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CONVEXITY OF THE K-ENERGY ON THE SPACE OF
KAHLER METRICS AND UNIQUENESS OF EXTREMAL
METRICS

ROBERT J. BERMAN, BO BERNDTSSON

ABsTrRACT. We establish the convexity of Mabuchi’s K-energy functional along
weak geodesics in the space of Kdhler potentials on a compact Kéhler mani-
fold, thus confirming a conjecture of Chen and give some applications in Kéah-
ler geometry, including a proof of the uniqueness of constant scalar curvature
metrics (or more generally extremal metrics) modulo automorphisms. The
key ingredient is a new local positivity property of weak solutions to the ho-
mogenuous Monge-Ampére equation on a product domain, whose proof uses
plurisubharmonic variation of Bergman kernels.
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1. INTRODUCTION

Let X be an n—dimensional compact complex manifold equipped with a Kéahler
form wp. In the seminal work of Calabi [15] [16] the problem of finding a canonical
Kihler metric in the corresponding cohomology class [wo] € H?(X,R) was proposed,;
in particular a metric with constant scalar curvature. As later shown by Mabuchi
[39] such metrics are the critical points of a certain functional on the space of Kéahler
metrics in [wo] called the K-energy or the Mabuchi functional, which we will denote
by M, defined as follows. First recall that the space of all K&hler metrics in [w] may
be identified with the space H (X, w) of all Kdhler potentials, modulo constants, i.e.
the space of all functions v on X such that

i
v i= ddu, (dd°:= —00
w w~+ddu, ( o )

is positive, i.e. defines a Kahler form on X. The space H(X,w) admits a natural
Riemannian metric g (of non-positive sectional curvature) that we will refer to as
the Mabuchi metric [40], where the squared norm of a tangent vector v € C°(X)
at u is defined by

(1.1) gpu(v,v) ::/XU2w;1

1


http://arxiv.org/abs/1405.0401v3

Now the Mabuchi functional M on the infinite dimensional Riemannian manifold
H(X,w) is uniquely defined, modulo an additive constant, by the property that is
gradient is the normalized scalar curvature of the corresponding Kéhler metric:

(1.2) VM,, :=—(R,, — R),

where R denotes the average scalar curvatures which, for cohomology reasons, is a
topological invariant. The geometric role of the Mabuchi functional was elucidated
by Donaldson [26] who showed that - from a dual point of view - it can be identified
with the Kempf-Ness “norm-functional” for the natural action of the group of all
Hamiltonian diffeomorphisms on the space of all complex structures on X compat-
ible with the symplectic form wy. This interpretation also provides a direct link
between the Mabuchi functional and the notion of stability in Geometric Invariant
Theory (GIT), which in the case when the Kéhler class in question is integral, i.e.
equal to the first Chern class of an ample line bundle L — X, has been made precise
in the seminal Yau-Tian-Donaldson conjecture saying that ¢; (L) contains a Kéhler
metric with constant scalar curvature if and only if the polarized manifold (X, L)
is K-stable [55] 51, [29].

1.1. Statement of the main results. As shown by Mabuchi [39, 40] the func-
tional M is convex along geodesics u; in the Riemannian manifold H (X, w). Unfor-
tunately, given ug and uq in H there may be no geodesic u; connecting them (see
[38]25] for recent counterexamples). Still by a result of Chen [I8], with complements
due to Blocki [I4], there always exists a (unique) weak geodesic u; connecting ug
and u; defined as follows. First recall that, by an important observation of Semmes
[44] and Donaldson [26], after a complexification of the variable ¢, the geodesic equa-
tion for u; on X x [0, 1] may be written as the following complex Monge-Ampére
equation on a domain M := X x D in X x C for the function U(z,t) := us(x) :

(1.3) (m*w + dd°U)* ™ =0,

As shown in [18] [14] for any smoothly bounded domain D in C the corresponding
boundary value problem on M admits a unique solution U such 7*w+dd°U is a pos-
itive current with coefficients in L™, satisfying the equation almost everywhere.
In particular, when D is an annulus in C this construction gives rise to the notion of
a weak geodesic curve u; in the extended space #H; 1 of all functions u such that w,
is a positive current with coeflicients in L°°. Moreover, even if the original defining
property (formula [[.2) of the Mabuchi functional requires that w,, be positive and
C?—smooth (and in particular that u be C*—smooth) Chen went on to show [19]
that the Mabuchi functional admits an explicit formula which is well-defined along
a weak geodesic ray u; as above. (This formula was also independently obtained
by Tian, see [62].) Indeed,

n
(1.4) M(u) = &(u) +/ log (2% ),
X Wo
where the first term & (u) is an explicit energy type expression involving the integral
over X of a mixed Monge-Ampére expression of the form uw A 0?73‘ for j € [1,n],
where ; are explicit smooth forms depending on wy. The second term is the
classical entropy of the measure w;, relative to the reference volume form wg. As a
consequence M is naturally defined and finite on the space H; 1, where the weak
geodesics live. It has been conjectured by Chen that M(¢;) is convex along any
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weak geodesic as above [19] (the case when ¢;(X) < 0 was settled by Chen). Our
main result confirms this conjecture:

Theorem 1.1. For any Kaihler class [w]| the Mabuchi functional M is convex
along the weak geodesic u; connecting any two points ug and wy in the space ‘H
of w— Kdhler potentials.

We will also show (Theorem B3) that M is 'weakly subharmonic’ (see section
3 for precise definitions) subharmonic along any curve w, satisfying the complex
Monge-Ampeére equation[[.3lon X x D, as long as Chen’s regularity property holds,
i.e. m™*w+dd°U is a positive current with coefficients in L°>°. The subharmonicity of
the Mabuchi functional under stronger regularity assumptions on the solution U to
the equation[T3] (so called “almost smooth” solutions) has been shown by Chen-Tian
[22]. The key point of the proof of Theorem [Tl is a new local positivity property
of the relative canonical line bundle K,/ p along the one-dimensiona current

S = (r*w+dd°U)"

in the product M = X x D. This can be seen as a generalization of a positivity
property of Monge-Ampére foliations due to Beford-Burns [2], further developed
by Chen-Tian [22], since S can be realized as an average of the leaves of such a
foliation, when it exists. But it should be stressed that one of the main points of
our approach is that it does not require the existence of any sort of Monge-Ampére
foliation. Our proof uses plurisubharmonic variation of local Bergman kernels ([41],
[11]); see Section T2 below for a sketch of the proof and Section [3.2] for comparison
with previous results.

We will also give some applications of Theorem [IT] to Kéhler geometry, which
have previously - in their full generality - only been shown using the partial regu-
larity theory of Chen-Tian [22]. Very recently however it has been showed by Julius
Ross and David Witt Nystrom (see [43]) that the partial regularity results do not
hold as stated in [22], so it seems that the earlier proofs are not complete.

We start with the following corollary which follows immediately from the previ-
ous theorem, using the “sub-slope property” of convex functions.

Corollary 1.2. Any Kdhler metric with constant scalar curvature metric minimizes
the corresponding Mabuchi functional. More precisely, the following inequality holds

(15) M(ul) - M(’U,O) > —d(ul,uo)\/C(uo),

for any two Kdhler potentials ug and uy on a Kdhler manifold (X,w), where d is
the distance function corresponding to the Mabuchi metric and C denotes the Calabi
energy, i.e. C(u) := [(Ry, — R)*w!

The minimizing property above was first shown by Chen in the case when the
first Chern class ¢;(X) is non-positive and by Donaldson [27, 28], in the case when
the Kéhler class in question is integral, i.e. when it coincides with the first Chern
class of an ample line bundle L over X. The general case was treated by Chen-Tian
in [22], using their partial regularity theory and approximation arguments and the
inequality was then obtained by Chen, building on [22].

In the case of smooth geodesics it is well-known that the Mabuchi functional
M is strictly convex modulo automorphisms, or more precisely modulo the group
Auto(X) defined as the connected component of the identity in the group of all
biholomorphisms of X. If one could establish the corresponding strict convexity for
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weak geodesics - which seems very challenging - then it would immediately imply
the uniqueness modulo Auty(X) of the critical points of M, i.e. of cohomologous
Kaéahler metrics with constant scalar curvature. Here we will show that the conjec-
tural general strict convexity result referred to above is not needed to establish the
uniqueness result in question; it follows from a rather general argument combining
the convexity in Theorem [[LT] with the well-known fact that the strict convexity
modulo Auto(X) does hold at the linearized level (in other words, the Hessian of
M at a critical point of M degenerates precisely along the action of holomorphic
vector fields).

Theorem 1.3. Given any two cohomologous Kdhler metrics wo and wy on X with
constant scalar curvature there ezists an element g in the connected component
Auty(X) of the identity in the group of all biholomorphisms of X such that wy =
g wy.

In the case when [w] = ¢;(X) this result is due to Bando-Mabuchi [I] while
the case [w] = ¢1(L) with Autg(X) trivial was shown by Donaldson [27], using
approximation with so called balanced metrics attached to high tensor powers of
the line bundle L. The general uniqueness result appears in [22].

