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Abstract. We introduce the concept of Bergman bundle attached to a hermitian manifold X, assuming the
manifold X to be compact — although the results are local for a large part. The Bergman bundle is some sort of
infinite dimensional very ample Hilbert bundle whose fibers are isomorphic to the standard Hardy space on the
complex unit ball; however the bundle is locally trivial only in the real analytic category, and its complex structure
is strongly twisted. We compute the Chern curvature of the Bergman bundle, and show that it is strictly positive.
As an application, we investigate the conjecture on the invariance of plurigenera in the general situation of polarized
families of compact Kdhler manifolds — a long standing and still unsolved conjecture of Yum-Tong Siu.

0. Introduction

0.1. Conjecture. Let m: X — S be a proper holomorphic map defining a family of smooth
compact Kdahler manifolds over an irreducible base S. Assume that w admits local polari-
zations, i.e. every point to € S has a neighborhood V such that 7=1(V) carries a closed
smooth (1,1)-form w such that wx, is positive definite on X; := 7=1(t). Then the plurige-
nera pm(Xy) = h%(Xy, mKyx,) of fibers are independent of t for all m > 0.

1. Exponential map and tubular neighborhoods

Let X be a compact n-dimensional complex manifold and Y C X a smooth totally real
submanifold, i.e. such that Ty N JTy = {0} for the complex structure J on X. By a well
known result of Grauert, such a Y always admits a fundamental system of Stein tubular
neighborhoods U C X (this would be even true when X is noncompact, but we only need
the compact case here). In fact, if (24) is a finite covering of X such that Y N Q,, is a
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smooth complete intersection {z € Q4 ; 74, (2) =0}, 1 < j < ¢ (where ¢ = codimp Y > n),
then one can take U = U, = {¢(z) < €} where

(1.1) p(z) =) alz) Y (2aj(2)* 20

where (6,) is a partition of unity subordinate to (£2,). The reason is that ¢ is strictly
plurisubharmonic near Y, as

00y =20 0a(2) > 0aj A0z,

1<5<q

and (0z,,;); has rank n at every point of Y, by the assumption that Y is totally real.

Now, let X be the complex conjugate manifold associated with the integrable almost
complex structure (X, —J) (in other words, O = Ox); we denote by x — T the identity
map Id : X — X to stress that it is conjugate holomorphic. The underlying real analytic
manifold X® can be embedded diagonally in X x X by the diagonal map 6 : = — (z,%),
and the image J(X®) is a totally real submanifold of X x X. In fact, if (24, )1<j<n is a
holomorphic coordinate system relative to a finite open covering (£2,) of X, then the Z, ;
define holomorphic coordinates on X relative to €1, and the “diagonal” §(X®) is the totally
real submanifold of pairs (z,w) such that w, ; = Z, ; for all a, j. In that case, we can take
Stein tubular neighborhoods of the form U, = {¢ < ¢} where

(1.2) p(z,w) = Z 0o (2)00(w) Z |wa,j - Zoz,j’2'

1<5<q
Here, the strict plurisubharmonicity of ¢ near §(X®) is obvious from the fact that
Waj = Zajl* = [2a,3[° + [wa,j1* — 2Re(za,jwa,;)-

For ¢ > 0 small, the first projection pr; : U. — X gives a complex fibration whose fibers
are C'°°-diffeomorphic to balls, but they need not be biholomorphic to complex balls in
general. In order to achieve this property, we proceed in the following way. Pick a real
analytic hermitian metric v on X ; take e.g. the (1,1)-part v = g(b1) = 5(g + J*g) of the
Riemannian metric obtained as the pull-back g = 6*(>_ ;udf A dfj), where the (fj)i<j<n
provide a holomorphic immersion of the Stein neighborhood U, into CV. Let exp : Tx — X,
(2,&) — exp,(&) be the exponentiall map associated with the metric 7, in such a way that
D (du

R >t exp, (t§) are geodesics 4;(F¢) = 0 for the the Chern connection D on Tx (see e.g.

[Dem??], [?7]). Then exp is real analytic, and we have Taylor expansions

exp,(§) = Y aap(2)6%8,  £eTx.

a,BEN™

with real analytic coefficients a,p, where exp, (£) = z+ ¢+ O(|€]?) in local coordinates. The
real analyticity means that these expansions are convergent on a neighborhood [{|, < g of
the zero section of T'x. We define the fiber-holomorphic part of the exponential map to be

(1.3) exph:Tx = X, (2,€) = exph (&) = Y aao(2)¢™.
aeNn



2. Curvature of Bergman bundles 3

It is uniquely defined, is convergent on the same tubular neighborhood {|{|, < £¢}, has the
property that £ — exph,(§) is holomorphic for z € X fixed, and satisfies again exph,(§) =
z+£+0(€?) in coordinates. By the implicit function, theorem, the map (z,£) — (z, exph_(€))
is a real analytic diffeomorphism from a neighborhood of the zero section of Tx onto a
neighborhood V' of the diagonal in X x X. Therefore, we get an inverse real analytic
mapping X x X D V — Ty, which we denote by (z,w) — (z,&), £ = logh,(w), such that
w +— logh, (w) is holomorphic on V N ({z} x X), and logh_(w) = w — z + O((w — 2)?) in
coordinates. The tubular neighborhood

Uy ={(z,w) € X x X; |logh, (w)|, < €}

is Stein for € > 0 small; in fact, if p € X and (z1,...,2,) is a holomorphic coordinate system
centered at p such that v, = i)_ dz; Adz;, then |logh_(W)|? = [@ — z|* + O(|w — z|*), hence
09| logh,, (w)|2 > 0 at (p,p) € X x X. By construction, the fiber pr; ' (2) of pry : Uy e — X
is biholomorphic to the e-ball of the complex vector space T'x . equipped with the hermitian
metric v,. In this way, we get a locally trivial real analytic bundle pr; : U, . whose fibers
are complex balls; it is important to notice, however, that this ball bundle need not — and
in fact, will never — be holomorphically locally trivial.

2. Curvature of Bergman bundles

2.A. Bergman version of the Dolbeault complex
Let X be a n-dimensional compact complex manifold equipped with a real analytic
hermitian metric v, U, = U, . C X x X the ball bundle considered in §1 and
p:(prl)wE Uz — X, 11_9:(p1r2)|UE U. > X

the natural projections. Our goal is to compute the curvature of what we call the “Bergman
direct image sheaf”

(2.1) B. = pL (7" O(Kx)),

whose space of sections over an open subset V' C X is defined to be B.(V) = holomorphic
sections f of p*O(K+) on p~*(V) that are in L*(p~*(K)) for all compact subsets K € V,
i.e.

(2.2) / i FATAA" < 400, VK €V
p1(K)

Then B. is an Ox-module, and by the Ohsawa-Takegoshi extension theorem applied to
the subvariety p~!(z) C U, its fiber B., = B../m,B. . is isomorphic to the Hilbert
space H?(B,,) of L? holomorphic n-forms on p~1(z) ~ B,.. In fact, if we use orthonormal
coordinates (wi,...,wy,) provided by exph acting on the hermitian space (Tx .,7.) and
centered at Z, we get a biholomorphism B,, — p~!(z) given by the homothety 7. : w +— ew,
and a corresponding isomorphism

(2.3) B.. — H*(B,), fr—9g=mnif, ie withI={1,...,n},
(2.3) frw)dwy A ... ANdwy, — €™ fr(ew)dwy A ... ANdw,, w € By,

(2.3") lg|* = / 2‘”@'”29 NG, g=gw)dw A...Adw, € H*B,).

n
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As a consequence, B. — X can be seen as a locally trivial (infinite dimensional) real analytic
bundle of typical fiber H?(B,,), and we can equip Be . with the natural L? metric obtained
by declaring (2.3) to be an isometry. In this way, we get a real analytic hermitian metric on
the Bergman bundle B, — X.

Similarly, we can consider a “Bergman version” of the Dolbeault complex, by introducing
a sheaf FZ over X of (n,q)-forms which can be written locally over small open sets V C X
as

(2.4) flzow) = > frlzow)dwy A Adwy Az, (z,w) € U-N(V x X),
|J|=q

where the f(z,w) are C° smooth functions on U. N (V x X) such that f;(z,w) is holo-
morphic in w and both f and df = 0. f are in L?(p~!(K)) for all compact subsets K € V.
By construction, the usual 9 operator yields a complex of sheaves (F*,0) and the kernel
Kerd : 3% — F' coincides with B.. We are going to see that B, can somehow be seen as an
infinite dimensional very ample vector bundle. This is already illustrated by the following
result.

2.5. Proposition. Assume here that ¢ > 0 is taken so small that ¥(z,w) := |logh, (w)|?
is strictly plurisubharmonic up to the boundary on the compact set U, C X x X. Then
the complex of sheaves (F°,0) is a resolution of B. by soft sheaves over X (actually, by
C¥ -modules ), and for every holomorphic vector bundle E — X and every ¢ > 1 we have

HY(X,B.® O(E)) = HI(I'(X,F: ® O(E)),d) = 0.
Moreover the fibers Be , @ E, are always generated by global sections of H°(X,B. ® O(F)).

Proof. By construction, we can equip U. with the the associated Kéahler metric w = i90v
which is smooth and strictly positive on U.. We can then take an arbitrary smooth hermitian
metric hg on E and multiply it by e"“¥= to obtain a bundle with positive arbitrarily large
curvature tensor. The exactness of F* and cohomology vanishing then follow from the
standard Héormander L? estimates applied either locally on p~!(V) for small Stein open sets
V C X, or globally on U.. The global generation of fibers is an immediate consequence of
the Ohsawa-Takegoshi L? extension theorem. O

It would not be very hard to show that the same result holds for an arbitrary coherent
sheaf € instead of a locally free sheaf O(E), the reason being that p*€ admits a resolution
by (finite dimensional) locally free sheaves O%ZY on a Stein neighborhood U, of U..

