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Chapter I

Complex Differential Calculus and Pseudoconvexity

This introductive chapter is mainly a review of the basic tools and concepts which will be employed
in the rest of the book: differential forms, currents, holomorphic and plurisubharmonic functions, holo-
morphic convexity and pseudoconvexity. Our study of holomorphic convexity is principally concentrated
here on the case of domains in Cn. The more powerful machinery needed for the study of general com-
plex varieties (sheaves, positive currents, hermitian differential geometry) will be introduced in Chapters
II to V. Although our exposition pretends to be almost self-contained, the reader is assumed to have
at least a vague familiarity with a few basic topics, such as differential calculus, measure theory and
distributions, holomorphic functions of one complex variable, . . . . Most of the necessary background can
be found in the books of [Rudin 1966] and [Warner 1971]; the basics of distribution theory can be found
in Chapter I of [Hörmander 1963]. On the other hand, the reader who has already some knowledge of
complex analysis in several variables should probably bypass this chapter.

§ 1. Differential Calculus on Manifolds

§ 1.A. Differentiable Manifolds

The notion of manifold is a natural extension of the notion of submanifold defined
by a set of equations in Rn. However, as already observed by Riemann during the
19th century, it is important to define the notion of a manifold in a flexible way, without
necessarily requiring that the underlying topological space is embedded in an affine space.
The precise formal definition was first introduced by H. Weyl in [Weyl 1913].

Let m ∈ N and k ∈ N ∪ {∞, ω}. We denote by Ck the class of functions which are
k-times differentiable with continuous derivatives if k 6= ω, and by Cω the class of real
analytic functions. A differentiable manifold M of real dimension m and of class Ck is a
topological space (which we shall always assume Hausdorff and separable, i.e. possessing
a countable basis of the topology), equipped with an atlas of class Ck with values in Rm.
An atlas of class Ck is a collection of homeomorphisms τα : Uα −→ Vα, α ∈ I, called
differentiable charts, such that (Uα)α∈I is an open covering of M and Vα an open subset
of Rm, and such that for all α, β ∈ I the transition map

(1.1) ταβ = τα ◦ τ−1β : τβ(Uα ∩ Uβ) −→ τα(Uα ∩ Uβ)

is a Ck diffeomorphism from an open subset of Vβ onto an open subset of Vα (see Fig. 1).
Then the components τα(x) = (xα1 , . . . , x

α
m) are called the local coordinates on Uα defined

by the chart τα ; they are related by the transition relation xα = ταβ(x
β).
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M

Uα

Uα∩Uβ

Uβ
τβ

τα

Rm

Vα

Vβ

τα(Uα∩Uβ)

τβ(Uα∩Uβ)

ταβ

Fig. I-1 Charts and transition maps

If Ω ⊂ M is open and s ∈ N ∪ {∞, ω}, 0 6 s 6 k, we denote by Cs(Ω,R) the set of
functions f of class Cs on Ω, i.e. such that f ◦ τ−1α is of class Cs on τα(Uα ∩Ω) for each
α ; if Ω is not open, Cs(Ω,R) is the set of functions which have a Cs extension to some
neighborhood of Ω.

A tangent vector ξ at a point a ∈M is by definition a differential operator acting on
functions, of the type

C1(Ω,R) ∋ f 7−→ ξ · f =
∑

16j6m

ξj
∂f

∂xj
(a)

in any local coordinate system (x1, . . . , xm) on an open set Ω ∋ a. We then simply write
ξ =

∑
ξj ∂/∂xj. For every a ∈ Ω, the n-tuple (∂/∂xj)16j6m is therefore a basis of the

tangent space to M at a, which we denote by TM,a. The differential of a function f at a
is the linear form on TM,a defined by

dfa(ξ) = ξ · f =
∑

ξj ∂f/∂xj(a), ∀ξ ∈ TM,a.

In particular dxj(ξ) = ξj and we may consequently write df =
∑

(∂f/∂xj)dxj . From
this, we see that (dx1, . . . , dxm) is the dual basis of (∂/∂x1, . . . , ∂/∂xm) in the cotangent
space T ⋆M,a. The disjoint unions TM =

⋃
x∈M TM,x and T ⋆M =

⋃
x∈M T ⋆M,x are called the

tangent and cotangent bundles of M .

If ξ is a vector field of class Cs over Ω, that is, a map x 7→ ξ(x) ∈ TM,x such that
ξ(x) =

∑
ξj(x) ∂/∂xj has C

s coefficients, and if η is another vector field of class Cs with
s > 1, the Lie bracket [ξ, η] is the vector field such that

(1.2) [ξ, η] · f = ξ · (η · f)− η · (ξ · f).

In coordinates, it is easy to check that

(1.3) [ξ, η] =
∑

16j,k6m

(
ξj
∂ηk
∂xj
− ηj

∂ξk
∂xj

) ∂

∂xk
.
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§ 1.B. Differential Forms

A differential form u of degree p, or briefly a p-form over M , is a map u on M with
values u(x) ∈ ΛpT ⋆M,x. In a coordinate open set Ω ⊂ M , a differential p-form can be
written

u(x) =
∑

|I|=p
uI(x) dxI ,

where I = (i1, . . . , ip) is a multi-index with integer components, i1 < . . . < ip and dxI :=
dxi1 ∧ . . . ∧ dxip . The notation |I| stands for the number of components of I, and is
read length of I. For all integers p = 0, 1, . . . , m and s ∈ N ∪ {∞}, s 6 k, we denote by
Cs(M,ΛpT ⋆M ) the space of differential p-forms of class Cs, i.e. with Cs coefficients uI .
Several natural operations on differential forms can be defined.

§ 1.B.1. Wedge Product. If v(x) =
∑
vJ (x) dxJ is a q-form, the wedge product of u and

v is the form of degree (p+ q) defined by

(1.4) u ∧ v(x) =
∑

|I|=p,|J|=q
uI(x)vJ (x) dxI ∧ dxJ .

§ 1.B.2. Contraction by a tangent vector. A p-form u can be viewed as an antisymmetric
p-linear form on TM . If ξ =

∑
ξj ∂/∂xj is a tangent vector, we define the contraction

ξ u to be the differential form of degree p− 1 such that

(1.5) (ξ u)(η1, . . . , ηp−1) = u(ξ, η1, . . . , ηp−1)

for all tangent vectors ηj . Then (ξ, u) 7−→ ξ u is bilinear and we find easily

∂

∂xj
dxI =

{
0 if j /∈ I,
(−1)l−1dxIr{j} if j = il ∈ I.

A simple computation based on the above formula shows that contraction by a tangent
vector is a derivation, i.e.

(1.6) ξ (u ∧ v) = (ξ u) ∧ v + (−1)deg uu ∧ (ξ v).

§ 1.B.3. Exterior derivative. This is the differential operator

d : Cs(M,ΛpT ⋆M ) −→ Cs−1(M,Λp+1T ⋆M )

defined in local coordinates by the formula

(1.7) du =
∑

|I|=p, 16k6m

∂uI
∂xk

dxk ∧ dxI .

Alternatively, one can define du by its action on arbitrary vector fields ξ0, . . . , ξp on M .
The formula is as follows

du(ξ0, . . . , ξp) =
∑

06j6p

(−1)jξj · u(ξ0, . . . , ξ̂j, . . . , ξp)

+
∑

06j<k6p

(−1)j+ku([ξj, ξk], ξ0, . . . , ξ̂j, . . . , ξ̂k, . . . , ξp).(1.7′)
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The reader will easily check that (1.7) actually implies (1.7′). The advantage of (1.7′)
is that it does not depend on the choice of coordinates, thus du is intrinsically defined.
The two basic properties of the exterior derivative (again left to the reader) are:

d(u ∧ v) = du ∧ v + (−1)deg uu ∧ dv, (Leibnitz’ rule )(1.8)

d2 = 0.(1.9)

A form u is said to be closed if du = 0 and exact if u can be written u = dv for some
form v.

§ 1.B.4. De Rham Cohomology Groups. Recall that a cohomological complex K• =⊕
p∈Z is a collection of modules Kp over some ring, equipped with differentials, i.e., linear

maps dp : Kp → Kp+1 such that dp+1 ◦ dp = 0. The cocycle, coboundary and cohomology
modules Zp(K•), Bp(K•) and Hp(K•) are defined respectively by

(1.10)




Zp(K•) = Ker dp : Kp → Kp+1, Zp(K•) ⊂ Kp,
Bp(K•) = Im dp−1 : Kp−1 → Kp, Bp(K•) ⊂ Zp(K•) ⊂ Kp,
Hp(K•) = Zp(K•)/Bp(K•).

Now, let M be a differentiable manifold, say of class C∞ for simplicity. The De Rham
complex of M is defined to be the complex Kp = C∞(M,ΛpT ⋆M ) of smooth differential
forms, together with the exterior derivative dp = d as differential, and Kp = {0}, dp = 0
for p < 0. We denote by Zp(M,R) the cocycles (closed p-forms) and by Bp(M,R) the
coboundaries (exact p-forms). By convention B0(M,R) = {0}. The De Rham cohomol-
ogy group of M in degree p is

(1.11) Hp
DR(M,R) = Zp(M,R)/Bp(M,R).

When no confusion with other types of cohomology groups may occur, we sometimes
denote these groups simply by Hp(M,R). The symbol R is used here to stress that we are
considering real valued p-forms; of course one can introduce a similar group Hp

DR(M,C)
for complex valued forms, i.e. forms with values in C ⊗ ΛpT ⋆M . Then Hp

DR(M,C) =
C ⊗ Hp

DR(M,R) is the complexification of the real De Rham cohomology group. It is
clear that H0

DR(M,R) can be identified with the space of locally constant functions onM ,
thus

H0
DR(M,R) = Rπ0(X),

where π0(X) denotes the set of connected components of M .

Similarly, we introduce the De Rham cohomology groups with compact support

(1.12) Hp
DR,c(M,R) = Zpc (M,R)/Bpc (M,R),

associated with the De Rham complex Kp = C∞c (M,ΛpT ⋆M ) of smooth differential forms
with compact support.

§ 1.B.5. Pull-Back. If F : M −→ M ′ is a differentiable map to another manifold M ′,
dimRM

′ = m′, and if v(y) =
∑
vJ (y) dyJ is a differential p-form on M ′, the pull-back

F ⋆v is the differential p-form on M obtained after making the substitution y = F (x) in
v, i.e.

(1.13) F ⋆v(x) =
∑

vI
(
F (x)

)
dFi1 ∧ . . . ∧ dFip .
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If we have a second map G : M ′ −→ M ′′ and if w is a differential form on M ′′, then
F ⋆(G⋆w) is obtained by means of the substitutions z = G(y), y = F (x), thus

(1.14) F ⋆(G⋆w) = (G ◦ F )⋆w.

Moreover, we always have d(F ⋆v) = F ⋆(dv). It follows that the pull-back F ⋆ is closed
if v is closed and exact if v is exact. Therefore F ⋆ induces a morphism on the quotient
spaces

(1.15) F ⋆ : Hp
DR(M

′,R) −→ Hp
DR(M,R).

§ 1.C. Integration of Differential Forms

A manifoldM is orientable if and only if there exists an atlas (τα) such that all transi-
tion maps ταβ preserve the orientation, i.e. have positive jacobian determinants. Suppose
that M is oriented, that is, equipped with such an atlas. If u(x) = f(x1, . . . , xm) dx1 ∧
. . .∧ dxm is a continuous form of maximum degree m = dimRM , with compact support
in a coordinate open set Ω, we set

(1.16)

∫

M

u =

∫

Rm

f(x1, . . . , xm) dx1 . . . dxm.

By the change of variable formula, the result is independent of the choice of coordinates,
provided we consider only coordinates corresponding to the given orientation. When u
is an arbitrary form with compact support, the definition of

∫
M
u is easily extended by

means of a partition of unity with respect to coordinate open sets covering Supp u. Let
F :M −→M ′ be a diffeomorphism between oriented manifolds and v a volume form on
M ′. The change of variable formula yields

(1.17)

∫

M

F ⋆v = ±
∫

M ′

v

according whether F preserves orientation or not.

We now state Stokes’ formula, which is basic in many contexts. Let K be a compact
subset of M with piecewise C1 boundary. By this, we mean that for each point a ∈ ∂K
there are coordinates (x1, . . . , xm) on a neighborhood V of a, centered at a, such that

K ∩ V =
{
x ∈ V ; x1 6 0, . . . , xl 6 0

}

for some index l > 1. Then ∂K ∩ V is a union of smooth hypersurfaces with piecewise
C1 boundaries:

∂K ∩ V =
⋃

16j6l

{
x ∈ V ; x1 6 0, . . . , xj = 0, . . . , xl 6 0

}
.

At points of ∂K where xj = 0, then (x1, . . . , x̂j, , . . . , xm) define coordinates on ∂K. We
take the orientation of ∂K given by these coordinates or the opposite one, according to
the sign (−1)j−1. For any differential form u of class C1 and degree m − 1 on M , we
then have
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(1.18) Stokes’ formula.

∫

∂K

u =

∫

K

du.

The formula is easily checked by an explicit computation when u has compact support

in V : indeed if u =
∑

16j6n uj dx1 ∧ . . . d̂xj . . . dxm and ∂jK ∩ V is the part of ∂K ∩ V
where xj = 0, a partial integration with respect to xj yields

∫

∂jK∩V
uj dx1 ∧ . . . d̂xj . . . dxm =

∫

V

∂uj
∂xj

dx1 ∧ . . . dxm,
∫

∂K∩V
u =

∑

16j6m

(−1)j−1
∫

∂jK∩V
uj dx1 ∧ . . . d̂xj . . . ∧ dxm =

∫

V

du.

The general case follows by a partition of unity. In particular, if u has compact support
in M , we find

∫
M
du = 0 by choosing K ⊃ Supp u.

§ 1.D. Homotopy Formula and Poincaré Lemma

Let u be a differential form on [0, 1]×M . For (t, x) ∈ [0, 1]×M , we write

u(t, x) =
∑

|I|=p
uI(t, x) dxI +

∑

|J|=p−1
ũJ (t, x) dt ∧ dxJ .

We define an operator

K : Cs([0, 1]×M,ΛpT ⋆[0,1]×M) −→ Cs(M,Λp−1T ⋆M )

Ku(x) =
∑

|J|=p−1

(∫ 1

0

ũJ (t, x) dt
)
dxJ(1.19)

and say that Ku is the form obtained by integrating u along [0, 1]. A computation of
the operator dK+Kd shows that all terms involving partial derivatives ∂ũJ/∂xk cancel,
hence

Kdu+ dKu =
∑

|I|=p

(∫ 1

0

∂uI
∂t

(t, x) dt
)
dxI =

∑

|I|=p

(
uI(1, x)− uI(0, x)

)
dxI ,

Kdu+ dKu = i⋆1u− i⋆0u,(1.20)

where it :M → [0, 1]×M is the injection x 7→ (t, x).

(1.20) Corollary. Let F,G : M −→ M ′ be C∞ maps. Suppose that F,G are smoothly
homotopic, i.e. that there exists a C∞ map H : [0, 1]×M −→ M ′ such that H(0, x) =
F (x) and H(1, x) = G(x). Then

F ⋆ = G⋆ : Hp
DR(M

′,R) −→ Hp
DR(M,R).

Proof. If v is a p-form on M ′, then

G⋆v − F ⋆v = (H ◦ i1)⋆v − (H ◦ i0)⋆v = i⋆1(H
⋆v)− i⋆0(H⋆v)

= d(KH⋆v) +KH⋆(dv)
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by (1.20) applied to u = H⋆v. If v is closed, then F ⋆v and G⋆v differ by an exact form,
so they define the same class in Hp

DR(M,R). �

(1.21) Corollary. If the manifold M is contractible, i.e. if there is a smooth homotopy
H : [0, 1]×M →M from a constant map F :M → {x0} to G = IdX , then H

0
DR(M,R) =

R and Hp
DR(M,R) = 0 for p > 1.

Proof. F ⋆ is clearly zero in degree p > 1, while F ⋆ : H0
DR(M,R)

≃−→ R is induced by the
evaluation map u 7→ u(x0). The conclusion then follows from the equality F ⋆ = G⋆ = Id
on cohomology groups. �

(1.22) Poincaré lemma. Let Ω ⊂ Rm be a starshaped open set. If a form v =∑
vIdxI ∈ Cs(Ω,ΛpT ⋆Ω), p > 1, satisfies dv = 0, there exists a form u ∈ Cs(Ω,Λp−1T ⋆Ω)

such that du = v.

Proof. Let H(t, x) = tx be the homotopy between the identity map Ω → Ω and the
constant map Ω→ {0}. By the above formula

d(KH⋆v) = G⋆v − F ⋆v =

{
v − v(0) if p = 0,
v if p > 1.

Hence u = KH⋆v is the (p− 1)-form we are looking for. An explicit computation based
on (1.19) easily gives

(1.23) u(x) =
∑

|I|=p
16k6p

(∫ 1

0

tp−1vI(tx) dt
)
(−1)k−1xikdxi1 ∧ . . . d̂xik . . . ∧ dxip .

§ 2. Currents on Differentiable Manifolds

§ 2.A. Definition and Examples

Let M be a C∞ differentiable manifold, m = dimRM . All the manifolds considered
in Sect. 2 will be assumed to be oriented. We first introduce a topology on the space of
differential forms Cs(M,ΛpT ⋆M ). Let Ω ⊂M be a coordinate open set and u a p-form on
M , written u(x) =

∑
uI(x) dxI on Ω. To every compact subset L ⊂ Ω and every integer

s ∈ N, we associate a seminorm

(2.1) psL(u) = sup
x∈L

max
|I|=p,|α|6s

|DαuI(x)|,

where α = (α1, . . . , αm) runs over Nm and Dα = ∂|α|/∂xα1
1 . . . ∂xαm

m is a derivation of
order |α| = α1 + · · · + αm. This type of multi-index, which will always be denoted
by Greek letters, should not be confused with multi-indices of the type I = (i1, . . . , ip)
introduced in Sect. 1.

(2.2) Definition. We introduce as follows spaces of p-forms on manifolds.
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a) We denote by Ep(M)
(
resp. s

E

p(M)
)
the space C∞(M,ΛpT ⋆M )

(
resp. the space

Cs(M,ΛpT ⋆M )
)
, equipped with the topology defined by all seminorms psL when s, L, Ω

vary (resp. when L, Ω vary).

b) If K ⊂ M is a compact subset, Dp(K) will denote the subspace of elements u ∈
E

p(M) with support contained in K, together with the induced topology; Dp(M) will
stand for the set of all elements with compact support, i.e. Dp(M) :=

⋃
KD

p(K).

c) The spaces of Cs-forms sDp(K) and s
D

p(M) are defined similarly.

Since our manifolds are assumed to be separable, the topology of Ep(M) can be de-
fined by means of a countable set of seminorms psL, hence E

p(M) (and likewise sEp(M))
is a Fréchet space. The topology of sDp(K) is induced by any finite set of seminorms psKj

such that the compact sets Kj cover K ; hence sDp(K) is a Banach space. It should be
observed however that Dp(M) is not a Fréchet space; in fact Dp(M) is dense in Ep(M)
and thus non complete for the induced topology. According to [De Rham 1955] spaces
of currents are defined as the topological duals of the above spaces, in analogy with the
usual definition of distributions.

(2.3) Definition. The space of currents of dimension p (or degree m− p) on M is the
space D′p(M) of linear forms T on Dp(M) such that the restriction of T to all subspaces
D

p(K), K ⊂⊂ M , is continuous. The degree is indicated by raising the index, hence we
set

D

′m−p(M) =D′p(M) := topological dual
(
D

p(M)
)′
.

The space s
D

′
p(M) = s

D

′m−p(M) :=
(
s
D

p(M)
)′

is defined similarly and is called the
space of currents of order s on M .

In the sequel, we let 〈T, u〉 be the pairing between a current T and a test form
u ∈ Dp(M). It is clear that s

D

′
p(M) can be identified with the subspace of currents

T ∈D′p(M) which are continuous for the seminorm psK on Dp(K) for every compact set
K contained in a coordinate patch Ω. The support of T , denoted SuppT , is the smallest
closed subset A ⊂M such that the restriction of T toDp(MrA) is zero. The topological
dual E′p(M) can be identified with the set of currents of D′p(M) with compact support:
indeed, let T be a linear form on Ep(M) such that

|〈T, u〉| 6 Cmax{psKj
(u)}

for some s ∈ N, C > 0 and a finite number of compact sets Kj ; it follows that SuppT ⊂⋃
Kj. Conversely let T ∈D′p(M) with support in a compact set K. Let Kj be compact

patches such that K is contained in the interior of
⋃
Kj and ψ ∈D(M) equal to 1 on K

with Suppψ ⊂ ⋃
Kj . For u ∈ Ep(M), we define 〈T, u〉 = 〈T, ψu〉 ; this is independent

of ψ and the resulting T is clearly continuous on Ep(M). The terminology used for the
dimension and degree of a current is justified by the following two examples.

(2.4) Example. Let Z ⊂M be a closed oriented submanifold of M of dimension p and
class C1 ; Z may have a boundary ∂Z. The current of integration over Z, denoted [Z],
is defined by

〈[Z], u〉 =
∫

Z

u, u ∈ 0
D

p(M).
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It is clear that [Z] is a current of order 0 on M and that Supp[Z] = Z. Its dimension is
p = dimZ.

(2.5) Example. If f is a differential form of degree q on M with L1
loc coefficients, we

can associate to f the current of dimension m− q :

〈Tf , u〉 =
∫

M

f ∧ u, u ∈ 0
D

m−q(M).

Tf is of degree q and of order 0. The correspondence f 7−→ Tf is injective. In the same
way L1

loc functions on Rm are identified to distributions, we will identify f with its image
Tf ∈ 0

D

′ q(M) = 0
D

′
m−q(M).

§ 2.B. Exterior Derivative and Wedge Product

§ 2.B.1. Exterior Derivative. Many of the operations available for differential forms can
be extended to currents by simple duality arguments. Let T ∈ s

D

′ q(M) = s
D

′
m−p(M).

The exterior derivative

dT ∈ s+1
D

′ q+1(M) = s+1
D

′
m−q−1

is defined by

(2.6) 〈dT, u〉 = (−1)q+1 〈T, du〉, u ∈ s+1
D

m−q−1(M).

The continuity of the linear form dT on s+1
D

m−q−1(M) follows from the continuity
of the map d : s+1

D

m−q−1(K) −→ s
D

m−q(K). For all forms f ∈ 1
E

q(M) and u ∈
D

m−q−1(M), Stokes’ formula implies

0 =

∫

M

d(f ∧ u) =
∫

M

df ∧ u+ (−1)q f ∧ du,

thus in example (2.5) one actually has dTf = Tdf as it should be. In example (2.4), an-
other application of Stokes’ formula yields

∫
Z
du =

∫
∂Z
u, therefore 〈[Z], du〉 = 〈[∂Z], u〉

and

(2.7) d[Z] = (−1)m−p+1[∂Z].

§ 2.B.2. Wedge Product. For T ∈ s
D

′ q(M) and g ∈ s
E

r(M), the wedge product
T ∧ g ∈ s

D

′ q+r(M) is defined by

(2.8) 〈T ∧ g, u〉 = 〈T, g ∧ u〉, u ∈ s
D

m−q−r(M).

This definition is licit because u 7→ g ∧ u is continuous in the Cs-topology. The relation

d(T ∧ g) = dT ∧ g + (−1)deg TT ∧ dg

is easily verified from the definitions.
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(2.9) Proposition. Let (x1, . . . , xm) be a coordinate system on an open subset Ω ⊂M .
Every current T ∈ s

D

′ q(M) of degree q can be written in a unique way

T =
∑

|I|=q
TI dxI on Ω,

where TI are distributions of order s on Ω, considered as currents of degree 0.

Proof. If the result is true, for all f ∈ s
D

0(Ω) we must have

〈T, f dx∁I〉 = 〈TI , dxI ∧ f dx∁I〉 = ε(I, ∁I) 〈TI, f dx1 ∧ . . . ∧ dxm〉,

where ε(I, ∁I) is the signature of the permutation (1, . . . , m) 7−→ (I, ∁I). Conversely, this
can be taken as a definition of the coefficient TI :

(2.10) TI(f) = 〈TI , f dx1 ∧ . . . ∧ dxm〉 := ε(I, ∁I) 〈T, f dx∁I〉, f ∈ s
D

0(Ω).

Then TI is a distribution of order s and it is easy to check that T =
∑
TI dxI . �

In particular, currents of order 0 on M can be considered as differential forms with
measure coefficients. In order to unify the notations concerning forms and currents, we
set

〈T, u〉 =
∫

M

T ∧ u

whenever T ∈ s
D

′
p(M) = s

D

′m−p(M) and u ∈ s
E

p(M) are such that SuppT ∩ Supp u
is compact. This convention is made so that the notation becomes compatible with the
identification of a form f to the current Tf .

§ 2.C. Direct and Inverse Images

§ 2.C.1. Direct Images. Assume now that M1, M2 are oriented differentiable manifolds
of respective dimensions m1, m2, and that

(2.11) F :M1 −→M2

is a C∞ map. The pull-back morphism

(2.12) s
D

p(M2) −→ s
E

p(M1), u 7−→ F ⋆u

is continuous in the Cs topology and we have SuppF ⋆u ⊂ F−1(Suppu), but in general
SuppF ⋆u is not compact. If T ∈ s

D

′
p(M1) is such that the restriction of F to SuppT

is proper, i.e. if Supp T ∩ F−1(K) is compact for every compact subset K ⊂ M2, then
the linear form u 7−→ 〈T, F ⋆u〉 is well defined and continuous on s

D

p(M2). There exists
therefore a unique current denoted F⋆T ∈ s

D

′
p(M2), called the direct image of T by F ,

such that

(2.13) 〈F⋆T, u〉 = 〈T, F ⋆u〉, ∀u ∈ s
D

p(M2).

We leave the straightforward proof of the following properties to the reader.
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(2.14) Theorem. For every T ∈ s
D

′
p(M1) such that F↾Supp T is proper, the direct image

F⋆T ∈ s
D

′
p(M2) is such that

a) SuppF⋆T ⊂ F (Supp T ) ;
b) d(F⋆T ) = F⋆(dT ) ;

c) F⋆(T ∧ F ⋆g) = (F⋆T ) ∧ g, ∀g ∈ s
E

q(M2,R) ;

d) If G :M2 −→M3 is a C∞ map such that (G ◦ F )↾SuppT is proper, then

G⋆(F⋆T ) = (G ◦ F )⋆T.

(2.15) Special case. Assume that F is a submersion, i.e. that F is surjective and that
for every x ∈ M1 the differential map dxF : TM1,x −→ TM2,F (x) is surjective. Let g be
a differential form of degree q on M1, with L

1
loc coefficients, such that F↾Supp g is proper.

We claim that F⋆g ∈ 0
D

′
m1−q(M2) is the form of degree q − (m1 −m2) obtained from g

by integration along the fibers of F , also denoted

F⋆g(y) =

∫

z∈F−1(y)

g(z).

y M2

xA

M1

Supp g

F
z=(x,y)

Fig. I-2 Local description of a submersion as a projection.

In fact, this assertion is equivalent to the following generalized form of Fubini’s theorem:
∫

M1

g ∧ F ⋆u =

∫

y∈M2

(∫

z∈F−1(y)

g(z)
)
∧ u(y), ∀u ∈ 0

D

m1−q(M2).

By using a partition of unity on M1 and the constant rank theorem, the verification of
this formula is easily reduced to the case where M1 = A ×M2 and F = pr2, cf. Fig. 2.
The fibers F−1(y) ≃ A have to be oriented in such a way that the orientation of M1 is
the product of the orientation of A and M2. Let us write r = dimA = m1 −m2 and let
z = (x, y) ∈ A×M2 be any point of M1. The above formula becomes

∫

A×M2

g(x, y) ∧ u(y) =
∫

y∈M2

( ∫

x∈A
g(x, y)

)
∧ u(y),
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where the direct image of g is computed from g =
∑
gI,J(x, y) dxI ∧ dyJ , |I| + |J | = q,

by the formula

F⋆g(y) =

∫

x∈A
g(x, y)(2.16)

=
∑

|J|=q−r

(∫

x∈A
g(1,...,r),J(x, y) dx1 ∧ . . . ∧ dxr

)
dyJ .

In this situation, we see that F⋆g has L1
loc coefficients on M2 if g is L1

loc on M1, and that
the map g 7−→ F⋆g is continuous in the Cs topology.

(2.17) Remark. If F :M1 −→M2 is a diffeomorphism, then we have F⋆g = ±(F−1)⋆g
according whether F preserves the orientation or not. In fact formula (1.17) gives

〈F⋆g, u〉 =
∫

M1

g ∧ F ⋆u = ±
∫

M2

(F−1)⋆(g ∧ F ⋆u) = ±
∫

M2

(F−1)⋆g ∧ u.

§ 2.C.2. Inverse Images. Assume that F :M1 −→M2 is a submersion. As a consequence
of the continuity statement after (2.16), one can always define the inverse image F ⋆T ∈
s
D

′ q(M1) of a current T ∈ s
D

′ q(M2) by

〈F ⋆T, u〉 = 〈T, F⋆u〉, u ∈ s
D

q+m1−m2(M1).

Then dimF ⋆T = dimT +m1 −m2 and Th. 2.14 yields the formulas:

(2.18) d(F ⋆T ) = F ⋆(dT ), F ⋆(T ∧ g) = F ⋆T ∧ F ⋆g, ∀g ∈ s
D

•(M2).

Take in particular T = [Z], where Z is an oriented C1-submanifold ofM2. Then F
−1(Z)

is a submanifold of M1 and has a natural orientation given by the isomorphism

TM1,x/TF−1(Z),x −→ TM2,F (x)/TZ,F (x),

induced by dxF at every point x ∈ Z. We claim that

(2.19) F ⋆[Z] = [F−1(Z)].

Indeed, we have to check that
∫
Z
F⋆u =

∫
F−1(Z)

u for every u ∈ s
D

•(M1). By using a

partition of unity on M1, we may again assume M1 = A×M2 and F = pr2. The above
equality can be written

∫

y∈Z
F⋆u(y) =

∫

(x,y)∈A×Z
u(x, y).

This follows precisely from (2.16) and Fubini’s theorem.
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§ 2.C.3. Weak Topology. The weak topology on D′p(M) is the topology defined by the
collection of seminorms T 7−→ |〈T, f〉| for all f ∈ Dp(M). With respect to the weak
topology, all the operations

(2.20) T 7−→ dT, T 7−→ T ∧ g, T 7−→ F⋆T, T 7−→ F ⋆T

defined above are continuous. A set B ⊂ D′p(M) is bounded for the weak topology
(weakly bounded for short) if and only if 〈T, f〉 is bounded when T runs over B, for
every fixed f ∈ Dp(M). The standard Banach-Alaoglu theorem implies that every
weakly bounded closed subset B ⊂D′p(M) is weakly compact.

§ 2.D. Tensor Products, Homotopies and Poincaré Lemma

§ 2.D.1. Tensor Products. If S, T are currents on manifolds M , M ′ there exists a
unique current on M ×M ′, denoted S ⊗ T and defined in a way analogous to the tensor
product of distributions, such that for all u ∈D•(M) and v ∈D•(M ′)

(2.21) 〈S ⊗ T, pr⋆1u ∧ pr⋆2v〉 = (−1)deg T deg u〈S, u〉 〈T, v〉.

One verifies easily that d(S ⊗ T ) = dS ⊗ T + (−1)deg SS ⊗ dT .
§ 2.D.2. Homotopy Formula. Assume that H : [0, 1]×M1 −→ M2 is a C∞ homotopy
from F (x) = H(0, x) to G(x) = H(1, x) and that T ∈ D′•(M1) is a current such that
H↾[0,1]×SuppT is proper. If [0, 1] is considered as the current of degree 0 on R associated
to its characteristic function, we find d[0, 1] = δ0 − δ1, thus

d
(
H⋆([0, 1]⊗ T )

)
= H⋆(δ0 ⊗ T − δ1 ⊗ T + [0, 1]⊗ dT )
= F⋆T −G⋆T +H⋆([0, 1]⊗ dT ).

Therefore we obtain the homotopy formula

(2.22) F⋆T −G⋆T = d
(
H⋆([0, 1]⊗ T )

)
−H⋆([0, 1]⊗ dT ).

When T is closed, i.e. dT = 0, we see that F⋆T and G⋆T are cohomologous on M2, i.e.
they differ by an exact current dS.

§ 2.D.3. Regularization of Currents. Let ρ ∈ C∞(Rm) be a function with support in
B(0, 1), such that ρ(x) depends only on |x| = (

∑ |xi|2)1/2, ρ > 0 and
∫
Rm ρ(x) dx = 1.

We associate to ρ the family of functions (ρε) such that

(2.23) ρε(x) =
1

εm
ρ
(x
ε

)
, Supp ρε ⊂ B(0, ε),

∫

Rm

ρε(x) dx = 1.

We shall refer to this construction by saying that (ρε) is a family of smoothing kernels.
For every current T =

∑
TI dxI on an open subset Ω ⊂ Rm, the family of smooth forms

T ⋆ ρε =
∑

I

(TI ⋆ ρε) dxI ,

defined on Ωε = {x ∈ Rm ; d(x, ∁Ω) > ε}, converges weakly to T as ε tends to 0.
Indeed, 〈T ⋆ ρε, f〉 = 〈T, ρε ⋆ f〉 and ρε ⋆ f converges to f in Dp(Ω) with respect to all
seminorms psK .
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§ 2.D.4. Poincaré Lemma for Currents. Let T ∈ s
D

′ q(Ω) be a closed current on an
open set Ω ⊂ Rm. We first show that T is cohomologous to a smooth form. In fact, let
ψ ∈ C∞(Rm) be a cut-off function such that Suppψ ⊂ Ω, 0 < ψ 6 1 and |dψ| 6 1 on Ω.
For any vector v ∈ B(0, 1) we set

Fv(x) = x+ ψ(x)v.

Since x 7→ ψ(x)v is a contraction, Fv is a diffeomorphism of Rm which leaves ∁Ω invariant
pointwise, so Fv(Ω) = Ω. This diffeomorphism is homotopic to the identity through the
homotopy Hv(t, x) = Ftv(x) : [0, 1]×Ω −→ Ω which is proper for every v. Formula (2.22)
implies

(Fv)⋆T − T = d
(
(Hv)⋆([0, 1]⊗ T )

)
.

After averaging with a smoothing kernel ρε(v) we get Θ− T = dS where

Θ =

∫

B(0,ε)

(Fv)⋆T ρε(v) dv, S =

∫

B(0,ε)

(Hv)⋆([0, 1]⊗ T ) ρε(v) dv.

Then S is a current of the same order s as T and Θ is smooth. Indeed, for u ∈ Dp(Ω)
we have

〈Θ, u〉 = 〈T, uε〉 where uε(x) =

∫

B(0,ε)

F ⋆v u(x) ρε(v) dv ;

we can make a change of variable z = Fv(x) ⇔ v = ψ(x)−1(z − x) in the last integral
and perform derivatives on ρε to see that each seminorm ptK(uε) is controlled by the sup
norm of u. Thus Θ and all its derivatives are currents of order 0, so Θ is smooth. Now
we have dΘ = 0 and by the usual Poincaré lemma (1.22) applied to Θ we obtain

(2.24) Theorem. Let Ω ⊂ Rm be a starshaped open subset and T ∈ s
D

′ q(Ω) a current
of degree q > 1 and order s such that dT = 0. There exists a current S ∈ s

D

′ q−1(Ω) of
degree q − 1 and order 6 s such that dS = T on Ω. �

§ 3. Holomorphic Functions and Complex Manifolds

§ 3.A. Cauchy Formula in One Variable

We start by recalling a few elementary facts in one complex variable theory. Let
Ω ⊂ C be an open set and let z = x+ iy be the complex variable, where x, y ∈ R. If f is
a function of class C1 on Ω, we have

df =
∂f

∂x
dx+

∂f

∂y
dy =

∂f

∂z
dz +

∂f

∂z
dz

with the usual notations

(3.1)
∂

∂z
=

1

2

( ∂

∂x
− i

∂

∂y

)
,

∂

∂z
=

1

2

( ∂

∂x
+ i

∂

∂y

)
.

The function f is holomorphic on Ω if df is C-linear, that is, ∂f/∂z = 0.
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(3.2) Cauchy formula. Let K ⊂ C be a compact set with piecewise C1 boundary ∂K.
Then for every f ∈ C1(K,C)

f(w) =
1

2πi

∫

∂K

f(z)

z − w dz −
∫

K

1

π(z − w)
∂f

∂z
dλ(z), w ∈ K◦

where dλ(z) = i
2dz ∧ dz = dx ∧ dy is the Lebesgue measure on C.

Proof. Assume for simplicity w = 0. As the function z 7→ 1/z is locally integrable at
z = 0, we get

∫

K

1

πz

∂f

∂z
dλ(z) = lim

ε→0

∫

KrD(0,ε)

1

πz

∂f

∂z

i

2
dz ∧ dz

= lim
ε→0

∫

KrD(0,ε)

d
[ 1

2πi
f(z)

dz

z

]

=
1

2πi

∫

∂K

f(z)
dz

z
− lim
ε→0

1

2πi

∫

∂D(0,ε)

f(z)
dz

z

by Stokes’ formula. The last integral is equal to 1
2π

∫ 2π

0
f(εeiθ) dθ and converges to f(0)

as ε tends to 0. �

When f is holomorphic on Ω, we get the usual Cauchy formula

(3.3) f(w) =
1

2πi

∫

∂K

f(z)

z − w dz, w ∈ K◦,

from which many basic properties of holomorphic functions can be derived: power and
Laurent series expansions, Cauchy residue formula, . . . Another interesting consequence
is:

(3.4) Corollary. The L1
loc function E(z) = 1/πz is a fundamental solution of the

operator ∂/∂z on C, i.e. ∂E/∂z = δ0 (Dirac measure at 0). As a consequence, if v is a
distribution with compact support in C, then the convolution u = (1/πz) ⋆ v is a solution
of the equation ∂u/∂z = v.

Proof. Apply (3.2) with w = 0, f ∈ D(C) and K ⊃ Supp f , so that f = 0 on the
boundary ∂K and f(0) = 〈1/πz,−∂f/∂z〉. �

(3.5) Remark. It should be observed that this formula cannot be used to solve the
equation ∂u/∂z = v when Supp v is not compact; moreover, if Supp v is compact, a
solution u with compact support need not always exist. Indeed, we have a necessary
condition

〈v, zn〉 = −〈u, ∂zn/∂z〉 = 0

for all integers n > 0. Conversely, when the necessary condition 〈v, zn〉 = 0 is satisfied,
the canonical solution u = (1/πz) ⋆ v has compact support: this is easily seen by means
of the power series expansion (w − z)−1 =

∑
znw−n−1, if we suppose that Supp v is

contained in the disk |z| < R and that |w| > R.
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§ 3.B. Holomorphic Functions of Several Variables

Let Ω ⊂ Cn be an open set. A function f : Ω→ C is said to be holomorphic if f is con-
tinuous and separately holomorphic with respect to each variable, i.e. zj 7→ f(. . . , zj , . . .)
is holomorphic when z1, . . . , zj−1, zj+1, . . . , zn are fixed. The set of holomorphic func-
tions on Ω is a ring and will be denoted O(Ω). We first extend the Cauchy formula to the
case of polydisks. The open polydisk D(z0, R) of center (z0,1, . . . , z0,n) and (multi)radius
R = (R1, , . . . , Rn) is defined as the product of the disks of center z0,j and radius Rj > 0
in each factor C :

(3.6) D(z0, R) = D(z0,1, R1)× . . .×D(z0,n, Rn) ⊂ Cn.

The distinguished boundary of D(z0, R) is by definition the product of the boundary
circles

(3.7) Γ(z0, R) = Γ(z0,1, R1)× . . .× Γ(z0,n, Rn).

It is important to observe that the distinguished boundary is smaller than the topological
boundary ∂D(z0, R) =

⋃
j{z ∈ D(z0, R) ; |zj − z0,j| = Rj} when n > 2. By induction on

n, we easily get the

(3.8) Cauchy formula on polydisks. If D(z0, R) is a closed polydisk contained in Ω
and f ∈ O(Ω), then for all w ∈ D(z0, R) we have

f(w) =
1

(2πi)n

∫

Γ(z0,R)

f(z1, . . . , zn)

(z1 − w1) . . . (zn − wn)
dz1 . . . dzn. �

The expansion (zj − wj)−1 =
∑

(wj − z0,j)αj (zj − z0,j)−αj−1, αj ∈ N, 1 6 j 6 n,
shows that f can be expanded as a convergent power series f(w) =

∑
α∈Nn aα(w − z0)α

over the polydisk D(z0, R), with the standard notations zα = zα1
1 . . . zαn

n , α! = α1! . . . αn!
and with

(3.9) aα =
1

(2πi)n

∫

Γ(z0,R)

f(z1, . . . , zn) dz1 . . . dzn
(z1 − z0,1)α1+1 . . . (zn − z0,n)αn+1

=
f (α)(z0)

α!
.

As a consequence, f is holomorphic over Ω if and only if f is C-analytic. Arguments
similar to the one variable case easily yield the

(3.10) Analytic continuation theorem. If Ω is connected and if there exists a point
z0 ∈ Ω such that f (α)(z0) = 0 for all α ∈ Nn, then f = 0 on Ω. �

Another consequence of (3.9) is the Cauchy inequality

(3.11) |f (α)(z0)| 6
α!

Rα
sup

Γ(z0,R)

|f |, D(z0, R) ⊂ Ω,

From this, it follows that every bounded holomorphic function on Cn is constant (Li-
ouville’s theorem), and more generally, every holomorphic function F on Cn such that
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|F (z)| 6 A(1 + |z|)B with suitable constants A,B > 0 is in fact a polynomial of total
degree 6 B.

We endow O(Ω) with the topology of uniform convergence on compact sets K ⊂⊂ Ω,
that is, the topology induced by C0(Ω,C). Then O(Ω) is closed in C0(Ω,C). The Cauchy
inequalities (3.11) show that all derivations Dα are continuous operators on O(Ω) and
that any sequence fj ∈ O(Ω) that is uniformly bounded on all compact sets K ⊂⊂ Ω is
locally equicontinuous. By Ascoli’s theorem, we obtain

(3.12) Montel’s theorem. Every locally uniformly bounded sequence (fj) in O(Ω) has
a convergent subsequence (fj(ν)).

In other words, bounded subsets of the Fréchet space O(Ω) are relatively compact (a
Fréchet space possessing this property is called a Montel space).

§ 3.C. Differential Calculus on Complex Analytic Manifolds

A complex analytic manifold X of dimension dimCX = n is a differentiable manifold
equipped with a holomorphic atlas (τα) with values in Cn ; this means by definition that
the transition maps ταβ are holomorphic. The tangent spaces TX,x then have a natural
complex vector space structure, given by the coordinate isomorphisms

dτα(x) : TX,x −→ Cn, Uα ∋ x ;

the induced complex structure on TX,x is indeed independent of α since the differentials
dταβ are C-linear isomorphisms. We denote by TR

X the underlying real tangent space
and by J ∈ End(TR

X) the almost complex structure, i.e. the operator of multiplication
by i =

√
−1. If (z1, . . . , zn) are complex analytic coordinates on an open subset Ω ⊂ X

and zk = xk + iyk, then (x1, y1, . . . , xn, yn) define real coordinates on Ω, and TR
X↾Ω

admits (∂/∂x1, ∂/∂y1, . . ., ∂/∂xn, ∂/∂yn) as a basis ; the almost complex structure
is given by J(∂/∂xk) = ∂/∂yk, J(∂/∂yk) = −∂/∂xk. The complexified tangent space
C ⊗ TX = C ⊗R T

R
X = TR

X ⊕ iTR
X splits into conjugate complex subspaces which are the

eigenspaces of the complexified endomorphism Id⊗J associated to the eigenvalues i and
−i. These subspaces have respective bases

(3.13)
∂

∂zk
=

1

2

( ∂

∂xk
− i

∂

∂yk

)
,

∂

∂zk
=

1

2

( ∂

∂xk
+ i

∂

∂yk

)
, 1 6 k 6 n

and are denoted T 1,0X (holomorphic vectors or vectors of type (1, 0)) and T 0,1X (an-
tiholomorphic vectors or vectors of type (0, 1)). The subspaces T 1,0X and T 0,1X are
canonically isomorphic to the complex tangent space TX (with complex structure J) and
its conjugate TX (with conjugate complex structure −J), via the C-linear embeddings

TX−→ T 1,0
X ⊂ C⊗ TX , TX−→ T 0,1

X ⊂ C⊗ TX
ξ 7−→ 1

2(ξ − iJξ), ξ 7−→ 1
2 (ξ + iJξ).

We thus have a canonical decomposition C⊗TX = T 1,0
X ⊕T

0,1
X ≃ TX⊕TX , and by duality

a decomposition

HomR(T
R
X ;C) ≃ HomC(C⊗ TX ;C) ≃ T ⋆X ⊕ T ⋆X
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where T ⋆X is the space of C-linear forms and T ⋆X the space of conjugate C-linear forms.
With these notations, (dxk, dyk) is a basis of HomR(TRX,C), (dzj) a basis of T ⋆X , (dzj)
a basis of T ⋆X , and the differential of a function f ∈ C1(Ω,C) can be written

(3.14) df =

n∑

k=1

∂f

∂xk
dxk +

∂f

∂yk
dyk =

n∑

k=1

∂f

∂zk
dzk +

∂f

∂zk
dzk.

The function f is holomorphic on Ω if and only if df is C-linear, i.e. if and only if f
satisfies the Cauchy-Riemann equations ∂f/∂zk = 0 on Ω, 1 6 k 6 n. We still denote
here by O(X) the algebra of holomorphic functions on X .

Now, we study the basic rules of complex differential calculus. The complexified
exterior algebra C⊗R Λ•R(T

R
X)⋆ = Λ•C(C⊗ TX)⋆ is given by

Λk(C⊗ TX)⋆ = Λk
(
TX ⊕ TX

)⋆
=

⊕

p+q=k

Λp,qT ⋆X , 0 6 k 6 2n

where the exterior products are taken over C, and where the components Λp,qT ⋆X are
defined by

(3.15) Λp,qT ⋆X = ΛpT ⋆X ⊗ ΛqT ⋆X .

A complex differential form u on X is said to be of bidegree or type (p, q) if its value at
every point lies in the component Λp,qT ⋆X ; we shall denote by Cs(Ω,Λp,qT ⋆X) the space
of differential forms of bidegree (p, q) and class Cs on any open subset Ω of X . If Ω is a
coordinate open set, such a form can be written

u(z) =
∑

|I|=p,|J|=q
uI,J (z) dzI ∧ dzJ , uI,J ∈ Cs(Ω,C).

This writing is usually much more convenient than the expression in terms of the real
basis (dxI∧dyJ )|I|+|J|=k which is not compatible with the splitting of ΛkT ⋆CX in its (p, q)
components. Formula (3.14) shows that the exterior derivative d splits into d = d′ + d′′,
where

d′ : C∞(X,Λp,qT ⋆X) −→ C∞(X,Λp+1,qT ⋆X),

d′′ : C∞(X,Λp,qT ⋆X) −→ C∞(X,Λp,q+1T ⋆X),

d′u =
∑

I,J

∑

16k6n

∂uI,J
∂zk

dzk ∧ dzI ∧ dzJ ,(3.16′)

d′′u =
∑

I,J

∑

16k6n.

∂uI,J
∂zk

dzk ∧ dzI ∧ dzJ .(3.16′′)

The identity d2 = (d′ + d′′)2 = 0 is equivalent to

(3.17) d′2 = 0, d′d′′ + d′′d′ = 0, d′′2 = 0,

since these three operators send (p, q)-forms in (p+2, q), (p+1, q+1) and (p, q+2)-forms,
respectively. In particular, the operator d′′ defines for each p = 0, 1, . . . , n a complex,
called the Dolbeault complex

C

∞(X,Λp,0T ⋆X)
d′′−→ · · · −→ C∞(X,Λp,qT ⋆X)

d′′−→ C∞(X,Λp,q+1T ⋆X)
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and corresponding Dolbeault cohomology groups

(3.18) Hp,q(X,C) =
Ker d′′ p,q

Im d′′ p,q−1
,

with the convention that the image of d′′ is zero for q = 0. The cohomology group
Hp,0(X,C) consists of (p, 0)-forms u =

∑
|I|=p uI(z) dzI such that ∂uI/∂zk = 0 for all

I, k, i.e. such that all coefficients uI are holomorphic. Such a form is called a holomorphic
p-form on X .

Let F : X1 −→ X2 be a holomorphic map between complex manifolds. The pull-
back F ⋆u of a (p, q)-form u of bidegree (p, q) on X2 is again homogeneous of bidegree
(p, q), because the components Fk of F in any coordinate chart are holomorphic, hence
F ⋆dzk = dFk is C-linear. In particular, the equality dF ⋆u = F ⋆du implies

(3.19) d′F ⋆u = F ⋆d′u, d′′F ⋆u = F ⋆d′′u.

Note that these commutation relations are no longer true for a non holomorphic change
of variable. As in the case of the De Rham cohomology groups, we get a pull-back
morphism

F ⋆ : Hp,q(X2,C) −→ Hp,q(X1,C).

The rules of complex differential calculus can be easily extended to currents. We use the
following notation.

(3.20) Definition. There are decompositions

D

k(X,C) =
⊕

p+q=k

D

p,q(X,C), D

′
k(X,C) =

⊕

p+q=k

D

′
p,q(X,C).

The space D′p,q(X,C) is called the space of currents of bidimension (p, q) and bidegree
(n− p, n− q) on X, and is also denoted D′n−p,n−q(X,C).

§ 3.D. Newton and Bochner-Martinelli Kernels

The Newton kernel is the elementary solution of the usual Laplace operator ∆ =∑
∂2/∂x2j in Rm. We first recall a construction of the Newton kernel.

Let dλ = dx1 . . . dxm be the Lebesgue measure on Rm. We denote by B(a, r) the
euclidean open ball of center a and radius r in Rm and by S(a, r) = ∂B(a, r) the corre-
sponding sphere. Finally, we set αm = Vol

(
B(0, 1)

)
and σm−1 = mαm so that

(3.21) Vol
(
B(a, r)

)
= αmr

m, Area
(
S(a, r)

)
= σm−1r

m−1.