Our approach to the uniqueness theorem consists in adding a small strictly con-
vex perturbation to the Mabuchi functional. The perturbed functional is then
strictly convex so it can then have at most one critical point. In case Auto(X) is
discrete, or equivalently there are no nontrivial holomorphic vector fields on X, it
follows from the implicit function theorem that near any (smooth) critical point
of the Mabuchi functional there is a critical point of such a perturbed functional,
so the Mabuchi functional can also have at most one critical point. In the general
case, when Autg(X) is nontrivial, critical points of M cannot in general be approx-
imated by critical points of the perturbed functional. (Indeed, if this were possible
we would get absolute uniqueness instead of uniqueness modulo automorphisms.)
However, we prove that such approximation is possible if we first move the critical
point by a suitable automorphism, and this permits us to prove uniqueness modulo
automorphisms in the general case. This is the principle of the proof, but in order
to avoid technical complications (that arise when there are nontrivial holomorphic
vector fields) we will instead work with ’approximately critical points’ so in the end
we avoid the actual use of the implicit function theorem.

More specifically, we will consider the setting of Kéhler metrics with constant
a—twisted scalar curvature, defined with respect to a given “twisting form” «,
i.e. a smooth closed non-negative (1,1)—form on X (see Section B.IT]), as well as
Calabi’s extremal metrics (Section 1]). As shown in [33] the twisted setting appear
naturally in the case when X is realized as the base of a fibration whose fibers are
equipped with constant scalar curvature metrics (then the role of the twisting form
« is played by the corresponding Weil-Peterson metric on the base X describing
the variation of the complex structures of the fibers); see also [47] for relation to
the Kéhler-Ricci flow on varieties of positive Kodaira dimension and [48] for the
relation to the algebro-geometric slope stability of Ross-Thomas. Let us finally
point out that Theorem 1.1 can also be extended to Tian-Zhu’s modified K-energy
functional [54], whose critical points are K&hler-Ricci solitons (details will appear
elsewhere).



1.1.1. Further extensions and applications. One new feature of our method, further
exploited in the companion paper [I0] by Lu and the first author, is that it also
has bearings on the uniqueness and regularity problem for very weak minimizers
of the (twisted) Mabuchi functional. The point is that, extending the results in
[8] concerning the case when [w] = ¢1(X), the Mabuchi functional, as defined by
formula[[4] can be extended to the “finite energy” completion £ (X, w) of the space
H(X,w) introduced by Guedj-Zeriahi [3T], with good continuity /compactness prop-
erties. In particular, the corresponding uniqueness result in the finite energy setting
can be used to study the convergence properties of a weak version of the Calabi
flow. To briefly explain this recall that the latter flow, in its classical form, may be
defined as the down-ward gradient flow of the Mabuchi functional on the infinite
dimensional Riemann manifold H(X,w) equipped with the Mabuchi metric. Even
if the long-time existence of the classical Calabi flow is still open it was shown by
Streets [49] that a weak version of the Calabi flow, dubbed the K-energy minimizing
movement, is always well-defined on the metric completion of the Mabuchi space
H(X,w). Building on [8] and the very recent work by Darvas and Guedj, [23], [24]
and [32], we will show in [I0] that the K-energy minimizing emanating from a given
potential ug in H(X,w), gives rise to a curve of finite energy potentials in £'(X,w)
that we will call the finite energy Calabi flow with the property that the corre-
sponding positive currents w; have a top intersection w;’ defining a measure on X
with finite entropy and good convergence properties. More precisely, the following
convergence result hods:

Theorem 1.4. [10] Let [w] be a Kdhler class on X and « fixed smooth closed (1,1)—
form on X. Assume that [w] contains a Kdhler metric with constant a—twisted
scalar curvature w,, and that either o > 0 or X admits no non-trivial holomorphic
vector fields and [w] is proportional to c¢1(X). Then the finite energy twisted Calabi
flow wy converges in the weak sense of currents on X towards wy, ast — co. More
precisely, the measures wi* converge in entropy towards the volume form w? of wq,.

The relation to previous results is discussed in [10]. Some further interactions
between the Mabuchi functional and the notions of finite energy and entropy are
also studied in [I0]. For example, it is shown that the extended Mabuchi func-
tional remains convex along finite energy geodesics. Moreover, using finite energy
geodesics one can define a notion of “weak Mabuchi geodesics” in the space P(X)
of all probability measures on a compact Ké&hler manifold X, such that the space
of all probability measures p with finite entropy becomes geodesically closed and
such that the entropy functional defined with respect to a Kéhler metric with non-
negative Ricci curvature becomes geodesically convex. As explained in [I0] the
latter convexity property can be seen as the complex version of a fundamental
convexity property in the setting of optimal transport theory.

1.2. A sketch of the proof of Theorem[I.1l Let us sketch the proof of Theorem
B3 in the special case when w,, is continuous and strictly positive. The starting
point is the following essentially well-known formula for the second order variation
of the Mabuchi functional:

(1.6) didf M(uy) = / T, T:=ddV A (r*w+dd°U)", ¥ :=log(wy,)-
b'e

Here ¥ denotes the local weight of the metric on the relative canonical line bundle
Kyyp — M induced by the metrics wy, on T'X and / « denotes the fiber-wise
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integral, i.e. the natural map pushing forward a form on M := X x D to a form on
the base D. (This formula follows from [[.4] using that dd® commutes with push-
forwards.) The proof proceeds by showing that the integrand T in formula[L8lis a
non-negative top form on M and in particular its push-forward to D is also non-
negative, as desired. First observe that we can locally write 7*w + dd°U = dd°®
for a local plurisubharmonic function ®(¢,z) = ¢;(z), defined on the unit-ball in
C". Accordingly, w;;, may be written as (dd°¢;)" locally on X and by well-known
convergence results for Bergman kernels going back to Hérmander, Bouche [I3] and
Tian [50], the form T can thus be locally realized as the weak limit, as k — oo, of
the forms T} defined by

T, := dd®log Brg, A (dd°®)™,

where Bjy := Kgpe *® is the Bergman function (density of states function) for
the Hilbert space of all holomorphic functions on the unit ball equipped with the
standard L?—norm weighted by the factor e *?. Finally, by the results on plurisub-
harmonic variation of Bergman kernels in [II] the function log Ky, is plurisubhar-
monic on X x D and hence

(1.7) dd° log Brg, = dd®log Ky, — kdd°® > 0 — kdd°®

Since the latter form vanishes when wedged with (dd°®)™ (by the geodesic equation)
this show that Ty > 0. Hence letting £ — oo shows that T' > 0, which concludes the
proof of Theorem [T under the simplifying assumption that w,,, be continuous and
strictly positive. The proof in the general case involves a truncation procedure (to
compensate the lack of strict positivity of the measures w;},) and a generalization
of the Bergman kernel asymptotics used above to the case when the curvature form
dd®¢ is merely in LS.

An intriguing aspect of our proof is that it relies on the individual positivity prop-
erties of the two currents dd®log K¢, and —kdd“® appearing in the decomposition
[[7 and these two currents diverge in the “semi-classical” limit k — oo (contrary to
their sum which converges to dd°¥). Hence, our decomposition argument does not
seem to have any direct analog for the current dd°¥ itself.

Finally we would like to thank Sébastien Boucksom and Mihai Paun for pointing
out an omission in the first version of this paper regarding the continuity of the K-
energy. After the first version of our paper was posted on the Arxiv, an alternative
proof of the convexity of the K-energy, based on Monge-Ampére equations instead
of Bergman kernel has also been posted by XX Chen, L Li and M Paun , see [2I]. (In
this paper it is also proved that M is subharmonic ( not just weakly subharmonic)
along any complex Cb! curve u, satisfying the complex Monge-Ampére equation.)

2. WEAK GEODESICS AND BERGMAN KERNEL ASYMPTOTICS

2.1. Preliminaries. We start by introducing the notation for (quasi-) psh func-
tions and metrics on line bundles that we will use. Let (X,wp) be a compact
complex manifold of dimension n equipped with a fixed Kéhler form wq, i.a. a
smooth real positive closed (1,1)—form on X. Denote by PSH (X, wq) the space of
all wo—psh functions u on X, i.e. u € L'(X) and u is strongly upper-semicontinuos
(usc) and

Wy = wo + %85u = wg +dd°u > 0,
6



holds in the sense of currents. We will write H (X, wp) for the interior of PSH (X, wo)N
C>®(X), i.e. the space of all Kéhler potentials (w.r.t wg). In the integral case, i.e.
when [w] = ¢1 (L) for a holomorphic line bundle L — X, the space PSH (X, wy) may
be identified with the space Hp, of (singular) Hermitian metrics on L with positive
curvature current. We will use additive notion for metrics on L, i.e. we identify an
Hermitian metric ||-|| on L with its “weight” ¢. Given a covering (U;, s;) of X with
local trivializing sections s; of Ly, the object ¢ is defined by the collection of open
functions ¢y, defined by

el = e

The (normalized) curvature w of the metric ||-|| is the globally well-defined (1, 1)—current
defined by the following local expression:

w = dd°¢

The identification between H; and PSH (X, wy) referred to above is obtained by
fixing ¢y and identifying ¢ with the function u := ¢ — ¢y, so that dd°¢ = w,.