2.B. Curvature tensor of the Bergman bundle on (C", std)

In the model situation X = C" with its standard hermitian metric, we consider the
tubular neighborhood

(2.6) Ues :={(z,w) e C" x C"; |w — z| < &}
and the projections
p=(pr)jw. :Uc: > X=C", (z,w)—2 D= (pry)y :U.—=X=C" (z,w)—w

If one insists on working on a compact complex manifold, the geometry is locally identical
to that of a complex torus X = C"/A equipped with a constant hermitian metric ~.
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2.7. Remark. Again, we have to insist that the Bergman bundle B, is not holomorphically
locally trivial, even in the above situation where we have invariance by translation. In the
category of real analytic bundles, we get a trivialization from B.(V) onto the topological
tensor product of Ox (V) by the Hilbert space H?(B,,), namely

T:B(V) = Ox(V) @I (Bn), fr—7(f) =9, g(z,w):= f(z,ew+7), weB,.

Complex structures of these bundles are defined by the (0, 1)-connections 9, of the associ-
ated Dolbeault complexes, but obviously 0, f and 0,¢ do not match. In fact, if we write
g(z,w) = u(z,w)dwi A ... Adw, € C®(V)®H?[B,) (i.e. u(z,w) is a smooth function that
is holomorphic in w), then we get

flzyw) =g(z,(w—2)/e) = e "u(z, (w=2)/e)dwy A ... A dwy,

0.f(z,w) =" <5zu(z, (w—%)/e) —e ! Z ;Tu(z, (w—%)/e) dzj) ANdwy A ... A dws,.

1<j<n
Therefore the trivialization 7, : f — u yields at the level of J-connections an identification
Ty ng»igzu—i—flu

where the “connection matrix” A € T'(V,A%'T% ®c End(Ox (V)& H?(B,,)) is the linear
operator A = Idg, (v) ® A induced by the unbounded Hilbert space operator

A:HEB,) = H2B,) @c AP TS, urs Au=—e! Z ;—u dz;.

—~ Q)
1<j<n

We see that the holomorphic structure of B is given by a (0, 1)-connection that differs by
the matrix A from the trivial (0, 1)-connection, and as A is unbounded, there is no way we
can make it trivial by a real analytic gauge change with values in Lie algebra of continuous
endomorphisms of H?(B,,). ad

We are now going to compute the curvature tensor of the Bergman bundle B.. For the
sake of simplicity, we identify here 3(?(B,,) to the Hardy space of L? holomorphic functions
viau = g = u(w) dwi A. .. Adw,. After rescaling, we can also assume ¢ = 1, and at least in a
first step, we perform our calculations on By rather than B.. Let us write w® = [[ <j<n w?j
for a multiindex o = (a1,...,a,) € N, and denote by A the Lebesgue measure on C™.
A straightforward calculation gives

arl. ..oy

w2\ (w) = 7 Y — a4+
/IB%n (laf +n)!

In fact, by using polar coordinates w; = 'r’jewj and writing t; = r?, we get

/ |wa’2d>\(w) = (27T)n/ r2ridry .. rpdr, = ()
Bn

ri4-4r2<l

with

I(o) = w”/ £ dty . dty.
ti14+-+t, <1
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Now, an induction on n together with the Fubini formula gives

1
I(a):/ tgndtn/ ) dty ... dt,_y
0 t1+"‘+tn71<1_tn

1
:I(o/)/ (1 —t,) T Fom—tn=lyon gy
0

where t' = (t1,...,t,—1) and o/ = (a1,...,ap_1). As fol 291 — z)’dt = (afl!)—lil)!, we get
inductively
! — 1)la,! Lo
I(a):(|a|+n Sl I(a) = I(a):u.
(laf +n)! (laf 4+ n)!

This implies that a Hilbert (orthonormal) basis of O N L?(B,,) is

_ a2 [Uaf+n)!
(2.8) eq(w) =m a1!...an!w )
As a consequence, and quite classically, the Bergman kernel of the unit ball B,, C C™ is

n (lof +n)! “n e
(2.9) Ky(w)= > lea(w)?=7"" ) mm 2 =nlr (1 —w|?) "L
a€EN? aeNn T

If we come back to U, for € > 0 not necessarily equal to 1 (and do not omit any more the
trivial n-form dw; A ... Adw,,), we have to use a rescaling (z,w) — (¢ 71z, tw). This gives

for the Hilbert bundle B, a real analytic orthonormal frame

(laf +n)!

2.10 N = g~/ 2glal-n
(2.10) Calz,w) =m c ol ... ap!

(w—2)" dwy A...A\dw,

A germ of holomorphic section o € O(B.) near z = 0 (say) is thus given by a convergent
power series

o(z,w) = Z £a(2) €a(z, w)

aeNn

such that the functions &, are real analytic on a neighborhood of 0 and satisfy the following
two conditions:

(2.11) 0(2)[7 == > [éa(2)* is uniformly convergent,
aeN”
(2.12) gzkg(sz) = Z gzkfa('@ ea(z,w) + &a(2) gzkea(za w) = 0.
aeN”?

Let ¢, = (0,...,1,...,0) be the canonical basis of the Z-module Z"™. A straightforward
calculation from (2.10) yields

Ezkea(z,w) = —5_1\/ak(|a| +n) eq—e, (2, w).

We have the slight problem that the coefficients are unbounded as |o| — +o0, and therefore
the two terms occurring in (2.12) need not form convergent series when taken separately.
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However if we take o € O(B,.) in a slightly bigger tubular neighborhood (p > 1), the L?
condition implies that Y (p')%/%l|¢,|? is uniformly convergent for every p’ € |1, p[, and this
is more than enough to ensure convergence, since the growth of o — /ay(Ja|+n) is at
most linear; we can even iterate as many derivatives as we want. For a smooth section
o € C*(B,.), the coefficients ¢, are smooth, with 3 p?l° 1888 ¢4|? convergent for all 3,7,
and we get

Do0(z,w) = Y 9obalz) ealz, ) + £a(2) Dz a(z,w)

aeNn

= Z gzkfa( ea 2, UJ \/ |Oé|+n Sa €a Ch Z w)
aeN?

= Y (9aba(z) —e W o+ Dol + 1+ 1) ayer (2)) €alz,w),
aeN”

after replacing a by a + ¢ in the terms containing ¢~!. The (0, 1)-part V%l of the Chern
connection Vj, of (B., h) with respect to the orthonormal frame (e, ) is thus given by

(2.13) Vilo=>" (55(1 = e (e + D(lal+n+1) fase, dzk> ® €q.
k

aeN”?

The (1,0)-part can be derived from the identity 9|o|? = <V}L’OO', o)+ (o, V%’la)h. However

8Zj|0-|i =0, Z faga - Z (8Zj£0¢) Ea +&a (gzj a)

aeNn? aENm
= 3 (&t allal+n) tae, ) &
aeN?
+ 3 ta( Beba— e (ag + D0l + 0+ 1) bare, )
aeN"

For 0 € C*°(B,.), it follows from there that

(2.14) Vite = 3" (aga +e 3 oy (lal +n) ga_cjdzj) D eq.
J

aeN”

Finally, to find the curvature tensor of (B, h), we only have to compute the (1,1)-form
(V}L’ng’l + v?ﬁv};o)a and take the terms that contain no differentiation at all, especially

in view of the usual identity 99 + 99 = 0 and the fact that we also have here (V,ll’o)2 =0,
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(v?{l)z =0. As (o — ¢j)r = ap — 6, and (a + cx); = a; + i, we are left with
(VEOP0L 4 pOlyLo),
=2 3 37 Joy(latn) (st 1) (ol n) ey se, dz; A dZ® e

aeNn ]7
1272 30 " lag+an)(al+nt1) (ant1)(al+n+1) €aeyse, dz; A dzi @ e
aeN™ jk
=7 32 Dyl =d) (en—d5) (ol + 1 = 1) fae, d2y A dZk @ o,
aeN™ 4k
+e 30 3 vaan (o] 1) bame, 2 A dZe @ e,
aGN” .77’16
= 7 Y D0k fae, Ay A dE D o
aGN” ]7k
+e2 D2 Do(lal +n—1) fa, dz AdZ) © o,
aeN™  j

where the last summation comes from the subtraction of the diagonal terms j = k. By

changing « into a+c¢; in that summation, we obtain the following expression of the curvature
tensor of (Be, h).

2.15. Theorem. The curvature tensor of the Bergman bundle (Be, h) is given by

(O35, no(v, Jv), 2y ( +Z laf + 1) [€al® I"Ug|2>

aeNn
for every o =3 €qnea € By, p> 1, and every tangent vector v =">y_v; 0/0z;.

V05 Sae;Vj

The above curvature hermitian tensor is positive definite, and even positive definite un-
bounded if we view it as a hermitian form on T'x ® B, rather than on T'x ® B,,.. This is not so
surprising since the connection matrix was already an unbounded operator. Philosophically,
the very ampleness of B, was also a strong indication that the curvature should have been
positive. Observe that we have in fact

e ) > (lol +n) [l v ?
a€eN™ g

(2.16) < (©p. w0 (v, Jv), 00 <272 3 3 (ol +n) €, .

aeN"? 5
thanks to the Cauchy-Schwarz inequality

2
S VG bameyvy| < zw SN agléae,l? =ZWZ > ajléae,?

aEeN" 7 aeN" g j «a€Nm

—Z!ve! DD (e + &l = Z\W\z > (lal +n)l&l*.

j «a€eNm aeN”
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2.C. Curvature of Bergman bundles on compact hermitian manifolds

We consider here the general situation of a compact hermitian manifold (X, ) described
in §1, where -y is real analytic and exph is the associated partially holomorphic exponential
map. Fix a point zg € X, and use a holomorphic system of coordinates (z1,. .., 2z,) centered
at xo, provided by exph, :Tx ., OV — X. If we take v, orthonormal coordinates on
Tx z,, then by construction the fiber of p : U. — X over z( is the standard e-ball in the
coordinates (w;) = (Z;). Let T’x — V xC™ be the trivialization of T’x in the coordinates (z;),
and

XxX—>Tx, (z = logh, (w)

w) — €
the expression of logh near (z¢,Zy), that is, near (z,w) = (0,0). By our choice of coordinates,
we have logh(w) = w and of course loghz( ) = 0, hence we get a real analytic expansion of
the form

logh,, (w) :w—z+szaj(w—z —I—ijag w
+szzkbjk( w—z +szzkbjk w—z +szzkcjk —Z)+O(|Z|3)

with holomorphic coefficients a;, a’, bjr, b;.,w c;r vanishing at 0. In fact by [Dem??], we
always have da’;(0) = 0, and if v is Kéhler, the equality da;(0) = 0 also holds; we will not
use these properties here. In coordinates, we then have locally near (0,0) € C"* x C™

