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0. Introduction
Projective varieties are characterized, almost by definition, by the existence of an ample

line bundle. By the Kodaira embedding theorem [Kod54], they are also characterized among
compact complex manifolds by the existence of a positively curved holomorphic line bundle,
or equivalently, of a Hodge metric, namely a Kähler metric with rational cohomology class.
On the other hand, general compact Kähler manifolds, and especially general complex tori,
fail to have a positive line bundle. Still, compact Kähler manifolds possess topological
complex line bundles of positive curvature, that are in some sense arbitrary close to being
holomorphic, see e.g. [Lae02] and [Pop13]. It may nevertheless come as a surprise that every
compact complex manifold carries some sort of very ample holomorphic vector bundle, at
least if one accepts certain Hilbert bundles of infinite dimension. Motivated by geometric
quantization, Lempert and Szőke [LeS14] have introduced and discussed a more general
concept of “field of Hilbert spaces” which is similar in spirit.

0.1. Theorem. Every compact complex manifold X carries a locally trivial real analytic
Hilbert bundle Bε → X of infinite dimension, defined for 0 < ε ≤ ε0, equipped with an
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integrable (0, 1)-connection ∂ = ∇0,1 (in a generalized sense), that is a closed densely defined
operator in the space of L2 sections, in such a way that the sheaf Bε = OL2(Bε) of ∂-closed
L2 sections is “very ample” in the following sense.
(a) Hq(X,Bε ⊗O F) = 0 for every (finite rank ) coherent sheaf F on X and every q ≥ 1.

(b) Global sections of the Hilbert space H = H0(X,Bε) provide an embedding of X into a
certain Grassmannian of closed subspaces of infinite codimension in H.

(c) The bundle Bε carries a natural Hilbert metric h such that the curvature tensor iΘBε,h

is Nakano positive (and even Nakano positive unbounded !).

We start by explaining a little bit more the precise relation with the more familiar concept of
locally trivial holomorphic Hilbert bundle : such a bundle E → X is required to be trivial on
sufficiently small open sets V ⊂ X, and such that E|V ' V ×H where H is a complex Hilbert
space. The gluing transition automorphism with another local trivialization E|V ′ ' V ′ ×H

should then be of the form (z, ξ) 7→ (z, g(z) ·ξ) where g is a holomorphic map from V ∩V ′ to
the open set GL(H) of invertible continuous operators in End(H). Smooth and real analytic
locally trivial Hilbert bundles can be defined in a similar manner by requiring g to be in C∞,
resp. in Cω. A smooth hermitian structure on E is a smooth family of hermitian metrics
h(z) on the fibers, given in the trivializations by smooth maps hV ∈ C∞(V,Herm+(H)),
where Herm+(H) is the set of positive definite (coercive) hermitian forms on H. The usual
formalism of Chern connections still applies: one gets a unique connection ∇h = ∇1,0

h +∇0,1
h

acting on C∞(X,E) in such a way that h is ∇h parallel and ∇0,1
h = ∂; moreover, the kernel

of ∇0,1
h coincides with the sheaf of holomorphic sections OX(E). This connection is given by

exactly the same formulas as in the finite dimensional case, namely ∇1,0
h ' h

−1
V ◦ ∂ ◦ hV over

V , with a curvature tensor ∇2
h = ΘE,h given by ΘE,h ' ∂(h−1

V ∂hV ) (if one views hV (z) as
an endomorphism of H); locally, ΘE,h can thus be seen as a smooth (1, 1)-form with values
in the space of continuous endomorphisms End(H). In general, if E is a smooth Hilbert
bundle (defined as above, but with gluing automorphisms g ∈ C∞(V,GL(H))), a smooth
(0, 1)-connection ∇0,1

A is an order 1 linear differential operator that is locally of the form
∂+AV where AV ∈ C∞(V,Λ0,1T ∗X ⊗End(H)). It is said to be integrable if (∇0,1

A )2 = 0, i.e.
∂AV +AV ∧AV = 0 on each trivializing chart V . The following equivalence of categories is
well known.

0.2. Theorem (Malgrange [Mal58]). The category of holomorphic vector bundles on X is
equivalent to the category of smooth bundles equipped with smooth integrable (0, 1)-connec-
tions ∇0,1

A , the holomorphic structure being obtained by taking the kernel sheaf of ∇0,1
A .

Notice that the standard proof, based on a Nash-Moser process with the Bochner-Martinelli
kernel, goes through essentially unchanged in the case of locally trivial Hilbert bundles.
It is also valid for the category of real analytic Hilbert bundles, assuming E and ∇0,1

A

to be real analytic; the resulting holomorphic structure on E is then compatible with the
originally given real analytic structure. Now, when X is compact hermitian, the standard L2

techniques of PDE theory lead to considering the space L2(X,E) of L2 sections. A smooth
(0, 1)-connection then gives rise to a closed densely defined operator

(0.3) ∇0,1
A : L2(X,E) −→ L2(X,Λ0,1T ∗X ⊗ E)

that is never continuous. In our situation, the bundles come in a natural way as a family of
smooth (and even real analytic) Hilbert bundles Eε, 0 < ε ≤ ε0, associated with a family
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Hε of Hilbert spaces which form a “scale”, in the sense that there are continuous injections
with dense image Hε′ ↪→ Hε, 0 < ε < ε′ ≤ ε0. The transition automorphisms defining the
Eε’s are supposed to come from invertible automorphisms of H>0 =

⋃
ε>0 Hε preserving

each Hε (here H>0 is just an inductive limit of Hilbert spaces). Then it makes sense to
consider generalized (0, 1)-connections that are locally of the form

(0.4) ∇0,1
A ' ∂ +AV , AV ∈ C∞(Λ0,1T ∗X ⊗ End(H>0)),

where we actually have AV |Hε′ ∈ C∞(Λ0,1T ∗X ⊗ Hom(Hε′ ,Hε)) for all 0 < ε < ε′ ≤ ε0.
By our assumptions, such connections still induce densely defined operators on each of the
spaces L2(X,Eε), and we declare them to be integrable when (∇0,1

A )2 = 0. The usual
algebraic formalism for extending the connection to higher degree forms and calculating the
curvature tensor still applies in this setting.

However, it may happen, and this will be the case for the Chern connection matrices of
our bundles Bε of Theorem 0.1, that the AV do not induce continuous endomorphisms of
Hε (for any value of ε > 0), although the kernel of ∇0,1 in L2(X,Bε) looks very much like a
space of holomorphic sections. In this context, the associated curvature tensor ΘEε,h need
not either take values in the continous endomorphisms. Then Malgrange’s theorem implies
that such bundles do not correspond to locally trivial holomorphic bundles as defined above,
even under the integrability assumption. At the end of Section 3 we will briefly discuss in
which sense Bε can still be considered to be some sort of infinite dimensional complex space,
in a way that the projection map Bε → X becomes holomorphic.

The construction of Bε is made by embedding X diagonally in X × X and taking a
Stein tubular neighborhood Uε of the diagonal, according to a well known technique of
Grauert [Gra58]. When Uε is chosen to be a geodesic neighborhood with respect to some
real analytic hermitian metric, one can arrange that the first projection p : Uε → X is a
real analytic bundle whose fibers are biholomorphic to hermitian balls. One then takes Bε
to be a “Bergman bundle”, consisting of holomorphic n-forms f(z, w) dw1 ∧ . . . ∧ dwn that
are L2 on the fibers p−1(z) ' B(0, ε). The fact that Uε is Stein and real analytically locally
trivial over X then implies Theorem 0.1, using the corresponding Bergman type Dolbeault
complex.

In [Ber09], given a holomorphic fibration π : X → Y and a positive hermitian holo-
morphic line bundle L → X, Berndtsson has introduced a formally similar L2 bundle
Y 3 t 7→ A2

t , whose fibers consist of sections of the adjoint bundle KX/Y ⊗ L on the
fibers Xt = π−1(t) of π, equipped with the corresponding Bergman metric. In the situation
considered by Berndtsson, the major application is the case when π is proper, so that A2

t

is finite dimensional, and is the holomorphic bundle associated with the direct image sheaf
π∗(OX(KX/Y ⊗ L)). The main result of [Ber09] is a calculation of the curvature, and a
proof that the direct image is a Nakano positive vector bundle. On the other hand, when
π : X → Y is non proper, and especially when (Xt) is a smooth family of smoothly bounded
Stein domains, the corresponding spaces A2

t are infinite dimensional Hilbert spaces. The
curvature of the corresponding Hilbert bundle has been obtained by Wang Xu [Wan17] in
this general setting. Our curvature calculations can be seen as the very special case where
the fibers are smoothly varying hermitian balls and the centers vary antiholomorphically.
The calculation can then be made in a very explicit way, by first considering the model
case of balls of constant radius in Cn, and then by using an osculation and suitable Taylor
expansions, in the case of varying hermitian metrics (a similar osculating technique has been
used in [ZeZ18] for the study of Bargmann-Fock spaces). As a consequence, we get
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0.2. Proposition. The curvature tensor of (Bε, h) admits an asymptotic expansion

〈(ΘBε,h ξ)(v, Jv), ξ〉h =
+∞∑
p=0

ε−2+pQp(z, ξ ⊗ v),

where, in suitable normal coordinates, the leading term Q0(z, ξ ⊗ v) is exactly equal to the
curvature tensor of the Bergman bundle associated with the translation invariant tubular
neighborhood

Uε = {(z, w) ∈ Cn × Cn ; |z − w| < ε},

in the “model case” X = Cn. That term Q0 is an unbounded quadratic hermitian form.

The potential geometric applications we have in mind are for instance the study of Siu’s
conjecture on the Kähler invariance of plurigenera (see 4.1 below), where the algebraic proof
([Siu02], [Pau07]) uses an auxiliary ample line bundle A. In the Kähler case at least, one
possible idea would be to replace A by the infinite dimensional Bergman bundle Bε. The
proof works to some extent, but some crucial additional estimates seem to be missing to
get the conclusion, see §4. Another question where Bergman bundles could potentially
be useful is the conjecture on transcendental Morse inequalities for real (1, 1)-cohomology
classes α in the Bott-Chern cohomology group H1,1

BC(X,C). In that situation, multiples kα
can be approximated by a sequence of integral classes αk corresponding to topological line
bundles Lk → X that are closer and closer to being holomorphic, see e.g. [Lae02]. However,
on the Stein tubular neighborhood Uε, the pull-back p∗Lk can be given a structure of a
genuine holomorphic line bundle with curvature form very close to k p∗α. Our hope is that
an appropriate Bergman theory of “Hilbert dimension” (say, in the spirit of Atiyah’s L2

index theory) can be used to recover the expected Morse inequalities. There seem to be
still considerable difficulties in this direction, and we wish to leave this question for future
research.