2.1.1.  Weak geodesics and the space H1,1. As recalled in the introduction of the
paper equipping the space H(X,wp) with the Mabuchi’s Riemannian metric a curve
us in H(X,wo) is a geodesic iff it satisfies a complex Monge-Ampére equation.
More precisely, writing ¢t = log|7| for 7 € C so that u; may be identified with
an S'—invariant function U on M := X x D, where D denotes the corresponding
annulus in C, the m*w—psh function U (with 7 denoting the natural projection
from M to X) satisfies

(2.1) (m*w + dd°U)" ™ =0,

where U thus coincides at the boundary OM with the function determined by wg
and uy. As shown in [I8], [I4] the previous boundary value problem always admits
(for any bounded domain D in in C a weak solution in the sense that 7*w + dd°U
is a positive current with bounded coefficients, up to the boundary. We say that
such functions have Cé’l—regularity. In particular any given two points ug and wuq
in PSH(X,wp) are connected by a (unique) weak geodesic u; as above, defining a
curve in the space Hi1 C PSH(X,wp) of all u such that w + dd®u is a positive

current with components in LgS, .

2.2. Bergman kernel asymptotics. Given a (possibly non-compact) complex
manifold Y with a line bundle L — Y equipped with a (bounded) metric ¢ we
denote by K, the section of (kL + Ky) ® (kL + Ky) — Y determined by the
restriction to the diagonal of the Bergman kernel of the space H(Y, kL + Ky of
all global holomorphic section of kL + Ky (viewed as holomorphic n—forms on YV’
with values in kL) equipped with the standard L?—norm determined by the metric
¢ (assumed to be finite):

sNs(x
(2.2) Kis(z)=  sup 7(%
SEHO(Y,kL+Ky) Jy 5 5€
In particular, contracting the corresponding metrics on kL gives a measure on Y
that, after a scaling, we write as

(23) ﬂk =

|
n:
T Kk e
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By well-known Bergman kernel asymptotics (due to Bouche [I3] and Tian [50],
independently ) in the case when Y = X the convergence 8 — (dd°¢)™ holds as
k — oo, uniformly on X, if ¢ is C?—smooth and strictly positively curved, i.e.
dd°¢ > 0. However, in our setting ¢ will only have a Laplacian in LS, (and not be
strictly positively curved), i.e. ¢ will be in H;,; and hence the convergence cannot
be uniform in general. Moreover, unless the given class [w] on X is integral there
will be no line bundle L over X and then we will have to let Y be a small coordinate
ball, identified with the unit-ball in C™, taking L as a the trivial line bundle. In
the next theorem we show that a sufficiently strong version of the convergence still

holds in this setting.

Theorem 2.1. Let L — Y be a line bundle over a (possibly non-compact) complex
manifold Y and assume that L extends to a holomorphic line bundle over a compact
complex manifold X equipped with a (singular) metric ¢ such that the curvature
current dd°¢ is non-negative with components in L7, (i.e. ¢ is in Hi1). Denote
by Bx the Bergman measure on Y defined with respect to the restricted metric on
Y. Then, given a smooth volume form dV on a compact subdomain E of Y there

exists a constant C such that
(2.4) Br < CdV

on E, where the constant C' only depends on an upper bound on the sup-norm of
dd°¢ on E. Moreover, By (x) — (dd°@)™ in total variation norm on E.

Proof. Step one: upper bounds. We will start by showing the uniform upper bound
2.4l together with the following point-wise upper bound:

(2.5) lillgrisup Br(z) < (dd°¢)"(x)

at almost any point z of Y (recall that by assumption the r.h.s above has a density
which is well-defined almost everywhere on X, so this statement indeed makes
sense). The proof will be completely local. Given any point zp € X and local
holomorphic coordinates z centered at zy we take a local trivializing section s of
L such that ¢ is represented by a function ¢(z) satisfying ¢(0) = 0. Any given
holomorphic section of L may, locally, be written as f(z)s for a local holomorphic
function f. In particular, the function log|f|? is subharmonic and hence by the
sub-mean inequality for subharmonic functions we have

log |£[2(0) < / log |f1?do.

where do,. denotes the invariant probability meaure on the sphere |z| = r. Writing
log |f|? = log(|f|?e¢™%?) + k¢ in the r.h.s above and applying Jensen’s inequality
gives

1RO exp(— [ hody) < [[IfPe do,

Accordingly, multiplying both sides with 72"~!, integrating over r € [O,Rk‘l/ 2]

and performing the change of variables r — rk!'/2gives
(2.6)

-1
R
- —r2ay(rk~ Y n—
1200) </| TP k¢dv> < Ony = ( [t W) ,
z|<Rk— 0
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where

1
aq(r) = —= do,.
o(r) =5 /z—r¢
We claim that
(2.7) (@) lag(r)] < €, (i) lim ag(r) = as(0) = ~(A¢)(0)

where C only depends on an upper bound on A¢ on B(r) := {|z| < r} and where
(1) holds if 0 is a Lesbegue point for A¢. (Recall that 0 is Lesbegue point for an

L'—function h if
1
h(0) = lim 7/ hdV,
O =Y B) Sz

where V' denotes the volume of the ball B(r).) Accepting this claim for the moment
we can first set R =1 and deduce from (¢) that S () is uniformly bounded on any
compact subset E. Moreover, to get the precise pointwise bound 2.5 we assume that
x is a Lesbegue point for the components of the current (dd°¢)(z), i.e. that 0 is
a Lesbegue point for for the L5 —functions representing the distributional partial

2
Lesbegue measure (as follows from Lebesgue’s theorem).

Letting £ — oo and applying the dominated convergence theorem for R fixed
gives, by computing the Gaussian integral,

o) —1 n
hm hm CR k= </ 8_T2a¢(0)7”2n_1d7“> — (a¢(0))
0

R—o00 k—o0 i

1
n
r)

deriviatives The complement of the set of all such points = is a null set for

Now recall that a4(0) = 2(A¢)(0), so what we need to do is to replace the Lapla-
cian, i e the trace of dd®¢, by the determinant of the same form. For this we
note that we can make an arbitrary linear change of variables in the coordinates z
without changing the Bergman kernel estimate, if the determinant of the change of
variables equals 1. First we change coordinates so that the Hessian of ¢ is diagonal
at the origin. Then we apply a diagonal change of coordinates z; — p;z; with
determinant one. By the arithmetic-geometric mean inequality, the infimum

igjf(l/n) > i

1/n

over all positive p; with product 1 equals (ITA;)*/", so taking the infimum over all

such changes of coordinates we get that
limsup gy, < det(¢; 5)-

k— o0

This concludes the proof of Step one up to the proof of (i) and (i7) in 27 to which
we next turn.

First note that in order to establish (i¢) it will be enough to show that the limit
a(0) exists and only depends on (A¢)(0). Indeed, we can then replace ¢(z) with
¢o(z) = |z|* and note that, by symmetry, ag,(0) =1 = 2(Ag)(0). Denote by g(z)
the standard spherical symmetric fundamental solution for the corresponding local
Euclidean Laplacian A := )", %{;Zi satisfying

0 1
(28) g(l) =0, EQ(T) = Cnr2n—_1
Using Green’s formula and integration by parts gives
9



0

R
cnag(R) = R_2/ (Ap)gdV = R_2/0 A¢(T)Eg(r)dr

|z|<R
where
Ag(r) = ApdV
21 <r
In particular, since A¢ < C on B(r) this proves (i) in 2771 Moreovever, if 0 is a
Lesbegue point for A¢ then we get Ay (r) = V(B1)r*"(A¢)(0) + o(r?*") and hence,
using formula 22

R
06(R) = VB)AOR? [ r(1 +0(1)dr = 5e,V(B)(A0)0)

as R — oo. This shows that the limit a4(0) exists and only depends on (A¢)(0),
which proves (i) in 27

Step two: convergence in total variation norm. First note that by the uniform
and pointwise bounds on ) established in the previous steps it will in order to
prove the convergance in total variation norm be enough to show that, for any
compact subdomain F of Y

(2.9) lim inf / B > / (dd°¢)"

k— o0

Indeed, writing B = frdV and (dd°¢)™ = fdV we get

1Be — (ddd)"| :/|fk ~ fldv = /(f - fk>dV+2/(f -,

with (f — fx)— = —min(f — fx,0). The limsup of the first integral is less than or
equal to zero by 2.9 and the limsup of the second integral is less than or equal to
zero by Fatou’s lemma (cf Lemma 2.2 in [4]).

Next we note that it will be enough to consider the case when Y is compact.
Indeed, by assumption (L, ¢) extends to a compact complex manifold X (with the
same hypothesis on ¢ as on Y) and it follows immediately from the definition of
Bergman measures that

Br > Br.x
where the right hand side is the Bergman measure defined with respect to (X, L, ¢).
Hence, once we have established that the bound holds for B, x it will automati-
cally hold for 8j. Moreover, in the compact case of X it will be enough to establish
the bound 2.9] for £ = X. Indeed, as pointed out above it implies the convergence
in total variation norm on X which in turn implies the lower bound on E for
Bk, x and hence the same lower bound on E for §j.

Finally, to prove the lower bound Z.9lfor X compact we can exploit that H°(X, kL+
K x) is finite dimensional. Indeed, by the Hilbert-Samuel formula, dim H°(X, kL +
Kx) = k™ [ ¢1(L)"/n! + o(k™). Moreover, by basic properties of Bergman kernels
for finite dimensional Hilbert spaces f < Brx = ,% dim H°(X, kL + Kx) and hence

lim / Br,x = / ddeo)",
k—o0
which, as pointed out above, concludes the proof of the general convergence. (I

For our purposes it will be enough to consider the case when Y is a Euclidean
ball in C™ :
10



Corollary 2.2. Let ¢ be a plurisubharmonic function defined on the neighbourhood
of B1 such that A¢ € LS. and denote by By the Bergman measure for the Hilbert
space of all holomorphic functions f on By equipped with the weighted L?—norm
fBl |f|?e=k®dV, where dV denotes Lesbegue measure. Then B, < CgdV for any
given compactly included subdomain E of By and, after perhaps passing to a sub-
sequence,

lim B (x) = (dd°0)" (x)

k—o0
for almost any = in By.

