all destabilizing test configurations for
(X,−KX). In particular, if X is K-unstable then λ ≤ nV − ǫ for some positive
number ǫ.

Proof. As explained in [33] λ(ω) +
´

hωe
hωωn ≤ nV (using W (ω, f) ≤W (ω,−hω)

and one integration by parts) and hence the corollary follows immediately from the
previous theorem. �

Remark 4.6. The previous inequality was inspired by the result in [73] and its
extension to general non-invariant Kähler metrics in [33], saying that

sup
ω∈K(X)

λ(ω) ≤ nV − sup
ξ∈LieG

H(ξ),

with equality if X admits a Kähler-Ricci soliton, where LieG is the Lie algebra of
a maximal compact subgroup in Aut0(X)and H is a certain concave functional on
LieG, defined in [73]. The proof in [33] was based on the convexity of the functional
vφt , while we here use the convexity of the whole Ding functional.

4.3. The log Fano setting. Let us briefly recall the more general setting of
Kähler-Einstein metrics on log Fano varieties [4] and log K-stability [26, 41, 52]. In
a nutshell, this setting is obtained from the previous one by replacing the canonical
line bundle KX with the log canonical line bundle K(X,D) := KX+D of a given log
pair (X,D). For example, (X,D) is said to be a (weak) log Fano variety if −K(X,D)

is ample (nef and big). A log Kähler-Einstein metric ω associated to (X,D) is, by
definition, a current ω in c1(−K(X.D), defining a Kähler metric on Xreg −D, with
locally bounded potentials on X and such that

Ric ω − [D] = ω,
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holds in the sense of currents, where [D] denotes the current of integration defined
by D. Equivalently [4], this means that ω is the curvature current of a locally
bounded metric φKE on −K(X,D) satisfying

(ddcφKE)
n = Ce−(φKE+log |sD|2)

(for some constant C) in the sense of pluripotential theory, where we recall that

e−(φ+log |sD |2) denotes the measure associated to a metric φ on −K(X,D); see section
2.1.3. The definitions are compatible with log resolutions (as in formula2.1). Hence
if (X,D) is a weak log Fano variety, then so is (X ′, D′) and φKE is a log Kähler-
Einstein metric for (X,D) iff p∗φKE is a log Kähler-Einstein metric for (X ′, D′).

Example 4.7. If (X,D) is log smooth and klt, i.e. X is smooth and D has simple
normal crossings with coefficents < 1, it follows the regularity results in [13, 31] give
that any log Kähler-Einstein metric for (X,D) has edge-cone singularities along D.
Moreover, by [34], if the log Mabuchi functional (or the log Ding functional) for
(X,D) is proper the metric even admits a complete polyhomogenous expansion
along D (this is shown in [34] when D has a singular component and the general
case is anounced in [34]). However, one of the main points of the approach in
the present paper is that it only relies on very weak regularity properties of the
metric (the local boundedness of φKE) and that it is independent of any properness
assumption.

The notion of K-stability has also been generalized to the log setting (see [26,
41, 52]). Briefly, a test configuration for a log Fano variety (X,D) consists of a test
configuration (X ,L) for (X,L) where L = −K(X,D). The C∗−action, applied to the
support of D in X1, induces a C∗−invariant divisor D∗ in X ∗ and we denote by D
its closure in X . The corresponding log Donaldson-Futaki invariant DF (X ,L;D)
was defined in [41] (by imposing linearity it is enough to consider the case when D
is reduced and irreducible). A direct calculation reveals that, up to normalization,
the definition in [41] is equivalent to replacing the relative canonical divisor K in
the intersection theoretic formula 2.10 with the relative log canonical divisor K+D,
defined as a Weil divisor (compare [52]):

(4.4) DF (X ,L;D) = µL̄ · L̄ · · · L̄+ (n+ 1)(K +D) · ·L̄ · · · L̄, ,

where now µ = n(−(KX + D)) · Ln−1/Ln. We can hence take the latter formula
as the definition of the invariant DF (X ,L;D). Finally, (X,D) is said to be log
K-polystable if, for any test configuration, DF (X ,L;D) ≥ 0 with equality iff the
test configuration is equivariantly isomorphic to a product test configuration.