U.. = {(z,w) € C" xC"; |¥,(w)| <}

where ¥, (w) = logh, (w) has a similar expansion

U, (w) :w—Z+szaj(w—E +22ja; (w
(2.17) +szzkbjk( w—7z —i—z,zjzkbjk w—7Z +Zz]zkcjk (w—2%) + O(|z]*)

(when going from logh to ¥, the coefficients a;, a’; and b;, b’ get twisted, but we do not care

and keep the same notation for ¥, as we will not refer to logh any more). In this situation,
the Hilbert bundle B, has a real analytic normal frame given by e, = V*e, where

—n/2€—|oz|—n (|Oé| +n)

(2.18) calw) = arl . oy,

w® dwy A ... A dw,,

and the pull-back ¥*e, is taken with respect to w — W¥.(w) (z being considered as a
parameter). For a local section 0 =) {n€q € C™°(B,.) we can write

= ) 0.,.80(2) Ca(z,w) + £a(2) 0s, Ealz, w).

aeNn

Near z = 0, by taking the derivative of U*e,(z, w), we find
0.,6a(z,w) = — e ar(la| +n) €a_e, (z,w)
+! S Van{al ) (a;,mw D+ X s (0 -3)) e (210
J

(9 : m a m ~
+Z( i Zzg —z)) ealz,w) + Oz, |22,

ow,,
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where the last sum comes from the expansion of dw; A ... A dwy, and aj_,., Cjkm are
the m-th components of a) and c¢;;. This gives two additional terms in comﬁarison to the
translation invariant case, but these terms are “small” in the sense that the first one vanishes
at (z,w) = (0,0) and the second one does not involve ¢~t. If VhO is the d-connection
associated with the standard tubular neighborhood |w — z| < ¢, we thus find in terms of the
local trivialization o ~ & = >~ £,&, an expression of the form

V?L710_ ~ V?Z,’:(l)é‘_i_AO,lé"

where

1 Tea) = X%

aecN”

€ (5_12\/am(|a\ +n) (a;’m —i—szc]km ) dZk ® €q—e,,
+Z Zzaeﬂ'ﬂ(w) dZr ® €o | + O(Z, |2]?).
me —~ "7 Qw,, @ ’

J

The corresponding (1, 0)-parts satisfy
V}L’OJ ~ V}L’,%f AV ALO — _(A0Lyx,
and the corresponding curvature tensors are related by
(2.19) Op..h = Op.no+ A" + AL 4 ABO A AL 4 A0 A ALO

At 2z = 0 we have
Ao’lgz Z Z&)‘( _12\/0% la] +n) akm ) dZk @ €q—c,,
aceN"?  k
dzk®ea>

AOlg_ZZgQ( 12 /am |a’+n Cgkm dZ]/\de;@ea Cm

aeNn

8wm

0 m
+Z TCik,m dz]/\d_k@)ea)

and A0 9AMO are, up to the sign, the adjoint endomorphisms of A%! and 9A%!. The un-
boundedness comes from the fact that we have unbounded factors \/(aum, + 1)(Ja] +n +1);
it is worth noticing that multiplication by a holomorphic factor u(w) is a continuous op-
erator on the fibers B, ., whose norm remains bounded as ¢ — 0. In this setting, it can
be seen that the only term in (2.19) that is (a priori) not small with respect to the main
term ©p_ p o is the term involving e72 in AM A A% 4+ A0 A ALOand that the other terms
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appearing in the quadratic form (©p_ €, &) are O(e™1 > (Ja| +n)|€4|*) or smaller. In order
to check this, we expand ¢y m(w) into a power series » ., ¢jk,m,u gu(w) where

N\ Hi/2 1j/2
(2:20) gu(w) = s twh,  with s, = sup | = [] (u_g) _ Hlltjw |
jw|<1 1 Zien \A |11

so that sup), <. [gu(w)| = el We get from the term (9A%'¢, €) a summation

E(f) = 5_1 Z Z V Oém(’Oél + n) Z Cik,m,p de A dzk & <£a guga7€>'

7,k,m a€eNm pneN”

At 2 =0, g €a = gueq is proportional to eq,, and by (2.20) and the definition of the L?
norm, we have ||g,e.| < el and |(€4 g,€a, )| < e |€0||€as ] We infer

E@OI<e Y D Vamllal+n) D lejumapl € €all€atal

7,k,m a€eNm pneN™

Let r be the infimum of the radius of convergence of w — W, (w) over all z € X. Then for
e <rand ' € ]e,r[, we have a uniform bound |c;x . .| < C(1/r")#! hence

@<= Y Y (5) Vanlal ) Ealléas

aeN™ peNn

If we write

Vam(lal +n) €[Sl <

(laf +n) (|€al® + [éasnl?)

VAN
N = DN =

((laf +n)l€al® + (Jo + pl + 1) |€arul?),

the above bound implies

B < et A —e/r)™ Y (o +n)léal® = 0(6_1 > (laf +n)\£a\2>-

aeN™ aeN?

We now come to the more annoying term A9 A A% 4 A% A ALO and especially to the
part containing =2 (the other parts can be treated as above or are smaller). We compute
explicitly that term by expanding aj, ,,(w) into a power series > a; ,, , gu(w) as above.

Let us write g,,(w) = s, 'w”. As aj,,(0) = 0, the relevant term in A% is

e > Ghpusy A2 @WHD,,
k,m peN?~{0}

where D,,, and W# = W/}** ... W}n are operators on the Hilbert space H?(B. (), defined by

Dpeq = V am(|a|+n) ,é/ozfcma Wm(f) = W f.



12 J.-P. Demailly, Bergman bundles and invariance of plurigenera

The corresponding term in A*Y is the opposite of the adjoint, namely
—e1 Z Z a§€,£7>\s;1dzj ® DyW*
J€ AeN™~ {0}
and the annoying term in A10 A A%L 4 A%L A AL g
(2.21) Q=—¢c?2 Z Z A g 2Sx | O S 25 N dZi ®
dikobom A, peN~ {0}
(D;W**Wﬂpm - W“DmDZ‘W**)

We have here ||[WH| < s, el#l (as W* is the multiplication by w* = s,, g,.(w), and |g,,| < &!#!
on B ). The operators D; and D,, are unbounded, but the important point is that their

commutators have substantially better continuity than what could be expected a priori. We
have for instance

Dinéa = vam(al + 1) Ca—cs - Di(ea) = v/{ae + Dilal + 1+ 1) Case,,
1D}, Dinl(Fa) = (V@ + 1= dem)am (laf +n)

— Ve D(am + dem) (Jal +1+ 1) ) Catere,,

and the coefficient between braces is controlled by 2(|a| + n), as one sees by considering
separately the two cases ¢ # m, where we get —y/(ay + 1)ay,, and £ = m, where we get
ar(lal +n) — (ag +1)(|a| + n+1). Therefore ||[D;, Dp](€a)] < 2(Ja| +n). We obtain
similarly

~ [ oy +1 .~ TS
Wm(ea) = £ ‘0¢|Zb——n—}—1 Ca+c WK (€a) =€ m €Ca—cyr

W, Wi () = €2 V ( + 8em) (m + 1) B Vaulam + 1= 6) .
e o[ +n+1 ol +n aerten:

and it is easy to see that the coefficient between large braces is bounded for ¢ # m by
Vaelam +1)/((Jal +n)(|a| + n+ 1)) < (Ja| + n)~t, and for £ = m we have as well

(e + 1)(Ja| +n) — a(la] +n+ 1)
(lof +n)(Jao) + n+ 1)

‘ < (ja| + )",

Therefore ||[[W}, Wo](€a)|| < e*(Jal +n)~!. Finally

[WZ,Dm](ga)ﬁ( \/<ae—5em>am<|a|+n> - \/az<am—5em><|a|+n—1> > —

la] +n—1 la] +n

with a coefficient between braces less than 1, thus ||[W/, D,,|(€q)|| < €. By adjunction, the
same is true for [D}, W,,], and we can summarize our estimates as follows:

IWHI < suell, WA < sxel ID; (Ea)ll < ol + 7 +1, [ Dm(@a)ll < laf +n,
(2:22)1 D7, D] (@)l < 2(Jaf +n),  [[[W7, Wl (@)l < (Jaf +n)7",
I, Dil(ea)ll <& [[D7, Win](€a)ll < &
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Now, we observe that both D;W**WHD,,(e,) and WH*D,, D;W**(¢,) are multiples of
€atci—cm—Atpu- By considering the second product WHD,, Dy W*X and permuting succes-
sively its factors D,, Dj, D, W**, WrD;, WHW**| the difference with D;W**WHD,, is
expressed as a sum of 1 + |[A| + | ,u] + Al ,u] terms involving commutators. We derive from
our estimates (2.22) precise bounds for the image of €, by the commutators. For instance,
when we arrive at DZ‘W“W*ADm and permute WHW** we go through intermediate steps

DZW*XW“/WkW;W“//W*)\//Dm with \ = )\/—f-)\//—f’cj, = M/+M,/+Ck7 |)\| — |)\/|+|/\//|+1,
|| = || + |1”] + 1, and have to evaluate the commutators

DWNWH W, W] W W D,y (24).
By (2.22), the norm of these |\||u| terms is bounded by

/ / —1 1" 1"
((ed = A= 1) n1) sx el s e T (o] =[N+ 4 4n) T s el Isxnel L (Jal4n)
(ol = A+ |ul = D4 +n 4 1)(|a] +n)
(ol = [A)s +n

(2.23) VE VTN gkl

The remaining commutators are easier, they lead to bounds

sasu M 2((Jaf = [Al)+ +n) (once),
(2.24) sxsars, eI (Ja] — A = 1)L +n+1 (]| times),
s8NNI (Ja) + n) (] times).

In the final estimates, we will have to bound some combinatorial factors of the form

SX' SN SprSpur

(2.25) (worst case),

S) Sp

and we want the ratios sy sy /sy to be as small as possible (clearly they are at least equal
to 1). For this, we try to keep the proportions M\}/[\'[|, A7/|\"| as close as possible to
Aj /Al by selecting carefully which factor W) (and W,,) we exchange at each step. After
a permutation of the coordinates, we may assume than \,, > max;., Aj, hence A\, > %])\]
If t' = |N|/[A and t7 = [N'|/|A| = 1 =t = 1/|A|, we take X = [t'\;], ] = [t"\;] for
j <n —1 and compensate by taking ad hoc values of A/, A/ and ¢, = A — (A + \’). Then
t'A; —1<)\3 <t'\; for j <n and

I\ ZX {<t/|)\|—Zj<nt/)‘j+n_1:t/)‘n+n_17
- - j
; > |\ — Zj@mj =t'\,.