1. Exponential map and tubular neighborhoods
Let X be a compact n-dimensional complex manifold and Y ⊂ X a smooth totally real

submanifold, i.e. such that TY ∩ JTY = {0} for the complex structure J on X. By a well
known result of Grauert [Gra58], such a Y always admits a fundamental system of Stein
tubular neighborhoods U ⊂ X (this would be even true when X is noncompact, but we only
need the compact case here). In fact, if (Ωα) is a finite covering of X such that Y ∩Ωα is a
smooth complete intersection {z ∈ Ωα ; xα,j(z) = 0}, 1 ≤ j ≤ q (where q = codimR Y ≥ n),
then one can take U = Uε = {ϕ(z) < ε} where

(1.1) ϕ(z) =
∑
α

θα(z)
∑

1≤j≤q

(xα,j(z))
2 ≥ 0

where (θα) is a partition of unity subordinate to (Ωα). The reason is that ϕ is strictly
plurisubharmonic near Y , as

i∂∂ϕ|Y = 2i
∑
α

θα(z)
∑

1≤j≤q

∂xα,j ∧ ∂xα,j

and (∂xα,j)j has rank n at every point of Y , by the assumption that Y is totally real.
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Now, let X be the complex conjugate manifold associated with the integrable almost
complex structure (X,−J) (in other words, OX = OX); we denote by x 7→ x the identity
map Id : X → X to stress that it is conjugate holomorphic. The underlying real analytic
manifold XR can be embedded diagonally in X × X by the diagonal map δ : x 7→ (x, x),
and the image δ(XR) is a totally real submanifold of X × X. In fact, if (zα,j)1≤j≤n is a
holomorphic coordinate system relative to a finite open covering (Ωα) of X, then the zα,j
define holomorphic coordinates on X relative to Ωα, and the “diagonal” δ(XR) is the totally
real submanifold of pairs (z, w) such that wα,j = zα,j for all α, j. In that case, we can take
Stein tubular neighborhoods of the form Uε = {ϕ < ε} where

(1.2) ϕ(z, w) =
∑
α

θα(z)θα(w)
∑

1≤j≤q

|wα,j − zα,j |2.

Here, the strict plurisubharmonicity of ϕ near δ(XR) is obvious from the fact that

|wα,j − zα,j |2 = |zα,j |2 + |wα,j |2 − 2 Re(zα,jwα,j).

For ε > 0 small, the first projection pr1 : Uε → X gives a complex fibration whose fibers
are C∞-diffeomorphic to balls, but they need not be biholomorphic to complex balls in
general. In order to achieve this property, we proceed in the following way. Pick a real
analytic hermitian metric γ on X ; take e.g. the (1, 1)-part γ = g(1,1) = 1

2 (g + J∗g) of the
Riemannian metric obtained as the pull-back g = δ∗(

∑
j idfj ∧ df j), where the (fj)1≤j≤N

provide a holomorphic immersion of the Stein neighborhood Uε into CN . Let exp : TX → X,
(z, ξ) 7→ expz(ξ) be the exponential map associated with the metric γ, in such a way that
R 3 t 7→ expz(tξ) are geodesics D

dt (
du
dt ) = 0 for the the Chern connection D on TX (see e.g.

[Dem94, (2.6)]). Then exp is real analytic, and we have Taylor expansions

expz(ξ) =
∑

α,β∈Nn
aαβ(z)ξαξβ , ξ ∈ TX,z

with real analytic coefficients aαβ , where expz(ξ) = z+ ξ+O(|ξ|2) in local coordinates. The
real analyticity means that these expansions are convergent on a neighborhood |ξ|γ < ε0 of
the zero section of TX . We define the fiber-holomorphic part of the exponential map to be

(1.3) exph : TX → X, (z, ξ) 7→ exphz(ξ) =
∑
α∈Nn

aα0(z)ξα.

It is uniquely defined, is convergent on the same tubular neighborhood {|ξ|γ < ε0}, has the
property that ξ 7→ exphz(ξ) is holomorphic for z ∈ X fixed, and satisfies again exphz(ξ) =
z+ξ+O(ξ2) in coordinates. By the implicit function, theorem, the map (z, ξ) 7→ (z, exphz(ξ))
is a real analytic diffeomorphism from a neighborhood of the zero section of TX onto a
neighborhood V of the diagonal in X × X. Therefore, we get an inverse real analytic
mapping X ×X ⊃ V → TX , which we denote by (z, w) 7→ (z, ξ), ξ = loghz(w), such that
w 7→ loghz(w) is holomorphic on V ∩ ({z} × X), and loghz(w) = w − z + O((w − z)2) in
coordinates. The tubular neighborhood

Uγ,ε = {(z, w) ∈ X ×X ; | loghz(w)|γ < ε}

is Stein for ε > 0 small; in fact, if p ∈ X and (z1, . . . , zn) is a holomorphic coordinate system
centered at p such that γp = i

∑
dzj ∧ dzj , then | loghz(w)|2γ = |w− z|2 +O(|w− z|3), hence
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i∂∂| loghz(w)|2γ > 0 at (p, p) ∈ X ×X. By construction, the fiber pr−1
1 (z) of pr1 : Uγ,ε → X

is biholomorphic to the ε-ball of the complex vector space TX,z equipped with the hermitian
metric γz. In this way, we get a locally trivial real analytic bundle pr1 : Uγ,ε whose fibers
are complex balls; it is important to notice, however, that this ball bundle need not – and
in fact, will never – be holomorphically locally trivial.

2. Bergman bundles and Bergman Dolbeault complex
Let X be a n-dimensional compact complex manifold equipped with a real analytic

hermitian metric γ, Uε = Uγ,ε ⊂ X ×X the ball bundle considered in §1 and

p = (pr1)|Uε : Uε → X, p = (pr2)|Uε : Uε → X

the natural projections. We introduce what we call the “Bergman direct image sheaf”

(2.1) Bε = pL
2

∗ (p∗O(KX)).

By definition, its space of sections Bε(V ) over an open subset V ⊂ X consists of holomorphic
sections f of p∗O(KX) on p−1(V ) that are in L2(p−1(K)) for all compact subsets K b V ,
i.e.

(2.2)

∫
p−1(K)

in
2

f ∧ f ∧ γn < +∞, ∀K b V.

Then Bε is clearly a sheaf of infinite dimensional Fréchet OX -modules. In the case of
finitely generated sheaves over OX , there is a well known equivalence of categories between
holomorphic vector bundles G over X and locally free OX -modules G. As is well known,
the correspondence is given by G 7→ G := OX(G) = sheaf of germs of holomorphic sections
of G, and the converse functor is G 7→ G, where G is the holomorphic vector bundle whose
fibers are Gz = Gz/mzGz = Gz⊗OX,z OX,z/mz where mz ⊂ OX,z is the maximal ideal. In the
case of Bε, we cannot take exactly the same route, mostly because the desired “holomorphic
Hilbert bundle” Bε will not even be locally trivial in the complex analytic sense. Instead,
we define directly the fibers Bε,z as the set of holomorphic sections f of KX on the fibers
Uε,z = p−1(z), such that

(2.2z)

∫
Uε,z

in
2

f ∧ f < +∞.

Since Uε,z is biholomorphic to the unit ball Bn ⊂ Cn, the fiber Bε,z is isomorphic to the
Hilbert space H2(Bn) of L2 holomorphic n-forms on Bn. In fact, if we use orthonormal
coordinates (w1, . . . , wn) provided by exph acting on the hermitian space (TX,z, γz) and
centered at z, we get a biholomorphism Bn → p−1(z) given by the homothety ηε : w 7→ εw,
and a corresponding isomorphism

Bε,z −→ H2(Bn), f 7−→ g = η∗εf, i.e. with I = {1, . . . , n},(2.3)

fI(w) dw1 ∧ . . . ∧ dwn 7−→ εn fI(εw) dw1 ∧ . . . ∧ dwn, w ∈ Bn,(2.3′)

‖g‖2 =

∫
Bn

2−nin
2

g ∧ g, g = g(w) dw1 ∧ . . . ∧ dwn ∈ H2(Bn).(2.3′′)
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As Uε → X is real analytically locally trivial over X, it follows immediately that Bε → X
is also a locally trivial real analytic Hilbert bundle of typical fiber H2(Bn), with the natural
Hilbert metric obtained by declaring (2.3) to be an isometry. Since Aut(Bn) is a real Lie
group, the gauge group of Bε → X can be reduced to real analytic sections of Aut(Bn)
and we have a well defined class of real analytic connections on Bε. In this context, one
should pay attention to the fact that a section f in Bε(V ) does not necessarily restrict
to L2 holomorphic sections fUε,z ∈ Bε,z for all z ∈ V , although this is certainly true for
almost all z ∈ V by the Fubini theorem; this phenomenon can already be seen through the
fact that one does not have a continuous restriction morphism ρn : H2(Bn)→ H2(Bn−1)
to the hyperplane zn = 0. In fact, the function (1 − z1)−α is in H2(Bn) if and only if
α < (n + 1)/2, so that (1 − z1)−n/2 is outside of the domain of ρn. As a consequence, the
morphism Bε,z → Bε,z (stalk of sheaf to vector bundle fiber) only has a dense domain of
definition, containing e.g. Bε′,z for any ε′ > ε. This is a familiar situation in Von Neumann’s
theory of operators.

We now introduce a natural “Bergman version” of the Dolbeault complex, by introducing
a sheaf Fqε over X of (n, q)-forms which can be written locally over small open sets V ⊂ X
as

(2.4) f(z, w) =
∑
|J|=q

fJ(z, w) dw1 ∧ . . . ∧ dwn ∧ dzJ , (z, w) ∈ Uε ∩ (V ×X),

where the fJ(z, w) are L2
loc smooth functions on Uε∩ (V ×X) such that fJ(z, w) is holomor-

phic in w (i.e. ∂wf = 0) and both f and ∂f = ∂zf are in L2(p−1(K)) for all compact subsets
K b V (here ∂ operators are of course taken in the sense of distributions). By construction,
we get a complex of sheaves (F•ε , ∂ ) and the kernel Ker ∂ : F0

ε → F1
ε coincides with Bε. In

that sense, if we define OL2(Bε) to be the sheaf of L2
loc sections f of Bε such that ∂f = 0

in the sense of distributions, then we exactly have OL2(Bε) = Bε as a sheaf. For z ∈ V , the
restriction map Bε(V ) = OL2(Bε)(V ) → Bε,z is an unbounded closed operator with dense
domain, and the kernel is the closure of mzBε(V ), which need not be closed. If one insists
on getting continuous fiber restrictions, one could consider the subsheaf

OCk(Bε)(V ) := OL2(Bε)(V ) ∩ Ck(Bε)(V )

where Ck(Bε) is the sheaf of sections f such that ∇`f is continuous in the Hilbert bun-
dle topology for all real analytic connections ∇ on Bε and all ` = 0, 1, . . . , k. For these
subsheaves (and any k ≥ 0), we do get continuous fiber restrictions OCk(Bε)(V ) → Bε,z
for z ∈ V . In the same way, we could introduce the Dolbeault complex F•ε ∩ C∞ and check
that it is a resolution of O∩C∞(Bε), but we will not need this refinement. However, a useful
observation is that the closed and densely defined operator OL2(Bε)(V )→ Bε,z is surjective,
in fact it is even true that H0(X,OL2(Bε)) → Bε,z is surjective by the Ohsawa-Takagoshi
extension theorem [OhT87] applied on the Stein manifold Uε. We are going to see that Bε
can somehow be seen as an infinite dimensional very ample sheaf. This is already illustrated
by the following result.