The second equality follows from the first by derivation. An explicit computation of
the integral

∫
Rm e−|x|

2

dλ(x) in polar coordinates shows that αm = πm/2/(m/2)! where
x! = Γ(x+ 1) is the Euler Gamma function. The Newton kernel is then given by:

(3.22)





N(x) =
1

2π
log |x| if m = 2,

N(x) = − 1

(m− 2)σm−1
|x|2−m if m 6= 2.
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The function N(x) is locally integrable on Rm and satisfies ∆N = δ0. When m = 2,
this follows from Cor. 3.4 and the fact that ∆ = 4∂2/∂z∂z. When m 6= 2, this can be
checked by computing the weak limit

lim
ε→0

∆(|x|2 + ε2)1−m/2 = lim
ε→0

m(2−m)ε2(|x|2 + ε2)−1−m/2

= m(2−m) Im δ0

with Im =
∫
Rm(|x|2+1)−1−m/2 dλ(x). The last equality is easily seen by performing the

change of variable y = εx in the integral

∫

Rm

ε2(|x|2 + ε2)−1−m/2 f(x) dλ(x) =

∫

Rm

(|y|2 + 1)−1−m/2 f(εy) dλ(y),

where f is an arbitrary test function. Using polar coordinates, we find that Im = σm−1/m
and our formula follows.

The Bochner-Martinelli kernel is the (n, n − 1)-differential form on Cn with L1
loc

coefficients defined by

kBM(z) = cn
∑

16j6n

(−1)j zj dz1 ∧ . . . dzn ∧ dz1 ∧ . . . d̂zj . . . ∧ dzn|z|2n ,(3.23)

cn = (−1)n(n−1)/2 (n− 1)!

(2πi)n
.

(3.24) Lemma. d′′kBM = δ0 on Cn.

Proof. Since the Lebesgue measure on Cn is

dλ(z) =
∧

16j6n

i

2
dzj ∧ dzj =

( i

2

)n
(−1)

n(n−1)
2 dz1 ∧ . . . dzn ∧ dz1 ∧ . . . dzn,

we find

d′′kBM = −(n− 1)!

πn

∑

16j6n

∂

∂zj

( zj
|z|2n

)
dλ(z)

= − 1

n(n− 1)α2n

∑

16j6n

∂2

∂zj∂zj

( 1

|z|2n−2
)
dλ(z)

= ∆N(z)dλ(z) = δ0. �

We let KBM(z, ζ) be the pull-back of kBM by the map π : Cn × Cn → Cn, (z, ζ) 7−→
z − ζ. Then Formula (2.19) implies

(3.25) d′′KBM = π⋆δ0 = [∆],

where [∆] denotes the current of integration on the diagonal ∆ ⊂ Cn × Cn.
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(3.26) Koppelman formula. Let Ω ⊂ Cn be a bounded open set with piecewise C1

boundary. Then for every (p, q)-form v of class C1 on Ω we have

v(z) =

∫

∂Ω

Kp,q
BM(z, ζ) ∧ v(ζ)

+ d′′z

∫

Ω

Kp,q−1
BM (z, ζ) ∧ v(ζ) +

∫

Ω

Kp,q
BM(z, ζ) ∧ d′′v(ζ)

on Ω, where Kp,q
BM(z, ζ) denotes the component of KBM(z, ζ) of type (p, q) in z and (n−

p, n− q − 1) in ζ.

Proof. Given w ∈Dn−p,n−q(Ω), we consider the integral

∫

∂Ω×Ω
KBM(z, ζ) ∧ v(ζ) ∧ w(z).

It is well defined since KBM has no singularities on ∂Ω× Supp v ⊂⊂ ∂Ω×Ω. Since w(z)
vanishes on ∂Ω the integral can be extended as well to ∂(Ω×Ω). AsKBM(z, ζ)∧v(ζ)∧w(z)
is of total bidegree (2n, 2n− 1), its differential d′ vanishes. Hence Stokes’ formula yields

∫

∂Ω×Ω
KBM(z, ζ) ∧ v(ζ) ∧ w(z) =

∫

Ω×Ω
d′′

(
KBM(z, ζ) ∧ v(ζ) ∧ w(z)

)

=

∫

Ω×Ω
d′′KBM(z, ζ) ∧ v(ζ) ∧ w(z)−Kp,q

BM(z, ζ) ∧ d′′v(ζ) ∧ w(z)

− (−1)p+q
∫

Ω×Ω
Kp,q−1

BM (z, ζ) ∧ v(ζ) ∧ d′′w(z).

By (3.25) we have

∫

Ω×Ω
d′′KBM(z, ζ) ∧ v(ζ) ∧ w(z) =

∫

Ω×Ω
[∆] ∧ v(ζ) ∧ w(z) =

∫

Ω

v(z) ∧ w(z)

Denoting 〈 , 〉 the pairing between currents and test forms on Ω, the above equality is
thus equivalent to

〈
∫

∂Ω

KBM(z, ζ) ∧ v(ζ), w(z)〉 = 〈v(z)−
∫

Ω

Kp,q
BM(z, ζ) ∧ d′′v(ζ), w(z)〉

− (−1)p+q〈
∫

Ω

Kp,q−1
BM (z, ζ) ∧ v(ζ), d′′w(z)〉,

which is itself equivalent to the Koppelman formula by integrating d′′v by parts. �

(3.27) Corollary. Let v ∈ s
D

p,q(Cn) be a form of class Cs with compact support such
that d′′v = 0, q > 1. Then the (p, q − 1)-form

u(z) =

∫

Cn

Kp,q−1
BM (z, ζ) ∧ v(ζ)

is a Cs solution of the equation d′′u = v. Moreover, if (p, q) = (0, 1) and n > 2 then u has
compact support, thus the Dolbeault cohomology group with compact support H0,1

c (Cn,C)
vanishes for n > 2.
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Proof. Apply the Koppelman formula on a sufficiently large ball Ω = B(0, R) containing
Supp v. Then the formula immediately gives d′′u = v. Observe that the coefficients of
KBM(z, ζ) are O(|z − ζ|−(2n−1)), hence |u(z)| = O(|z|−(2n−1)) at infinity. If q = 1, then
u is holomorphic on Cn r B(0, R). Now, this complement is a union of complex lines
when n > 2, hence u = 0 on Cn rB(0, R) by Liouville’s theorem. �

(3.28) Hartogs extension theorem. Let Ω be an open set in Cn, n > 2, and let
K ⊂ Ω be a compact subset such that Ω r K is connected. Then every holomorphic
function f ∈ O(ΩrK) extends into a function f̃ ∈ O(Ω).
Proof. Let ψ ∈ D(Ω) be a cut-off function equal to 1 on a neighborhood of K. Set
f0 = (1− ψ)f ∈ C∞(Ω), defined as 0 on K. Then v = d′′f0 = −fd′′ψ can be extended
by 0 outside Ω, and can thus be seen as a smooth (0, 1)-form with compact support in Cn,
such that d′′v = 0. By Cor. 3.27, there is a smooth function u with compact support in
Cn such that d′′u = v. Then f̃ = f0 − u ∈ O(Ω). Now u is holomorphic outside Suppψ,
so u vanishes on the unbounded component G of Cn r Suppψ. The boundary ∂G is
contained in ∂ Suppψ ⊂ ΩrK, so f̃ = (1− ψ)f − u coincides with f on the non empty

open set Ω ∩G ⊂ ΩrK. Therefore f̃ = f on the connected open set ΩrK. �

A refined version of the Hartogs extension theorem due to Bochner will be given in
Exercise 8.13. It shows that f need only be given as a C1 function on ∂Ω, satisfying the
tangential Cauchy-Riemann equations (a so-called CR-function). Then f extends as a

holomorphic function f̃ ∈ O(Ω) ∩ C0(Ω), provided that ∂Ω is connected.

§ 3.E. The Dolbeault-Grothendieck Lemma

We are now in a position to prove the Dolbeault-Grothendieck lemma [Dolbeault
1953], which is the analogue for d′′ of the Poincaré lemma. The proof given below makes
use of the Bochner-Martinelli kernel. Many other proofs can be given, e.g. by using a
reduction to the one dimensional case in combination with the Cauchy formula (3.2), see
Exercise 8.5 or [Hörmander 1966].

(3.29) Dolbeault-Grothendieck lemma. Let Ω be a neighborhood of 0 in Cn and
v ∈ s

E

p,q(Ω,C), [resp. v ∈ s
D

′ p,q(Ω,C)], such that d′′v = 0, where 1 6 s 6∞.

a) If q = 0, then v(z) =
∑
|I|=p vI(z) dzI is a holomorphic p-form, i.e. a form whose

coefficients are holomorphic functions.

b) If q > 1, there exists a neighborhood ω ⊂ Ω of 0 and a form u in s
E

p,q−1(ω,C) [resp.
a current u ∈ s

D

′ p,q−1(ω,C)] such that d′′u = v on ω.

Proof. We assume that Ω is a ball B(0, r) ⊂ Cn and take for simplicity r > 1 (possibly
after a dilation of coordinates). We then set ω = B(0, 1). Let ψ ∈ D(Ω) be a cut-off
function equal to 1 on ω. The Koppelman formula (3.26) applied to the form ψv on Ω
gives

ψ(z)v(z) = d′′z

∫

Ω

Kp,q−1
BM (z, ζ) ∧ ψ(ζ)v(ζ) +

∫

Ω

Kp,q
BM(z, ζ) ∧ d′′ψ(ζ) ∧ v(ζ).

This formula is valid even when v is a current, because we may regularize v as v ⋆ ρε and
take the limit. We introduce on Cn × Cn × Cn the kernel

K(z, w, ζ) = cn

n∑

j=1

(−1)j(wj − ζj)
((z − ζ) · (w − ζ))n

∧

k

(dzk − dζk) ∧
∧

k 6=j
(dwk − dζk).
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By construction, KBM(z, ζ) is the result of the substitution w = z in K(z, w, ζ), i.e.
KBM = h⋆K where h(z, ζ) = (z, z, ζ). We denote by Kp,q the component of K of
bidegree (p, 0) in z, (q, 0) in w and (n− p, n− q − 1) in ζ. Then Kp,q

BM = h⋆Kp,q and we
find

v = d′′u0 + g⋆v1 on ω,

where g(z) = (z, z) and

u0(z) =

∫

Ω

Kp,q−1
BM (z, ζ) ∧ ψ(ζ)v(ζ),

v1(z, w) =

∫

Ω

Kp,q(z, w, ζ) ∧ d′′ψ(ζ) ∧ v(ζ).

By definition of Kp,q(z, w, ζ), v1 is holomorphic on the open set

U =
{
(z, w) ∈ ω × ω ; ∀ζ /∈ ω, Re(z − ζ) · (w − ζ) > 0

}
,

which contains the “conjugate-diagonal” points (z, z) as well as the points (z, 0) and
(0, w) in ω×ω. Moreover U clearly has convex slices ({z}×Cn)∩U and (Cn×{w})∩U .
In particular U is starshaped with respect to w, i.e.

(z, w) ∈ U =⇒ (z, tw) ∈ U, ∀t ∈ [0, 1].

As u1 is of type (p, 0) in z and (q, 0) in w, we get d′′z (g
⋆v1) = g⋆dwv1 = 0, hence dwv1 = 0.

For q = 0 we have Kp,q−1
BM = 0, thus u0 = 0, and v1 does not depend on w, thus v is

holomorphic on ω. For q > 1, we can use the homotopy formula (1.23) with respect to w
(considering z as a parameter) to get a holomorphic form u1(z, w) of type (p, 0) in z and
(q − 1, 0) in w, such that dwu1(z, w) = v1(z, w). Then we get d′′g⋆u1 = g⋆dwu1 = g⋆v1,
hence

v = d′′(u0 + g⋆u1) on ω.

Finally, the coefficients of u0 are obtained as linear combinations of convolutions of the
coefficients of ψv with L1

loc functions of the form ζj |ζ|−2n. Hence u0 is of class Cs (resp.
is a current of order s), if v is. �

(3.30) Corollary. The operator d′′ is hypoelliptic in bidegree (p, 0), i.e. if a current
f ∈D′ p,0(X,C) satisfies d′′f ∈ Ep,1(X,C), then f ∈ Ep,0(X,C).

Proof. The result is local, so we may assume that X = Ω is a neighborhood of 0 in Cn.
The (p, 1)-form v = d′′f ∈ Ep,1(X,C) satisfies d′′v = 0, hence there exists u ∈ Ep,0(Ω̃,C)
such that d′′u = d′′f . Then f − u is holomorphic and f = (f − u) + u ∈ Ep,0(Ω̃,C). �

§ 4. Subharmonic Functions

A harmonic (resp. subharmonic) function on an open subset of Rm is essentially a
function (or distribution) u such that ∆u = 0 (resp. ∆u > 0). A fundamental example
of subharmonic function is given by the Newton kernel N , which is actually harmonic on
Rmr{0}. Subharmonic functions are an essential tool of harmonic analysis and potential
theory. Before giving their precise definition and properties, we derive a basic integral
formula involving the Green kernel of the Laplace operator on the ball.
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§ 4.A. Construction of the Green Kernel

The Green kernel GΩ(x, y) of a smoothly bounded domain Ω ⊂⊂ Rm is the solution
of the following Dirichlet boundary problem for the Laplace operator ∆ on Ω :

(4.1) Definition. The Green kernel of a smoothly bounded domain Ω ⊂⊂ Rm is a
function GΩ(x, y) : Ω× Ω→ [−∞, 0] with the following properties:

a) GΩ(x, y) is C
∞ on Ω× ΩrDiagΩ (DiagΩ = diagonal ) ;

b) GΩ(x, y) = GΩ(y, x) ;

c) GΩ(x, y) < 0 on Ω× Ω and GΩ(x, y) = 0 on ∂Ω× Ω ;

d) ∆xGΩ(x, y) = δy on Ω for every fixed y ∈ Ω.

It can be shown that GΩ always exists and is unique. The uniqueness is an easy
consequence of the maximum principle (see Th. 4.14 below). In the case where Ω =
B(0, r) is a ball (the only case we are going to deal with), the existence can be shown
through explicit calculations. In fact the Green kernel Gr(x, y) of B(0, r) is

(4.2) Gr(x, y) = N(x− y)−N
( |y|
r

(
x− r2

|y|2 y
))
, x, y ∈ B(0, r).

A substitution of the explicit value of N(x) yields:

Gr(x, y) =
1

4π
log

|x− y|2
r2 − 2〈x, y〉+ 1

r2 |x|2 |y|2
if m = 2, otherwise

Gr(x, y) =
−1

(m− 2)σm−1

(
|x− y|2−m −

(
r2 − 2〈x, y〉+ 1

r2
|x|2 |y|2

)1−m/2)
.

(4.3) Theorem. The above defined function Gr satisfies all four properties (4.1 a–d) on
Ω = B(0, r), thus Gr is the Green kernel of B(0, r).

Proof. The first three properties are immediately verified on the formulas, because

r2 − 2〈x, y〉+ 1

r2
|x|2 |y|2 = |x− y|2 + 1

r2
(
r2 − |x|2

)(
r2 − |y|2

)
.

For property d), observe that r2y/|y|2 /∈ B(0, r) whenever y ∈ B(0, r)r {0}. The second
Newton kernel in the right hand side of (4.1) is thus harmonic in x on B(0, r), and

∆xGr(x, y) = ∆xN(x− y) = δy on B(0, r). �

§ 4.B. Green-Riesz Representation Formula and Dirichlet Problem

§ 4.B.1. Green-Riesz Formula. For all smooth functions u, v on a smoothly bounded
domain Ω ⊂⊂ Rm, we have

(4.4)

∫

Ω

(u∆v − v∆u) dλ =

∫

∂Ω

(
u
∂v

∂ν
− v ∂u

∂ν

)
dσ
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where ∂/∂ν is the derivative along the outward normal unit vector ν of ∂Ω and dσ the
euclidean area measure. Indeed

(−1)j−1 dx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxm ↾∂Ω = νj dσ,

for the wedge product of 〈ν, dx〉 with the left hand side is νj dλ. Therefore

∂v

∂ν
dσ =

m∑

j=1

∂v

∂xj
νj dσ =

m∑

j=1

(−1)j−1 ∂v
∂xj

dx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxm.

Formula (4.4) is then an easy consequence of Stokes’ theorem. Observe that (4.4) is still
valid if v is a distribution with singular support relatively compact in Ω. For Ω = B(0, r),
u ∈ C2

(
B(0, r),R

)
and v(y) = Gr(x, y), we get the Green-Riesz representation formula:

(4.5) u(x) =

∫

B(0,r)

∆u(y)Gr(x, y) dλ(y) +

∫

S(0,r)

u(y)Pr(x, y) dσ(y)

where Pr(x, y) = ∂Gr(x, y)/∂ν(y), (x, y) ∈ B(0, r) × S(0, r). The function Pr(x, y) is
called the Poisson kernel. It is smooth and satisfies ∆xPr(x, y) = 0 on B(0, r) by (4.1 d).
A simple computation left to the reader yields:

(4.6) Pr(x, y) =
1

σm−1r

r2 − |x|2
|x− y|m .

Formula (4.5) for u ≡ 1 shows that
∫
S(0,r)

Pr(x, y) dσ(y) = 1. When x in B(0, r) tends
to x0 ∈ S(0, r), we see that Pr(x, y) converges uniformly to 0 on every compact subset
of S(0, r)r {x0} ; it follows that the measure Pr(x, y) dσ(y) converges weakly to δx0

on
S(0, r).

§ 4.B.2. Solution of the Dirichlet Problem. For any bounded measurable function v on
S(a, r) we define

(4.7) Pa,r[v](x) =

∫

S(a,r)

v(y)Pr(x− a, y − a) dσ(y), x ∈ B(a, r).

If u ∈ C0
(
B(a, r),R

)
∩C2

(
B(a, r),R

)
is harmonic, i.e. ∆u = 0 on B(a, r), then (4.5) gives

u = Pa,r[u] on B(a, r), i.e. the Poisson kernel reproduces harmonic functions. Suppose
now that v ∈ C0

(
S(a, r),R

)
is given. Then Pr(x − a, y − a) dσ(y) converges weakly to

δx0
when x tends to x0 ∈ S(a, r), so Pa,r[v](x) converges to v(x0). It follows that the

function u defined by {
u = Pa,r[v] on B(a, r),
u = v on S(a, r)

is continuous on B(a, r) and harmonic on B(a, r) ; thus u is the solution of the Dirichlet
problem with boundary values v.

§ 4.C. Definition and Basic Properties of Subharmonic Functions
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§ 4.C.1. Definition. Mean Value Inequalities. If u is a Borel function on B(a, r) which
is bounded above or below, we consider the mean values of u over the ball or sphere:

µB(u ; a, r) =
1

αmrm

∫

B(a,r)

u(x) dλ(x),(4.8)

µS(u ; a, r) =
1

σm−1rm−1

∫

S(a,r)

u(x) dσ(x).(4.8′)

As dλ = dr dσ these mean values are related by

µB(u ; a, r) =
1

αmrm

∫ r

0

σm−1t
m−1 µS(u ; a, t) dt(4.9)

= m

∫ 1

0

tm−1 µS(u ; a, rt) dt.

Now, apply formula (4.5) with x = 0. We get Pr(0, y) = 1/σm−1rm−1 and Gr(0, y) =
(|y|2−m − r2−m)/(2−m)σm−1 = −(1/σm−1)

∫ r
|y| t

1−mdt, thus

∫

B(0,r)

∆u(y)Gr(0, y) dλ(y) = −
1

σm−1

∫ r

0

dt

tm−1

∫

|y|<t
∆u(y) dλ(y)

= − 1

m

∫ r

0

µB(∆u ; 0, t) t dt

thanks to the Fubini formula. By translating S(0, r) to S(a, r), (4.5) implies the Gauss
formula

(4.10) µS(u ; a, r) = u(a) +
1

m

∫ r

0

µB(∆u ; a, t) t dt.

Let Ω be an open subset of Rm and u ∈ C2(Ω,R). If a ∈ Ω and ∆u(a) > 0 (resp.
∆u(a) < 0), Formula (4.10) shows that µS(u ; a, r) > u(a) (resp. µS(u ; a, r) < u(a)) for
r small enough. In particular, u is harmonic (i.e. ∆u = 0) if and only if u satisfies the
mean value equality

µS(u ; a, r) = u(a), ∀B(a, r) ⊂ Ω.

Now, observe that if (ρε) is a family of radially symmetric smoothing kernels associated
with ρ(x) = ρ̃(|x|) and if u is a Borel locally bounded function, an easy computation
yields

u ⋆ ρε(a) =

∫

B(0,1)

u(a+ εx) ρ(x) dλ

= σm−1

∫ 1

0

µS(u ; a, εt) ρ̃(t) t
m−1 dt.(4.11)

Thus, if u is a Borel locally bounded function satisfying the mean value equality on Ω,
(4.11) shows that u ⋆ ρε = u on Ωε, in particular u must be smooth. Similarly, if we
replace the mean value equality by an inequality, the relevant regularity property to be
required for u is just semicontinuity.
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(4.12) Theorem and definition. Let u : Ω −→ [−∞,+∞[ be an upper semicontinuous
function. The following various forms of mean value inequalities are equivalent:

a) u(x) 6 Pa,r[u](x), ∀B(a, r) ⊂ Ω, ∀x ∈ B(a, r) ;

b) u(a) 6 µS (u ; a, r), ∀B(a, r) ⊂ Ω ;

c) u(a) 6 µB(u ; a, r), ∀B(a, r) ⊂ Ω ;

d) for every a ∈ Ω, there exists a sequence (rν) decreasing to 0 such that

u(a) 6 µB(u ; a, rν) ∀ν ;

e) for every a ∈ Ω, there exists a sequence (rν) decreasing to 0 such that

u(a) 6 µS(u ; a, rν) ∀ν.

A function u satisfying one of the above properties is said to be subharmonic on Ω. The
set of subharmonic functions will be denoted by Sh(Ω).

By (4.10) we see that a function u ∈ C2(Ω,R) is subharmonic if and only if ∆u > 0 :
in fact µS(u ; a, r) < u(a) for r small if ∆u(a) < 0. It is also clear on the definitions that
every (locally) convex function on Ω is subharmonic.

Proof. We have obvious implications

a) =⇒ b) =⇒ c) =⇒ d) =⇒ e),

the second and last ones by (4.10) and the fact that µB(u ; a, rν) 6 µS(u ; a, t) for at
least one t ∈ ]0, rν[. In order to prove e) =⇒ a), we first need a suitable version of the
maximum principle.

(4.13) Lemma. Let u : Ω −→ [−∞,+∞[ be an upper semicontinuous function satisfying
property 4.12 e). If u attains its supremum at a point x0 ∈ Ω, then u is constant on the
connected component of x0 in Ω.

Proof. We may assume that Ω is connected. Let

W = {x ∈ Ω ; u(x) < u(x0)}.

W is open by the upper semicontinuity, and distinct from Ω since x0 /∈ W . We want to
show that W = ∅. Otherwise W has a non empty connected component W0, and W0

has a boundary point a ∈ Ω. We have a ∈ Ω rW , thus u(a) = u(x0). By assumption
4.12 e), we get u(a) 6 µS(u ; a, rν) for some sequence rν → 0. For rν small enough, W0

intersects ΩrB(a, rν) and B(a, rν) ; as W0 is connected, we also have S(a, rν)∩W0 6= ∅.
Since u 6 u(x0) on the sphere S(a, rν) and u < u(x0) on its open subset S(a, rν) ∩W0,
we get u(a) 6 µS(u ; a, r) < u(x0), a contradiction. �
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(4.14) Maximum principle. If u is subharmonic in Ω (in the sense that u satisfies
the weakest property 4.12 e)), then

sup
Ω
u = lim sup

Ω∋z→∂Ω∪{∞}
u(z),

and supK u = sup∂K u(z) for every compact subset K ⊂ Ω.

Proof. We have of course lim supz→∂Ω∪{∞} u(z) 6 supΩ u. If the inequality is strict, this
means that the supremum is achieved on some compact subset L ⊂ Ω. Thus, by the
upper semicontinuity, there is x0 ∈ L such that supΩ u = supL u = u(x0). Lemma 4.13
shows that u is constant on the connected component Ω0 of x0 in Ω, hence

sup
Ω
u = u(x0) = lim sup

Ω0∋z→∂Ω0∪{∞}
u(z) 6 lim sup

Ω∋z→∂Ω∪{∞}
u(z),

contradiction. The statement involving a compact subset K is obtained by applying the
first statement to Ω′ = K◦. �

Proof of (4.12) e) =⇒ a). Let u be an upper semicontinuous function satisfying 4.12 e)
and B(a, r) ⊂ Ω an arbitrary closed ball. One can find a decreasing sequence of con-
tinuous functions vk ∈ C0

(
S(a, r),R

)
such that lim vk = u. Set hk = Pa,r[vk] ∈

C0
(
B(a, r),R

)
. As hk is harmonic on B(a, r), the function u − hk satisfies 4.12 e) on

B(a, r). Furthermore lim supx→ξ∈S(a,r) u(x) − hk(x) 6 u(ξ) − vk(ξ) 6 0, so u − hk 6 0
on B(a, r) by Th. 4.14. By monotone convergence, we find u 6 Pa,r[u] on B(a, r) when
k tends to +∞. �

§ 4.C.2. Basic Properties. Here is a short list of the most basic properties.

(4.15) Theorem. For any decreasing sequence (uk) of subharmonic functions, the limit
u = limuk is subharmonic.

Proof. A decreasing limit of upper semicontinuous functions is again upper semicontin-
uous, and the mean value inequalities 4.12 remain valid for u by Lebesgue’s monotone
convergence theorem. �

(4.16) Theorem. Let u1, . . . , up ∈ Sh(Ω) and χ : Rp −→ R be a convex function such
that χ(t1, . . . , tp) is non decreasing in each tj. If χ is extended by continuity into a
function [−∞,+∞[p−→ [−∞,+∞[, then

χ(u1, . . . , up) ∈ Sh(Ω).

In particular u1 + · · ·+ up, max{u1, . . . , up}, log(eu1 + · · ·+ eup) ∈ Sh(Ω).

Proof. Every convex function is continuous, hence χ(u1, . . . , up) is upper semicontinuous.
One can write

χ(t) = sup
i∈I

Ai(t)

where Ai(t) = a1t1+ · · ·+aptp+ b is the family of affine functions that define supporting
hyperplanes of the graph of χ. As χ(t1, . . . , tp) is non-decreasing in each tj , we have
aj > 0, thus

∑

16j6p

ajuj(x) + b 6 µB
(∑

ajuj + b ; x, r
)
6 µB

(
χ(u1, . . . , up) ; x, r

)
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for every ball B(x, r) ⊂ Ω. If one takes the supremum of this inequality over all the
Ai ’s , it follows that χ(u1, . . . , up) satisfies the mean value inequality 4.12 c). In the last
example, the function χ(t1, . . . , tp) = log(et1 + · · ·+ etp) is convex because

∑

16j,k6p

∂2χ

∂tj∂tk
ξjξk = e−χ

∑
ξ2j e

tj − e−2χ
(∑

ξj e
tj
)2

and
(∑

ξj e
tj
)2

6
(∑

ξ2j e
tj
)
eχ by the Cauchy-Schwarz inequality. �

(4.17) Theorem. If Ω is connected and u ∈ Sh(Ω), then either u ≡ −∞ or u ∈ L1
loc(Ω).

Proof. Note that a subharmonic function is always locally bounded above. Let W be the
set of points x ∈ Ω such that u is integrable in a neighborhood of x. Then W is open
by definition and u > −∞ almost everywhere on W . If x ∈ W , one can choose a ∈ W
such that |a − x| < r = 1

2
d(x, ∁Ω) and u(a) > −∞. Then B(a, r) is a neighborhood of

x, B(a, r) ⊂ Ω and µB(u ; a, r) > u(a) > −∞. Therefore x ∈ W , W is also closed. We
must have W = Ω or W = ∅ ; in the last case u ≡ −∞ by the mean value inequality. �

(4.18) Theorem. Let u ∈ Sh(Ω) be such that u 6≡ −∞ on each connected component of
Ω. Then

a) r 7−→ µS(u ; a, r), r 7−→ µB(u ; a, r) are non decreasing functions in the interval
]0, d(a, ∁Ω)[ , and µB(u ; a, r) 6 µS(u ; a, r).

b) For any family (ρε) of smoothing kernels, u ⋆ ρε ∈ Sh(Ωε) ∩C∞(Ωε,R), the family
(u ⋆ ρε) is non decreasing in ε and limε→0 u ⋆ ρε = u.

Proof. We first verify statements a) and b) when u ∈ C2(Ω,R). Then ∆u > 0 and
µS(u ; a, r) is non decreasing in virtue of (4.10). By (4.9), we find that µB(u ; a, r) is also
non decreasing and that µB(u ; a, r) 6 µS(u ; a, r). Furthermore, Formula (4.11) shows
that ε 7−→ u ⋆ ρε(a) is non decreasing (provided that ρε is radially symmetric).

In the general case, we first observe that property 4.12 c) is equivalent to the inequality

u 6 u ⋆ µr on Ωr, ∀r > 0,

where µr is the probability measure of uniform density on B(0, r). This inequality implies
u ⋆ ρε 6 u ⋆ ρε ⋆ µr on (Ωr)ε = Ωr+ε, thus u ⋆ ρε ∈ C∞(Ωε,R) is subharmonic on Ωε. It
follows that u⋆ρε ⋆ρη is non decreasing in η ; by symmetry, it is also non decreasing in ε,
and so is u⋆ρε = limη→0 u⋆ρε⋆ρη. We have u⋆ρε > u by (4.19) and lim supε→0 u⋆ρε 6 u
by the upper semicontinuity. Hence limε→0 u ⋆ ρε = u. Property a) for u follows now
from its validity for u ⋆ ρε and from the monotone convergence theorem. �

(4.19) Corollary. If u ∈ Sh(Ω) is such that u 6≡ −∞ on each connected component of
Ω, then ∆u computed in the sense of distribution theory is a positive measure.

Indeed ∆(u ⋆ ρε) > 0 as a function, and ∆(u ⋆ ρε) converges weakly to ∆u in D′(Ω).
Corollary 4.19 has a converse, but the correct statement is slightly more involved than
for the direct property:
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(4.20) Theorem. If v ∈ D′(Ω) is such that ∆v is a positive measure, there exists a
unique function u ∈ Sh(Ω) locally integrable such that v is the distribution associated to
u.

We must point out that u need not coincide everywhere with v, even when v is a
locally integrable upper semicontinuous function: for example, if v is the characteristic
function of a compact subset K ⊂ Ω of measure 0, the subharmonic representant of v is
u = 0.

Proof. Set vε = v ⋆ ρε ∈ C∞(Ωε,R). Then ∆vε = (∆v) ⋆ ρε > 0, thus vε ∈ Sh(Ωε).
Arguments similar to those in the proof of Th. 4.18 show that (vε) is non decreasing
in ε. Then u := limε→0 vε ∈ Sh(Ω) by Th. 4.15. Since vε converges weakly to v, the
monotone convergence theorem shows that

〈v, f〉 = lim
ε→0

∫

Ω

vε f dλ =

∫

Ω

u f dλ, ∀f ∈D(Ω), f > 0,

which concludes the existence part. The uniqueness of u is clear from the fact that u
must satisfy u = limu ⋆ ρε = lim v ⋆ ρε. �

The most natural topology on the space Sh(Ω) of subharmonic functions is the topo-
logy induced by the vector space topology of L1

loc(Ω) (Fréchet topology of convergence
in L1 norm on every compact subset of Ω).

(4.21) Proposition. The convex cone Sh(Ω) ∩ L1
loc(Ω) is closed in L1

loc(Ω), and it has
the property that every bounded subset is relatively compact.

Proof. Let (uj) be a sequence in Sh(Ω) ∩ L1
loc(Ω). If uj → u in L1

loc(Ω) then ∆uj → ∆u
in the weak topology of distributions, hence ∆u > 0 and u can be represented by a
subharmonic function thanks to Th. 4.20. Now, suppose that ‖uj‖L1(K) is uniformly
bounded for every compact subset K of Ω. Let µj = ∆uj > 0. If ψ ∈ D(Ω) is a test
function equal to 1 on a neighborhood ω of K and such that 0 6 ψ 6 1 on Ω, we find

µj(K) 6

∫

Ω

ψ∆uj dλ =

∫

Ω

∆ψ uj dλ 6 C‖uj‖L1(K′),

where K ′ = Suppψ, hence the sequence of measures (µj) is uniformly bounded in mass
on every compact subset of Ω. By weak compactness, there is a subsequence (µjν ) which
converges weakly to a positive measure µ on Ω. We claim that f ⋆ (ψµjν ) converges to
f ⋆(ψµ) in L1

loc(R
m) for every function f ∈ L1

loc(R
m). In fact, this is clear if f ∈ C∞(Rm),

and in general we use an approximation of f by a smooth function g together with the
estimate

‖(f − g) ⋆ (ψµjν )‖L1(A) 6 ‖(f − g)‖L1(A+K′)µjν (K
′), ∀A ⊂⊂ Rm

to get the conclusion. We apply this when f = N is the Newton kernel. Then hj =
uj − N ⋆ (ψµj) is harmonic on ω and bounded in L1(ω). As hj = hj ⋆ ρε for any
smoothing kernel ρε, we see that all derivatives D

αhj = hj ⋆ (D
αρε) are in fact uniformly

locally bounded in ω. Hence, after extracting a new subsequence, we may suppose that
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hjν converges uniformly to a limit h on ω. Then ujν = hjν + N ⋆ (ψµjν ) converges to
u = h+N ⋆ (ψµ) in L1

loc(ω), as desired. �

We conclude this subsection by stating a generalized version of the Green-Riesz for-
mula.

(4.22) Proposition. Let u ∈ Sh(Ω) ∩ L1
loc(Ω) and B(0, r) ⊂ Ω.

a) The Green-Riesz formula still holds true for such an u, namely, for every x ∈ B(0, r)

u(x) =

∫

B(0,r)

∆u(y)Gr(x, y) dλ(y) +

∫

S(0,r)

u(y)Pr(x, y) dσ(y).

b) (Harnack inequality)
If u > 0 on B(0, r), then for all x ∈ B(0, r)

0 6 u(x) 6

∫

S(0,r)

u(y)Pr(x, y) dσ(y) 6
rm−2(r + |x|)
(r − |x|)m−1 µS(u ; 0, r).

If u 6 0 on B(0, r), then for all x ∈ B(0, r)

u(x) 6

∫

S(0,r)

u(y)Pr(x, y) dσ(y) 6
rm−2(r − |x|)
(r + |x|)m−1 µS(u ; 0, r) 6 0.

Proof. We know that a) holds true if u is of class C2. In general, we replace u by u ⋆ ρε
and take the limit. We only have to check that

∫

B(0,r)

µ ⋆ ρε(y)Gr(x, y) dλ(y) = lim
ε→0

∫

B(0,r)

µ(y)Gr(x, y) dλ(y)

for the positive measure µ = ∆u. Let us denote by G̃x(y) the function such that

G̃x(y) =

{
Gr(x, y) if x ∈ B(0, r)
0 if x /∈ B(0, r).

Then ∫

B(0,r)

µ ⋆ ρε(y)Gr(x, y) dλ(y) =

∫

Rm

µ ⋆ ρε(y) G̃x(y) dλ(y)

=

∫

Rm

µ(y) G̃x ⋆ ρε(y) dλ(y).

However G̃x is continuous on Rm r {x} and subharmonic in a neighborhood of x, hence

G̃x ⋆ ρε converges uniformly to G̃x on every compact subset of Rm r {x}, and con-
verges pointwise monotonically in a neighborhood of x. The desired equality follows by
the monotone convergence theorem. Finally, b) is a consequence of a), for the integral
involving ∆u is nonpositive and

1

σm−1rm−1
rm−2(r − |x|)
(r + |x|)m−1 6 Pr(x, y) 6

1

σm−1rm−1
rm−2(r + |x|)
(r − |x|)m−1

by (4.6) combined with the obvious inequality (r − |x|)m 6 |x− y|m 6 (r + |x|)m. �
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§ 4.C.3. Upper Envelopes and Choquet’s Lemma. Let Ω ⊂ Rn and let (uα)α∈I be a
family of upper semicontinuous functions Ω −→ [−∞,+∞[. We assume that (uα) is
locally uniformly bounded above. Then the upper envelope

u = sup uα

need not be upper semicontinuous, so we consider its upper semicontinuous regulariza-
tion:

u⋆(z) = lim
ε→0

sup
B(z,ε)

u > u(z).

It is easy to check that u⋆ is the smallest upper semicontinuous function which is > u.
Our goal is to show that u⋆ can be computed with a countable subfamily of (uα). Let
B(zj , εj) be a countable basis of the topology of Ω. For each j, let (zjk) be a sequence
of points in B(zj , εj) such that

sup
k
u(zjk) = sup

B(zj ,εj)

u,

and for each pair (j, k), let α(j, k, l) be a sequence of indices α ∈ I such that u(zjk) =
supl uα(j,k,l)(zjk). Set

v = sup
j,k,l

uα(j,k,l).

Then v 6 u and v⋆ 6 u⋆. On the other hand

sup
B(zj ,εj)

v > sup
k
v(zjk) > sup

k,l
uα(j,k,l)(zjk) = sup

k
u(zjk) = sup

B(zj ,εj)

u.

As every ball B(z, ε) is a union of balls B(zj , εj), we easily conclude that v⋆ > u⋆, hence
v⋆ = u⋆. Therefore:

(4.23) Choquet’s lemma. Every family (uα) has a countable subfamily (vj) = (uα(j))
such that its upper envelope v satisfies v 6 u 6 u⋆ = v⋆. �

(4.24) Proposition. If all uα are subharmonic, the upper regularization u⋆ is subhar-
monic and equal almost everywhere to u.

Proof. By Choquet’s lemma we may assume that (uα) is countable. Then u = supuα is a
Borel function. As each uα satisfies the mean value inequality on every ball B(z, r) ⊂ Ω,
we get

u(z) = sup uα(z) 6 supµB(uα ; z, r) 6 µB(u ; z, r).

The right-hand side is a continuous function of z, so we infer

u⋆(z) 6 µB(u ; z, r) 6 µB(u
⋆ ; z, r)

and u⋆ is subharmonic. By the upper semicontinuity of u⋆ and the above inequality we
find u⋆(z) = limr→0 µB(u ; z, r), thus u

⋆ = u almost everywhere by Lebesgue’s lemma.
�
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§ 5. Plurisubharmonic Functions

§ 5.A. Definition and Basic Properties

Plurisubharmonic functions have been introduced independently by [Lelong 1942] and
[Oka 1942] for the study of holomorphic convexity. They are the complex counterparts
of subharmonic functions.

(5.1) Definition. A function u : Ω −→ [−∞,+∞[ defined on an open subset Ω ⊂ Cn is
said to be plurisubharmonic if

a) u is upper semicontinuous ;

b) for every complex line L ⊂ Cn, u↾Ω∩L is subharmonic on Ω ∩ L.
The set of plurisubharmonic functions on Ω is denoted by Psh(Ω).

An equivalent way of stating property b) is: for all a ∈ Ω, ξ ∈ Cn, |ξ| < d(a, ∁Ω),
then

(5.2) u(a) 6
1

2π

∫ 2π

0

u(a+ eiθ ξ) dθ.

An integration of (5.2) over ξ ∈ S(0, r) yields u(a) 6 µS(u ; a, r), therefore

(5.3) Psh(Ω) ⊂ Sh(Ω).

The following results have already been proved for subharmonic functions and are easy
to extend to the case of plurisubharmonic functions:

(5.4) Theorem. For any decreasing sequence of plurisubharmonic functions uk ∈
Psh(Ω), the limit u = limuk is plurisubharmonic on Ω.

(5.5) Theorem. Let u ∈ Psh(Ω) be such that u 6≡ −∞ on every connected component
of Ω. If (ρε) is a family of smoothing kernels, then u ⋆ ρε is C∞ and plurisubharmonic
on Ωε, the family (u ⋆ ρε) is non decreasing in ε and limε→0 u ⋆ ρε = u.

(5.6) Theorem. Let u1, . . . , up ∈ Psh(Ω) and χ : Rp −→ R be a convex function such
that χ(t1, . . . , tp) is non decreasing in each tj. Then χ(u1, . . . , up) is plurisubharmonic on
Ω. In particular u1+ · · ·+up, max{u1, . . . , up}, log(eu1 + · · ·+eup) are plurisubharmonic
on Ω.

(5.7) Theorem. Let {uα} ⊂ Psh(Ω) be locally uniformly bounded from above and
u = sup uα. Then the regularized upper envelope u⋆ is plurisubharmonic and is equal to
u almost everywhere.

Proof. By Choquet’s lemma, we may assume that (uα) is countable. Then u is a Borel
function which clearly satisfies (5.2), and thus u ⋆ ρε also satisfies (5.2). Hence u ⋆
ρε is plurisubharmonic. By Proposition 4.24, u⋆ = u almost everywhere and u⋆ is
subharmonic, so

u⋆ = limu⋆ ⋆ ρε = limu ⋆ ρε
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is plurisubharmonic. �

If u ∈ C2(Ω,R), the subharmonicity of restrictions of u to complex lines, C ∋ w 7−→
u(a+ wξ), a ∈ Ω, ξ ∈ Cn, is equivalent to

∂2

∂w∂w
u(a+ wξ) =

∑

16j,k6n

∂2u

∂zj∂zk
(a+ wξ) ξjξk > 0.

Therefore, u is plurisubharmonic on Ω if and only if
∑
∂2u/∂zj∂zk(a) ξjξk is a semiposi-

tive hermitian form at every point a ∈ Ω. This equivalence is still true for arbitrary
plurisubharmonic functions, under the following form:

(5.8) Theorem. If u ∈ Psh(Ω), u 6≡ −∞ on every connected component of Ω, then for
all ξ ∈ Cn

Hu(ξ) :=
∑

16j,k6n

∂2u

∂zj∂zk
ξjξk ∈D′(Ω)

is a positive measure. Conversely, if v ∈D′(Ω) is such that Hv(ξ) is a positive measure
for every ξ ∈ Cn, there exists a unique function u ∈ Psh(Ω) locally integrable on Ω such
that v is the distribution associated to u.

Proof. If u ∈ Psh(Ω), then Hu(ξ) = weak lim H(u ⋆ ρε)(ξ) > 0. Conversely, Hv > 0
implies H(v ⋆ ρε) = (Hv) ⋆ ρε > 0, thus v ⋆ ρε ∈ Psh(Ω), and also ∆v > 0, hence (v ⋆ ρε)
is non decreasing in ε and u = limε→0 v ⋆ ρε ∈ Psh(Ω) by Th. 5.4. �

(5.9) Proposition. The convex cone Psh(Ω) ∩ L1
loc(Ω) is closed in L1

loc(Ω), and it has
the property that every bounded subset is relatively compact.

§ 5.B. Relations with Holomorphic Functions

In order to get a better geometric insight, we assume more generally that u is a C2

function on a complex n-dimensional manifold X . The complex Hessian of u at a point
a ∈ X is the hermitian form on TX defined by

(5.10) Hua =
∑

16j,k6n

∂2u

∂zj∂zk
(a) dzj ⊗ dzk.

If F : X −→ Y is a holomorphic mapping and if v ∈ C2(Y,R), we have d′d′′(v ◦ F ) =
F ⋆d′d′′v. In equivalent notations, a direct calculation gives for all ξ ∈ TX,a

H(v ◦ F )a(ξ) =
∑

j,k,l,m

∂2v
(
F (a)

)

∂zl∂zm

∂Fl
(
a)

∂zj
ξj
∂Fm

(
a)

∂zk
ξk = HvF (a)

(
F ′(a).ξ

)
.

In particular Hua does not depend on the choice of coordinates (z1, . . . , zn) on X , and
Hva > 0 on Y implies H(v ◦ F )a > 0 on X . Therefore, the notion of plurisubharmonic
function makes sense on any complex manifold.

(5.11) Theorem. If F : X −→ Y is a holomorphic map and v ∈ Psh(Y ), then v ◦ F ∈
Psh(X).
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Proof. It is enough to prove the result when X = Ω1 ⊂ Cn and X = Ω2 ⊂ Cp are
open subsets . The conclusion is already known when v is of class C2, and it can be
extended to an arbitrary upper semicontinuous function v by using Th. 5.4 and the fact
that v = lim v ⋆ ρε. �

(5.12) Example. By (3.22) we see that log |z| is subharmonic on C, thus log |f | ∈
Psh(X) for every holomorphic function f ∈ O(X). More generally

log
(
|f1|α1 + · · ·+ |fq|αq

)
∈ Psh(X)

for every fj ∈ O(X) and αj > 0 (apply Th. 5.6 with uj = αj log |fj| ).

§ 5.C. Convexity Properties

The close analogy of plurisubharmonicity with the concept of convexity strongly sug-
gests that there are deeper connections between these notions. We describe here a few
elementary facts illustrating this philosophy. Another interesting connection between
plurisubharmonicity and convexity will be seen in § 7.B (Kiselman’s minimum princi-
ple).

(5.13) Theorem. If Ω = ω + iω′ where ω, ω′ are open subsets of Rn, and if u(z) is a
plurisubharmonic function on Ω that depends only on x = Re z, then ω ∋ x 7−→ u(x) is
convex.

Proof. This is clear when u ∈ C2(Ω,R), for ∂2u/∂zj∂zk = 1
4
∂2u/∂xj∂xk. In the general

case, write u = limu ⋆ ρε and observe that u ⋆ ρε(z) depends only on x. �

(5.14) Corollary. If u is a plurisubharmonic function in the open polydisk D(a, R) =∏
D(aj, Rj) ⊂ Cn, then

µ(u ; r1, . . . , rn) =
1

(2π)n

∫ 2π

0

u(a1 + r1e
iθ1 , . . . , an + rne

iθn) dθ1 . . . dθn,

m(u ; r1, . . . , rn) = sup
z∈D(a,r)

u(z1, . . . , zn), rj < Rj

are convex functions of (log r1, . . . , log rn) that are non decreasing in each variable.

Proof. That µ is non decreasing follows from the subharmonicity of u along every coor-
dinate axis. Now, it is easy to verify that the functions

µ̃(z1, . . . , zn) =
1

(2π)n

∫ 2π

0

u(a1 + ez1eiθ1 , . . . , an + ezneiθn) dθ1 . . . dθn,

m̃(z1, . . . , zn) = sup
|wj|61

u(a1 + ez1w1, . . . , an + eznwn)

are upper semicontinuous, satisfy the mean value inequality, and depend only on Re zj ∈
]0, logRj [. Therefore µ̃ and M̃ are convex. Cor. 5.14 follows from the equalities

µ(u ; r1, . . . , rn) = µ̃(log r1, . . . , log rn),

m(u ; r1, . . . , rn) = m̃(log r1, . . . , log rn). �
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§ 5.D. Pluriharmonic Functions

Pluriharmonic functions are the counterpart of harmonic functions in the case of
functions of complex variables:

(5.15) Definition. A function u is said to be pluriharmonic if u and −u are plurisub-
harmonic.

A pluriharmonic function is harmonic (in particular smooth) in any C-analytic coor-
dinate system, and is characterized by the condition Hu = 0, i.e. d′d′′u = 0 or

∂2u/∂zj∂zk = 0 for all j, k.

If f ∈ O(X), it follows that the functions Re f, Im f are pluriharmonic. Conversely:

(5.16) Theorem. If the De Rham cohomology group H1
DR(X,R) is zero, every pluri-

harmonic function u on X can be written u = Re f where f is a holomorphic function
on X.

Proof. By hypothesis H1
DR(X,R) = 0, u ∈ C∞(X) and d(d′u) = d′′d′u = 0, hence there

exists g ∈ C∞(X) such that dg = d′u. Then dg is of type (1, 0), i.e. g ∈ O(X) and

d(u− 2Re g) = d(u− g − g) = (d′u− dg) + (d′′u− dg) = 0.

Therefore u = Re(2g + C), where C is a locally constant function. �

§ 5.E. Global Regularization of Plurisubharmonic Functions

We now study a very efficient regularization and patching procedure for continuous
plurisubharmonic functions, essentially due to [Richberg 1968]. The main idea is con-
tained in the following lemma:

(5.17) Lemma. Let uα ∈ Psh(Ωα) where Ωα ⊂⊂ X is a locally finite open covering
of X. Assume that for every index β

lim sup
ζ→z

uβ(ζ) < max
Ωα∋z

{uα(z)}

at all points z ∈ ∂Ωβ. Then the function

u(z) = max
Ωα∋z

uα(z)

is plurisubharmonic on X.

Proof. Fix z0 ∈ X . Then the indices β such that z0 ∈ ∂Ωβ or z0 /∈ Ωβ do not contribute
to the maximum in a neighborhood of z0. Hence there is a a finite set I of indices α
such that Ωα ∋ z0 and a neighborhood V ⊂ ⋂

α∈I Ωα on which u(z) = maxα∈I uα(z).
Therefore u is plurisubharmonic on V . �

The above patching procedure produces functions which are in general only continu-
ous. When smooth functions are needed, one has to use a regularized max function. Let
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θ ∈ C∞(R,R) be a nonnegative function with support in [−1, 1] such that
∫
R
θ(h) dh = 1

and
∫
R
hθ(h) dh = 0.

(5.18) Lemma. For arbitrary η = (η1, . . . , ηp) ∈ ]0,+∞[p, the function

Mη(t1, . . . , tp) =

∫

Rn

max{t1 + h1, . . . , tp + hp}
∏

16j6n

θ(hj/ηj) dh1 . . . dhp

possesses the following properties:

a) Mη(t1, . . . , tp) is non decreasing in all variables, smooth and convex on Rn ;

b) max{t1, . . . , tp} 6Mη(t1, . . . , tp) 6 max{t1 + η1, . . . , tp + ηp} ;
c) Mη(t1, . . . , tp) =M

(η1,...,η̂j ,...,ηp)
(t1, . . . , t̂j, , . . . , tp)

if tj + ηj 6 maxk 6=j{tk − ηk} ;

d) Mη(t1 + a, . . . , tp + a) =Mη(t1, . . . , tp) + a, ∀a ∈ R ;

e) if u1, . . . , up are plurisubharmonic and satisfy H(uj)z(ξ) > γz(ξ) where z 7→ γz is a
continuous hermitian form on TX , then u =Mη(u1, . . . , up) is plurisubharmonic and
satisfies Huz(ξ) > γz(ξ).