<n
Therefore
N by M\ '\, +n—1 A n—1
—J <L forj< no 2t S (] if \,, > 0.
BV A YU I 7PV |A|( * m) 1

These inequalities imply respectively

1\ Ni/2 N\ (#A=1)/2 1\ /2 t' A /2 N (P Antn—1)/2
[N NG BEANPY AN t'An
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In the last inequality we have t'\,, > ‘—/1\|>\n > L unless X' = 0. Thus, if N # 0, we get

(t'Ap+n—1)/2
n—1 In-1 1 9

and by taking the product over all j € {1,...,n} we find

. s t'x;/2 ’)‘| 1/2 . /
wzen () TL(E) s o oo
J

j<n j<n

(notice that for A\; = 0 we also have )\;- = 0, and the corresponding factors are then equal
to 1). Notice also that

(s = T <

j<n

Al Aj /2|
_) < T AP/ = x72,
X =

J j<n

For X', N #£ 0, this implies
3

(2.26) Sy S < en?’(S)\)t’—i-t” ‘)\‘n—l _en (S/\)1—1/|)\| |)\‘n—1 < en?’S)\ |)\’n7

and our combinatorial factor (2.25) is less than e2?” |A|"|u|”. When N = 0 or A = 0 (say
X' =0), we have \' = X\ — ¢; for some j and sy» = 1, thus

< 61/2 Sy |)\’1/2

Al—1)/2 L
A >(| 1)/ |/\|1/2 ()\j_l)(AJ 1)/2

A1 72

S\/Sx\1 = Sx1 = S) (
J

and inequality (2.26) still holds. We now put all our bounds together. For all 7/ < r = radius
of convergence of w +— W (w), the coefficients aj , , satisfy [a} ,\| < Co(1/r")N with
Co = Co(r') > 0, and for every £ =) £nea, (2.21-2.26) imply a bound of the form

QO.01<=2Y Y (5) e N+ D AP

a€eN™ X\ neNr~ {0}
((of = A+ ul = 1) +n+ 1)(laf +n)

(Jal = A)+ +n ol ol
Here |A| + |p| > 2, and for 6 > 0 arbitrary, there exists Cy = Cy(d) such that
(24 AL+ Ll = I al) (Al < Co (14 8)AFI2,
thus
C1Cs (14 8)e IA+Iul-2
eeol<=2 > > (555 y
aeN™ A\ neN"~ {0}
(o] = [\ + )+ +n)(Ja] +n)
|§Oé||€a—)\—|—,u|-

(laf = [AD+ +n
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Now, we split the summation with respect to (A, ) between the two subsets || 4+ |u| <
(la] +n)/2 and |A| + |p| > (|a] +n)/2. We find respectively

(o] = N+ 1uD+ +n)(al +n) _ [ V6y/lal+n)((laf = A+ [u])4 +n)  (first case)
(laf = [AD+ +n SO+ |u])? (second case).

In the first case, we use the inequality

2v/lal +n)((lal = AL+ [ul)+ + 1) [€all€a-rul
< (laf +n)l&al® + (ol = A+ 1))+ + ) ga-rtul”,

and in the second case we content ourselves with the simpler bound

2’§a’|£a—/\+u| < |€a|2 + ‘fa—A+u|2'

For € € ]0,r|, the series

SO a2 (BT

A peNn~ {0} A peEN~ {0}

can be made convergent by choosing ' = (r +¢)/2 € |e,r[ and 1+ § = /r//e, thus there
exists a positive continuous and increasing function ¢ — C(g) on |0, r[ such that

(Q(6), &) <Cle) > (lal +n)[éal* forall € € B,

aeN”

which is what we wanted. This bound, together with Theorem 2.15 and the estimates from
the preliminary discussion yield the following result.

2.27. Theorem. Let (X,v) be a compact hermitian manifold equipped with a real analytic
metric, and let r we the supremum of the radii v’ of the ball bundles {||C||, < r'} on which
the related exponential map exph = exph. : {||C[[, < 7'} C Tx — X x X defines a real
analytic diffeomorphism (z,() — (z,exph,(()). Then, for all € < r, the curvature tensor of
the Bergman bundle (B., h) satisfies an estimate

(©p..1&)(v, Jv), e ) (

aeNm?

S V@G bameyts| + 1L+ 0() Y (] +1n) |fa|2|vj|2)

J J

for every & = > €aea € By, p > 1, and every tangent vector v = Y v; 0/0z;, where
O(e) =€ C(e) for a continuous increasing function € — C(g) on |0,r[. In particular ©p_
is positive definite (and even coercive unbounded) for e < ey small enough.

2.28. Remark. Under our real analyticity assumptions, the proof makes clear that there
exists a convergent asymptotic expansion

((©B..n ) (v, Jv), Ze 2PQp(2, 6 ® V),
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where

J

Qo(zE®v) =Qo(®v) = > (

aeNn

2
> Va5 bameyvs| + Y (ol + 1) |§a|2|vj|2>
J

corresponds to the model case X = C". The terms ); can be derived from the Taylor
expansion of exph associated with the metric ~, and they a priori depend on the coefficients
of the torsion and curvature tensor and their derivatives. In the Kéhler case, cf. for instance
[Dem??, 8.5], one has exph, (£) = 2+£+0(z£?) and one can check from the above calculations
that @1 = 0. It would be interesting to identify more precisely ()1 and )2 in general.

3. Invariance of plurigenera for polarized Kahler families

The goal of this section is to prove that for every polarized family X — S of compact
Kihler manifolds, the plurigenera p,,(X;) = h%(X;,mKx,) of fibers are independent of ¢
for all m > 0. This result has first been proved by Y.T. Siu [Siu98] in the case of projective
varieties of general type (in which case the proof has been translated in a purely algebraic
form by Y. Kawamata [Kaw99]), and then by [Siu00] and Paun [Pau04] in the case of
arbitrary projective varieties; in the nonrestricted projective case, no algebraic proof of the
result is known. We extend here the result to the Kéhler context. This requires substantial
modifications of the proof, since the technique of Siu and Paun involved in a crucial manner
the use of an auxiliary ample line bundle. We replace it here by a use of the Hilbert bundles
studied in the previous section.

3.1. Theorem. Let w: X — S be a proper holomorphic map defining a family of smooth
compact Kdhler manifolds over an irreducible base S. Assume that w admits local polari-
zations, i.e. every point sg € S has a neighborhood V such that 7=*(V) carries a closed
smooth (1,1)-form w for which wx, is positive definite on Xy := n1(t), t € V.. Then the
plurigenera p,,(X;) = h°(Xy, mKx,) of fibers are independent of t for all m > 0.

The above statement follows directly from the following more technical result.

3.2. Theorem (generalized version of the Claudon-Paun theorem). Let 7 :X — A be a
polarized family of compact Kihler manifolds over a disc A C C, and let (£;,h;)o<j<n-1
be (singular) hermitian line bundles with semi-positive curvature currents i©; , > 0 on X.
Assume that

(a) the restriction of h; to the central fiber Xy is well defined (i.e. not identically +00).
(b) the multiplier ideal sheaf J(hj x,) is trivial for 1 <j < N — 1.

Then any section o of O(mKx + ) Lj)x, ®I(ho|x,) over the central fiber Xy extends into
a section & of O(mKx + > L;) over a certain neighborhood X' = 7w~ (A’) of Xo, where
A" C A is a sufficienty small disc centered at 0.

3.3. Remark. A standard cohomological argument shows that we can in fact take X' = X
in the conclusion of Theorem 3.2, because the direct image sheaf &€ = 7, O(mKyx + ) L;) is
coherent, and the restriction &€ — € ® (Oa/meOa) induces a surjective map at the HY level
on the Stein space A, so we can extend ¢ mod 7*mg to X.
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Proof of Theorem 3.1. The invariance of plurigenera is in fact just obtained as the special
case of Theorem 3.2 when all line bundles £; and their metrics h; are trivial. Since the
dimension ¢t — h°(X;,mKx,) is always upper semicontinuous and since Theorem 3.2 implies
the lower semicontinuity, we conclude that the dimension must be constant along analytic
discs, hence along the irreducible base S, by joining any two points through a chain of
analytic discs. O

3.4. Lemma. Let X' = 7= 1(A’) — A’ be the restriction of m : X — A to a disc A’ € A
centered at 0, of radius R' < R. For e < gy = €o(R’) small enough, one can find a Stein
open subset U. C X' x X , where such that the projection pry : U. — X' is a complex ball
bundle over X' that is locally trivial real analytically.

Proof. The arguments are very similar to those of §1, except for the fact that X is no
longer compact, but this is not a problem since X — A is proper, and since we can always
shrink A a little bit to achieve uniform bounds (would they be needed). Let v be a real
analytic hermitian metric on X, and exph : Ty — X be the corresponding real analytic and
fiber-holomorphic exponential map associated with v, as in §1. The map exph is no longer
everywhere defined, but if we restrict it to the e-tubular neighborhood of the zero section
in Ty, we get for &€ > 0 small enough a real analytic diffeomorphism (z,§) — (z,exph,(§))
onto a tubular neighborhood of the diagonal of X’ x X’. The rest of the proof is identical to
what we did in §1, taking

(3.5) UL = {(z,w) € X' x X; |logh, (w)|, < €}. O

In order to study Theorem 3.2, we first state a technical extension theorem needed for the
proof, which is a special case of the well-known and extremely powerful Ohsawa-Takegoshi
theorem [OT87], see also [Oh?7], [Dem??].

3.6. Proposition. Let m: Z — A be a smooth and proper morphism from a (non compact)
Kdhler manifold Z to a disc A C C and let (L,h) be a (singular) hermitian line bundle
with semi-positive curvature current i©gp > 0 on Z. Let w be a global Kdahler metric on Z,
and let dVz, dVyz, the respective induced volume elements on Z and Zy = m—1(0). Assume
that hz, is well defined (i.e. almost everywhere finite). Then any holomorphic section s of
O(Ky + £) ® I(hz,) extends into a section S over Z satisfying an L? estimate

/ 15120ndVa < Co / 50120 dVaze,
Z Zo

where Cy > 0 is some universal constant (depending on dimZ and diam A, but otherwise
independent of Z, L, ...).