2.5. Proposition. Assume here that ε > 0 is taken so small that ψ(z, w) := | loghz(w)|2
is strictly plurisubharmonic up to the boundary on the compact set Uε ⊂ X × X. Then
the complex of sheaves (F•ε , ∂) is a resolution of Bε by soft sheaves over X (actually, by
C∞X -modules ), and for every holomorphic vector bundle E → X and every q ≥ 1 we have

Hq(X,Bε ⊗ O(E)) = Hq
(
Γ(X,F•ε ⊗ O(E)), ∂

)
= 0.
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Moreover the fibers Bε,z ⊗Ez are always generated by global sections of H0(X,Bε ⊗O(E)),
in the sense that H0(X,Bε ⊗ O(E)) → Bε,z ⊗ Ez is a closed and densely defined operator
with surjective image.

Proof. By construction, we can equip Uε with the the associated Kähler metric ω = i∂∂ψ
which is smooth and strictly positive on Uε. We can then take an arbitrary smooth hermitian
metric hE on E and multiply it by e−Cψ, C � 1, to obtain a bundle with arbitrarily large
positive curvature tensor. The exactness of F•ε and cohomology vanishing then follow from
the standard Hörmander L2 estimates applied either locally on p−1(V ) for small Stein open
sets V ⊂ X, or globally on Uε. The global generation of fibers is again a consequence of the
Ohsawa-Takegoshi L2 extension theorem.

2.6. Remark. It would not be very hard to show that the same result holds for an arbitrary
coherent sheaf E instead of a locally free sheaf O(E), the reason being that p∗E admits a
resolution by (finite dimensional) locally free sheaves O⊕NUε′ on a Stein neighborhood Uε′

of Uε.

2.7. Remark. A strange consequence of these results is that we get some sort of “holo-
morphic embedding” of an arbitrary complex manifold X into a “Hilbert Grassmannian”,
mapping every point z ∈ X to the closed subspace Sz in the Hilbert space H = Bε(X),
consisting of sections f ∈ H such that f(z) = 0 in Bε,z, i.e. f|p−1(z) = 0. However, the
fact that the restriction morphisms f 7→ f|p−1(z) are not continuous in L2 norm implies that
the map z 7→ Sz is not even continuous in the strong topology, i.e. the metric topology for
which the distance of two fibers Sz1 , Sz2 is the Hausdorff distance of their unit balls in the
L2 norm of Bε(X).

3. Curvature tensor of Bergman bundles

3.A. Calculation in the model case (Cn, std)
In the model situation X = Cn with its standard hermitian metric, we consider the

tubular neighborhood

(3.1) Uε := {(z, w) ∈ Cn × Cn ; |w − z| < ε}

and the projections

p = (pr1)|Uε : Uε → X = Cn, (z, w) 7→ z, p = (pr2)|Uε : Uε → X = Cn, (z, w) 7→ w

If one insists on working on a compact complex manifold, the geometry is locally identical
to that of a complex torus X = Cn/Λ equipped with a constant hermitian metric γ.

3.2. Remark. We check here that the Bergman bundle Bε is not holomorphically locally
trivial, even in the above situation where we have invariance by translation. However, in
the category of real analytic bundles, there is a global trivialization of Bε → Cn given by
the map

τ : Bε
'−→Cn ×H2(Bn), Bε,z 3 fz 7−→ τ(f) = (z, gz), gz(w) := fz(εw + z), w ∈ Bn,
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in other words, for any open set V ⊂ Cn and any k ∈ N ∪ {∞, ω}, we have isomorphisms

Ck(V,Bε)→ Ck(V,H2(Bn)), f 7→ g, g(z, w) = f(z, εw + z),

where f, g are Ck in (z, w), holomorphic in w, and the derivatives z 7→ Dα
z g(z, •), |α| ≤ k,

define continuous maps V → H2(Bn). The complex structures of these bundles are defined
by the (0, 1)-connections ∂z of the associated Dolbeault complexes, but obviously ∂zf and
∂zg do not match. In fact, if we write

g(z, w) = u(z, w) dw1 ∧ . . . ∧ dwn ∈ C∞(V,H2(Bn)) = C∞(V ) ⊗̂H2(Bn)

where ⊗̂ is the ε or π-topological tensor product in the sense of [Gro55], we get

f(z, w) = g(z, (w − z)/ε) = ε−nu(z, (w−z)/ε) dw1 ∧ . . . ∧ dwn,

∂zf(z, w) = ε−n
(
∂zu(z, (w−z)/ε)− ε−1

∑
1≤j≤n

∂u

∂wj
(z, (w−z)/ε) dzj

)
∧ dw1 ∧ . . . ∧ dwn.

Therefore the trivialization τ∗ : f 7→ u yields at the level of ∂-connections an identification

τ∗ : ∂zf
'7−→ ∂zu+Au

where the “connection matrix” A ∈ Γ(V,Λ0,1T ∗X⊗CEnd(H2(Bn))) is the constant unbounded
Hilbert space operator A(z) = A given by

A : H2(Bn)→ Λ0,1T ∗X ⊗C H2(Bn), u 7→ Au = −ε−1
∑

1≤j≤n

∂u

∂wj
dzj .

We see that the holomorphic structure of Bε is given by a (0, 1)-connection that differs by
the matrix A from the trivial (0, 1)-connection, and as A is unbounded, there is no way we
can make it trivial by a real analytic gauge change with values in Lie algebra of continuous
endomorphisms of H2(Bn).

We are now going to compute the curvature tensor of the Bergman bundle Bε. For the
sake of simplicity, we identify here H2(Bn) to the Hardy space of L2 holomorphic functions
via u 7→ g = u(w) dw1∧. . .∧dwn. After rescaling, we can also assume ε = 1, and at least in a
first step, we perform our calculations on B1 rather than Bε. Let us write wα =

∏
1≤j≤n w

αj
j

for a multiindex α = (α1, . . . , αn) ∈ Nn, and denote by λ the Lebesgue measure on Cn.
A well known calculation gives∫

Bn
|wα|2dλ(w) = πn

α1! . . . αn!

(|α|+ n)!
, |α| = α1 + · · ·+ αn.

In fact, by using polar coordinates wj = rje
iθj and writing tj = r2

j , we get∫
Bn
|wα|2dλ(w) = (2π)n

∫
r21+···+r2n<1

r2α r1dr1 . . . rndrn = πnI(α)

with
I(α) = πn

∫
t1+···+tn<1

tα dt1 . . . dtn.
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Now, an induction on n together with the Fubini formula gives

I(α) =

∫ 1

0

tαnn dtn

∫
t1+···+tn−1<1−tn

(t′)α
′
dt1 . . . dtn−1

= I(α′)

∫ 1

0

(1− tn)α1+···+αn−1+n−1tαnn dtn

where t′ = (t1, . . . , tn−1) and α′ = (α1, . . . , αn−1). As
∫ 1

0
xa(1 − x)bdt = a!b!

(a+b+1)! , we get
inductively

I(α) =
(|α′|+ n− 1)!αn!

(|α|+ n)!
I(α′) ⇒ I(α) =

α1! . . . αn!

(|α|+ n)!
.

Such formulas were already used by Shiffman and Zelditch [ShZ99] in their study of zeros
of random sections of positive line bundles. They imply that a Hilbert (orthonormal) basis
of O ∩ L2(Bn) ' H2(Bn) is

(3.3) eα(w) = π−n/2

√
(|α|+ n)!

α1! . . . αn!
wα.

As a consequence, and quite classically, the Bergman kernel of the unit ball Bn ⊂ Cn is

(3.4) Kn(w) =
∑
α∈Nn

|eα(w)|2 = π−n
∑
α∈Nn

(|α|+ n)!

α1! . . . αn!
|wα|2 = n!π−n(1− |w|2)−n−1.

If we come back to Uε for ε > 0 not necessarily equal to 1 (and do not omit any more the
trivial n-form dw1∧ . . .∧dwn), we have to use a rescaling (z, w) 7→ (ε−1z, ε−1w). This gives
for the Hilbert bundle Bε a real analytic orthonormal frame

(3.5) eα(z, w) = π−n/2ε−|α|−n

√
(|α|+ n)!

α1! ... αn!
(w − z)α dw1 ∧ . . . ∧ dwn

A germ of holomorphic section σ ∈ OL2(Bε) near z = 0 (say) is thus given by a convergent
power series

σ(z, w) =
∑
α∈Nn

ξα(z) eα(z, w)

such that the functions ξα are real analytic on a neighborhood of 0 and satisfy the following
two conditions:

|σ(z)|2h :=
∑
α∈Nn

|ξα(z)|2 converges in L2 near 0,(3.6)

∂zkσ(z, w) =
∑
α∈Nn

∂zkξα(z) eα(z, w) + ξα(z) ∂zkeα(z, w) ≡ 0.(3.7)

Let ck = (0, . . . , 1, . . . , 0) be the canonical basis of the Z-module Zn. A straightforward
calculation from (3.5) yields

∂zkeα(z, w) = −ε−1
√
αk(|α|+ n) eα−ck(z, w).
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We have the slight problem that the coefficients are unbounded as |α| → +∞, and therefore
the two terms occurring in (3.7) need not form convergent series when taken separately.
However if we take σ ∈ OL2(Bε′) in a slightly bigger tubular neighborhood (ε′ > ε), the L2

condition implies that
∑
α(ε′′/ε)2|α||ξα|2 is uniformly convergent for every ε′′ ∈ ]ε, ε′[ , and

this is more than enough to ensure convergence, since the growth of α 7→
√
αk(|α|+ n) is

at most linear; we can even iterate as many derivatives as we want. For a smooth section
σ ∈ C∞(Bε′), the coefficients ξα are smooth, with

∑
(ε′/ε)2|α||∂βz ∂

γ

zξα|2 convergent for all
β, γ, and we get

∂zkσ(z, w) =
∑
α∈Nn

∂zkξα(z) eα(z, w) + ξα(z) ∂zkeα(z, w)

=
∑
α∈Nn

∂zkξα(z) eα(z, w)− ε−1
√
αk(|α|+ n) ξα(z) eα−ck(z, w)

=
∑
α∈Nn

(
∂zkξα(z)− ε−1

√
(αk + 1)(|α|+ n+ 1) ξα+ck(z)

)
eα(z, w),

after replacing α by α + ck in the terms containing ε−1. The (0, 1)-part ∇0,1
h of the Chern

connection ∇h of (Bε, h) with respect to the orthonormal frame (eα) is thus given by

(3.8) ∇0,1
h σ =

∑
α∈Nn

(
∂ξα −

∑
k

ε−1
√

(αk + 1)(|α|+ n+ 1) ξα+ck dzk

)
⊗ eα.