Proof. Taking L to be the trivial holomorphic line bundle on Y := B; it will
be enough to show the extension property required by the previous theorem. By
assumption ¢ is in Hj 1(Bi+e) and up to changing ¢ by a harmless additive con-
stant we may assume that ¢ > & > 0 on Bj;s. Hence for C sufficently large
e = max{¢p, Clog|z|?} coincides with ¢ on a neighbourhood of the closed unit-
ball By and with Clog |z|? on Bi4¢/2. Moreover, the same property holds when the
max is replaced by a suitable regularized max ensuring that ¢ ¢ is also in Hi 1(Bi4e)-
Finally, for C' a given positive integer we note that any function coinciding with
Clog|z|? on the complement of a given ball Br centered at 0 in C" extends, in
the standard way, to define a metric on the m th tensor power O(m) — P™ of the
hyperplane line bundle on complex projective space, which is smooth and of non-
negative curvature on the complement of Bg. This gives the required extension and
concludes the proof since L'—convergence implies almost everywhere convergence,
after passing to a subsequence. ( This reduction of a problem for local plurisub-
harmonic functions to a problem for global metrics on a line bundle was probably
first used by Siu in [46]). O

3. CONVEXITY OF THE MABUCHI FUNCTIONAL ALONG WEAK GEODESICS

In this section will prove our main result, stated as Theorem [[.Tlin the introduc-
tion, using the convergence results for local Bergman kernels proved in the previous
section. We start by introducing some notation. If w is a Kéhler form on X then
it induces a metric 1, on the anti-canonical line bundle —Kx := A™T'X for which
we will use the suggestive notation

o = —log(w")
i.e. given local holomorphic coordinates v, is represented by — log(w™/idz1 Adz; A
-+ +). More generally, given a measure u, absolutely continuous w.r.t Lebesgue mea-
sure, we write 1), for the corresponding metric on —K x which, symbolically means
that
p=e vr
By definition Ric w is the curvature form of the metric ¢, i.e. Ric w = dd®y,,.
The Mabuchi functional M [39] is, with our normalization, the functional on H :=
H(X,w) implicitly defined by
ney (X) - [w]"
[w]™
where dF), denotes the differential at ¢ of a given functional F on the H, i.e. the
measure defined by the following property: for any v € C*°(X)

(3.1) dM,, = —nRic(w,) Aw] "' + Rw}}, R:=

)

<dﬂu,v> = EH:O}—(Ut)’

11



where wu; is any smooth curve in H such that %I Ut =V (assuming that the
measure d.F|, exists). Given a curve u; in H we will identify it with a function U
on X x D, for D an annulus in C (compare section [2I).

The starting point of the proof of Theorem [I.1] is the explicit formula for the
Mabuchi functional in [I9], which has an “energy part” and an “entropy part”.
As there are many different notations (and normalizations) for the energy type
functionals in question we start by introducing our notation. Given a metric ¢ as
above we will write

(3.2) E(u) == /X;ung AW}

Similarly, given a closed (1,1)—form (or current) T we set

n—1
(3.3) ET(u) := /X u Zw{f—j—l AWHAT
3=0

A standard computation shows that the corresponding differentials are given by:

(3.4) A€, = (n+ Ny, d&ly =nwi " AT.

Similarly, the second order variations are given by:

(3.5) drd°&(u,) = / (m*w + dd°U)" T d deET (¢,) = / (T*w + dd°U)" A T*T,
X X

where [  denotes the fiber-wise integral, i.e. the push-forward map induced by

the natural projection 7w from X x D to X. Finally, we recall that the entropy of a

measure y relative to a reference measure g is defined as follows if u is absolutely
continuous with respect to po:

(3.6) Holp) = [ o <j—/jg) dy

There is a well known interpretation of the entropy functional as a Legendre trans-
form that we will have use for at several occasions later on, see [37].

Proposition 3.1. If ug and p are probability measures on X such that p is abso-
lutely continuous with respect to ug, then

Huo(u):sup/ fdu—IOg/ e dpo,
rox x

where the supremum is taken over all continuous functions on X.

Proof. First note that Jensen’s inequality gives

exp [ (7 = Toxtdu/aua)du < [ el

Taking logarithms and rearranging this gives the > direction of the inequality.
The other direction follows by approximating log(du/dug) by continuous functions
I O

For future use we record two immediate consequences of this: The entropy is a
convex function of the measure p for the natural affine structure on the space of
probability measures. Second, as the supremum of a set of continuous functions,
the entropy is lower semicontinuous with respect to the weak*-topology.

12



Now we can state the explicit formula in [19], written in our notation, for the
Mabuchi functional M implicitly defined (up to an additive constant) by formula
B1

Proposition 3.2. Given a Kdhler metric wy on X with volume form py := wy
of total mass [w]™ the following formula holds for the Mabuchi functional on the
corresponding space H of all Kdihler potentials:

_ nep(X) - [wo] 1

ié‘(u) _ gRicw, (u)) +H,, (w}), R:= ool

(3.7) M) = <n+1

Proof. For completeness and as a way to check our normalizations we recall the
proof. A direct calculation gives

d n w;lt dwzt dug . n—1 dug . n—1
amﬂ%ﬂ—“/baﬂzf—‘?ézﬁ“%”%t“J;gmww%t

(using, in the first equality, that w{ has the same mass as wj;, and, in the second
equality, one integration by parts). Hence, since d5|€ =nT Aw’ ! (formula [34)

we get d(H,, — gRicwo) — _pRicw, A w1, which coincides with the first term
in the defining expression for dM|, (formula B1). Finally, since d&}, = (n 4 1)w;;
(formula [B4) this shows that the differential of the functional defined by the r.h.s
in formula [3.7 has the desired property. O

Following Chen [19] we now extend the functional M from H to the space H1 1
of all w such that w + dd“u is a positive current with L°°—coeflicients, using the
formula in the previous proposition. Theorem [[] claims that this functional is
convex along weak geodesics.

It is not a priori clear that the functional is continuous along weak geodesics.
(We thank Sébastien Boucksom and Mihai Paun for pointing this out to us.) It
does follow from pluripotential theory that the energy parts of the formula are
continuous since the potential varies continuously from fiber to fiber. The entropy
part however is only known to be lower semicontinuous. Therefore we will first state
the basic result concerning distributional derivatives, and then show the required
continuity in our setting afterwards. In the theorem below we say that a function v
of one complex variable is weakly subharmonic if 90v > 0 in the sense of currents.
Similarily, we say that a function of one real variable is weakly convex if its second
derivative in the sense of distributions is nonnegative.

Theorem 3.3. Let u, be a family of functions in PSH(X,w) such that w + ddu
is a locally bounded current, m*w + dd°U > 0 and (7*w + dd°U)" 1 =0 on X x D.
Then the Mabuchi functional M(u;) is weakly subharmonic with respect to T € D.
In particular, M(ut) is weakly convex along the weak geodesic u; connecting any
two given points in H(X,w).

Proof. Let ¥ = U(7,z) = ¢ (x) be alocally bounded singular metric on the relative
canonical line bundle K,;/p and denote by fY(r) the following function on D
attached to W :

= ( -

n
Ur

amwmewm)+Amy
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(the definition is made so that f¥(7) = M(u,) if ¥ is the (unbounded) metric
defined by wy; ). Then we claim that

(3.8) dd°f¥(r) = / T, T :=dd“(V A (n*wo+dd°U)")
X

where T is defined as an (n 4+ 1,7 + 1) current (distribution), which a priori may

not be of order zero. More precisely, for a local smooth test function v supported

on a local coordinate neighborhood V' C M the current T is locally defined by

(T, v) = /\I/V (m*wo + dd°U)" A dd°v,

where Wy is a local function representing the metric ¥ on Kj;/p (given a local
trivialization of Kj;/p). To prove formula B.8 take a sequence ¥; of uniformly
bounded smooth metrics such that ¥; — ¥ almost everywhere on X for every 7
(which may be constructed using local convolution and a partition of the unity).
Then a direct calculation (using formula BH) gives

(3.9)  dd°fY(r) =n, ::/XTJ-, T, = dd°(W; A (7°wo + dd°U)")

By the dominated convergence theorem n; — 1 := [ < I' weakly on D (in the sense of
distributions). Moreover, by the dominated convergence theorem f¥i(7) — f¥(7)
pointwise on D, in a dominated manner and hence, since the linear operator dd°
is continuous under such convergence the desired formula B.§ follows from formula

3.9

We want to apply these considerations to ¥ = log(wg + dd$U)™, but we cannot
do so immediately since this metric is not locally bounded. For this reason we next
introduce a truncation in the following way. For a fixed positive number A, we
define

U 4 := max{log (wo + ddSu,)",x — A}
where y denotes a suitable fixed continuous metric on Ky p, to be constructed
below. We claim that the current

Ty :=ddU s N (ﬂ'*wo + dch)n

satisfies Ty > 0, i.e. is defined by a positive measure, if y is chosen to be continuous
and such that

dd®x > —ko(m"wo + dd°U)
for some positive integer kg. As explained above this will imply that

Foa(r) i () - €0 )+ [ togtana {2 XAy

n+1 Wy wg

is subharmonic for any A > 0. Letting A — oo and invoking the dominated
convergence theorem we get ¥4 (1) — M (u,) which will conclude the proof of the
theorem.