3.7. Remark. The assumptions of Proposition 3.6 imply that Z is holomorphically convex
and complete Kéhler, thus the technique of [Dem??] does apply to yield the result.

Proof of Theorem 3.2. Let p = pry : U. — X' be as in Lemma 3.4, and ¢ = pry : U, — X.
We take € < g9 and use on Z := U, a Kéahler metric wy defined on the Stein manifold U .

On can define e.g. wy as the 199 of a strictly plurisubharmonic exhaustion function on uz,,

but we can also take the restriction of prjw + prj w5 where w is the Kéhler metric on the
total space X, and w = — w the corresponding Kéahler metric on the conjugate space X.
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First step: construction of a sequence of extensions on Z = UL via the Ohsawa-Takegoshi
extension theorem.

The strategy is to apply iteratively the special case 3.6 of the Ohsawa-Takegoshi extension
theorem on the total space of the fibration
m=mop:Z=U - X" — A,

and to extend sections of ad hoc pull-backs p*§ from the zero fiber Zy = 7' ~1(0) = p~1(Xo)
to the whole of Z = UL. We write h; = ™%/ in terms of local plurisubharmonic weights,
and define inductively a sequence of line bundles §G,, by putting Go = Oy and

Smn=9m-1+Kev+L, ifm=Ng+r, 0<r<N-1.
By construction we have

Son=mKy + L1+ -+ L, forl1<m<N-—-1,
Smt+N —Gm =98 =NKy +Lo+---+Ln_1, forallm>0.

The game is to construct inductively families of sections, say {f}m) biet,..,7(m)s of P*Gm
over Z, together with ad hoc L? estimates, in such a way that

(3.8) for m=0,...,N —1, p*G,, is generated by L? sections {f( Yiet,gmmy on UL ;

(3.9) we have the m-periodicity relations J(m + N) = J(m) and f}-m) is an extension of

f(m) (p* a)qf()oveerorm Ngq + r, where f() —f](@,ogrSN—l.

Property (3.8) can certainly be achieved since U, is Stein, and for m = 0 we can take

J(0) =1 and f(o) = 1. Now, by induction, we equip p*9G,,_1 with the tautological metric

€12/ 32 1F D @), and
G = D"Gm — Kz = 0" G — (0" Koo + ¢"K5) = p* (G + £,) — ¢" Kz

with that metric multiplied by p*h, = e P % and a fixed smooth metric e~¥ of positive
curvature on (—q* Kz)n . (remember that U. is Stein!). It is clear that these metrics

have semi-positive curvature currents on Z (by adjusting 1, we could even take them to be
strictly positive if we wanted). In this setting, we apply the Ohsawa-Takegoshi theorem to
the line bundle Ky + §m = p*SG,,, and extend in this way f;m) into a section f;m) over Z.
By construction the pointwise norm of that section in p*§G,, x, in a local trivialization of

the bundles involved is the ratio
5P
> R

up to some fixed smooth positive factor depending only on the metric induced by wy on K.
However, by the induction relations, we have

e P pr—1
)

S0P
1 = et form = Nq+r,0<r<N-1,
) L P Z@ |f © |
(m=1)9 (0) 2
2ol | ZI;|| *a|26_p %o for m =0mod N, m > 0.

N 1
SN TIPR
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Since the sections { f;r)}0§r< ~ generate their line bundle on U, D U, the ratios involved
are positive functions without zeroes and poles, hence smooth and bounded [possibly after
shrinking a little bit the base disc A’ as is permitted]. On the other hand, assumption
3.2 (b) and the fact that o has coefﬁments in the multiplier ideal sheaf J(hy| Xo) tell us that
e P'¢r 1 <r<mand Ip*o|?e” P"#0 are locally integrable on Z. It follows that there is a
Constant C1 > 0 such that

= 1P
Zo Yo lF VP

for all m > 1 (of course, the integral certainly involves finitely many trivializations of the

bundles involved, whereas the integrand expression is just local in each chart). Inductively,
i

—p*sar—wdeo <

the L? extension theorem produces sections of p*§,, over Z such that

7(m)2

%G—P*@r—lﬁd‘/;}o < CQ = C()Cl.

22 |fy 2

Second step: applying the Holder inequality. Put k = Nq(k) + r(k) with 0 < r(k) < N,

and take m = Ng(m) to be a multiple of N. The Holder inequality | [ [],<j.<,, urdp| <
[Ticrem (S lug|™dp)t/™ applied to the measure o = dV,,, and to the product of functions

=m) |2 (k)12 1/m
(Z |f | ) _%p*(@o-i-m-HPN—l)—w H <M _p*@r(k)_w)

0 k—1
ATIE iem N2 Y

in which 2, [£i”2 = [A”]> = L and 3, |£\™2 = | /™%, implies that
(3.10) /}fl(m)f/m —xp" (pot . FoN—1)— wdv < Os.
Z

As the functions ¢, (1) and ¢ are locally bounded from above, we infer from this the weaker
inequality

(3.10') /Z}f}m)f/mdeo < Cs.

The last inequality is to be understood as an inequality that holds in fact only locally over X',
on sets of the form p~1(V), where V' € X’ are small coordinate open sets where our line

bundles are trivial, so that the section fvl(m) of g(m) p*(NKy + > £;) can be viewed as a
holomorphic function on p=1 (V).

Third step: construction of a singular hermitian metric on NKy + > L;. The rough
idea is to extract a weak limit of the m-th root occurring in (3.10), (3.10’), combined
with an integration on the fibers of p : Z = UL — X', to get a singular hermitian metric
on NKy + ) £;. This is the crucial step in the proof, and the place where the Kahler setup
requires new arguments; especially, the integration on fibers makes the weak limit argument
much less obvious than in the projective setup, and requires the results of §2 on Bergman

bundles.
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3.11. Proposition. Assume that the sections Nltm) and vector fields T; have been constructed
on a slightly bigger tubular neighborhood W, . — X' with pg > 1, [this condition can of
course always be achieved, since we have a lot of flexibility on the choice of the tubular
neighborhoods, by taking e.g. € < 3e0(R')]. Then there ezists ¢ > 0 and a subsequence
m € My C N such that, with respect to local trivializations of the £; and local holomorphic

sections dw = dwy A ... N dwny1 of K5), we have a well defined limit

1 ~
0(z) = lim —log/ 17 (z,w) 2D dw A dw, 2z € X
meMqg M, ’
m—+ oo weus z
exists almost everywhere on X', and H = e N? defines a singular hermitian metric of
positive curvature current on p*(NKy + Y L;), i.e. 1000 > 0. Moreover, it satisfies the

estimates

(a) |o|% = |o|?e™™M =1 on Xg C X' ;
(b) / el w(potton—1)gy < oo

(c) if po € |1, pi|, there is a constant Cy = Cy(pg) > 0 such that for every >0

i00e"? > —e72(log po) te“*Pu.

Proof. First notice that the choice of the w local coordinates on X is irrelevant in the

definition of @ (the L? integrals may eventually change by bounded multiplicative factors,
which get killed as m — +o0). We take p; = 22t € ]1, po[ and use estimate (3.10") on

2
Z =W, _, together with the mean value inequality for plurisubharmonic functions, applied

pog?
on wo-geodesic balls of Z centered at points (z,w) € UL and of radius dy, (W, .,CU, ) ~
(po —1)e/2. As dimZ = 2(n + 1), we obtain by (3.10") a uniform upper bound
Cs

sup | £/ <

pP1E,2z

/ AP i) g A dw
u/

poE

(o0 — D)D)

< Co
= ((po — L)e)t(ntD)”

(3.12) Vze X

Here our sections can be seen as functions only locally over trivializing open sets of the
line bundles in X', but we can arrange that there are only finitely many of these; hence the
transition automorphisms only involve bounded constants, after raising to power 1/m. At
this point, let us consider the Bergman bundle B, — X’ and write locally over X’

A (zw) dw =Y €a(2) Ealz,w) @ g(2)1™, zeX, well,
aeNn+1

in terms of an orthonormal frame (€,)q,enn+: of Be as defined in §2, where g is a local
generator of Ox(N Ky + > £;) and dw = dwy A... Adwyy in local coordinates. Therefore,
we have an equality

1
Om p(2) 1= Elog/ ! |
wel’

pE,z

(3.13) — l10g< Z p2(lal+n+1) |§a(2)|2>’

m
OéGNnJ’_l

™ (2, w) 28D dw A dw
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and by (3.12), we get an upper bound

1 Cr(pe)*™V) G L _
Om.p(2) < - log (oo — 1)e)amtneD <Cs+4(n+1) log o= Coe, p<pr1.

The sum Y, cpnsr 20T (€, (2)2 = em0m.0(2) is nothing else than the square of the
norm of the section l(m), expressed with respect to the natural hermitian metric (e, ), of
the Bergman bundle B,., p € |0, p1]. The inequalities (3.13) show that the series converge
uniformly over the whole of X’. As V%!¢ = 0, a standard calculation with respect to the

Bergman connection V = V1.0 + V%! of B, implies

1 1 '
m 1€]12 <i<v1’ofavl705>p —(i08,.£,8)p — :

1 <i@Bp5€7 g)ﬁ

- om i€

by the Cauchy-Schwarz inequality. On the other hand, as the orthonormal coordinates
expressed in B, are the (p|a|+”+1§a), the curvature bound obtained in §2 yields

1900, — (10, €), A <V1705,£>p>

€117

(i0p,.£,6), < (24 0(p))(pe) > Y (Jal+n+1) PPl 16, 2 w.

aeNn+1

The last two inequalities imply the fundamental estimate

(2+0(pe)) (p2) 2 D= (ol +n 1) ettt g,
+ O(pe))(pe) ™" aenn+:

m Z pQ(\aH—n—f—l) |§a|2

aeNntl
1+O(pe) [ O
14 > 10w (9, N,
(3.14) > T (b )

1000, , > —

From its definition, we see that 6,, , is a convex function of log p. Therefore, for p < 1, we
have
8 em:l)l B Hmzp < 0975 — em’p

_em = =~
P 9p ™" = log py — logp log p1

and by (3.14) we find

_ C 1
800, , > —ﬁ (011 +1log — — em,p) w.