The (1, 0)-part can be derived from the identity ∂|σ|2h = 〈∇1,0
h σ, σ〉h + 〈σ,∇0,1

h σ〉h. However

∂zj |σ|2h = ∂zj
∑
α∈Nn

ξαξα =
∑
α∈Nn

(∂zjξα) ξα + ξα (∂zjξα )

=
∑
α∈Nn

(
∂zjξα + ε−1

√
αj(|α|+ n) ξα−cj

)
ξα

+
∑
α∈Nn

ξα

(
∂zjξα − ε−1

√
(αj + 1)(|α|+ n+ 1) ξα+cj

)
.

For σ ∈ C∞(Bε′), it follows from there that

(3.9) ∇1,0
h σ =

∑
α∈Nn

(
∂ξα + ε−1

∑
j

√
αj(|α|+ n) ξα−cjdzj

)
⊗ eα.

Finally, to find the curvature tensor of (Bε, h), we only have to compute the (1, 1)-form
(∇1,0

h ∇
0,1
h +∇0,1

h ∇
1,0
h )σ and take the terms that contain no differentiation at all, especially

in view of the usual identity ∂∂ + ∂∂ = 0 and the fact that we also have here (∇1,0
h )2 = 0,
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(∇0,1
h )2 = 0. As (α− cj)k = αk − δjk and (α+ ck)j = αj + δjk, we are left with(
∇1,0
h ∇

0,1
h +∇0,1

h ∇
1,0
h

)
σ

= − ε−2
∑
α∈Nn

∑
j,k

√
αj(|α|+n)

√
(αk−δjk+1)(|α|+n) ξα−cj+ck dzj ∧ dzk ⊗ eα

+ ε−2
∑
α∈Nn

∑
j,k

√
(αj+δjk)(|α|+n+1)

√
(αk+1)(|α|+n+1) ξα−cj+ck dzj ∧ dzk ⊗ eα

= − ε−2
∑
α∈Nn

∑
j,k

√
(αj−δjk)(αk−δjk) (|α|+ n− 1) ξα−cj dzj ∧ dzk ⊗ eα−ck

+ ε−2
∑
α∈Nn

∑
j,k

√
αjαk (|α|+ n) ξα−cj dzj ∧ dzk ⊗ eα−ck .

= ε−2
∑
α∈Nn

∑
j,k

√
αjαk ξα−cj dzj ∧ dzk ⊗ eα−ck

+ ε−2
∑
α∈Nn

∑
j

(|α|+ n− 1) ξα−cj dzj ∧ dzj ⊗ eα−cj ,

where the last summation comes from the subtraction of the diagonal terms j = k. By
changing α into α+cj in that summation, we obtain the following expression of the curvature
tensor of (Bε, h).

3.10. Theorem. The curvature tensor of the Bergman bundle (Bε, h) is given by

〈ΘBε,hσ(v, Jv), σ〉h = ε−2
∑
α∈Nn

(∣∣∣∣∑
j

√
αj ξα−cjvj

∣∣∣∣2 +
∑
j

(|α|+ n) |ξα|2|vj |2
)

for every σ =
∑
α ξαeα ∈ Bε′ , ε′ > ε, and every tangent vector v =

∑
vj ∂/∂zj.

The above curvature hermitian tensor is positive definite, and even positive definite un-
bounded if we view it as a hermitian form on TX⊗Bε rather than on TX⊗Bε′ . This is not so
surprising since the connection matrix was already an unbounded operator. Philosophically,
the very ampleness of the sheaf Bε was also a strong indication that the curvature of the
corresponding vector bundle Bε should have been positive. Observe that we have in fact

ε−2
∑
α∈Nn

∑
j

(|α|+ n) |ξα|2|vj |2

≤ 〈ΘBε,hσ(v, Jv), σ〉h ≤ 2ε−2
∑
α∈Nn

∑
j

(|α|+ n) |ξα|2|vj |2,(3.11)

thanks to the Cauchy-Schwarz inequality

∑
α∈Nn

∣∣∣∣∑
j

√
αj ξα−cjvj

∣∣∣∣2 ≤∑
`

|v`|2
∑
α∈Nn

∑
j

αj |ξα−cj |2 =
∑
`

|v`|2
∑
j

∑
α∈Nn

αj |ξα−cj |2

=
∑
`

|v`|2
∑
j

∑
α∈Nn

(αj + 1)|ξα|2 =
∑
`

|v`|2
∑
α∈Nn

(|α|+ n)|ξα|2.
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3.B. Curvature of Bergman bundles on compact hermitian manifolds
We consider here the general situation of a compact hermitian manifold (X, γ) described

in §1, where γ is real analytic and exph is the associated partially holomorphic exponential
map. Fix a point x0 ∈ X, and use a holomorphic system of coordinates (z1, . . . , zn) centered
at x0, provided by exphx0

: TX,x0 ⊃ V → X. If we take γx0 orthonormal coordinates on
TX,x0 , then by construction the fiber of p : Uε → X over x0 is the standard ε-ball in the
coordinates (wj) = (zj). Let TX → V ×Cn be the trivialization of TX in the coordinates (zj),
and

X ×X → TX , (z, w) 7→ ξ = loghz(w)

the expression of logh near (x0, x0), that is, near (z, w) = (0, 0). By our choice of coordinates,
we have logh0(w) = w and of course loghz(z) = 0, hence we get a real analytic expansion of
the form

loghz(w) = w − z +
∑

zjaj(w− z) +
∑

zja
′
j(w− z)

+
∑

zjzkbjk(w− z) +
∑

zjzkb
′
jk(w− z) +

∑
zjzkcjk(w− z) +O(|z|3)

with holomorphic coefficients aj , a′j , bjk, b′jk, cjk vanishing at 0. In fact by [Dem94], we
always have da′j(0) = 0, and if γ is Kähler, the equality daj(0) = 0 also holds; we will not
use these properties here. In coordinates, we then have locally near (0, 0) ∈ Cn × Cn

Uε,z =
{

(z, w) ∈ Cn × Cn ; |Ψz(w)| < ε
}

where Ψz(w) = loghz(w) has a similar expansion

Ψz(w) = w − z +
∑

zjaj(w− z) +
∑

zja
′
j(w− z)

+
∑

zjzkbjk(w− z) +
∑

zjzkb
′
jk(w− z) +

∑
zjzkcjk(w− z) +O(|z|3)(3.12)

(when going from logh to Ψ, the coefficients aj , a′j and bj , b′j get twisted, but we do not care
and keep the same notation for Ψ, as we will not refer to logh any more). In this situation,
the Hilbert bundle Bε has a real analytic normal frame given by ẽα = Ψ∗eα where

(3.13) eα(w) = π−n/2ε−|α|−n

√
(|α|+ n)!

α1! ... αn!
wα dw1 ∧ . . . ∧ dwn

and the pull-back Ψ∗eα is taken with respect to w 7→ Ψz(w) (z being considered as a
parameter). For a local section σ =

∑
α ξαẽα ∈ C∞(Bε′), ε > ε, we can write

∂zkσ(z, w) =
∑
α∈Nn

∂zkξα(z) ẽα(z, w) + ξα(z) ∂zk ẽα(z, w).

Near z = 0, by taking the derivative of Ψ∗eα(z, w), we find

∂zk ẽα(z, w) =− ε−1
√
αk(|α|+ n) ẽα−ck(z, w)

+ ε−1
∑
m

√
αm(|α|+ n)

(
a′k,m(w− z) +

∑
j

zjcjk,m(w− z)
)
ẽα−cm(z, w)

+
∑
m

(
∂a′k,m
∂wm

(w− z) +
∑
j

zj
∂cjk,m
∂wm

(w− z)
)
ẽα(z, w) +O(z, |z|2),
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where the last sum comes from the expansion of dw1 ∧ . . . ∧ dwn, and a′k,m, cjk,m are
the m-th components of a′k and cjk. This gives two additional terms in comparison to the
translation invariant case, but these terms are “small” in the sense that the first one vanishes
at (z, w) = (0, 0) and the second one does not involve ε−1. If ∇0,1

h,0 is the ∂-connection
associated with the standard tubular neighborhood |w− z| < ε, we thus find in terms of the
local trivialization σ ' ξ =

∑
ξαε̃α an expression of the form

∇0,1
h σ ' ∇0,1

h,0ξ +A0,1ξ,

where

A0,1

(∑
α

ξαẽα

)
=
∑
α∈Nn

∑
k

ξα

(
ε−1

∑
m

√
αm(|α|+ n)

(
a′k,m(w) +

∑
j

zjcjk,m(w)

)
dzk ⊗ ẽα−cm

+
∑
m

(
∂a′k,m
∂wm

(w) +
∑
j

zj
∂cjk,m
∂wm

(w)

)
dzk ⊗ ẽα

)
+O(z, |z|2).

The corresponding (1, 0)-parts satisfy

∇1,0
h σ ' ∇1,0

h,0ξ +A1,0ξ, A1,0 = −(A0,1)∗,

and the corresponding curvature tensors are related by

(3.14) Θβε,h = Θβε,h,0 + ∂A0,1 + ∂A1,0 +A1,0 ∧A0,1 +A0,1 ∧A1,0.