To construct x we first let xo be an arbitrary smooth metric on Kx. Then we
set x 1= 7 xo — koU where kg is sufficiently large to ensure that dd®xg + kowo > 0.
Then

dd®x = m*ddxo — ko(7*wo + dd°U) + kom*wo > —ko(n*wo + dd°U),

so x fulfills our requirement.
14



Now, the claim that T4 > 0 is a local statement. Accordingly, we locally write
T wp + dd°U = dd°®
for a local psh function ® on M and write ¢, = ®(-,7). Our proof proceeds by a
local approximation argument involving the local Bergman measures Sy, (that we
identify with their density) for the Hilbert space of all holomorphic functions on
the unit-ball in Euclidean C" equipped with the weight k¢, ; see Section More
precisely, consider the following local current:
Tap:=ddUap A (dd°D)", W4 = max{log B, x — A}

By Prop 2] and the dominated convergence theorem

lm Tpa=Ta

k—o0

in the local weak topology of currents. Thus, to prove that T4 > 0 it will be enough
to prove that the locally defined (n + 1,n + 1)—current Ty 4 is a positive measure.
To fix ideas we first observe that the following current is positive:

Ty := dd“Ui A (dd°®@)", Uy = log(Bk)

(which formally corresponds to the case A = o00). Indeed, by the results on plurisub-
harmonic variation of Bergman kernels in [IT] dd°log K4, > 0 on X x A and hence

(3.10) ddlog By > —kdd°®
As a consequence,
Ty := dd°log B A (dd°®)" > —k(dd°®) A (dd°®@)" = 0,

using the geodesic equation 2] in the last equality. Moving to the case when
A # oo we note that, by construction, ¥ 4 j, is the max of two local functions whose
curvature forms are bounded from below by —kdd“® (for k > ko) and hence W 4
also satisfies

(3.11) dd°V 4 ) > —kdd°®

Now arguing precisely as above (and using the inequality B.IT]) we see that Tj 4 > 0.
Moreover, by Corollary 2.2]

|
e¥Var — max{%Kk@e*k%,e*(X*A)} — max{MA(¢), ef(fo)},

as k — oo pointwise almost everywhere on X and for every 7 in a dominated fashion
(after passing to a subsequence with respect to k). Hence, invoking the dominated
convergence theorem gives the following local weak convergence:

lim Tpa=Ta
k—o00
In particular, this shows that T4 > 0 and as explained above this concludes the

proof of the theorem. O

Before going on to prove the continuity of the Mabuchi functional we point out
that the previous proof simplifies somewhat in case the cohomology class of w is
integral. Then we can write

wo + ddu, = dd°¢,,
where ¢, is for each 7 the weight of a metric on a positive line bundle L. We can

then consider the Bergman kernels for the spaces H°(X, Kx + kL), induced by the
15



metrics k¢, (instead of the local Bergman kernels that we used in the proof for
the general case) and their Bergman measures

Brr = Kpp e "7k,

We define

U4 = max{log(dd“¢?), x — A}
and

W 4,5 = max{log(Bkr), x — A}
and use these metrics on the relative canonical bundle Kj;/p to define functions
f¥a(r) and fY4*%(7) as in the very beginning of the proof. We then get that
pointwise f¥4* tends to f¥4(7) as k — oo and that f¥4(7) tends to M(7) as
A — oo . Moreover f¥4.%(7) is subharmonic by the same argument as before and

it follows that M is at least weakly subharmonic. We will have use for this remark
in the proof of the continuity.

Theorem 3.4. M is continuous along weak geodesics and therefore convex in the
pointwise sense.

Proof. Here we assume that the function U defines a weak geodesic so we may
assume that it depends only on ¢ := Rer. We first consider the case when the
class is integral. The functionals f¥4.x(7) are then clearly continuous with respect
to 7 since by the continuity of the metric ¢,, the Bergman kernels depend con-
tinuously on 7. Hence f¥Y4* are convex in the ordinary pointwise sense. These
functions converge pointwise to f¥4 as k — 0o, so these functions are also convex.
Finally, as A — oo we get that the Mabuchi functional is also convex. As a convex
function, M is thus continuous on the open interval and upper semicontinuous on
the closed interval. By the lower semicontinuity of the entropy, M is always lower
semicontinuous, so we conclude that M is in fact continuous on the closed interval.

We will now sketch how this argument can be adapted to the general case. Then
we define ¥4 as in the proof of Theorem 3.2. It is enough to prove that the
corresponding function f¥4 is convex (in the pointwise sense) since then we can
take the limit as A — —oo and get that M is convex, and we conclude as in the
integral case that M is continuous on the closed interval.

Let k.(s) be a sequence of strictly convex functions with £, > 1 on the real line
tending to s as € — 0. We define f¥4 just like f¥4, but replacing the factor

ebar

]
og( o

in the entropy term by

It is enough to prove that these functions are convex for all € > 0 and we already
know by the same argument as in the proof of Theorem 3.2 that they are weakly
convex. We let 5]2 be a partition of unity subordinate to a covering of coordinate
patches over which L is trivial and consider the local entropy functions

ebar

m:Lﬁmm< ).
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We define H §k) in a similar way, replacing ¥ 4 by its k : th approximation by local

Bergman kernels. Taking the dd® of H §k), using the plurisubharmonic variation of

Bergman kernels and the strict convexity of k. a direct estimate shows that
dd°H" > ~C.,

so H ;k) + C.t? is convex since our local Bergman kernels depend continuously on

t. Letting k — oo we find that H; + Cct? is also convex. We can then sum over j
and conclude that

eVar
/ re(log(“0)) + .2
X Wo

is convex and in particular continuous. Therefore f¥4 are convex in the pointwise
sense, since we already know that they are weakly convex. This completes the
proof. O

3.1. Proof of Corollary Fix up and u; in H and denote by u; the cor-
responding weak geodesic. By the “sub-slope inequality” for the convex function

£(8) == M(uy), Le. f(1) — f(0) > f/(0) we have
M) = M) = £0) > [ (~Roy +RIGE ol

where the lower bound for f’(0) is obtained by direct differentiations as in the
proof of Prop (see Lemma below). In particular, if w,, has constant scalar
curvature then it minimizes the Mabuchi functional. More generally, applying the
Cauchy-Schwartz inequality to the right hand side of the inequality above and using
that d(uo,u1)? = [(tit]e=0)?w? (see [18]) concludes the proof.

uo

Lemma 3.5. Given and ug,u; € H, let uy be the corresponding weak geodesic
curve. Then

- _d
fig 200) = Mlwo) / (~Ru,, +R)SL wn
t—0+ t x ‘o0 dt pt=0 "°

Proof. This is shown by refining the argument in the proof of Prop We will
first handle the entropy part, i e show that

B (1/0) (g (w,) — Hg () >

dut

—  Ricwy, Awl 1+ n/ —J;—oRicwo A w™~ 1,
X dt t=0 o “o X dt |t 0 0 “o

Here we use the fact that the entropy is convex with respect to the affine structure

on the space of probability measures (cf Proposition 3.1) , so that
Hyy (v1) — Hyo (Vo) = (d/ds)|s=0Hpo (vs)

if vs = s11 + (1 — s)vy. Moreover, since log(vs/po)vs is convex in s, it follows from
monotone convergence that

(0/d5)] oy (v2) = [ log(vn/ o) i — ).

From this we get, choosing v1 = wy, and vy = wy, that

1 1
(@) — Hag(wl) = [ logtel /o)y (i, —o2,)
17
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Expand wy, — wji, = dd®(u —u;) A (Wl !t + .wl7!) and use integration by parts

to let the dd®—operator instead act on the smooth function log “:;0 . Then letting
t — 0 we get the desired inequality for the entropy part of M(u;). The calculation
for the derivative of the “energy part” of M follows immediately from the relations

B4 O

3.1.1. The twisted setting. Later on we will also consider 'twisted’ versions of the
Mabuchi functional. These are obtained simply as the sum of M and another
convex functional F. We will consider two main cases. The first is to let u be a
strictly positive smooth volume form on X and put

Flu) = Fu(u) := /X udp — ¢, &(u),

with ¢, choosen so that F,,(1) = 0. Clearly F, is convex along weak geodesics since
its derivative is

(d/dt)F(us) = /Xu;d,u — (d/dt)E(uy).

The first term here is increasing since uj is increasing, and the second term is
constant since the energy is linear along weak geodesics. The next choice is to let
a be a strictly positive (1,1)-form on X and let

F = Foi=E% —u€,

the constant ¢, again chosen so that F vanishes on constants. By formula (3.5)
Fo is again convex along (sub)geodesics, since it is clearly continuous. (The strict
convexity seems to be a more subtle issue that for simplicity we do not discuss
here.) The critical points of M, := M + F, are said to have constant a-twisted
scalar curvature, i e they satsify an equation

R, — try,(a) = constant,,

see [33], [48]. Just as before it follows that any metric with constant a-twisted
scalar curvature minimizes M,. As a consequence, the a—twisted Mabuchi func-
tional is bounded from below in any K&hler class containing a metric with constant
a—twisted scalar curvature. As shown in [48] this leads to geometric obstructions
for the existence of such metrics.

