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1. Exponential map and tubular neighborhoods

Let X be a compact n-dimensional complex manifold and Y ⊂ X a smooth totally real
submanifold, i.e. such that TY ∩ JTY = {0} for the complex structure J on X. By a well
known result of Grauert, such a Y always admits a fundamental system of Stein tubular
neighborhoods U ⊂ X (this would be even true when X is noncompact, but we only need
the compact case here). In fact, if (Ωα) is a finite covering of X such that Y ∩ Ωα is a
smooth complete intersection {z ∈ Ωα ; xα,j(z) = 0}, 1 ≤ j ≤ q (where q = codimR Y ≥ n),
then one can take U = Uε = {ϕ(z) < ε} where

(1.1) ϕ(z) =
∑
α

θα(z)
∑

1≤j≤q

(xα,j(z))
2 ≥ 0

where (θα) is a partition of unity subordinate to (Ωα). The reason is that ϕ is strictly
plurisubharmonic near Y , as

i∂∂ϕ|Y = 2i
∑
α

θα(z)
∑

1≤j≤q

∂xα,j ∧ ∂ xα,j

and (∂xα,j)j has rank n at every point of Y , by the assumption that Y is totally real.
Now, let X be the complex conjugate manifold associated with the integrable almost

complex structure (X,−J) (in other words, OX = OX); we denote by x 7→ x the identity

* This work is supported by the European Research Council project “Algebraic and Kähler Geometry”
(ERC-ALKAGE, grant No. 670846 from September 2015)



2 J.-P. Demailly, Bergman bundles and invariance of plurigenera

map Id : X → X to stress that it is conjugate holomorphic. The underlying real analytic
manifold XR can be embedded diagonally in X × X by the diagonal map δ : x 7→ (x, x),
and the image δ(XR) is a totally real submanifold of X × X. In fact, if (zα,j)1≤j≤n is a
holomorphic coordinate system relative to a finite open covering (Ωα) of X, then the zα,j
define holomorphic coordinates on X relative to Ωα, and the “diagonal” δ(XR) is the totally
real submanifold of pairs (z, w) such that wα,j = zα,j for all α, j. In that case, we can take
Stein tubular neighborhoods of the form Uε = {ϕ < ε} where

(1.2) ϕ(z, w) =
∑
α

θα(z)θα(w)
∑

1≤j≤q

|wα,j − zα,j |2.

Here, the strict plurisubharmonicity of ϕ near δ(XR) is obvious from the fact that

|wα,j − zα,j |2 = |zα,j |2 + |wα,j |2 − 2 Re(zα,jwα,j).

For ε > 0 small, the first projection pr1 : Uε → X gives a small bundle whose fibers are
C∞-diffeomorphic to balls, but they will not be biholomorphic to complex balls in general.
In order to achieve this property, we can proceed in the following way. Pick a real analytic
hermitian metric γ on X (take e.g. the (1, 1)-part γ = g(1,1) = 1

2 (g+J∗g) of the Riemannian
pull-back g = δ∗(

∑
j idfj ∧ df j) where the (fj)1≤j≤N provide a holomorphic immersion of

the Stein neighborhood Uε into CN ). Let exp : TX → X, (z, ξ) 7→ expz(ξ) be the exponential
map associated with the metric γ, in such a way that R 3 t 7→ expz(tξ) are geodesics for the
Levi-Civita connection (the Chern connection of TX can be used alternatively, see [Dem??]).
Then exp is real analytic, and we have Taylor expansions

expz(ξ) =
∑

α,β∈Nn

aαβ(z)ξαξβ , ξ ∈ TX,z

with real analytic coefficients aαβ , where expz(ξ) = z+ ξ+O(|ξ|2) in local coordinates. The
real analyticity means that these expansions are convergent on a neighborhood |ξ|γ < ε0 of
the zero section of TX . We define the fiber-holomorphic part of the exponential map to be

(1.3) exph : TX → X, (z, ξ) 7→ exphz(ξ) =
∑
α∈Nn

aα 0(z)ξα.

It is uniquely defined, is convergent on the same tubular neighborhood {|ξ|γ < ε0}, has the
property that ξ 7→ exphz(ξ) is holomorphic for z ∈ X fixed, and satisfies again exphz(ξ) =
z+ξ+O(ξ2) in coordinates. By the implicit function, theorem, the map (z, ξ) 7→ (z, exphz(ξ))
is a biholomorphism from a neighborhood of the zero section of TX onto a neighborhood V
of the diagonal in X×X. Therefore, we get an inverse real analytic map X×X ⊃ V → TX ,
which we denote by (z, w) 7→ (z, ξ), ξ = loghz(w), such that w 7→ loghz(w) is holomorphic on
V ∩({z}×X), and loghz(w) = w−z+O((w−z)2) in coordinates. The tubular neighborhood

Uγ,ε = {(z, w) ∈ X ×X ; | loghz(w)|γ < ε}

is Stein for ε > 0 small; in fact, if p ∈ X and (z1, . . . , zn) is a holomorphic coordinate system
centered at p such that γp = i

∑
dzj ∧ dzj , then | loghz(w)|2γ = |w− z|2 +O(|w− z|3), hence

i∂∂| loghz(w)|2γ > 0 at (p, p) ∈ X ×X. By construction, the fiber pr−1
1 (z) of pr1 : Uγ,ε → X

is biholomorphic to the ε-ball of the complex vector space TX,z equipped with the hermitian
metric γz. In this way, we get a locally trivial real analytic bundle pr1 : Uγ,ε whose fibers
are complex balls; it is important to notice, however, that this ball bundle need not – and
in fact, will never – be holomorphically locally trivial.
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2. Curvature of Bergman bundles

2.A. Bergman version of the Dolbeault complex
Let X be a n-dimensional compact complex manifold equipped with a real analytic

hermitian metric γ, Uε = Uγ,ε ⊂ X ×X the ball bundle considered in §1 and

p = (pr1)|Uε
: Uε → X, p = (pr2)|Uε

: Uε → X

the natural projections. Our goal is to compute the curvature of what we call the “Bergman
direct image sheaf”

(2.1) Bε = pL
2

∗ (p∗O(KX)),

whose space of sections over an open subset V ⊂ X is defined to be Bε(V ) = holomorphic
sections f of p∗O(KX) on p−1(V ) that are in L2(p−1(K)) for all compact subsets K b V ,
i.e.