The p-derivative of 6,, , may be difficult to estimate, thus we replace (3.14) by an inte-
grated form and consider

~ ) p
emyp’p/ (Z) = m /[;/ 9m7u(2> u du.
Then we obtain
AT 2+ O(pe)
3.15 000, 0> ————2 (0., — O ) w.
( ) v 0P — 62(/)2 - p/Q)( P P ) w
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However, formula (2.18) shows that

Ow,al(z,w) =7t Var(lal +n) Eae, (2, w),

thus
S ol =2 Y anllal 4+ 0) sl =2 Y Jal(la] + 1) asl?
k k aeNntl a€eNn+1
and
e 3 (ol +1)? sl < 2 [5IP 423 10unésl? §08(|rsgn2+z|mam|2).
aceNn+1 k k

Since 7x€g = £84¢,, We have

Yo mgslP<v Y gl

1Bl=¢ k |’ |=£+1

therefore

C
e 2> N (Jaf + n)?[€asl? < Cs (€l +ve El?) < ——— 1I€]1%,

—1)2g2
fere admn (p=1)%
if we recall the value of ¢ = (8C2)™1(p — 1)&2. By (3.16) we get

, Cho
195, 3 0men& O, < ;2 €

and in fine, by (3.15), we have

o Cho
1 >0
(3.17) 1000, > m(p— D)2 w

Here the constant C1¢ can be seen to depend only on the geometry of (T, w). On the other
hand, estimate (3.14) is equivalent to a uniform upper bound

0p, dV,, <Ci1+4(n+1) log ————
/zeDC/ ’ H ( ) (p—1)e

The above lower bound is uniform with respect to m as m — +oo, and we see that
e is quasi plurisubharmonic. By well known facts of pluripotential theory, there exists

an upper semicontinuous regularization

0= (lim sup 9m>*

m——+oo

and a subsequence m € My C N such that

6 = limsup6,, almost everywhere on X',
me Mg
m—+ oo
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and satisfying in the limit the Hessian estimate
(3.17) 100 > —e2(log p) ~teCeA 12y,
for every A > 0. Property (c) is proved. O

3.18. What to do ?. Our hope (possibly after modifying the sections f;m) in an adequate
manner) is that one can gain a factor converging to zero in estimate (3.16), and thus in
(3.17). This would prove that e*’ is plurisubharmonic for every A > 0, hence the weight
6 = limy_,0 5 (¢*? — 1) would also be plurisubharmonic.

Fourth step: applying Ohsawa-Takegoshi once again with the singular hermitian metric pro-
duced in the third step.

Assuming that 3.18 holds, we have proved that NKy + ) £; possesses a hermitian
metric H = e~ N? such that ||o||z <1 oon Xy and O > 0 on X’. In order to conclude, we
equip the bundle

E=(N-1DEy+> L;

with the metric n = H*~1/N Hh;/N, and NKy + ) L; = Ky + € with the metric w ® 7.
It is important here that X possesses a global Kéhler polarization w, otherwise the required
estimates would not be valid. Clearly n has a semi-positive curvature current on X’ and in
a local trivialization we have

/
O S S o (0 B

on Xo. Since |o[*e~%° and ¥, 7 > 0 are all locally integrable, we see that [|o||2, is also
locally integrable on X by the Holder inequality. A new (and final) application of the L2
extension theorem to the hermitian line bundle (€,7n) implies that o can be extended to X'.
Theorem 3.2 is proved. O

and a uniform upper bound 6, < Cy on X’'. Here the double summation is real analytic
and 6,,(z) — & log |o(z)|? uniformly on X,. The next idea is to estimate the Hessian form
of z — e*m(2) for every A > 0 fixed. We have of course

A/m
() = ( > !£a<z>|2> — IEIP™ = (€(2), €M

aeNn

where ¢ is nothing else than the expression of the section ,]?fm) is the (real analytic) trivia-
lization of the Bergman bundle B, and (e, ) the natural hermitian metric on B.. Now, a
standard calculation with respect to the Bergman connection V = V19 + V! of B, yields
V%1¢ =0, hence

. A o . AVHVEIE € A (VI 6)
A0 (2) _ A/m , , _ _ _ -
i0de = ~lell® 2(z<v10§,v1°§> (105.6.€) - (1 m) EE )

(313) 22 i056,6)
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by the Cauchy-Schwarz inequality. On the other hand, the curvature bound obtained in §2
yields

(i0p5.6,6)], <2672 ) (la] +n)léa|

aeN?
1-X/m A/m
(3.14) < 252( 2. |€al2> ( > (ol +n)m“|§a|2)
acN™ acN™

by the discrete Holder inequality. We compare the last summation to (3.12) by taking the
maximum of ¢ — (¢t +n)™/*p~? which is reached for to +n = 2 (log p)~* by an elementary
calculation. This gives

A/m A/m
( > (lal+ n)m/klia!2> < (to + n)p_m/m< > P2'a'!fa(2)|2>

(3.15) <M nx/m g CoA—1/2

—1
< 5y (ogp)™7p

A combination of the last three estimates (3.13-3.15) gives
(316) iage)\QWL(Z) Z _8—2(10g p)—lpTL)\/meC(;)\—l/Qw'

The above lower bound is uniform with respect to m as m — 400, and we see that e*? is
quasi plurisubharmonic. By well known facts of pluripotential theory, there exists an upper
semicontinuous regularization

0= <limsup9m>>k

m—+00
and a subsequence m € My C N such that
6 = limsup,, almost everywhere on X',

me Mg
m—+ oo

and satisfying in the limit the Hessian estimate
(3.17) i00e* > —e2(log p)"teeA 12y,
for every A > 0. Property (c) is proved. ad

3.18. What to do ?. Our hope (possibly after modifying the sections f;m) in an adequate
manner) is that one can gain a factor converging to zero in estimate (3.16), and thus in
(3.17). This would prove that e*’ is plurisubharmonic for every A > 0, hence the weight
0 = limy_,¢ %(e)‘e — 1) would also be plurisubharmonic.

Fourth step: applying Ohsawa-Takegoshi once again with the singular hermitian metric pro-
duced in the third step.

Assuming that 3.18 holds, we have proved that NKy + > £; possesses a hermitian
metric H = e~ V% such that |||z <1 oon Xy and O > 0 on X’. In order to conclude, we
equip the bundle

e = (N—l)Kx/+ZLj
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with the metric n = H!=/N thl-/N, and NKy + ) L; = Ky + € with the metric w ® 7.
It is important here that X possesses a global Kéhler polarization w, otherwise the required
estimates would not be valid. Clearly n has a semi-positive curvature current on X’ and in
a local trivialization we have

C (7(@7’ 0 exp —_— —_ 0 E 2 5 1/
2

on Xy. Since |o[*¢™%° and ¥, 7 > 0 are all locally integrable, we see that [|o||2, is also
locally integrable on Xy by the Holder inequality. A new (and final) application of the L2
extension theorem to the hermitian line bundle (€,7n) implies that o can be extended to X'.
Theorem 3.2 is proved. O

4. Invariance of plurigenera for polarized Kéahler families

The goal of this section is to prove that for every polarized family X — S of compact
Kihler manifolds, the plurigenera p,,(X;) = h%(X;,mKx,) of fibers are independent of ¢
for all m > 0. This result has first been proved by Y.T. Siu [Siu98] in the case of projective
varieties of general type (in which case the proof has been translated in a purely algebraic
form by Y. Kawamata [Kaw99]), and then by [Siu00] and Paun [Pau04] in the case of
arbitrary projective varieties; in the nonrestricted projective case, no algebraic proof of the
result is known. We extend here the result to the Kéahler context. This requires substantial
modifications of the proof, since the technique of Siu and Paun involved in a crucial manner
the use of an auxiliary ample line bundle. We replace it here by a use of the Hilbert bundles
studied in the previous section.

4.1. Theorem. Let m : X — S be a proper holomorphic map defining a family of smooth
compact Kdhler manifolds over an irreducible base S. Assume that w admits local polari-
zations, i.e. every point sg € S has a neighborhood V such that n=*(V) carries a closed
smooth (1,1)-form w for which wx, is positive definite on Xy := n1(t), t € V.. Then the
plurigenera p,,(X¢) = h°(Xy, mKx,) of fibers are independent of t for all m > 0.

The above statement follows directly from the following more technical result.

4.2. Theorem (generalized version of the Claudon-Paun theorem). Let m:X — A be a
polarized family of compact Kdihler manifolds over a disc A C C, and let (£j,h;)o<j<n—1
be (singular) hermitian line bundles with semi-positive curvature currents i©; n, > 0 on X.
Assume that

(a) the restriction of h; to the central fiber Xy is well defined (i.e. not identically +00).
(b) the multiplier ideal sheaf J(hj x,) is trivial for 1 <j < N — 1.

Then any section o of O(mKx + > L;)x, ®I(ho|x,) over the central fiber Xy extends into
a section & of O(mKx + >.L;) over a certain neighborhood X' = 7w~ (A’) of Xy, where
A’ C A is a sufficienty small disc centered at 0.

4.3. Remark. A standard cohomological argument shows that we can in fact take X' = X
in the conclusion of Theorem 4.2, because the direct image sheaf &€ = 7, 0(mKyx + ) L;) is
coherent, and the restriction & — € ® (0a/meOa) induces a surjective map at the HY level
on the Stein space A, so we can extend ¢ mod 7*mg to X.
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Proof of Theorem 4.1. The invariance of plurigenera is in fact just obtained as the special
case of Theorem 4.2 when all line bundles £; and their metrics h; are trivial. Since the
dimension ¢t — h°(X;,mKx,) is always upper semicontinuous and since Theorem 4.2 implies
the lower semicontinuity, we conclude that the dimension must be constant along analytic
discs, hence along the irreducible base S, by joining any two points through a chain of
analytic discs. O

4.4. Lemma. Let X' = 7= 1(A’) — A’ be the restriction of m : X — A to a disc A' € A
centered at 0, of radius ' < r. Fore < ey = eo(r') small enough, one can find a Stein open
subset UL C X' x X , where such that the projection pry : U. — X' is a complex ball bundle
over X' that is locally trivial real analytically.