3.2. A positivity property for solutions to homogeneous Monge-Ampére
equation and its relation to foliations. The proof of Theorem yields the
following positivity result of independent interest, for sufficiently regular solutions
to the local homogeneous Monge-Ampére equation on a product domain (in the
proof of Theorem [3.3] the role of the current S below is played by (dd“®)™):

Theorem 3.6. Let ® be a plurisubharmonic function on M := X X D where X
and D are domains in C™ and C, respectively and assume that the positive current
dd°® has components in L7S. and satisfies (dd°®)"+! = 0. Then the singular metric
induced by the fiberwise currents wy := dd°¢, on the relative canonical line bundle
Kyyp — M has non-negative curvature along any positive current S in M of
bidimension (1,1) with the property that ® is harmonic along S, i.e. (dd°®,S) = 0.
More precisely, for any positive number A

0%,
>
8zi62j) NS 20,
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in terms of the truncated logarithm defined by log 4 t := max{logt, —A}.

In particular, if ® happens to admit a Monge-Ampére foliation then the positivity
result above holds along the leaves of the foliation. This observation is closely
related to a previous local result of Bedford-Burns (see Prop 4.1 in [2]) and Chen-
Tian who considered the case when ® corresponds to a global bona fide geodesic uy
in the space of Kéhler potentials on a K&hler manifold (X, w) (see (Corollary 4.2.11
in [22]). Then, by a classical result of Bedford-Kalka (which only demands that ®
be C3—smooth), there is a foliation of M := X x D in one-dimensional complex
curves L, (the leaves) such that the local potential ® is harmonic along any leaf
L. Moreover, the leaves are transverse to the slice X x {0} (and hence the latter
space can be used as the parameter space for the set of leaves). In this setting the
results of Bedford-Burns and Chen-Tian referred to above may be formulated as
the following special case of the previous theorem:

Proposition 3.7. Consider the relative canonical line bundle K y;/4 with the smooth
metric induced by the volume forms (dd°¢:)™. Then its restriction to any leaf L,
has non-negative curvature.

Interestingly, in the presence of a foliation as above the closed positive current
S := (dd“®)™ on M of dimension (1, 1), appearing in the proof of Theorem B3] can
be written as an average of the integration currents [L,] defined by the leaves of

the foliation:
S = / (Lo,
aceX
where p := (dd®¢po)".

Another special case of Theorem 3.4, concerning the case when the current S
is assumed to be a smooth complex curve (but not necesseraily a leaf of a folia-
tion) and ® is C2—smooth has previously appeared in connection to the problem
of constructing low regularity (i.e. not C?) solutions to complex Monge-Ampére
equations (see Lemma in [3] and Proposition 2.2 in [25]).

4. UNIQUENESS RESULTS

In this section we shall show how the convexity of the K-energy implies unique-
ness of metrics, up to automorphisms, of metrics of constant scalar curvature and
more generally extremal metrics. Recall that (X, w) denotes the space of (smooth)
potentials of Kéhler metrics on X that are cohomologous to a fixed reference met-
ric w > 0 (see the introduction). The tangent space of H is the space of smooth
functions on X, and we can identify the space of Kdhler metrics cohomologous to
w with ‘H modulo constants. We will use the twisted Mabuchi functionals from
section 3.1.1 and start with some preparations.

Let p# > 0 be a smooth volume form on X, that for simplicity we normalize so

that
/d,u:/ w™.
b'e X

We have then defined the function
Fulu) = / udp — E(u) == I, (u) — E(u)
X

in section 3.1.1. The basic idea is to use the twisted Mabuchi functionals

Mg =M+ sF,,
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for 0 < s << 1. The main difficulty in the proof is that although we know that
M is convex along generalized geodesics, we don’t know when it is linear along the
geodesics. (Conjecturally this holds only for geodesics that come from the flow of a
holomorphic vector field.) Therefore we perturb M by adding sF,, which gives us a
strictly convex functional. In case there are no nontrivial holomorphic vector fields
on X, one can prove by the implicit function theorem that near each critical point
of M there is a critical point of M. By strict convexity, there can be at most one
critical point of My, and it follows that there is at most one critical point of M
too. In case there are holomorphic vector fields it of course no longer holds that
there are critical points of M near each critical point of M - if it did, we would
get absolute uniqueness and not just uniqueness up to automorphisms. However,
it turns out that each critical point of M can be moved by an element in Auty(X)
to a new critical point, which can be approximated by critical points of Mg, and
this gives uniqueness up to automorphisms. The proof of this latter fact requires
a rather sophisticated version of the implicit function theorem, so to simplify we
shall instead work with ’almost critical points’, which avoids the use of the implicit
function theorem. .

With our normalization, 7, vanishes on constants so it decends to a functional
on the space of Kéhler forms in [w]. We have already seen that F,, is convex; next
we shall prove that it is strictly convex in a certain sense. Since £ is linear, this
amounts to proving the strict convexity of I,,.

Proposition 4.1. I, is strictly convex along CV1-subgeodesics in the sense that
if up is a CYl-subgeodesic and f(t) := I,(u¢) is affine, then wy = dd°us + w is
constant. More precisely, if wy, = dd°u; +w < Cw and p > Aw™, then

F'(1) = f1(0) = §A/(C™ ) d(wo, w1)?,
where § > 0 only depends on pu, w and X, and d(wg,w1) is the Mabuchi distance.

Proof. Assume first that u; is a smooth subgeodesic and w; > 0 for all t. Then

7100 = [ d > [ (g, du,
X X )
since u; is a subgeodesic. Assume w; < Cw for all ¢. Then
002, > C~10u3.

Since w and p are fixed and u; is a function we have that

[ =5 [ Jie o,
X X

where a; is the average of u; with respect to p and § only depends on p, w and X.
Hence

f(t) > 8/C /X e — ael2dp.

Clearly it follows that ; = a; if f is affine. If u; is only of class C1'! we can write
u; as a decreasing limit of subgeodesics that converge uniformly in C! and are such
that the constant C' can be kept fixed. It then follows that f(¢) also converges in

C' and we get that
1
/ dt/ |’l.1/t—at|2d/L:O,
0 X
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so Uy = ay again. Hence w; is independent of ¢.
For the second statement we notice that we also have proved that

1
F1) — £(0) > (5/0)/ dt/ e — arl2dp.
0 X
But
/ |’U,t — at|2dﬂ Z AC_"/ |ut — at|2wf 2 AC_"/ |ut — bt|2W?,
X X X

where b; is the average of @; with respect to wy'. Since

1
/ dt/ iy — bt|2wf = d(wl,wo)Q,
0 X

we have also proved the second statement. ([

We will also need a lemma on how F,, depends on .

Lemma 4.2. Let y and v be two smooth volume forms with total mass equal to the
mass of w™. Then

|Fu(u) = Fu(u)] < Cpp
for all u in H.

Proof. By Yau’s solution of the Calabi conjecture, we can write

_.mn
v =uw,,

_.mn
/’L_w'uj

with w,, in [w]. (Of course, the proof does not really depend on the solution of
the Calabi conjecture, since we could have used only volume forms that are given

as powers of Kéhler forms in the proof.) Then w, — w, = dd°v for some function v
on X. Hence

Fu(u) — Fo(u) = / u(wy, —wy) = /X u(ddv A Zwﬁ_k_l Awh).

X
Integration by parts gives

f#(u)—}",,(u):/Xv(ddcu/\ZwLﬁkfl/\wf):/Xv(wu—w)/\Zw‘kafl/\w’,f),

which is clearly bounded by a constant depending only on the sup-norm of v and
the volume of [w]. O

Next we discuss briefly the Hessian of M on the space of smooth Kahler poten-
tials. Denote F' = d M, the differential of the Mabuchi functional. It is a 1-form on
H whose action on an element v of the tangent space of H, i e a smooth function
is given by

F(u)w = —/ v(Ry,, — Ry, )wy,.
b'e
The Mabuchi metric induces a connection D on the tangent bundle of H, which in
turn induces a (dual) connection on the space of 1-forms that we also denote by D.

If v is a vector at a point u we can then apply D, to the 1-form F' and get a new
1-form D, F'. By definition, if w is another vector at u, then

D,F.aw = Hpm(v,w)
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is the Hessian of M at u, which in spite of appearances is a symmetric bilinear
form (since the connection is symmetric). It is well known that this equals

Hpy(v,w) :/ Duv Dyw wyy,
X

where D, is the Lichnerowicz operator, see [26]. This is an elliptic operator of
second order, D, = V,,0 where V is the Chern connection on the cotangent bundle
of X for the metric w,. It is also well known that

D,w=0
if and only if the (1,0) vector field V' (the complex gradient of w) on X defined by
V |w, = i0w

is holomorphic.

Proposition 4.3. Let v be a smooth volume form on X that defines a 1-form G,

at u by
G,w = / wdv.
X
Then there is a vector v at u such that
D'UF|u - Gv

if and only if G,.w = 0 for all w such that the complex gradient of w is holomorphic.
Proof. We have

D, F|,.w = Hp(v,w) =/ DyvDyww, = / D;Dyv ww,.
b's b's

Hence
D,F|, =Gv
means that
D;Dyvw, =v.
Since D;D,v is a self adjoint elliptic operator, this equation is solvable if and only

if v annihilates the kernel of D} D, v, which is the same as the kernel of D,,, i e the
space of functions whose complex gradients are holomorphic. ([

We are now ready for the uniqueness and we start with the case when there are
no nontrivial holomorphic vector fields on X.