Theorem 4.8. Let (X,D) be a log Fano variety admitting a log Kähler-Einstein
metric, where D is an effective Q−divisor on X. Then (X,D) is log K-polystable.

Proof. The proof given for Theorem 1.1 actually proves Theorem 4.8 as well, since,
in the case when X is singular, it uses a log resolution to replace X with a pair
(X ′∗, D∗) and then uses the closure of the divisor D∗ in X ′. �

The theorem thus confirms one direction of the log version of the Yau-Tian-
Donaldson conjecture formulated in [41].
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5. Outlook on the existence problem for Kähler-Einstein metrics on

Q−Fano varieties

Very recently the existence of a Kähler-Einstein metric on a K-polystable Fano
manifold X was finally settled by Donaldson-Chen-Sun [16]. In this section we will
briefly discuss how some of the results in the present paper may be useful when
considering the corresponding existence problem on a singular Fano variety. We
will follow Tian’s original program, which is based on Aubin’s continuity method
(see the outline in [71] and references therein), but using the Ding functional as a
replacement for the Mabuchi functional used in [71]. Howeer, it should be empha-
sized that the recent results in [16] are based on a modification of Tian’s program
introduced by Donaldson which involves Kähler-Einstein metrics with conical sin-
gularities (obtained by replacing the smooth form η in Aubin’s equation 5.1 below,
with the current defined by a suitable anti-canonical Q−divisor D). One motiva-
tion for using Aubin’s original method here is that Tian’s conjecture on the partial
C0−estimate (see H1 below) has now been proved along Aubin’s continuity method
when X is smooth (see [65] which builds on[16]) and one can thus hope that it will
eventually also be established on singular Fano varieties.

The main connection to the present paper stems from the following immediate
consequence of Theorem 3.11 applied to a special test configuration, which, as will
be explained below, together with two the general hypotheses H1 and H2 gives the
existence of a Kähler-Einstein metric on a K-stable Fano manifold.

Corollary 5.1. Let X be a Fano variety with log terminal singularities and X a
special test configuration for X such that DF (X ) > 0. Fix a smooth and positively
curved metric φ on −KX/C (more generally, local boundedness is enough) and set

φt := ρ∗φτ . Then the Ding functional D and the Mabuchi functional M both tend
to infinity along φt, as t→ ∞.

Proof. By Theorem 3.11 we have that limt→∞
d
dtD(φt) > 0 and hence D(φt) → ∞

which, by the well-known inequality M ≥ D, concludes the proof. �

We recall that the Mabuchi functional M admits a natural extension to the
space Hb(−KX) taking values in ]−∞,∞] such that M(φ) is finite precisely when
the measure MA(φ) has finite pluricomplex energy and relative entropy [4]. In
particular, by the regularity results in [62], M(φt) is finite, for any fixed t, if the
initial metric φ0 is smooth and hence under the assumption in the previous corollary
M(φt) → ∞ tends to infinity as t→ ∞. See [60, 15] for related results in the case
when the total space X is assumed smooth.

After recalling Tian’s program in the smooth setting with an eye towards the
singular case we will comment on further complications arising when considering
the existence problem on general Q- Fano varieties.