Proof. The change of variables hj 7→ hj − tj shows that Mη is smooth. All properties
are immediate consequences of the definition, except perhaps e). That Mη(u1, . . . , up) is
plurisubharmonic follows from a) and Th. 5.6. Fix a point z0 and ε > 0. All functions
u′j(z) = uj(z)− γz0(z − z0) + ε|z − z0|2 are plurisubharmonic near z0. It follows that

Mη(u
′
1, . . . , u

′
p) = u− γz0(z − z0) + ε|z − z0|2

is also plurisubharmonic near z0. Since ε > 0 was arbitrary, e) follows. �

(5.19) Corollary. Let uα ∈ C∞(Ωα)∩Psh(Ωα) where Ωα ⊂⊂ X is a locally finite open
covering of X. Assume that uβ(z) < max{uα(z)} at every point z ∈ ∂Ωβ, when α runs
over the indices such that Ωα ∋ z. Choose a family (ηα) of positive numbers so small that
uβ(z)+ ηβ 6 maxΩα∋z{uα(z)− ηα} for all β and z ∈ ∂Ωβ. Then the function defined by

ũ(z) =M(ηα)

(
uα(z)

)
for α such that Ωα ∋ z

is smooth and plurisubharmonic on X. �

(5.20) Definition. A function u ∈ Psh(X) is said to be strictly plurisubharmonic if
u ∈ L1

loc(X) and if for every point x0 ∈ X there exists a neighborhood Ω of x0 and c > 0
such that u(z) − c|z|2 is plurisubharmonic on Ω, i.e.

∑
(∂2u/∂zj∂zk)ξjξk > c|ξ|2 (as

distributions on Ω) for all ξ ∈ Cn.

(5.21) Theorem ([Richberg 1968]). Let u ∈ Psh(X) be a continuous function which is
strictly plurisubharmonic on an open subset Ω ⊂ X, with Hu > γ for some continuous
positive hermitian form γ on Ω. For any continuous function λ ∈ C0(Ω), λ > 0, there
exists a plurisubharmonic function ũ in C0(X) ∩C∞(Ω) such that u 6 ũ 6 u+ λ on Ω
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and ũ = u on XrΩ, which is strictly plurisubharmonic on Ω and satisfies Hũ > (1−λ)γ.
In particular, ũ can be chosen strictly plurisubharmonic on X if u has the same property.

Proof. Let (Ωα) be a locally finite open covering of Ω by relatively compact open balls
contained in coordinate patches of X . Choose concentric balls Ω′′α ⊂ Ω′α ⊂ Ωα of respec-
tive radii r′′α < r′α < rα and center z = 0 in the given coordinates z = (z1, . . . , zn) near
Ωα, such that Ω′′α still cover Ω. We set

uα(z) = u ⋆ ρεα(z) + δα(r
′2
α − |z|2) on Ωα.

For εα < εα,0 and δα < δα,0 small enough, we have uα 6 u + λ/2 and Huα > (1− λ)γ
on Ωα. Set

ηα = δα min{r′2α − r′′2α , (r2α − r′2α )/2}.
Choose first δα < δα,0 such that ηα < minΩα

λ/2, and then εα < εα,0 so small that

u 6 u ⋆ ρεα < u + ηα on Ωα. As δα(r
′2 − |z|2) is 6 −2ηα on ∂Ωα and > ηα on Ω

′′
α, we

have uα < u − ηα on ∂Ωα and uα > u + ηα on Ω
′′
α, so that the condition required in

Corollary 5.19 is satisfied. We define

ũ =

{
u on X r Ω,
M(ηα)(uα) on Ω.

By construction, ũ is smooth on Ω and satisfies u 6 ũ 6 u+ λ, Hu > (1− λ)γ thanks to
5.18 (b,e). In order to see that ũ is plurisubharmonic on X , observe that ũ is the uniform
limit of ũα with

ũα = max
{
u , M(η1...ηα)(u1 . . . uα)

}
on

⋃

16β6α

Ωβ

and ũα = u on the complement. �

§ 5.F. Polar and Pluripolar Sets.

Polar and pluripolar sets are sets of −∞ poles of subharmonic and plurisubharmonic
functions. Although these functions possess a large amount of flexibility, pluripolar sets
have some properties which remind their loose relationship with holomorphic functions.

(5.22) Definition. A set A ⊂ Ω ⊂ Rm (resp. A ⊂ X, dimCX = n) is said to be polar
(resp. pluripolar) if for every point x ∈ Ω there exist a connected neighborhoodW of x and
u ∈ Sh(W ) (resp. u ∈ Psh(W )), u 6≡ −∞, such that A ∩W ⊂ {x ∈W ; u(x) = −∞}.

Theorem 4.17 implies that a polar or pluripolar set is of zero Lebesgue measure. Now,
we prove a simple extension theorem.

(5.23) Theorem. Let A ⊂ Ω be a closed polar set and v ∈ Sh(Ω r A) such that v is
bounded above in a neighborhood of every point of A. Then v has a unique extension
ṽ ∈ Sh(Ω).

Proof. The uniqueness is clear because A has zero Lebesgue measure. On the other hand,
every point of A has a neighborhood W such that

A ∩W ⊂ {x ∈ W ; u(x) = −∞}, u ∈ Sh(W ), u 6≡ −∞.
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After shrinking W and subtracting a constant to u, we may assume u 6 0. Then for
every ε > 0 the function vε = v + εu ∈ Sh(W r A) can be extended as an upper
semicontinuous on W by setting vε = −∞ on A ∩W . Moreover, vε satisfies the mean
value inequality vε(a) 6 µS(vε ; a, r) if a ∈ W r A, r < d(a, A ∪ ∁W ), and also clearly
if a ∈ A, r < d(a, ∁W ). Therefore vε ∈ Sh(W ) and ṽ = (sup vε)

⋆ ∈ Sh(W ). Clearly ṽ
coincides with v on W rA. A similar proof gives:

(5.24) Theorem. Let A be a closed pluripolar set in a complex analytic manifold X.
Then every function v ∈ Psh(XrA) that is locally bounded above near A extends uniquely
into a function ṽ ∈ Psh(X). �

(5.25) Corollary. Let A ⊂ X be a closed pluripolar set. Every holomorphic function

f ∈ O(XrA) that is locally bounded near A extends to a holomorphic function f̃ ∈ O(X).

Proof. Apply Th. 5.24 to ±Re f and ± Im f . It follows that Re f and Im f have pluri-
harmonic extensions to X , in particular f extends to f̃ ∈ C∞(X). By density of X rA,

d′′f̃ = 0 on X . �

(5.26) Corollary. Let A ⊂ Ω (resp. A ⊂ X) be a closed (pluri)polar set. If Ω (resp. X)
is connected, then ΩrA (resp. X rA) is connected.

Proof. If ΩrA (resp. X rA) is a disjoint union Ω1 ∪Ω2 of non empty open subsets, the
function defined by f ≡ 0 on Ω1, f ≡ 1 on Ω2 would have a harmonic (resp. holomorphic)
extension through A, a contradiction. �

§ 6. Domains of Holomorphy and Stein Manifolds

§ 6.A. Domains of Holomorphy in Cn. Examples

Loosely speaking, a domain of holomorphy is an open subset Ω in Cn such that there
is no part of ∂Ω across which all functions f ∈ O(Ω) can be extended. More precisely:

(6.1) Definition. Let Ω ⊂ Cn be an open subset. Ω is said to be a domain of holomorphy
if for every connected open set U ⊂ Cn which meets ∂Ω and every connected component
V of U ∩ Ω there exists f ∈ O(Ω) such that f↾V has no holomorphic extension to U .

Under the hypotheses made on U , we have ∅ 6= ∂V ∩ U ⊂ ∂Ω. In order to show that
Ω is a domain of holomorphy, it is thus sufficient to find for every z0 ∈ ∂Ω a function
f ∈ O(Ω) which is unbounded near z0.

(6.2) Examples. Every open subset Ω ⊂ C is a domain of holomorphy (for any z0 ∈ ∂Ω,
f(z) = (z−z0)−1 cannot be extended at z0 ). In Cn, every convex open subset is a domain
of holomorphy: if Re〈z− z0, ξ0〉 = 0 is a supporting hyperplane of ∂Ω at z0, the function
f(z) = (〈z − z0, ξ0〉)−1 is holomorphic on Ω but cannot be extended at z0.

(6.3) Hartogs figure. Assume that n > 2. Let ω ⊂ Cn−1 be a connected open set and
ω′ ( ω an open subset. Consider the open sets in Cn :

Ω =
(
(D(R)rD(r))× ω

)
∪
(
D(R)× ω′

)
(Hartogs figure),

Ω̃ = D(R)× ω (filled Hartogs figure).
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where 0 6 r < R and D(r) ⊂ C denotes the open disk of center 0 and radius r in C.

(ζ1, z
′)

zz′

z1 C0

Cn−1

Ω

Ω̃

ω′

ω

R r

Fig. I-3 Hartogs figure

Then every function f ∈ O(Ω) can be extended to Ω̃ = ω×D(R) by means of the Cauchy
formula:

f̃(z1, z
′) =

1

2πi

∫

|ζ1|=ρ

f(ζ1, z
′)

ζ1 − z1
dζ1, z ∈ Ω̃, max{|z1|, r} < ρ < R.

In fact f̃ ∈ O(D(R)×ω) and f̃ = f on D(R)×ω′, so we must have f̃ = f on Ω since Ω is
connected. It follows that Ω is not a domain of holomorphy. Let us quote two interesting
consequences of this example.

(6.4) Corollary (Riemann’s extension theorem). Let X be a complex analytic manifold,
and S a closed submanifold of codimension > 2. Then every f ∈ O(X r S) extends
holomorphically to X.

Proof. This is a local result. We may choose coordinates (z1, . . . , zn) and a polydisk
D(R)n in the corresponding chart such that S ∩D(R)n is given by equations z1 = . . . =
zp = 0, p = codimS > 2. Then, denoting ω = D(R)n−1 and ω′ = ω r {z2 = . . . = zp =
0}, the complement D(R)n r S can be written as the Hartogs figure

D(R)n r S =
(
(D(R)r {0})× ω

)
∪
(
D(R)× ω′

)
.

It follows that f can be extended to Ω̃ = D(R)n. �

§ 6.B. Holomorphic Convexity and Pseudoconvexity

Let X be a complex manifold. We first introduce the notion of holomorphic hull of a
compact set K ⊂ X . This can be seen somehow as the complex analogue of the notion
of (affine) convex hull for a compact set in a real vector space. It is shown that domains
of holomorphy in Cn are characterized a property of holomorphic convexity. Finally, we
prove that holomorphic convexity implies pseudoconvexity – a complex analogue of the
geometric notion of convexity.
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(6.5) Definition. Let X be a complex manifold and let K be a compact subset of X.
Then the holomorphic hull of K in X is defined to be

K̂ = K̂
O(X) =

{
z ∈ X ; |f(z)| 6 sup

K
|f |, ∀f ∈ O(X)

}
.

(6.6) Elementary properties.

a) K̂ is a closed subset of X containing K. Moreover we have

sup
K̂

|f | = sup
K
|f |, ∀f ∈ O(X),

hence
̂̂
K = K̂.

b) If h : X → Y is a holomorphic map and K ⊂ X is a compact set, then h(K̂
O(X)) ⊂

ĥ(K)
O(Y ). In particular, if X ⊂ Y , then K̂

O(X) ⊂ K̂O(Y )∩X . This is immediate from
the definition.

c) K̂ contains the union ofK with all relatively compact connected components ofXrK

(thus K̂ “fills the holes” of K). In fact, for every connected component U of X rK
we have ∂U ⊂ ∂K, hence if U is compact the maximum principle yields

sup
U

|f | = sup
∂U
|f | 6 sup

K
|f |, for all f ∈ O(X).

d) More generally, suppose that there is a holomorphic map h : U → X defined on a
relatively compact open set U in a complex manifold S, such that h extends as a
continuous map h : U → X and h(∂U) ⊂ K. Then h(U) ⊂ K̂. Indeed, for f ∈ O(X),
the maximum principle again yields

sup
U

|f ◦ h| = sup
∂U
|f ◦ h| 6 sup

K
|f |.

This is especially useful when U is the unit disk in C.

e) Suppose that X = Ω ⊂ Cn is an open set. By taking f(z) = exp(A(z)) where A is an

arbitrary affine function, we see that K̂
O(Ω) is contained in the intersection of all affine

half-spaces containing K. Hence K̂
O(Ω) is contained in the affine convex hull K̂aff . As

a consequence K̂
O(Ω) is always bounded and K̂

O(Cn) is a compact set. However, when

Ω is arbitrary, K̂
O(Ω) is not always compact; for example, in case Ω = Cnr{0}, n > 2,

then O(Ω) = O(Cn) and the holomorphic hull of K = S(0, 1) is the non compact set

K̂ = B(0, 1)r {0}.

(6.7) Definition. A complex manifold X is said to be holomorphically convex if the

holomorphic hull K̂
O(X) of every compact set K ⊂ X is compact.

(6.8) Remark. A complex manifold X is holomorphically convex if and only if there
is an exhausting sequence of holomorphically compact subsets Kν ⊂ X, i.e. compact sets
such that

X =
⋃
Kν , K̂ν = Kν , K◦ν ⊃ Kν−1.
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Indeed, if X is holomorphically convex, we may define Kν inductively by K0 = ∅ and
Kν+1 = (K ′ν ∪Lν)∧

O(X), where K
′
ν is a neighborhood of Kν and Lν a sequence of compact

sets of X such that X =
⋃
Lν . The converse is obvious: if such a sequence (Kν) exists,

then every compact subset K ⊂ X is contained in some Kν , hence K̂ ⊂ K̂ν = Kν is
compact. �

We now concentrate on domains of holomorphy in Cn. We denote by d and B(z, r)
the distance and the open balls associated to an arbitrary norm on Cn, and we set for
simplicity B = B(0, 1).

(6.9) Proposition. If Ω is a domain of holomorphy and K ⊂ Ω is a compact subset,

then d(K̂, ∁Ω) = d(K, ∁Ω) and K̂ is compact.

Proof. Let f ∈ O(Ω). Given r < d(K, ∁Ω), we denote by M the supremum of |f | on the
compact subset K + rB ⊂ Ω. Then for every z ∈ K and ξ ∈ B, the function

(6.10) C ∋ t 7−→ f(z + tξ) =

+∞∑

k=0

1

k!
Dkf(z)(ξ)k tk

is analytic in the disk |t| < r and bounded by M . The Cauchy inequalities imply

|Dkf(z)(ξ)k| 6Mk! r−k, ∀z ∈ K, ∀ξ ∈ B.

As the left hand side is an analytic fuction of z in Ω, the inequality must also hold for
z ∈ K̂, ξ ∈ B. Every f ∈ O(Ω) can thus be extended to any ball B(z, r), z ∈ K̂, by
means of the power series (6.10). Hence B(z, r) must be contained in Ω, and this shows
that d(K̂, ∁Ω) > r. As r < d(K, ∁Ω) was arbitrary, we get d(K̂, ∁Ω) > d(K, ∁Ω) and the
converse inequality is clear, so d(K̂, ∁Ω) = d(K, ∁Ω). As K̂ is bounded and closed in Ω,
this shows that K̂ is compact. �

(6.11) Theorem. Let Ω be an open subset of Cn. The following properties are equiva-
lent:

a) Ω is a domain of holomorphy;

b) Ω is holomorphically convex;

c) For every countable subset {zj}j∈N ⊂ Ω without accumulation points in Ω and every
sequence of complex numbers (aj), there exists an interpolation function F ∈ O(Ω)
such that F (zj) = aj.

d) There exists a function F ∈ O(Ω) which is unbounded on any neighborhood of any
point of ∂Ω.

Proof. d) =⇒ a) is obvious and a) =⇒ b) is a consequence of Prop. 6.9.

c) =⇒ d). If Ω = Cn there is nothing to prove. Otherwise, select a dense sequence (ζj) in
∂Ω and take zj ∈ Ω such that d(zj , ζj) < 2−j . Then the interpolation function F ∈ O(Ω)
such that F (zj) = j satisfies d).
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b) =⇒ c). Let Kν ⊂ Ω be an exhausting sequence of holomorphically convex compact
sets as in Remark 6.8. Let ν(j) be the unique index ν such that zj ∈ Kν(j)+1 rKν(j).
By the definition of a holomorphic hull, we can find a function gj ∈ O(Ω) such that

sup
Kν(j)

|gj| < |gj(zj)|.

After multiplying gj by a constant, we may assume that gj(zj) = 1. Let Pj ∈ C[z1, . . . , zn]
be a polynomial equal to 1 at zj and to 0 at z0, z1, . . . , zj−1. We set

F =
+∞∑

j=0

λjPjg
mj

j ,

where λj ∈ C and mj ∈ N are chosen inductively such that

λj = aj −
∑

06k<j

λkPk(zj)gk(zj)
mk ,

|λjPjgmj

j | 6 2−j on Kν(j) ;

once λj has been chosen, the second condition holds as soon as mj is large enough. Since
{zj} has no accumulation point in Ω, the sequence ν(j) tends to +∞, hence the series
converges uniformly on compact sets. �

We now show that a holomorphically convex manifold must satisfy some more geo-
metric convexity condition, known as pseudoconvexity, which is most easily described in
terms of the existence of plurisubharmonic exhaustion functions.

(6.12) Definition. A function ψ : X −→ [−∞,+∞[ on a topological space X is said
to be an exhaustion if all sublevel sets Xc := {z ∈ X ; ψ(z) < c}, c ∈ R, are relatively
compact. Equivalently, ψ is an exhaustion if and only if ψ tends to +∞ relatively to the
filter of complements X rK of compact subsets of X.

A function ψ on an open set Ω ⊂ Rn is thus an exhaustion if and only if ψ(x)→ +∞
as x → ∂Ω or x → ∞ . It is easy to check, cf. Exercise 8.8, that a connected open
set Ω ⊂ Rn is convex if and only if Ω has a locally convex exhaustion function. Since
plurisubharmonic functions appear as the natural generalization of convex functions in
complex analysis, we are led to the following definition.

(6.13) Definition. Let X be a complex n-dimensional manifold. Then X is said to be

a) weakly pseudoconvex if there exists a smooth plurisubharmonic exhaustion function
ψ ∈ Psh(X) ∩C∞(X) ;

b) strongly pseudoconvex if there exists a smooth strictly plurisubharmonic exhaustion
function ψ ∈ Psh(X) ∩C∞(X), i.e. Hψ is positive definite at every point.

(6.14) Theorem. Every holomorphically convex manifold X is weakly pseudoconvex.

Proof. Let (Kν) be an exhausting sequence of holomorphically convex compact sets as
in Remark 6.8. For every point a ∈ Lν := Kν+2 rK◦ν+1, one can select gν,a ∈ O(Ω) such
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that supKν
|gν,a| < 1 and |gν,a(a)| > 1. Then |gν,a(z)| > 1 in a neighborhood of a ; by

the Borel-Lebesgue lemma, one can find finitely many functions (gν,a)a∈Iν such that

max
a∈Iν

{
|gν,a(z)|

}
> 1 for z ∈ Lν , max

a∈Iν

{
|gν,a(z)|

}
< 1 for z ∈ Kν .

For a sufficiently large exponent p(ν) we get

∑

a∈Iν
|gν,a|2p(ν) > ν on Lν ,

∑

a∈Iν
|gν,a|2p(ν) 6 2−ν on Kν .

It follows that the series
ψ(z) =

∑

ν∈N

∑

a∈Iν
|gν,a(z)|2p(ν)

converges uniformly to a real analytic function ψ ∈ Psh(X) (see Exercise 8.11). By
construction ψ(z) > ν for z ∈ Lν , hence ψ is an exhaustion. �

(6.15) Example. The converse to Theorem 6.14 does not hold. In fact let X =
C2/Γ be the quotient of C2 by the free abelian group of rank 2 generated by the affine
automorphisms

g1(z, w) = (z + 1, eiθ1w), g2(z, w) = (z + i, eiθ2w), θ1, θ2 ∈ R.

Since Γ acts properly discontinuously on C2, the quotient has a structure of a complex
(non compact) 2-dimensional manifold. The function w 7→ |w|2 is Γ-invariant, hence it
induces a function ψ((z, w)∼) = |w|2 onX which is in fact a plurisubharmonic exhaustion
function. Therefore X is weakly pseudoconvex. On the other hand, any holomorphic
function f ∈ O(X) corresponds to a Γ-invariant holomorphic function f̃(z, w) on C2.

Then z 7→ f̃(z, w) is bounded for w fixed, because f̃(z, w) lies in the image of the

compact set K × D(0, |w|), K = unit square in C. By Liouville’s theorem, f̃(z, w)
does not depend on z. Hence functions f ∈ O(X) are in one-to-one correspondence with

holomorphic functions f̃(w) on C such that f̃(eiθjw) = f̃(w). By looking at the Taylor
expansion at the origin, we conclude that f̃ must be a constant if θ1 /∈ Q or θ2 /∈ Q (if

θ1, θ2 ∈ Q and m is the least common denominator of θ1, θ2, then f̃ is a power series of
the form

∑
αkw

mk). From this, it follows easily that X is holomorphically convex if and
only if θ1, θ2 ∈ Q.

§ 6.C. Stein Manifolds

The class of holomorphically convex manifolds contains two types of manifolds of a
rather different nature:

• domains of holomorphy X = Ω ⊂ Cn ;

• compact complex manifolds.

In the first case we have a lot of holomorphic functions, in fact the functions in O(Ω)
separate any pair of points of Ω. On the other hand, if X is compact and connected, the
sets Psh(X) and O(X) consist of constant functions merely (by the maximum principle).
It is therefore desirable to introduce a clear distinction between these two subclasses. For
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this purpose, [Stein 1951] introduced the class of manifolds which are now called Stein
manifolds.

(6.16) Definition. A complex manifold X is said to be a Stein manifold if

a) X is holomorphically convex ;

b) O(X) locally separates points in X, i.e. every point x ∈ X has a neighborhood V such
that for any y ∈ V r {x} there exists f ∈ O(X) with f(y) 6= f(x).

The second condition is automatic if X = Ω is an open subset of Cn. Hence an open
set Ω ⊂ Cn is Stein if and only if Ω is a domain of holomorphy.

(6.17) Lemma. If a complex manifold X satisfies the axiom (6.16 b) of local separation,
there exists a smooth nonnegative strictly plurisubharmonic function u ∈ Psh(X).

Proof. Fix x0 ∈ X . We first show that there exists a smooth nonnegative function
u0 ∈ Psh(X) which is strictly plurisubharmonic on a neighborhood of x0. Let (z1, . . . , zn)
be local analytic coordinates centered at x0, and if necessary, replace zj by λzj so that
the closed unit ball B = {∑ |zj |2 6 1} is contained in the neighborhood V ∋ x0 on which
(6.16 b) holds. Then, for every point y ∈ ∂B, there exists a holomorphic function f ∈
O(X) such that f(y) 6= f(x0). Replacing f with λ(f − f(x0)), we can achieve f(x0) = 0
and |f(y)| > 1. By compactness of ∂B, we find finitely many functions f1, . . . , fN ∈ O(X)
such that v0 =

∑ |fj |2 satisfies v0(x0) = 0, while v0 > 1 on ∂B. Now, we set

u0(z) =

{
v0(z) on X rB,
Mε{v0(z), (|z|2 + 1)/3} on B.

where Mε are the regularized max functions defined in 5.18. Then u0 is smooth and
plurisubharmonic, coincides with v0 near ∂B and with (|z|2 + 1)/3 on a neighbor-
hood of x0. We can cover X by countably many neighborhoods (Vj)j>1, for which
we have a smooth plurisubharmonic functions uj ∈ Psh(X) such that uj is strictly
plurisubharmonic on Vj . Then select a sequence εj > 0 converging to 0 so fast that
u =

∑
εjuj ∈ C∞(X). The function u is nonnegative and strictly plurisubharmonic

everywhere on X . �

(6.18) Theorem. Every Stein manifold is strongly pseudoconvex.

Proof. By Th. 6.14, there is a smooth exhaustion function ψ ∈ Psh(X). If u > 0 is
strictly plurisubharmonic, then ψ′ = ψ+u is a strictly plurisubharmonic exhaustion. �

The converse problem to know whether every strongly pseudoconvex manifold is ac-
tually a Stein manifold is known as the Levi problem, and was raised by [Levi 1910] in
the case of domains Ω ⊂ Cn. In that case, the problem has been solved in the affirma-
tive independently by [Oka 1953], [Norguet 1954] and [Bremermann 1954]. The general
solution of the Levi problem has been obtained by [Grauert 1958]. Our proof will rely
on the theory of L2 estimates for d′′, which will be available only in Chapter VIII.
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|z2|

π
X

z1 ∈ C

C2

Fig. I-4 Hartogs figure with excrescence

(6.19) Remark. It will be shown later that Stein manifolds always have enough holo-
morphic functions to separate finitely many points, and one can even interpolate given
values of a function and its derivatives of some fixed order at any discrete set of points.
In particular, we might have replaced condition (6.16 b) by the stronger requirement that
O(X) separates any pair of points. On the other hand, there are examples of manifolds
satisfying the local separation condition (6.16 b), but not global separation. A simple
example is obtained by attaching an excrescence inside a Hartogs figure, in such a way
that the resulting map π : X → D = D(0, 1)2 is not one-to-one (see Figure I-4 above);
then O(X) coincides with π⋆O(D).

§ 6.D. Heredity Properties

Holomorphic convexity and pseudoconvexity are preserved under quite a number of
natural constructions. The main heredity properties can be summarized in the following
Proposition.

(6.20) Proposition. Let C denote the class of holomorphically convex (resp. of Stein,
or weakly pseudoconvex, strongly pseudoconvex manifolds).

a) If X, Y ∈ C, then X × Y ∈ C.

b) If X ∈ C and S is a closed complex submanifold of X, then S ∈ C.

c) If (Sj)16j6N is a collection of (not necessarily closed) submanifolds of a complex
manifold X such that S =

⋂
Sj is a submanifold of X, and if Sj ∈ C for all j, then

S ∈ C.

d) If F : X → Y is a holomorphic map and S ⊂ X, S′ ⊂ Y are (not necessarily closed)
submanifolds in the class C, then S ∩F−1(S′) is in C, as long as it is a submanifold
of X.

e) If X is a weakly (resp. strongly) pseudoconvex manifold and u is a smooth plurisubhar-
monic function on X, then the open set Ω = u−1(]−∞, c[) is weakly (resp. strongly)
pseudoconvex. In particular the sublevel sets

Xc = ψ−1(]−∞, c[)
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of a (strictly) plurisubharmonic exhaustion function are weakly (resp. strongly) pseu-
doconvex.

Proof. All properties are more or less immediate to check, so we only give the main facts.

a) For K ⊂ X , L ⊂ Y compact, we have (K × L)∧
O(X×Y ) = K̂

O(X) × K̂O(Y ), and if ϕ,

ψ are plurisubharmonic exhaustions of X , Y , then ϕ(x) + ψ(y) is a plurisubharmonic
exhaustion of X × Y .

b) For a compact set K ⊂ S, we have K̂
O(S) ⊂ K̂

O(X) ∩ S, and if ψ ∈ Psh(X) is an
exhaustion, then ψ↾S ∈ Psh(S) is an exhaustion (since S is closed).

c)
⋂
Sj is a closed submanifold in

∏
Sj (equal to its intersection with the diagonal

of XN ).

d) For a compact set K ⊂ S ∩ F−1(S′), we have

K̂
O(S∩F−1(S′)) ⊂ K̂O(S) ∩ F−1(F̂ (K)

O(S′)),

and if ϕ, ψ are plurisubharmonic exhaustions of S, S′, then ϕ+ψ◦F is a plurisubharmonic
exhaustion of S ∩ F−1(S′).

e) ϕ(z) := ψ(z)+ 1/(c−u(z)) is a (strictly) plurisubharmonic exhaustion function on Ω.
�

§ 7. Pseudoconvex Open Sets in Cn

§ 7.A. Geometric Characterizations of Pseudoconvex Open Sets

We first discuss some characterizations of pseudoconvex open sets in Cn. We will
need the following elementary criterion for plurisubharmonicity.

(7.1) Criterion. Let v : Ω −→ [−∞,+∞[ be an upper semicontinuous function. Then
v is plurisubharmonic if and only if for every closed disk ∆ = z0 +D(1)η ⊂ Ω and every
polynomial P ∈ C[t] such that v(z0 + tη) 6 ReP (t) for |t| = 1, then v(z0) 6 ReP (0).

Proof. The condition is necessary because t 7−→ v(z0 + tη)−ReP (t) is subharmonic in a
neighborhood of D(1), so it satisfies the maximum principle on D(1) by Th. 4.14. Let us
prove now the sufficiency. The upper semicontinuity of v implies v = limν→+∞ vν on ∂∆
where (vν) is a strictly decreasing sequence of continuous functions on ∂∆. As trigono-
metric polynomials are dense in C0(S1,R), we may assume vν(z0 + eiθη) = RePν(e

iθ),
Pν ∈ C[t]. Then v(z0 + tη) 6 RePν(t) for |t| = 1, and the hypothesis implies

v(z0) 6 RePν(0) =
1

2π

∫ 2π

0

RePν(e
iθ) dθ =

1

2π

∫ 2π

0

vν(z0 + eiθη) dθ.

Taking the limit when ν tends to +∞ shows that v satisfies the mean value inequality
(5.2). �

For any z ∈ Ω and ξ ∈ Cn, we denote by

δΩ(z, ξ) = sup
{
r > 0 ; z +D(r) ξ ⊂ Ω

}
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the distance from z to ∂Ω in the complex direction ξ.

(7.2) Theorem. Let Ω ⊂ Cn be an open subset. The following properties are equivalent:

a) Ω is strongly pseudoconvex (according to Def. 6.13 b);

b) Ω is weakly pseudoconvex ;

c) Ω has a plurisubharmonic exhaustion function ψ.

d) − log δΩ(z, ξ) is plurisubharmonic on Ω× Cn ;

e) − log d(z, ∁Ω) is plurisubharmonic on Ω.

If one of these properties hold, Ω is said to be a pseudoconvex open set.

Proof. The implications a) =⇒ b) =⇒ c) are obvious. For the implication c) =⇒ d), we
use Criterion 7.1. Consider a disk ∆ = (z0, ξ0)+D(1) (η, α) in Ω×Cn and a polynomial
P ∈ C[t] such that

− log δΩ(z0 + tη, ξ0 + tα) 6 ReP (t) for |t| = 1.

We have to verify that the inequality also holds when |t| < 1. Consider the holomorphic
mapping h : C2 −→ Cn defined by

h(t, w) = z0 + tη + we−P (t)(ξ0 + tα).

By hypothesis

h
(
D(1)× {0}

)
= pr1(∆) ⊂ Ω,

h
(
∂D(1)×D(1)

)
⊂ Ω (since |e−P | 6 δΩ on ∂∆),

and the desired conclusion is that h
(
D(1) ×D(1)

)
⊂ Ω. Let J be the set of radii r > 0

such that h
(
D(1) ×D(r)

)
⊂ Ω. Then J is an open interval [0, R[, R > 0. If R < 1, we

get a contradiction as follows. Let ψ ∈ Psh(Ω) be an exhaustion function and

K = h
(
∂D(1)×D(R)

)
⊂⊂ Ω, c = sup

K
ψ.

As ψ ◦h is plurisubharmonic on a neighborhood of D(1)×D(R), the maximum principle
applied with respect to t implies

ψ ◦ h(t, w) 6 c on D(1)×D(R),

hence h
(
D(1) × D(R)

)
⊂ Ωc ⊂⊂ Ω and h

(
D(1) × D(R + ε)

)
⊂ Ω for some ε > 0, a

contradiction.

d) =⇒ e). The function − log d(z, ∁Ω) is continuous on Ω and satisfies the mean value
inequality because

− log d(z, ∁Ω) = sup
ξ∈B

(
− log δΩ(z, ξ)

)
.
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e) =⇒ a). It is clear that

u(z) = |z|2 +max{log d(z, ∁Ω)−1, 0}

is a continuous strictly plurisubharmonic exhaustion function. Richberg’s theorem 5.21
implies that there exists ψ ∈ C∞(Ω) strictly plurisubharmonic such that u 6 ψ 6 u+1.
Then ψ is the required exhaustion function. �

(7.3) Proposition.

a) Let Ω ⊂ Cn and Ω′ ⊂ Cp be pseudoconvex. Then Ω× Ω′ is pseudoconvex. For every
holomorphic map F : Ω→ Cp the inverse image F−1(Ω′) is pseudoconvex.

b) If (Ωα)α∈I is a family of pseudoconvex open subsets of Cn, the interior of the inter-
section Ω =

(⋂
α∈I Ωα

)◦
is pseudoconvex.

c) If (Ωj)j∈N is a non decreasing sequence of pseudoconvex open subsets of Cn, then
Ω =

⋃
j∈N Ωj is pseudoconvex.

Proof. a) Let ϕ, ψ be smooth plurisubharmonic exhaustions of Ω,Ω′. Then (z, w) 7−→
ϕ(z) + ψ(w) is an exhaustion of Ω × Ω′ and z 7−→ ϕ(z) + ψ(F (z)) is an exhaustion of
F−1(Ω′).

b) We have − log d(z, ∁Ω) = supα∈I − log d(z, ∁Ωα), so this function is plurisubharmonic.

c) The limit − log d(z, ∁Ω) = lim↓ j→+∞ − log d(z, ∁Ωj) is plurisubharmonic, hence Ω is
pseudoconvex. This result cannot be generalized to strongly pseudoconvex manifolds:
J.E. Fornaess in [Fornaess 1977] has constructed an increasing sequence of 2-dimensional
Stein (even affine algebraic) manifoldsXν whose union is not Stein; see Exercise 8.16. �

(7.4) Examples.

a) An analytic polyhedron in Cn is an open subset of the form

P = {z ∈ Cn ; |fj(z)| < 1, 1 6 j 6 N}

where (fj)16j6N is a family of analytic functions on Cn. By 7.3 a), every analytic
polyhedron is pseudoconvex.

b) Let ω ⊂ Cn−1 be pseudoconvex and let u : ω −→ [−∞,+∞[ be an upper semicontin-
uous function. Then the Hartogs domain

Ω =
{
(z1, z

′) ∈ C× ω ; log |z1|+ u(z′) < 0
}

is pseudoconvex if and and only if u is plurisubharmonic. To see that the plurisubhar-
monicity of u is necessary, observe that

u(z′) = − log δΩ
(
(0, z′), (1, 0)

)
.

Conversely, assume that u is plurisubharmonic and continuous. If ψ is a plurisubharmonic
exhaustion of ω, then

ψ(z′) +
∣∣ log |z1|+ u(z′)

∣∣−1
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is an exhaustion of Ω. This is no longer true if u is not continuous, but in this case we
may apply Property 7.3 c) to conclude that

Ωε =
{
(z1, z

′) ; d(z′, ∁ω) > ε, log |z1|+ u ⋆ ρε(z
′) < 0

}
, Ω =

⋃
Ωε

are pseudoconvex.

c) An open set Ω ⊂ Cn is called a tube of base ω if Ω = ω + iRn for some open subset
ω ⊂ Rn. Then of course − log d(z, ∁Ω) = − log(x, ∁ω) depends only on the real part
x = Re z. By Th. 5.13, this function is plurisubharmonic if and only if it is locally
convex in x. Therefore Ω if pseudoconvex if and only if every connected component of ω
is convex.

d) An open set Ω ⊂ Cn is called a Reinhardt domain if (eiθ1z1, . . . , e
iθnzn) is in Ω for

every z = (z1, . . . , zn) ∈ Ω and θ1, . . . , θn ∈ Rn. For such a domain, we consider the
logarithmic indicatrix

ω⋆ = Ω⋆ ∩ Rn with Ω⋆ = {ζ ∈ Cn ; (eζ1 , . . . , eζn) ∈ Ω}.

It is clear that Ω⋆ is a tube of base ω⋆. Therefore every connected component of ω⋆

must be convex if Ω is pseudoconvex. The converse is not true: Ω = Cn r {0} is not
pseudoconvex for n > 2 although ω⋆ = Rn is convex. However, the Reinhardt open set

Ω• =
{
(z1, . . . , zn) ∈ (Cr {0})n ; (log |z1|, . . . , log |zn|) ∈ ω⋆

}
⊂ Ω

is easily seen to be pseudoconvex if ω⋆ is convex: if χ is a convex exhaustion of ω⋆, then
ψ(z) = χ(log |z1|, . . . , log |zn|) is a plurisubharmonic exhaustion of Ω•. Similarly, if ω⋆

is convex and such that x ∈ ω⋆ =⇒ y ∈ ω⋆ for yj 6 xj , we can take χ increasing in all
variables and tending to +∞ on ∂ω⋆, hence the set

Ω̃ =
{
(z1, . . . , zn) ∈ Cn ; |zj | 6 exj for some x ∈ ω⋆

}

is a pseudoconvex Reinhardt open set containing 0. �

§ 7.B. Kiselman’s Minimum Principle

We already know that a maximum of plurisubharmonic functions is plurisubharmonic.
However, if v is a plurisubharmonic function on X × Cn, the partial minimum function
on X defined by u(ζ) = infz∈Ω v(ζ, z) need not be plurisubharmonic. A simple coun-
terexample in C× C is given by

v(ζ, z) = |z|2 + 2Re(zζ) = |z + ζ|2 − |ζ|2, u(ζ) = −|ζ|2.

It follows that the image F (Ω) of a pseudoconvex open set Ω by a holomorphic map F
need not be pseudoconvex. In fact, if

Ω = {(t, ζ, z) ∈ C3 ; log |t|+ v(ζ, z) < 0}

and if Ω′ ⊂ C2 is the image of Ω by the projection map (t, ζ, z) 7−→ (t, ζ), then Ω′ =
{(t, ζ) ∈ C2 ; log |t| + u(ζ) < 0} is not pseudoconvex. However, the minimum property
holds true when v(ζ, z) depends only on Re z :
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(7.5) Theorem ([Kiselman 1978]). Let Ω ⊂ Cp × Cn be a pseudoconvex open set such
that each slice

Ωζ = {z ∈ Cn ; (ζ, z) ∈ Ω}, ζ ∈ Cp,

is a convex tube ωζ + iRn, ωζ ⊂ Rn. For every plurisubharmonic function v(ζ, z) on Ω
that does not depend on Im z, the function

u(ζ) = inf
z∈Ωζ

v(ζ, z)

is plurisubharmonic or locally ≡ −∞ on Ω′ = prCn(Ω).

Proof. The hypothesis implies that v(ζ, z) is convex in x = Re z. In addition, we
first assume that v is smooth, plurisubharmonic in (ζ, z), strictly convex in x and
limx→{∞}∪∂ωζ

v(ζ, x) = +∞ for every ζ ∈ Ω′. Then x 7−→ v(ζ, x) has a unique min-
imum point x = g(ζ), solution of the equations ∂v/∂xj(x, ζ) = 0. As the matrix
(∂2v/∂xj∂xk) is positive definite, the implicit function theorem shows that g is smooth.
Now, if C ∋ w 7−→ ζ0 + wa, a ∈ Cn, |w| 6 1 is a complex disk ∆ contained in Ω, there
exists a holomorphic function f on the unit disk, smooth up to the boundary, whose real
part solves the Dirichlet problem

Re f(eiθ) = g(ζ0 + eiθa).

Since v(ζ0 + wa, f(w)) is subharmonic in w, we get the mean value inequality

v(ζ0, f(0)) 6
1

2π

∫ 2π

0

v
(
ζ0 + eiθa, f(eiθ)

)
dθ =

1

2π

∫

∂∆

v(ζ, g(ζ))dθ.

The last equality holds because Re f = g on ∂∆ and v(ζ, z) = v(ζ,Re z) by hypothesis.
As u(ζ0) 6 v(ζ0, f(0)) and u(ζ) = v(ζ, g(ζ)), we see that u satisfies the mean value
inequality, thus u is plurisubharmonic.

Now, this result can be extended to arbitrary functions v as follows: let ψ(ζ, z) > 0
be a continuous plurisubharmonic function on Ω which is independent of Im z and is an
exhaustion of Ω ∩ (Cp × Rn), e.g.

ψ(ζ, z) = max{|ζ|2 + |Re z|2,− log δΩ(ζ, z)}.

There is slowly increasing sequence Cj → +∞ such that each function ψj = (Cj − ψ ⋆
ρ1/j)

−1 is an “exhaustion” of a pseudoconvex open set Ωj ⊂⊂ Ω whose slices are convex
tubes and such that d(Ωj , ∁Ω) > 2/j. Then

vj(ζ, z) = v ⋆ ρ1/j(ζ, z) +
1

j
|Re z|2 + ψj(ζ, z)

is a decreasing sequence of plurisubharmonic functions on Ωj satisfying our previous
conditions. As v = lim vj , we see that u = limuj is plurisubharmonic. �

(7.6) Corollary. Let Ω ⊂ Cp × Cn be a pseudoconvex open set such that all slices Ωζ,
ζ ∈ Cp, are convex tubes in Cn. Then the projection Ω′ of Ω on Cp is pseudoconvex.

Proof. Take v ∈ Psh(Ω) equal to the function ψ defined in the proof of Th. 7.5. Then u
is a plurisubharmonic exhaustion of Ω′. �
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§ 7.C. Levi Form of the Boundary

For an arbitrary domain in Cn, we first show that pseudoconvexity is a local property
of the boundary.

(7.7) Theorem. Let Ω ⊂ Cn be an open subset such that every point z0 ∈ ∂Ω has a
neighborhood V such that Ω ∩ V is pseudoconvex. Then Ω is pseudoconvex.

Proof. As d(z, ∁Ω) coincides with d
(
z, ∁(Ω ∩ V )

)
in a neighborhood of z0, we see that

there exists a neighborhood U of ∂Ω such that − log d(z, ∁Ω) is plurisubharmonic on
Ω ∩ U . Choose a convex increasing function χ such that

χ(r) > sup
(ΩrU)∩B(0,r)

− log d(z, ∁Ω), ∀r > 0.

Then the function
ψ(z) = max

{
χ(|z|),− log d(z, ∁Ω)

}

coincides with χ(|z|) in a neighborhood of ΩrU . Therefore ψ ∈ Psh(Ω), and ψ is clearly
an exhaustion. �

Now, we give a geometric characterization of the pseudoconvexity property when ∂Ω
is of class C2. Let ρ ∈ C2(Ω) be a defining function of Ω, i.e. a function such that

(7.9) ρ < 0 on Ω, ρ = 0 and dρ 6= 0 on ∂Ω.

The holomorphic tangent space to ∂Ω is by definition the largest complex subspace which
is contained in the tangent space T∂Ω to the boundary:

(7.9) hT∂Ω = T∂Ω ∩ JT∂Ω.

It is easy to see that hT∂Ω,z is the complex hyperplane of vectors ξ ∈ Cn such that

d′ρ(z) · ξ =
∑

16j6n

∂ρ

∂zj
ξj = 0.

The Levi form on hT∂Ω is defined at every point z ∈ ∂Ω by

(7.10) L∂Ω,z(ξ) =
1

|∇ρ(z)|
∑

j,k

∂2ρ

∂zj∂zk
ξjξk, ξ ∈ hT∂Ω,z.

The Levi form does not depend on the particular choice of ρ, as can be seen from the
following intrinsic computation of L∂Ω (we still denote by L∂Ω the associated sesquilinear
form).

(7.11) Lemma. Let ξ, η be C1 vector fields on ∂Ω with values in hT∂Ω. Then

〈[ξ, η], Jν〉 = 4 ImL∂Ω(ξ, η)

where ν is the outward normal unit vector to ∂Ω, [ , ] the Lie bracket of vector fields and
〈 , 〉 the hermitian inner product.
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Proof. Extend first ξ, η as vector fields in a neighborhood of ∂Ω and set

ξ′ =
∑

ξj
∂

∂zj
=

1

2
(ξ − iJξ), η′′ =

∑
ηk

∂

∂zk
=

1

2
(η + iJη).

As ξ, Jξ, η, Jη are tangent to ∂Ω, we get on ∂Ω :

0 = ξ′.(η′′.ρ) + η′′.(ξ′.ρ) =
∑

16j,k6n

2
∂2ρ

∂zj∂zk
ξjηk + ξj

∂ηk
∂zj

∂ρ

∂zk
+ ηk

∂ξj
∂zk

∂ρ

∂zj
.

Since [ξ, η] is also tangent to ∂Ω, we have Re〈[ξ, η], ν〉 = 0, hence 〈J [ξ, η], ν〉 is real and

〈[ξ, η], Jν〉 = −〈J [ξ, η], ν〉 = − 1

|∇ρ|
(
J [ξ, η].ρ

)
= − 2

|∇ρ| Re
(
J [ξ′, η′′].ρ

)

because J [ξ′, η′] = i[ξ′, η′] and its conjugate J [ξ′′, η′′] are tangent to ∂Ω. We find now

J [ξ′, η′′] = −i
∑

ξj
∂ηk
∂zj

∂

∂zk
+ ηk

∂ξj
∂zk

∂

∂zj
,

Re
(
J [ξ′, η′′].ρ

)
= Im

∑
ξj
∂ηk
∂zj

∂ρ

∂zk
+ ηk

∂ξj
∂zk

∂ρ

∂zj
= −2 Im

∑ ∂2ρ

∂zj∂zk
ξjηk,

〈[ξ, η], Jν〉 = 4

|∇ρ| Im
∑ ∂2ρ

∂zj∂zk
ξjηk = 4 ImL∂Ω(ξ, η). �

(7.12) Theorem. An open subset Ω ⊂ Cn with C2 boundary is pseudoconvex if and
only if the Levi form L∂Ω is semipositive at every point of ∂Ω.

Proof. Set δ(z) = d(z, ∁Ω), z ∈ Ω. Then ρ = −δ is C2 near ∂Ω and satisfies (7.9). If Ω
is pseudoconvex, the plurisubharmonicity of − log(−ρ) means that for all z ∈ Ω near ∂Ω
and all ξ ∈ Cn one has

∑

16j,k6n

( 1

|ρ|
∂2ρ

∂zj∂zk
+

1

ρ2
∂ρ

∂zj

∂ρ

∂zk

)
ξjξk > 0.

Hence
∑

(∂2ρ/∂zj∂zk)ξjξk > 0 if
∑

(∂ρ/∂zj)ξj = 0, and an easy argument shows that
this is also true at the limit on ∂Ω.

Conversely, if Ω is not pseudoconvex, Th. 7.2 and 7.7 show that − log δ is not plurisub-
harmonic in any neighborhood of ∂Ω. Hence there exists ξ ∈ Cn such that

c =
( ∂2

∂t∂t
log δ(z + tξ)

)
|t=0

> 0

for some z in the neighborhood of ∂Ω where δ ∈ C2. By Taylor’s formula, we have

log δ(z + tξ) = log δ(z) + Re(at+ bt2) + c|t|2 + o(|t|2)

with a, b ∈ C. Now, choose z0 ∈ ∂Ω such that δ(z) = |z − z0| and set

h(t) = z + tξ + eat+bt
2

(z0 − z), t ∈ C.
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Then we get h(0) = z0 and

δ(h(t)) > δ(z + tξ)− δ(z)
∣∣eat+bt2

∣∣

> δ(z)
∣∣eat+bt2

∣∣ (ec|t|2/2 − 1
)
> δ(z) c|t|2/3

when |t| is sufficiently small. Since δ(h(0)) = δ(z0) = 0, we obtain at t = 0 :

∂

∂t
δ(h(t)) =

∑ ∂δ

∂zj
(z0) h

′
j(0) = 0,

∂2

∂t∂t
δ(h(t)) =

∑ ∂2δ

∂zj∂zk
(z0) h

′
j(0)h

′
k(0) > 0,

hence h′(0) ∈ hT∂Ω,z0 and L∂Ω,z0(h
′(0)) < 0. �

(7.13) Definition. The boundary ∂Ω is said to be weakly (resp. strongly) pseudoconvex
if L∂Ω is semipositive (resp. positive definite) on ∂Ω. The boundary is said to be Levi
flat if L∂Ω ≡ 0.

(7.14) Remark. Lemma 7.11 shows that ∂Ω is Levi flat if and only if the subbundle
hT∂Ω ⊂ T∂Ω is integrable (i.e. stable under the Lie bracket). Assume that ∂Ω is of
class Ck, k > 2. Then hT∂Ω is of class Ck−1. By Frobenius’ theorem, the integrability
condition implies that hT∂Ω is the tangent bundle to a Ck foliation of ∂Ω whose leaves
have real dimension 2n − 2. But the leaves themselves must be complex analytic since
hT∂Ω is a complex vector space (cf. Lemma 7.15 below). Therefore ∂Ω is Levi flat if and
only if it is foliated by complex analytic hypersurfaces.

(7.15) Lemma. Let Y be a C1-submanifold of a complex analytic manifold X. If the
tangent space TY,x is a complex subspace of TX,x at every point x ∈ Y , then Y is complex
analytic.

Proof. Let x0 ∈ Y . Select holomorphic coordinates (z1, . . . , zn) on X centered at x0 such
that TY,x0

is spanned by ∂/∂z1, . . . , ∂/∂zp. Then there exists a neighborhood U = U ′×U ′′
of x0 such that Y ∩ U is a graph

z′′ = h(z′), z′ = (z1, . . . , zp) ∈ U ′, z′′ = (zp+1, . . . , zn)

with h ∈ C1(U ′) and dh(0) = 0. The differential of h at z′ is the composite of the
projection of Cp × {0} on TY,(z′,h(z′)) along {0} × Cn−p and of the second projection
Cn → Cn−p. Hence dh(z′) is C-linear at every point and h is holomorphic. �

§ 8. Exercises

§ 8.1. Let Ω ⊂ Cn be an open set such that

z ∈ Ω, λ ∈ C, |λ| 6 1 =⇒ λz ∈ Ω.

Show that Ω is a union of polydisks of center 0 (with arbitrary linear changes of coordinates) and infer
that the space of polynomials C[z1, . . . , zn] is dense in O(Ω) for the topology of uniform convergence on
compact subsets and in O(Ω) ∩ C0(Ω) for the topology of uniform convergence on Ω.
Hint: consider the Taylor expansion of a function f ∈ O(Ω) at the origin, writing it as a series of
homogeneous polynomials. To deal with the case of Ω, first apply a dilation to f .
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§ 8.2. Let B ⊂ C
n be the unit euclidean ball, S = ∂B and f ∈ O(B) ∩ C0(B). Our goal is to check

the following Cauchy formula:

f(w) =
1

σ2n−1

∫

S

f(z)

(1− 〈w, z〉)n
dσ(z).

a) By means of a unitary transformation and Exercise 8.1, reduce the question to the case when
w = (w1, 0, . . . , 0) and f(z) is a monomial zα.

b) Show that the integral
∫
B zαzk1 dλ(z) vanishes unless α = (k, 0, . . . , 0). Compute the value of the

remaining integral by the Fubini theorem, as well as the integrals
∫
S z

αzk1 dσ(z).

c) Prove the formula by a suitable power series expansion.

§ 8.3. A current T ∈ D′
p(M) is said to be normal if both T and dT are of order zero, i.e. have measure

coefficients.

a) If T is normal and has support contained in a C1 submanifold Y ⊂ M , show that there exists a
normal current Θ on Y such that T = j⋆Θ, where j : Y −→M is the inclusion.
Hint: if x1 = . . . = xq = 0 are equations of Y in a coordinate system (x1, . . . , xn), observe that
xjT = xjdT = 0 for 1 6 j 6 q and infer that dx1 ∧ . . . ∧ dxq can be factorized in all terms of T .

b) What happens if p > dimY ?

c) Are a) and b) valid when the normality assumption is dropped ?