Theorem 4.4. Assume wy, and w,, are metrics of constant scalar curvature on
X and that X has no nontrivial holomorphic vector fields. Then wy, = Wy, -

Proof. By hypthesis ug and u; are both critical points of M, so F(ug) = F(u1) = 0.
Let u be a strictly positive volume form normalized as in the beginning of this
section. The differential of F, at ug is G(ug) = G, where v = p — wy . Since
by our normalization this measure annihilates constants, which are now the only
functions with holomorphic complex gradient, Proposition 4.3 implies that we can
solve
Dy Fluy, = —G(ug).
Consider the functional
Mg =M+ sF,,
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and its differential
Fs(u) = F(u) + sG(u).

If ws is a smooth curve of continuous functions (that we consider as a tangent
vector field along the curve ug + svg in H) we have

(d/ds)|oFs(ug + svo).ws = Dyy F|uy-wo + F(ug).Dyyws + G(ug).wo = 0,

since F(up) = 0 and Dy, F|u, = —G(ug). Hence Fs(ug + svg).ws = O(s?). More
precisely, since

Fs(up + svp).w = / wdV
X

for some smooth density V, depending smoothly on s, we get that V; = O(s?), so

s(ug + svg). w| < Cs”sup |w|.
F, <02X

We can now do the same construction for the other critical point u; and obtain
another function v; with similar properties. Then connect for 0 < s << 1 the
smooth points ug + svg and u; + sv; by a C':'-geodesic ui. We need to relate F'
and Fj, the formal derivatives of M and Mg, to the actual one sided derivatives
along the geodesics at the endpoints. It is not a priori clear that they coincide since
the formal derivatives are the derivatives in H, the space of smooth potentials, and
the weak geodesic has less regularity. However it follows from Lemma 3.5 that

(d/dt)[[ZoM(uf) > F(ug)-(d/dt)]—ou;.-

and also that we have the converse inequality at the other endpoint. Since Fy is
differentiable one time on the closed geodesic, the same inequalities hold for M as
well.

Since M(uj) is convex and £(uf) is linear in ¢ we get that

0 < s((d/dt)l = (d/dt)|o)) L (u7) < ((d/dt)]1 — (d/d)]o)) M (uz) <
F(uf).(d/dt)|e=1u; — F(ug)-(d/dt)]e—ou; < O(s?).
Dividing by s we get that
((d/dt)ly = (d/dt)]o)) L (u;) < C's,

so by Proposition 4.1, d(wug,wui)z < (C"s. Here we have also used the fact that the
constant C' in Proposition 4.1 can be taken independent of s, i e that the L*°-bound
on wy: can be taken uniform in s, see [7]. Hence d(wa,,wy,) = 0 which implies that
Wyy = Wy, by a result of Chen, see [I§]. O

Notice that there are two main points of the argument. Apart from the convexity
along weak geodesics we also use that M is strictly convex on H (modulo constants)
in the formal sense that its Hessian is strictly positive if there are no nontrivial
holomorphic vecor fields. This means that the derivative of F' = dM is invertible
which allows us to solve D, F'|,, = —G(ug). The same principle is illustrated in the
next result which concerns uniqueness of metrics of constant a-twisted curvature
(cf section 3.1.1).

Theorem 4.5. Let a be a Kdhler form on X. Then there is at most one metric
wo in a given Kdhler class [w] with constant a-twisted curvature.
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Proof. Recall that wy is a critical point of the twisted Mabuchi functional M, =
M+ E* — c(a)€ ( cf section 3.1.1). One can check that the Hessian of £ (at a
smooth point) is strictly positive, and we also have that the Hessian of £ is zero
since £ is linear along geodesics. If we put F, = dM,, it follows that we can solve
Doy Fuluy = —G(up) as in the proof of the previous theorem, and again we conclude
by the convexity of M. O

We finally turn to the case of metrics of constant scalar curvature when there
are non zero holomorphic vector fields on X. The argument is then essentially the
same, with the additional difficulty that we can not solve the equation

D'UDF|u0 = _G(U‘O)

in general. Therefore we shall make a preliminary modification of uy by applying
an automorphism in Auty(X), so that after the modification G(u) annihilates all
functions with holomorphic complex gradient.

Proposition 4.6. Let S be the submanifold of H consisting of all potentials of
metrics g*wy,, where g ranges over Auty(X). Then F, has a minimum and hence
a critical point on S. This implies that G = dF,, annihilates all real functions
whose complex gradients are holomorphic.

Proof. Any holomorphic vector field V' determines a geodesic ray starting at ug
obtained by following the flow of V', and S is the union of all such rays. If u = wy ,
then ug is a critical point of F,. Since F,, is strictly convex along each ray it follows
that F, is proper on each ray if y = wy; . Since S is of finite dimension, it follows
that F,, is proper on S in this case. By lemma 4.2 this implies that F,, is proper
on S for any choice of y, and so must have a minimum. For the last claim we
let g: = exp(tV) be the ray determined by a holomorphic field V. Then the Lie
derivative of w with respect to V' equals

dV |w = id0hY,
and also
(d/dt)giw = (d/dt)(w + i00u;) = i00i.

Hence hY = 1i4]4—o so d]-'u.hx = dF,.% = 0if w is a critical point of F,. O

By Proposition 4.3 this implies that we can find a vy that solves
Dy Fluy, = —G(ug).

We now apply this when wg is a critical point of M. Notice that M is invariant
under the action of Auty(X), since it is linear along the flow of holomorphic vector
fields and is bounded from below, cf Corollary 1.2. Hence the point we get after
applying the automorphism is still a critical point of M. If u; is another critical
point we can apply the same argument to u;. The proof of Theorem 4.4 then applies
without change and we see that after applying these automorphisms wy, = wy, -
Therefore we have proved

Theorem 4.7. Assume that w,, and w,, are metrics of constant scalar curvature.
Then there is an automorphism g in Auty(X) such that

9" (Wuy) = W
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Remark. This argument follows an idea by Bando and Mabuchi in [I] to prove
uniqueness of Kéahler-Einstein metrics and it may be illuminating to compare the
arguments. Bando and Mabuchi consider another perturbation defined by Aubin’s
continuity method which applies when [w] = ¢;(X) and can be written

Ricws = (1 — s)ws + sa

where « is a fixed Kéhler form. Using a bifurcation technique that plays the role
of our Proposition 4.6, they show that a particular choice wg in the Autg-orbit of
a Kéhler-Einstein metric extends to a smooth curve of solutions to the perturbed
equations above. Using a priori estimates, they show that this curve extends to a
smooth curve for s in [0, 1]. For s = 1 it is easy to see that the perturbed equation
has a unique solution, and it then follows from the invertibility of the linearized
equations that we have uniqueness for s = 0 as well. One simplifying feature of
our argument, which is based on convexity, is that it is enough to consider small,
in fact even infinitesimal, perturbations of the original problem. O

4.1. Calabi’s extremal metrics. The extremal Kihler metrics (in a given Kéhler
class) introduced by Calabi [I6], generalizing constant scalar curvature metrics, are
defined as the critical points of the L2—norm of the scalar curvature, i.e. the
functional w — [ RZw™ on the space of Kéhler metrics in a the fixed Kéhler
class. As shown by Calabi this equivalently means that the gradient of R, is a
holomorphic vector field, or more precisely that the (1,0) field V' with real part
equal to the gradient of R, is holomorphic. We shall now generalize Theorem 4.7
to extremal K&hler metrics. This builds on the fundamental work in [35], [30] and
[45], which for completeness we develop from scratch in a form suitable in this
context.

The holomorphic vector field V' will in general depend on the extremal metric.
The first step in the proof, following [35], is to prove that one can obtain a unique
‘extremal vector field’ by fixing a compact subgroup K of Auto(X) and requiring
that the flow of ImV lie in K. Once this is done we, following [30] and [45],
modify the Mabuchi functional to obtain another functional My, defined on Hy,
the space of Kahler metrics invariant under Im V', by adding a term &y, depending
on V. The extremal metrics corresponding to the now fixed field V' are now critical
points of My on Hy. The energy functional &y is linear, so My is also convex
along geodesics in Hy. Given all this, the proof of the uniqueness of extremal
metrics follows the same lines as before.

We start with a few preparations. Let w be any Kéhler form on X. Recall that
if h is a complex valued function on X we define a vector field of type (1,0) by

V]w = idh.
V =:V,h is called the complex gradient of h and we have that
2ImV Jw = d°Im h + dRe h.

(Contrary to our earlier conventions we here write d° for i(0—9).) Therefore we see

that the Lie derivative of w along ImV, Lyw = dImV Jw = (1/2)dd°Tm h vanishes

if and only if Im h is a constant and in that case Re h/2 is a Hamiltonian of Im V.

Then the real part of V' is the real gradient of h/2, so with h = R, we see that w is

extremal if and only if the complex gradient of R, is holomorphic. We normalize
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by choosing h so that

/ hw™ = 0.
X

Then h is uniquely determined by V and w, and we write h = hY. Note that
with this normalization, w is invariant under the flow of Im V' if and only if hY is
real valued. Denote by H(X) the space of holomorphic vector fields that arise as
complex gradients. Note that hY *W = hY + b and we also have

Lemma 4.8. If w, = wo +i00u and V € H(X), then
1% 1%
hg,, = hg, +V(u).