(2.2)

∫
p−1(K)

in
2

f ∧ f ∧ γn < +∞, ∀K b V.

Then Bε is an OX -module, and by the Ohsawa-Takegoshi extension theorem applied to
the subvariety p−1(z) ⊂ Uε, its fiber Bε,z = Bε,z/mzBε,z is isomorphic to the Hilbert
space H2(Bn) of L2 holomorphic n-forms on p−1(z) ' Bn. In fact, if we use orthonormal
coordinates (w1, . . . , wn) provided by exph acting on the hermitian space (TX,z, γz) and
centered at z, we get a biholomorphism Bn → p−1(z) given by the homothety ηε : w 7→ εw,
and a corresponding isomorphism

Bε,z −→ H2(Bn), f 7−→ g = η∗εf, i.e. with I = {1, . . . , n},(2.3)

fI(w) dw1 ∧ . . . ∧ dwn 7−→ εn fI(εw) dw1 ∧ . . . ∧ dwn, w ∈ Bn,(2.3′)

‖g‖2 =

∫
Bn

2−nin
2

g ∧ g, g = g(w) dw1 ∧ . . . ∧ dwn ∈ H2(Bn).(2.3′′)

As a consequence, Bε → X can be seen as a locally trivial (infinite dimensional) real analytic
bundle of typical fiber H2(Bn), and we can equip Bε,z with the natural L2 metric obtained
by declaring (2.3) to be an isometry. In this way, we get a real analytic hermitian metric on
the Bergman bundle Bε → X.

Similarly, we can consider a “Bergman version” of the Dolbeault complex, by introducing
a sheaf Fqε over X of (n, q)-forms which can be written locally over small open sets V ⊂ X
as

(2.4) f(z, w) =
∑
|J|=q

fJ(z, w) dw1 ∧ . . . ∧ dwn ∧ dzJ , (z, w) ∈ Uε ∩ (V ×X),

where the fJ(z, w) are C∞ smooth functions on Uε ∩ (V × X) such that fJ(z, w) is holo-
morphic in w and both f and ∂ f = ∂z f are in L2(p−1(K)) for all compact subsets K b V .
By construction, the usual ∂ operator yields a complex of sheaves (F•, ∂ ) and the kernel
Ker ∂ : F0 → F1 coincides with Bε. We are going to see that Bε can somehow be seen as an
infinite dimensional very ample vector bundle. This is already illustrated by the following
result.
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2.5. Proposition. Assume here that ε > 0 is taken so small that ψ(z, w) := | loghz(w)|2
is strictly plurisubharmonic up to the boundary on the compact set Uε ⊂ X × X. Then
the complex of sheaves (F•, ∂) is a resolution of Bε by soft sheaves over X (actually, by
C∞X -modules ), and for every holomorphic vector bundle E → X and every q ≥ 1 we have

Hq(X,Bε ⊗ O(E)) = Hq
(
Γ(X,Fqε ⊗ O(E)), ∂

)
= 0.

Moreover the fibers Bε,z ⊗Ez are always generated by global sections of H0(X,Bε ⊗O(E)).

Proof. By construction, we can equip Uε with the the associated Kähler metric ω = i∂∂ψ
which is smooth and strictly positive on Uε. We can then take an arbitrary smooth hermitian
metric hE on E and multiply it by e−Cψε to obtain a bundle with positive arbitrarily large
curvature tensor. The exactness of F• and cohomology vanishing then follow from the
standard Hörmander L2 estimates applied either locally on p−1(V ) for small Stein open sets
V ⊂ X, or globally on Uε. The global generation of fibers is an immediate consequence of
the Ohsawa-Takegoshi L2 extension theorem.

It would not be very hard to show that the same result holds for an arbitrary coherent
sheaf E instead of a locally free sheaf O(E), the reason being that p∗E admits a resolution
by (finite dimensional) locally free sheaves O⊕NUε′

on a Stein neighborhood Uε′ of Uε.

2.B. Curvature tensor of the Bergman bundle on (Cn, std)
In the model situation X = Cn with its standard hermitian metric, we consider the

tubular neighborhood

(2.6) Uε := {(z, w) ∈ Cn × Cn ; |w − z| < ε}

and the projections

p = (pr1)|Uε
: Uε → X = Cn, (z, w) 7→ z, p = (pr2)|Uε

: Uε → X = Cn, (z, w) 7→ w

If one insists on working on a compact complex manifold, the geometry is locally identical
to that of a complex torus X = Cn/Λ equipped with a constant hermitian metric γ.

2.7. Remark. Again, we have to insist that the Bergman bundle Bε is not holomorphically
locally trivial, even in the above situation where we have invariance by translation. In the
category of real analytic bundles, we get a trivialization from Bε(V ) onto the topological
tensor product of OX(V ) by the Hilbert space H2(Bn), namely

τ : Bε(V )
'−→OX(V ) ⊗̂H2(Bn), f 7−→ τ(f) = g, g(z, w) := f(z, εw + z), w ∈ Bn.