Proof. The arguments are very similar to those of §1, except for the fact that X is no
longer compact, but this is not a problem since X — A is proper, and since we can always
shrink A a little bit to achieve uniform bounds (would they be needed). Let v be a real
analytic hermitian metric on X, and exph : Ty — X be the corresponding real analytic and
fiber-holomorphic exponential map associated with ~, as in §1. The map exph is no longer
everywhere defined, but if we restrict it to the e-tubular neighborhood of the zero section
in Ty, we get for &€ > 0 small enough a real analytic diffeomorphism (z,§) — (z,exph,(§))
onto a tubular neighborhood of the diagonal of X’ x X’. The rest of the proof is identical to
what we did in §1, taking

(4.5) UL = {(z,w) € X' x X; |logh, (w)|, < €}. O

In order to study Theorem 4.2, we first state a technical extension theorem needed for the
proof, which is a special case of the well-known and extremely powerful Ohsawa-Takegoshi
theorem [OT87], see also [Oh?7], [Dem??].

4.6. Proposition. Let m: Z — A be a smooth and proper morphism from a (non compact)
Kdhler manifold Z to a disc A C C and let (L,h) be a (singular) hermitian line bundle
with semi-positive curvature current i©gp > 0 on Z. Let w be a global Kdahler metric on Z,
and let dVz, dVyz, the respective induced volume elements on Z and Zy = m—1(0). Assume
that hz, is well defined (i.e. almost everywhere finite). Then any holomorphic section s of
O(Ky + £) ® I(hz,) extends into a section S over Z satisfying an L? estimate

/ 15120ndVa < Co / 50120 dVaze,
Z Zo

where Cy > 0 is some universal constant (depending on dimZ and diam A, but otherwise
independent of Z, L, ...).

4.7. Remark. The assumptions of Proposition 4.6 imply that Z is holomorphically convex
and complete Kéhler, thus the technique of [Dem??] does apply to yield the result.

Proof of Theorem 4.2. Let p = pry : U. — X' be as in Lemma 4.4, and ¢ = pry : U, — X.
We take € < g9 and use on Z := U, a Kéahler metric wy defined on the Stein manifold U .

On can define e.g. wy as the 199 of a strictly plurisubharmonic exhaustion function on uz,,

but we can also take the restriction of prjw + prj w5 where w is the Kéhler metric on the
total space X, and w = — w the corresponding Kéahler metric on the conjugate space X.
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First step: construction of a sequence of extensions on Z = UL via the Ohsawa-Takegoshi
extension theorem.

The strategy is to apply iteratively the special case 4.6 of the Ohsawa-Takegoshi extension
theorem on the total space of the fibration
m=mop:Z=U - X" — A,

and to extend sections of ad hoc pull-backs p*§ from the zero fiber Zy = 7' ~1(0) = p~1(Xo)
to the whole of Z = UL. We write h; = ™%/ in terms of local plurisubharmonic weights,
and define inductively a sequence of line bundles §G,, by putting Go = Oy and

Smn=9m-1+Kev+L, ifm=Ng+r, 0<r<N-1.
By construction we have

Son=mKy + L1+ -+ L, forl1<m<N-—-1,
Smt+N —Gm =98 =NKy +Lo+---+Ln_1, forallm>0.

The game is to construct inductively families of sections, say {f}m) biet,..,7(m)s of P*Gm
over Z, together with ad hoc L? estimates, in such a way that

(4.8) for m =0,...,N — 1, p*G,, is generated by L? sections {f( Yiet,gmmy on UL ;

4.9) we have the m-periodicity relations J(m + N) = J(m) and F™) is an extension of
( y .

f(m) (p* a)qf()oveerorm Ngq + r, where f() —f](@,ogrSN—l.

Property (4.8) can certainly be achieved since U, 6 is Stein, and for m = 0 we can take

J(0) =1 and f(o) = 1. Now, by induction, we equip p*9G,,_1 with the tautological metric

€12/ 32 1F D @), and
G = D"Gm — Kz = 0" G — (0" Koo + ¢"K5) = p* (G + £,) — ¢" Kz

with that metric multiplied by p*h, = e P % and a fixed smooth metric e~¥ of positive
curvature on (—q* Kz)n . (remember that U. is Stein!). It is clear that these metrics

have semi-positive curvature currents on Z (by adjusting 1, we could even take them to be
strictly positive if we wanted). In this setting, we apply the Ohsawa-Takegoshi theorem to
the line bundle Ky + §m = p*SG,,, and extend in this way f;m) into a section f;m) over Z.
By construction the pointwise norm of that section in p*§G,, x, in a local trivialization of

the bundles involved is the ratio
5P
> R

up to some fixed smooth positive factor depending only on the metric induced by wy on K.
However, by the induction relations, we have

e P pr—1
)

S0P
1 = et form = Nq+r,0<r<N-1,
) L P Z@ |f © |
(m=1)9 (0) 2
2ol | ZI;|| *a|26_p %o for m =0mod N, m > 0.

N 1
SN TIPR
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Since the sections { f;r)}0§r< ~ generate their line bundle on U, D U, the ratios involved
are positive functions without zeroes and poles, hence smooth and bounded [possibly after
shrinking a little bit the base disc A’ as is permitted]. On the other hand, assumption
4.2 (b) and the fact that o has coefﬁments in the multiplier ideal sheaf J(hy| Xo) tell us that
e P'¢r 1 <r<mand Ip*o|?e” P"#0 are locally integrable on Z. It follows that there is a
Constant C1 > 0 such that

S AP
m—1
2o S 1 fm IR

for all m > 1 (of course, the integral certainly involves finitely many trivializations of the
bundles involved, whereas the integrand expression is just local in each chart). Inductively,

e P er —dewO <O

the L? extension theorem produces sections ]f”;(m) of p*§,, over Z such that

7(m) 2
/ Z |f ‘ e—p*ipr—d}deo < CQ = C()Cl.

Y IR

Second step: applying the Holder inequality. Put k = Nq(k) + r(k) with 0 < r(k) < N,
and take m = Ng(m) to be a multiple of N. The Holder inequality | [ ], <<, urdp| <
[lichem(S lug | dp)Y/™ applied to the measure o = dV,,, and to the product of functions

(m 5 (k l/m
<Z ‘f | ) —LP*(‘P0+--.+<,0N_1)—1/1 H <M _p*WT(k)_IP)

0 k—1
NG Lnem A\ IFEYP2

in which ¥, [£;”2 = [AA”]> = 1 and 3, |f\™2 = |/;"™]?, implies that
(4_10) /Z}fl(m)f/m ——P “(pot-.+oN-1)— lbdv < (Cs.

As the functions ¢, and ¢ are locally bounded from above, we infer from this the weaker
inequality

(4.10") /Z}f}m)f/mdeo < Cs.

The last inequality is to be understood as an inequality that holds in fact only locally over X',
on sets of the form p~(V), where V' €@ X’ are small coordinate open sets where our line

bundles are trivial, so that the section ﬁ(m) of g(m) p*(NKy + ) L;) can be viewed as a
holomorphic function on p~1 (V).

Third step: construction of “vertical” holomorphic vector fields. For technical reasons, we
need to differentiate the sections A}m) along the fibers of p : Z — X', i.e. along the extra
factor . Since our sections take values in pull-backs q(m)p*(NKy + > £;) (which are
trivial along the fibers of p, namely e-balls in X), such “vertical” derivatives make sense and
do not require the use of a connection. Since Z is Stein and ¢*7% is a holomorphic subbundle
of Ty, we can find global holomorphic vector fields 74,...,7, € H%(Z, q*T5) that generate
the subbundle ¢*T5 over the whole of Z; a standard Whitney type argument shows that
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one needs only v := dim¢ Z + rank ¢*Ty = 3(n + 1) such vector fields to achieve the global
generation property, but we do not need the precise value of v here. For any finite sequence
B=(B1,...,80) € {1,...,v} of length || = ¢ and any holomorphic section f € H°(Z,p*G)
of the pull-pack of a line or vector bundle § — X', we define

(4.11) Tf =78 s

to be the iterated derivative of f with respect to the vector fields 7;. This is again a
holomorphic section of p*§G on Z.

Fourth step: construction of a singular hermitian metric on NKy + > L;. The rough
idea is to extract a weak limit of the m-th root occurring in (4.10), (4.10"), combined
with an integration on the fibers of p : Z = UL — X', to get a singular hermitian metric
on NKy + ) £;. This is the crucial step in the proof, and the place where the Kahler setup
requires new arguments; especially, the integration on fibers makes the weak limit argument
much less obvious than in the projective setup, and requires the results of §2 on Bergman
bundles. The estimates do not work directly for the given sections A}m)
a suitable combination of the derivatives to obtain good estimates.

, and we have to add

4.12. Proposition. Assume that the sections ?m) and vector fields T; have been constructed
on a slightly bigger tubular neighborhood u;,s — X" with p > 1, [this condition can of course
always be achieved, since we have a lot of flexibility on the choice of the tubular neighbor-
hoods, by taking e.g. € < 1eo(r')]. Then there exists ¢ > 0 and a subsequence m € My C N
such that the limit

1 clBl 9
0(z) = lim —log/ 72 1 o) Pdv,, (w), 2z e X
( ) meMy M weu/&z B%,, (|B|')2 | 1 ( )} 0( )

m—+ oo
exists almost everywhere on X', and H = e~ N? defines a singular hermitian metric of
positive curvature current on p*(NKy + Y L;), i.e. 1000 > 0. Moreover, it satisfies the
estimates

a) |o|% =lolfe N =1 on Xy Cc X' ;
H

(c) if p€]l,p’[, there is a constant Cy = Cy(p) > 0 such that for every >0

i00e"? > —e2(log p) " te“Puw.