§ 8.4. Let T =
∑

16j6n Tjdzj be a closed current of bidegree (0, 1) with compact support in Cn such

that d′′T = 0.

a) Show that the partial convolution S = (1/πz1) ⋆1 T1 is a solution of the equation d′′S = T .

b) Let K = SuppT . If n > 2, show that S has support in the compact set K̃ equal to the union of K
and of all bounded components of Cn rK.
Hint: observe that S is holomorphic on Cn rK and that S vanishes for |z2|+ . . .+ |zn| large.

§ 8.5. Alternative proof of the Dolbeault-Grothendieck lemma. Let v =
∑

|J|=qvJdzJ , q > 1,

be a smooth form of bidegree (0, q) on a polydisk Ω = D(0, R) ⊂ Cn, such that d′′v = 0, and let
ω = D(0, r) ⊂⊂ ω. Let k be the smallest integer such that the monomials dzJ appearing in v only
involve dz1, . . ., dzk. Prove by induction on k that the equation d′′u = v can be solved on ω.
Hint: set v = f ∧ dzk + g where f , g only involve dz1, . . ., dzk−1. Then consider v − d′′F where

F =
∑

|J|=q−1

FJdzJ , FJ (z) = (ψ(zk)fJ ) ⋆k

(
1

πzk

)
,

where ⋆k denotes the partial convolution with respect to zk, ψ(zk) is a cut-off function equal to 1 on
D(0, rk + ε) and f =

∑
|J|=q−1 fJdzJ .

§ 8.6. Construct locally bounded non continuous subharmonic functions on C.
Hint: consider eu where u(z) =

∑
j>1 2

−j log |z − 1/j|.

§ 8.7. Let ω be an open subset of Rn, n > 2, and u a subharmonic function which is not locally −∞.

a) For every open set ω ⊂⊂ Ω, show that there is a positive measure µ with support in ω and a harmonic
function h on ω such that u = N ⋆ µ+ h on ω.

b) Use this representation to prove the following properties: u ∈ Lp
loc for all p < n/(n − 2) and

∂u/∂xj ∈ Lp
loc for all p < n/(n− 1).

§ 8.8. Show that a connected open set Ω ⊂ Rn is convex if and only if Ω has a locally convex
exhaustion function ϕ.
Hint: to show the sufficiency, take a path γ : [0, 1] → Ω joining two arbitrary points a, b ∈ Ω and consider
the restriction of ϕ to [a, γ(t0)]∩Ω where t0 is the supremum of all t such that [a, γ(u)] ⊂ Ω for u ∈ [0, t].
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§ 8.9. Let r1, r2 ∈ ]1,+∞[. Consider the compact set

K = {|z1| 6 r1 , |z2| 6 1} ∪ {|z1| 6 1 , |z2| 6 r2} ⊂ C
2.

Show that the holomorphic hull of K in C2 is

K̂ = {|z1| 6 r1 , |z2| 6 r2 , |z1|
1/ log r1 |z2|

1/ log r2 6 e}.

Hint: to show that K̂ is contained in this set, consider all holomorphic monomials f(z1, z2) = zα1
1 zα2

2 .
To show the converse inclusion, apply the maximum principle to the domain |z1| 6 r1, |z2| 6 r2 on
suitably chosen Riemann surfaces zα1

1 zα2
2 = λ.

§ 8.10. Compute the rank of the Levi form of the ellipsoid |z1|
2 + |z3|

4 + |z3|
6 < 1 at every point of

the boundary.

§ 8.11. Let X be a complex manifold and let u(z) =
∑

j∈N
|fj |

2, fj ∈ O(X), be a series converging
uniformly on every compact subset of X. Prove that the limit is real analytic and that the series remains
uniformly convergent by taking derivatives term by term.
Hint: since the problem is local, take X = B(0, r), a ball in Cn. Let gj(z) = gj(z) be the conjugate
function of fj and let U(z, w) =

∑
j∈N

fj(z)gj(w) on X×X. Using the Cauchy-Schwarz inequality, show
that this series of holomorphic functions is uniformly convergent on every compact subset of X ×X.

§ 8.12. Let Ω ⊂ Cn be a bounded open set with C2 boundary.

a) Let a ∈ ∂Ω be a given point. Let en be the outward normal vector to T∂Ω,a, (e1, . . . , en−1) an
orthonormal basis of hTa(∂Ω) in which the Levi form is diagonal and (z1, . . . , zn) the associated
linear coordinates centered at a. Show that there is a neighborhood V of a such that ∂Ω ∩ V is
the graph Re zn = −ϕ(z1, . . . , zn−1, Im zn) of a function ϕ such that ϕ(z) = O(|z|2) and the matrix
∂2ϕ/∂zj∂zk(0), 1 6 j, k 6 n− 1 is diagonal.

b) Show that there exist local analytic coordinates w1 = z1, . . . , wn−1 = zn−1, wn = zn +
∑
cjkzjzk

on a neighborhood V ′ of a = 0 such that

Ω ∩ V ′ = V ′ ∩ {Rewn +
∑

16j6n

λj |wj |
2 + o(|w|2) < 0}, λj ∈ R

and that λn can be assigned to any given value by a suitable choice of the coordinates.
Hint: Consider the Taylor expansion of order 2 of the defining function ρ(z) = (Re zn + ϕ(z))(1 +
Re

∑
cjzj) where cj ∈ C are chosen in a suitable way.

c) Prove that ∂Ω is strongly pseudoconvex at a if and only if there is a neighborhood U of a and a
biholomorphism Φ of U onto some open set of Cn such that Φ(Ω ∩ U) is strongly convex.

d) Assume that the Levi form of ∂Ω is not semipositive. Show that all holomorphic functions f ∈ O(Ω)
extend to some (fixed) neighborhood of a.
Hint: assume for example λ1 < 0. For ε > 0 small, show that Ω contains the Hartogs figure

{ε/2 < |w1| < ε} × {|wj | < ε2}1<j<n × {|wn| < ε3/2 , Rewn < ε3} ∪

{|w1| < ε} × {|wj | < ε2}1<j<n × {|wn| < ε3/2 , Rewn < −ε2}.

§ 8.13. Let Ω ⊂ Cn be a bounded open set with C2 boundary and ρ ∈ C2(Ω,R) such that ρ < 0 on
Ω, ρ = 0 and dρ 6= 0 on ∂Ω. Let f ∈ C1(∂Ω,C) be a function satisfying the tangential Cauchy-Riemann
equations

ξ′′ · f = 0, ∀ξ ∈ hT∂Ω, ξ′′ =
1

2
(ξ + iJξ).

a) Let f0 be a C1 extension of f to Ω. Show that d′′f0 ∧ d′′ρ = 0 on ∂Ω and infer that v = 1lΩd
′′f0 is

a d′′-closed current on Cn.

b) Show that the solution u of d′′u = v provided by Cor. 3.27 is continuous and that f admits an

extension f̃ ∈ O(Ω) ∩ C0(Ω) if ∂Ω is connected.
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§ 8.14. Let Ω ⊂ C
n be a bounded pseudoconvex domain with C2 boundary and let δ(z) = d(z, ∁Ω)

be the euclidean distance to the boundary.

a) Use the plurisubharmonicity of − log δ to prove the following fact: for every ε > 0 there is a constant
Cε > 0 such that

−Hδz(ξ)

δ(z)
+ ε

|d′δz .ξ|2

|δ(z)|2
+ Cε|ξ|

2 > 0

for ξ ∈ C
n and z near ∂Ω.

b) Set ψ(z) = − log δ(z) +K|z|2. Show that for K large and α small the function

ρ(z) = − exp
(
− αψ(z)

)
= −

(
e−K|z|2δ(z)

)α

is plurisubharmonic.

c) Prove the existence of a plurisubharmonic exhaustion function u : Ω → [−1, 0[ of class C2 such that
|u(z)| has the same order of magnitude as δ(z)α when z tends to ∂Ω.
Hint: consult [Diederich-Fornaess 1976].

§ 8.15. Let Ω = ω + iRn be a connected tube in Cn of base ω.

a) Assume first that n = 2. Let T ⊂ R2 be the triangle x1 > 0, x2 > 0, x1 + x2 6 1, and assume that
the two edges [0, 1]×{0} and {0}× [0, 1] are contained in ω. Show that every holomorphic function
f ∈ O(Ω) extends to a neighborhood of T + iR2.
Hint: let π : C2 −→ R2 be the projection on the real part and Mε the intersection of π−1((1 + ε)T )
with the Riemann surface z1 + z2 − ε

2
(z21 + z22) = 1 (a non degenerate affine conic). Show that Mε

is compact and that

π(∂Mε) ⊂ ([0, 1 + ε]× {0}) ∪ ({0} × [0, 1 + ε]) ⊂ ω,

π([0, 1] ·Mε) ⊃ T

for ε small. Use the Cauchy formula along ∂Mε (in some parametrization of the conic) to obtain an
extension of f to [0, 1] ·Mε + iRn.

b) In general, show that every f ∈ O(Ω) extends to the convex hull Ω̂.
Hint: given a, b ∈ ω, consider a polygonal line joining a and b and apply a) inductively to obtain an
extension along [a, b] + iRn.

§ 8.16. For each integer ν > 1, consider the algebraic variety

Xν =
{
(z, w, t) ∈ C

3 ; wt = pν(z)
}
, pν(z) =

∏

16k6ν

(z − 1/k),

and the map jν : Xν → Xν+1 such that

jν (z, w, t) =

(
z, w, t

(
z −

1

ν + 1

))
.

a) Show that Xν is a Stein manifold, and that jν is an embedding of Xν onto an open subset of Xν+1.

b) Define X = lim(Xν , jν), and let πν : Xν → C2 be the projection to the first two coordinates. Since
πν+1 ◦ jν = πν , there exists a holomorphic map π : X → C2, π = limπν . Show that

C
2
r π(X) =

{
(z, 0) ∈ C

2 ; z 6= 1/ν, ∀ν ∈ N, ν > 1
}
,

and especially, that (0, 0) /∈ π(X).

c) Consider the compact set

K = π−1
(
{(z, w) ∈ C

2 ; |z| 6 1, |w| = 1}
)
.

By looking at points of the forms (1/ν,w, 0), |w| = 1, show that π−1(1/ν, 1/ν) ∈ K̂
O(X). Conclude

from this that X is not holomorphically convex (this example is due to [Fornaess 1977]).
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§ 8.17. Let X be a complex manifold, and let π : X̃ → X be a holomorphic unramified covering of X

(X and X̃ are assumed to be connected).

a) Let g be a complete riemannian metric on X, and let d̃ be the geodesic distance on X̃ associated

to g̃ = π⋆g (see VIII-2.3 for definitions). Show that g̃ is complete and that δ0(x) := d̃(x, x0) is a

continuous exhaustion function on X̃, for any given point x0 ∈ X̃.

b) Let (Uα) be a locally finite covering of X by open balls contained in coordinate open sets, such
that all intersections Uα ∩ Uβ are diffeomorphic to convex open sets (see Lemma IV-6.9). Let θα
be a partition of unity subordinate to the covering (Uα), and let δεα be the convolution of δ0 with
a regularizing kernel ρεα on each piece of π−1(Uα) which is mapped biholomorphically onto Uα.
Finally, set δ =

∑
(θα ◦π)δεα . Show that if (εα) is a collection of sufficiently small positive numbers,

then δ is a smooth exhaustion function on X̃.

c) Using the fact that δ0 is 1-Lipschitz with respect to d̃, show that derivatives ∂|ν|δ(x)/∂xν of a given
order with respect to coordinates in Uα are uniformly bounded in all components of π−1(Uα), at
least when x lies in the compact subset Supp θα. Conclude from this that there exists a positive
hermitian form with continuous coefficients on X such that Hδ > −π⋆γ on X̃.

d) If X is strongly pseudoconvex, show that X̃ is also strongly pseudoconvex.
Hint: let ψ be a smooth strictly plurisubharmonic exhaustion function on X. Show that there exists
a smooth convex increasing function χ : R → R such that δ + χ ◦ ψ is strictly plurisubharmonic.
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Chapter II

Coherent Sheaves and Analytic Spaces

The chapter starts with rather general and abstract concepts concerning sheaves and ringed spaces.
Introduced in the decade 1950-1960 by Leray, Cartan, Serre and Grothendieck, sheaves and ringed
spaces have since been recognized as the adequate tools to handle algebraic varieties and analytic spaces
in a unified framework. We then concentrate ourselves on the theory of complex analytic functions.
The second section is devoted to a proof of the Weierstrass preparation theorem, which is nothing but
a division algorithm for holomorphic functions. It is used to derive algebraic properties of the ring
On of germs of holomorphic functions in Cn. Coherent analytic sheaves are then introduced and the
fundamental coherence theorem of Oka is proved. Basic properties of analytic sets are investigated
in detail: local parametrization theorem, Hilbert’s Nullstellensatz, coherence of the ideal sheaf of an
analytic set, analyticity of the singular set. The formalism of complex spaces is then developed and
gives a natural setting for the proof of more global properties (decomposition into global irreducible
components, maximum principle). After a few definitions concerning cycles, divisors and meromorphic
functions, we investigate the important notion of normal space and establish the Oka normalization
theorem. Next, the Remmert-Stein extension theorem and the Remmert proper mapping theorem on
images of analytic sets are proved by means of semi-continuity results on the rank of morphisms. As an
application, we give a proof of Chow’s theorem asserting that every analytic subset of Pn is algebraic.
Finally, the concept of analytic scheme with nilpotent elements is introduced as a generalization of
complex spaces, and we discuss the concepts of bimeromorphic maps, modifications and blowing-up.

§ 1. Presheaves and Sheaves

§ 1.A. Main Definitions.

Sheaves have become a very important tool in analytic or algebraic geometry as
well as in algebraic topology. They are especially useful when one wants to relate global
properties of an object to its local properties (the latter being usually easier to establish).
We first introduce the axioms of presheaves and sheaves in full generality and give some
basic examples.

(1.1) Definition. Let X be a topological space. A presheaf A on X consists of the
following data:

a) a collection of non empty sets A(U) associated with every open set U ⊂ X,

b) a collection of maps ρU,V : A(V ) −→ A(U) defined whenever U ⊂ V and satisfying
the transitivity property

c) ρU,V ◦ ρV,W = ρU,W for U ⊂ V ⊂W, ρU,U = IdU for every U .

The set A(U) is called the set of sections of the presheaf A over U .
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Most often, the presheaf A is supposed to carry an additional algebraic structure.
For instance:

(1.2) Definition. A presheaf A is said to be a presheaf of abelian groups (resp. rings, R-
modules, algebras) if all sets A(U) are abelian groups (resp. rings, R-modules, algebras)
and if the maps ρU,V are morphisms of these algebraic structures. In this case, we always
assume that A(∅) = {0}.

(1.3) Example. If we assign to each open set U ⊂ X the set C(U) of all real valued
continuous functions on U and let ρU,V be the obvious restriction morphism C(V ) →
C(U), then C is a presheaf of rings on X . Similarly if X is differentiable (resp. complex
analytic) manifold, there are well defined presheaves of rings Ck of functions of class Ck

(resp. O) of holomorphic functions) on X . Because of these examples, the maps ρU,V in
Def. 1.1 are often viewed intuitively as “restriction homomorphisms”, although the sets
A(U) are not necessarily sets of functions defined over U . For the simplicity of notation
we often just write ρU,V (f) = f↾U whenever f ∈ A(V ), V ⊃ U . �

For the above presheaves C, Ck, O, the properties of functions under consideration
are purely local. As a consequence, these presheaves satisfy the following additional
gluing axioms, where (Uα) and U =

⋃
Uα are arbitrary open subsets of X :

If Fα ∈ A(Uα) are such that ρUα∩Uβ ,Uα
(Fα) = ρUα∩Uβ,Uβ

(Fβ)(1.4′)

for all α, β, there exists F ∈ A(U) such that ρUα,U (F ) = Fα ;

(1.4′′) If F,G ∈ A(U) and ρUα,U (F ) = ρUα,U (G) for all α, then F = G ;

in other words, local sections over the sets Uα can be glued together if they coincide in
the intersections and the resulting section on U is uniquely defined. Not all presheaves
satisfy (1.4′) and (1.4′′):

(1.5) Example. Let E be an arbitrary set with a distinguished element 0 (e.g. an abelian
group, a R-module, . . .). The constant presheaf EX on X is defined to be EX(U) = E
for all ∅ 6= U ⊂ X and EX(∅) = {0}, with restriction maps ρU,V = IdE if ∅ 6= U ⊂ V and
ρU,V = 0 if U = ∅. Then axiom (1.4′) is not satisfied if U is the union of two disjoint
open sets U1, U2 and E contains a non zero element.

(1.6) Definition. A presheaf A is said to be a sheaf if it satisfies the gluing axioms
(1.4′) and (1.4′′).

If A, B are presheaves of abelian groups (or of some other algebraic structure) on
the same space X , a presheaf morphism ϕ : A → B is a collection of morphisms ϕU :
A(U) → B(U) commuting with the restriction morphisms, i.e. such that for each pair
U ⊂ V there is a commutative diagram

A(V )
ϕV−→B(V )

ρAU,V
y yρBU,V

A(U)
ϕU−→B(U).
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We say that A is a subpresheaf ofB in the case where ϕU : A(U) ⊂B(U) is the inclusion
morphism; the commutation property then means that ρBU,V (A(V )) ⊂ A(U) for all U ,

V , and that ρAU,V coincides with ρBU,V on A(V ). If A is a subpresheaf of a presheaf B of
abelian groups, there is a presheaf quotient C =B/A defined by C(U) = B(U)/A(U).
In a similar way, one defines the presheaf kernel (resp. presheaf image, presheaf cokernel)
of a presheaf morphism ϕ : A→B to be the presheaves

U 7→ KerϕU , U 7→ ImϕU , U 7→ CokerϕU .

The direct sum A⊕B of presheaves of abelian groups A, B is the presheaf U 7→ A(U)⊕
B(U), the tensor product A ⊗B of presheaves of R-modules is U 7→ A(U) ⊗R B(U),
etc . . .

(1.7) Remark. The reader should take care of the fact that the presheaf quotient of
a sheaf by a subsheaf is not necessarily a sheaf. To give a specific example, let X = S1

be the unit circle in R2, let C be the sheaf of continuous complex valued functions and
Z the subsheaf of integral valued continuous functions (i.e. locally constant functions to
Z). The exponential map

ϕ = exp(2πi•) : C −→ C⋆

is a morphism from C to the sheaf C⋆ of invertible continuous functions, and the kernel
of ϕ is precisely Z. However ϕU is surjective for all U 6= X but maps C(X) onto the
multiplicative subgroup of continuous functions of C⋆(X) of degree 0. Therefore the
quotient presheaf C/Z is not isomorphic with C⋆, although their groups of sections
are the same for all U 6= X . Since C⋆ is a sheaf, we see that C/Z does not satisfy
property (1.4′). �

In order to overcome the difficulty appearing in Example 1.7, it is necessary to intro-
duce a suitable process by which we can produce a sheaf from a presheaf. For this, it is
convenient to introduce a slightly modified viewpoint for sheaves.

(1.8) Definition. If A is a presheaf, we define the set Ãx of germs of A at a point
x ∈ X to be the abstract inductive limit

Ãx = lim−→
U∋x

(
A(U), ρU,V

)
.

More explicitely, Ãx is the set of equivalence classes of elements in the disjoint union∐
U∋xA(U) taken over all open neighborhoods U of x, with two elements F1 ∈ A(U1),

F2 ∈ A(U2) being equivalent, F1 ∼ F2, if and only if there is a neighborhood V ⊂ U1, U2

such that F1↾V = F2↾V , i.e., ρV U1
(F1) = ρV U2

(F2). The germ of an element F ∈ A(U)
at a point x ∈ U will be denoted by Fx.

Let A be an arbitrary presheaf. The disjoint union Ã =
∐
x∈X Ãx can be equipped

with a natural topology as follows: for every F ∈ A(U), we set

ΩF,U =
{
Fx ; x ∈ U

}

and choose the ΩF,U to be a basis of the topology of Ã ; note that this family is stable
by intersection: ΩF,U ∩ΩG,V = ΩH,W where W is the (open) set of points x ∈ U ∩ V at



68 Chapter II. Coherent Sheaves and Analytic Spaces

which Fx = Gx and H = ρW,U(F ). The obvious projection map π : Ã→ X which sends

Ãx to {x} is then a local homeomorphism (it is actually a homeomorphism from ΩF,U
onto U). This leads in a natural way to the following definition:

(1.9) Definition. Let X and S be topological spaces (not necessarily Hausdorff), and
let π : S −→ X be a mapping such that

a) π maps S onto X ;

b) π is a local homeomorphism, that is, every point in S has an open neighborhood which
is mapped homeomorphically by π onto an open subset of X.

Then S is called a sheaf-space on X and π is called the projection of S on X. If x ∈ X,
then Sx = π−1(x) is called the stalk of S at x.

If Y is a subset of X , we denote by Γ(Y,S) the set of sections of S on Y , i.e. the set
of continuous functions F : Y → S such that π ◦ F = IdY . It is clear that the presheaf
defined by the collection of sets S′(U) := Γ(U,S) for all open sets U ⊂ X together with
the restriction maps ρU,V satisfies axioms (1.4′) and (1.4′′), hence S′ is a sheaf. The set
of germs of S′ at x is in one-to-one correspondence with the stalk Sx = π−1(x), thanks
to the local homeomorphism assumption 1.9 b). This shows that one can associate in a
natural way a sheaf S′ to every sheaf-space S, and that the sheaf-space (S′)∼ can be
considered to be identical to the original sheaf-space S. Since the assignment S 7→ S

′

from sheaf-spaces to sheaves is an equivalence of categories, we will usually omit the
prime sign in the notation of S′ and thus use the same symbols for a sheaf-space and its
associated sheaf of sections; in a corresponding way, we write Γ(U,S) = S(U) when U
is an open set.

Conversely, given a presheaf A on X , we have an associated sheaf-space Ã and an
obvious presheaf morphism

(1.10) A(U) −→ Ã′(U) = Γ(U, Ã), F 7−→ F̃ = (U ∋ x 7→ Fx).

This morphism is clearly injective if and only if A satisfies axiom (1.4′′), and it is not

difficult to see that (1.4′) and (1.4′′) together imply surjectivity. Therefore A → Ã

′ is
an isomorphism if and only if A is a sheaf. According to the equivalence of categories
between sheaves and sheaf-spaces mentioned above, we will use from now on the same
symbol Ã for the sheaf-space and its associated sheaf Ã′; one says that Ã is the sheaf
associated with the presheaf A. If A itself is a sheaf, we will again identify Ã and A, but
we will of course keep the notational difference for a presheaf A which is not a sheaf.

(1.11) Example. The sheaf associated to the constant presheaf of stalk E over X is
the sheaf of locally constant functions X → E. This sheaf will be denoted merely by EX
or E if there is no risk of confusion with the corresponding presheaf. In Example 1.7,
we have Z = ZX and the sheaf (C/ZX)∼ associated with the quotient presheaf C/ZX
is isomorphic to C⋆ via the exponential map. �

In the sequel, we usually work in the category of sheaves rather than in the category
of presheaves themselves. For instance, the quotient B/A of a sheaf B by a subsheaf A
generally refers to the sheaf associated with the quotient presheaf: its stalks are equal
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to Bx/Ax, but a section G of B/A over an open set U need not necessarily come from
a global section of B(U) ; what can be only said is that there is a covering (Uα) of U
and local sections Fα ∈B(Uα) representing G↾Uα

such that (Fβ −Fα)↾Uα∩Uβ
belongs to

A(Uα ∩ Uβ). A sheaf morphism ϕ : A → B is said to be injective (resp. surjective) if
the germ morphism ϕx : Ax →Bx is injective (resp. surjective) for every x ∈ X . Let us
note again that a surjective sheaf morphism ϕ does not necessarily give rise to surjective
morphisms ϕU : A(U)→B(U).

§ 1.B. Direct and Inverse Images of Sheaves

Let X , Y be topological spaces and let f : X → Y be a continuous map. If A is a
presheaf on X , the direct image f⋆A is the presheaf on Y defined by

(1.12) f⋆A(U) = A
(
f−1(U)

)

for all open sets U ⊂ Y . When A is a sheaf, it is clear that f⋆A also satisfies axioms
(1.4′) and (1.4′′), thus f⋆A is a sheaf. Its stalks are given by

(1.13) (f⋆A)y = lim−→
V ∋y

A

(
f−1(V )

)

where V runs over all open neighborhoods of y ∈ Y .

Now, letB be a sheaf on Y , viewed as a sheaf-space with projection map π :B→ Y .
We define the inverse image f−1B by

(1.14) f−1B =B×Y X =
{
(s, x) ∈B×X ; π(s) = f(x)

}

with the topology induced by the product topology on B × X . It is then easy to see
that the projection π′ = pr2 : f−1B→ X is a local homeomorphism, therefore f−1B is
a sheaf on X . By construction, the stalks of f−1B are

(1.15) (f−1B)x =Bf(x),

and the sections σ ∈ f−1B(U) can be considered as continuous mappings s : U →B
such that π ◦ σ = f . In particular, any section s ∈ B(V ) on an open set V ⊂ Y has a
pull-back

(1.16) f⋆s = s ◦ f ∈ f−1B
(
f−1(V )

)
.

There are always natural sheaf morphisms

(1.17) f−1f⋆A −→ A, B −→ f⋆f
−1
B

defined as follows. A germ in (f−1f⋆A)x = (f⋆A)f(x) is defined by a local section
s ∈ (f⋆A)(V ) = A(f−1(V )) for some neighborhood V of f(x) ; this section can be
mapped to the germ sx ∈ Ax. In the opposite direction, the pull-back f⋆s of a section
s ∈B(V ) can be seen by (1.16) as a section of f⋆f

−1
B(V ). It is not difficult to see that

these natural morphisms are not isomorphisms in general. For instance, if f is a finite
covering map with q sheets and if we take A = EX , B = EY to be constant sheaves,
then f⋆EX ≃ EqY and f−1EY = EX , thus f

−1f⋆EX ≃ EqX and f⋆f
−1EY ≃ EqY .
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§ 1.C. Ringed Spaces

Many natural geometric structures considered in analytic or algebraic geometry can
be described in a convenient way as topological spaces equipped with a suitable “struc-
ture sheaf” which, most often, is a sheaf of commutative rings. For instance, a lot of
properties of Ck differentiable (resp. real analytic, complex analytic) manifolds can be
described in terms of their sheaf of rings CkX of differentiable functions (resp. CωX of
real analytic functions, OX of holomorphic functions). We first recall a few standard
definitions concerning rings, referring to textbooks on algebra for more details (see e.g.
[Lang 1965]).

(1.18) Some definitions and conventions about rings. All our rings R are supposed
implicitly to have a unit element 1R (if R = {0}, we agree that 1R = 0R ), and a ring
morphism R → R′ is supposed to map 1R to 1R′ . In the subsequent definitions, we
assume that all rings under consideration are commutative.

a) An ideal I ⊂ R is said to be prime if xy ∈ I implies x ∈ I or y ∈ I, i.e., if the
quotient ring R/I is entire.

b) An ideal I ⊂ R is said to be maximal if I 6= R and there are no ideals J such that
I ( J ( R (equivalently, if the quotient ring R/I is a field).

c) The ring R is said to be a local ring if R has a unique maximal ideal m (equivalently,
if R has an ideal m such that all elements of R rm are invertible). Its residual field
is defined to be the quotient field R/m.

d) The ring R is said to be Noetherian if every ideal I ⊂ R is finitely generated (equiva-
lently, if every increasing sequence of ideals I1 ⊂ I2 ⊂ . . . is stationary).

e) The radical
√
I of an ideal I is the set of all elements x ∈ R such that some power

xm, m ∈ N⋆, lies in in I. Then
√
I is again an ideal of R.

f) The nilradical N(R) =
√
{0} is the ideal of nilpotent elements of R. The ring R is

said to be reduced if N(R) = {0}. Otherwise, its reduction is defined to be the reduced
ring R/N(R).

We now introduce the general notion of a ringed space.

(1.19) Definition. A ringed space is a pair (X,RX) consisting of a topological space
X and of a sheaf of rings RX on X, called the structure sheaf. A morphism

F : (X,RX)→ (Y,RY )

of ringed spaces is a pair (f, F ⋆) where f : X → Y is a continuous map and

F ⋆ : f−1RY → RX , F ⋆x : RY,f(x) → RX,x

a homomorphism of sheaves of rings on X, called the comorphism of F .

If F : (X,RX) → (Y,RY ) and G : (Y,RY ) → (Z,RZ) are morphisms of ringed
spaces, the composite G ◦ F is the pair consisting of the map g ◦ f : X → Z and of the
comorphism (G ◦ F )⋆ = F ⋆ ◦ f−1G⋆ :

(1.20) F ⋆ ◦ f−1G⋆ : f−1g−1RZ
f−1G⋆

−−−→ f−1RY
F ⋆

−−→ RX ,
F ⋆x ◦G⋆f(x) : RZ,g◦f(x) −−−→ RY,f(x) −−→ RX,x.



§ 1. Presheaves and Sheaves 71

We say of course that F is an isomorphism of ringed spaces if there exists G such that
G ◦ F = IdX and F ◦G = IdY .

If (X,RX) is a ringed space, the nilradical of RX defines an ideal subsheaf NX

of RX , and the identity map IdX : X → X together with the ring homomorphism
RX → RX/NX defines a ringed space morphism

(1.21) (X,RX/NX)→ (X,RX)

called the reduction morphism. Quite often, the letter X by itself is used to denote the
ringed space (X,RX) ; we then denote by Xred = (X,RX/NX) its reduction. The ringed
space X is said to be reduced ifNX = 0, in which case the reduction morphism Xred → X
is an isomorphism. In all examples considered later on in this book, the structure sheaf
RX will be a sheaf of local rings over some field k. The relevant definition is as follows.

(1.22) Definition.

a) A local ringed space is a ringed space (X,RX) such that all stalks RX,x are local
rings. The maximal ideal of RX,x will be denoted by mX,x. A morphism F = (f, F ⋆) :
(X,RX) → (Y,RY ) of local ringed spaces is a morphism of ringed spaces such that
F ⋆x (mY,f(x)) ⊂ mX,x at any point x ∈ X (i.e., F ⋆x is a “local” homomorphism of
rings).

b) A local ringed space over a field k is a local ringed space (X,RX) such that all rings
RX,x are local k-algebras with residual field RX,x/mX,x ≃ k. A morphism F between
such spaces is supposed to have its comorphism defined by local k-homomorphisms
F ⋆x : RY,f(x) → RX,x.

If (X,RX) is a local ringed space over k, we can associate to each section s ∈ RX(U)
a function

s : U → k, x 7→ s(x) ∈ k = RX,x/mX,x,

and we get a sheaf morphism RX → RX onto a subsheaf of rings RX of the sheaf of
functions from X to k. We clearly have a factorization

RX → RX/NX → RX ,

and thus a corresponding factorization of ringed space morphisms (with IdX as the
underlying set theoretic map)

Xst-red → Xred → X

where Xst-red = (X,RX) is called the strong reduction of (X,RX). It is easy to see that
Xst-red is actually a reduced local ringed space over k. We say that X is strongly reduced
if RX → RX is an isomorphism, that is, if RX can be identified with a subsheaf of
the sheaf of functions X → k (in our applications to the theory of algebraic or analytic
schemes, the concepts of reduction and strong reduction will actually be the same ; in
general, these notions differ, see Exercise ??.??). It is important to observe that reduction
(resp. strong reduction) is a fonctorial process:
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if F = (f, F ⋆) : (X,RX)→ (Y,RY ) is a morphism of ringed spaces (resp. of local ringed
spaces over k), there are natural reductions

Fred = (f, F ⋆red) : Xred → Yred, F ⋆red : RY,f(x)/NY,f(x) → RX,x/NX,x,

Fst-red = (f, f⋆) : Xst-red → Yst-red, f⋆ : RY,f(x) → RX,x, s 7→ s ◦ f

where f⋆ is the usual pull-back comorphism associated with f . Therefore, if (X,RX)
and (Y,RY ) are strongly reduced, the morphism F is completely determined by the
underlying set-theoretic map f . Our first basic examples of (strongly reduced) ringed
spaces are the various types of manifolds already defined in Chapter I. The language of
ringed spaces provides an equivalent but more elegant and more intrinsic definition.

(1.23) Definition. Let X be a Hausdorff separable topological space. One can define
the category of Ck, k ∈ N ∪ {∞, ω}, differentiable manifolds (resp. complex analytic
manifolds) to be the category of reduced local ringed spaces (X,RX) over R (resp. over C),
such that every point x ∈ X has a neighborhood U on which the restriction (U,RX↾U ) is
isomorphic to a ringed space (Ω,CkΩ) where Ω ⊂ Rn is an open set and CkΩ is the sheaf
of Ck differentiable functions (resp. (Ω,OΩ), where Ω ⊂ Cn is an open subset, and OΩ

is the sheaf of holomorphic functions on Ω).

We say that the ringed spaces (Ω,CkΩ) and (Ω,OΩ) are the models of the category
of differentiable (resp. complex analytic) manifolds, and that a general object (X,RX)
in the category is locally isomorphic to one of the given model spaces. It is easy to see
that the corresponding ringed spaces morphisms are nothing but the usual concepts of
differentiable and holomorphic maps.

§ 1.D. Algebraic Varieties over a Field

As a second illustration of the notion of ringed space, we present here a brief intro-
duction to the formalism of algebraic varieties, referring to [Hartshorne 1977] or [EGA
1967] for a much more detailed exposition. Our hope is that the reader who already has
some background of analytic or algebraic geometry will find some hints of the strong
interconnections between both theories. Beginners are invited to skip this section and
proceed directly to the theory of complex analytic sheaves in §,2. All rings or algebras
occurring in this section are supposed to be commutative rings with unit.

§ 1.D.1. Affine Algebraic Sets. Let k be an algebraically closed field of any characteristic.
An affine algebraic set is a subset X ⊂ kN of the affine space kN defined by an arbitrary
collection S ⊂ k[T1, . . . , TN ] of polynomials, that is,

X = V (S) =
{
(z1, . . . , zN ) ∈ kN ; P (z1, . . . , zN ) = 0, ∀P ∈ S

}
.

Of course, if J ⊂ k[T1, . . . , TN ] is the ideal generated by S, then V (S) = V (J). As
k[T1, . . . , TN ] is Noetherian, J is generated by finitely many elements (P1, . . . , Pm), thus
X = V ({P1, . . . , Pm}) is always defined by finitely many equations. Conversely, for any
subset Y ⊂ kN , we consider the ideal I(Y ) of k[T1, . . . , TN ], defined by

I(Y ) =
{
P ∈ k[T1, . . . , TN ] ; P (z) = 0, ∀z ∈ Y

}
.

Of course, if Y ⊂ kN is an algebraic set, we have V (I(Y )) = Y . In the opposite direction,
we have the following fundamental result.
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(1.24) Hilbert’s Nullstellensatz (see [Lang 1965]). If J ⊂ k[T1, . . . , TN ] is an ideal,
then I(V (J)) =

√
J .

If X = V (J) ⊂ kN is an affine algebraic set, we define the (reduced) ring O(X) of
algebraic functions on X to be the set of all functions X → k which are restrictions of
polynomials, i.e.,

(1.25) O(X) = k[T1, . . . , TN ]/I(X) = k[T1, . . . , TN ]/
√
J.

This is clearly a reduced k-algebra. An (algebraic) morphism of affine algebraic sets
X = V (J) ⊂ kN , Y = V (J ′) ⊂ kN

′

is a map f : Y → X which is the restriction of a
polynomial map kN

′

tokN . We then get a k-algebra homomomorphism

f⋆ : O(X)→ O(Y ), s 7→ s ◦ f,

called the comorphism of f . In this way, we have defined a contravariant fonctor

(1.26) X 7→ O(X), f 7→ f⋆

from the category of affine algebraic sets to the category of finitely generated reduced
k-algebras.

We are going to show the existence of a natural fonctor going in the opposite direction.
In fact, let us start with an arbitrary finitely generated algebra A (not necessarily reduced
at this moment). For any choice of generators (g1, . . . , gN) of A we get a surjective
morphism of the polynomial ring k[T1, . . . , TN ] onto A,

k[T1, . . . , TN ]→ A, Tj 7→ gj ,

and thus A ≃ k[T1, . . . , TN ]/J with the ideal J being the kernel of this morphism. It is
well-known that every maximal ideal m of A has codimension 1 in A (see [Lang 1965]), so
that m gives rise to a k-algebra homomorphism A→ A/m = k. We thus get a bijection

Homalg(A, k)→ Spm(A), u 7→ Keru

between the set of k-algebra homomorphisms and the set Spm(A) of maximal ideals
of A. In fact, if A = k[T1, . . . , TN ]/J , an element ϕ ∈ Homalg(A, k) is completely
determined by the values zj = ϕ(Tj mod J), and the corresponding algebra homomor-
phism k[T1, . . . , TN ] → k, P 7→ P (z1, . . . , zN ) can be factorized mod J if and only if
z = (z1, . . . , zN ) ∈ kN satisfies the equations

P (z1, . . . , zN ) = 0, ∀P ∈ J.

We infer from this that

Spm(A) ≃ V (J) =
{
(z1, . . . , zN ) ∈ kN ; P (z1, . . . , zN ) = 0, ∀P ∈ J

}

can be identified with the affine algebraic set V (J) ⊂ kN . If we are given an algebra
homomorphism Φ : A → B of finitely generated k-algebras we get a corresponding map
Spm(Φ) : Spm(B)→ Spm(A) described either as

Spm(B)→ Spm(A), m 7→ Φ−1(m) or

Homalg(B, k)→ Homalg(A, k), v 7→ v ◦ Φ.
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If B = k[T ′1, . . . , T
′
N ′ ]/J ′ and Spm(B) = V (J ′) ⊂ kN

′

, it is easy to see that Spm(Φ) :
Spm(B)→ Spm(A) is the restriction of the polynomial map

f : kN
′ → kN , w 7→ f(w) = (P1(w), . . . , PN (w)),

where Pj ∈ k[T ′1, . . . , T ′N ′ ] are polynomials such that Pj = Φ(Tj)modJ ′ in B. We have
in this way defined a contravariant fonctor

(1.27) A 7→ Spm(A), Φ 7→ Spm(Φ)

from the category of finitely generated k-algebras to the category of affine algebraic sets.

Since A = k[T1, . . . , TN ]/J and its reduction A/N(A) = k[T1, . . . , TN ]/
√
J give rise

to the same algebraic set

V (J) = Spm(A) = Spm(A/N(A)) = V (
√
J),

we see that the category of affine algebraic sets is actually equivalent to the subcategory
of reduced finitely generated k-algebras.

(1.28) Example. The simplest example of an affine algebraic set is the affine space

kN = Spm(k[T1, . . . , TN ]),

in particular Spm(k) = k0 is just one point. We agree that Spm({0}) = ∅ (observe that
V (J) = ∅ when J is the unit ideal in k[T1, . . . , TN ]).

§ 1.D.2. Zariski Topology and Affine Algebraic Schemes. Let A be a finitely generated
algebra and X = Spm(A). To each ideal a ⊂ A we associate the zero variety V (a) ⊂ X
which consists of all elements m ∈ X = Spm(A) such that m ⊃ a ; if

A ≃ k[T1, . . . , TN ]/J and X ≃ V (J) ⊂ kN ,

then V (a) can be identified with the zero variety V (Ja) ⊂ X of the inverse image Ja of
a in k[T1, . . . , TN ]. For any family (aα) of ideals in A we have

V (
∑

aα) =
⋂
V (aα), V (a1) ∪ V (a2) = V (a1a2),

hence there exists a unique topology on X such that the closed sets consist precisely of
all algebraic subsets (V (a))a⊂A of X . This topology is called the Zariski topology. The
Zariski topology is almost never Hausdorff (for example, if X = k is the affine line, the
open sets are ∅ and complements of finite sets, thus any two nonempty open sets have
nonempty intersection). However, X is a Noetherian space, that is, a topological space
in which every decreasing sequence of closed sets is stationary; an equivalent definition
is to require that every open set is quasi-compact (from any open covering of an open
set, one can extract a finite covering).

We now come to the concept of affine open subsets. For s ∈ A, the open set D(s) =
X r V (s) can be given the structure of an affine algebraic variety. In fact, if A =
k[T1, . . . , TN ]/J and s is represented by a polynomial in k[T1, . . . , TN ], the localized ring
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A[1/s] can be written as A[1/s] = k[T1, . . . , TN , TN+1]/Js where Js = J [TN+1]+(sTN+1−
1), thus

V (Js) = {(z, w) ∈ V (J)× k ; s(z)w = 1} ≃ V (I)r s−1(0)

and D(s) can be identified with Spm(A[1/s]). We have D(s1) ∩ D(s2) = D(s1s2), and
the sets (D(s))s∈A are easily seen to be a basis of the Zariski topology on X . The open
sets D(s) are called affine open sets. Since the open sets D(s) containing a given point
x ∈ X form a basis of neighborhoods, one can define a sheaf space OX such that the ring
of germs OX,x is the inductive limit

OX,x = lim−→
D(s)∋x

A[1/s] = {fractions p/q ; p, q ∈ A, q(x) 6= 0}.

This is a local ring with maximal ideal

mX,x = {p/q ; p, q ∈ A, p(x) = 0, q(x) 6= 0},

and residual field OX,x/mX,x = k. In this way, we get a ringed space (X,OX) over k. It
is easy to see that Γ(X,OX) coincides with the finitely generated k-algebra A. In fact,
from the definition of OX , a global section is obtained by gluing together local sections
pj/sj on affine open sets D(sj) with

⋃
D(sj) = X, 1 6 j 6 m. This means that the ideal

a = (s1, . . . , sm) ⊂ A has an empty zero variety V (a), thus a = A and there are elements
uj ∈ A with

∑
ujsj = 1. The compatibility condition pj/sj = pk/sk implies that these

elements are induced by

∑
ujpj/

∑
ujsj =

∑
ujpj ∈ A,

as desired. More generally, since the open sets D(s) are affine, we get

Γ(D(s),OX) = A[1/s].

It is easy to see that the ringed space (X,OX) is reduced if and only if A itself is reduced;
in this case, X is even strongly reduced as Hilbert’s Nullstellensatz shows. Otherwise,
the reduction Xred can obtained from the reduced algebra Ared = A/N(A).

Ringed spaces (X,OX) as above are called affine algebraic schemes over k (although
substantially different from the usual definition, our definition can be shown to be equiv-
alent in this special situation; compare with [Hartshorne 1977]); see also Exercise ??.??).
The category of affine algebraic schemes is equivalent to the category of finitely generated
k-algebras (with the arrows reversed).

§ 1.D.3. Algebraic Schemes. Algebraic schemes over k are defined to be ringed spaces
over k which are locally isomorphic to affine algebraic schemes, modulo an ad hoc sepa-
ration condition.

(1.29) Definition. An algebraic scheme over k is a local ringed space (X,OX) over k
such that

a) X has a finite covering by open sets Uα such that (Uα,OX↾Uα
) is isomorphic as a

ringed space to an affine algebraic scheme (Spm(Aα),OSpm(Aα)).
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b) X satisfies the algebraic separation axiom, namely the diagonal ∆X of X×X is closed
for the Zariski topology.

A morphism of algebraic schemes is just a morphism of the underlying local ringed spaces.
An (abstract) algebraic variety is the same as a reduced algebraic scheme.

In the above definition, some words of explanation are needed for b), since the product
X × Y of algebraic schemes over k is not the ringed space theoretic product, i.e., the
product topological space equipped with the structure sheaf pr⋆1OX ⊗k pr⋆2OY . Instead,
we define the product of two affine algebraic schemes X = Spm(A) and Y = Spm(B) to
be X × Y = Spm(A⊗k B), equipped with the Zariski topology and the structural sheaf
associated with A ⊗k B. Notice that the Zariski topology on X × Y is not the product
topology of the Zariski topologies on X , Y , as the example k2 = k × k shows; also, the
rational function 1/(1 − z1 − z2) ∈ Ok2,(0,0) is not in Ok,0 ⊗k Ok,0. In general, if X , Y
are written as X =

⋃
Uα and Y =

⋃
Vβ with affine open sets Uα, Vβ, we define X × Y

to be the union of all open affine charts Uα × Vβ with their associated structure sheaves
of affine algebraic varieties, the open sets of X × Y being all unions of open sets in the
various charts Uα × Vβ . The separation axiom b) is introduced for the sake of excluding
pathological examples such as an affine line k∐{0′} with the origin changed into a double
point.

§ 1.D.4. Subschemes. If (X,OX) is an affine algebraic scheme and A = Γ(X,OX) is
the associated algebra, we say that (Y,OY ) is a subscheme of (X,OX) if there is an ideal
a of A such that Y →֒ X is the morphism defined by the algebra morphism A → A/a
as its comorphism. As Spm(A/a) → Spm(A) has for image the set V (a) of maximal
ideals m of A containing a, we see that Y = V (a) as a set; let us introduce the ideal
subsheaf J = aOX ⊂ OX . Since the structural sheaf OY is obtained by taken localizations
A/a[1/s], it is easy to see that OY coincides with the quotient sheaf OX/J restricted to Y .
Since a has finitely many generators, the ideal sheaf J is locally finitely generated (see
§ 2 below). This leads to the following definition.

(1.30) Definition. If (X,OX) is an algebraic scheme, a (closed) subscheme is an alge-
braic scheme (Y,OY ) such that Y is a Zariski closed subset of X, and there is a locally
finitely generated ideal subsheaf J ⊂ OX such that Y = V (J) and OY = (OX/J)↾Y .

If (Y,OY ), (Z,OZ) are subschemes of (X,OX) defined by ideal subsheaves J, J′ ⊂ OX ,
there are corresponding subschemes Y ∩ Z and Y ∪ Z defined as ringed spaces

(Y ∩ Z,OX/(J+ J′)), (Y ∪ Z,OX/JJ′).

§ 1.D.5. Projective Algebraic Varieties. A very important subcategory of the cate-
gory of algebraic varieties is provided by projective algebraic varieties. Let PNk be the
projective N -space, that is, the set kN+1 r {0}/k⋆ of equivalence classes of (N + 1)-
tuples (z0, . . . , zN ) ∈ kN+1 r {0} under the equivalence relation given by (z0, . . . , zN ) ∼
λ(z0, . . . , zN ), λ ∈ k⋆. The corresponding element of PNk will be denoted [z0 : z1 : . . . :
zN ]. It is clear that PkN can be covered by the (N +1) affine charts Uα, 0 6 α 6 N , such
that

Uα =
{
[z0 : z1 : . . . : zN ] ∈ PNk zα 6= 0

}
.
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The set Uα can be identified with the affine N -space kN by the map

Uα → kN , [z0 : z1 : . . . : zN ] 7→
( z0
zα
,
z1
zα
, . . . ,

zα−1
zα

,
zα+1

zα
, . . . ,

zN
zα

)
.

With this identification, O(Uα) is the algebra of homogeneous rational functions of degree
0 in z0, . . . , zN which have just a power of zα in their denominator. It is easy to see that
the structure sheaves OUα

and OUβ
coincide in the intersections Uα ∩ Uβ ; they can

be glued together to define an algebraic variety structure (PNk ,OPN ), such that OPN ,[z]

consists of all homogeneous rational functions p/q of degree 0 (i.e., deg p = deg q), such
that q(z) 6= 0.

(1.30) Definition. An algebraic scheme or variety (X,OX) is said to be projective if it
is isomorphic to a closed subscheme of some projective space (PNk ,OPN ).

We now indicate a standard way of constructing projective schemes. Let S be a
collection of homogeneous polynomials Pj ∈ k[z0, . . . , zN ], of degree dj ∈ N. We define
an associated projective algebraic set

Ṽ (S) =
{
[z0 : . . . : zN ] ∈ PNk ; P (z) = 0, ∀P ∈ S

}
.

Let J be the homogeneous ideal of k[z0, . . . , zN ] generated by S (recall that an ideal J is
said to be homogeneous if J =

⊕
Jm is the direct sum of its homogeneous components,

or equivalently, if J is generated by homogeneous elements). We have an associated
graded algebra

B = k[z0, . . . , zN ]/J =
⊕

Bm, Bm = k[z0, . . . , zN ]m/Jm

such that B is generated by B1 and Bm is a finite dimensional vector space over k for
each k. This is enough to construct the desired scheme structure on Ṽ (J) :=

⋂
Ṽ (Jm),

as we see in the next subsection.

§ 1.D.6. Projective Scheme Associated with a Graded Algebra. Let us start with a
reduced graded k-algebra

B =
⊕

m∈N
Bm

such that B is generated by B0 and B1 as an algebra, and B0, B1 are finite dimensional
vector spaces over k (it then follows that B is finitely generated and that all Bm are
finite dimensional vector spaces). Given s ∈ Bm, m > 0, we define a k-algebra As to be
the ring of all fractions of homogeneous degree 0 with a power of s as their denominator,
i.e.,

(1.31) As =
{
p/sd ; p ∈ Bdm, d ∈ N

}
.

Since As is generated by 1
sB

m
1 over B0, As is a finitely generated algebra. We define

Us = Spm(As) to be the associated affine algebraic variety. For s ∈ Bm and s′ ∈ Bm′ ,
we clearly have algebra homomorphisms

As → Ass′ , As′ → Ass′ ,
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since Ass′ is the algebra of all 0-homogeneous fractions with powers of s and s′ in the
denominator. As Ass′ is the same as the localized ring As[s

m′

/s′m], we see that Uss′ can
be identified with an affine open set in Us, and we thus get canonical injections

Uss′ →֒ Us, Uss′ →֒ Us′ .

(1.32) Definition. If B =
⊕

m∈NBm is a reduced graded algebra generated by its finite
dimensional vector subspaces B0 and B1, we associate an algebraic scheme (X,OX) =
Proj(B) as follows. To each finitely generated algebra As =

{
p/sd ; p ∈ Bdm, d ∈ N

}
we

associate an affine algebraic variety Us = Spm(As). We let X be the union of all open
charts Us with the identifications Us∩Us′ = Uss′ ; then the collection (Us) is a basis of the
topology of X, and OX is the unique sheaf of local k-algebras such that Γ(Us,OX) = As
for each Us.

The following proposition shows that only finitely many open charts are actually
needed to describe X (as required in Def. 1.29 a)).

(1.33) Lemma. If s0, . . . , sN is a basis of B1, then Proj(B) =
⋃

06j6N
Usj .