Complex structures of these bundles are defined by the (0, 1)-connections ∂z of the associ-
ated Dolbeault complexes, but obviously ∂z f and ∂z g do not match. In fact, if we write
g(z, w) = u(z, w) dw1 ∧ . . .∧ dwn ∈ C∞(V ) ⊗̂H2(Bn) (i.e. u(z, w) is a smooth function that
is holomorphic in w), then we get

f(z, w) = g(z, (w − z)/ε) = ε−nu(z, (w−z)/ε) dw1 ∧ . . . ∧ dwn,

∂z f(z, w) = ε−n
(
∂z u(z, (w−z)/ε)− ε−1

∑
1≤j≤n

∂u

∂wj
(z, (w−z)/ε) dzj

)
∧ dw1 ∧ . . . ∧ dwn.
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Therefore the trivialization τ∗ : f 7→ u yields at the level of ∂-connections an identification

τ∗ : ∂z f
'7−→ ∂z u+Au

where the “connection matrix” A ∈ Γ(V,Λ0,1T ∗X ⊗C End(OX(V ) ⊗̂H2(Bn)) is the linear
operator A = IdOX(V ) ⊗̂Ψ induced by the unbounded Hilbert space operator

Ψ : H2(Bn)→ H2(Bn)⊗C Λ0,1T ∗X , u 7→ Ψu = −ε−1
∑

1≤j≤n

∂u

∂wj
dzj .

We see that the holomorphic structure of Bε is given by a (0, 1)-connection that differs by
the matrix A from the trivial (0, 1)-connection, and as A is unbounded, there is no way we
can make it trivial by a real analytic gauge change with values in Lie algebra of continuous
endomorphisms of H2(Bn).

We are now going to compute the curvature tensor of the Bergman bundle Bε. For the
sake of simplicity, we identify here H2(Bn) to the Hardy space of L2 holomorphic functions
via u 7→ g = u(w) dw1∧. . .∧dwn. After rescaling, we can also assume ε = 1, and at least in a
first step, we perform our calculations on B1 rather than Bε. Let us write wα =

∏
1≤j≤n w

αj

j

for a multiindex α = (α1, . . . , αn) ∈ Nn, and denote by λ the Lebesgue measure on Cn.
A straightforward calculation gives∫

Bn

|wα|2dλ(w) = πn
α1! . . . αn!

(|α|+ n)!
, |α| = α1 + · · ·+ αn.

In fact, by using polar coordinates wj = rje
iθj and writing tj = r2

j , we get∫
Bn

|wα|2dλ(w) = (2π)n
∫
r21+···+r2n<1

r2α r1dr1 . . . rndrn = πnI(α)

with
I(α) = πn

∫
t1+···+tn<1

tα dt1 . . . dtn.

Now, an induction on n together with the Fubini formula gives

I(α) =

∫ 1

0

tαn
n dtn

∫
t1+···+tn−1<1−tn

(t′)α
′
dt1 . . . dtn−1

= I(α′)

∫ 1

0

(1− tn)α1+···+αn−1+n−1tαn
n dtn

where t′ = (t1, . . . , tn−1) and α′ = (α1, . . . , αn−1). As
∫ 1

0
xa(1 − x)bdt = a!b!

(a+b+1)! , we get
inductively

I(α) =
(|α′|+ n− 1)!αn!

(|α|+ n)!
I(α′) ⇒ I(α) =

α1! . . . αn!

(|α|+ n)!
.

This implies that a Hilbert (orthonormal) basis of O ∩ L2(Bn) is

(2.8) eα(w) = π−n/2

√
(|α|+ n)!

α1! . . . αn!
wα.
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As a consequence, and quite classically, the Bergman kernel of the unit ball Bn ⊂ Cn is

(2.9) Kn(w) =
∑
α∈Nn

|eα(w)|2 = π−n
∑
α∈Nn

(|α|+ n)!

α1! . . . αn!
|wα|2 = n!π−n(1− |w|2)−n−1.

If we come back to Uε for ε > 0 not necessarily equal to 1 (and do not omit any more the
trivial n-form dw1∧ . . .∧dwn), we have to use a rescaling (z, w) 7→ (ε−1z, ε−1w). This gives
for the Hilbert bundle Bε a real analytic orthonormal frame

(2.10) eα(z, w) = π−n/2ε−|α|−n

√
(|α|+ n)!

α1! ... αn!
(w − z)α dw1 ∧ . . . ∧ dwn

A germ of holomorphic section σ ∈ O(Bε) near z = 0 (say) is thus given by a convergent
power series

σ(z, w) =
∑
α∈Nn

ξα(z) eα(z, w)

such that the functions ξα are real analytic on a neighborhood of 0 and satisfy the following
two conditions:∑

α∈Nn

|ξα(z)|2 is uniformly convergent,(2.11)

∂zk σ(z, w) =
∑
α∈Nn

∂zk ξα(z) eα(z, w) + ξα(z) ∂zk eα(z, w) ≡ 0.(2.12)

Let ck = (0, . . . , 1, . . . , 0) be the canonical basis of the Z-module Zn. A straightforward
calculation from (2.10) yields

∂zk eα(z, w) = −ε−1
√
αk(|α|+ n) eα−ck(z, w).