In the proof of this we shall use a technical lemma that will reappear later several
times.

Lemma 4.9. If u and v are functions on X

n/ vidOu A W' = —/ Vv(u) w™.
p's s

Proof. This follows from integration by parts and noting that V v(u) = (Ju, 07).,,.
O

To prove Lemma 4.8 we first note that id(hY, + V(u)) = V]w,, so b =
hY 4+ V(u) 4 c(u), where ¢(u) is constant on X. Moreover

0 = (d/dt) / hy. wi, = / (V(u) + é(tu))w?, +n / Y, i00u A wl .
X X X

By the technical lemma 4.8, ¢(tu) = 0, so ¢(u) = 0 since ¢(0) = 0.
We next, following [35], define a bilinear form on H(X) by

VW), = / Ry BV,
X

Proposition 4.10. {, ), only depends on the cohomology class [w].

Proof. We take a curve of metrics w; = w + i90u; in [w] and differentiate:
(d/dt)/ h hiy wy = / (V(@)hY) + W (a)h),) wp + n/ h. hl 1000 A w] ™t
X X X
By the technical lemma, this expression vanishes which proves the proposition. [

Since the cohomology class is fixed in our discussion we can thus consider the
form as fixed and write (, ), = (, ).

Let now K be a compact subgroup of Auto(X) and denote by Hg (X) the sub-
space of H(X) consisting of holomorphic vector fields V' such that the flow of Im V'
lies in K.

Proposition 4.11. For any compact subgroup K of Auto(X) the restriction of (, )
to Hi (X) is real valued and positive definite; in particular non degenerate.

Proof. Taking averages of an arbitrary Kéhler form in our class, we can represent

our form by a K-invariant Kihler form w. Then hY is real valued if V' lies in Hy-.

Both claims of the proposition follow directly from this. (I
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For a holomorphic vector field V' in H(X) we put
CyP ={u e C®(X;R);Im (V)u = 0}

and denote by Autg(X, V) the subgroup of Aut(X) of automorphisms commuting
with the flow of V.

Proposition 4.12. Let V be a vector field in H(X) and wo a Kdhler form invariant
under the flow of ImV. Then a real valued function w lies in C5F if and only if the
vector fields Im V,u and Im V' commute. If moreover V ,u is holomorphic, then
W lies in the Lie algebra of Auty(X,V) .

Proof. For v real valued, let W,, = 2Im V,,v be the vector field determined by the
Hamiltonian v and the symplectic form wg, W, |wg = dv. Then

[Wu, Im V] = W{uyh)fo}

(where {, } is the Poisson bracket). Since for any u and v, {u,v} = W,u we see
that {u, hxo} = 2Im Vu, so ImVu = 0 if and only if W, and Im V' commute. If
we also assume that Vv is holomorphic, then Im Vv and Im V' commute if and
only if V,,u and V' commute, which means that V,, u lies in the Lie algebra of
Auto(X,V) . O

Finally, given a field V' in H(X) we define an associated energy functional &y
by letting

= / whY W
X

The next proposition shows that this indeed defines a function on the subspace
Hy of H consisting of Kdhler metrics invariant under Im V' | and also computes its
second derivative along a curve.

Proposition 4.13. Let w, = wy + i00u where u € Cy depends smoothly on two
real parameters s and t. Assume that wg is invariant under Im V. Then

(d/ds) / whl, wit = / (iist — (O, Dl )s, )y, Wi,
X X
where (, ), = Re(, )w, s the real scalar product defined by w,,.

Proof. A direct computation using the technical lemma shows that
(d/ds) / ughl, wil = / (iist — (O, Ol ) s, ) h, wit-
X X

If w lies in C° then h), = h), + V(u) is real valued for all s and ¢. Hence the
proposition follows by taking real parts. ([

Since this expression is symmetric in s and ¢ it follows that

1
/ dt / aghl, Wi
0 X

is independent of the choice of path between ug = 0 and u1, so & is a well defined
function. Note also that d€y .4, vanishes if u; is a constant, so £y (u) decends to a
function on the space of Kéhler forms in [w]. In addition, we see from Proposition
4.13 that

(@/t v () = [ (i = |92, B, 1
X
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This formula extends to curves in Cé"l, if we define hb‘fu = hxo + V(u), simply by
approximation. Thus we see that &y is linear along a Cé’l—geodesic in Hy. For any
pair of metrics in Hy the weak geodesic between them will remain in Hy, so &y is
linear along the connecting geodesic. From this we also conclude that the Hessian
of &y at wo restricted to C° vanishes.

We are now ready for the proof of the uniqueness of extremal metrics. Following
[35] we shall first see that the holomorphic vector field that arises as the complex
gradient of the scalar curvature R, of an extremal metric is uniquely determined
by the given Kéhler class, modulo Auto(X) :

Proposition 4.14. Let K be a a mazimal compact subgroup of Auty(X) and let
wo be an extremal metric in [w]. Let Vy be the associated vector field Vo = Vo R, -
Then

1. There is an element g in Auto(X) such that after replacing wo by g*wo the flow
of Im Vg lies in K,

and
2. If wi is another extremal metric in the same cohomology class, with associated
vector field V1 such that the flow of Im Vi also lies in K, then Vo = Vj.

Hence, given K, we may speak of the’ extremal vector field.

Proof. Since Vp is the complex gradient of a real valued function R,,,, the flow of
Im V) is an isometry as we have seen. Hence the flow of Im 1} lies in some maximal
compact group Ky. By a fundamental theorem of Iwasawa, [36], the two groups K
and Ky are conjugate under some automorphism g. This proves 1.

Let now V be the holomorphic vector field associated to wg. Then Vj lies in
Hg(X). Let W be an arbitrary field in Hg. Then

—<VO,W>=/)((RwO—Rw0)thg.

By definition, this is nothing but the negative of the Futaki invariant of W, [34],
which is well known not to depend on the choice of Kéhler metric. In particular it

also equals —(V7, W), so since the bilinear form is non degenerate on H, it follows
that Vp = V4. O

The main theorem of this section generalizes Theorem 4.7.

Theorem 4.15. Given any two extremal Kdhler metrics wy and wy in a given
cohomology class there exists an element g € Auty(X) such that wy = g*ws.

Following [30] and [45] we modify the Mabuchi funcional to obtain another func-
tional which has our extremal metrics as critical points. By Proposition 4.13 we
may assume that the vector fields associated to wy and w; are the same field V.
Then both wy and wy are invariant under Im V' and hence invariant under the clo-
sure of the one parameter subgroup of Autg(X) generated by Im V', which we call
T. Let My := M + &y, where &y is the previously introduced energy functional
associated to the extremal field V. My is defined on the subspace Hy of H of
Kahler potentials invariant under Im V. Then booth wy and w; are critical points
of My on Hy. We now let u be a smooth T-invariant volume form, normalized as
before and consider, following the proof of Theorem 4.7, the functionals

My + S]'—#,
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where s is a small positive number and let Fy (u,s) := d(My + sF,)|,. We shall
prove that if wg = w + 100ug then there exists a smooth function vy such that
Fy (up + svg, 8) = O(s?) and as before this amounts to solving the equation

DvodMV|u0 = _d‘F#LUo = —(,u—wg).

Moreover, we look for vy such that Im V(vg) = 0. We proceed as in the proof of
Theorem 4.7, but this time we first replace wg by g*wo where g € Auto(X,V) is
chosen to give the minimum of F,, on the orbit Auto(X, V)wo, i e we use the sub-
group Auto(X,V) instead of the full group Auto(X). Notice that My is invariant
under the action of Auty(X, V) by the same reason as before: It is linear along the
flow of vector fields that commute with V' and is bounded from below on Hy (this
can be proved in the same way that we proved Corollary 1.2). Therefore g*wy =: w|
is still critical for My .

Then d]:u|w6 annihilates all real valued functions whose complex gradients lie
in the Lie algebra of Auto(X,V) , cf the proof of Proposition 4.6. By Proposition
4.11 it follows that dF, annihilates all functions in Cj® with holomorphic complex
gradients. But, if h is a general real valued function with holomorphic complex
gradient, and Avr(h) denotes the average of h over T, then (since p — wj is T-
invariant)

[ =) = [ Avr)u—w) =0,

since Avy(h) is annihilated by Im V. Hence p — w{ annihilates all real functions
with holomorphic complex gradient, which by Proposition 4.3 means that we can
solve

—DyydM|yy = 1t — wi.
Replacing vy by its average over T we can also find a solution that is T-invariant, i e
annihilated by Im V. Finally, we recall that by our formula for the second derivative
of Ev, the Hessian of £y restricted to C5° vanishes, so we have also solved

—Dvod./\/lv|u0 = U — w(’}.

The proof is then completed in the same way as before: After applying an element
of Auto(X,V) to w; we may solve in the same way

—Dy, dMy |y, = pp — wi'.

We then let u§ = uo + svp and v = vy + sv; and connect with a geodesic uj. By
uniqueness the geodesics lie in Hy so Ey(uf) is linear in ¢. It then follows again
from Proposition 4.1 that the square of the distance between wy; and wy; is of
order s, and hence wy = wy.
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