At z = 0 we have

A0,1ξ =
∑
α∈Nn

∑
k

ξα

(
ε−1

∑
m

√
αm(|α|+ n) a′k,m(w) dzk ⊗ ẽα−cm

+
∑
m

∂a′k,m
∂wm

(w) dzk ⊗ ẽα

)
,

∂A0,1ξ =
∑
α∈Nn

∑
k

ξα

(
ε−1

∑
j,m

√
αm(|α|+ n) cjk,m(w) dzj ∧ dzk ⊗ ẽα−cm

+
∑
j,m

∂cjk,m
∂wm

(w) dzj ∧ dzk ⊗ ẽα

)
,

and A1,0, ∂A1,0 are, up to the sign, the adjoint endomorphisms of A0,1 and ∂A0,1. The un-
boundedness comes from the fact that we have unbounded factors

√
(αm + 1)(|α|+ n+ 1) ;

it is worth noticing that multiplication by a holomorphic factor u(w) is a continuous op-
erator on the fibers Bε,z, whose norm remains bounded as ε → 0. In this setting, it can
be seen that the only term in (3.14) that is (a priori) not small with respect to the main
term ΘBε,h,0 is the term involving ε−2 in A1,0 ∧A0,1 +A0,1 ∧A1,0, and that the other terms
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appearing in the quadratic form 〈ΘBε,hξ, ξ〉 are O(ε−1
∑

(|α|+n)|ξα|2) or smaller. In order
to check this, we expand cjk,m(w) into a power series

∑
µ cjk,m,µ gµ(w) where

(3.15) gµ(w) = s−1
µ wµ, with sµ = sup

|w|≤1

|wµ| =
∏

1≤j≤n

(
µj
|µ|

)µj/2
=

∏
µ
µj/2
j

|µ||µ|/2
,

so that sup|w|≤ε |gµ(w)| = ε|µ|. We get from the term 〈∂A0,1ξ, ξ〉 a summation

Σ(ξ) = ε−1
∑
j,k,m

∑
α∈Nn

√
αm(|α|+ n)

∑
µ∈Nn

cjk,m,µ dzj ∧ dzk ⊗ 〈ξα gµẽα, ξ〉.

At z = 0, gµẽα = gµeα is proportional to eα+µ, and by (3.15) and the definition of the L2

norm, we have ‖gµẽα‖ ≤ ε|µ| and |〈ξα gµẽα, ξ〉| ≤ ε|µ| |ξα||ξα+µ|. We infer∣∣Σ(ξ)
∣∣ ≤ ε−1

∑
j,k,m

∑
α∈Nn

√
αm(|α|+ n)

∑
µ∈Nn

|cjk,m,µ| ε|µ| |ξα||ξα+µ|.

Let r be the infimum of the radius of convergence of w 7→ Ψz(w) over all z ∈ X. Then for
ε < r and r′ ∈ ]ε, r[, we have a uniform bound |cjk,m,µ| ≤ C(1/r′)|µ|, hence

∣∣Σ(ξ)
∣∣ ≤ C ′ε−1

∑
α∈Nn

∑
µ∈Nn

( ε
r′

)|µ|√
αm(|α|+ n) |ξα||ξα+µ|.

If we write √
αm(|α|+ n) |ξα||ξα+µ| ≤

1

2
(|α|+ n)

(
|ξα|2 + |ξα+µ|2

)
≤ 1

2

(
(|α|+ n)|ξα|2 + (|α+ µ|+ n)|ξα+µ|2

)
,

the above bound implies

∣∣Σ(ξ)
∣∣ ≤ C ′ε−1(1− ε/r′)−n

∑
α∈Nn

(|α|+ n)|ξα|2 = O

(
ε−1

∑
α∈Nn

(|α|+ n)|ξα|2
)
.

We now come to the more annoying term A1,0 ∧ A0,1 + A0,1 ∧ A1,0, and especially to the
part containing ε−2 (the other parts can be treated as above or are smaller). We compute
explicitly that term by expanding a′k,m(w) into a power series

∑
µ a
′
k,m,µ gµ(w) as above.

Let us write gm(w) = s−1
µ wµ. As a′k,m(0) = 0, the relevant term in A0,1 is

ε−1
∑
k,m

∑
µ∈Nnr{0}

a′k,m,µs
−1
µ dzk ⊗WµDm

where Dm and Wµ = Wµ1

1 . . .Wµn
n are operators on the Hilbert space H2(Bε,0), defined by

Dmẽα =
√
αm(|α|+ n) ẽα−cm , Wm(f) = wmf.



16 J.-P. Demailly, Bergman bundles and applications

The corresponding term in A1,0 is the opposite of the adjoint, namely

−ε−1
∑
j,`

∑
λ∈Nnr{0}

a′k,`,λs
−1
λ dzj ⊗D∗`W ∗λ

and the annoying term in A1,0 ∧A0,1 +A0,1 ∧A1,0 is

Q =− ε−2
∑

j,k,`,m

∑
λ,µ∈Nnr{0}

a′k,`,λs
−1
λ a′k,m,µs

−1
µ dzj ∧ dzk ⊗(3.16)

(
D∗`W

∗λWµDm −WµDmD
∗
`W
∗λ
)
.

We have here ‖Wµ‖ ≤ sµ ε|µ| (asWµ is the multiplication by wµ = sµ gµ(w), and |gµ| ≤ ε|µ|
on Bε,0). The operators D∗` and Dm are unbounded, but the important point is that their
commutators have substantially better continuity than what could be expected a priori. We
have for instance

Dmẽα =
√
αm(|α|+ n) ẽα−cm , D∗` (ẽα) =

√
(α` + 1)(|α|+ n+ 1) ẽα+c` ,

[D∗` , Dm](ẽα) =
(√

(α` + 1− δ`m)αm (|α|+ n)

−
√

(α` + 1)(αm + δ`m) (|α|+ n+ 1)
)
ẽα+c`−cm

and the coefficient between braces is controlled by 2(|α| + n), as one sees by considering
separately the two cases ` 6= m, where we get −

√
(α` + 1)αm, and ` = m, where we get

α`(|α|+ n)− (α` + 1)(|α|+ n+ 1). Therefore ‖[D∗` , Dm](ẽα)‖ ≤ 2(|α| + n). We obtain
similarly

Wm(ẽα) = ε

√
αm + 1

|α|+ n+ 1
ẽα+cm , W ∗` (ẽα) = ε

√
α`
|α|+ n

ẽα−c` ,

[W ∗` ,Wm](ẽα) = ε2

(√
(α` + δ`m)(αm + 1)

|α|+ n+ 1
−
√
α`(αm + 1− δ`m)

|α|+ n

)
ẽα−c`+cm ,

and it is easy to see that the coefficient between large braces is bounded for ` 6= m by√
α`(αm + 1)/((|α|+ n)(|α|+ n+ 1)) ≤ (|α|+ n)−1, and for ` = m we have as well∣∣∣∣ (α` + 1)(|α|+ n)− α`(|α|+ n+ 1)

(|α|+ n)(|α|+ n+ 1)

∣∣∣∣ ≤ (|α|+ n)−1.

Therefore ‖[W ∗` ,Wm](ẽα)‖ ≤ ε2(|α|+ n)−1. Finally

[W ∗` , Dm](ẽα) = ε

(√
(α` − δ`m)αm(|α|+ n)

|α|+ n− 1
−

√
α`(αm − δ`m)(|α|+ n− 1)

|α|+ n

)
ẽα−c`−cm

with a coefficient between braces less than 1, thus ‖[W ∗` , Dm](ẽα)‖ ≤ ε. By adjunction, the
same is true for [D∗` ,Wm], and we can summarize our estimates as follows:

‖Wµ‖ ≤ sµε|µ|, ‖W ∗λ‖ ≤ sλε|λ|, ‖D∗` (ẽα)‖ ≤ |α|+ n+ 1, ‖Dm(ẽα)‖ ≤ |α|+ n,

‖[D∗` , Dm](ẽα)‖ ≤ 2(|α|+ n), ‖[W ∗` ,Wm](ẽα)‖ ≤ (|α|+ n)−1,(3.17)

 ‖[W ∗` , Dm](ẽα)‖ ≤ ε, ‖[D∗` ,Wm](ẽα)‖ ≤ ε
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Now, we observe that both D∗`W
∗λWµDm(ẽα) and WµDmD

∗
`W
∗λ(ẽα) are multiples of

ẽα+c`−cm−λ+µ. By considering the second product WµDmD
∗
`W
∗λ and permuting succes-

sively its factors DmD
∗
` , DmW

∗λ, WµD∗` , WµW ∗λ, the difference with D∗`W
∗λWµDm is

expressed as a sum of 1 + |λ| + |µ| + |λ||µ| terms involving commutators. We derive from
our estimates (3.17) precise bounds for the image of ẽα by the commutators. For instance,
when we arrive at D∗`WµW ∗λDm and permute WµW ∗λ, we go through intermediate steps
D`W

∗λ′Wµ′WkW
∗
jW

µ′′W ∗λ
′′
Dm with λ = λ′+λ′′+cj , µ = µ′+µ′′+ck, |λ| = |λ′|+ |λ′′|+1,

|µ| = |µ′|+ |µ′′|+ 1, and have to evaluate the commutators

D`W
∗λ′Wµ′ [W ∗j ,Wk]Wµ′′W ∗λ

′′
Dm(ẽα).

By (3.17), the norm of these |λ||µ| terms is bounded by(
(|α|−|λ|+|µ|−1)++n+1

)
sλ′ε

|λ′|sµ′ε
|µ′|((|α|−|λ′′|+|µ′′|)++n

)−1
sµ′′ε

|µ′′|sλ′′ε
|λ′′|(|α|+n)

≤ sλ′sλ′′sµ′sµ′′ ε|λ|+|µ|
((|α| − |λ|+ |µ| − 1)+ + n+ 1)(|α|+ n)

(|α| − |λ|)+ + n
.(3.18)

The remaining commutators are easier, they lead to bounds

(3.19)


sλsµ ε

|λ|+|µ| 2((|α| − |λ|)+ + n) (once),
sλ′sλ′′sµ ε

|λ|+|µ| (|α| − |λ| − 1)+ + n+ 1 (|λ| times),
sλsµ′sµ′′ ε

|λ|+|µ| (|α|+ n) (|µ| times).

In the final estimates, we will have to bound some combinatorial factors of the form

(3.20)
sλ′sλ′′

sλ

sµ′sµ′′

sµ
(worst case),

and we want the ratios sλ′sλ′′/sλ to be as small as possible (clearly they are at least equal
to 1). For this, we try to keep the proportions λ′j/|λ′|, λ′′j /|λ′′| as close as possible to
λj/|λ| by selecting carefully which factor W ∗` (and Wm) we exchange at each step. After
a permutation of the coordinates, we may assume than λn ≥ maxj<n λj , hence λn ≥ 1

n |λ|.
If t′ = |λ′|/|λ| and t′′ = |λ′′|/|λ| = 1 − t′ − 1/|λ|, we take λ′j = bt′λjc, λ′′j = bt′′λjc for
j ≤ n− 1 and compensate by taking ad hoc values of λ′n, λ′′n and c` = λ− (λ′ + λ′′). Then
t′λj − 1 < λ′j ≤ t′λj for j < n and

λ′n = |λ′| −
∑
j<n

λ′j

{
< t′|λ| −

∑
j<n t

′λj + n− 1 = t′λn + n− 1,

≥ t′|λ| −
∑
j<n t

′λj = t′λn.

Therefore

λ′j
|λ′|
≤ λj
|λ|

for j < n,
λ′n
|λ′|
≤ t′λn + n− 1

t′|λ|
=
λn
|λ|

(
1 +

n− 1

t′λn

)
if λn > 0.