We have the slight problem that the coefficients are unbounded as |α| → +∞, and therefore
the two terms occurring in (2.12) need not form convergent series when taken separately.
However if we take σ ∈ O(Bρε) in a slightly bigger tubular neighborhood (ρ > 1), the L2

condition implies that
∑
α(ρ′)2|α||ξα|2 is uniformly convergent for every ρ′ ∈ ]1, ρ[ , and this

is more than enough to ensure convergence, since the growth of α 7→
√
αk(|α|+ n) is at

most linear; we can even iterate as many derivatives as we want. For a smooth section
σ ∈ C∞(Bρε), the coefficients ξα are smooth, with

∑
ρ2|α||∂βz ∂

γ

z ξα|2 convergent for all β, γ,
and we get

∂zk σ(z, w) =
∑
α∈Nn

∂zk ξα(z) eα(z, w) + ξα(z) ∂zk eα(z, w)

=
∑
α∈Nn

∂zk ξα(z) eα(z, w)− ε−1
√
αk(|α|+ n) ξα(z) eα−ck(z, w)

=
∑
α∈Nn

(
∂zk ξα(z)− ε−1

√
(αk + 1)(|α|+ n+ 1) ξα+ck(z)

)
eα(z, w),

after replacing α by α + ck in the terms containing ε−1. The (0, 1)-part ∇0,1
h of the Chern

connection ∇h of (Bε, h) with respect to the orthonormal frame (eα) is thus given by

(2.13) ∇0,1
h σ =

∑
α∈Nn

(
∂ξα −

∑
k

ε−1
√

(αk + 1)(|α|+ n+ 1) ξα+ck dzk

)
⊗ eα.
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Now, we replace the natural L2 norm by

|σ|2h =
∑
α∈Nn

λ|α||ξα|2, λ|α| > 0.

The (1, 0)-part can be derived from the identity ∂|σ|2h = 〈∇1,0
h σ, σ〉h + 〈σ,∇0,1

h σ〉h. However

∂zj |σ|2h = ∂zj
∑
α∈Nn

λ|α|ξαξα =
∑
α∈Nn

λ|α|(∂zjξα) ξα + λ|α|ξα (∂zj ξα )

=
∑
α∈Nn

λ|α|

(
∂zjξα + ε−1λ|α|−1

λ|α|

√
αj(|α|+ n) ξα−cj

)
ξα

+
∑
α∈Nn

λ|α|ξα

(
∂zj ξα − ε−1

√
(αj + 1)(|α|+ n+ 1) ξα+cj

)
.

For σ ∈ C∞(Bρε), it follows from there that

(2.14) ∇1,0
h σ =

∑
α∈Nn

(
∂ξα + ε−1

∑
j

λ|α|−1

λ|α|

√
αj(|α|+ n) ξα−cjdzj

)
⊗ eα.

Finally, to find the curvature tensor of (Bε, h), we only have to compute the (1, 1)-form
(∇1,0

h ∇
0,1
h +∇0,1

h ∇
1,0
h )σ and take the terms that contain no differentiation at all, especially

in view of the usual identity ∂ ∂+ ∂ ∂ = 0 and the fact that we also have here (∇1,0
h )2 = 0,

(∇0,1
h )2 = 0. As (α− cj)k = αk − δjk and (α+ ck)j = αj + δjk, we are left with(
∇1,0
h ∇

0,1
h +∇0,1

h ∇
1,0
h

)
σ

= − ε−2
∑
α∈Nn

∑
j,k

λ|α|−1

λ|α|

√
αj(αk − δjk + 1) (|α|+ n) ξα−cj+ck dzj ∧ dzk ⊗ eα

+ ε−2
∑
α∈Nn

∑
j,k

λ|α|

λ|α|+1

√
(αj + δjk)(αk + 1) (|α|+ n+ 1) ξα−cj+ck dzj ∧ dzk ⊗ eα.

= − ε−2
∑
α∈Nn

∑
j,k

λ|α|−2

λ|α|−1

√
(αj−δjk)(αk−δjk) (|α|+ n− 1) ξα−cj dzj ∧ dzk ⊗ eα−ck

+ ε−2
∑
α∈Nn

∑
j,k

λ|α|−1

λ|α|

√
αjαk (|α|+ n) ξα−cj dzj ∧ dzk ⊗ eα−ck .

= ε−2
∑
α∈Nn

∑
j,k

√
αjαk

(
λ|α|−1

λ|α|
(|α|+n)−

λ|α|−2

λ|α|−1
(|α|+n−1)

)
ξα−cj dzj ∧ dzk ⊗ eα−ck

+ ε−2
∑
α∈Nn

∑
j

λ|α|−2

λ|α|−1
(|α|+ n− 1) ξα−cj dzj ∧ dzj ⊗ eα−cj ,

where the last summation comes from the subtraction of the diagonal terms j = k. By
changing α into α+cj in that summation, we obtain the following expression of the curvature
tensor of (Bε, h).

2.15. Theorem. The curvature tensor of the Bergman bundle (Bε, h) is given by

〈ΘBε,hσ(v, Jv), σ〉h = ε−2
∑
α∈Nn

(∣∣∣∣∑
j

√
αj ξα−cjvj

∣∣∣∣2 +
∑
j

(|α|+ n) |ξα|2|vj |2
)
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for every σ =
∑
α ξαeα ∈ Bρε, ρ > 1, and every tangent vector v =

∑
vj ∂/∂zj.

The above curvature hermitian tensor is positive definite, and even positive definite un-
bounded if we view it as a hermitian form on TX⊗Bε rather than on TX⊗Bρε. This is not so
surprising since the connection matrix was already an unbounded operator. Philosophically,
the very ampleness of Bε was also a strong indication that the curvature should have been
positive. Observe that we have in fact

ε−2
∑
α∈Nn

∑
j

(|α|+ n) |ξα|2|vj |2

≤ 〈ΘBε,hσ(v, Jv), σ〉h ≤ 2ε−2
∑
α∈Nn

∑
j

(|α|+ n) |ξα|2|vj |2,(2.16)

thanks to the Cauchy-Schwarz inequality

∑
α∈Nn

∣∣∣∣∑
j

√
αj ξα−cjvj

∣∣∣∣2 ≤∑
`

|v`|2
∑
α∈Nn

∑
j

αj |ξα−cj |2 =
∑
`

|v`|2
∑
j

∑
α∈Nn

αj |ξα−cj |2

=
∑
`

|v`|2
∑
j

∑
α∈Nn

(αj + 1)|ξα|2 =
∑
`

|v`|2
∑
α∈Nn

(|α|+ n)|ξα|2.