5.1. The case of a smooth Fano variety X. The starting point of Tian’s pro-
gram is the continuity equation

(5.1) Ric ωt = tωt + (1− t)η,

where ω0 is a given Kähler metric of positive Ricci curvature η and t ∈ [0, 1] is a
fixed parameter. Let I be the set of all t such that a solution ωt exists. As shown by
Aubin I∩[0, 1[ is open and non-empty and hence to prove the existence of a Kähler-
Einstein metrics, i.e. that 1 ∈ I, it is enough to show that I is closed. More precisely,
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denoting by T the boundary of I and taking ti → T we can write ωti = ddcφti for
suitably normalized metrics φti on −KX (e.g. satisfying supX(φti − φ0) = 0) and
to show that I is closed it is enough to establish the following C0−estimate:

(5.2) sup
X

|φti − φ0| ≤ C

(then the higher order estimates follow using the Aubin-Yau C2−estimate, Evans-
Krylov theory and elliptic boot strapping). Before continuing we recall that the
following properties hold along the continuity path 5.1 for t ≥ t0 (for a fixed t0 ∈ I) :

(5.3) (i)Ric ωt ≥ t0ωt, (ii) M(φt) ≤ C0,

where the first property follows immediately from the fact that η ≥ 0 and the
second one from the well-known fact that M(φt) is decreasing in t.

In order to relate the desired C0−estimate 5.2 to algebraic properties of X Tian

proposed the following conjecture stated in terms of the Bergman function ρ
(k)
ω (x),

at level k, associated to a Kähler metric ω on X :

ρ
(k)
ω (x) =

∑Nk

i=0 |s
(φ)
i |2e−kφ,

where φ is any metric on −KX with curvature form ω and {s
(φ)
i } is any base

in H0(X,−kKX) which is orthonormal with respect to the L2−norm ‖·‖kφ on

H0(X,−kKX) determined by φ, i.e. ‖s‖
2
kφ =

´

X |s|2e−kφωn.

• (H1) (Tian’s partial C0−estimate). Given t0 ∈]0, 1], let K(X, t0) be the
space of all Kähler metrics ω in c1(X) such that Ricω ≥ t0ω. Then there
exists a k > 0 and δ > 0 such that kL is very ample and for any ω ∈
K(X, t0),

inf
X
ρ
(k)
ω (x) ≥ δ

(more precisely, the conjecture says that k can be chosen arbitrarily large). If the

previous conjecture holds then, as follows immediately from the definition of ρ
(k)
ω ,

the desired C0−estimate holds 5.2 iff

(5.4) sup
X

∣

∣

∣
φ
(k)
ti − φ0

∣

∣

∣
≤ C

where now φ
(k)
ti is the Bergman metric at level k determined by φtj , i.e. φ

(k)
tj =

1
k log

∑Nk

i=0 |s
(φtj

)

i |2. In other words: φ
(k)
ti is the scaled pull-back of the Fubini-Study

metric φFS on O(1) → PNk under the Kodaira map Fj determined by φtj :

Fj : X → PNk , φ
(k)
ti = F ∗

j φFS/k, Fj(X) := Vj

i.e. Fi(x) = [s0(x) : s1(x) : · · · sNk
(x)], where now (si) is a fixed base, which is

orthonormal with respect to the L2−norm determined by φtj (strictly speaking,
due to the choice of base Vi is only determined modulo action of the the unitary
group U(Nk + 1), but since this group is compact this fact will be immaterial in
the following). After passing to a subsequence we may assume that the projective
subvariety Vj := Fj(X) ⊂ PNk , converges, in the sense of cycles, to an algebraic
cycle V∞ in PNk . It was indicated by Tian [71] that the validity of the previous
conjecture would imply that the cycle V∞ is reduced, irreducible and even defines
a normal variety. More precisely, we will make the following
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• (H2) V∞ is normal with log terminal singularities and there is a one pa-
rameter subgroup ρ : C∗ → GL(Nk + 1,C) such that

sup
X

∣

∣

∣
φ
(k)
tj − ρ(τi)

∗φFS

∣

∣

∣
≤ C

where ρ(τi)V0 also converges (in the corresponding Hilbert scheme) to the
normal variety V∞