These inequalities imply respectively(
λ′j
|λ′|

)λ′j/2
≤
(
λj
|λ|

)(t′λj−1)/2

,

(
λ′n
|λ′|

)λ′n/2
≤
(
λn
|λ|

)t′λn/2(
1 +

n− 1

t′λn

)(t′λn+n−1)/2

.
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In the last inequality we have t′λn ≥ 1
|λ|λn ≥

1
n unless λ′ = 0. Thus, if λ′ 6= 0, we get

(
1 +

n− 1

t′λn

)(t′λn+n−1)/2

≤ exp

(
1

2

n− 1

t′λn
(t′λn + n− 1)

)
≤ exp

(1

2

(
n− 1 + n(n− 1)2

))
,

and by taking the product over all j ∈ {1, . . . , n} we find

sλ′ ≤ en
3/2

∏
j≤n

(
λj
|λ|

)t′λj/2 ∏
j<n

(
|λ|
λj

)1/2

≤ en
3/2 (σλ)t

′
|λ|(n−1)/2

(notice that for λj = 0 we also have λ′j = 0, and the corresponding factors are then equal
to 1). Notice also that

(sλ)−1/|λ| =
∏
j≤n

(
|λ|
λj

)λj/2|λ|
≤
∏
j≤n

|λ|λj/2|λ| = |λ|1/2.

For λ′, λ′′ 6= 0, this implies

(3.21) sλ′sλ′′ ≤ en
3

(sλ)t
′+t′′ |λ|n−1 = en

3

(sλ)1−1/|λ| |λ|n−1 ≤ en
3

sλ |λ|n,

and our combinatorial factor (3.20) is less than e2n3 |λ|n|µ|n. When λ′ = 0 or λ′′ = 0 (say
λ′′ = 0), we have λ′ = λ− cj for some j and sλ′′ = 1, thus

sλ′sλ′′ = sλ′ = sλ

(
|λ|
|λ| − 1

)(|λ|−1)/2

|λ|1/2 (λj − 1)(λj−1)/2

λ
λj/2
j

≤ e1/2 sλ |λ|1/2

and inequality (3.21) still holds. We now put all our bounds together. For all r′ < r = radius
of convergence of w 7→ Ψz(w), the coefficients a′k,`,λ satisfy |a′k,`,λ| ≤ C0(1/r′)|λ| with
C0 = C0(r′) > 0, and for every ξ =

∑
α ξαẽα, (3.16–3.21) imply a bound of the form

∣∣〈Q(ξ), ξ〉
∣∣ ≤ ε−2

∑
α∈Nn

∑
λ,µ∈Nnr{0}

C1

( ε
r′

)|λ|+|µ|
(2 + |λ|+ |µ|+ |λ||µ|) |λ|n|µ|n ×

((|α| − |λ|+ |µ| − 1)+ + n+ 1)(|α|+ n)

(|α| − |λ|)+ + n
|ξα||ξα−λ+µ|.

Here |λ|+ |µ| ≥ 2, and for δ > 0 arbitrary, there exists C2 = C2(δ) such that

(2 + |λ|+ |µ|+ |λ||µ|) |λ|n|µ|n ≤ C2 (1 + δ)|λ|+|µ|−2,

thus

∣∣〈Q(ξ), ξ〉
∣∣ ≤ C1C2

r′2

∑
α∈Nn

∑
λ,µ∈Nnr{0}

( (1 + δ)ε

r′

)|λ|+|µ|−2

×

((|α| − |λ|+ |µ|)+ + n)(|α|+ n)

(|α| − |λ|)+ + n
|ξα||ξα−λ+µ|.



3. Curvature tensor of Bergman bundles 19

Now, we split the summation with respect to (λ, µ) between the two subsets |λ| + |µ| ≤
(|α|+ n)/2 and |λ|+ |µ| > (|α|+ n)/2. We find respectively

((|α| − |λ|+ |µ|)+ + n)(|α|+ n)

(|α| − |λ|)+ + n
≤

{√
6
√
|α|+ n)((|α| − |λ|+ |µ|)+ + n) (first case)

6
n (|λ|+ |µ|)2 (second case).

In the first case, we use the inequality

2
√
|α|+ n)((|α| − |λ|+ |µ|)+ + n) |ξα||ξα−λ+µ|

≤ (|α|+ n)|ξα|2 + (|α| − |λ|+ |µ|)+ + n)|ξα−λ+µ|2,

and in the second case we content ourselves with the simpler bound

2|ξα||ξα−λ+µ| ≤ |ξα|2 + |ξα−λ+µ|2.

For ε ∈ ]0, r[, the series

∑
λ,µ∈Nnr{0}

( (1 + δ)ε

r′

)|λ|+|µ|−2

and
∑

λ,µ∈Nnr{0}

( (1 + δ)ε

r′

)|λ|+|µ|−2

(|λ|+ |µ|)2

can be made convergent by choosing r′ = (r + ε)/2 ∈ ]ε, r[ and 1 + δ =
√
r′/ε, thus there

exists a positive continuous and increasing function ε 7→ C(ε) on ]0, r[ such that∣∣〈Q(ξ), ξ〉
∣∣ ≤ C(ε)

∑
α∈Nn

(|α|+ n)|ξα|2 for all ξ ∈ Bε,

which is what we wanted. This bound, together with Theorem 3.10 and the estimates from
the preliminary discussion yield the following result.

3.22. Theorem. Let (X, γ) be a compact hermitian manifold equipped with a real analytic
metric, and let r we the supremum of the radii r′ of the ball bundles {‖ζ‖γ < r′} on which
the related exponential map exph = exphγ : {‖ζ‖γ < r′} ⊂ TX → X × X defines a real
analytic diffeomorphism (z, ζ) 7→ (z, exphz(ζ)). Then, for all ε < r, the curvature tensor of
the Bergman bundle (Bε, h) satisfies an estimate

〈(ΘBε,h ξ)(v, Jv), ξ〉h = ε−2
∑
α∈Nn

(∣∣∣∣∑
j

√
αj ξα−cjvj

∣∣∣∣2 + (1 +O(ε))
∑
j

(|α|+ n) |ξα|2|vj |2
)

for every ξ =
∑
α ξαeα ∈ Bε′ , ε′ > ε, and every tangent vector v =

∑
vj ∂/∂zj, where

O(ε) = ε C(ε) for a continuous increasing function ε 7→ C(ε) on ]0, r[. In particular ΘBε,h

is positive definite (and even coercive unbounded ) for ε < ε0 small enough.

3.23. Remark. Under our real analyticity assumptions, the proof makes clear that there
exists an asymptotic expansion

〈(ΘBε,h ξ)(v, Jv), ξ〉h =

+∞∑
p=0

ε−2+pQp(z, ξ ⊗ v),
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where

Q0(z, ξ ⊗ v) = Q0(ξ ⊗ v) =
∑
α∈Nn

(∣∣∣∣∑
j

√
αj ξα−cjvj

∣∣∣∣2 +
∑
j

(|α|+ n) |ξα|2|vj |2
)

corresponds to the model case X = Cn. The terms Qj can be derived from the Taylor
expansion of exph associated with the metric γ, and they a priori depend on the coefficients
of the torsion and curvature tensor and their derivatives. In the Kähler case, cf. for instance
[Dem82, (8.5)], one has exphz(ξ) = z + ξ + O(zξ2) and one can check from the above
calculations that Q1 = 0. It would be interesting to identify more precisely Q1 and Q2 in
general. It is very likely that Q1 involves the torsion form dω and that Q2 is strongly related
to the curvature tensor of (TX , ω).

3.24. Remark. Although we have already observed that Bε cannot be a locally trivial
holomorphic Hilbert bundle, as follows from Remark 3.2 and the discussion made in the
introduction, one can still endow the total space of Bε and of its Hilbert dual B∨ε with
some sort of weird infinite dimensional complex space structure, for which the projections
π : Bε → X and π∨ : B∨ε → X are holomorphic. Let us start with B∨ε . This space has a lot
of global “holomorphic functions”, that actually separate all points of B∨ε except those of
the zero section. In fact, every global holomorphic function F ∈ Bε′(X), ε′ > ε, gives rise to
a function `F : B∨ε → C where `F (ξ) = F|Bε,z · ξ for ξ ∈ B∨ε,z ⊂ B∨ε . More generally, one can
define a presheaf OB∨ε of “holomorphic functions” on B∨ε as follows: if V ⊂ B∨ε is an open set,
we take OB∨ε (V ) to be the closure in locally uniform topology in V of the algebra generated
by the pull-backs u ◦ π∨, u ∈ OX(π∨(V )), and by the functions `F , F ∈ Bε′(π

∨(V )), which
are linear on the fibers of B∨ε . One then gets a genuine sheaf OB∨ε by sheafifying the above
presheaf. The construction of OBε is made by reversing the roles of Bε and B∨ε (the ∂
operator of B∨ε being the Von Neumann adjoint of the (1, 0) part of the Chern connection
of ∇1,0 on Bε, and the sheaf of “holomorphic sections” of B∨ε being its kernel).

4. On the invariance of plurigenera for polarized Kähler families

An important unsolved problem of Kähler geometry is the invariance of plurigenera for
compact Kähler manifolds, which can be stated as follows.

4.1. Conjecture. Let π : X→ S be a proper holomorphic map defining a family of smooth
compact Kähler manifolds over an irreducible base S. Assume that π admits local polari-
zations, i.e. every point t0 ∈ S has a neighborhood V such that π−1(V ) carries a Kähler
metric ω. Then the plurigenera pm(Xt) = h0(Xt,mKXt) of fibers are independent of t for
all m ≥ 0.

This conjecture has been affirmatively settled by Y.T. Siu [Siu98] in the case of projective
varieties of general type (in which case the proof has been translated into a purely algebraic
form by Y. Kawamata [Kaw99]), and then by [Siu02] and Păun [Pau07] in the case of
arbitrary projective varieties; remarkably, no algebraic proof of the result is known beyond
the case proved by Kawamata. Here, we wish to study such results in the Kähler context.
This requires a priori substantial modifications of Siu’s proof, since the technique involves in a
crucial manner the use of an auxiliary ample line bundle. In the light of the previous sections,
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a potential replacement would be to use the “very ample” Bergman bundles just constructed.
Conjecture 4.1 would be a consequence of the following more technical statement.

4.2. Conjecture (generalized version of the Claudon-Păun theorem). Let π : X → ∆ be
a polarized family of compact Kähler manifolds over a disc ∆ ⊂ C, and let (Lj , hj)0≤j≤N−1

be (singular) hermitian line bundles with semi-positive curvature currents iΘLj ,hj ≥ 0 on X.
Assume that
(a) the restriction of hj to the central fiber X0 is well defined (i.e. not identically +∞).