2.C. Curvature of Bergman bundles on compact hermitian manifolds

3. Invariance of plurigenera for polarized Kähler families
The goal of this section is to prove that for every polarized family X → S of compact

Kähler manifolds, the plurigenera pm(Xt) = h0(Xt,mKXt
) of fibers are independent of t

for all m ≥ 0. This result has first been proved by Y.T. Siu [Siu98] in the case of projective
varieties of general type (in which case the proof has been translated in a purely algebraic
form by Y. Kawamata [Kaw99]), and then by [Siu00] and Păun [Pau04] in the case of
arbitrary projective varieties; in the second case, no algebraic proof of the result is known.
We extend here the result to the Kähler context. This requires substantial modifications of
the proof, since the technique of Siu and Păun involved in a crucial manner the use of an
auxiliary ample line bundle. We replace it here by a use of the Hilbert bundles studied in
the previous section.

3.1. Conjecture. Let π : X→ S be a proper holomorphic map defining a family of smooth
compact Kähler manifolds over an irreducible base S. Assume that π admits local polari-
zations, i.e. every point s0 ∈ S has a neighborhood U such that π−1(U) carries a closed
smooth (1, 1)-form ω such that ω|Xt

is positive definite on Xt := π−1(t). Then the plurige-
nera pm(Xt) = h0(Xt,mKXt

) of fibers are independent of t for all m ≥ 0.

The above statement would follow directly from the following more technical result.

3.2. Conjecture (generalized version of the Claudon-Păun theorem). Let π : X → ∆ be
a polarized family of compact Kähler manifolds over a disc ∆ ⊂ C, and let (Lj , hj)0≤j≤N−1

be (singular) hermitian line bundles with semi-positive curvature currents iΘLj ,hj
≥ 0 on X.

Assume that
(a) the restriction of hj to the central fiber X0 is well defined (i.e. not identically +∞).
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(b) the multiplier ideal sheaf I(hj|X0
) is trivial for 1 ≤ j ≤ N − 1.

Then any section σ of O(mKX +
∑

Lj)|X0
⊗ I(h0|X0

) over the central fiber X0 extends into
a section σ̃ of O(mKX +

∑
Lj) over a certain neighborhood X′ = π−1(∆′) of X0, where

∆′ ⊂ ∆ is a sufficienty small disc centered at 0.

3.3. Remark. A standard cohomological argument shows that we can in fact take X′ = X

in the conclusion of Theorem 3.2, because the direct image sheaf E = π∗O(mKX +
∑

Lj) is
coherent, and the restriction E→ E⊗ (O∆/m0O∆) induces a surjective map at the H0 level
on the Stein space ∆, so we can extend σ̃ mod π∗m0 to X.

Conjecture 3.2 implies Conjecture 3.1. The invariance of plurigenera is in fact just obtained
as the special case of Conjecture 3.2 when all line bundles Lj and their metrics hj are
trivial. Since the dimension t 7→ h0(Xt,mKXt) is always upper semicontinuous and since
Conjecture 3.2 implies the lower semicontinuity, we conclude that the dimension must be
constant along analytic discs, hence along the irreducible base S, by joining any two points
through a chain of analytic discs.

3.4. Lemma. For ε ≤ ε0 small enough, one can find a Stein open subset U′ε ⊂ X′ ×X0 ,
where X′ = π−1(∆′) → ∆′ is the restriction of π : X → ∆ to a disc ∆′ b ∆ centered at 0,
of sufficiently small radius r′ ≤ r0(ε), such that the projection pr1 : U′ε → X′ is a complex
ball bundle over X′ that is locally trivial real analytically.

Proof. The argument is very similar to what we did in §1, applied to the central fiber
X0 only. Let γ0 be a real analytic hermitian metric on X0 and exph : TX0

→ X0 be the
corresponding real analytic and fiber-holomorphic exponential map associated with γ0, as
in §1. By construction, Y = X × X0 has a tangent bundle TY that admits a direct sum
decomposition TY = pr∗1 TX ⊕ pr∗2 TX0

into holomorphic subbundles. Let Φt : X0 → Xt,
t ∈ ∆, be a real analytic family of diffeomorphisms such that Φ0 = Id (by the Ehresmann
lemma, such a family can be obtained by taking the flow of a real analytic vector field τ on
X that lifts d/dt ∈ T∆ on a neighborhood of ∆′). We consider the graph Γ′ of (Φt), namely
the real analytic set Γ′ ⊂ X′ ×X0 of points of the form (Φt(x), x), x ∈ X0, t ∈ ∆′, and take

U′ε =
{

(Φt(x), exphx(ξ) ) ; (Φt(x), x) ∈ Γ′, ξ ∈ TX0,x, |ξ|2γ < ε2 − |t|2)}.

Let logh : X0 ×X0 → TX0
be the inverse of exph near the diagonal. Then U′ε is defined as

the set of points (w, z) ∈ X′ ×X0 such that

t = π(w) satisfies |t| < r′ = radius ∆′, | logh(Φ−1
t (w), z)|2γ0 + |t|2 < ε2.