Proof. In fact, if x ∈ X is contained in a chart Us for some s ∈ Bm, then Us =
Spm(As) 6= ∅, and therefore As 6= {0}. As As is generated by 1

s
Bm1 , we can find a

fraction f = sj1 . . . sjm/s representing an element f ∈ O(Us) such that f(x) 6= 0. Then
x ∈ Usrf−1(0), and Usrf−1(0) = Spm(As[1/f ]) = Us∩Usj1 ∩ . . .∩Usjm . In particular
x ∈ Usj1 . �

(1.34) Example. One can consider the projective space PNk to be the algebraic scheme

PNk = Proj(k[T0, . . . , TN ]).

The Proj construction is fonctorial in the following sense: if we have a graded ho-
momorphism Φ : B → B′ (i.e. an algebra homomorphism such that Φ(Bm) ⊂ B′m, then
there are corresponding morphisms As → A′Φ(s), U

′
Φ(s) → Us, and we thus find a scheme

morphism
F : Proj(B′)→ Proj(B).

Also, since p/sd = psl/sd+l, the algebras As depend only on components Bm of large
degree, and we have As = Asl . It follows easily that there is a canonical isomorphism

Proj(B) ≃ Proj
(⊕

m

Blm

)
.

Similarly, we may if we wish change a finite number of components Bm without af-
fecting Proj(B). In particular, we may alway assume that B0 = k 1B. By selecting
finitely many generators g0, . . . , gN in B1, we then find a surjective graded homomor-
phism k[T0, . . . , TN ] → B, thus B ≃ k[T0, . . . , TN ]/J for some graded ideal J ⊂ B.
The algebra homomorphism k[T0, . . . , TN ] → B therefore yields a scheme embedding
Proj(B)→ PN onto V (J).
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We will not pursue further the study of algebraic varieties from this point of view ;
in fact we are mostly interested in the case k = C, and algebraic varieties over C are a
special case of the more general concept of complex analytic space.

§ 2. The Local Ring of Germs of Analytic Functions

§ 2.A. The Weierstrass Preparation Theorem

Our first goal is to establish a basic factorization and division theorem for analytic
functions of several variables, which is essentially due to Weierstrass. We follow here a
simple proof given by C.L. Siegel, based on a clever use of the Cauchy formula. Let g
be a holomorphic function defined on a neighborhood of 0 in Cn, g 6≡ 0. There exists a
dense set of vectors v ∈ Cnr{0} such that the function C ∋ t 7−→ g(tv) is not identically
zero. In fact the Taylor series of g at the origin can be written

g(tv) =
+∞∑

k=0

1

k!
tk g(k)(v)

where g(k) is a homogeneous polynomial of degree k on Cn and g(k0) 6≡ 0 for some index
k0. Thus it suffices to select v such that g(k0)(v) 6= 0. After a change of coordinates, we
may assume that v = (0, . . . , 0, 1). Let s be the vanishing order of zn 7−→ g(0, . . . , 0, zn)
at zn = 0. There exists rn > 0 such that g(0, . . . , 0, zn) 6= 0 when 0 < |zn| 6 rn. By
continuity of g and compactness of the circle |zn| = rn, there exists r′ > 0 and ε > 0
such that

g(z′, zn) 6= 0 for z′ ∈ Cn−1, |z′| 6 r′, rn − ε 6 |zn| 6 rn + ε.

For every integer k ∈ N, let us consider the integral

Sk(z
′) =

1

2πi

∫

|zn|=rn

1

g(z′, zn)

∂g

∂zn
(z′, zn) z

k
n dzn.

Then Sk is holomorphic in a neighborhood of |z′| 6 r′. Rouché’s theorem shows that
S0(z

′) is the number of roots zn of g(z′, zn) = 0 in the disk |zn| < rn, thus by continuity
S0(z

′) must be a constant s. Let us denote by w1(z
′), . . . , ws(z′) these roots, counted

with multiplicity. By definition of rn, we have w1(0) = . . . = ws(0) = 0, and by the
choice of r′, ε we have |wj(z′)| < rn − ε for |z′| 6 r′. The Cauchy residue formula yields

Sk(z
′) =

s∑

j=1

wj(z
′)k.

Newton’s formula shows that the elementary symmetric function ck(z
′) of degree k in

w1(z
′), . . . , ws(z′) is a polynomial in S1(z

′), . . . , Sk(z′). Hence ck(z
′) is holomorphic in a

neighborhood of |z′| 6 r′. Let us set

P (z′, zn) = zsn − c1(z′)zs−1n + · · ·+ (−1)scs(z′) =
s∏

j=1

(
zn − wj(z′)

)
.
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For |z′| 6 r′, the quotient f = g/P (resp. f = P/g) is holomorphic in zn on the disk
|zn| < rn + ε, because g and P have the same zeros with the same multiplicities, and
f(z′, zn) is holomorphic in z′ for rn − ε 6 |zn| 6 rn + ε. Therefore

f(z′, zn) =
1

2πi

∫

|wn|=rn+ε

f(z′, wn) dwn
wn − zn

is holomorphic in z on a neighborhood of the closed polydisk ∆(r′, rn) = {|z′| 6 r′} ×
{|zn| 6 rn}. Thus g/P is invertible and we obtain:

(2.1) Weierstrass preparation theorem. Let g be holomorphic on a neighborhood of
0 in Cn, such that g(0, zn)/z

s
n has a not zero finite limit at zn = 0. With the above choice

of r′ and rn, one can write g(z) = u(z)P (z′, zn) where u is an invertible holomorphic
function in a neighborhood of the polydisk ∆(r′, rn), and P is a Weierstrass polynomial
in zn, that is, a polynomial of the form

P (z′, zn) = zsn + a1(z
′)zs−1n + · · ·+ as(z

′), ak(0) = 0,

with holomorphic coefficients ak(z
′) on a neighborhood of |z′| 6 r′ in Cn−1.

(2.2) Remark. If g vanishes at order m at 0 and v ∈ Cn r {0} is selected such that
g(m)(v) 6= 0, then s = m and P must also vanish at order m at 0. In that case, the
coefficients ak(z

′) are such that ak(z
′) = O(|z′|k), 1 6 k 6 s.

(2.3) Weierstrass division theorem. Every bounded holomorphic function f on ∆ =
∆(r′, rn) can be represented in the form

(2.4) f(z) = g(z)q(z) +R(z′, zn),

where q and R are analytic in ∆, R(z′, zn) is a polynomial of degree 6 s− 1 in zn, and

(2.5) sup
∆
|q| 6 C sup

∆
|f |, sup

∆
|R| 6 C sup

∆
|f |

for some constant C > 0 independent of f . The representation (2.4) is unique.

Proof (Siegel). It is sufficient to prove the result when g(z) = P (z′, zn) is a Weierstrass
polynomial.

Let us first prove the uniqueness. If f = Pq1 +R1 = Pq2 +R2, then

P (q2 − q1) + (R2 −R1) = 0.

It follows that the s roots zn of P (z′, •) = 0 are zeros of R2−R1. Since degzn(R2−R1) 6
s− 1, we must have R2 −R1 ≡ 0, thus q2 − q1 ≡ 0.

In order to prove the existence of (q, R), we set

q(z′, zn) = lim
ε→0+

1

2πi

∫

|wn|=rn−ε

f(z′, wn)

P (z′, wn)(wn − zn)
dwn, z ∈ ∆ ;
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observe that the integral does not depend on ε when ε < rn−|zn| is small enough. Then
q is holomorphic on ∆. The function R = f − Pq is also holomorphic on ∆ and

R(z) = lim
ε→0+

1

2πi

∫

|wn|=rn−ε

f(z′, wn)

P (z′, wn)

[P (z′, wn)− P (z′, zn)
(wn − zn)

]
dwn.

The expression in brackets has the form

[
(wsn − zsn) +

s∑

j=1

aj(z
′)(ws−jn − zs−jn )

]
/(wn − zn)

hence is a polynomial in zn of degree 6 s − 1 with coefficients that are holomorphic
functions of z′. Thus we have the asserted decomposition f = Pq +R and

sup
∆
|R| 6 C1 sup

∆
|f |

where C1 depends on bounds for the aj(z
′) and on µ = min |P (z′, zn)| on the compact

set {|z′| 6 r′} × {|zn| = rn}. By the maximum principle applied to q = (f − R)/P on
each disk {z′} × {|zn| < rn − ε}, we easily get

sup
∆
|q| 6 µ−1(1 + C1) sup

∆
|f |. �

§ 2.B. Algebraic Properties of the Ring On

We give here important applications of the Weierstrass preparation theorem to the
study of the ring of germs of holomorphic functions in Cn.

(2.6) Notation. We let On be the ring of germs of holomorphic functions on Cn at 0.
Alternatively, On can be identified with the ring C{z1, . . . , zn} of convergent power series
in z1, . . . , zn.

(2.7) Theorem. The ring On is Noetherian, i.e. every ideal I of On is finitely generated.

Proof. By induction on n. For n = 1, On is principal: every ideal I 6= {0} is generated
by zs, where s is the minimum of the vanishing orders at 0 of the non zero elements of
I. Let n > 2 and I ⊂ On, I 6= {0}. After a change of variables, we may assume that I
contains a Weierstrass polynomial P (z′, zn). For every f ∈ I, the Weierstrass division
theorem yields

f(z) = P (z′, zn)q(z) +R(z′, zn), R(z′, zn) =
s−1∑

k=0

ck(z
′) zkn,

and we have R ∈ I. Let us consider the set M of coefficients (c0, . . . , cs−1) in O⊕sn−1
corresponding to the polynomials R(z′, zn) which belong to I. Then M is a On−1-
submodule of O⊕sn−1. By the induction hypothesis On−1 is Noetherian; furthermore, every
submodule of a finitely generated module over a Noetherian ring is finitely generated
([Lang 1965], Chapter VI). Therefore M is finitely generated, and I is generated by P
and by polynomials R1, . . . , RN associated with a finite set of generators of M. �
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Before going further, we need two lemmas which relate the algebraic properties of On
to those of the polynomial ring On−1[zn].

(2.8) Lemma. Let P, F ∈ On−1[zn] where P is a Weierstrass polynomial. If P divides
F in On, then P divides F in On−1[zn].

Proof. Assume that F (z′, zn) = P (z′, zn)h(z), h ∈ On. The standard division algorithm
of F by P in On−1[zn] yields

F = PQ+R, Q,R ∈ On−1[zn], deg R < deg P.

The uniqueness part of Th. 2.3 implies h(z) = Q(z′, zn) and R ≡ 0. �

(2.9) Lemma. Let P (z′, zn) be a Weierstrass polynomial.

a) If P = P1 . . . PN with Pj ∈ On−1[zn], then, up to invertible elements of On−1, all Pj
are Weierstrass polynomials.

b) P (z′, zn) is irreducible in On if and only if it is irreducible in On−1[zn].

Proof. a) Assume that P = P1 . . . PN with polynomials Pj ∈ On−1[zn] of respective
degrees sj ,

∑
16j6N sj = s. The product of the leading coefficients of P1, . . . , PN in

On−1 is equal to 1; after normalizing these polynomials, we may assume that P1, . . . , PN
are unitary and sj > 0 for all j. Then

P (0, zn) = zsn = P1(0, zn) . . . PN (0, zn),

hence Pj(0, zn) = z
sj
n and therefore Pj is a Weierstrass polynomial.

b) Set s = deg P and P (0, zn) = zsn. Assume that P is reducible in On, with P (z
′, zn) =

g1(z)g2(z) for non invertible elements g1, g2 ∈ On. Then g1(0, zn) and g2(0, zn) have
vanishing orders s1, s2 > 0 with s1 + s2 = s, and

gj = ujPj , deg Pj = sj , j = 1, 2,

where Pj is a Weierstrass polynomial and uj ∈ On is invertible. Therefore P1P2 = uP
for an invertible germ u ∈ On. Lemma 2.8 shows that P divides P1P2 in On−1[zn] ; since
P1, P2 are unitary and s = s1 + s2, we get P = P1P2, hence P is reducible in On−1[zn].
The converse implication is obvious from a). �

(2.10) Theorem. On is a factorial ring, i.e. On is entire and:

a) every non zero germ f ∈ On admits a factorization f = f1 . . . fN in irreducible
elements ;

b) the factorization is unique up to invertible elements.

Proof. The existence part a) follows from Lemma 2.9 if we take f to be a Weierstrass
polynomial and f = f1 . . . fN be a decomposition of maximal length N into polynomials
of positive degree. In order to prove the uniqueness, it is sufficient to verify the following
statement:
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b′)If g is an irreducible element that divides a product f1f2, then g divides either f1 or
f2.

By Th. 2.1, we may assume that f1, f2, g are Weierstrass polynomials in zn. Then g is
irreducible and divides f1f2 in On−1[zn] thanks to Lemmas 2.8 and 2.9 b). By induction
on n, we may assume that On−1 is factorial. The standard Gauss lemma ([Lang 1965],
Chapter V) says that the polynomial ring A[T ] is factorial if the ring A is factorial. Hence
On−1[zn] is factorial by induction and thus g must divide f1 or f2 in On−1[zn]. �

(2.11) Theorem. If f, g ∈ On are relatively prime, then the germs fz, gz at every point
z ∈ Cn near 0 are again relatively prime.

Proof. One may assume that f = P, g = Q are Weierstrass polynomials. Let us recall
that unitary polynomials P,Q ∈ A[X ] (A = a factorial ring) are relatively prime if and
only if their resultant R ∈ A is non zero. Then the resultant R(z′) ∈ On−1 of P (z′, zn)
and Q(z′, zn) has a non zero germ at 0. Therefore the germ Rz′ at points z

′ ∈ Cn−1 near
0 is also non zero. �

§ 3. Coherent Sheaves

§ 3.1. Locally Free Sheaves and Vector Bundles

Section 9 will greatly develope this philosophy. Before introducing the more general
notion of a coherent sheaf, we discuss the notion of locally free sheaves over a sheaf a
ring. All rings occurring in the sequel are supposed to be commutative with unit (the non
commutative case is also of considerable interest, e.g. in view of the theory ofD-modules,
but this subject is beyond the scope of the present book).

(3.1) Definition. Let A be a sheaf of rings on a topological space X and let S a sheaf
of modules over A (or briefly a A-module). Then S is said to be locally free of rank r
over A, if S is locally isomorphic to A⊕r on a neighborhood of every point, i.e. for every
x0 ∈ X one can find a neighborhood Ω and sections F1, . . . , Fr ∈ S(Ω) such that the
sheaf homomorphism

F : A⊕r↾Ω −→ S↾Ω, A

⊕r
x ∋ (w1, . . . , wr) 7−→

∑

16j6r

wjFj,x ∈ Sx

is an isomorphism.

By definition, if S is locally free, there is a covering (Uα)α∈I by open sets on which
S admits free generators F 1

α, . . . , F
r
α ∈ S(Uα). Because the generators can be uniquely

expressed in terms of any other system of independent generators, there is for each pair
(α, β) a r × r matrix

Gαβ = (Gjkαβ)16j,k6r, Gjkαβ ∈ A(Uα ∩ Uβ),

such that
F kβ =

∑

16j6r

F jαG
jk
αβ on Uα ∩ Uβ .
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In other words, we have a commutative diagram

A

⊕r
↾Uα∩Uβ

Fα−→ S↾Uα∩Uβ

Gαβ

x
∣∣∣
∣∣∣

A

⊕r
↾Uα∩Uβ

−→
Fβ

S↾Uα∩Uβ

It follows easily from the equality Gαβ = F−1α ◦ Fβ that the transition matrices Gαβ are
invertible matrices satisfying the transition relation

(3.2) Gαγ = GαβGβγ on Uα ∩ Uβ ∩ Uγ

for all indices α, β, γ ∈ I. In particular Gαα = Id on Uα and G−1αβ = Gβα on Uα ∩ Uβ.
Conversely, if we are given a system of invertible r× r matrices Gαβ with coefficients

in A(Uα ∩ Uβ) satisfying the transition relation (3.2), we can define a locally free sheaf
S of rank r over A by taking S ≃ A⊕r over each Uα, the identification over Uα ∩ Uβ
being given by the isomorphism Gαβ . A section H of S over an open set Ω ⊂ X can
just be seen as a collection of sections Hα = (H1

α, . . . , H
r
α) of A

⊕r(Ω∩Uα) satisfying the
transition relations Hα = GαβHβ over Ω ∩ Uα ∩ Uβ .

The notion of locally free sheaf is closely related to another essential notion of dif-
ferential geometry, namely the notion of vector bundle (resp. topological, differentiable,
holomorphic . . ., vector bundle). To describe the relation between these notions, we as-
sume that the sheaf of rings A is a subsheaf of the sheaf CK of continous functions on
X with values in the field K = R or K = C, containing the sheaf of locally constant
functions X → K. Then, for each x ∈ X , there is an evaluation map

Ax → K, w 7→ w(x)

whose kernel is a maximal ideal mx of Ax, and Ax/mx = K. Let S be a locally free sheaf
of rank r over A. To each x ∈ X , we can associate a K-vector space Ex = Sx/mxSx:
since Sx ≃ A⊕rx , we have Ex ≃ (Ax/mx)

⊕r = Kr. The set E =
∐
x∈X Ex is equipped

with a natural projection

π : E → X, ξ ∈ Ex 7→ π(ξ) := x,

and the fibers Ex = π−1(x) have a structure of r-dimensional K-vector space: such
a structure E is called a K-vector bundle of rank r over X . Every section s ∈ S(U)
gives rise to a section of E over U by setting s(x) = sx mod mx. We obtain a function
(still denoted by the same symbol) s : U → E such that s(x) ∈ Ex for every x ∈ U , i.e.
π◦s = IdU . It is clear that S(U) can be considered as a A(U)-submodule of the K-vector
space of functions U → E mapping a point x ∈ U to an element in the fiber Ex. Thus we
get a subsheaf of the sheaf of E-valued sections, which is in a natural way a A-module
isomorphic to S. This subsheaf will be denoted by A(E) and will be called the sheaf of
A-sections of E. If we are given a K-vector bundle E over X and a subsheaf S = A(E)
of the sheaf of all sections of E which is in a natural way a locally free A-module of
rank r, we say that E (or more precisely the pair (E,A(E))) is a A-vector bundle of
rank r over X .
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(3.3) Example. In case A = CX,K is the sheaf of all K-valued continuous functions
on X , we say that E is a topological vector bundle over X . When X is a manifold and
A = CpX,K, we say that E is a Cp-differentiable vector bundle; finally, when X is complex
analytic and A = OX , we say that E is a holomorphic vector bundle.

Let us introduce still a little more notation. Since A(E) is a locally free sheaf of rank
r over any open set Uα in a suitable covering of X , a choice of generators (F 1

α, . . . , F
r
α)

for A(E)↾Uα
yields corresponding generators (e1α(x), . . . , e

r
α(x)) of the fibers Ex over K.

Such a system of generators is called a A-admissible frame of E over Uα. There is a
corresponding isomorphism

(3.4) θα : E↾Uα
:= π−1(Uα) −→ Uα ×Kr

which to each ξ ∈ Ex associates the pair (x, (ξ1α, . . . , ξ
r
α)) ∈ Uα × Kr composed of x

and of the components (ξjα)16j6r of ξ in the basis (e1α(x), . . . , e
r
α(x)) of Ex. The bundle

E is said to be trivial if it is of the form X × Kr, which is the same as saying that
A(E) = A⊕r. For this reason, the isomorphisms θα are called trivializations of E over Uα.
The corresponding transition automorphisms are

θαβ := θα ◦ θ−1β : (Uα ∩ Uβ)×Kr −→ (Uα ∩ Uβ)×Kr,

θαβ(x, ξ) = (x, gαβ(x) · ξ), (x, ξ) ∈ (Uα ∩ Uβ)×Kr,

where (gαβ) ∈ GLr(A)(Uα ∩ Uβ) are the transition matrices already described (except
that they are just seen as matrices with coefficients in K rather than with coefficients in
a sheaf). Conversely, if we are given a collection of matrices gαβ = (gjkαβ) ∈ GLr(A)(Uα∩
Uβ) satisfying the transition relation

gαγ = gαβgβγ on Uα ∩ Uβ ∩ Uγ ,

we can define a A-vector bundle

E =
( ∐

α∈I
Uα ×Kr

)
/ ∼

by gluing the charts Uα × Kr via the identification (xα, ξα) ∼ (xβ , ξβ) if and only if
xα = xβ = x ∈ Uα ∩ Uβ and ξα = gαβ(x) · ξβ.

(3.5) Example. When X is a real differentiable manifold, an interesting example of
real vector bundle is the tangent bundle TX ; if τα : Uα → Rn is a collection of coordinate
charts on X , then θα = π × dτα : TX↾Uα

→ Uα × Rm define trivializations of TX and the
transition matrices are given by gαβ(x) = dταβ(x

β) where ταβ = τα◦τ−1β and xβ = τβ(x).
The dual T ⋆X of TX is called the cotangent bundle of X . If X is complex analytic, then
TX has the structure of a holomorphic vector bundle.

We now briefly discuss the concept of sheaf and bundle morphisms. If S and S′

are sheaves of A-modules over a topological space X , then by a morphism ϕ : S → S

′

we just mean a A-linear sheaf morphism. If S = A(E) and S′ = A(E′) are locally
free sheaves, this is the same as a A-linear bundle morphism, that is, a fiber preserving
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K-linear morphism ϕ(x) : Ex → E′x such that the matrix representing ϕ in any local
A-admissible frames of E and E′ has coefficients in A.

(3.6) Proposition. Suppose that A is a sheaf of local rings, i.e. that a section of A
is invertible in A if and only if it never takes the zero value in K. Let ϕ : S → S

′ be
a A-morphism of locally free A-modules of rank r, r′. If the rank of the r′ × r matrix
ϕ(x) ∈Mr′r(K) is constant for all x ∈ X, then Kerϕ and Imϕ are locally free subsheaves
of S, S′ respectively, and Cokerϕ = S′/ Imϕ is locally free.

Proof. This is just a consequence of elementary linear algebra, once we know that non
zero determinants with coefficients in A can be inverted. �

Note that all three sheaves CX,K, C
p
X,K, OX are sheaves of local rings, so Prop. 3.6

applies to these cases. However, even if we work in the holomorphic category (A = OX),
a difficulty immediately appears that the kernel or cokernel of an arbitrary morphism of
locally free sheaves is in general not locally free.

(3.7) Examples.

a) Take X = C, let S = S′ = O be the trivial sheaf, and let ϕ : O→ O be the morphism
u(z) 7→ z u(z). It is immediately seen that ϕ is injective as a sheaf morphism (O
being an entire ring), and that Cokerϕ is the skyscraper sheaf C0 of stalk C at z = 0,
having zero stalks at all other points z 6= 0. Thus Cokerϕ is not a locally free sheaf,
although ϕ is everywhere injective (note however that the corresponding morphism
ϕ : E → E′, (z, ξ) 7→ (z, zξ) of trivial rank 1 vector bundles E = E′ = C× C is not
injective on the zero fiber E0).

b) Take X = C3, S = O⊕3, S′ = O and

ϕ : O⊕3 → O, (u1, u2, u3) 7→
∑

16j63

zjuj(z1, z2, z3).

Since ϕ yields a surjective bundle morphism on C3 r {0}, one easily sees that Kerϕ
is locally free of rank 2 over C3 r {0}. However, by looking at the Taylor expansion
of the uj ’s at 0, it is not difficult to check that Kerϕ is the O-submodule of O⊕3

generated by the three sections (−z2, z1, 0), (−z3, 0, z1) and (0, z3,−z2), and that any
two of these three sections cannot generate the 0-stalk (Kerϕ)0. Hence Kerϕ is not
locally free.

Since the category of locally free O-modules is not stable by taking kernels or cok-
ernels, one is led to introduce a more general category which will be stable under these
operations. This leads to the notion of coherent sheaves.

§ 3.2. Notion of Coherence

The notion of coherence again deals with sheaves of modules over a sheaf of rings.
It is a semi-local property which says roughly that the sheaf of modules locally has a
finite presentation in terms of generators and relations. We describe here some general
properties of this notion, before concentrating ourselves on the case of coherent OX -
modules.
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(3.8) Definition. Let A be a sheaf of rings on a topological space X and S a sheaf of
modules over A (or briefly a A-module). Then S is said to be locally finitely generated
if for every point x0 ∈ X one can find a neighborhood Ω and sections F1, . . . , Fq ∈ S(Ω)
such that for every x ∈ Ω the stalk Sx is generated by the germs F1,x, . . . , Fq,x as an
Ax-module.

(3.9) Lemma. Let S be a locally finitely generated sheaf of A-modules on X and
G1, . . . , GN sections in S(U) such that G1,x0

, . . . , GN,x0
generate Sx0

at x0 ∈ U . Then
G1,x, . . . , GN,x generate Sx for x near x0.

Proof. Take F1, . . . , Fq as in Def. 3.8. As G1, . . . , GN generate Sx0
, one can find a

neighborhood Ω′ ⊂ Ω of x0 and Hjk ∈ A(Ω′) such that Fj =
∑
HjkGk on Ω′. Thus

G1,x, . . . , GN,x generate Sx for all x ∈ Ω′. �

§ 3.2.1. Definition of Coherent Sheaves. If U is an open subset of X , we denote by S↾U

the restriction of S to U , i.e. the union of all stalks Sx for x ∈ U . If F1, . . . , Fq ∈ S(U),
the kernel of the sheaf homomorphism F : A⊕q↾U −→ S↾U defined by

(3.10) A

⊕q
x ∋ (g1, . . . , gq) 7−→

∑

16j6q

gjFj,x ∈ Sx, x ∈ U

is a subsheaf R(F1, . . . , Fq) of A
⊕q
↾U , called the sheaf of relations between F1, . . . , Fq.

(3.11) Definition. A sheaf S of A-modules on X is said to be coherent if:

a) S is locally finitely generated ;

b) for any open subset U of X and any F1, . . . , Fq ∈ S(U), the sheaf of relations
R(F1, . . . , Fq) is locally finitely generated.

Assumption a) means that every point x ∈ X has a neighborhood Ω such that there
is a surjective sheaf morphism F : A⊕q↾Ω −→ S↾Ω, and assumption b) implies that the
kernel of F is locally finitely generated. Thus, after shrinking Ω, we see that S admits
over Ω a finite presentation under the form of an exact sequence

(3.12) A

⊕p
↾Ω

G−→ A⊕q↾Ω
F−→ S↾Ω −→ 0,

where G is given by a q × p matrix (Gjk) of sections of A(Ω) whose columns (Gj1), . . . ,
(Gjp) are generators of R(F1, . . . , Fq).

It is clear that every locally finitely generated subsheaf of a coherent sheaf is coherent.
From this we easily infer:

(3.13) Theorem. Let ϕ : F −→ G be a A-morphism of coherent sheaves. Then Imϕ
and kerϕ are coherent.

Proof. Clearly Imϕ is a locally finitely generated subsheaf of G, so it is coherent. Let
x0 ∈ X , let F1, . . . , Fq ∈ F(Ω) be generators of F on a neighborhood Ω of x0, and
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G1, . . . , Gr ∈ A(Ω′)⊕q be generators of R
(
ϕ(F1), . . . , ϕ(Fq)

)
on a neighborhood Ω′ ⊂ Ω

of x0. Then kerϕ is generated over Ω′ by the sections

Hj =

q∑

k=1

GkjFk ∈ F(Ω′), 1 6 j 6 r. �

(3.14) Theorem. Let 0 −→ F −→ S −→ G −→ 0 be an exact sequence of A-modules.
If two of the sheaves F,S,G are coherent, then all three are coherent.

Proof. If S and G are coherent, then F = ker(S → G) is coherent by Th. 3.13. If
S and F are coherent, then G is locally finitely generated; to prove the coherence, let
G1, . . . , Gq ∈ G(U) and x0 ∈ U . Then there is a neighborhood Ω of x0 and sections

G̃1, . . . , G̃q ∈ S(Ω) which are mapped to G1, . . . , Gq on Ω. After shrinking Ω, we may
assume also that F↾Ω is generated by sections F1, . . . , Fp ∈ F(Ω). Then R(G1, . . . , Gq)

is the projection on the last q-components of R(F1, . . . , Fp, G̃1, . . . , G̃q) ⊂ Ap+q, which
is finitely generated near x0 by the coherence of S. Hence R(G1, . . . , Gq) is finitely
generated near x0 and G is coherent.

Finally, assume that F and G are coherent. Let x0 ∈ X be any point, let F1, . . . , Fp ∈
F(Ω) and G1, . . . , Gq ∈ G(Ω) be generators of F, G on a neighborhood Ω of x0. There

is a neighborhood Ω′ of x0 such that G1, . . . , Gq admit liftings G̃1, . . . , G̃q ∈ S(Ω′).
Then (F1, . . . , Fq, G̃1, . . . , G̃q) generate S↾Ω′ , so S is locally finitely generated. Now, let
S1, . . . , Sq be arbitrary sections in S(U) and S1, . . . , Sq their images in G(U). For any
x0 ∈ U , the sheaf of relationsR(S1, . . . , Sq) is generated by sections P1, . . . , Ps ∈ A(Ω)⊕q
on a small neighborhood Ω of x0. Set Pj = (P kj )16k6q. Then Hj = P 1

j S1 + . . .+ P qj Sq,
1 6 j 6 s, are mapped to 0 in G so they can be seen as sections of F. The coherence of F
shows that R(H1, . . . , Hs) has generators Q1, . . . , Qt ∈ A(Ω′)s on a small neighborhood
Ω′ ⊂ Ω of x0. Then R(S1, . . . , Sq) is generated over Ω′ by Rj =

∑
QkjPk ∈ A(Ω′),

1 6 j 6 t, and S is coherent. �

(3.15) Corollary. If F and G are coherent subsheaves of a coherent analytic sheaf S,
the intersection F ∩ G is a coherent sheaf.

Proof. Indeed, the intersection sheaf F ∩ G is the kernel of the composite morphism
F −֒→ S −→ S/G, and S/G is coherent. �

§ 3.2.2. Coherent Sheaf of Rings. A sheaf of rings A is said to be coherent if it is
coherent as a module over itself. By Def. 3.11, this means that for any open set U ⊂ X
and any sections Fj ∈ A(U), the sheaf of relations R(F1, . . . , Fq) is finitely generated.
The above results then imply that all free modules A⊕p are coherent. As a consequence:

(3.16) Theorem. If A is a coherent sheaf of rings, any locally finitely generated subsheaf
of A⊕p is coherent. In particular, if S is a coherent A-module and F1, . . . , Fq ∈ S(U),
the sheaf of relations R(F1, . . . , Fq) ⊂ A⊕q is also coherent.

Let S be a coherent sheaf of modules over a coherent sheaf of ring A. By an iteration
of construction (3.12), we see that for every integer m > 0 and every point x ∈ X there
is a neighborhood Ω of x on which there is an exact sequence of sheaves

(3.17) A

⊕pm
↾Ω

Fm−→ A⊕pm−1

↾Ω −→ · · · −→ A⊕p1↾Ω
F1−→ A⊕p0↾Ω

F0−→ S↾Ω −→ 0,
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where Fj is given by a pj−1 × pj matrix of sections in A(Ω).

§ 3.3. Analytic Sheaves and the Oka Theorem

Many properties of holomorphic functions which will be considered in this book can
be expressed in terms of sheaves. Among them, analytic sheaves play a central role. The
Oka theorem [Oka 1950] asserting the coherence of the sheaf of holomorphic functions
can be seen as a far-reaching deepening of the noetherian property seen in Sect. 1. The
theory of analytic sheaves could not be presented without it.

(3.18) Definition. Let M be a n-dimensional complex analytic manifold and let OM be
the sheaf of germs of analytic functions on M . An analytic sheaf over M is by definition
a sheaf S of modules over OM .

(3.19) Coherence theorem of Oka. The sheaf of rings OM is coherent for any complex
manifold M .

Let F1, . . . , Fq ∈ O(U). Since OM,x is Noetherian, we already know that every stalk
R(F1, . . . , Fq)x ⊂ O⊕qM,x is finitely generated, but the important new fact expressed by
the theorem is that the sheaf of relations is locally finitely generated, namely that the
“same” generators can be chosen to generate each stalk in a neighborhood of a given
point.

Proof. By induction on n = dimCM . For n = 0, the stalks OM,x are equal to C and the
result is trivial. Assume now that n > 1 and that the result has already been proved in
dimension n − 1. Let U be an open set of M and F1, . . . , Fq ∈ OM (U). To show that
R(F1, . . . , Fq) is locally finitely generated, we may assume that U = ∆ = ∆′ ×∆n is a
polydisk in Cn centered at x0 = 0 ; after a change of coordinates and multiplication of
F1, . . . , Fq by invertible functions, we may also suppose that F1, . . . , Fq are Weierstrass
polynomials in zn with coefficients in O(∆′). We need a lemma.

(3.20) Lemma. If x = (x′, xn) ∈ ∆, the O∆,x-module R(F1, . . . , Fq)x is generated by
those of its elements whose components are germs of analytic polynomials in O∆′,x′ [zn]
with a degree in zn at most equal to µ, the maximum of the degrees of F1, . . . , Fq.

Proof. Assume for example that Fq is of the maximum degree µ. By the Weierstrass
preparation Th. 1.1 and Lemma 1.9 applied at x, we can write Fq,x = f ′f ′′ where
f ′, f ′′ ∈ O∆′,x′ [zn], f

′ is a Weierstrass polynomial in zn − xn and f ′′(x) 6= 0. Let µ′

and µ′′ denote the degrees of f ′ and f ′′ with respect to zn, so µ
′ + µ′′ = µ. Now, take

(g1, . . . , gq) ∈ R(F1, . . . , Fq)x. The Weierstrass division theorem gives

gj = Fq,xt
j + rj , j = 1, . . . , q − 1,

where tj ∈ O∆,x and rj ∈ O∆′,x′ [zn] is a polynomial of degree < µ′. For j = q, define
rq = gq +

∑
16j6q−1 t

jFj,x. We can write

(3.21) (g1, . . . , gq) =
∑

16j6q

tj(0, . . . , Fq, . . . , 0,−Fj)x + (r1, . . . , rq)

where Fq is in the j-th position in the q-tuples of the summation. Since these q-tuples
are in R(F1, . . . , Fq)x, we have (r1, . . . , rq) ∈ R(F1, . . . , Fq)x, thus∑

16j6q−1
Fj,xr

j + f ′f ′′rq = 0.
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As the sum is a polynomial in zn of degree < µ + µ′, it follows from Lemma 1.9 that
f ′′rq is a polynomial in zn of degree < µ. Now we have

(r1, . . . , rq) = 1/f ′′(f ′′r1, . . . , f ′′rq)

where f ′′rj is of degree < µ′ + µ′′ = µ. In combination with (3.21) this proves the
lemma. �

Proof of Theorem 3.19 (end).. If g = (g1, . . . , gq) is one of the polynomials
of R(F1, . . . , Fq)x described in Lemma 3.20, we can write

gj =
∑

06k6µ

ujkzkn, ujk ∈ O∆′,x′ .

The condition for (g1, . . . , gq) to belong to R(F1, . . . , Fq)x therefore consists of 2µ + 1
linear conditions for the germ u = (ujk) with coefficients in O(∆′). By the induction
hypothesis, O∆′ is coherent and Th. 3.16 shows that the corresponding modules of re-
lations are generated over O∆′,x′ , for x′ in a neighborhood Ω′ of 0, by finitely many
(q × µ)-tuples U1, . . . , UN ∈ O(Ω′)qµ. By Lemma 3.20, R(F1, . . . , Fq)x is generated at
every point x ∈ Ω = Ω′ ×∆n by the germs of the corresponding polynomials

Gl(z) =
( ∑

06k6µ

U jkl (z′)zkn

)
16j6q

, z ∈ Ω, 1 6 l 6 N. �

(3.22) Strong Noetherian property. Let F be a coherent analytic sheaf on a complex
manifoldM and let F1 ⊂ F2 ⊂ . . . be an increasing sequence of coherent subsheaves of F.
Then the sequence (Fk) is stationary on every compact subset of M .

Proof. Since F is locally a quotient of a free module O⊕qM , we can pull back the sequence

to O⊕qM and thus suppose F = OM (by easy reductions similar to those in the proof of
Th. 3.14). Suppose M connected and Fk0 6= {0} for some index k0 (otherwise, there is
nothing to prove). By the analytic continuation theorem, we easily see that Fk0,x 6= {0}
for every x ∈ M . We can thus find a non zero Weierstrass polynomial P ∈ Fk0(V ),
degznP (z

′, zn) = µ, in a coordinate neighborhood V = ∆′ ×∆n of any point x ∈ M . A
division by P shows that for k > k0 and x ∈ V , all stalks Fk,x are generated by Px and
by polynomials of degree < µ in zn with coefficients in O∆′,x′ . Therefore, we can apply
induction on n to the coherent O∆′ -module

F

′ = F ∩
{
Q ∈ O∆′ [zn] ; degQ 6 µ

}

and its increasing sequence of coherent subsheaves F′k = Fk ∩F′. �

§ 4. Complex Analytic Sets. Local Properties

§ 4.1. Definition. Irreducible Components

A complex analytic set is a set which can be defined locally by finitely many holo-
morphic equations; such a set has in general singular points, because no assumption is
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made on the differentials of the equations. We are interested both in the description of
the singularities and in the study of algebraic properties of holomorphic functions on an-
alytic sets. For a more detailed study than ours, we refer to H. Cartan’s seminar [Cartan
1950], to the books of [Gunning-Rossi 1965], [Narasimhan 1966] or the recent book by
[Grauert-Remmert 1984].

(4.1) Definition. Let M be a complex analytic manifold. A subset A ⊂ M is said to
be an analytic subset of M if A is closed and if for every point x0 ∈ A there exist a
neighborhood U of x0 and holomorphic functions g1, . . . , gn in O(U) such that

A ∩ U = {z ∈ U ; g1(z) = . . . = gN (z) = 0}.

Then g1, . . . , gN are said to be (local) equations of A in U .

It is easy to see that a finite union or intersection of analytic sets is analytic: if (g′j),
(g′′k ) are equations of A′, A′′ in the open set U , then the family of all products (g′jg

′′
k )

and the family (g′j) ∪ (g′′k ) define equations of A′ ∪ A′′ and A′ ∩ A′′ respectively.

(4.2) Remark. Assume thatM is connected. The analytic continuation theorem shows
that either A =M or A has no interior point. In the latter case, each piece A∩U = g−1(0)
is the set of points where the function log |g|2 = log(|g1|2 + · · ·+ |gN |2) ∈ Psh(U) takes
the value −∞, hence A is pluripolar. In particularMrA is connected and every function
f ∈ O(M r A) that is locally bounded near A can be extended to a function f̃ ∈ O(M).

�

We focus now our attention on local properties of analytic sets. By definition, a germ
of set at a point x ∈ M is an equivalence class of elements in the power set P(M),
with A ∼ B if there is an open neighborhood V of x such that A ∩ V = B ∩ V . The
germ of a subset A ⊂ M at x will be denoted by (A, x). We most often consider the
case when A ⊂ M is a analytic set in a neighborhood U of x, and in this case we
denote by IA,x the ideal of germs f ∈ OM,x which vanish on (A, x). Conversely, if
J = (g1, . . . , gN) is an ideal of OM,x, we denote by

(
V (J), x

)
the germ at x of the zero

variety V (J) = {z ∈ U ; g1(z) = . . . = gN (z) = 0}, where U is a neighborhood of x such
that gj ∈ O(U). It is easy to check that the germ (V (cJ), x) does not depend on the
choice of generators. Moreover, it is clear that

for every ideal J in the ring OM,x, IV (J),x ⊃ J,(4.3′)

for every germ of analytic set (A, x),
(
V (IA,x), x

)
= (A, x).(4.3′′)

(4.4) Definition. A germ (A, x) is said to be irreducible if it has no decomposition
(A, x) = (A1, x) ∪ (A2, x) with analytic sets (Aj , x) 6= (A, x), j = 1, 2.

(4.5) Proposition. A germ (A, x) is irreducible if and only if IA,x is a prime ideal of
the ring OM,x.

Proof. Let us recall that an ideal J is said to be prime if fg ∈ J implies f ∈ J
or g ∈ J. Assume that (A, x) is irreducible and that fg ∈ IA,x. As we can write
(A, x) = (A1, x) ∪ (A2, x) with A1 = A ∩ f−1(0) and A2 = A ∩ g−1(0), we must have
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for example (A1, x) = (A, x) ; thus f ∈ IA,x and IA,x is prime. Conversely, if (A, x) =
(A1, x) ∪ (A2, x) with (Aj , x) 6= (A, x), there exist f ∈ IA1,x, g ∈ IA2,x such that
f, g /∈ IA,x. However fg ∈ IA,x, thus IA,x is not prime. �

(4.6) Theorem. Every decreasing sequence of germs of analytic sets (Ak, x) is station-
ary.

Proof. In fact, the corresponding sequence of ideals Jk = IAk,x is increasing, thus
Jk = Jk0 for k > k0 large enough by the Noetherian property of OM,x. Hence (Ak, x) =(
V (Jk), x

)
is constant for k > k0. This result has the following straightforward conse-

quence: �

(4.7) Theorem. Every analytic germ (A, x) has a finite decomposition

(A, x) =
⋃

16k6N

(Ak, x)

where the germs (Aj, x) are irreducible and (Aj, x) 6⊂ (Ak, x) for j 6= k. The decomposi-
tion is unique apart from the ordering.

Proof. If (A, x) can be split in several components, we split repeatedly each component
as long as one of them is reducible. The process must stop by Th. 4.6, whence the
existence. For the uniqueness, assume that (A, x) =

⋃
(A′l, x), 1 6 l 6 N ′, is another

decomposition. Since (Ak, x) =
⋃
l(Ak ∩ A′l, x), we must have (Ak, x) = (Ak ∩ A′l, x) for

some l = l(k), i.e. (Ak, x) ⊂ (A′l(k), x), and likewise (A′l(k), x) ⊂ (Aj, x) for some j. Hence

j = k and (A′l(k), x) = (Ak, x). �

§ 4.2. Local Structure of a Germ of Analytic Set

We are going to describe the local structure of a germ, both from the holomorphic
and topological points of view. By the above decomposition theorem, we may restrict
ourselves to the case of irreducible germs Let J be a prime ideal of On = OCn,0 and let
A = V (J) be its zero variety. We set Jk = J ∩ C{z1, . . . , zk} for each k = 0, 1, . . . , n.

(4.8) Proposition. There exist an integer d, a basis (e1, . . . , en) of Cn and associated
coordinates (z1, . . . , zn) with the following properties: Jd = {0} and for every integer
k = d+ 1, . . . , n there is a Weierstrass polynomial Pk ∈ Jk of the form

(4.9) Pk(z
′, zk) = zskk +

∑

16j6sk

aj,k(z
′) zsk−jk , aj,k(z

′) ∈ Ok−1,

where aj,k(z
′) = O(|z′|j). Moreover, the basis (e1, . . . , en) can be chosen arbitrarily close

to any preassigned basis (e01, . . . , e
0
n).

Proof. By induction on n. If J = Jn = {0}, then d = n and there is nothing to prove.
Otherwise, select a non zero element gn ∈ J and a vector en such that C ∋ w 7−→
gn(wen) has minimum vanishing order sn. This choice excludes at most the algebraic

set g
(sn)
n (v) = 0, so en can be taken arbitrarily close to e0n. Let (z̃1, . . . , z̃n−1, zn) be

the coordinates associated to the basis (e01, . . . , e
0
n−1, en). After multiplication by an

invertible element, we may assume that gn is a Weierstrass polynomial

Pn(z̃, zn) = zsnn +
∑

16j6sn

aj,n(z̃) z
sn−j
n , aj,n ∈ On−1,
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and aj,n(z̃) = O(|z̃|j) by Remark 2.2. If Jn−1 = J ∩ C{z̃} = {0} then d = n − 1 and
the construction is finished. Otherwise we apply the induction hypothesis to the ideal
Jn−1 ⊂ On−1 in order to find a new basis (e1, . . . , en−1) of Vect(e01, . . . , e

0
n−1), associated

coordinates (z1, . . . , zn−1) and Weierstrass polynomials Pk ∈ Jk, d + 1 6 k 6 n − 1, as
stated in the lemma. �

(4.10) Lemma. If w ∈ C is a root of wd + a1w
d−1 + · · · + ad = 0, aj ∈ C, then

|w| 6 2max |aj|1/j.

Proof. Otherwise |w| > 2|aj|1/j for all j = 1, . . . , d and the given equation −1 = a1/w+
· · ·+ ad/w

d implies 1 6 2−1 + · · ·+ 2−d, a contradiction. �

(4.11) Corollary. Set z′ = (z1, . . . , zd), z
′′ = (zd+1, . . . , zn), and let ∆′ in Cd, ∆′′ in

Cn−d be polydisks of center 0 and radii r′, r′′ > 0. Then the germ (A, 0) is contained in
a cone |z′′| 6 C|z′|, C = constant, and the restriction of the projection map Cn −→ Cd,
(z′, z′′) 7−→ z′ :

π : A ∩ (∆′ ×∆′′) −→ ∆′

is proper if r′′ is small enough and r′ 6 r′′/C.

Proof. The polynomials Pk(z1, . . . , zk−1 ; zk) vanish on (A, 0). By Lemma 4.10 and (4.9),
every point z ∈ A sufficiently close to 0 satisfies

|zk| 6 Ck(|z1|+ · · ·+ |zk−1|), d+ 1 6 k 6 n,

thus |z′′| 6 C|z′| and the Corollary follows. �

Since Jd = {0}, we have an injective ring morphism

(4.12) Od = C{z1, . . . , zd} −֒→ On/J.

(4.13) Proposition. On/J is a finite integral extension of Od.

Proof. Let f ∈ On. A division by Pn yields f = Pnqn + Rn with a remainder Rn ∈
On−1[zn], degzn Rn < sn. Further divisions of the coefficients of Rn by Pn−1, Pn−2 etc
. . . yield

Rk+1 = Pkqk +Rk, Rk ∈ Ok[zk+1, . . . , zn],

where degzj Rk < sj for j > k. Hence

(4.14) f = Rd +
∑

d+16k6n

Pkqk = Rd mod (Pd+1, . . . , Pn) ⊂ J

and On/J is finitely generated as an Od-module by the family of monomials z
αd+1

d+1 . . . zαn
n

with αj < sj . �

As J is prime, On/J is an entire ring. We denote by f̃ the class of any germ f ∈ On
in On/J, by MA and Md the quotient fields of On/J and Od respectively. Then MA =
Md[z̃d+1, . . . , z̃n] is a finite algebraic extension of Md. Let q = [MA:Md] be its degree and
let σ1, . . . , σq be the embeddings ofMA over Md in an algebraic closure MA. Let us recall
that a factorial ring is integrally closed in its quotient field ([Lang 1965], Chapter IX).
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Hence every element of Md which is integral over Od lies in fact in Od. By the primitive
element theorem, there exists a linear form u(z′′) = cd+1zd+1 + · · ·+ cnzn, ck ∈ C, such
that MA = Md[ũ] ; in fact, u is of degree q if and only if σ1ũ, . . . , σqũ are all distinct, and
this excludes at most a finite number of vector subspaces in the space Cn−d of coefficients
(cd+1, . . . , cn). As ũ ∈ On/J is integral over the integrally closed ring Od, the unitary
irreducible polynomial Wu of ũ over Md has coefficients in Od :

Wu(z
′ ;T ) = T q +

∑

16j6q

aj(z1, . . . , zd)T
q−j, aj ∈ Od.

Wu must be a Weierstrass polynomial, otherwise there would exist a factorization Wu =
W ′Q in Od[T ] with a Weierstrass polynomial W ′ of degree degW ′ < q = deg ũ and
Q(0) 6= 0, hence W ′(ũ) = 0, a contradiction. In the same way, we see that z̃d+1, . . . , z̃n
have irreducible equationsWk(z

′ ; z̃k) = 0 where Wk ∈ Od[T ] is a Weierstrass polynomial
of degree = deg z̃k 6 q, d+ 1 6 k 6 n.

(4.15) Lemma. Let δ(z′) ∈ Od be the discriminant of Wu(z
′ ;T ). For every element g

of MA which is integral over Od (or equivalently over On/J) we have δg ∈ Od[ũ].

Proof. We have δ(z′) =
∏
j<k(σkũ− σj ũ)2 6≡ 0 , and g ∈ MA = Md[ũ] can be written

g =
∑

06j6q−1
bj ũ

j , bj ∈ Md,

where b0, . . . , bd−1 are the solutions of the linear system σkg =
∑
bj(σkũ)

j ; the deter-
minant (of Van der Monde type) is δ1/2. It follows that δbj ∈ Md are polynomials in σkg
and σkũ, thus δbj is integral over Od. As Od is integrally closed, we must have δbj ∈ Od,
hence δg ∈ Od[ũ]. �

In particular, there exist unique polynomials Bd+1, . . ., Bn ∈ Od[T ] with degBk 6
q − 1, such that

(4.16) δ(z′)zk = Bk(z
′ ; u(z′′)) (mod J).

Then we have

(4.17) δ(z′)qWk

(
z′ ;Bk(z

′ ; T )/δ(z′)
)
∈ ideal Wu(z

′ ; T )Od[T ] ;

indeed, the left-hand side is a polynomial in Od[T ] and admits T = ũ as a root in On/J
since Bk(z

′ ; ũ)/δ(z′) = z̃k and Wk(z
′ ; z̃k) = 0.

(4.18) Lemma. Consider the ideal

G =
(
Wu(z

′ ; u(z′′)) , δ(z′)zk −Bk(z′ ; u(z′′))
)
⊂ J

and set m = max{q, (n − d)(q − 1)}. For every germ f ∈ On, there exists a unique
polynomial R ∈ Od[T ], degT R 6 q − 1, such that

δ(z′)mf(z) = R(z′ ; u(z′′)) (mod G).
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Moreover f ∈ J implies R = 0, hence δmJ ⊂ G.
Proof. By (4.17) and a substitution of zk, we find δ(z′)qWk(z

′ ; zk) ∈ G. The analogue
of formula (4.14) with Wk in place of Pk yields

f = Rd +
∑

d+16k6n

Wkqk, Rd ∈ Od[zd+1, . . . , zn],

with degzk Rd < deg Wk 6 q, thus δmf = δmRd mod G. We may therefore replace f by
Rd and assume that f ∈ Od[zd+1, . . . , zn] is a polynomial of total degree 6 (n−d)(q−1) 6
m. A substitution of zk by Bk(z

′ ; u(z′′))/δ(z′) yields G ∈ Od[T ] such that

δ(z′)mf(z) = G(z′ ; u(z′′)) mod
(
δ(z′)zk −Bk(z′ ; u(z′′))

)
.