Proof. First notice that the choice of the Kihler metric wy on X’ x X is irrelevant in the
definition of @ (the L? integrals may eventually change by bounded multiplicative factors,
which get killed as m — +00). We use estimate (4.10') on Z = U _, together with the mean
value inequality for plurisubharmonic functions, applied on balls of the fibers U/,_ , = p~1(2)
centered at points (z,w) € UL and of radius (p — 1)e/2 in w. Let us take p’ = %1 € 11, pl.
If we view the fibers as standard hermitian balls in the hermitian vector space (T, wo), we
obtain a uniform upper bound

((p— D))

ple,z pe

m c .
sup |f;( )|2/m < 5 / |f1( )|2/dewo7 Vo € X'
/ u/ ;
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Here our sections can be seen as functions only locally over trivializing open sets of the line
bundles in X', but we can arrange that there are only finitely many of these. Now, Cauchy
inequalities applied on the fibers give an upper bound

Cs

18]
4.13 su T —_— su , Cg>0
(4.13) 1 |5I'| Pg| < ((p — 1)5)) u/plgl 6

ple

for every holomorphic function ¢g. By integrating over z € X', a combination of these
estimates implies

A8l

B 7(m) |2 cC? 15l cm
/<z w)el 2 (1812 R ILCEDS <(p’—1)2€2) ((p — 1)e)2mlnt1)”

BeNY BeNV

The choice ¢ = (8CZ) ™1 (p — 1)2e? yields

Bl ov Oom
¢ B 7(m)|2 5

PP av, < |

/(z w)€EUL BGNV |6|')2 { 1 } 0 ((,0 _ 1)8)2m(n+1)

and the Jensen inequality [ ¢gdp < log [ e9dpu for the probability measures p, = dV,,

1
VoI(UZ )
on the fibers implies by Fubini

18] 1
(4.14) / —log/ ¢ 1 2| Bf m)‘2 AV, < C7+4(n+1) log_—1
zex M well ,BGN” |5’ (p )8

(the factor 4(n + 1) could be replaced by 2(1 + 1/m)(n + 1), but this is irrelevant). By

i

construction ];“1(m) = (p*0)?™) on Zy = p~'(Xy) and all higher derivatives 77 f;"" vanish

on Zo, thus we are left with the sum = log |]"v1(m)|2 = +p*log|o|? on Zy and 6 = 3; log |o|?
on Xy. Therefore the limit exists at least on Xy, and estimate (a) is satisfied.

Now, let us consider now the Bergman bundle B. — X’ where dim X’ = n + 1, and write
locally over X'

1
— B M, g £ap(2) ealz,w) ® g(2)1™, ze X, well,
|/B" aeNn+1 7

in terms of an orthonormal frame (eq)qenn+: of Be as defined in §2, where g is a local
generator of Ox(NKy + > £;). For a suitable smooth (and essentially irrelevant) correcting

factor 1(z, w) on U, depending only on |dwy A ... A dw,|Z, , we have an equality
APl 5 7m) —t(z0)
> e 78 £ (2, w) PP WAV, (w)

1
Om(z) : = —log/
m weu/
=z BeN¥

Lo ( T Y fean) = o (3 o)

BEN¥ aeNntl BENY

where &5 = (£a8)aenn+1 is nothing else than the expression of the section 77 ffm) is the
(real analytic) trivialization of the Bergman bundle B., equipped with its natural hermitian
metric (e, o), and £ = (£5)geny € B ® £2(N"T1) equipped with the metric

lel’* =D Plesl> = Y Y leas(=)*

BENY BEN¥ aENn+1
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The inequalities (4.13) show that the series converge uniformly over the whole of X’. A stan-
dard calculation with respect to the Bergman connection V = V0 + V%! of B, and the
induced connection on B. ® £2(N"*1) yields V!¢ = 0, hence

e 1 1 ([ | i(V106,€) A (VIO €)
aaem — 1,0 , 1,0 o @ , o
Z m €] (W SV Ol l€l? )
4. —— =l
) S GE

by the Cauchy-Schwarz inequality. On the other hand, the curvature bound obtained in §2
yields

(104, 5 e &6, < @+0E) 3 3 (ol +m)léasl

BENY aeNn+1
1/2 1/2
(a16) s<z+o<s>>s—2(zclﬁl S w) (zcﬂ' 3 <|a|+n>2|saﬁ|2)
BENY a€Nn+1 BEeENY acNn+1

by the Cauchy-Schwarz inequality. However, formula (2.18) shows that

Ow,, €a(z,w) = g1 Voag(lal +n) eq—c, (z,w),

thus

DolowslP =2 D> anllal+n) l&sl? =2 Y lal(lal +n) [Eapl®
k

k aeNn+1 aceNn+1
and
=2 Y (ol + ) [asl? < n2 16617 + 23 [Buns? < C (nfmF 'y ||w||2).
aeNn+1 k k
Since 7x€g = £34¢,, We have
S mgslP<v Do lgs
|B|=¢ kK |B"|=0+1

therefore
- C
g2 E /Pl E (|l +n)*|€apl® < C'8(H§H2 t+ve 1H§H2) = (p— 19)252 €1

BENY aeNn+1

if we recall the value of ¢ = (8C2)~1(p — 1)e2. By (4.16) we get

, C1o
\(Z@Bg@ézmnﬂ)f,fﬂw < h—1)2 4R
and in fine, by (4.15), we have
— C
(4.17) 1000, > ——— .
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Here the constant Cyg can be seen to depend only on the geometry of (1%, w). On the other
hand, estimate (4.14) is equivalent to a uniform upper bound

1
O dV,, <Ci1+4(n+1) log—+—
/x o < Ot dln 1) log e

The above lower bound is uniform with respect to m as m — +oo, and we see that
e is quasi plurisubharmonic. By well known facts of pluripotential theory, there exists
an upper semicontinuous regularization

0= <limsup9m)*

m——4oo

and a subsequence m € My C N such that

0 = limsup f,,, almost everywhere on X',
me Mg
m——+oo

and satisfying in the limit the Hessian estimate
(4.17) i00e* > —e2(log p)~teCeA /2y,
for every A > 0. Property (c) is proved. O

4.18. What to do ?. Our hope (possibly after modifying the sections f](m) in an adequate
manner) is that one can gain a factor converging to zero in estimate (4.16), and thus in
(4.17). This would prove that e*? is plurisubharmonic for every A > 0, hence the weight
6 = limy_,0 5 (¢*? — 1) would also be plurisubharmonic.

Fourth step: applying Ohsawa-Takegoshi once again with the singular hermitian metric pro-
duced in the third step.

Assuming that 4.18 holds, we have proved that NKxy + ) L; possesses a hermitian
metric H = e~ N? such that ||o||z < 1 oon Xy and ©f > 0 on X’. In order to conclude, we
equip the bundle
E=(N-1EKy+Y L
with the metric n = H'=V/N thl-/N, and NKy + ) L; = Ky + € with the metric w ® 7.
It is important here that X possesses a global Kéhler polarization w, otherwise the required
estimates would not be valid. Clearly n has a semi-positive curvature current on X’ and in
a local trivialization we have

/
Iol2er < Clofexp (= (V=10 = 5 ) < (o [[)

on Xo. Since |o[*e™%° and e”#", r > 0 are all locally integrable, we see that [|o||2, is also

locally integrable on X, by the Holder inequality. A new (and final) application of the L?
extension theorem to the hermitian line bundle (€,7n) implies that o can be extended to X'.
Theorem 4.2 is proved. O
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and a uniform upper bound 6,, < Cg on X’. Here the double summation is real analytic
and 6,,(z) — 3 log |o(z)|? uniformly on X,. The next idea is to estimate the Hessian form

of z — e*m () for every A > 0 fixed. We have of course

A/m
() = ( > !£a<z>|2> — IEIE™ = (€(2), €M

aeNn

where ¢ is nothing else than the expression of the section ﬂm) is the (real analytic) trivia-
lization of the Bergman bundle B., and (e, ) the natural hermitian metric on B.. Now, a
standard calculation with respect to the Bergman connection V = V10 + V0! of B, yields
V1¢ =0, hence

= A _ . . A i<;170£7£>/\<;1’0£75>
A0 (2) __ A/m \VAS vh — (i©® _ _
i00e m”gH2 2<Z< TeVI) 0k 0) <1 m) €12 )

@13) 22060

by the Cauchy-Schwarz inequality. On the other hand, the curvature bound obtained in §2
yields

(i0p5,6,9)], <2672 ) (la]+n)léa|

aeNm
1-X/m A/m
(4.14) < 25—2( > |£a|2> < > (e +n)m/*|£al2>
aeNn aeN”?

by the discrete Holder inequality. We compare the last summation to (4.12) by taking the
maximum of t — (¢4 n)™/*p~2! which is reached for to+n = 2 (log p)~* by an elementary
calculation. This gives

A/m A/m
( > (o +n>m“|£a|2> < (to+n>pt0”m< > pQ'“'|éa<z>|2>

aeNn aeNn

(4‘15) < %(logp)—lpnk/meC’ﬁ)\—l/2.

A combination of the last three estimates (4.13-4.15) gives
(4.16) 109eMm () > 72 (log p) L pnA/meCar=1/2,

The above lower bound is uniform with respect to m as m — 400, and we see that e/ is
quasi plurisubharmonic. By well known facts of pluripotential theory, there exists an upper
semicontinuous regularization
*
0= (lim sup Hm)

m——+oo

and a subsequence m € My C N such that

6 = limsup,, almost everywhere on X',
me Mg
m—+ oo
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and satisfying in the limit the Hessian estimate

(4.17) i00eM > —e2(log p) "teeA 12y,

for every A > 0. Property (c) is proved. O

4.18. What to do ?. Our hope (possibly after modifying the sections f}m) in an adequate
manner) is that one can gain a factor converging to zero in estimate (4.16), and thus in
(4.17). This would prove that e*? is plurisubharmonic for every A > 0, hence the weight
6 = limy_,0 5 (¢*? — 1) would also be plurisubharmonic.

Fourth step: applying Ohsawa-Takegoshi once again with the singular hermitian metric pro-
duced in the third step.

Assuming that 4.18 holds, we have proved that NKy + > £; possesses a hermitian
metric H = e~ N? such that ||o||z <1 oon Xy and O > 0 on X’. In order to conclude, we
equip the bundle

E=(N-DEKy+> L;

with the metric n = H*~1/N Hh}/N, and NKy + ) L; = Ky + € with the metric w ® 7.
It is important here that X possesses a global Kéhler polarization w, otherwise the required
estimates would not be valid. Clearly n has a semi-positive curvature current on X’ and in
a local trivialization we have

ey = Gl (~ - 19— & 500) (o L)

on Xy. Since |o[*e™%° and e”#", r > 0 are all locally integrable, we see that [|o||2, is also

locally integrable on X by the Holder inequality. A new (and final) application of the L?
extension theorem to the hermitian line bundle (€,7n) implies that o can be extended to X'.
Theorem 4.2 is proved. O
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