Now, the function

(3.5) ψ(w, z) = | logh(Φ−1
t (w), z)|2γ0 + |t|2 = | logh(Φ−1

π(w)(w), z)|2γ0 + |π(w)|2

is strictly plurisubharmonic along its zero variety t = 0, w = z (equal to the diagonal of
X0 ×X0, therefore it must be strictly plurisubharmonic on the domain defined by conditions
(3.5) (let us recall that π : X → ∆ is holomorphic). As a consequence U′ε is stein for
ε ≤ ε0 small enough, and the inequality r′ ≤ r0(ε) := ε/2 guarantees that the fibers of
p = pr1 : U′ε → X′ are nonempty balls. The other stated properties can be checked exactly
as in §1.
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In order to study Conjecture 3.2, we first state a technical extension theorem needed
for the proof, which is a special case of the well-known and extremely powerful Ohsawa-
Takegoshi theorem [OT87], see also [Oh??], [Dem??].

3.6. Proposition. Let π : Z→ ∆ be a smooth and proper morphism from a (non compact )
Kähler manifold Z to a disc ∆ ⊂ C and let (L, h) be a (singular) hermitian line bundle
with semi-positive curvature current iΘL,h ≥ 0 on Z. Let ω be a global Kähler metric on Z,
and let dVZ, dVZ0

the respective induced volume elements on Z and Z0 = π−1(0). Assume
that hZ0

is well defined (i.e. almost everywhere finite). Then any holomorphic section s of
O(KZ + L)⊗ I(h|Z0

) extends into a section s̃ over Z satisfying an L2 estimate∫
Z

‖s̃‖2ω⊗hdVZ ≤ C0

∫
Z0

‖s‖2ω⊗hdVZ0
,

where C0 ≥ 0 is some universal constant (depending on dimZ and diam ∆, but otherwise
independent of Z, L, . . . ).

3.7. Remark. The assumptions of Proposition 3.6 imply that Z is holomorphically convex
and complete Kähler, thus the technique of [Dem??] does apply to yield the result.

Attempt of proof of Conjecture 3.2. Let p = pr1 : U′ε → X′ be as in Lemma 3.4, and
q = pr2 : U′ε → X0. We take ε < ε0 and use on Z := U′ε a Kähler metric ω0 defined on
the Stein manifold U′ε0 . On can define e.g. ω0 as the i∂∂ of a strictly plurisubharmonic
exhaustion function on U′ε0 , but we can also take the restriction of pr∗1 ω + pr∗2 ω|X0

where
ω is the Kähler metric on the total space X, and ω = −ω the corresponding Kähler metric
on the conjugate space X.

First step: construction of a sequence of extensions on Z = U′ε via the Ohsawa-Takegoshi
extension theorem.

The strategy is to apply iteratively the special case 3.6 of the Ohsawa-Takegoshi extension
theorem on the total space of the fibration

π′ = π ◦ p : Z = U′ε → X′ → ∆′,

and to extend sections of ad hoc pull-backs p∗G from the zero fiber Z0 = U′ε ∩ (X0 ×X0) to
the whole of Z = U′ε. We write hj = e−ϕj in terms of local plurisubharmonic weights, and
define inductively a sequence of line bundles Gm by putting G0 = OX and

Gm = Gm−1 +KX + Lr if m = Nq + r, 0 ≤ r ≤ N − 1.

By construction we have

Gm = mKX + L1 + · · ·+ Lm, for 1 ≤ m ≤ N − 1 ,

Gm+N − Gm = GN = NKX + L0 + · · ·+ LN−1 , for all m ≥ 0.

The game is to construct inductively families of sections, say {f̃ (m)
j }j=1,...,J(m), of p∗Gm

over Z, together with ad hoc L2 estimates, in such a way that

(3.8) for m = 0, . . . , N − 1, p∗Gm is generated by L2 sections {f̃ (m)
j }j=1,...,J(m) on U′ε0 ;
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(3.9) we have the m-periodicity relations J(m + N) = J(m) and f̃
(m)
j is an extension of

f
(m)
j := (p∗σ)qf

(r)
j over Z for m = Nq + r, where f (r)

j := f̃
(r)
j|Z0

, 0 ≤ r ≤ N − 1.

Property (3.8) can certainly be achieved since U′ε0 is Stein, and for m = 0 we can take
J(0) = 1 and f̃ (0)

1 = 1. Now, by induction, we equip p∗Gm−1 with the tautological metric
|ξ|2/

∑
|f̃ (m−1)
j (x)|2, and

G̃m := p∗Gm −KZ = p∗Gm − (p∗KX + q∗KX0
) = p∗(Gm−1 + Lr)− q∗KX0

with that metric multiplied by p∗hr = e−p
∗ϕr and a fixed smooth metric e−ψ of positive

curvature on (−q∗KX0
)|U′ε0

(remember that U′ε0 is Stein!). It is clear that these metrics
have semi-positive curvature currents on Z (by adjusting ψ, we could even take them to be
strictly positive if we wanted). In this setting, we apply the Ohsawa-Takegoshi theorem to
the line bundle KZ + G̃m = p∗Gm, and extend in this way f (m)

j into a section f̃ (m)
j over Z.

By construction the pointwise norm of that section in p∗Gm|X0
in a local trivialization of

the bundles involved is the ratio

|f (m)
j |2∑

` |f
(m−1)
` |2

e−p
∗ϕr−ψ,

up to some fixed smooth positive factor depending only on the metric induced by ω0 on KZ.
However, by the induction relations, we have

∑
j |f

(m)
j |2∑

` |f
(m−1)
` |2

e−p
∗ϕr =



∑
j |f

(r)
j |2∑

` |f
(r−1)
` |2

e−p
∗ϕr for m = Nq + r, 0 < r ≤ N − 1,∑

j |f
(0)
j |2∑

` |f
(N−1)
` |2

|p∗σ|2e−p
∗ϕ0 for m ≡ 0 modN , m > 0.