Finally, a division G = WuQ + R gives the required polynomial R ∈ Od[T ]. The last
statement is clear: if f ∈ J satisfies δm(z′)f(z) = R(z ; u(z′′)) mod G for degT R < q,
then R(z′ ; ũ) = 0, and as ũ ∈ On/J is of degree q, we must have R = 0. The uniqueness
of R is proved similarly. �

(4.19) Local parametrization theorem. Let J be a prime ideal of On and let A =
V (J). Assume that the coordinates

(z′ ; z′′) = (z1, . . . , zd ; zd+1, . . . , zn)

are chosen as above. Then the ring On/J is a finite integral extension of Od ; let q be the
degree of the extension and let δ(z′) ∈ Od be the discriminant of the irreducible polynomial
of a primitive element u(z′′) =

∑
k>d ckzk. If ∆′,∆′′ are polydisks of sufficiently small

radii r′, r′′ and if r′ 6 r′′/C with C large, the projection map π : A ∩ (∆′ ×∆′′) −→ ∆′

is a ramified covering with q sheets, whose ramification locus is contained in S = {z′ ∈
∆′; δ(z′) = 0}. This means that:

a) the open subset AS = A∩
(
(∆′rS)×∆′′

)
is a smooth d-dimensional manifold, dense

in A ∩ (∆′ ×∆′′) ;

b) π : AS −→ ∆′ r S is a covering ;

c) the fibers π−1(z′) have exactly q elements if z′ /∈ S and at most q if z′ ∈ S.
Moreover, AS is a connected covering of ∆′ r S, and A ∩ (∆′ × ∆′′) is contained in a
cone |z′′| 6 C|z′| (see Fig. 1).

z′′ ∈ Cn−p

z′ ∈ Cp

A

S S

0

∆′

∆′′ π

Fig. II-1 Ramified covering from A to ∆′ ⊂ Cp.
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Proof. After a linear change in the coordinates zd+1, . . . , zn, we may assume u(z′′) = zd+1,
so Wu =Wd+1 and Bd+1(z

′ ;T ) = δ(z′)T . By Lemma 4.18, we have

G =
(
Wd+1(z

′, zd+1) , δ(z
′)zk −Bk(z′, zd+1)

)
k>d+2

⊂ J, δmJ ⊂ G.

We can thus find a polydisk ∆ = ∆′ × ∆′′ of sufficiently small radii r′, r′′ such that
V (J) ⊂ V (G) ⊂ V (δmJ) in ∆. As V (J) = A and V (δ) ∩∆ = S ×∆′′, this implies

A ∩∆ ⊂ V (G) ∩∆ ⊂ (A ∩∆) ∪ (S ×∆′′).

In particular, the set AS = A ∩
(
(∆′ r S) × ∆′′

)
lying above ∆′ r S coincides with

V (G)∩
(
(∆′ r S)×∆′′

)
, which is the set of points z ∈ ∆ parametrized by the equations

(4.20)

{
δ(z′) 6= 0, Wd+1(z

′, zd+1) = 0,
zk = Bk(z

′, zd+1)/δ(z
′), d+ 2 6 k 6 n.

As δ(z′) is the resultant of Wd+1 and ∂Wd+1/∂T , we have

∂Wd+1/∂T (z
′, zd+1) 6= 0 on AS.

The implicit function theorem shows that zd+1 is locally a holomorphic function of z′ on
AS, and the same is true for zk = Bk(z

′, zd+1)/δ(z
′), k > d+ 2. Hence AS is a smooth

manifold, and for r′ 6 r′′/C small, the projection map π : AS −→ ∆′ r S is a proper
local diffeomorphism; by (4.20) the fibers π−1(z′) have at most q points corresponding to
some of the q roots w ofWd+1(z

′ ;w) = 0. Since ∆′rS is connected (Remark 4.2), either
AS = ∅ or the map π is a covering of constant sheet number q′ 6 q. However, if w is a
root of Wd+1(z

′, w) = 0 with z′ ∈ ∆′ r S and if we set zd+1 = w, zk = Bk(z
′, w)/δ(z′),

k > d + 2, relation (4.17) shows that Wk(z
′, zk) = 0, in particular |zk| = O(|z′|1/q) by

Lemma 4.10. For z′ small enough, the q points z = (z′, z′′) defined in this way lie in
∆, thus q′ = q. Property b) and the first parts of a) and c) follow. Now, we need the
following lemma.

(4.21) Lemma. If J ⊂ On is prime and A = V (J), then IA,0 = J.

I.t is obvious that IA,0 ⊃ J. Now, for any f ∈ IA,0, Prop. 4.13 implies that f̃ satisfies
in On/I an irreducible equation

f r + b1(z
′) f r−1 + · · ·+ br(z

′) = 0 (mod J).

Then br(z
′) vanishes on (A, 0) and the first part of c) gives br = 0 on ∆′ r S. Hence

b̃r = 0 and the irreducibility of the equation of f̃ implies r = 1, so f ∈ J, as desired. �

Proof of Theorem 4.19 (end).. It only remains to prove that AS is connected and dense
in A∩∆ and that the fibers π−1(z′), z′ ∈ S, have at most q elements. Let AS,1, . . . , AS,N
be the connected components of AS . Then π : AS,j −→ ∆′ r S is a covering with qj
sheets, q1 + · · · + qN = q. For every point ζ ′ ∈ ∆′ r S, there exists a neighborhood
U of ζ ′ such that AS,j ∩ π−1(U) is a disjoint union of graphs z′′ = gj,k(z

′) of analytic
functions gj,k ∈ O(U), 1 6 k 6 qj . If λ(z′′) is an arbitrary linear form in zd+1, . . . , zn
and z′ ∈ ∆′ r S, we set

Pλ,j(z
′ ;T ) =

∏

{z′′ ; (z′,z′′)∈AS,j}

(
T − λ(z′′)

)
=

∏

16k6kj

(
T − λ ◦ gj,k(z′)

)
.
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This defines a polynomial in T with bounded analytic coefficients on ∆′ r S. These
coefficients have analytic extensions to ∆′ (Remark 4.2), thus Pλ,j ∈ O(∆′)[T ]. By
construction, Pλ,j

(
z′ ;λ(z′′)

)
vanishes identically on AS,j. Set

Pλ =
∏

16j6N

Pλ,j , f(z) = δ(z′)Pλ
(
z′ ;λ(z′′)

)
;

f vanishes on AS,1 ∪ . . . ∪ AS,N ∪ (S × ∆′′) ⊃ A ∩ ∆. Lemma 4.21 shows that IA,0 is
prime; as δ /∈ IA,0, we get Pλ,j

(
z′ ;λ(z′′)

)
∈ IA,0 for some j. This is a contradiction if

N > 2 and if λ is chosen in such a way that λ separates the q points z′′ν in each fiber
π−1(z′ν), for a sequence z′ν → 0 in ∆′ r S. Hence N = 1, AS is connected, and for every
λ ∈ (Cn−d)⋆ we have Pλ

(
z′, λ(z′′) ∈ I(A,0). By construction Pλ

(
z′, λ(z′′)

)
vanishes on

AS, so it vanishes on AS ; hence, for every z′ ∈ S, the fiber AS ∩ π−1(z′) has at most q
elements, otherwise selecting λ which separates q + 1 of these points would yield q + 1
roots λ(z′′) of Pλ(z′ ;T ), a contradiction. Assume now that AS is not dense in A∩∆ for
arbitrarily small polydisks ∆. Then there exists a sequence A ∋ zν = (z′ν , z

′′
ν ) → 0 such

that z′ν ∈ S and z′′ν is not in Fν := pr′′
(
AS ∩ π−1(z′ν)

)
. The continuity of the roots of

the polynomial Pλ(z
′ ;T ) as ∆′ r S ∋ z′ → z′ν implies that the set of roots of Pλ(z

′
ν ;T )

is λ(Fν). Select λ such that λ(z′′ν ) /∈ λ(Fν) for all ν. Then Pλ
(
z′ν ;λ(z

′′
ν )
)
6= 0 for every ν

and Pλ
(
z′ ;λ(z′′)

)
/∈ IA,0, a contradiction. �

At this point, it should be observed that many of the above statements completely
fail in the case of real analytic sets. In R2, for example, the prime ideal J = (x5 + y4)
defines an irreducible germ of curve (A, 0) and there is an injective integral extension
of rings R{x} −֒→ R{x, y}/J of degree 4; however, the projection of (A, 0) on the first
factor, (x, y) 7→ x, has not a constant sheet number near 0, and this number is not related
to the degree of the extension. Also, the prime ideal J = (x2 + y2) has an associated
variety V (J) reduced to {0}, hence IA,0 = (x, y) is strictly larger than J, in contrast
with Lemma 4.21.

Let us return to the complex situation, which is much better behaved. The result
obtained in Lemma 4.21 can then be extended to non prime ideals and we get the following
important result:

(4.22) Hilbert’s Nullstellensatz. For every ideal J ⊂ On

IV (J),0 =
√
J,

where
√
J is the radical of J, i.e. the set of germs f ∈ On such that some power fk lies

in J.

Proof. Set B = V (J). If fk ∈ J, then fk vanishes on (B, 0) and f ∈ IB,0. Thus√
J ⊂ IB,0. Conversely, it is well known that

√
J is the intersection of all prime ideals

P ⊃ J ([Lang 1965], Chapter VI). For such an ideal (B, 0) =
(
V (J), 0) ⊃

(
V (P), 0

)
,

thus IB,0 ⊂ IV (P),0 = P in view of Lemma 4.21. Therefore IB,0 ⊂
⋂
P⊃JP =

√
J and

the Theorem is proved. �

In other words, if a germ (B, 0) is defined by an arbitrary ideal J ⊂ On and if f ∈ On
vanishes on (B, 0), then some power fk lies in J.
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§ 4.3. Regular and Singular Points. Dimension

The above powerful results enable us to investigate the structure of singularities of
an analytic set. We first give a few definitions.

(4.23) Definition. Let A ⊂ M be an analytic set and x ∈ A. We say that x ∈ A is
a regular point of A if A ∩ Ω is a C-analytic submanifold of Ω for some neighborhood Ω
of x. Otherwise x is said to be singular. The corresponding subsets of A will be denoted
respectively Areg and Asing.

It is clear from the definition that Areg is an open subset of A (thus Asing is closed),
and that the connected components of Areg are C-analytic submanifolds of M (non
necessarily closed).

(4.24) Proposition. If (A, x) is irreducible, there exist arbitrarily small neighborhoods
Ω of x such that Areg ∩ Ω is dense and connected in A ∩ Ω.

Proof. Take Ω = ∆ as in Th. 4.19. Then AS ⊂ Areg ∩Ω ⊂ A∩Ω, where AS is connected
and dense in A ∩ Ω ; hence Areg ∩ Ω has the same properties. �

(4.25) Definition. The dimension of an irreducible germ of analytic set (A, x) is defined
by dim(A, x) = dim(Areg, x). If (A, x) has several irreducible components (Al, x), we set

dim(A, x) = max{dim(Al, x)}, codim(A, x) = n− dim(A, x).

(4.26) Proposition. Let (B, x) ⊂ (A, x) be germs of analytic sets. If (A, x) is irreducible
and (B, x) 6= (A, x), then dim(B, x) < dim(A, x) and B ∩Ω has empty interior in A∩Ω
for all sufficiently small neighborhoods Ω of x.

Proof. We may assume x = 0, (A, 0) ⊂ (Cn, 0) and (B, 0) irreducible. Then IA,0 ⊂ IB,0
are prime ideals. When we choose suitable coordinates for the ramified coverings, we
may at each step select vectors en, en−1, . . . that work simultaneously for A and B. If
dimB = dimA, the process stops for both at the same time, i.e. we get ramified coverings

π : A ∩ (∆′ ×∆′′) −→ ∆′, π : B ∩ (∆′ ×∆′′) −→ ∆′

with ramification loci SA, SB. Then B∩
(
(∆′r(SA∪SB))×∆′′

)
is an open subset of the

manifold AS = A∩
(
(∆′rSA)×∆′′

)
, therefore B ∩AS is an analytic subset of AS with

non empty interior. The same conclusion would hold if B ∩∆ had non empty interior in
A ∩∆. As AS is connected, we get B ∩ AS = AS, and as B ∩∆ is closed in ∆ we infer
B ∩∆ ⊃ AS = A ∩∆, hence (B, 0) = (A, 0), in contradiction with the hypothesis. �

(4.27) Example: parametrization of curves. Suppose that (A, 0) is an irreducible
germ of curve (dim(A, 0) = 1). If the disk ∆′ ⊂ C is chosen so small that S = {0}, then
AS is a connected covering of ∆′ r {0} with q sheets. Hence, there exists a covering
isomorphism between π and the standard covering

C ⊃ ∆(r)r {0} −→ ∆(rq)r {0}, t 7−→ tq, rq = radius of ∆′,
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i.e. a map γ : ∆(r) r {0} −→ AS such that π ◦ γ(t) = tq. This map extends into a
bijective holomorphic map γ : ∆(r) −→ A ∩ ∆ with γ(0) = 0. This means that every
irreducible germ of curve can be parametrized by a bijective holomorphic map defined
on a disk in C (see also Exercise 10.8).

§ 4.4. Coherence of Ideal Sheaves

Let A be an analytic set in a complex manifold M . The sheaf of ideals IA is the
subsheaf of OM consisting of germs of holomorphic functions on M which vanish on A.
Its stalks are the ideals IA,x already considered; note that IA,x = OM,x if x /∈ A. If
x ∈ A, we let OA,x be the ring of germs of functions on (A, x) which can be extended as
germs of holomorphic functions on (M,x). By definition, there is a surjective morphism
OM,x −→ OA,x whose kernel is IA,x, thus

(4.28) OA,x = OM,x/IA,x, ∀x ∈ A,
i.e. OA = (OM/IA)↾A. Since IA,x = OM,x for x /∈ A, the quotient sheaf OM/IA is zero
on M r A.

(4.29) Theorem ([Cartan 1950]). For any analytic set A ⊂ M , the sheaf of ideals IA
is a coherent analytic sheaf.

Proof. It is sufficient to prove the result when A is an analytic subset in a neighborhood
of 0 in Cn. If (A, 0) is not irreducible, there exists a neighborhood Ω such that A ∩
Ω = A1 ∪ . . . ∪ AN where Ak are analytic sets in Ω and (Ak, 0) is irreducible. We
have IA∩Ω =

⋂
IAk

, so by Cor. 3.15 we may assume that (A, 0) is irreducible. Then
we can choose coordinates z′, z′′, polydisks ∆′,∆′′ and a primitive element u(z′′) =
cd+1zd+1 + · · ·+ cnzn such that Th. 4.19 is valid. Since δ(z′) =

∏
j<k(σkũ − σj ũ)2, we

see that δ(z′) is in fact a polynomial in the cj ’s with coefficients in Od. The same is true
for the coefficients of the polynomials Wu(z

′ ;T ) and Bk(z′ ;T ) which can be expressed
in terms of the elementary symmetric functions of the σkũ ’s. We suppose that ∆′ is
chosen small enough in order that all coefficients of these Od[cd+1, . . . , cn] polynomials
are in O(∆′). Let δα ∈ O(∆′) be some non zero coefficient appearing in δm =

∑
δαc

α.
Also, let G1, . . . , GN ∈ O(∆′)[z′′] be the coefficients of all monomials cα appearing in the
expansion of the functions Wu(z

′ ; u(z′′)) or δ(z′)zk−Bk(z′ ; u(z′′)). Clearly, G1, . . . , GN
vanish on A ∩∆. We contend that

(4.30) IA,x =
{
f ∈ OM,x ; δαf ∈ (G1,x, . . . , GN,x)

}
.

This implies that the sheaf IA is the projection on the first factor of the sheaf of relations
R(δα, G1, . . . , GN ) ⊂ ON+1

∆ , which is coherent by the Oka theorem; Theorem 4.29 then
follows.

We first prove that the inclusion IA,x ⊃ {. . .} holds in (4.30). In fact, if δαf ∈
(G1,x, . . . , GN,x), then f vanishes on A r {δα = 0} in some neighborhood of x. Since
(A ∩∆)r {δα = 0} is dense in A ∩∆, we conclude that f ∈ IA,x.

To prove the other inclusion IA,x ⊂ {. . .}, we repeat the proof of Lemma 4.18 with
a few modifications. Let x ∈ ∆ be a given point. At x, the irreducible polynomials
Wu(z

′ ;T ) and Wk(z
′ ;T ) of ũ and z̃k in OM,0/IA,0 split into

Wu(z
′ ;T ) =Wu,x

(
z′ ;T − u(x′′)

)
Qu,x

(
z′ ;T − u(x′′)

)
,

Wk(z
′ ;T ) =Wk,x(z

′ ;T − xk)Qk,x(z′ ;T − xk),
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whereWu,x(z
′ ;T ) andWk,x(z

′ ;T ) are Weierstrass polynomials in T and Qu,x(x
′, 0) 6= 0,

Qk,x(x
′, 0) 6= 0. For all z′ ∈ ∆′, the roots of Wu(z

′ ;T ) are the values u(z′′) at all points
z ∈ A∩ π−1(z′). As A is closed, any point z ∈ A∩ π−1(z′) with z′ near x′ has to be in a
small neighborhood of one of the points y ∈ A ∩ π−1(x′). Choose cd+1, . . . , cn such that
the linear form u(z′′) separates all points in the fiber A∩π−1(x′). Then, for a root u(z′′)
of Wu,x

(
z′ ;T −u(x′′)

)
, the point z must be in a neighborhood of y = x, otherwise u(z′′)

would be near u(y′′) 6= u(x′′) and the Weierstrass polynomial Wu,x(z
′ ;T ) would have a

root away from 0, in contradiction with (4.10). Conversely, if z ∈ A ∩ π−1(z′) is near
x, then Qu,x

(
z′ ; u(z′′) − u(x′′)

)
6= 0 and u(z′′) is a root of Wu,x

(
z′ ;T − u(x′′)

)
. From

this, we infer that every polynomial P (z′ ;T ) ∈ O∆′,x′ [T ] such that P
(
z′ ; u(z′′)

)
= 0 on

(A, x) is a multiple of Wu,x

(
z′ ;T − u(x′′)

)
, because the roots of the latter polynomial

are simple for z′ in the dense set (∆′ r S, x). In particular deg P < deg Wu,x implies
P = 0 and

δ(z′)qWk,x

(
z′ ;Bk(z

′ ; u(z′′))/δ(z′)− xk
)

is a multiple ofWu,x

(
z′ ;T−u(x′′)

)
. If we replaceWu,Wk byWu,x,Wk,x respectively, the

proof of Lemma 4.18 shows that for every f ∈ OM,x there is a polynomial R ∈ O∆′,x′ [T ]
of degree deg R < deg Wu,x such that

δ(z′)mf(z) = R
(
z′ ; u(z′′)

)
modulo the ideal

(
Wu,x

(
z′ ; u(z′′)− u(x′′)

)
, δ(z′)zk −Bk

(
z′ ; u(z′′)

) )
,

and f ∈ IA,x implies R = 0. Since Wu,x differs from Wu only by an invertible element
in OM,x, we conclude that

(∑
δαc

α
)
IA,x = δmIA,x ⊂ (G1,x, . . . , GN,x).

This is true for a dense open set of coefficients cd+1, . . . , cn, therefore by expressing the
coefficients δα through interpolation of

∑
δαc

α at suitable points c we infer

δαIA,x ⊂ (G1,x, . . . , GN,x) for all α. �

(4.31) Theorem. Asing is an analytic subset of A.

Proof. The statement is local. Assume first that (A, 0) is an irreducible germ in Cn. Let
g1, . . . , gN be generators of the sheaf IA on a neighborhood Ω of 0. Set d = dimA. In a
neighborhood of every point x ∈ Areg ∩ Ω, A can be defined by holomorphic equations
u1(z) = . . . = un−d(z) = 0 such that du1, . . . , dun−d are linearly independant. As
u1, . . . , un−d are generated by g1, . . . , gN , one can extract a subfamily gj1 , . . . , gjn−d

that
has at least one non zero Jacobian determinant of rank n− d at x. Therefore Asing ∩ Ω
is defined by the equations

det
(∂gj
∂zk

)
j∈J
k∈K

= 0, J ⊂ {1, . . . , N}, K ⊂ {1, . . . , n}, |J | = |K| = n− d.

Assume now that (A, 0) =
⋃
(Al, 0) with (Al, 0) irreducible. The germ of an analytic

set at a regular point is irreducible, thus every point which belongs simultaneously to at
least two components is singular. Hence

(Asing, 0) =
⋃

(Al,sing, 0) ∪
⋃

k 6=l
(Ak ∩Al, 0),
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and Asing is analytic. �

Now, we give a characterization of regular points in terms of a simple algebraic pro-
perty of the ring OA,x.

(4.32) Proposition. Let (A, x) be a germ of analytic set of dimension d and let mA,x ⊂
OA,x be the maximal ideal of functions that vanish at x. Then mA,x cannot have less
than d generators and mA,x has d generators if and only if x is a regular point.

Proof. If A ⊂ Cn is a d-dimensional submanifold in a neighborhood of x, there are
local coordinates centered at x such that A is given by the equations zd+1 = . . . = zn
near z = 0. Then OA,x ≃ Od and mA,x is generated by z1, . . . , zd. Conversely, assume
that mA,x has s generators g1(z), . . . , gs(z) in OA,x = OCn,x/IA,x. Letting x = 0 for
simplicity, we can write

zj =
∑

16k6s

ujk(z)gk(z) + fj(z), ujk ∈ On, fj ∈ IA,0, 1 6 j 6 n.

Then we find dzj =
∑
cjk(0)dgk(0)+dfj(0), so that the rank of the system of differentials(

dfj(0)
)
16j6n

is at least equal to n − s. Assume for example that df1(0), . . . , dfn−s(0)

are linearly independent. By the implicit function theorem, the equations f1(z) = . . . =
fn−s(z) = 0 define a germ of submanifold of dimension s containing (A, 0), thus s > d
and (A, 0) equals this submanifold if s = d. �

(4.33) Corollary. Let A ⊂M be an analytic set of pure dimension d and let B ⊂ A be
an analytic subset of codimension > p in A. Then, as an OA,x-module, the ideal IB,x
cannot be generated by less than p generators at any point x ∈ B, and by less than p+ 1
generators at any point x ∈ Breg ∩ Asing.

Proof. Suppose that IB,x admits s-generators (g1, . . . , gs) at x. By coherence of IB
these germs also generate IB in a neighborhood of x, so we may assume that x is a
regular point of B. Then there are local coordinates (z1, . . . , zn) on M centered at x
such that (B, x) is defined by zk+1 = . . . = zn = 0, where k = dim(B, x). Then the
maximal ideal mB,x = mA,x/IB,x is generated by z1, . . . , zk, so that mA,x is generated
by (z1, . . . , zk, g1, . . . , gs). By Prop. 4.32, we get k + s > d, thus s > d − k > p, and we
have strict inequalities when x ∈ Asing. �

§ 5. Complex Spaces

Much in the same way a manifold is constructed by piecing together open patches
isomorphic to open sets in a vector space, a complex space is obtained by gluing together
open patches isomorphic to analytic subsets. The general concept of analytic morphism
(or holomorphic map between analytic sets) is first needed.

§ 5.1. Morphisms and Comorphisms

Let A ⊂ Ω ⊂ Cn and B ⊂ Ω′ ⊂ Cp be analytic sets. A morphism from A to B is by
definition a map F : A −→ B such that for every x ∈ A there is a neighborhood U of x
and a holomorphic map F̃ : U −→ Cp such that F̃↾A∩U = F↾A∩U . Equivalently, such a
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morphism can be defined as a continuous map F : A −→ B such that for all x ∈ A and
g ∈ OB,F (x) we have g ◦ F ∈ OA,x. The induced ring morphism

(5.1) F ⋆x : OB,F (x) ∋ g 7−→ g ◦ F ∈ OA,x
is called the comorphism of F at point x.

§ 5.1. Definition of Complex Spaces

(5.2) Definition. A complex space X is a locally compact Hausdorff space, countable
at infinity, together with a sheaf OX of continuous functions on X, such that there exists
an open covering (Uλ) of X and for each λ a homeomorphism Fλ : Uλ −→ Aλ onto
an analytic set Aλ ⊂ Ωλ ⊂ Cnλ such that the comorphism F ⋆λ : OAλ

−→ OX ↾Uλ
is an

isomorphism of sheaves of rings. OX is called the structure sheaf of X.

By definition a complex space X is locally isomorphic to an analytic set, so the
concepts of holomorphic function on X , of analytic subset, of analytic morphism, etc . . .
are meaningful. If X is a complex space, Th. 4.31 implies that Xsing is an analytic subset
of X .

(5.3) Theorem and definition. For every complex space X, the set Xreg is a dense
open subset of X, and consists of a disjoint union of connected complex manifolds X ′α.
Let Xα be the closure of X ′α in X. Then (Xα) is a locally finite family of analytic subsets
of X, and X =

⋃
Xα. The sets Xα are called the global irreducible components of X.

(0, 0)(−1, 0)
A1

A2

Γ

Fig. II-2 The irreducible curve y2 = x2(1 + x) in C2.

Observe that the germ at a given point of a global irreducible component can be reducible,
as shows the example of the cubic curve Γ : y2 = x2(1 + x) ; the germ (Γ, 0) has two
analytic branches y = ±x

√
1 + x, however Γ r {0} is easily seen to be a connected

smooth Riemann surface (the real points of γ corresponding to −1 6 x 6 0 form a path
connecting the two branches). This example shows that the notion of global irreducible
component is quite different from the notion of local irreducible component introduced
in (4.4).

Proof. By definition of Xreg, the connected components X ′α are (disjoint) complex man-

ifolds. Let us show that the germ of Xα = X
′
α at any point x ∈ X is analytic. We may
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assume that (X, x) is a germ of analytic set A in an open subset of Cn. Let (Al, x),
1 6 l 6 N , be the irreducible components of this germ and U a neighborhood of x such
that X ∩ U =

⋃
Al ∩ U . Let Ωl ⊂ U be a neighborhood of x such that Al,reg ∩ Ωl

is connected and dense in Al ∩ Ωl (Prop. 4.24). Then A′l := Xreg ∩ Al ∩ Ωl equals
(Al,reg ∩ Ωl) r

⋃
k 6=l Al,reg ∩ Ωl ∩ Ak. However, Al,reg ∩ Ωl ∩ Ak is an analytic subset

of Al,reg ∩ Ωl, distinct from Al,reg ∩ Ωl, otherwise Al,reg ∩ Ωl would be contained in Ak,
thus (Al, x) ⊂ (Ak, x) by density. Remark 4.2 implies that A′l is connected and dense
in Al,reg ∩ Ωl, hence in Al ∩ Ωl. Set Ω =

⋂
Ωl and let (Xα)α∈J be the family of global

components which meet Ω (i.e. such that X ′α ∩ Ω 6= ∅ ). As Xreg ∩ Ω =
⋃
A′l ∩ Ω,

each X ′α, α ∈ J , meets at least one set A′l, and as A′l ⊂ Xreg is connected, we have in
fact A′l ⊂ X ′α. It follows that there exists a partition (Lα)α∈J of {1, . . . , N} such that
X ′α ∩ Ω =

⋃
l∈Lα

A′l ∩ Ω, α ∈ J . Hence J is finite, card J 6 N , and

Xα ∩ Ω = X
′
α ∩ Ω =

⋃

l∈Lα

A
′
l ∩ Ω =

⋃

l∈Lα

Al ∩ Ω

is analytic for all α ∈ J . �

(5.4) Corollary. If A,B are analytic subsets in a complex space X, then the closure
ArB is an analytic subset, consisting of the union of all global irreducible components
Aλ of A which are not contained in B.

Proof. Let C =
⋃
Aλ be the union of these components. Since (Aλ) is locally finite,

C is analytic. Clearly A r B = C r B =
⋃
Aλ r B. The regular part A′λ of each

Aλ is a connected manifold and A′λ ∩ B is a proper analytic subset (otherwise A′λ ⊂ B
would imply Aλ ⊂ B). Thus A′λ r (A′λ ∩ B) is dense in A′λ which is dense in Aλ, so
ArB =

⋃
Aλ = C. �

(5.5) Theorem. For any family (Aλ) of analytic sets in a complex space X, the inter-
section A =

⋂
Aλ is an analytic subset of X. Moreover, the intersection is stationary on

every compact subset of X.

Proof. It is sufficient to prove the last statement, namely that every point x ∈ X has a
neighborhood Ω such that A ∩ Ω is already obtained as a finite intersection. However,
since OX,x is Noetherian, the family of germs of finite intersections has a minimum

element (B, x), B =
⋂
Aλj

, 1 6 j 6 N . Let B̃ be the union of the global irreducible

components Bα of B which contain the point x ; clearly (B, x) = (B̃, x). For any set Aλ
in the family, the minimality of B implies (B, x) ⊂ (Aλ, x). Let B

′
α be the regular part of

any global irreducible component Bα of B̃. Then B′α ∩ Aλ is a closed analytic subset of
B′α containing a non empty open subset (the intersection of B′α with some neighborhood

of x), so we must have B′α ∩Aλ = B′α. Hence Bα = B
′
α ⊂ Aλ for all Bα ⊂ B̃ and all Aλ,

thus B̃ ⊂ A =
⋂
Aλ. We infer

(B, x) = (B̃, x) ⊂ (A, x) ⊂ (B, x),

and the proof is complete. �

As a consequence of these general results, it is not difficult to show that a com-
plex space always admits a (locally finite) stratification such that the strata are smooth
manifolds.
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(5.6) Proposition. Let X be a complex space. Then there is a locally stationary in-
creasing sequence of analytic subsets Yk ⊂ X, k ∈ N, such that Y0 is a discrete set and
such that Yk r Yk−1 is a smooth k-dimensional complex manifold for k > 1. Such a
sequence is called a stratification of X, and the sets Yk r Yk−1 are called the strata (the
strata may of course be empty for some indices k < dimX).

Proof. Let F be the family of irreducible analytic subsets Z ⊂ X which can be obtained
through a finite sequence of steps of the following types:

a) Z is an irreducible component of X ;

b) Z is an irreducible component of the singular set Z ′sing of some member Z ′ ∈ F ;

c) Z is an irreducible component of some finite intersection of sets Zj ∈ F.

Since X has locally finite dimension and since steps b) or c) decrease the dimension of
our sets Z, it is clear that F is a locally finite family of analytic sets in X . Let Yk be the
union of all sets Z ∈ F of dimension 6 k. It is easily seen that

⋃
Yk = X and that the

irreducible components of (Yk)sing are contained in Yk−1 (these components are either
intersections of components Zj ⊂ Yk or parts of the singular set of some component
Z ⊂ Yk, so there are in either case obtained by step b) or c) above). Hence Yk r Yk−1
is a smooth manifold and it is of course k-dimensional, because the components of Yk of
dimension < k are also contained in Yk−1 by definition.

(5.7) Theorem. Let X be an irreducible complex space. Then every non constant
holomorphic function f on X defines an open map f : X −→ C.

Proof. We show that the image f(Ω) of any neighborhood Ω of x ∈ X contains a neigh-
borhood of f(x). Let (Xl, x) be an irreducible component of the germ (X, x) (embedded
in Cn) and ∆ = ∆′ ×∆′′ ⊂ Ω a polydisk such that the projection π : Xl ∩∆ −→ ∆′ is a
ramified covering. The function f is non constant on the dense open manifold Xreg, so
we may select a complex line L ⊂ ∆′ through 0, not contained in the ramification locus
of π, such that f is non constant on the one dimensional germ π−1(L). Therefore we can
find a germ of curve

(C, 0) ∋ t 7−→ γ(t) ∈ (X, x)

such that f ◦ γ is non constant. This implies that the image of every neighborhood of
0 ∈ C by f ◦ γ already contains a neighborhood of f(x). �

(5.8) Corollary. If X is a compact irreducible analytic space, then every holomorphic
function f ∈ O(X) is constant.

In fact, if f ∈ O(X) was non constant, f(X) would be compact and also open in C

by Th. 5.7, a contradiction. This result implies immediately the following consequence.

(5.9) Theorem. Let X be a complex space such that the global holomorphic functions
in O(X) separate the points of X. Then every compact analytic subset A of X is finite.

Proof. A has a finite number of irreducible components Aλ which are also compact.
Every function f ∈ O(X) is constant on Aλ, so Aλ must be reduced to a single point. �
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§ 5.2. Coherent Sheaves over Complex Spaces

Let X be a complex space and OX its structure sheaf. Locally, X can be identified
to an analytic set A in an open set Ω ⊂ Cn, and we have OX = OΩ/IA. Thus OX
is coherent over the sheaf of rings OΩ. It follows immediately that OX is coherent over
itself. Let S be a OX-module. If S̃ denotes the extension of S↾A to Ω obtained by setting

S̃x = 0 for x ∈ ΩrA, then S̃ is a OΩ-module, and it is easily seen that S↾A is coherent

over OX↾A if and only if S̃ is coherent over OΩ. If Y is an analytic subset of X , then Y
is locally given by an analytic subset B of A and the sheaf of ideals of Y in OX is the
quotient IY = IB/IA ; hence IY is coherent. Let us mention the following important
property of supports.

(5.10) Theorem. If S is a coherent OX -module, the support of S, defined as Supp S =
{x ∈ X ; Sx 6= 0} is an analytic subset of X.

Proof. The result is local, thus after extending S by 0, we may as well assume that X is
an open subset Ω ⊂ Cn. By (3.12), there is an exact sequence of sheaves

O

⊕p
U

G−→ O⊕qU
F−→ S↾U −→ 0

in a neighborhood U of any point. If G : O⊕px −→ O

⊕q
x is surjective it is clear that the

linear map G(x) : Cp −→ Cq must be surjective; conversely, if G(x) is surjective, there
is a q-dimensional subspace E ⊂ Cp on which the restriction of G(x) is a bijection onto
Cq ; then G↾E : OU ⊗C E −→ O

⊕q
U is bijective near x and G is surjective. The support

of S↾U is thus equal to the set of points x ∈ U such that all minors of G(x) of order q
vanish. �

§ 6. Analytic Cycles and Meromorphic Functions

§ 6.1. Complete Intersections

Our goal is to study in more details the dimension of a subspace given by a set of
equations. The following proposition is our starting point.

(6.1) Proposition. Let X be a complex space of pure dimension p and A an analytic
subset of X with codimX A > 2. Then every function f ∈ O(X r A) is locally bounded
near A.

Proof. The statement is local on X , so we may assume that X is an irreducible germ
of analytic set in (Cn, 0). Let (Ak, 0) be the irreducible components of (A, 0). By a
reasoning analogous to that of Prop. 4.26, we can choose coordinates (z1, . . . , zn) on Cn

such that all projections

π : z 7−→ (z1, . . . , zp), p = dimX,

πk : z 7−→ (z1, . . . , zpk), pk = dimAk ,

define ramified coverings π : X ∩ ∆ −→ ∆′, πk : Ak ∩ ∆ −→ ∆′k. By construction
π(Ak) ⊂ ∆′ is contained in the set Bk defined by some Weierstrass polynomials in the
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variables zpk+1, . . . , zp and codim∆′ Bk = p− pk > 2. Let S be the ramification locus of
π and B =

⋃
Bk. We have π(A ∩∆) ⊂ B. For z′ ∈ ∆′ r (S ∪B), we let

σk(z
′) = elementary symmetric function of degree k in f(z′, z′′α),

where (z′, z′′α) are the q points of X projecting on z′. Then σk is holomorphic on ∆′ r
(S ∪B) and locally bounded near every point of SrB, thus σk extends holomorphically
to ∆′ r B by Remark 4.2. Since codimB > 2, σk extends to ∆′ by Cor. 1.4.5. Now, f
satisfies f q − σ1f q−1 + . . .+ (−1)qσq = 0, thus f is locally bounded on X ∩∆. �

(6.2) Theorem. Let X be an irreducible complex space and f ∈ O(X), f 6≡ 0. Then
f−1(0) is empty or of pure dimension dimX − 1.

Proof. Let A = f−1(0). By Prop. 4.26, we know that dimA 6 dimX − 1. If A had an
irreducible branch Aj of dimension 6 dimX − 2, then in virtue of Prop. 6.1 the function
1/f would be bounded in a neighborhood of Aj r

⋃
k 6=j Ak, a contradiction. �

(6.3) Corollary. If f1, . . . , fp are holomorphic functions on an irreducible complex space
X, then all irreducible components of f−11 (0) ∩ . . . ∩ f−1p (0) have codimension > p. �

(6.4) Definition. Let X be a complex space of pure dimension n and A an analytic
subset of X of pure dimension. Then A is said to be a local (set theoretic) complete
intersection in X if every point of A has a neighborhood Ω such that

A ∩ Ω = {x ∈ Ω ; f1(x) = . . . = fp(x) = 0}

with exactly p = codim A functions fj ∈ O(Ω).

(6.5) Remark. As a converse to Th. 6.2, one may ask whether every hypersurface A
in X is locally defined by a single equation f = 0. In general the answer is negative.
A simple counterexample for dimX = 3 is obtained with the singular quadric X =
{z1z2 + z3z4 = 0} ⊂ C4 and the plane A = {z1 = z3 = 0} ⊂ X . Then A cannot be
defined by a single equation f = 0 near the origin, otherwise the plane B = {z2 = z4 = 0}
would be such that

f−1(0) ∩B = A ∩B = {0},
in contradiction with Th. 6.2 (also, by Exercise 10.11, we would get the inequality
codimX A ∩B 6 2). However, the answer is positive when X is a manifold:

(6.6) Theorem. Let M be a complex manifold with dimCM = n, let (A, x) be an ana-
lytic germ of pure dimension n− 1 and let Aj, 1 6 j 6 N , be its irreducible components.

a) The ideal of (A, x) is a principal ideal IA,x = (g) where g is a product of irreducible
germs gj such that IAj ,x = (gj).

b) For every f ∈ OM,x such that f−1(0) ⊂ (A, x), there is a unique decomposition
f = ugm1

1 . . . gmN

N where u is an invertible germ and mj is the order of vanishing of
f at any point z ∈ Aj,reg r

⋃
k 6=j Ak.

Proof. a) In a suitable local coordinate system centered at x, the projection π : Cn −→
Cn−1 realizes all Aj as ramified coverings

π : Aj ∩∆ −→ ∆′ ⊂ Cn−1, ramification locus = Sj ⊂ ∆′.
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The function
gj(z

′, zn) =
∏

w∈Aj∩π−1(z′)

(zn − wn), z′ ∈ ∆′ r Sj

extends into a holomorphic function in O∆′ [zn] and is irreducible at x. Set g =
∏
gj ∈

IA,x. For any f ∈ IA,x, the Weierstrass division theorem yields f = gQ + R with
R ∈ On−1[zn] and degR < deg g. As R(z′, zn) vanishes when zn is equal to wn for each
point w ∈ A∩π−1(z′), R has exactly deg g roots when z′ ∈ ∆′r

(⋃
Sj ∪

⋃
π(Aj ∩Ak)

)
,

so R = 0. Hence IA,x = (g) and similarly IAj ,x = (gj). Since IAj
is coherent, gj is also

a generator of IAj ,z for z near x and we infer that gj has order 1 at any regular point
z ∈ Aj,reg.

b) As OM,x is factorial, any f ∈ OM,x can be written f = u gm1
1 . . . gmN

N where u is either
invertible or a product of irreducible elements distinct from the gj ’s. In the latter case
the hypersurface u−1(0) cannot be contained in (A, x), otherwise it would be a union of
some of the components Aj and u would be divisible by some gj. This proves b). �

(6.7) Definition. Let X be an complex space of pure dimension n.

a) An analytic q-cycle Z on X is a formal linear combination
∑
λjAj where (Aj) is

a locally finite family of irreducible analytic sets of dimension q in X and λj ∈ Z.
The support of Z is |Z| = ⋃

λj 6=0Aj. The group of all q-cycles on X is denoted

Cyclq(X). Effective q-cycles are elements of the subset Cyclq+(X) of cycles such that
all coefficients λj are > 0 ; rational, real cycles are cycles with coefficients λj ∈ Q, R.

b) An analytic (n− 1)-cycle is called a (Weil ) divisor, and we set

Div(X) = Cycln−1(X).

c) Assume that dimXsing 6 n − 2. If f ∈ O(X) does not vanish identically on any
irreducible component of X, we associate to f a divisor

div(f) =
∑

mjAj ∈ Div+(X)

in the following way: the components Aj are the irreducible components of f−1(0)
and the coefficient mj is the vanishing order of f at every regular point in Xreg ∩
Aj,reg r

⋃
k 6=j Ak. It is clear that we have

div(fg) = div(f) + div(g).

d) A Cartier divisor is a divisor D =
∑
λjAj that is equal locally to a Z-linear combi-

nation of divisors of the form div(f).

It is easy to check that the collection of abelian groups Cyclq(U) over all open sets
U ⊂ X , together with the obvious restriction morphisms, satisfies axioms (1.4) of sheaves;
observe however that the restriction of an irreducible component Aj to a smaller open
set may subdivide in several components. Hence we obtain sheaves of abelian groups
Cyclq and Div = Cycln−1 on X . The stalk Cyclqx is the free abelian group generated by
the set of irreducible germs of q-dimensional analytic sets at the point x. These sheaves
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carry a natural partial ordering determined by the subsheaf of positive elements Cyclq+.
We define the sup and inf of two analytic cycles Z =

∑
λjAj, Z

′ =
∑
µjAj by

(6.8) sup{Z, Z ′} =
∑

sup{λj , µj}Aj, inf{Z, Z ′} =
∑

inf{λj , µj}Aj ;

it is clear that these operations are compatible with restrictions, i.e. they are defined as
sheaf operations.

(6.9) Remark. When X is a manifold, Th. 6.6 shows that every effective Z-divisor is
locally the divisor of a holomorphic function; thus, for manifolds, the concepts of Weil
and Cartier divisors coincide. This is not always the case in general: in Example 6.5,
one can show that A is not a Cartier divisor (exercise 10.?).

§ 6.2. Divisors and Meromorphic Functions

Let X be a complex space. For x ∈ X , let MX,x be the ring of quotients of OX,x, i.e.
the set of formal quotients g/h, g, h ∈ OX,x, where h is not a zero divisor in OX,x, with
the identification g/h = g′/h′ if gh′ = g′h. We consider the disjoint union

(6.10) MX =
∐

x∈X
MX,x

with the topology in which the open sets open sets are unions of sets of the type
{Gx/Hx ; x ∈ V } ⊂ MX where V is open in X and G,H ∈ OX(V ). Then MX is
a sheaf over X , and the sections of MX over an open set U are called meromorphic
functions on U . By definition, these sections can be represented locally as quotients of
holomorphic functions, but there need not exist such a global representation on U .

A point x ∈ X is called a pole of a meromorphic function f on X if fx /∈ OX,x.
Clearly, the set Pf of poles of f is a closed subset of X with empty interior: if f = g/h
on U , then h 6≡ 0 on any irreducible component and Pf ∩ U ⊂ h−1(0). For x /∈ Pf ,
one can speak of the value f(x). If the restriction of f to Xreg r Pf does not vanish
identically on any irreducible component of (X, x), then 1/f is a meromorphic function
in a neighborhood of x ; the set of poles of 1/f will be denoted Zf and called the zero set
of f . If f vanishes on some connected open subset ofXregrPf , then f vanishes identically
(outside Pf ) on the global irreducible component Xα containing this set; we agree that
these components Xα are contained in Zf . For every point x in the complement of
Zf ∩ Pf , we have either fx ∈ OX,x or (1/f)x ∈ OX,x, thus f defines a holomorphic map
X r (Zf ∩Pf ) −→ C∪ {∞} = P1 with values in the projective line. In general, no value
(finite or infinite) can be assigned to f at a point x ∈ Zf ∩ Pf , as shows the example of
the function f(z) = z2/z1 in C2. The set Zf ∩ Pf is called the indeterminacy set of f .

(6.11) Theorem. For every meromorphic function f on X, the sets Pf , Zf and the
indeterminacy set Zf ∩ Pf are analytic subsets.

Proof. Let Jx be the ideal of germs u ∈ OX,x such that ufx ∈ OX,x. Let us write f = g/h
on a small open set U . Then J↾U appears as the projection on the first factor of the
sheaf of relations R(g, h) ⊂ OU × OU , so J is a coherent sheaf of ideals. Now

Pf =
{
x ∈ X ; Jx = OX,x

}
= Supp OX/J,
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thus Pf is analytic by Th. 5.10. Similarly, the projection of R(g, h) on the second factor
defines a sheaf of ideals J′ such that Zf = Supp OX/J

′. �

When X has pure dimension n and dimXsing 6 n − 2, Def. 6.7 c) can be extended
to meromorphic functions: if f = g/h locally, we set

(6.12) div(f) = div(g)− div(h).

By 6.7 c), we immediately see that this definition does not depend on the choice of the
local representant g/h. Furthermore, Cartier divisors are precisely those divisors which
are associated locally to meromorphic functions.

Assume from now on that M is a connected n-dimensional complex manifold. Then,
for every point x ∈ M , the ring OM,x ≃ On is factorial. This property makes the study
of meromorphic functions much easier.

(6.13) Theorem. Let f be a non zero meromorphic function on a manifold M , with
dimCM = n. Then the sets Zf , Pf are purely (n−1)-dimensional, and the indeterminacy
set Zf ∩ Pf is purely (n− 2)-dimensional.

Proof. For every point a ∈ M , the germ fa can be written ga/ha where ga, ha ∈ OM,a

are relatively prime holomorphic germs. By Th. 1.12, the germs gx, hx are still relatively
prime for x in a neighborhood U of a. Thus the ideal J associated to f coincides with
(h) on U , and we have

Pf ∩ U = Supp OU/(h) = h−1(0), Zf ∩ U = g−1(0).

Th. 6.2 implies our contentions: if gλ and hµ are the irreducible components of g, h, then
Zf ∩ Pf =

⋃
g−1λ (0) ∩ h−1µ (0) is (n− 2)-dimensional. As we will see in the next section,

Th. 6.13 does not hold on an arbitrary complex space. �

Let (Aj), resp. (Bj), be the global irreducible components of Zf , resp. Pf . In a
neighborhood Vj of the (n− 1)-dimensional analytic set

A′j = Aj r
(
Pf ∪

⋃

k 6=j
Ak)

f is holomorphic and V ∩f−1(0) = A′j . As A′j,reg is connected, we must have div(f↾Vj
) =

mjA
′
j for some constant multiplicity mj equal to the vanishing order of f along A′j,reg.

Similarly, 1/f is holomorphic in a neighborhood Wj of

B′j = Bj r
(
Zf ∪

⋃

k 6=j
Bk)

and we have div(f↾V ) = −pjB′j where pj is the vanishing order of 1/f along B′j,reg. At
a point x ∈ M the germs Aj,x and Bj,x may subdivide in irreducible local components
Aj,λ,x and Bj,λ,x. If gj,λ and hj,λ are local generators of the corresponding ideals, we
may a priori write

fx = u g/h where g =
∏

g
mj,λ

j,λ , h =
∏

h
pj,λ
j,λ
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and where u is invertible. Then necessarily mj,λ = mj and pj,λ = pj for all λ, and we
see that the global divisor of f on M is

(6.14) div(f) =
∑

mjAj −
∑

pjBj.

Let us denote byM⋆ the multiplicative sheaf of germs of non zero meromorphic functions,
and by O⋆ the sheaf of germs of invertible holomorphic functions. Then we have an exact
sequence of sheaves

(6.15) 1 −→ O⋆ −→ M⋆ div−→ Div −→ 0.

Indeed, the surjectivity of div is a consequence of Th. 6.6. Moreover, any meromorphic
function that has a positive divisor must be holomorphic by the fact that On is factorial.
Hence a meromorphic function f with div(f) = 0 is an invertible holomorphic function.

§ 7. Normal Spaces and Normalization

§ 7.1. Weakly Holomorphic Functions

The goal of this section is to show that the singularities of X can be studied by en-
larging the structure sheaf OX into a sheaf ÕX of so-called weakly holomorphic functions.

(7.1) Definition. Let X be a complex space. A weakly holomorphic function f on X
is a holomorphic function on Xreg such that every point of Xsing has a neighborhood V

for which f is bounded on Xreg ∩ V . We denote by ÕX,x the ring of germs of weakly

holomorphic functions over neighborhoods of x and ÕX the associated sheaf.

Clearly, ÕX,x is a ring containing OX,x. If (Xj , x) are the irreducible components of
(X, x), there is a fundamental system of neighborhoods V of x such that Xreg ∩ V is a
disjoint union of connected open sets

Xj,reg ∩ V r
⋃

k 6=j
Xk ∩Xj,reg ∩ V

which are dense in Xj,reg ∩V . Therefore any bounded holomorphic function on Xreg ∩V
extends to each component Xj,reg ∩ V and we see that

ÕX,x =
⊕
ÕXj ,x.

The first important fact is that weakly holomorphic functions are always meromorphic
and possess “universal denominators”.

(7.2) Theorem. For every point x ∈ X, there is a neighborhood V of x and h ∈ OX(V )
such that h−1(0) is nowhere dense in V and hyÕX,y ⊂ OX,y for all y ∈ V ; such a
function h is called a universal denominator on V . In particular ÕX is contained in the
ring MX of meromorphic functions.

Proof. First assume that (X, x) is irreducible and that we have a ramified covering
π : X ∩∆ −→ ∆′ with ramification locus S. We claim that the discriminant δ(z′) of a
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primitive element u(z′′) = cd+1zd+1 + · · · + cnzn is a universal denominator on X ∩∆.
To see this, we imitate the proof of Lemma 4.15. Let f ∈ ÕX,y, y ∈ X ∩ ∆. Then we
solve the equation

f(z) =
∑

06j6q

bj(z
′)u(z′′)j

in a neighborhood of y. For z′ ∈ ∆′ r S, let us denote by (z′, z′′α), 1 6 α 6 q, the points
in the fiber X ∩ π−1(z′). Among these, only q′ are close to y, where q′ is the sum of the
sheet numbers of the irreducible components of (X, y) by the projection π. The other
points (z′, z′′α), say q

′ < α 6 q, are in neighborhoods of the points of π−1(y′)r {y}. We
take

(
bj(z

′)
)
to be the solution of the linear system

∑

06j6q

bj(z
′)u(z′′α)

j =

{
f(z′, z′′α) for 1 6 α 6 q′,
0 for q′ < α 6 n.