Then, by standard properties of the Hilbert scheme ρ determines a (special) test
configuration (X ,L) with central fiber V∞. In fact, as explained in [16] the existence
of ρ in the case of Donaldson’s contintuity method follows from the reductivity of
the automorphism group of (V∞, D∞) established in [16], where D∞ is a divisor
on V∞ induced by η = [D]. Now, assuming that X is K-stable (for simplicity we
consider the case when X admits no non-trivial holomorphic vector fields, but the
general argument is similar) we have that DF (X ,L) ≥ 0 with equality iff (X ,L) is
equivariantly isomorphic to a product test-configuration (recall that the total space
X here is automatically normal and even Q−Gorenstein, by Lemma 2.2). In the
latter case, ρ(τ)∗φFS−φ is trivially bounded and hence the desired C0−estimate 5.2
then holds, showing thatX indeed admits a Kähler-Einstein metric. The main issue
is thus to exclude the case of DF (X ,L) > 0 and this is where Cor 5.1 enters into
the picture. Thus, assuming the validity of H1 and H2 above we deduce from Cor
5.1 (with φ the restriction of the Fubini-Study metric) that if the second alternative
DF (X ,L) > 0 holds, then the Ding functional D tends to infinity along ρ(τi)

∗φFS

and hence it is unbounded from above along φ
(k)
tj . But this implies that D is also

unbounded along the original sequence φtj (also using that if |ψ − ψ′| ≤ C then
|D(ψ) − D(ψ′)| ≤ 2C, as follows immediately from the definition 3.1). But, since
D ≤ M, this contradicts the property (ii) in formula 5.3 hence it must be that the
first alternative, DF (X ,L) = 0, holds and thus X admits a Kähler-Einstein metric,
as desired.

5.2. Towards the case of Q−Fano varieties. Let us finally discuss some of the
new complications that arise when trying to generalize Tian’s program to the case of
singular K-polystable Fano varietiesX (by [51] such a Fano varietyX automatically
has log terminal singularities). Taking η to be a smooth semi-positive form in c1(X)
the continuity equations 5.1 are defined as before and, by the results in [4], the set
I is still non-empty, i.e. T > 0 (using the positivity of the alpha invariant of X).
The solutions ωt define Kähler forms on Xreg with volume c1(X)n/n!. Next, we
note that Tian’s conjecture admits a natural generalization to general Q−Fano
varieties if one uses the notion of (singular) Ricci curvature appearing in [4] (and
similarly for general log Fano varieties (X,D)). However, one new difficulty that
arises is the openness of I. From the point of view of the implicit function theorem
the problem is to find appropriate Banach spaces, encoding the singularities of X
(the uniqueness of solutions to the formally linearized version of equation 5.1, for
t ∈]0, 1[, follows from the results in [4]). On the other hand, another approach
could be to use the following lemma, where the properness refers to the exhaustion
function defined by the J−functional (see [4] for the singular case).

Lemma 5.2. The set I is open iff the twisted Ding (Mabuchi) functional Dt (as-
sociated to the twisting form (1− t)η) is proper for any t ∈ I.
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Proof. If Dt is proper, then it follows from the results in [4] that a solution ωt
exists. Conversely, if a solution ωt exists and I is open, i.e. solutions ωt+δ exist for
δ sufficiently small, then it follows from the convexity of Dt+δ along weak geodesics
that Dt+δ ≥ C. But since δ may be taken to be positive this implies that Dt is
proper (and even coercive; compare [4]). �

Note that in the case n = 2 it is a basic fact that a projective variety X has log
terminal singularities iff it has quotient singularities (defining an orbifold structure
on X) and hence the two-dimensional Fano varieties are precisely the orbifold Del
Pezzo surfaces. In the general Fano orbifold case, if one takes η to be an orbifold
Kähler metric, the usual implicit function theorem applies to give that I above
is indeed open. For the case of K-polystable Del Pezzo surfaces with canonical
singularities (i.e. ADE singularities) the existence of Kähler-Einstein metrics was
established very recently in [53], using a different method, thus generalizing the
case of smooth Del Pezzo surfaces settled by Tian [70].
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