Since the sections {f (r)
j }0≤r<N generate their line bundle on Uε0 ⊃ U′ε, the ratios involved

are positive functions without zeroes and poles, hence smooth and bounded [possibly after
shrinking a little bit the base disc ∆′, as is permitted]. On the other hand, assumption
3.2 (b) and the fact that σ has coefficients in the multiplier ideal sheaf I(h0|X0

) tell us that
e−p

∗ϕr , 1 ≤ r < m and |p∗σ|2e−p∗ϕ0 are locally integrable on Z0. It follows that there is a
constant C1 ≥ 0 such that

∫
Z0

∑
j |f

(m)
j |2∑

` |f
(m−1)
` |2

e−p
∗ϕr−ψdVω0

≤ C1

for all m ≥ 1 (of course, the integral certainly involves finitely many trivializations of the
bundles involved, whereas the integrand expression is just local in each chart). Inductively,
the L2 extension theorem produces sections f̃ (m)

j of p∗Gm over Z such that

∫
Z

∑
j |f̃

(m)
j |2∑

` |f̃
(m−1)
` |2

e−p
∗ϕr−ψdVω0

≤ C2 = C0C1.
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Second step: applying the Hölder inequality. Put k = Nq(k) + r(k) with 0 ≤ r(k) < N ,
and take m = Nq(m) to be a multiple of N . The Hölder inequality |

∫ ∏
1≤k≤m ukdµ| ≤∏

1≤k≤m(
∫
|uk|mdµ)1/m applied to the measure µ = dVω0

and to the product of functions

(∑
j |f̃

(m)
j |2∑

` |f̃
(0)
` |2

)1/m

e−
1
N p
∗(ϕ0+...+ϕN−1)−ψ =

∏
1≤k≤m

( ∑
j |f̃

(k)
j |2∑

` |f̃
(k−1)
` |2

e−p
∗ϕr(k)−ψ

)1/m

in which
∑
` |f̃

(0)
` |2 = |f̃ (0)

1 |2 = 1 and
∑
j |f̃

(m)
j |2 = |f̃ (m)

1 |2, implies that

(3.10)

∫
Z

∣∣f̃ (m)
1

∣∣2/me− 1
N p
∗(ϕ0+...+ϕN−1)−ψdVω0 ≤ C2.

As the functions ϕr(k) and ψ are locally bounded from above, we infer from there the weaker
inequality

(3.10′)

∫
Z

∣∣f̃ (m)
1

∣∣2/mdVω0
≤ C3.

The last inequality is to be understood as an inequality that holds in fact only locally over X′,
on sets of the form p−1(V ), where V b X′ are small coordinate open sets where our line
bundles are trivial, so that the section f̃

(m)
1 of q(m) p∗(NKX +

∑
Lj) can be viewed as a

holomorphic function on p−1(V ).

Third step: construction of a singular hermitian metric on NKX +
∑

Lj . The rough idea is
to extract a weak limit of the m-th root occurring in (3.10), (3.10′), combined with an inte-
gration on the fibers of p : Z = U′ε → X′, to get a singular hermitian metric on NKX +

∑
Lj .

This is the crucial step in the proof, and the place where the Kähler setup requires new argu-
ments; especially, the integration on fibers makes the weak limit argument much less obvious
than in the projective setup, and requires at least the results of §2 on Bergman bundles.

3.11. Proposition. Assume that the sections f̃ (m)
1 have been constructed on a slightly

bigger tubular neighborhood U′′ρ′′ε → X′′ := π−1(∆′′) with ρ′′ > 1, and ∆′′ of radius r′′ > r′

[this condition can of course always be achieved, since we have some flexibility on the choice
of the tubular neighborhoods ]. Then there exists a subsequence m ∈ M0 ⊂ N such that the
limit

θ(z) = lim
m∈M0
m→+∞

1

m
log

∫
w∈U′ε,z

|f̃ (m)
1 (z, w)

∣∣2dVω0
(w), z ∈ X′

exists almost everywhere on X′, and H = e−Nθ defines a singular hermitian metric on
p∗(NKX +

∑
Lj). i.e. i∂∂θ ≥ 0. Moreover, it satisfies the estimates

(a) |σ|2H = |σ|2e−Nθ = 1 on X0 ⊂ X′ ;

(b)
∫
X′
e−θe−

1
N (ϕ0+...+ϕN−1)dVω <∞ :

(c) if ρ ∈ ]1, ρ′′[, there is a constant C4 = C4(ρ) > 0 such that for every β > 0

i∂∂eβθ ≥ −ε−2(log ρ)−1eC4βω.
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Proof. First notice that the choice of the Kähler metric ω0 on X × X0 is irrelevant in the
definition of θ (the L2 integrals may eventually change by bounded multiplicative factors,
which get killed as m → +∞). The mean value inequality for plurisubharmonic functions
applied on small balls of U′′ρ′′ε centered at points (z, w) ∈ U′ρ′ε, ρ′ ∈ ]ρ, ρ′′[, implies that
we have a uniform upper bound 1

m log |f̃ (m)
1 |2 ≤ C5 = C5(ρ′) on U′ρ′ε (that is, in fact,

locally over trivializing open sets of the line bundles in X′, but we can arrange that there
are only finitely many of these). By construction f̃ (m)

1 = (p∗σ)q(m) on Z0 = p−1(X0), thus
1
m log |f̃ (m)

1 |2 = 1
N p
∗ log |σ|2 on Z0 and θ = 1

N log |σ|2 on X0. Therefore the limit exists at
least on X0 and estimate (a) is satisfied.