The solutions bj(z
′) are holomorphic on ∆′rS near y′. Since the determinant is δ(z′)1/2,

we see that δbj is bounded, thus δbj ∈ O∆′,y′ and δyf ∈ OX,y.
Now, assume that (X, x) ⊂ (Cn, 0) has irreducible components (Xj, x). We can find

for each j a neighborhood Ωj of 0 in Cn and a function δj ∈ On(Ωj) which is a universal
denominator on Xj ∩ Ωj . After adding to δj a function which is identically zero on
(Xj, x) and non zero on (Xk, x), k 6= j, we may assume that δ−1j (0)∩Xk ∩Ω is nowhere
dense in Xk ∩ Ω for all j and k and some small Ω ⊂ ⋂

Ωj . Then δ =
∏
δj is a universal

denominator on each component Xj ∩Ω. For some possibly smaller Ω, select a function
vj ∈ On(Ω) such that vj vanishes identically on

⋃
k 6=j Xk∩Ω and v−1j (0) is nowhere dense

in Xj ∩ Ω, and set h = δ
∑
vk. For any germ f ∈ OX,y, y ∈ X ∩ Ω, there is a germ

gj ∈ OΩ,y with δf = gj on (Xj, y). We have h = δvj on Xj ∩ Ω, so h−1(0) is nowhere
dense in X ∩ Ω and

hf = vjδf = vjgj =
∑

vkgk on each (Xj, y).

Since
∑
vkgk ∈ OΩ,y, we get hÕX,y ⊂ OX,y. �

(7.3) Theorem. If (X, x) is irreducible, ÕX,x is the integral closure of OX,x in its

quotient field MX,x. Moreover, every germ f ∈ ÕX,x admits a limit

lim
Xreg∋z→x

f(z).

Observe that OX,x is an entire ring, so the ring of quotients MX,x is actually a
field. A simple illustration of the theorem is obtained with the irreducible germ of curve
X : z31 = z22 in (C2, 0). Then X can be parametrized by z1 = t2, z2 = t3, t ∈ C, and
OX,0 = C{z1, z2}/(z31 − z22) = C{t2, t3} consists of all convergent series

∑
ant

n with
a1 = 0. The function z2/z1 = t is weakly holomorphic on X and satisfies the integral
equation t2 − z1 = 0. Here we have ÕX,0 = C{t}.

Proof. a) Let f = g/h be an element in MX,x satisfying an integral equation

fm + a1f
m−1 + . . .+ am = 0, ak ∈ OX,x.
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Set A = h−1(0). Then f is holomorphic on X rA near x, and Lemma 4.10 shows that f
is bounded on a neighborhood of x. By Remark 4.2, f can be extended as a holomorphic
function on Xreg in a neighborhood of x, thus f ∈ ÕX,x.

b) Let f ∈ ÕX,x and let π : X ∩∆ −→ ∆′ be a ramified covering in a neighborhood of x,
with ramification locus S. As in the proof of Th. 6.1, f satisfies an equation

f q − σ1f q−1 + · · ·+ (−1)qσq = 0, σk ∈ O(∆′) ;

indeed the elementary symmetric functions σk(z
′) are holomorphic on ∆′r S and boun-

ded, so they extend holomorphically to ∆′. Hence ÕX,x is integral over OX,x and we

already know that ÕX,x ⊂ MX,x.

c) Finally, the cluster set
⋂
V ∋x f(Xreg ∩ V ) is connected, because there is a fundamental

system of neighborhoods V of x such that Xreg ∩V is connected, and any intersection of
a decreasing sequence of compact connected sets is connected. However the limit set is
contained in the finite set of roots of equation b) at point x′ ∈ ∆′, so it must be reduced
to one element. �

§ 7.2. Normal Spaces

Normal spaces are spaces for which all weakly holomorphic functions are actually
holomorphic. These spaces will be seen later to have “simpler” singularities than general
analytic spaces.

(7.4) Definition. A complex space X is said to be normal at a point x if (X, x) is
irreducible and ÕX,x = OX,x, that is, OX,x is integrally closed in its field of quotients.
The set of normal (resp. non-normal) points will be denoted Xnorm (resp. Xn-n). The
space X itself is said to be normal if X is normal at every point.

Observe that any regular point x is normal: in fact OX,x ≃ On is then factorial, hence
integrally closed. Therefore Xn-n ⊂ Xsing.

(7.5) Theorem. The non-normal set Xn-n is an analytic subset of X. In particular,
Xnorm is open in X.

Proof. We give here a beautifully simple proof due to [Grauert and Remmert 1984]. Let
h be a universal denominator on a neighborhood V of a given point and let I =

√
hOX

be the sheaf of ideals of h−1(0) by Hilbert’s Nullstellensatz. Finally, let F = hom
O

(I,I)
be the sheaf of OX -endomorphisms of I. Since I is coherent, so is F (cf. Exercise 10.?).
Clearly, the homotheties of I give an injection OX ⊂ F over V . We claim that there
is a natural injection F ⊂ ÕX . In fact, any endomorphism of I yields by restriction a
homomorphism hOX −→ OX , and by OX -linearity such a homomorphism is obtained by
multiplication by an element in h−1OX . Thus F ⊂ h−1OX ⊂ MX . Since each stalk Ix is
a finite OX,x-module containing non-zero divisors, it follows that that any meromorphic
germ f such that fIx ⊂ Ix is integral over OX,x ([Lang 1965], Chapter IX, § 1), hence
Fx ⊂ ÕX,x. Thus we have inclusions OX ⊂ F ⊂ ÕX . Now, we assert that

Xn-n ∩ V = {x ∈ V ; Fx 6= OX,x} = F/OX .
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This will imply the theorem by 5.10. To prove the equality, we first observe that Fx 6=
OX,x implies ÕX,x 6= OX,x, thus x ∈ Xn-n. Conversely, assume that x is non normal,

that is, ÕX,x 6= OX,x. Let k be the smallest integer such that IkxÕX,x ⊂ OX,x ; such

an integer exists since IlxÕX,x ⊂ hÕX,x ⊂ OX,x for l large. Then there is an element

w ∈ Ik−1x ÕX,x such that w /∈ OX,x. We have wIx ⊂ OX,x ; moreover, as w is locally
bounded near Xsing, any germ wg in wIx satisfies limw(z)g(z) = 0 when z ∈ Xreg tends
to a point of the zero variety h−1(0) of Ix. Hence wIx ⊂ Ix, i.e. w ∈ Fx, but w /∈ OX,x,
so Fx 6= OX,x. �

(7.6) Theorem. If x ∈ X is a normal point, then (Xsing, x) has codimension at least 2
in (X, x).

Proof. We suppose that Σ = Xsing has codimension 1 in a neighborhood of x and try
to get a contradiction. By restriction to a smaller neighborhood, we may assume that
X itself is normal and irreducible (since Xnorm is open), dimX = n, that Σ has pure
dimension n − 1 and that the ideal sheaf IΣ has global generators (g1, . . . , gk). Then
Σ ⊂ ⋃

g−1j (0) ; both sets have pure dimension n− 1 and thus singular sets of dimension

6 n−2. Hence there is a point a ∈ Σ that is regular on Σ and on
⋃
g−1j (0), in particular

there is a neighborhood V of a such that g−11 (0) ∩ V = . . . = g−1k (0) ∩ V = Σ ∩ V is
a smooth (n − 1)-dimensional manifold. Since codimX Σ = 1 and a is a singular point
of X , IΣ,a cannot have less than 2 generators in OX,a by Cor. 4.33. Take (g1, . . . , gl),
l > 2, to be a minimal subset of generators. Then f = g2/g1 cannot belong to OX,a,
but f is holomorphic on V r Σ. We may assume that there is a sequence aν ∈ V r Σ
converging to a such that f(aν) remains bounded (otherwise reverse g1 and g2 and pass
to a subsequence). Since g−11 (0) ∩ V = Σ ∩ V , Hilbert’s Nullstellensatz gives an integer
m such that ImΣ,a ⊂ g1OX,a, hence faI

m
Σ,a ⊂ OX,a. We take m to be the smallest

integer such that the latter inclusion holds. Then there is a product gα = gα1
1 . . . gαl

l

with |α| = m− 1 such that fgα /∈ OX,a but fgαgj ∈ OX,a for each j. Since the sequence
f(aν) is bounded we conclude that fgαgj vanishes at a. The zero set of this function
has dimension n − 1 and is contained in

⋃
g−1k (0) ∩ V = Σ ∩ V so it must contain the

germ (Σ, a). Hence fgαgj ∈ IΣ,a and fgαIΣ,a ⊂ IΣ,a. As IΣ,a is a finitely generated

OX,a-module, this implies fgα ∈ ÕX,a = OX,a, a contradiction. �

(7.7) Corollary. A complex curve is normal if and only if it is regular.

(7.8) Corollary. Let X be a normal complex space and Y an analytic subset of X such
that dim(Y, x) 6 dim(X, x)−2 for any x ∈ X. Then any holomorphic function on XrY
can be extended to a holomorphic function on X.

Proof. By Cor. 1.4.5, every holomorphic function f on Xreg r Y extends to Xreg. Since
codimXsing > 2, Th. 6.1 shows that f is locally bounded near Xsing. Therefore f extends
to X by definition of a normal space. �

§ 7.3. The Oka Normalization Theorem

The important normalization theorem of [Oka 1950] shows that ÕX can be used to
define the structure sheaf of a new analytic space X̃ which is normal and is obtained by
“simplifying” the singular set of X . More precisely:
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(7.9) Definition. Let X be a complex space. A normalization (Y, π) of X is a normal
complex space Y together with a holomorphic map π : Y −→ X such that the following
conditions are satisfied.

a) π : Y −→ X is proper and has finite fibers;

b) if Σ is the set of singular points of X and A = π−1(Σ), then Y r A is dense in Y
and π : Y r A −→ X r Σ = Xreg is an analytic isomorphism.

It follows from b) that Y r A ⊂ Yreg. Thus Y is obtained from X by a suitable
“modification” of its singular points. Observe that Yreg may be larger than Y rA, as is
the case in the following two examples.

(7.10) Examples.

a) LetX = C×{0}∪{0}×C be the complex curve z1z2 = 0 in C2. Then the normalization
of X is the disjoint union Y = C×{1, 2} of two copies of C, with the map π(t1) = (t1, 0),
π(t2) = (0, t2). The set A = π−1(0, 0) consists of exactly two points.

b) The cubic curve X : z31 = z22 is normalized by the map π : C −→ X , t 7−→ (t2, t3).
Here π is a homeomorphism but π−1 is not analytic at (0, 0). �

We first show that the normalization is essentially unique up to isomorphism and
postpone the proof of its existence for a while.

(7.11) Lemma. If (Y1, π1) and (Y2, π2) are normalizations of X, there is a unique
analytic isomorphism ϕ : Y1 −→ Y2 such that π1 = π2 ◦ ϕ.

Proof. Let Σ be the set of singular points of X and Aj = π−1j (Σ), j = 1, 2. Let

ϕ′ : Y1 r A1 −→ Y2 r A2 be the analytic isomorphism π−12 ◦ π1. We assert that ϕ′ can
be extended into a map ϕ : Y1 −→ Y2. In fact, let a ∈ A1 and s = π1(a) ∈ Σ. Then
π−12 (s) consists of a finite set of points yj ∈ Y2. Take disjoint neighborhoods Uj of yj
such that Uj is an analytic subset in an open set Ωj ⊂⊂ CN . Since π2 is proper, there
is a neighborhood V of s in X such that π−12 (V ) ⊂ ⋃

Uj and by continuity of π1 a
neighborhood W of a such that π1(W ) ⊂ V . Then ϕ′ = π−12 ◦ π1 maps W r A1 into⋃
Uj and can be seen as a bounded holomorphic map into CN through the embeddings

Uj ⊂ Ωj ⊂⊂ CN . Since Y1 is normal, ϕ′ extends to W , and the extension takes values
in

⋃
U j which is contained in Y2 (shrink Uj if necessary). Thus ϕ′ extends into a map

ϕ : Y1 −→ Y2 and similarly ϕ′−1 extends into a map ψ : Y2 −→ Y1. By density of YjrAj ,
we have ψ ◦ ϕ = IdY1

, ϕ ◦ ψ = IdY2
. �

(7.12) Oka normalization theorem. Let X be any complex space. Then X has a
normalization (Y, π).

Proof. Because of the previous lemma, it suffices to prove that any point x ∈ X has a
neighborhood U such that U admits a normalization; all these local normalizations will
then glue together. Hence we may suppose that X is an analytic set in an open set of
Cn. Moreover, if (X, x) splits into irreducible components (Xj, x) and if (Yj , πj) is a
normalization of Xj ∩ U , then the disjoint union Y =

∐
Yj with π =

∐
πj is easily seen

to be a normalization of X ∩ U . We may therefore assume that (X, x) is irreducible.
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Let h be a universal denominator in a neighborhood of x. Then ÕX,x is isomorphic to

its image hÕX,x ⊂ OX,x, so it is a finitely generated OX,x-module. Let (f1, . . . , fm) be a
finite set of generators of OX,x. After shrinking X again, we may assume the following
two points:

• X is an analytic set in an open set Ω ⊂ Cn, (X, x) is irreducible and Xreg is connected;

• fj is holomorphic in Xreg, can be written fj = gj/h on X with gj, h in On(Ω) and
satisfies an integral equation Pj(z ; fj(z)) = 0 where Pj(z ; T ) is a unitary polynomial
with holomorphic coefficients on X .

Set X ′ = X r h−1(0). Consider the holomorphic map

F : Xreg −→ Ω× Cm, z 7−→
(
z, f1(z), . . . , fm(z)

)

and the image Y ′ = F (X ′). We claim that the closure Y of Y ′ in Ω× Cm is an analytic
set. In fact, the set

Z =
{
(z, w) ∈ Ω× Cm ; z ∈ X , h(z)wj = gj(z)

}

is analytic and Y ′ = Z r {h(z) = 0}, so we may apply Cor. 5.4. Observe that Y ′ is
contained in the set defined by Pj(z ;wj) = 0, thus so is its closure Y . The first projection
Ω× Cm −→ Ω gives a holomorphic map π : Y −→ X such that π ◦ F = Id on X ′, hence
also on Xreg. If Σ = Xsing and A = π−1(Σ), the restriction π : Y rA −→ XrΣ = Xreg is
thus an analytic isomorphism and F is its inverse. Since (X, x) is irreducible, each fj has
a limit ℓj at x by Th. 7.3 and the fiber π−1(x) is reduced to the single point y = (x, ℓ).
The other fibers π−1(z) are finite because they are contained in the finite set of roots
of the equations Pj(z ; wj) = 0. The same argument easily shows that π is proper (use
Lemma 4.10).

Next, we show that Y is normal at the point y = π−1(x). In fact, for any bounded
holomorphic function u on (Yreg, y) the function u ◦ F is bounded and holomorphic

on (Xreg, x). Hence u ◦ F ∈ ÕX,x = OX,x[f1, . . . , fm] and we can write u ◦ F (z) =
Q(z ; f1(z), . . . , fm(z)) = Q ◦ F (z) where Q(z ; w) =

∑
aα(z)w

α is a polynomial in w
with coefficients in OX,x. Thus u coincides with Q on (Yreg, y), and as Q is holomorphic

on (X, x)× Cm ⊃ (Y, y), we conclude that u ∈ OY,y. Therefore ÕY,y = OY,y.
Finally, by Th. 7.5, there is a neighborhood V ⊂ Y of y such that every point of V

is normal. As π is proper, we can find a neighborhood U of x with π−1(U) ⊂ V . Then
π : π−1(U) −→ U is the required normalization in a neighborhood of x. �

The proof of Th. 7.12 shows that the fiber π−1(x) has exactly one point yj for each ir-
reducible component (Xj, x) of (X, x). As a one-to-one proper map is a homeomorphism,
we get in particular:

(7.13) Corollary. If X is a locally irreducible complex space, the normalization π :
Y −→ X is a homeomorphism. �

(7.14) Remark. In general, for any open set U ⊂ X , we have an isomorphism

(7.15) π⋆ : ÕX(U)
≃−→ OY

(
π−1(U)

)
,
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whose inverse is given by the comorphism of π−1 : Xreg −→ Y ; note that ÕY (U) = OY (U)
since Y is normal. Taking the direct limit over all neighborhoods U of a given point
x ∈ X , we get an isomorphism

(7.15′) π⋆ : ÕX,x −→
⊕

yj∈π−1(x)

OY,yj .

In other words, ÕX is isomorphic to the direct image sheaf π⋆OY , see (1.12). We will prove
later on the deep fact that the direct image of a coherent sheaf by a proper holomorphic
map is always coherent ([Grauert 1960], see 9.?.1). Hence ÕX = π⋆OY is a coherent sheaf
over OX .

§ 8. Holomorphic Mappings and Extension Theorems

§ 8.1. Rank of a Holomorphic Mapping

Our goal here is to introduce the general concept of the rank of a holomorphic map
and to relate the rank to the dimension of the fibers. As in the smooth case, the rank is
shown to satisfy semi-continuity properties.

(8.1) Lemma. Let F : X −→ Y be a holomorphic map from a complex space X to a
complex space Y .

a) If F is finite, i.e. proper with finite fibers, then dimX 6 dimY .

b) If F is finite and surjective, then dimX = dimY .

Proof. a) Let x ∈ X , (Xj , x) an irreducible component and m = dim(Xj, x). If (Yk, y)
are the irreducible components of Y at y = F (x), then (Xj, x) is contained in

⋃
F−1(Yk),

hence (Xj, x) is contained in one of the sets F−1(Yk). If p = dim(Yk, y), there is a ramified
covering π from some neighborhood of y in Yk onto a polydisk in ∆′ ⊂ Cp. Replacing
X by some neighborhood of x in Xj and F by the finite map π ◦ F↾Xj

: Xj −→ ∆′, we
may suppose that Y = ∆′ and that X is irreducible, dimX = m. Let r = rank dFx0

be the maximum of the rank of the differential of F on Xreg. Then r 6 min{m, p} and
the rank of dF is constant equal to r on a neighborhood U of x0. The constant rank
theorem implies that the fibers F−1(y)∩U are (m− r)-dimensional submanifolds, hence
m− r = 0 and m = r 6 p.

b) We only have to show that dimX > dimY . Fix a regular point y ∈ Y of maximal
dimension. By taking the restriction F : F−1(U) −→ U to a small neighborhood U of y,
we may assume that Y is an open subset of Cp. If dimX < dimY , then X is a union
of analytic manifolds of dimension < dimY and Sard’s theorem implies that F (X) has
zero Lebesgue measure in Y , a contradiction. �

(8.2) Proposition. For any holomorphic map F : X −→ Y , the fiber dimension
dim

(
F−1(F (x)), x

)
is an upper semi-continuous function of x.

Proof. Without loss of generality, we may suppose that X is an analytic set in Ω ⊂ Cn,
that F (X) is contained in a small neighborhood of F (x) in Y which is embedded in CN ,
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and that x = 0, F (x) = 0. Set A = F−1(0) and s = dim(A, 0). We can find a linear form
ξ1 on Cn such that dim(A∩ ξ−11 (0), 0) = s−1 ; in fact we need only select a point xj 6= 0
on each irreducible component (Aj, 0) of (A, 0) and take ξ1(xj) 6= 0. By induction, we
can find linearly independent forms ξ1, . . . , ξs on Cn such that

dim
(
A ∩ ξ−11 (0) ∩ . . . ∩ ξ−1j (0), 0

)
= s− j

for all j = 1, . . . , s ; in particular 0 is an isolated point in the intersection when j = s.
After a change of coordinates, we may suppose that ξj(z) = zj . Fix r′′ so small that

the ball B
′′ ⊂ Cn−s of center 0 and radius r′′ satisfies A ∩ ({0} × B

′′
) = {0}. Then

A is disjoint from the compact set {0} × ∂B′′, so there exists a small ball B′ ⊂ Cs

of center 0 such that A ∩ (B
′ × ∂B′′) = ∅, i.e. F does not vanish on the compact set

K = X ∩ (B
′ × ∂B′′). Set ε = minK |F |. Then for |y| < ε the fiber F−1(y) does not

intersect B
′× ∂B′′. This implies that the projection map π : F−1(y)∩ (B′×B′′) −→ B′

is proper. The fibers of π are then compact analytic subsets of B′′, so they are finite
by 5.9. Lemma 8.1 a) implies

dimF−1(y) ∩ (B′ ×B′′) 6 dimB′ = s = dim(A, 0) = dim(F−1(0), 0). �

Let X be a pure dimensional complex space and F : X −→ Y a holomorphic map.
For any point x ∈ X , we define the rank of F at x by

(8.3) ρF (x) = dim(X, x)− dim
(
F−1(F (x)), x

)
.

By the above proposition, ρF is a lower semi-continuous function on X . In particular,
if ρF is maximum at some point x0, it must be constant in a neighborhood of x0. The
maximum ρ(F ) = maxX ρF is thus attained on Xreg or on any dense open subset X ′ ⊂
Xreg. If X is not pure dimensional, we define ρ(F ) = maxα ρ(F↾Xα

) where (Xα) are
the irreducible components of X . For a map F : X −→ CN , the constant rank theorem
implies that ρ(F ) is equal to the maximum of the rank of the jacobian matrix dF at
points of Xreg (or of X ′).

(8.4) Proposition. If F : X −→ Y is a holomorphic map and Z an analytic subset of
X, then ρ(F↾Z) 6 ρ(F ).

Proof. Since each irreducible component of Z is contained in an irreducible component
of X , we may assume X irreducible. Let π : X̃ −→ X be the normalization of X and
Z̃ = π−1(Z). Since π is finite and surjective, the fiber of F ◦ π at point x has the same
dimension than the fiber of F at π(x) by Lemma 8.1 b). Therefore ρ(F ◦ π) = ρ(F ) and
ρ(F ◦ π↾Z̃) = ρ(F↾Z), so we may assume X normal. By induction on dimX , we may
also suppose that Z has pure codimension 1 in X (every point of Z has a neighborhood
V ⊂ X such that Z ∩ V is contained in a pure one codimensional analytic subset of V ).
But then Zreg ∩Xreg is dense in Zreg because codimXsing > 2. Thus we are reduced to
the case when X is a manifold and Z a submanifold, and this case is clear if we consider
the rank of the jacobian matrix. �

(8.5) Theorem. Let F : X −→ Y be a holomorphic map. If Y is pure dimensional and
ρ(F ) < dimY , then F (X) has empty interior in Y .



118 Chapter II. Coherent Sheaves and Analytic Spaces

Proof. Taking the restriction of F to F−1(Yreg), we may assume that Y is a manifold.
Since X is a countable union of compact sets, so is F (X), and Baire’s theorem shows
that the result is local for X . By Prop. 8.4 and an induction on dimX , F (Xsing) has
empty interior in Y . The set Z ⊂ Xreg of points where the jacobian matrix of F has rank
< ρ(F ) is an analytic subset hence, by induction again, F (Z) has empty interior. The
constant rank theorem finally shows that every point x ∈ XregrZ has a neighborhood V
such that F (V ) is a submanifold of dimension ρ(F ) in Y , thus F (V ) has empty interior
and Baire’s theorem completes the proof. �

(8.6) Corollary. Let F : X −→ Y be a surjective holomorphic map. Then dimY =
ρ(F ).

Proof. By the remark before Prop. 8.4, there is a regular point x0 ∈ X such that the
jacobian matrix of F has rank ρ(F ). Hence, by the constant rank theorem dimY > ρ(F ).
Conversely, let Yα be an irreducible component of Y of dimension equal to dimY , and
Z = F−1(Yα) ⊂ X . Then F (Z) = Yα and Th. 8.5 implies ρ(F ) > ρ(F↾Z) > dimYα. �

§ 8.2. Remmert and Remmert-Stein Theorems

We are now ready to prove two important results: the extension theorem for analytic
subsets due to [Remmert and Stein 1953] and the theorem of [Remmert 1956, 1957] which
asserts that the image of a complex space under a proper holomorphic map is an analytic
set. These will be obtained by a simultaneous induction on the dimension.

(8.7) Remmert-Stein theorem. Let X be a complex space, A an analytic subset of
X and Z an analytic subset of X r A. Suppose that there is an integer p > 0 such that
dimA 6 p, while dim(Z, x) > p for all x ∈ Z. Then the closure Z of Z in X is an
analytic subset.

(8.8) Remmert’s proper mapping theorem. Let F : X −→ Y be a proper holomor-
phic map. Then F (X) is an analytic subset of Y .

Proof. We let (8.7m) denote statement (8.7) for dimZ 6 m and (8.8m) denote statement
(8.8) for dimX 6 m. We proceed by induction on m in two steps:

Step 1. (8.7m) and (8.8m−1) imply (8.8m).
Step 2. (8.8m−1) implies (8.7m).

As (8.8m) is obvious for m = 0, our statements will then be valid for all m, i.e. for all
complex spaces of bounded dimension. However, Th. 8.7 is local on X and Th. 8.8 is
local on Y , so the general case is immediately reduced to the finite dimensional case.

Proof of step 1. The analyticity of F (X) is a local question in Y . Since F : F−1(U) −→ U
is proper for any open set U ⊂ Y and F−1(U) ⊂⊂ X if U ⊂⊂ Y , we may suppose that
Y is embedded in an open set Ω ⊂ Cn and that X only has finitely many irreducible
components Xα. Then we have F (X) =

⋃
F (Xα) and we are reduced to the case when

X is irreducible, dimX = m and Y = Ω.

First assume that X is a manifold and that the rank of dF is constant. The constant
rank theorem implies that every point in X has a neighborhood V such that F (V ) is
a closed submanifold in a neighborhood W of F (x) in Y . For any point y ∈ Y , the
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fiber F−1(y) can be covered by finitely many neighborhoods Vj of points xj ∈ F−1(y)
such that F (Vj) is a closed submanifold in a neighborhood Wj of y. Then there is a
neighborhood of y W ⊂ ⋂

Wj such that F−1(W ) ⊂ ⋃
Vj , so F (X) ∩W =

⋃
F (Vj) ∩W

is a finite union of closed submanifolds in W and F (X) is analytic in Y .

Now suppose that X is a manifold, set r = ρ(F ) and let Z ⊂ X be the analytic subset
of points x where the rank of dFx is < r. Since dimZ < m = dimX , the hypothesis
(8.8m−1) shows that F (Z) is analytic. We have dimF (Z) = ρ(F↾Z) < r. If F (Z) =
F (X), then F (X) is analytic. Otherwise A = F−1

(
F (Z)

)
is a proper analytic subset of

X , dF has constant rank on XrA ⊂ XrZ and the morphism F : XrA −→ Y rF (Z) is
proper. Hence the image F (XrA) is analytic in Y rF (Z). Since dimF (XrA) = r 6 m
and dimF (Z) < r, hypothesis (8.7m) implies that F (X) = F (X r A) is analytic in Y .
When X is not a manifold, we apply the same reasoning with Z = Xsing in order to be
reduced to the case of F : X r A −→ Y r F (Z) where X rA is a manifold. �

Proof of step 2. Since Th. 8.7 is local on X , we may suppose that X is an open set
Ω ⊂ Cn. Then we use induction on p to reduce the situation to the case when A is a
p-dimensional submanifold (if this case is taken for granted, the closure of Z in ΩrAsing

is analytic and we conclude by the induction hypothesis). By a local analytic change of
coordinates, we may assume that 0 ∈ A and that A = Ω∩L where L is a vector subspace
of Cn of dimension p. By writing Z =

⋃
p<s6m Zs where Zs is an analytic subset of

Ω r Y of pure dimension s, we may suppose that Z has pure dimension s, p < s 6 m.
We are going to show that Z is analytic in a neighborhood of 0.

Let ξ1 be a linear form on Cn which is not identically zero on L nor on any irreducible
component of Z (just pick a point xν on each component and take ξ1(xν) 6= 0 for all ν).
Then dimL ∩ ξ−11 (0) = p− 1 and the analytic set Z ∩ ξ−11 (0) has pure dimension s− 1.
By induction, there exist linearly independent forms ξ1, . . . , ξs such that

dimL ∩ ξ−11 (0) ∩ . . . ∩ ξ−1j (0) = p− j, 1 6 j 6 p,

dimZ ∩ ξ−11 (0) ∩ . . . ∩ ξ−1j (0) = s− j, 1 6 j 6 s.(8.9)

By adding a suitable linear combination of ξ1, . . . , ξp to each ξj , p < j 6 s, we may
take ξj↾L = 0 for p < j 6 s. After a linear change of coordinates, we may suppose that
ξj(z) = zj , L = Cp × {0} and A = Ω ∩ (Cp × {0}). Let ξ = (ξ1, . . . , ξs) : C

n −→ Cs be
the projection onto the first s variables. As Z is closed in Ωr A, Z ∪ A is closed in Ω.
Moreover, our construction gives (Z ∪ A) ∩ ξ−1(0) =

(
Z ∩ ξ−1(0)

)
∪ {0} and the case

j = s of (8.9) shows that Z ∩ξ−1(0) is a locally finite sequence in Ω∩ ({0}×Cn−s)r{0}.
Therefore, we can find a small ball B

′′
of center 0 in Cn−s such that Z∩({0}×∂B′′) = ∅.

As {0}× ∂B′′ is compact and disjoint from the closed set Z ∪A, there is a small ball B′

of center 0 in Cs such that (Z ∪ A) ∩ (B
′ × ∂B′′) = ∅. This implies that the projection

ξ : (Z ∪ A) ∩ (B′ ×B′′) −→ B′ is proper. Set A′ = B′ ∩ (Cp × {0}).
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A

B′ ×B′′

B′′

Z

A′

S′1
S′2

B′

π

Fig. II-3 Projection π : Z ∩ ((B′ rA′)×B′′) −→ B′ r A′.

Then the restriction

π = ξ : Z ∩ (B′ ×B′′)r (A′ ×B′′) −→ B′ r A′

is proper, and Z ∩ (B′ × B′′) is analytic in (B′ × B′′) r A, so π has finite fibers by
Th. 5.9. By definition of the rank we have ρ(π) = s. Let S1 = Zsing ∩ π−1(B′ rA′) and
S′1 = π(S1) ; further, let S2 be the set of points x ∈ Z ∩π−1

(
B′r (A′ ∪S′1)

)
⊂ Zreg such

that dπx has rank < s and S′2 = π(S2). We have dimSj 6 s − 1 6 m − 1. Hypothesis
(8.8)m−1 implies that S′1 is analytic in B′rA′ and that S′2 is analytic in B′ r (A′ ∪ S′1).
By Remark 4.2, B′r(A′∪S′1∪S′2) is connected and every bounded holomorphic function
on this set extends to B′. As π is a (non ramified) covering over B′r (A′ ∪S′1 ∪ S′2), the
sheet number is a constant q.

Let λ(z) =
∑
j>s λjzj be a linear form on Cn in the coordinates of index j > s. For

z′ ∈ B′ r (A′ ∪ S′1 ∪ S′2), we let σj(z
′) be the elementary symmetric functions in the

q complex numbers λ(z) corresponding to z ∈ π−1(z′). Then these functions can be
extended as bounded holomorphic functions on B′ and we get a polynomial Pλ(z

′ ; T )
such that Pλ

(
z′ ; λ(z′′)

)
vanishes identically on Z r π−1(A′ ∪ S′1 ∪ S′2). Since π is finite,

Z ∩ π−1(A′ ∪ S′1 ∪ S′2) is a union of three (non necessarily closed) analytic subsets of
dimension 6 s−1, thus has empty interior in Z. It follows that the closure Z∩ (B′×B′′)
is contained in the analytic setW ⊂ B′×B′′ equal to the common zero set of all functions
Pλ

(
z′ ; λ(z′′)

)
. Moreover, by construction,

Z r π−1(A′ ∪ S′1 ∪ S′2) = W r π−1(A′ ∪ S′1 ∪ S′2).
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As in the proof of Cor. 5.4, we easily conclude that Z ∩ (B′ ×B′′) is equal to the union
of all irreducible components of W that are not contained in π−1(A′ ∪ S′1 ∪ S′2). Hence
Z is analytic. �

Finally, we give two interesting applications of the Remmert-Stein theorem. We
assume here that the reader knows what is the complex projective space Pn. For more
details, see Sect. 5.15.

(8.10) Chow’s theorem ([Chow 1949]). Let A be an analytic subset of the complex
projective space Pn. Then A is algebraic, i.e. A is the common zero set of finitely many
homogeneous polynomials Pj(z0, . . . , zn), 1 6 j 6 N .

Proof. Let π : Cn+1 r {0} −→ Pn be the natural projection and Z = π−1(A). Then
Z is an analytic subset of Cn+1 r {0} which is invariant by homotheties and dimZ =
dimA + 1 > 1. The Remmert-Stein theorem implies that Z = Z ∪ {0} is an analytic
subset of Cn+1. Let f1, . . . , fN be holomorphic functions on a small polydisk ∆ ⊂ Cn+1

of center 0 such that Z ∩ ∆ =
⋂
f−1j (0). The Taylor series at 0 gives an expansion

fj =
∑+∞
k=0 Pj,k where Pj,k is a homogeneous polynomial of degree k. We claim that Z

coincides with the common zero W set of the polynomials Pj,k. In fact, we clearly have
W∩∆ ⊂ ⋂

f−1j (0) = Z∩∆. Conversely, for z ∈ Z∩∆, the invariance of Z by homotheties

shows that fj(tz) =
∑
Pj,k(z)t

k vanishes for every complex number t of modulus < 1, so
all coefficients Pj,k(z) vanish and z ∈W∩∆. By homogeneity Z =W ; since C[z0, . . . , zn]
is Noetherian, W can be defined by finitely many polynomial equations. �

(8.11) E.E. Levi’s continuation theorem. Let X be a normal complex space and
A an analytic subset such that dim(A, x) 6 dim(X, x) − 2 for all x ∈ A. Then every
meromorphic function on X rA has a meromorphic extension to X.

Proof. We may suppose X irreducible, dimX = n. Let f be a meromorphic function on
X rA. By Th. 6.13, the pole set Pf has pure dimension (n− 1), so the Remmert-Stein
theorem implies that P f is analytic in X . Fix a point x ∈ A. There is a connected
neighborhood V of x and a non zero holomorphic function h ∈ OX(V ) such that P f ∩ V
has finitely many irreducible components P f,j and P f ∩ V ⊂ h−1(0). Select a point xj
in P f,j r (Xsing ∪ (P f )sing ∪ A). As xj is a regular point on X and on P f , there is a
local coordinate z1,j at xj defining an equation of P f,j, such that z

mj

1,j f ∈ OX,xj
for some

integer mj . Since h vanishes along Pf , we have hmjf ∈ OX,x. Thus, for m = max{mj},
the pole set Pg of g = hmf in V r A does not contain xj . As Pg is (n− 1)-dimensional
and contained in Pf ∩ V , it is a union of irreducible components P f,j r A. Hence Pg
must be empty and g is holomorphic on V r A. By Cor. 7.8, g has an extension to a
holomorphic function g̃ on V . Then g̃/hm is the required meromorphic extension of f
on V . �

§ 9. Complex Analytic Schemes

Our goal is to introduce a generalization of the notion of complex space given in
Def. 5.2. A complex space is a space locally isomorphic to an analytic set A in an open
subset Ω ⊂ Cn, together with the sheaf of rings OA = (OΩ/IA)↾A. Our desire is to enrich
the structure sheaf OA by replacing IA with a possibly smaller ideal J defining the same
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zero variety V (J) = A. In this way holomorphic functions are described not merely by
their values on A, but also possibly by some “transversal derivatives” along A.

§ 9.1. Ringed Spaces

We start by an abstract notion of ringed space on an arbitrary topological space.

(9.1) Definition. A ringed space is a pair (X,RX) consisting of a topological space X
and of a sheaf of rings RX on X, called the structure sheaf. A morphism

F : (X,RX) −→ (Y,RY )

of ringed spaces is a pair (f, F ⋆) where f : X −→ Y is a continuous map and

F ⋆ : f−1RY −→ RX , F ⋆x : (RY )f(x) −→ (RX)x

a homomorphism of sheaves of rings on X, called the comorphism of F .

If F : (X,RX) −→ (Y,RY ) and G : (Y,RY ) −→ (Z,RZ) are morphisms of ringed
spaces, the composite G ◦ F is the pair consisting of the map g ◦ f : X −→ Z and of the
comorphism (G ◦ F )⋆ = F ⋆ ◦ f−1G⋆ :

(9.2) F ⋆ ◦ f−1G⋆ : f−1g−1RZ
f−1G⋆

−−−→ f−1RY
F ⋆

−−→ RX ,
F ⋆x ◦G⋆f(x) : (RZ)g◦f(x) −−−→ (RY )f(x) −−→ (RX)x.

§ 9.2. Definition of Complex Analytic Schemes

We begin by a description of what will be the local model of an analytic scheme. Let
Ω ⊂ Cn be an open subset, J ⊂ OΩ a coherent sheaf of ideals and A = V (J) the analytic
set in Ω defined locally as the zero set of a system of generators of J. By Hilbert’s
Nullstellensatz 4.22 we have IA =

√
J, but IA differs in general from J. The sheaf of

rings OΩ/J is supported on A, i.e. (OΩ/J)x = 0 if x /∈ A. Ringed spaces of the type
(A,OΩ/J) will be used as the local models of analytic schemes.

(9.3) Definition. A morphism

F = (f, F ⋆) : (A,OΩ/J↾A) −→ (A′,OΩ′/J′↾A′)

is said to be analytic if for every point x ∈ A there exists a neighborhood Wx of x in Ω
and a holomorphic function Φ : Wx −→ Ω′ such that f↾A∩Wx

= Φ↾A∩Wx
and such that

the comorphism

F ⋆x : (OΩ′/J′)f(x) −→ (OΩ/J)x

is induced by Φ⋆ : OΩ′,f(x) ∋ u 7−→ u ◦ Φ ∈ OΩ,x with Φ⋆J′ ⊂ J.

(9.4) Example. Take Ω = Cn and J = (z2n). Then A is the hyperplane Cn−1 × {0},
and the sheaf OCn/J can be identified with the sheaf of rings of functions u + znu

′,
u, u′ ∈ OCn−1 , with the relation z2n = 0. In particular, zn is a nilpotent element of OCn/J.
A morphism F of (A,OCn/J) into itself is induced (at least locally) by a holomorphic



§ 9. Complex Analytic Schemes 123

map Φ = (Φ̃,Φn) defined on a neighborhood of A in Cn with values in Cn, such that
Φ(A) ⊂ A, i.e. Φn↾A = 0. We see that F is completely determined by the data

f(z1, . . . , zn−1)= Φ̃(z1, . . . , zn−1, 0), f : Cn−1 −→ Cn−1,

f ′(z1, . . . , zn−1)=
∂Φ

∂zn
(z1, . . . , zn−1, 0), f ′ : Cn−1 −→ Cn,

which can be chosen arbitrarily.

(9.5) Definition. A complex analytic scheme is a ringed space (X,OX) over a separable
Hausdorff topological space X, satisfying the following property: there exist an open
covering (Uλ) of X and isomorphisms of ringed spaces

Gλ : (Uλ,OX↾Uλ
) −→ (Aλ,OΩλ

/Jλ ↾Aλ
)

where Aλ is the zero set of a coherent sheaf of ideals Jλ on an open subset Ωλ ⊂
CNλ , such that every transition morphism Gλ ◦G−1µ is a holomorphic isomorphism from
gµ(Uλ ∩Uµ) ⊂ Aµ onto gλ(Uλ ∩Uµ) ⊂ Aλ, equipped with the respective structure sheaves
OΩµ

/Jµ ↾Aµ
, OΩλ

/Jλ ↾Aλ
.

We shall often consider the maps Gλ as identifications and write simply Uλ = Aλ.
A morphism F : (X,OX) −→ (Y,OY ) of analytic schemes obtained by gluing patches
(Aλ,OΩλ

/Jλ ↾Aλ
) and (A′µ,OΩ′

µ
/J′µA′

µ
), respectively, is a morphism F of ringed spaces

such that for each pair (λ, µ), the restriction of F from Aλ ∩ f−1(A′µ) ⊂ X to A′µ ⊂ Y is
holomorphic in the sense of Def. 9.3.

§ 9.3. Nilpotent Elements and Reduced Schemes

Let (X,OX) be an analytic scheme. The set of nilpotent elements is the sheaf of ideals
of OX defined by

(9.6) NX = {u ∈ OX ; uk = 0 for some k ∈ N}.

Locally, we have OX↾Aλ
= (OΩλ

/Jλ)↾Aλ
, thus

NX↾Aλ
= (

√
Jλ/Jλ)↾Aλ

,(9.7)

(OX/NX)↾Aλ
≃ (OΩλ

/
√
Jλ)↾Aλ

= (OΩλ
/IAλ

)↾Aλ
= OAλ

.(9.8)

The scheme (X,OX) is said to be reduced if NX = 0. The associated ringed space
(X,OX/NX) is reduced by construction; it is called the reduced scheme of (X,OX). We
shall often denote the original scheme by the letter X merely, the associated reduced
scheme by Xred, and let OX,red = OX/NX . There is a canonical morphism Xred → X
whose comorphism is the reduction morphism

(9.9) OX(U) −→ OX,red(U) = (OX/NX)(U), ∀U open set in X.

By (9.8), the notion of reduced scheme is equivalent to the notion of complex space
introduced in Def. 5.2. It is easy to see that a morphism F of reduced schemes X, Y is
completely determined by the set-theoretic map f : X −→ Y .
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§ 9.4. Coherent Sheaves on Analytic Schemes

If (X,OX) is an analytic scheme, a sheaf S of OX -modules is said to be coherent if it
satisfies the same properties as those already stated when X is a manifold:

(9.10) S is locally finitely generated over OX ;
(9.10′) for any open set U ⊂ X and any sections G1, . . . , Gq ∈ S(U), the relation
sheaf R(G1, . . . , Gq) ⊂ O⊕qX↾U is locally finitely generated.

Locally, we have OX↾Aλ
= OΩλ

/Jλ, so if iλ : Aλ → Ωλ is the injection, the direct image
Sλ = (iλ)⋆(S↾Aλ

) is a module over OΩλ
such that Jλ.Sλ = 0. It is clear that S↾Ωλ

is
coherent if and only if Sλ is coherent as a module over OΩλ

. It follows immediately that
the Oka theorem and its consequences 3.16–20 are still valid over analytic schemes.

§ 9.5. Subschemes

Let X be an analytic scheme and G a coherent sheaf of ideals in OX . The image of
G in OX,red is a coherent sheaf of ideals, and its zero set Y is clearly an analytic subset
of Xred. We can make Y into a scheme by introducing the structure sheaf

(9.11) OY = (OX/G)↾Y ,

and we have a scheme morphism F : (Y,OY ) −→ (X,OX) such that f is the inclusion
and F ⋆ : f−1OX −→ OY the obvious map of OX↾Y onto its quotient OY . The scheme
(Y,OY ) will be denoted V (G). When the analytic set Y is given, the structure sheaf of
V (G) depends of course on the choice of the equations of Y in the ideal G ; in general
OY has nilpotent elements.

§ 9.6. Inverse Images of Coherent Sheaves

Let F : (X,OX) −→ (Y,OY ) be a morphism of analytic schemes and S a coherent
sheaf over Y . The sheaf theoretic inverse image f−1S, whose stalks are (f−1S)x = Sf(x),
is a sheaf of modules over f−1OY . We define the analytic inverse image F ⋆S by

(9.12) F ⋆S = OX ⊗f−1
OY

f−1S, (F ⋆S)x = OX,x ⊗OY,f(x)
Sf(x).

Here the tensor product is taken with respect to the comorphism F ⋆ : f−1OY → OX ,
which yields a ring morphism OY,f(x) → OX,x. If S is given over U ⊂ Y by a local
presentation

O

⊕p
Y ↾U

A−→ O⊕qY ↾U −→ S↾U −→ 0

where A is a (q× p)-matrix with coefficients in OY (U), our definition shows that F ⋆S is
a coherent sheaf over OX , given over f−1(U) by the local presentation

(9.13) O

⊕p
X↾f−1(U)

F ⋆A−−−→ O⊕q
X↾f−1(U)

−→ F ⋆S↾f−1(U) −→ 0.

§ 9.7. Products of Analytic Schemes

Let (X,OX) and (Y,OY ) be analytic schemes, and let (Aλ,OΩλ
/Jλ), (Bµ,OΩ′

µ
/J′µ)

be local models of X , Y , respectively. The product scheme (X × Y,OX×Y ) is obtained
by gluing the open patches

(9.14)
(
Aλ ×Bµ , OΩλ×Ω′

µ

/(
pr−11 Jλ + pr−12 J

′
µ

)
OΩλ×Ω′

µ

)
.
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In other words, if Aλ, Bµ are the subschemes of Ωλ, Ω
′
µ defined by the equations gλ,j(x) =

0, g′µ,k(y) = 0, where (gλ,j) and (g′µ,k) are generators of Jλ and J′µ respectively, then

Aλ ×Bµ is equipped with the structure sheaf OΩλ×Ω′
µ

/(
gλ,j(x), g

′
µ,k(y)

)
.

Now, let S be a coherent sheaf over OX and let S′ be a coherent sheaf over OY . The
(analytic) external tensor product S×S′ is defined to be

(9.15) S

×
S

′ = pr⋆1S⊗OX×Y
pr⋆2S

′.

If we go back to the definition of the inverse image, we see that the stalks of S×S′ are
given by

(9.15′) (S×S′)(x,y) = OX×Y,(x,y) ⊗OX,x⊗OY,y
(Sx ⊗C S

′
y) ,

in particular (S×S′)(x,y) does not coincide with the sheaf theoretic tensor product Sx⊗
S

′
y which is merely a module over OX,x⊗OY,y. IfS and S′ are given by local presentations

O

⊕p
X↾U

A−→ O⊕qX↾U −→ S↾U −→ 0, O

p′

Y ↾U ′

B−→ Oq
′

Y ↾U ′ −→ S′↾U ′ −→ 0,

then S×S′ is the coherent sheaf given by

O

pq′⊕qp′
X×Y ↾U×U ′

(A(x)⊗Id,Id⊗B(y))−−−−−−−−−−−−−−→ Oqq
′

X×Y ↾U×U ′ −→ (S×S′)↾U×U ′ −→ 0.

§ 9.8. Zariski Embedding Dimension

If x is a point of an analytic scheme (X,OX), the Zariski embedding dimension of the
germ (X, x) is the smallest integer N such that (X, x) can be embedded in CN , i.e. such
that there exists a patch of X near x isomorphic to (A,OΩ/J) where Ω is an open subset
of CN . This dimension is denoted

(9.16) embdim(X, x) = smallest such N.

Consider the maximal ideal mX,x ⊂ OX,x of functions which vanish at point x. If (X, x)
is embedded in (Ω, x) = (CN , 0), then mX,x/m

2
X,x is generated by z1, . . . , zN , so d =

dimmX,x/m
2
X,x 6 N . Let s1, . . . , sd be germs in mΩ,x which yield a basis of mX,x/m

2
X,x ≃

mΩ,x/(m
2
Ω,x + Jx). We can write

zj =
∑

16k6d

cjksk + uj + fj , cjk ∈ C, uj ∈ m
2
Ω,x, fj ∈ Jx, 1 6 j 6 n.

Then we find dzj =
∑
cjk dsk(x) + dfj(x), so that the rank of the system of differentials(

dfj(x)
)
is at least N − d. Assume for example that df1(x), . . . , dfN−d(x) are linearly

independant . By the implicit function theorem, the equations f1 = . . . = fN−d = 0
define a germ of smooth subvariety (Z, x) ⊂ (Ω, x) of dimension d which contains (X, x).
We have OZ = OΩ/(f1, . . . , fN−d) in a neighborhood of x, thus

OX = OΩ/J ≃ OZ/J′ where J′ = J/(f1, . . . , fN−d).

This shows that (X, x) can be imbedded in Cd, and we get

(9.17) embdim(X, x) = dimmX,x/m
2
X,x.
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(9.18) Remark. For a given dimension n = dim(X, x), the embedding dimension
d can be arbitrarily large. Consider for example the curve Γ ⊂ CN parametrized by
C ∋ t 7−→ (tN , tN+1, . . . , t2N−1). Then OΓ,0 is the ring of convergent series in C{t} which
have no terms t, t2, . . . , tN−1, and mΓ,0/m

2
Γ,0 admits precisely z1 = tN , . . . , zN = t2N−1

as a basis. Therefore n = 1 but d = N can be as large as we want.

§ 10. Bimeromorphic maps, Modifications and Blow-ups

It is a very frequent situation in analytic or algebraic geometry that two complex
spaces have isomorphic dense open subsets but are nevertheless different along some
analytic subset. These ideas are made precise by the notions of modification and bimero-
morphic map. This will also lead us to generalize the notion of meromorphic function to
maps between analytic schemes. If (X,OX) is an analytic scheme, MX denotes the sheaf
of meromorphic functions on X , defined at the beginning of § 6.2.

(10.1) Definition. Let (X,OX), (Y,OY ) be analytic schemes. An analytic morphism
F : X → Y is said to be a modification if F is proper and if there exists a nowhere dense
closed analytic subset B ⊂ Y such that the restriction F : X r F−1(B) → Y r B is an
isomorphism.

(10.2) Definition. If F : X → Y is a modification, then the comorphism F ⋆ : f⋆OY →
OX induces an isomorphism F ⋆ : f⋆MY → MX for the sheaves of meromorphic functions
on X and Y .

Proof. Let v = g/h be a section of MY on a small open set Ω where u is actually given as
a quotient of functions g, h ∈ OY (Ω). Then F ⋆u = (g ◦ F )/(h ◦ F ) is a section of MX on
F−1(Ω), for h ◦F cannot vanish identically on any open subset W of F−1(Ω) (otherwise
h would vanish on the open subset F (W r F−1(B)) of Ω r B). Thus the extension of
the comorphism to sheaves of meromorphic functions is well defined. Our claim is that
this is an isomorphism. The injectivity of F ⋆ is clear: F ⋆u = 0 implies g ◦ F = 0, which
implies g = 0 on Ω r B and thus g = 0 on Ω because B is nowhere dense. In order to
prove surjectivity, we need only show that every section u ∈ OX(F−1(Ω)) is in the image
of MY (Ω) by F ⋆. For this, we may shrink Ω into a relatively compact subset Ω′ ⊂⊂ Ω
and thus assume that u is bounded (here we use the properness of F through the fact
that F−1(Ω′) is relatively compact in F−1(Ω)). Then v = u ◦ F−1 defines a bounded
holomorphic function on ΩrB. By Th. 7.2, it follows that v is weakly holomorphic for
the reduced structure of Y . Our claim now follows from the following Lemma. �

(10.3) Lemma. If (X,OX) is an analytic scheme, then every holomorphic function v in
the complement of a nowhere dense analytic subset B ⊂ Y which is weakly holomorphic
on Xred is meromorphic on X.

Proof. It is enough to argue with the germ of v at any point x ∈ Y , and thus we may
suppose that (Y,OY ) = (A,OΩ/I) is embedded in CN . Because v is weakly holomorphic,

we can write v = g/h in Yred, for some germs of holomorphic functions g, h. Let g̃ and h̃

be extensions of g, h to OΩ,x. Then there is a neighborhood U of x such that g̃− vh̃ is a
nilpotent section of cOΩ(U rB) which is in I on
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(10.4) Definition. A meromorphic map F : X - -→ Y is a scheme morphism F :
X rA→ Y defined in the complement of a nowhere dense analytic subset A ⊂ X, such
that the closure of the graph of F in X×Y is an analytic subset (for the reduced complex
space structure of X × Y ).