(b) the multiplier ideal sheaf I(hj|X0
) is trivial for 1 ≤ j ≤ N − 1.

Then any section σ of O(NKX +
∑

Lj)|X0
⊗ I(h0|X0

) over the central fiber X0 extends into
a section σ̃ of O(NKX +

∑
Lj) over a certain neighborhood X′ = π−1(∆′) of X0, where

∆′ ⊂ ∆ is a sufficienty small disc centered at 0.

The invariance of plurigenera is the special case of Conjecture 4.2 when all line bundles Lj
and their metrics hj are trivial. Since the dimension t 7→ h0(Xt,mKXt) is always upper
semicontinuous and since Conjecture 4.2 implies the lower semicontinuity, we conclude that
the dimension must be constant along analytic discs, hence along the irreducible base S, by
joining any two points through a chain of analytic discs.

4.3. Remark. A standard cohomological argument shows that we can in fact take X′ = X

in the conclusion of Conjecture 4.2, because the direct image sheaf E = π∗O(mKX +
∑

Lj)
is coherent, and the restriction E → E ⊗ (O∆/m0O∆) induces a surjective map at the H0

level on the Stein space ∆, so we can extend σ̃ mod π∗m0 to X.

We now indicate how the technology of Bergman bundles could possibly be used to approach
the conjectures.

4.4. Lemma. Let X′ = π−1(∆′) → ∆′ be the restriction of π : X → ∆ to a disc ∆′ b ∆
centered at 0, of radius R′ < R. For ε ≤ ε0 = ε0(R′) small enough, one can find a Stein
open subset U′ε ⊂ X′ × X, such that the projection pr1 : U′ε → X′ is a complex ball bundle
over X′ that is locally trivial real analytically.

Proof. The arguments are very similar to those of §1, except for the fact that X is no
longer compact, but this is not a problem since X → ∆ is proper, and since we can always
shrink ∆ a little bit to achieve uniform bounds (would they be needed). Let γ be a real
analytic hermitian metric on X, and exph : TX → X be the corresponding real analytic and
fiber-holomorphic exponential map associated with γ, as in §1. The map exph is no longer
everywhere defined, but if we restrict it to the ε-tubular neighborhood of the zero section
in TX′ , we get for ε > 0 small enough a real analytic diffeomorphism (z, ξ) 7→ (z, exphz(ξ))
onto a tubular neighborhood of the diagonal of X′×X′. The rest of the proof is identical to
what we did in §1, taking

(4.5) �U′ε =
{

(z, w) ∈ X′ × X ; | loghz(w)|γ < ε
}
.

In order to study Conjecture 4.2, we first state a technical extension theorem needed
for the proof, which is a special case of the well-known and extremely powerful Ohsawa-
Takegoshi theorem [OhT87], see also [Ohs88, Ohs94], [Dem00], the general Kähler case
stated below being due to [Cao17].
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4.6. Proposition. Let π : Z→ ∆ be a smooth and proper morphism from a (non compact )
Kähler manifold Z to a disc ∆ ⊂ C and let (L, h) be a (singular) hermitian line bundle
with semi-positive curvature current iΘL,h ≥ 0 on Z. Let ω be a global Kähler metric on Z,
and let dVZ, dVZ0

the respective induced volume elements on Z and Z0 = π−1(0). Assume
that hZ0

is well defined (i.e. almost everywhere finite). Then any holomorphic section s of
O(KZ + L)⊗ I(h|Z0

) extends into a section s̃ over Z satisfying an L2 estimate∫
Z

‖s̃ ‖2ω⊗hdVZ ≤ C0

∫
Z0

‖s‖2ω⊗hdVZ0
,

where C0 ≥ 0 is some universal constant (depending on dimZ and diam ∆, but otherwise
independent of Z, L, . . . ).

4.7. Remark. The assumptions of Proposition 4.6 imply that Z is holomorphically convex
and complete Kähler, thus, as an alternative to the technique used in [Cao17], the regula-
rization arguments explained in [Dem82] would also apply to yield the result. We leave
motivated readers eventually complete such a proof.

Attempt of proof of Conjecture 4.2. Let p = pr1 : U′ε → X′ be as in Lemma 4.4, and
q = pr2 : U′ε → X. We take ε < ε0 and use on Z := U′ε a Kähler metric ω0 defined on
the Stein manifold U′ε0 . On can define e.g. ω0 as the i∂∂ of a strictly plurisubharmonic
exhaustion function on U′ε0 , but we can also take the restriction of pr∗1 ω + pr∗2 ω|X where ω
is the Kähler metric on the total space X, and ω = −ω the corresponding Kähler metric on
the conjugate space X.

First step: construction of a sequence of extensions on Z = U′ε via the Ohsawa-Takegoshi
extension theorem.

The strategy is to apply iteratively the special case 4.6 of the Ohsawa-Takegoshi extension
theorem on the total space of the fibration

π′ = π ◦ p : Z = U′ε → X′ → ∆′,

and to extend sections of ad hoc pull-backs p∗G from the zero fiber Z0 = π′ −1(0) = p−1(X0)
to the whole of Z = U′ε. We write hj = e−ϕj in terms of local plurisubharmonic weights,
and define inductively a sequence of line bundles Gm by putting G0 = OX′ and

Gm = Gm−1 +KX′ + Lr if m = Nq + r, 0 ≤ r ≤ N − 1.

By construction we have

Gm = mKX′ + L1 + · · ·+ Lm, for 1 ≤ m ≤ N − 1 ,

Gm+N − Gm = GN = NKX′ + L0 + · · ·+ LN−1 , for all m ≥ 0.

The game is to construct inductively families of sections, say {f̃ (m)
j }j=1,...,J(m), of p∗Gm

over Z, together with ad hoc L2 estimates, in such a way that

(4.8) for m = 0, . . . , N − 1, p∗Gm is generated by L2 sections {f̃ (m)
j }j=1,...,J(m) on U′ε0 ;

(4.9) we have the m-periodicity relations J(m + N) = J(m) and f̃
(m)
j is an extension of

f
(m)
j := (p∗σ)qf

(r)
j over Z for m = Nq + r, where f (r)

j := f̃
(r)
j|Z0

, 0 ≤ r ≤ N − 1.
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Property (4.8) can certainly be achieved since U′ε0 is Stein, and for m = 0 we can take
J(0) = 1 and f̃ (0)

1 = 1. Now, by induction, we equip p∗Gm−1 with the tautological metric
|ξ|2/

∑
` |f̃

(m−1)
` (x)|2, and

G̃m := p∗Gm −KZ = p∗Gm − (p∗KX′ + q∗K
X
) = p∗(Gm−1 + Lr)− q∗KX

with that metric multiplied by p∗hr = e−p
∗ϕr and a fixed smooth metric e−ψ of positive

curvature on (−q∗K
X
)|U′ε0

(remember that U′ε0 is Stein!). It is clear that these metrics
have semi-positive curvature currents on Z (by adjusting ψ, we could even take them to be
strictly positive if we wanted). In this setting, we apply the Ohsawa-Takegoshi theorem to
the line bundle KZ + G̃m = p∗Gm, and extend in this way f (m)

j into a section f̃ (m)
j over Z.

By construction the pointwise norm of that section in p∗Gm|Z0
in a local trivialization of the

bundles involved is the ratio
|f (m)
j |2∑

` |f
(m−1)
` |2

e−p
∗ϕr−ψ,

up to some fixed smooth positive factor depending only on the metric induced by ω0 on KZ.
However, by the induction relations, we have

∑
j |f

(m)
j |2∑

` |f
(m−1)
` |2

e−p
∗ϕr =



∑
j |f

(r)
j |2∑

` |f
(r−1)
` |2

e−p
∗ϕr for m = Nq + r, 0 < r ≤ N − 1,∑

j |f
(0)
j |2∑

` |f
(N−1)
` |2

|p∗σ|2e−p
∗ϕ0 for m ≡ 0 modN , m > 0.

Since the sections {f (r)
j }0≤r<N generate their line bundle on Uε0 ⊃ U′ε, the ratios involved

are positive functions without zeroes and poles, hence smooth and bounded [possibly after
shrinking a little bit the base disc ∆′, as is permitted]. On the other hand, assumption
4.2 (b) and the fact that σ has coefficients in the multiplier ideal sheaf I(h0|X0

) tell us that
e−p

∗ϕr , 1 ≤ r < m and |p∗σ|2e−p∗ϕ0 are locally integrable on Z0. It follows that there is a
constant C1 = C1(ε) ≥ 0 such that∫

Z0

∑
j |f

(m)
j |2∑

` |f
(m−1)
` |2

e−p
∗ϕr−ψdVω0 ≤ C1

for all m ≥ 1 (of course, the integral certainly involves finitely many trivializations of the
bundles involved, whereas the integrand expression is just local in each chart). Inductively,
the L2 extension theorem produces sections f̃ (m)

j of p∗Gm over Z such that∫
Z

∑
j |f̃

(m)
j |2∑

` |f̃
(m−1)
` |2

e−p
∗ϕr−ψdVω0 ≤ C2 = C0C1.

Second step: applying the Hölder inequality. Put k = Nq(k) + r(k) with 0 ≤ r(k) < N ,
and take m = Nq(m) to be a multiple of N . The Hölder inequality |

∫ ∏
1≤k≤m ukdµ| ≤∏

1≤k≤m(
∫
|uk|mdµ)1/m applied to the measure µ = dVω0 and to the product of functions(∑

j |f̃
(m)
j |2∑

` |f̃
(0)
` |2

)1/m

e−
1
N p
∗(ϕ0+...+ϕN−1)−ψ =

∏
1≤k≤m

( ∑
j |f̃

(k)
j |2∑

` |f̃
(k−1)
` |2

e−p
∗ϕr(k)−ψ

)1/m
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in which
∑
` |f̃

(0)
` |2 = |f̃ (0)

1 |2 = 1 and
∑
j |f̃

(m)
j |2 = |f̃ (m)

1 |2, implies that

(4.10)

∫
Z

∣∣f̃ (m)
1

∣∣2/me− 1
N p
∗(ϕ0+...+ϕN−1)−ψdVω0 ≤ C2.

As the functions ϕr(k) and ψ are locally bounded from above, we infer from this the weaker
inequality

(4.10′)

∫
Z

∣∣f̃ (m)
1

∣∣2/mdVω0
≤ C3.

The last inequality is to be understood as an inequality that holds in fact only locally over X′,
on sets of the form p−1(V ), where V b X′ are small coordinate open sets where our line
bundles are trivial, so that the section f̃ (m)

1 of q(m) p∗(NKX′ +
∑

Lj) can be viewed as a
holomorphic function on p−1(V ).