Let us consider now the Bergman bundle Bε → X′, and let us write locally over X′

f̃
(m)
1 (z, w) =

∑
α∈Nn

ξα(z) eα(z, w)⊗ g(z)q(m), z ∈ X′, w ∈ U′ε,z

in terms of an orthonormal frame (eα)α∈Nn of U′ε as defined in §2, where g is a local generator
of OX(NKX +

∑
Lj). The fact that we have uniform convergence of the series on U′ρ′ε and a

uniform upper bound eC5m implies for the holomorphic power series in w a uniform bound
of the form
(3.12)

∑
α∈Nn

ρ2|α||ξα(z)|2 ≤ eC6m, for some C6 = C6(ρ).

For a suitable smooth (and essentially irrelevant) correcting factor ψ̃(z, w) on X′′, we have
a uniform bound

θm(z) :=
1

m
log

∫
w∈U′ε,z

|f̃ (m)
1 (z, w)

∣∣2e−ψ̃(z,w)dVω0
(w) =

1

m
log

∑
α∈Nn

|ξα(z)|2 ≤ C5

where the summation
∑
α∈Nn |ξα(z)|2 is real analytic and θm(z) → 1

N log |σ(z)|2 uniformly
on X0. The next idea is to estimate the Hessian form of z 7→ eβθm(z) for every β > 0 fixed.
We have of course

eβθm(z) =

( ∑
α∈Nn

|ξα(z)|2
)β/m

= ‖ξ(z)‖2β/m = 〈ξ(z), ξ(z)〉β/m

where ξ is nothing else than the expression of the section f̃ (m)
1 is the (real analytic) trivia-

lization of the Bergman bundle Bε, and 〈•, •〉 the natural hermitian metric on Bε. Now, a
standard calculation with respect to the Bergman connection ∇ = ∇1,0 +∇0,1 of Bε yields
∇0,1ξ = 0, hence

i∂∂eβθm(z) =
β

m
‖ξ‖2β/m−2

(
i〈∇1,0ξ,∇1,0ξ〉 − 〈iΘBεξ, ξ〉 −

(
1− β

m

) i〈∇1,0ξ, ξ〉 ∧ 〈∇1,0ξ, ξ〉
‖ξ‖2

)

≥ − β
m
‖ξ‖2β/m−2〈iΘBεξ, ξ〉(3.13)

by the Cauchy-Schwarz inequality. On the other hand, the curvature bound obtained in §2
yields ∣∣〈iΘBεξ, ξ〉

∣∣
ω
≤ 2ε−2

∑
α∈Nn

(|α|+ n)|ξα|2

≤ 2ε−2

( ∑
α∈Nn

|ξα|2
)1−β/m( ∑

α∈Nn

(|α|+ n)m/β |ξα|2
)β/m

(3.14)
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by the discrete Hölder inequality. We compare the last summation to (3.12) by taking the
maximum of t 7→ (t+n)m/βρ−2t which is reached for t0 +n = m

2β (log ρ)−1 by an elementary
calculation. This gives( ∑

α∈Nn

(|α|+ n)m/β |ξα|2
)β/m

≤ (t0 + n)ρ−t0β/m

( ∑
α∈Nn

ρ2|α||ξα(z)|2
)β/m

≤ m

2β
(log ρ)−1ρnβ/meC6β−1/2.(3.15)

A combination of the last three estimates (3.13–3.15) gives

(3.16) i∂∂eβθm(z) ≥ −ε−2(log ρ)−1ρnβ/meC6β−1/2ω.

The above lower bound is uniform with respect to m as m→ +∞, and we see that eβθm is
quasi plurisubharmonic. By well known facts of pluripotential theory, there exists an upper
semicontinuous regularization

θ =
(

lim sup
m→+∞

θm

)∗
and a subsequence m ∈M0 ⊂ N such that

θ = lim sup
m∈M0
m→+∞

θm almost everywhere on X′,

and satisfying in the limit the Hessian estimate

(3.17) i∂∂eβθ ≥ −ε−2(log ρ)−1eC6β−1/2ω

for every β > 0. Property (c) is proved.

3.18. What to do ?. Our hope (possibly after modifying the sections f (m)
j in an adequate

manner) is that one can gain a factor converging to zero in estimate (3.16), and thus in
(3.17). This would prove that eβθ is plurisubharmonic for every β > 0, hence the weight
θ = limβ→0

1
β (eβθ − 1) would also be plurisubharmonic.

Fourth step: applying Ohsawa-Takegoshi once again with the singular hermitian metric pro-
duced in the third step.

Assuming that 3.18 holds, we have proved that NKX+
∑

Lj possesses a hermitian metric
H = e−Nθ such that ‖σ‖H ≤ 1 oon X0 and ΘH ≥ 0 on X′. In order to conclude, we equip
the bundle

E = (N − 1)KX +
∑

Lj

with the metric η = H1−1/N
∏
h

1/N
j , and NKX +

∑
Lj = KX + E with the metric ω ⊗ η.

It is important here that X possesses a global Kähler polarization ω, otherwise the required
estimates would not be valid. Clearly η has a semi-positive curvature current on X′ and in
a local trivialization we have

‖σ‖2ω⊗η ≤ C|σ|2 exp
(
− (N − 1)θ − 1

N

∑
ϕj

)
≤ C

(
|σ|2

∏
e−ϕj

)1/N
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on X0. Since |σ|2e−ϕ0 and e−ϕr , r > 0 are all locally integrable, we see that ‖σ‖2ω⊗η is also
locally integrable on X0 by the Hölder inequality. A new (and final) application of the L2

extension theorem to the hermitian line bundle (E, η) implies that σ can be extended to X′.
Conjecture 3.2 would then be proved.
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