Third step: construction of singular hermitian metrics on NKX′ +
∑

Lj . The rough idea is
to extract a weak limit of the m-th root occurring in (4.10), (4.10′), combined with an inte-
gration on the fibers of p : Z = U′ε → X′, to get a singular hermitian metric onNKX′ +

∑
Lj .

This is the crucial step in the proof, and the place where the Kähler setup will require new
arguments; especially, the integration on fibers makes the weak limit argument much less
obvious than in the projective setup. Our (yet incomplete) attempt involves the results of
§2, §3 on Bergman bundles.

4.11. Proposition. Assume that the sections f̃ (m)
1 have been constructed on Z = U′ε → X′,

ε ≤ ε0(R′), and let us shrink these sections to a smaller neighborhood U′ρε, ρ < 1. Then
there exists a subsequence m ∈M0 ⊂ N such that, with respect to local trivializations of the
Lj and local holomorphic sections dw = dw1 ∧ . . . ∧ dwn+1 of K

X
), we have a well defined

limit
θ(z) = lim

m∈M0
m→+∞

1

m
log

∫
w∈U′ρε,z

|f̃ (m)
1 (z, w)

∣∣2 i(n+1)2dw ∧ dw, z ∈ X′

that exists almost everywhere on X′, and H = e−Nθ defines a singular hermitian metric on
p∗(NKX′ +

∑
Lj) satisfying the following estimates :

(a) |σ|2H = |σ|2e−Nθ = 1 on X0 ⊂ X′ ;

(b)
∫
X′
e−θe−

1
N (ϕ0+...+ϕN−1)dVω <∞ ;

(c) there are constants C4, C5 > 0 such that θ ≤ C4 and i∂∂θ ≥ − C5

ε2ρ2

(
C4 − θ

)
ω.

Proof. First notice that the choice of the w local coordinates on X is irrelevant in the
definition of θ (the L2 integrals may eventually change by bounded multiplicative factors,
which get killed as m → +∞). We apply the mean value inequality for plurisubharmonic
functions, applied on ω0-geodesic balls of Z centered at points (z, w) ∈ U′ρε and of radius
1
2 (1− ρ)ε (say). As dimZ = 2(n+ 1), we obtain by (4.10′) a uniform upper bound

sup
U′ρε,z

|f̃ (m)
1 |2/m ≤ C6

((1− ρ)ε)4(n+1)

∫
U′ε

|f̃ (m)
1 |2/m i(n+1)2 dw ∧ dw

≤ C7

((1− ρ)ε)4(n+1)
, ∀z ∈ X′.(4.12)



4. On the invariance of plurigenera for polarized Kähler families 25

Here our sections can be seen as functions only locally over trivializing open sets of the
line bundles in X′, but we can arrange that there are only finitely many of these; hence the
transition automorphisms only involve bounded constants, after raising to power 1/m. At
this point, we consider the Bergman bundle Bε → X′, and write locally over X′

f̃
(m)
1 (z, w) dw =

∑
α∈Nn+1

ξm,α(z) ẽα(z, w)⊗ g(z)q(m), z ∈ X′, w ∈ U′ε,z

in terms of an orthonormal frame (ẽα)α∈Nn+1 of Bε, of the corresponding Hilbert space
coefficients ξm = (ξm,α)α∈Nn+1 as defined in §2, and of a local holomorphic generator g of
OX(NKX′+

∑
Lj). If we put dw = dw1∧ . . .∧dwn+1 in local coordinates, we get an equality

θm,ρ(z) :=
1

m
log

∫
w∈U′ρε,z

|f̃ (m)
1 (z, w)

∣∣2 i(n+1)2dw ∧ dw

=
1

m
log

( ∑
α∈Nn+1

ρ2(|α|+n+1) |ξm,α(z)|2
)
,(4.13)

and by (4.12), we obtain an upper bound

(4.14) θm,ρ(z) ≤
1

m
log

C8 (ρε)2(n+1) Cm7
((1− ρ)ε)4m(n+1)

≤ C9 + 4(n+ 1) log
1

(1− ρ)ε
=: C10,ρ,ε.

The sum
∑
α∈Nn+1 ρ2(|α|+n+1) |ξm,α(z)|2 = emθm,ρ(z) is nothing else than the square of the

norm of the section f̃ (m)
1 , expressed with respect to the natural hermitian metric 〈•, •〉ρ of

the Bergman bundle Bρε. The inequalities (4.12) show that the series converges uniformly
over the whole of X′. As ∇0,1ξ = 0, a standard calculation with respect to the Bergman
connection ∇ = ∇1,0 +∇0,1 of Bρε implies

i∂∂θm,ρ =
i

m ‖ξm‖2ρ

(
〈∇1,0ξm,∇1,0ξm〉ρ − 〈ΘBρεξm, ξm〉ρ −

〈∇1,0ξm, ξm〉ρ ∧ 〈∇1,0ξm, ξm〉ρ
‖ξm‖2ρ

)

≥ − 1

m

〈iΘBρεξm, ξm〉ρ
‖ξm‖2ρ

(4.15)

by the Cauchy-Schwarz inequality. On the other hand, as the orthonormal coordinates
expressed in Bρε are the (ρ|α|+n+1ξm,α), the curvature bound obtained in §2 yields

〈iΘBρεξm, ξm〉ρ ≤ (2 +O(ρε))(ρε)−2
∑

α∈Nn+1

(|α|+ n+ 1) ρ2(|α|+n+1) |ξm,α|2 ω.

The last two inequalities imply the fundamental estimate

i∂∂θm,ρ ≥ −
(2 +O(ρε))(ρε)−2

m

∑
α∈Nn+1

(|α|+ n+ 1) ρ2(|α|+n+1) |ξm,α|2∑
α∈Nn+1

ρ2(|α|+n+1) |ξm,α|2
ω(4.16)

≥ −1 +O(ρε)

ε2ρ

(
∂

∂ρ
θm,ρ

)
ω.(4.16′)
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From its definition, we see that θm,ρ is a convex function of log ρ. Therefore, for ρ ≤ ρ1 < 1,
we have

ρ
∂

∂ρ
θm,ρ ≤

θm,ρ1 − θm,ρ
log ρ1 − log ρ

≤ C9,ρ1,ε − θm,ρ
log ρ1

,

by (4.14), and (4.16′) implies

i∂∂θm,ρ ≥ −
C11

ε2ρ2

(
C10,ρ1,ε − θm,ρ

)
ω.

A straightforward calculation yields

−i∂∂ log(C10,ρ1,ε + 1− θm,ρ) ≥ −
C11

ε2ρ2
ω,

hence the functions um = − log(C10,ρ1,ε+1−θm,ρ) ≤ 0 have Hessian forms that are uniformly
bounded from below. Also, by construction (cf. 4.9), θm,ρ converges to 1

N log |σ| on X.
Standard results of pluripotential theory imply that we can find a subsequence of (um)
that converges in Lp topology (for every p ∈ [1,+∞[) and pointwise almost everywhere.
Therefore we can find a limit θm,ρ → θ satisfying the Hessian estimates

i∂∂θ ≥ − C11

ε2ρ2

(
C10,ρ1,ε − θ

)
ω, −i∂∂ log(C10,ρ1,ε + 1− θ) ≥ − C11

ε2ρ2
ω

Proposition 4.11 is proved, as estimate (b) follows from (4.10).

Fourth step: applying Ohsawa-Takegoshi once again with the singular hermitian metric pro-
duced in the third step. Assume that we can replace estimate 4.11 (c) by the stronger fact
that the curvature form of H = e−Nθ is positive in the sense of currents, i.e.

(4.18) −i∂∂ logH = N i∂∂θ ≥ 0.

This means that NKX′ +
∑

Lj possesses a hermitian metric H such that ‖σ‖H ≤ 1 on X0

and ΘH ≥ 0 on X′. In order to conclude, we proceed as Siu and Păun, and equip the bundle

E = (N − 1)KX′ +
∑

Lj

with the metric η = H1−1/N
∏
h

1/N
j , and NKX′ +

∑
Lj = KX′ + E with the metric ω ⊗ η.

It is important here that X possesses a global Kähler polarization ω, otherwise the required
estimates would not be valid. Clearly η has a semi-positive curvature current on X′ and in
a local trivialization we have

‖σ‖2ω⊗η ≤ C|σ|2 exp
(
− (N − 1)θ − 1

N

∑
ϕj

)
≤ C

(
|σ|2

∏
e−ϕj

)1/N

on X0. Since |σ|2e−ϕ0 and e−ϕr , r > 0 are all locally integrable, we see that ‖σ‖2ω⊗η is also
locally integrable on X0 by the Hölder inequality. A new (and final) application of the L2

extension theorem to the hermitian line bundle (E, η) implies that σ can be extended to X′.
Conjecture 4.2 would then be proved.

Fifth step: final discussion. Unfortunately, estimate (4.18) will a priori hold only in the
case where ε can be taken arbitrarily large (in the sense that the exponential map is at



4. On the invariance of plurigenera for polarized Kähler families 27

least everywhere an immersion – one can then argue on the “unfolded neighborhood” Ũε
diffeomorphic to the ε-tubular neihborhood of the 0 section in TX , equipped with the complex
structure obtained by pulling back the complex structure of X×X via exph. This condition
is met e.g. when X is a complex torus or a ball quotient. However, it is doubtful that all
compact Kähler manifolds with KX pseudo-effective satisfy this property. The main issue is
that the unboundedness of ΘBε,h does not a priori imply that the right hand side of (4.15)
converges weakly to 0, while this is obviously true in the algebraic situation where we use
instead a given ample line bundle A on X. One possible way to circumvent this difficulty is
to observe that the term 〈iΘBρεξm, ξm〉ρ is controlled by ‖ξm‖ρ‖ξm‖′ρ where

‖ξm‖′ 2ρ :=
∑

α∈Nn+1

(|α|+n+1)2 ρ2(|α|+n+1) |ξm,α|2 ∼
∫
w∈U′ρε,z

|f̃ (m)
1 (z, w)

∣∣2 +|Dwf̃
(m)
1 (z, w)

∣∣2,
and it would be sufficient to find extensions f̃ (m)

1 satisfying the additional estimate

(4.19)

∫
w∈U′ρε,z

|Dwf̃
(m)
1 (z, w)

∣∣2 ≤ Km

∫
w∈U′ρε,z

|f̃ (m)
1 (z, w)

∣∣2
where Km grows subquadratically, i.e. 1

m2Km → 0. Getting such an estimate, e.g. a bound
Km = O(m) in the general situation, does not appear to be completely implausible, since the
main inductive step consists of extending a section multiplied by p∗σ(z, w) = σ(z), which is
therefore independent of w on X′0. In this process, one might hope to obtain an appropriate
L2 extension theorem taking care of “vertical derivatives” with respect to a given morphism
Y→ X→ ∆ (namely, U′ε → X′ → ∆′ in this circumstance). We will try to investigate these
questions in the near future.
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