§ 11. Exercises

§ 11.1. Let A be a sheaf on a topological space X. If the sheaf space Ã is Hausdorff, show that A
satisfies the following unique continuation principle: any two sections s, s′ ∈ A(U) on a connected open
set U which coincide on some non empty open subset V ⊂ U must coincide identically on U . Show that
the converse holds if X is Hausdorff and locally connected.

§ 11.2. Let A be a sheaf of abelian groups on X and let s ∈ A(X). The support of s, denoted Supp s,
is defined to be {x ∈ X ; s(x) 6= 0}. Show that Supp s is a closed subset of X. The support of A is
defined to be Supp A = {x ∈ X ; Ax 6= 0}. Show that Supp A is not necessarily closed: if Ω is an open
set in X, consider the sheaf A such that A(U) is the set of continuous functions f ∈ C(U) which vanish
on a neighborhood of U ∩ (X r Ω).

§ 11.3. Let A be a sheaf of rings on a topological space X and let F, G be sheaves of A-modules.
We define a presheaf H = Hom

A

(F,G) such that H(U) is the module of all sheaf-homomorphisms
F↾U → G↾U which are A-linear.

a) Show that Hom
A

(F,G) is a sheaf and that there exists a canonical homomorphism
ϕx : Hom

A

(F,G)x −→ hom
Ax

(Fx,Gx) for every x ∈ X.

b) If F is locally finitely generated, then ϕx is injective, and if F has local finite presentations as in
(3.12), then ϕx is bijective.

c) Suppose that A is a coherent sheaf of rings and that F, G are coherent modules over A. Then
Hom

A

(F,G) is a coherent A-module.
Hint: observe that the result is true if F = A

⊕p and use a local presentation of F to get the
conclusion.

§ 11.4. Let f : X → Y be a continuous map of topological spaces. Given sheaves of abelian groups
A on X and B on Y , show that there is a natural isomorphism

homX(f−1
B,A) = homY (B, f⋆A).

Hint: use the natural morphisms (2.17).

§ 11.5. Show that the sheaf of polynomials over Cn is a coherent sheaf of rings (with either the
ordinary topology or the Zariski topology on C

n). Extend this result to the case of regular algebraic
functions on an algebraic variety.
Hint: check that the proof of the Oka theorem still applies.

§ 11.6. Let P be a non zero polynomial on Cn. If P is irreducible in C[z1, . . . , zn], show that the
hypersurface H = P−1(0) is globally irreducible as an analytic set. In general, show that the irreducible
components of H are in a one-to-one correspondence with the irreducible factors of P .
Hint: for the first part, take coordinates such that P (0, . . . , 0, zn) has degree equal to P ; if H splits
in two components H1, H2, then P can be written as a product P1P2 where the roots of Pj(z

′, zn)
correspond to points in Hj .

§ 11.7. Prove the following facts:

a) For every algebraic variety A of pure dimension p in Cn, there are coordinates z′ = (z1, . . . , zp),
z′′ = (zp+1, . . . , zn) such that π : A → Cp, z 7→ z′′ is proper with finite fibers, and such that A is
entirely contained in a cone

|z′′| 6 C(|z′|+ 1).
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Hint: imitate the proof of Cor. 4.11.

b) Conversely if an analytic set A of pure dimension p in Cn is contained in a cone |z′′| 6 C(|z′|+ 1),
then A is algebraic.
Hint: first apply (5.9) to conclude that the projection π : A → Cp is finite. Then repeat the
arguments used in the final part of the proof of Th. 4.19.

c) Deduce from a), b) that an algebraic set in Cn is irreducible if and only if it is irreducible as an
analytic set.

§ 11.8. Let Γ : f(x, y) = 0 be a germ of analytic curve in C2 through (0, 0) and let (Γj , 0) be
the irreducible components of (Γ, 0). Suppose that f(0, y) 6≡ 0. Show that the roots y of f(x, y) = 0
corresponding to points of Γ near 0 are given by Puiseux expansions of the form y = gj(x

1/qj ), where
gj ∈ OC,0 and where qj is the sheet number of the projection Γj → C, (x, y) 7→ x.
Hint: special case of the parametrization obtained in (4.27).

§ 11.9. The goal of this exercise is to prove the existence and the analyticity of the tangent cone to
an arbitrary analytic germ (A, 0) in Cn. Suppose that A is defined by holomorphic equations f1 = . . . =
fN = 0 in a ball Ω = B(0, r). Then the (set theoretic) tangent cone to A at 0 is the set C(A, 0) of all
limits of sequences t−1

ν zν with zν ∈ A and C⋆ ∋ tν converging to 0.

a) Let E be the set of points (z, t) ∈ Ω× C
⋆ such that z ∈ t−1A. Show that the closure E in Ω× C is

analytic.
Hint: observe that E = Ar (Ω× {0}) where A = {fj(tz) = 0} and apply Cor. 5.4.

b) Show that C(A, 0) is a conic set and that E ∩ (Ω× {0}) = C(A, 0) × {0} and conclude. Infer from
this that C(A, 0) is an algebraic subset of Cn.

§ 11.10. Give a new proof of Theorem 5.5 based on the coherence of ideal sheaves and on the strong
noetherian property.

§ 11.11. Let X be an analytic space and let A, B be analytic subsets of pure dimensions. Show
that codimX(A ∩ B) 6 codimX A + codimX B if A or B is a local complete intersection, but that the
equality does not necessarily hold in general.
Hint: see Remark (6.5).

§ 11.12. Let Γ be the curve in C3 parametrized by C ∋ t 7−→ (x, y, z) = (t3, t4, t5). Show that the
ideal sheaf IΓ is generated by the polynomials xz − y2, x3 − yz and x2y − z2, and that the germ (Γ, 0)
is not a (sheaf theoretic) complete intersection.
Hint: Γ is smooth except at the origin. Let f(x, y, z) =

∑
aαβγx

αyβzγ be a convergent power series
near 0. Show that f ∈ IΓ,0 if and only if all weighted homogeneous components

fk =
∑

3α+4β+5γ=k

aαβγx
αyβzγ

are in IΓ,0. By means of suitable substitutions, reduce the proof to the case when f = fk is homogeneous
with all non zero monomials satisfying α 6 2, β 6 1, γ 6 1; then check that there is at most one such
monomial in each weighted degree 6 15 the product of a power of x by a homogeneous polynomial of
weighted degree 6 8.
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Chapter III

Positive Currents and Lelong Numbers

In 1957, P. Lelong introduced natural positivity concepts for currents of pure bidimension (p, p) on
complex manifolds. With every analytic subset is associated a current of integration over its set of regular
points and all such currents are positive and closed. The important closedness property is proved here
via the Skoda-El Mir extension theorem. Positive currents have become an important tool for the study
of global geometric problems as well as for questions related to local algebra and intersection theory.
We develope here a differential geometric approach to intersection theory through a detailed study of
wedge products of closed positive currents (Monge-Ampère operators). The Lelong-Poincaré equation
and the Jensen-Lelong formula are basic in this context, providing a useful tool for studying the location
and multiplicities of zeroes of entire functions on Cn or on a manifold, in relation with the growth at
infinity. Lelong numbers of closed positive currents are then introduced; these numbers can be seen as
a generalization to currents of the notion of multiplicity of a germ of analytic set at a singular point.
We prove various properties of Lelong numbers (e.g. comparison theorems, semi-continuity theorem of
Siu, transformation under holomorphic maps). As an application to Number Theory, we prove a general
Schwarz lemma in Cn and derive from it Bombieri’s theorem on algebraic values of meromorphic maps
and the famous theorems of Gelfond-Schneider and Baker on the transcendence of exponentials and
logarithms of algebraic numbers.

§ 1. Basic Concepts of Positivity

§ 1.A. Positive and Strongly Positive Forms

Let V be a complex vector space of dimension n and (z1, . . . , zn) coordinates on V .
We denote by (∂/∂z1, . . . , ∂/∂zn) the corresponding basis of V , by (dz1, . . . , dzn) its dual
basis in V ⋆ and consider the exterior algebra

ΛV ⋆C =
⊕

Λp,qV ⋆, Λp,qV ⋆ = ΛpV ⋆ ⊗ ΛqV ⋆.

We are of course especially interested in the case where V = TxX is the tangent space
to a complex manifold X , but we want to emphasize here that our considerations only
involve linear algebra. Let us first observe that V has a canonical orientation, given by
the (n, n)-form

τ(z) = idz1 ∧ dz1 ∧ . . . ∧ idzn ∧ dzn = 2n dx1 ∧ dy1 ∧ . . . ∧ dxn ∧ dyn

where zj = xj + iyj . In fact, if (w1, . . . , wn) are other coordinates, we find

dw1 ∧ . . . ∧ dwn = det(∂wj/∂zk) dz1 ∧ . . . ∧ dzn,
τ(w) =

∣∣ det(∂wj/∂zk)
∣∣2 τ(z).
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In particular, a complex manifold always has a canonical orientation. More generally,
natural positivity concepts for (p, p)-forms can be defined.

(1.1) Definition. A (p, p)-form u ∈ Λp,pV ⋆ is said to be positive if for all αj ∈ V ⋆,
1 6 j 6 q = n− p, then

u ∧ iα1 ∧ α1 ∧ . . . ∧ iαq ∧ αq
is a positive (n, n)-form. A (q, q)-form v ∈ Λq,qV ⋆ is said to be strongly positive if v is a
convex combination

v =
∑

γs iαs,1 ∧ αs,1 ∧ . . . ∧ iαs,q ∧ αs,q

where αs,j ∈ V ⋆ and γs > 0.

(1.2) Example. Since ip(−1)p(p−1)/2 = ip
2

, we have the commutation rules

iα1 ∧ α1 ∧ . . . ∧ iαp ∧ αp = ip
2

α ∧ α, ∀α = α1 ∧ . . . ∧ αp ∈ Λp,0V ⋆,

ip
2

β ∧ β ∧ im2

γ ∧ γ = i(p+m)2β ∧ γ ∧ β ∧ γ, ∀β ∈ Λp,0V ⋆, ∀γ ∈ Λm,0V ⋆.

Take m = q to be the complementary degree of p. Then β∧γ = λdz1∧ . . .∧dzn for some
λ ∈ C and in

2

β ∧ γ ∧ β ∧ γ = |λ|2τ(z). If we set γ = α1 ∧ . . .∧ αq, we find that ip
2

β ∧ β
is a positive (p, p)-form for every β ∈ Λp,0V ⋆ ; in particular, strongly positive forms are
positive. �

The sets of positive and strongly positive forms are closed convex cones, i.e. closed
and stable under convex combinations. By definition, the positive cone is dual to the
strongly positive cone via the pairing

(1.3)
Λp,pV ⋆×Λq,qV ⋆−→ C

(u,v) 7−→ u ∧ v/τ,

that is, u ∈ Λp,pV ⋆ is positive if and only if u ∧ v > 0 for all strongly positive forms
v ∈ Λq,qV ⋆. Since the bidual of an arbitrary convex cone Γ is equal to its closure Γ, we
also obtain that v is strongly positive if and only if v ∧ u = u ∧ v is > 0 for all positive
forms u. Later on, we will need the following elementary lemma.

(1.4) Lemma. Let (z1, . . . , zn) be arbitrary coordinates on V . Then Λp,pV ⋆ admits a
basis consisting of strongly positive forms

βs = iβs,1 ∧ βs,1 ∧ . . . ∧ iβs,p ∧ βs,p, 1 6 s 6

(
n

p

)2

where each βs,l is of the type dzj ± dzk or dzj ± idzk, 1 6 j, k 6 n.

Proof. Since one can always extract a basis from a set of generators, it is sufficient to
see that the family of forms of the above type generates Λp,pV ⋆. This follows from the
identities

4dzj ∧ dzk = (dzj + dzk) ∧(dzj + dzk) − (dzj − dzk) ∧(dzj − dzk)
+i(dzj + idzk)∧(dzj + idzk)−i(dzj − idzk)∧(dzj − idzk),
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dzj1 ∧ . . . ∧ dzjp ∧ dzk1 ∧ . . . ∧ dzkp = ±
∧

16s6p

dzjs ∧ dzks . �

(1.5) Corollary. All positive forms u are real, i.e. satisfy u = u. In terms of coordinates,

if u = ip
2 ∑

|I|=|J|=p uI,J dzI ∧ dzJ , then the coefficients satisfy the hermitian symmetry
relation uI,J = uJ, I .

Proof. Clearly, every strongly positive (q, q)-form is real. By Lemma 1.4, these forms
generate over R the real elements of Λq,qV ⋆, so we conclude by duality that positive
(p, p)-forms are also real. �

(1.6) Criterion. A form u ∈ Λp,pV ⋆ is positive if and only if its restriction u↾S to every
p-dimensional subspace S ⊂ V is a positive volume form on S.

Proof. If S is an arbitrary p-dimensional subspace of V we can find linear coordinates
(z1, . . . , zn) on V such that S = {zp+1 = . . . = zn = 0}. Then

u↾S = λS idz1 ∧ dz1 ∧ . . . ∧ idzp ∧ dzp

where λS is given by

u ∧ idzp+1 ∧ dzp+1 ∧ . . . ∧ idzn ∧ dzn = λS τ(z).

If u is positive then λS > 0 so u↾S is positive for every S. The converse is true because
the (n− p, n− p)-forms

∧
j>p idzj ∧ dzj generate all strongly positive forms when S runs

over all p-dimensional subspaces. �

(1.7) Corollary. A form u = i
∑
j,k ujk dzj ∧dzk of bidegree (1, 1) is positive if and only

if ξ 7→∑
ujkξjξk is a semi-positive hermitian form on Cn.

Proof. If S is the complex line generated by ξ and t 7→ tξ the parametrization of S, then
u↾S =

(∑
ujkξjξk

)
idt ∧ dt. �

Observe that there is a canonical one-to-one correspondence between hermitian forms
and real (1, 1)-forms on V . The correspondence is given by

(1.8) h =
∑

16j,k6n

hjk(z) dzj ⊗ dzk 7−→ u = i
∑

16j,k6n

hjk(z) dzj ∧ dzk

and does not depend on the choice of coordinates: indeed, as hjk = hkj , one finds
immediately

u(ξ, η) = i
∑

hjk(z)(ξjηk − ηjξk) = −2 Imh(ξ, η), ∀ξ, η ∈ TX.

Moreover, h is > 0 as a hermitian form if and only if u > 0 as a (1, 1)-form. A diagonal-
ization of h shows that every positive (1, 1)-form u ∈ Λ1,1V ⋆ can be written

u =
∑

16j6r

iγj ∧ γj , γ ∈ V ⋆, r = rank of u,
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in particular, every positive (1, 1)-form is strongly positive. By duality, this is also true
for (n− 1, n− 1)-forms.

(1.9) Corollary. The notions of positive and strongly positive (p, p)-forms coincide for
p = 0, 1, n− 1, n. �

(1.10) Remark. It is not difficult to see, however, that positivity and strong positivity

differ in all bidegrees (p, p) such that 2 6 p 6 n−2. Indeed, a positive form ip
2

β∧β with
β ∈ Λp,0V ⋆ is strongly positive if and only if β is decomposable as a product β1∧ . . .∧βp.
To see this, suppose that

ip
2

β ∧ β =
∑

16j6N

ip
2

γj ∧ γj

where all γj ∈ Λp,0V ⋆ are decomposable. Take N minimal. The equality can be also
written as an equality of hermitian forms |β|2 =

∑ |γj |2 if β, γj are seen as linear forms
on ΛpV . The hermitian form |β|2 has rank one, so we must have N = 1 and β = λγj, as
desired. Note that there are many non decomposable p-forms in all degrees p such that
2 6 p 6 n−2, e.g. (dz1∧dz2+dz3∧dz4)∧dz5∧ . . .∧dzp+2 : if a p-form is decomposable,

the vector space of its contractions by elements of
∧p−1

V is a p-dimensional subspace
of V ⋆; in the above example the dimension is p+ 2.

(1.11) Proposition. If u1, . . . , us are positive forms, all of them strongly positive (resp.
all except perhaps one), then u1 ∧ . . . ∧ us is strongly positive (resp. positive).

Proof. Immediate consequence of Def. 1.1. Observe however that the wedge product of
two positive forms is not positive in general (otherwise we would infer that positivity
coincides with strong positivity). �

(1.12) Proposition. If Φ : W −→ V is a complex linear map and u ∈ Λp,pV ⋆ is
(strongly) positive, then Φ⋆u ∈ Λp,pW ⋆ is (strongly) positive.

Proof. This is clear for strong positivity, since

Φ⋆(iα1 ∧ α1 ∧ . . . ∧ iαp ∧ αp) = iβ1 ∧ β1 ∧ . . . ∧ iβp ∧ βp

with βj = Φ⋆αj ∈W ⋆, for all αj ∈ V ⋆. For u positive, we may apply Criterion 1.6: if S
is a p-dimensional subspace of W , then u↾Φ(S) and (Φ⋆u)↾S = (Φ↾S)

⋆u↾Φ(S) are positive
when Φ↾S : S −→ Φ(S) is an isomorphism; otherwise we get (Φ⋆u)↾S = 0. �

§ 1.B. Positive Currents

The duality between the positive and strongly positive cones of forms can be used to
define corresponding positivity notions for currents.

(1.13) Definition. A current T ∈D′p,p(X) is said to be positive (resp. strongly positive)
if 〈T, u〉 > 0 for all test forms u ∈ Dp,p(X) that are strongly positive (resp. positive) at
each point. The set of positive (resp. strongly positive) currents of bidimension (p, p) will
be denoted

D

′+
p,p(X), resp. D′⊕p,p(X).
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It is clear that (strong) positivity is a local property and that the sets D′⊕p,p(X) ⊂
D

′+
p,p(X) are closed convex cones with respect to the weak topology. Another way of

stating Def. 1.13 is:

T is positive (strongly positive) if and only if T ∧ u ∈D′0,0(X) is a positive measure for
all strongly positive (positive) forms u ∈ C∞p,p(X).

This is so because a distribution S ∈ D′(X) such that S(f) > 0 for every non-negative
function f ∈D(X) is a positive measure.

(1.14) Proposition. Every positive current T = i(n−p)
2 ∑

TI,J dzI ∧dzJ in D′+p,p(X) is

real and of order 0, i.e. its coefficients TI,J are complex measures and satisfy TI,J = TJ, I
for all multi-indices |I| = |J | = n− p. Moreover TI,I > 0, and the absolute values |TI,J |
of the measures TI,J satisfy the inequality

λIλJ |TI,J | 6 2p
∑

M

λ2M TM,M , I ∩ J ⊂M ⊂ I ∪ J

where λk > 0 are arbitrary coefficients and λI =
∏
k∈I λk.

Proof. Since positive forms are real, positive currents have to be real by duality. Let
us denote by K = ∁I and L = ∁J the ordered complementary multi-indices of I, J in
{1, 2, . . . , n}. The distribution TI,I is a positive measure because

TI,I τ = T ∧ ip2dzK ∧ dzK > 0.

On the other hand, the proof of Lemma 1.4 yields

TI,J τ = ±T ∧ ip2dzK ∧ dzL =
∑

a∈(Z/4Z)p
εa T ∧ γa where

γa =
∧

16s6p

i

4
(dzks + iasdzls) ∧ (dzks + iasdzls), εa = ±1,±i.

Now, each T ∧ γa is a positive measure, hence TI,J is a complex measure and

|TI,J | τ 6
∑

a

T ∧ γa = T ∧
∑

a

γa

= T ∧
∧

16s6p

( ∑

as∈Z/4Z

i

4
(dzks + iasdzls) ∧ (dzks + iasdzls)

)

= T ∧
∧

16s6p

(
idzks ∧ dzks + idzls ∧ dzls

)
.

The last wedge product is a sum of at most 2p terms, each of which is of the type
ip

2

dzM ∧ dzM with |M | = p and M ⊂ K ∪ L. Since T ∧ ip2dzM ∧ dzM = T∁M,∁M τ and
∁M ⊃ ∁K ∩ ∁L = I ∩ J , we find

|TI,J | 6 2p
∑

M⊃I∩J
TM,M .
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Now, consider a change of coordinates (z1, . . . , zn) = Λw = (λ1w1, . . . , λnwn) with
λ1, . . . , λn > 0. In the new coordinates, the current T becomes Λ⋆T and its coefficients
become λIλJ TI,J (Λw). Hence, the above inequality implies

λIλJ |TI,J | 6 2p
∑

M⊃I∩J
λ2M TM,M .

This inequality is still true for λk > 0 by passing to the limit. The inequality of Prop. 1.14
follows when all coefficients λk, k /∈ I∪J , are replaced by 0, so that λM = 0 forM 6⊂ I∪J .

�

(1.15) Remark. If T is of order 0, we define the mass measure of T by ‖T‖ = ∑ |TI,J |
(of course ‖T‖ depends on the choice of coordinates). By the Radon-Nikodym theorem,
we can write TI,J = fI,J‖T‖ with a Borel function fI,J such that

∑ |fI,J | = 1. Hence

T = ‖T‖ f, where f = i(n−p)
2 ∑

fI,J dzI ∧ dzJ .

Then T is (strongly) positive if and only if the form f(x) ∈ Λn−p,n−pT ⋆xX is (strongly)
positive at ‖T‖-almost all points x ∈ X . Indeed, this condition is clearly sufficient. On
the other hand, if T is (strongly) positive and uj is a sequence of forms with constant
coefficients in Λp,pT ⋆X which is dense in the set of strongly positive (positive) forms,
then T ∧ uj = ||T || f ∧ uj , so f(x) ∧ uj has to be a positive (n, n)-form except perhaps
for x in a set N(uj) of ‖T‖-measure 0. By a simple density argument, we see that f(x)
is (strongly) positive outside the ‖T‖-negligible set N =

⋃
N(uj).

As a consequence of this proof, T is positive (strongly positive) if and only if T ∧ u
is a positive measure for all strongly positive (positive) forms u of bidegree (p, p) with
constant coefficients in the given coordinates (z1, . . . , zn). It follows that if T is (strongly)
positive in a coordinate patch Ω, then the convolution T ⋆ ρε is (strongly) positive in
Ωε = {x ∈ Ω ; d(x, ∂Ω) > ε}. �

(1.16) Corollary. If T ∈ D′p,p(X) and v ∈ C0
s,s(X) are positive, one of them (resp.

both of them) strongly positive, then the wedge product T ∧ v is a positive (resp. strongly
positive) current.

This follows immediately from Remark 1.15 and Prop. 1.11 for forms. Similarly,
Prop. 1.12 on pull-backs of positive forms easily shows that positivity properties of cur-
rents are preserved under direct or inverse images by holomorphic maps.

(1.17) Proposition. Let Φ : X −→ Y be a holomorphic map between complex analytic
manifolds.

a) If T ∈D′+p,p(X) and Φ↾SuppT is proper, then Φ⋆T ∈D′+p,p(Y ).

b) If T ∈ D′+p,p(Y ) and if Φ is a submersion with m-dimensional fibers, then Φ⋆T ∈
D

′+
p+m,p+m(X).

Similar properties hold for strongly positive currents. �
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§ 1.C. Basic Examples of Positive Currents

We present here two fundamental examples which will be of interest in many circum-
stances.

§ 1.18. Current Associated to a Plurisubharmonic Function. Let X be a complex
manifold and u ∈ Psh(X) ∩ L1

loc(X) a plurisubharmonic function. Then

T = id′d′′u = i
∑

16j,k6n

∂2u

∂zj∂zk
dzj ∧ dzk

is a positive current of bidegree (1, 1). Moreover T is closed (we always mean here d-
closed, that is, dT = 0). Assume conversely that Θ is a closed real (1, 1)-current on
X . Poincaré’s lemma implies that every point x0 ∈ X has a neighborhood Ω0 such
that Θ = dS with S ∈ D′1(Ω0,R). Write S = S1,0 + S0,1, where S0,1 = S1,0. Then
d′′S = Θ0,2 = 0, and the Dolbeault-Grothendieck lemma shows that S0,1 = d′′v on some
neighborhood Ω ⊂ Ω0, with v ∈D′(Ω,C). Thus

S = d′′v + d′′v = d′v + d′′v,

Θ = dS = d′d′′(v − v) = id′d′′u,

where u = 2Re v ∈D′(Ω,R). If Θ ∈ C∞1,1(X), the hypoellipticity of d′′ in bidegree (p, 0)
shows that d′u is of class C∞, so u ∈ C∞(Ω). When Θ is positive, the distribution u is
a plurisubharmonic function (Th. I.3.31). We have thus proved:

(1.19) Proposition. If Θ ∈D′+n−1,n−1(X) is a closed positive current of bidegree (1, 1),
then for every point x0 ∈ X there exists a neighborhood Ω of x0 and u ∈ Psh(Ω) such
that Θ = id′d′′u. �

§ 1.20. Current of Integration on a Complex Submanifold. Let Z ⊂ X be a closed
p-dimensional complex submanifold with its canonical orientation and T = [Z]. Then
T ∈ D′⊕p,p(X). Indeed, every (r, s)-form of total degree r + s = 2p has zero restriction
to Z unless (r, s) = (p, p), therefore we have [Z] ∈ D′p,p(X). Now, if u ∈ Dp,p(X) is a
positive test form, then u↾Z is a positive volume form on Z by Criterion 1.6, therefore

〈[Z], u〉 =
∫

Z

u↾Z > 0.

In this example the current [Z] is also closed, because d[Z] = ±[∂Z] = 0 by Stokes’
theorem. �

§ 1.D. Trace Measure and Wirtinger’s Inequality

We discuss now some questions related to the concept of area on complex submani-
folds. Assume thatX is equipped with a hermitian metric h, i.e. a positive definite hermi-
tian form h =

∑
hjkdzj⊗dzk of class C∞ ; we denote by ω = i

∑
hjkdzj∧dzk ∈ C∞1,1(X)

the associated positive (1, 1)-form.

(1.21) Definition. For every T ∈D′+p,p(X), the trace measure of T with respect to ω is
the positive measure

σT =
1

2pp!
T ∧ ωp.



136 Chapter III. Positive Currents and Lelong Numbers

If (ζ1, . . . , ζn) is an orthonormal frame of T ⋆X with respect to h on an open subset
U ⊂ X , we may write

ω = i
∑

16j6n

ζj ∧ ζj , ωp = ip
2

p!
∑

|K|=p
ζK ∧ ζK ,

T = i(n−p)
2 ∑

|I|=|J|=n−p
TI,J ζI ∧ ζJ , TI,J ∈D′(U),

where ζI = ζi1 ∧ . . . ∧ ζin−p
. An easy computation yields

(1.22) σT = 2−p
( ∑

|I|=n−p
TI,I

)
iζ1 ∧ ζ1 ∧ . . . ∧ iζn ∧ ζn.

For X = Cn with the standard hermitian metric h =
∑
dzj ⊗ dzj , we get in particular

(1.22′) σT = 2−p
( ∑

|I|=n−p
TI,I

)
idz1 ∧ dz1 ∧ . . . ∧ idzn ∧ dzn.

Proposition 1.14 shows that the mass measure ||T || = ∑ |TI,J | of a positive current T
is always dominated by CσT where C > 0 is a constant. It follows easily that the weak
topology of D′p(X) and of D0 ′

p (X) coincide on D′+p (X), which is moreover a metrizable
subspace: its weak topology is in fact defined by the collection of semi-norms T 7−→
|〈T, fν〉| where (fν) is an arbitrary dense sequence in Dp(X). By the Banach-Alaoglu
theorem, the unit ball in the dual of a Banach space is weakly compact, thus:

(1.23) Proposition. Let δ be a positive continuous function on X. Then the set of
currents T ∈D′+p (X) such that

∫
X
δ T ∧ ωp 6 1 is weakly compact.

Proof. Note that our set is weakly closed, since a weak limit of positive currents is
positive and

∫
X
δ T ∧ ωp = sup〈T, θδωp〉 when θ runs over all elements of D(X) such

that 0 6 θ 6 1. �

Now, let Z be a p-dimensional complex analytic submanifold of X . We claim that

(1.24) σ[Z] =
1

2pp!
[Z] ∧ ωp = Riemannian volume measure on Z.

This result is in fact a special case of the following important inequality.

(1.25) Wirtinger’s inequality. Let Y be an oriented real submanifold of class C1 and
dimension 2p in X, and let dVY be the Riemannian volume form on Y associated with
the metric h↾Y . Set

1

2pp!
ωp↾Y = α dVY , α ∈ C0(Y ).

Then |α| 6 1 and the equality holds if and only if Y is a complex analytic submanifold
of X. In that case α = 1 if the orientation of Y is the canonical one, α = −1 otherwise.
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Proof. The restriction ω↾Y is a real antisymmetric 2-form on TY . At any point z ∈ Y ,
we can thus find an oriented orthonormal R-basis (e1, e2, . . . , e2p) of TzY such that

1

2
ω =

∑

16k6p

αk e
⋆
2k−1 ∧ e⋆2k on TzY, where

αk =
1

2
ω(e2k−1, e2k) = − Imh(e2k−1, e2k).

We have dVY = e⋆1 ∧ . . . ∧ e⋆2p by definition of the Riemannian volume form. By taking
the p-th power of ω, we get

1

2pp!
ωp↾TzY

= α1 . . . αp e
⋆
1 ∧ . . . ∧ e⋆2p = α1 . . . αp dVY .

Since (ek) is an orthonormal R-basis, we have Re h(e2k−1, e2k) = 0, thus h(e2k−1, e2k) =
−iαk. As |e2k−1| = |e2k| = 1, we get

0 6 |e2k ± Je2k−1|2 = 2
(
1± Reh(Je2k−1, e2k)

)
= 2(1± αk).

Therefore
|αk| 6 1, |α| = |α1 . . . αp| 6 1,

with equality if and only if αk = ±1 for all k, i.e. e2k = ±Je2k−1. In this case
TzY ⊂ TzX is a complex vector subspace at every point z ∈ Y , thus Y is complex
analytic by Lemma I.4.23. Conversely, assume that Y is a C-analytic submanifold and
that (e1, e3, . . . , e2p−1) is an orthonormal complex basis of TzY . If e2k := Je2k−1, then
(e1, . . . , e2p) is an orthonormal R-basis corresponding to the canonical orientation and

1

2
ω↾Y =

∑

16k6p

e⋆2k−1 ∧ e⋆2k,
1

2pp!
ωp↾Y = e⋆1 ∧ . . . ∧ e⋆2p = dVY . �

Note that in the case of the standard hermitian metric ω on X = Cn, the form ω =
i
∑
dzj ∧dzj = d

(
i
∑
zj dzj

)
is globally exact. Under this hypothesis, we are going to see

that C-analytic submanifolds are alwaysminimal surfaces for the Plateau problem, which
consists in finding a compact subvariety Y of minimal area with prescribed boundary ∂Y .

(1.26) Theorem. Assume that the (1, 1)-form ω is exact, say ω = dγ with γ ∈
C

∞
1 (X,R), and let Y, Z ⊂ X be (2p)-dimensional oriented compact real submanifolds

of class C1 with boundary. If ∂Y = ∂Z and Z is complex analytic, then

Vol(Y ) > Vol(Z).

Proof. Write ω = dγ. Wirtinger’s inequality and Stokes’ theorem imply

Vol(Y ) >
1

2pp!

∣∣∣
∫

Y

ωp
∣∣∣ = 1

2pp!

∣∣∣
∫

Y

d(ωp−1 ∧ γ)
∣∣∣ = 1

2pp!

∣∣∣
∫

∂Y

ωp−1 ∧ γ
∣∣∣,

Vol(Z) =
1

2pp!

∫

Z

ωp =
1

2pp!

∫

∂Z

ωp−1 ∧ γ = ± 1

2pp!

∫

∂Y

ωp−1 ∧ γ. �
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§ 2. Closed Positive Currents

§ 2.A. The Skoda-El Mir Extension Theorem

We first prove the Skoda-El Mir extension theorem ([Skoda 1982], [El Mir 1984]),
which shows in particular that a closed positive current defined in the complement of
an analytic set E can be extended through E if (and only if) the mass of the current is
locally finite near E. El Mir simplified Skoda’s argument and showed that it is enough to
assume E complete pluripolar. We follow here the exposition of Sibony’s survey article
[Sibony 1985].

(2.1) Definition. A subset E ⊂ X is said to be complete pluripolar in X if for every
point x0 ∈ X there exist a neighborhood Ω of x0 and a function u ∈ Psh(Ω) ∩ L1

loc(Ω)
such that E ∩ Ω = {z ∈ Ω ; u(z) = −∞}.

Note that any closed analytic subset A ⊂ X is complete pluripolar: if g1 = . . . =
gN = 0 are holomorphic equations of A on an open set Ω ⊂ X , we can take u =
log(|g1|2 + . . .+ |gN |2).

(2.2) Lemma. Let E ⊂ X be a closed complete pluripolar set. If x0 ∈ X and Ω is a
sufficiently small neighborhood of x0, there exists:

a) a function v ∈ Psh(Ω) ∩C∞(Ωr E) such that v = −∞ on E ∩ Ω ;

b) an increasing sequence vk ∈ Psh(Ω) ∩C∞(Ω), 0 6 vk 6 1, converging uniformly to 1
on every compact subset of Ωr E, such that vk = 0 on a neighborhood of E ∩ Ω.

Proof. Assume that Ω0 ⊂⊂ X is a coordinate patch of X containing x0 and that E∩Ω0 =
{z ∈ Ω0 ; u(z) = −∞}, u ∈ Psh(Ω0). In addition, we can achieve u 6 0 by shrinking Ω0

and subtracting a constant to u. Select a convex increasing function χ ∈ C∞([0, 1],R)
such that χ(t) = 0 on [0, 1/2] and χ(1) = 1. We set

uk = χ
(
exp(u/k)

)
.

Then 0 6 uk 6 1, uk is plurisubharmonic on Ω0, uk = 0 in a neighborhood ωk of E ∩Ω0

and limuk = 1 on Ω0rE. Let Ω ⊂⊂ Ω0 be a neighborhood of x0, let δ0 = d(Ω, ∁Ω0) and
εk ∈ ]0, δ0[ be such that εk < d(E ∩ Ω,Ωr ωk). Then

wk := max
j6k
{uj ⋆ ρεj} ∈ Psh(Ω) ∩ C0(Ω),

0 6 wk 6 1, wk = 0 on a neighborhood of E ∩ Ω and wk is an increasing sequence
converging to 1 on ΩrE (note that wk > uk). Hence, the convergence is uniform on every
compact subset of ΩrE by Dini’s lemma. We may therefore choose a subsequence wks
such that wks(z) > 1−2−s on an increasing sequence of open sets Ω′s with

⋃
Ω′s = ΩrE.

Then

w(z) := |z|2 +
+∞∑

s=0

(wks(z)− 1)

is a strictly plurisubharmonic function on Ω that is continuous on ΩrE, and w = −∞ on
E∩Ω. Richberg’s theorem I.3.40 applied on ΩrE produces v ∈ Psh(ΩrE)∩C∞(ΩrE)



§ 2. Closed Positive Currents 139

such that w 6 v 6 w+1. If we set v = −∞ on E∩Ω, then v is plurisubharmonic on Ω and
has the properties required in a). After subtraction of a constant, we may assume v 6 0
on Ω. Then the sequence (vk) of statement b) is obtained by letting vk = χ

(
exp(v/k)

)
.
�

(2.3) Theorem (El Mir). Let E ⊂ X be a closed complete pluripolar set and T ∈
D

′+
p,p(X rE) a closed positive current. Assume that T has finite mass in a neighborhood

of every point of E. Then the trivial extension T̃ ∈ D′+p,p(X) obtained by extending the
measures TI,J by 0 on E is closed on X.

Proof. The statement is local on X , so we may work on a small open set Ω such that
there exists a sequence vk ∈ Psh(Ω) ∩ C∞(Ω) as in 2.2 b). Let θ ∈ C∞([0, 1]) be a
function such that θ = 0 on [0, 1/3], θ = 1 on [2/3, 1] and 0 6 θ 6 1. Then θ ◦ vk = 0
near E ∩Ω and θ ◦ vk = 1 for k large on every fixed compact subset of ΩrE. Therefore
T̃ = limk→+∞(θ ◦ vk)T and

d′T̃ = lim
k→+∞

T ∧ d′(θ ◦ vk)

in the weak topology of currents. It is therefore sufficient to check that T ∧ d′(θ ◦ vk)
converges weakly to 0 in D′p−1,p(Ω) (note that d′′T̃ is conjugate to d′T̃ , thus d′′T̃ will
also vanish).

Assume first that p = 1. Then T ∧ d′(θ ◦ vk) ∈D′0,1(Ω), and we have to show that

〈T ∧ d′(θ ◦ vk), α〉 = 〈T, θ′(vk)d′vk ∧ α〉 −→ 0, ∀α ∈D1,0(Ω).

As γ 7−→ 〈T, iγ ∧ γ〉 is a non-negative hermitian form on D1,0(Ω), the Cauchy-Schwarz
inequality yields

∣∣〈T, iβ ∧ γ〉
∣∣2 6 〈T, iβ ∧ β〉 〈T, iγ ∧ γ〉, ∀β, γ ∈D1,0(Ω).

Let ψ ∈D(Ω), 0 6 ψ 6 1, be equal to 1 in a neighborhood of Suppα. We find

∣∣〈T, θ′(vk)d′vk ∧ α〉
∣∣2 6 〈T, ψid′vk ∧ d′′vk〉 〈T, θ′(vk)2iα ∧ α〉.

By hypothesis
∫
ΩrE

T ∧ iα ∧ α < +∞ and θ′(vk) converges everywhere to 0 on Ω, thus

〈T, θ′(vk)2iα∧ α〉 converges to 0 by Lebesgue’s dominated convergence theorem. On the
other hand

id′d′′v2k = 2vk id
′d′′vk + 2id′vk ∧ d′′vk > 2id′vk ∧ d′′vk,

2〈T, ψid′vk ∧ d′′vk〉 6 〈T, ψid′d′′v2k〉.
As ψ ∈ D(Ω), vk = 0 near E and d′T = d′′T = 0 on Ω r E, an integration by parts
yields

〈T, ψid′d′′v2k〉 = 〈T, v2kid′d′′ψ〉 6 C

∫

ΩrE

‖T‖ < +∞

where C is a bound for the coefficients of ψ. Thus 〈T, ψid′vk ∧d′′vk〉 is bounded, and the
proof is complete when p = 1.

In the general case, let βs = iβs,1 ∧ βs,1 ∧ . . .∧ iβs,p−1 ∧ βs,p−1 be a basis of forms of

bidegree (p−1, p−1) with constant coefficients (Lemma 1.4). Then T ∧βs ∈D′+1,1(ΩrE)
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has finite mass near E and is closed on Ωr E. Therefore d(T̃ ∧ βs) = (dT̃ ) ∧ βs = 0 on
Ω for all s, and we conclude that dT̃ = 0. �

(2.4) Corollary. If T ∈D′+p,p(X) is closed, if E ⊂ X is a closed complete pluripolar set
and 1lE is its characteristic function, then 1lET and 1lXrET are closed (and, of course,
positive).

Proof. If we set Θ = T↾XrE , then Θ has finite mass near E and we have 1lXrET = Θ̃

and 1lET = T − Θ̃. �

§ 2.B. Current of Integration over an Analytic Set

Let A be a pure p-dimensional analytic subset of a complex manifold X . We would
like to generalize Example 1.20 and to define a current of integration [A] by letting

(2.5) 〈[A], v〉 =
∫

Areg

v, v ∈Dp,p(X).

One difficulty is of course to verify that the integral converges near Asing. This follows
from the following lemma, due to [Lelong 1957].

(2.6) Lemma. The current [Areg] ∈D′+p,p(X rAsing) has finite mass in a neighborhood
of every point z0 ∈ Asing.

Proof. Set T = [Areg] and let Ω ∋ z0 be a coordinate open set. If we write the monomials
dzK ∧ dzL in terms of an arbitrary basis of Λp,pT ⋆Ω consisting of decomposable forms
βs = iβs,1 ∧ βs,1 ∧ . . .∧ βs,p ∧ βs,p (cf. Lemma 1.4), we see that the measures TI,J . τ are
linear combinations of the positive measures T ∧ βs. It is thus sufficient to prove that
all T ∧ βs have finite mass near Asing. Without loss of generality, we may assume that
(A, z0) is irreducible. Take new coordinates w = (w1, . . . , wn) such that wj = βs,j(z−z0),
1 6 j 6 p. After a slight perturbation of the βs,j , we may assume that each projection

πs : A ∩ (∆′ ×∆′′), w 7−→ w′ = (w1, . . . , wp)

defines a ramified covering of A (cf. Prop. II.3.8 and Th. II.3.19), and that (βs) remains a
basis of Λp,pT ⋆Ω. Let S be the ramification locus of πs and AS = A∩

(
(∆′rS)×∆′′

)
⊂

Areg. The restriction of πs: AS −→ ∆′ r S is then a covering with finite sheet number
qs and we find

∫

∆′×∆′′

[Areg] ∧ βs =
∫

Areg∩(∆′×∆′′)

idw1 ∧ dw1 ∧ . . . ∧ idwp ∧ dwp

=

∫

AS

idw1 ∧ dw1 . . . ∧ dwp = qs

∫

∆′rS

idw1 ∧ dw1 . . . ∧ dwp < +∞.

The second equality holds because AS is the complement in Areg ∩ (∆′ × ∆′′) of an
analytic subset (such a set is of zero Lebesgue measure in Areg). �

(2.7) Theorem ([Lelong 1957]). For every pure p-dimensional analytic subset A ⊂ X,
the current of integration [A] ∈D′+p,p(X) is a closed positive current on X.

Proof. Indeed, [Areg] has finite mass near Asing and [A] is the trivial extension of [Areg]
to X through the complete pluripolar set E = Asing. Theorem 2.7 is then a consequence
of El Mir’s theorem. �
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§ 2.C. Support Theorems and Lelong-Poincaré Equation

Let M ⊂ X be a closed C1 real submanifold of X . The holomorphic tangent space at
a point x ∈M is

(2.8) hTxM = TxM ∩ JTxM,

that is, the largest complex subspace of TxX contained in TxM . We define the Cauchy-
Riemann dimension of M at x by CRdimxM = dimC

hTxM and say that M is a CR
submanifold of X if CRdimxM is a constant. In general, we set

(2.9) CRdim M = max
x∈M

CRdimxM = max
x∈M

dimC
hTxM.

A current Θ is said to be normal if Θ and dΘ are currents of order 0. For instance,
every closed positive current is normal. We are going to prove two important theorems
describing the structure of normal currents with support in CR submanifolds.

(2.10) First theorem of support. Let Θ ∈ D′p,p(X) be a normal current. If SuppΘ
is contained in a real submanifold M of CR dimension < p, then Θ = 0.

Proof. Let x0 ∈ M and let g1, . . . , gm be real C1 functions in a neighborhood Ω of x0
such that M = {z ∈ Ω ; g1(z) = . . . = gm(z) = 0} and dg1 ∧ . . . ∧ dgm 6= 0 on Ω. Then

hTM = TM ∩ JTM =
⋂

16k6m

ker dgk ∩ ker(dgk ◦ J) =
⋂

16k6m

ker d′gk

because d′gk = 1
2

(
dgk − i(dgk) ◦ J

)
. As dimC

hTM < p, the rank of the system of (1, 0)-
forms (d′gk) must be > n−p at every point ofM ∩Ω. After a change of the ordering, we
may assume for example that ζ1 = d′g1, ζ2 = d′g2, . . ., ζn−p+1 = d′gn−p+1 are linearly
independent on Ω (shrink Ω if necessary). Complete (ζ1, . . . , ζn−p+1) into a continuous
frame (ζ1, . . . , ζn) of T

⋆X↾Ω and set

Θ =
∑

|I|=|J|=n−p
ΘI,J ζI ∧ ζJ on Ω.

As Θ and d′Θ have measure coefficients supported on M and gk = 0 on M , we get
gkΘ = gkd

′Θ = 0, thus

d′gk ∧Θ = d′(gkΘ)− gkd′Θ = 0, 1 6 k 6 m,

in particular ζk ∧ Θ = 0 for all 1 6 k 6 n − p + 1. When |I| = n − p, the multi-index
∁I contains at least one of the elements 1, . . . , n − p + 1, hence Θ ∧ ζ∁I ∧ ζ∁J = 0 and
ΘI,J = 0. �

(2.11) Corollary. Let Θ ∈D′p,p(X) be a normal current. If SuppΘ is contained in an
analytic subset A of dimension < p, then Θ = 0.

Proof. As Areg is a submanifold of CRdim < p in X r Asing, Theorem 2.9 shows that
SuppΘ ⊂ Asing and we conclude by induction on dimA. �
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Now, assume that M ⊂ X is a CR submanifold of class C1 with CRdimM = p and
that hTM is an integrable subbundle of TM ; this means that the Lie bracket of two
vector fields in hTM is in hTM . The Frobenius integrability theorem then shows that
M is locally fibered by complex analytic p-dimensional submanifolds. More precisely,
in a neighborhood of every point of M , there is a submersion σ : M −→ Y onto a
real C1 manifold Y such that the tangent space to each fiber Ft = σ−1(t), t ∈ Y , is
the holomorphic tangent space hTM ; moreover, the fibers Ft are necessarily complex
analytic in view of Lemma 1.7.18. Under these assumptions, with any complex measure
µ on Y we associate a current Θ with support in M by

(2.12) Θ =

∫

t∈Y
[Ft] dµ(t), i.e. 〈Θ, u〉 =

∫

t∈Y

(∫

Ft

u
)
dµ(t)

for all u ∈ D′p,p(X). Then clearly Θ ∈ D′p,p(X) is a closed current of order 0, for all
fibers [Ft] have the same properties. When the fibers Ft are connected, the following
converse statement holds:

(2.13) Second theorem of support. Let M ⊂ X be a CR submanifold of CR dimen-
sion p such that there is a submersion σ :M −→ Y of class C1 whose fibers Ft = σ−1(t)
are connected and are the integral manifolds of the holomorphic tangent space hTM .
Then any closed current Θ ∈ D′p,p(X) of order 0 with support in M can be written
Θ =

∫
Y
[Ft] dµ(t) with a unique complex measure µ on Y . Moreover Θ is (strongly)

positive if and only if the measure µ is positive.

Proof. Fix a compact set K ⊂ Y and a C1 retraction ρ from a neighborhood V ofM onto
M . By means of a partition of unity, it is easy to construct a positive form α ∈D0

p,p(V )
such that

∫
Ft
α = 1 for each fiber Ft with t ∈ K. Then the uniqueness and positivity

statements for µ follow from the obvious formula

∫

Y

f(t) dµ(t) = 〈Θ, (f ◦ σ ◦ ρ)α〉, ∀f ∈ C0(Y ), Supp f ⊂ K.

Now, let us prove the existence of µ. Let x0 ∈ M . There is a small neighborhood Ω of
x0 and real coordinates (x1, y1, . . . , xp, yp, t1, . . . , tq, g1, . . . , gm) such that

• zj = xj+iyj , 1 6 j 6 p, are holomorphic functions on Ω that define complex coordinates
on all fibers Ft ∩ Ω.

• t1, . . . , tq restricted to M ∩ Ω are pull-backs by σ : M → Y of local coordinates on an
open set U ⊂ Y such that σ↾Ω :M ∩ Ω −→ U is a trivial fiber space.

• g1 = . . . = gm = 0 are equations of M in Ω.

Then TFt = {dtj = dgk = 0} equals hTM = {d′gk = 0} and the rank of (d′g1, . . . , d′gm)
is equal to n−p at every point ofM ∩Ω. After a change of the ordering we may suppose
that ζ1 = d′g1, . . ., ζn−p = d′gn−p are linearly independent on Ω. As in Prop. 2.10, we
get ζk ∧ Θ = ζk ∧ Θ = 0 for 1 6 k 6 n − p and infer that Θ ∧ ζ∁I ∧ ζ∁J = 0 unless
I = J = L where L = {1, 2, . . . , n− p}. Hence

Θ = ΘL,L ζ1 ∧ . . . ∧ ζn−p ∧ ζ1 ∧ . . . ∧ ζn−p on Ω.
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Now ζ1∧ . . .∧ ζn−p is proportional to dt1∧ . . . dtq ∧dg1∧ . . .∧dgm because both induce a

volume form on the quotient space TX↾M/
hTM . Therefore, there is a complex measure

ν supported on M ∩ Ω such that

Θ = ν dt1 ∧ . . . dtq ∧ dg1 ∧ . . . ∧ dgm on Ω.

As Θ is supposed to be closed, we have ∂ν/∂xj = ∂ν/∂yj = 0. Hence ν is a measure
depending only on (t, g), with support in g = 0. We may write ν = dµU (t)⊗ δ0(g) where
µU is a measure on U = σ(M ∩ Ω) and δ0 is the Dirac measure at 0. If j : M −→ X is
the injection, this means precisely that Θ = j⋆σ

⋆µU on Ω, i.e.

Θ =

∫

t∈U
[Ft] dµU (t) on Ω.

The uniqueness statement shows that for two open sets Ω1, Ω2 as above, the associated
measures µU1

and µU2
coincide on σ(M ∩ Ω1 ∩ Ω2). Since the fibers Ft are connected,

there is a unique measure µ which coincides with all measures µU . �

(2.14) Corollary. Let A be an analytic subset of X with global irreducible components
Aj of pure dimension p. Then any closed current Θ ∈ D′p,p(X) of order 0 with support
in A is of the form Θ =

∑
λj [Aj ] where λj ∈ C. Moreover, Θ is (strongly) positive if

and only if all coefficients λj are > 0.

Proof. The regular part M = Areg is a complex submanifold of X r Asing and its
connected components are Aj ∩Areg. Thus, we may apply Th. 2.13 in the case where Y
is discrete to see that Θ =

∑
λj [Aj ] on X rAsing. Now dimAsing < p and the difference

Θ −∑
λj [Aj] ∈ D′p,p(X) is a closed current of order 0 with support in Asing, so this

current must vanish by Cor. 2.11. �

(2.15) Lelong-Poincaré equation. Let f ∈ M(X) be a meromorphic function which
does not vanish identically on any connected component of X and let

∑
mjZj be the

divisor of f . Then the function log |f | is locally integrable on X and satisfies the equation

i

π
d′d′′ log |f | =

∑
mj [Zj ]

in the space D′n−1,n−1(X) of currents of bidimension (n− 1, n− 1).

We refer to Sect. 2.6 for the definition of divisors, and especially to (2.6.14). Observe
that if f is holomorphic, then log |f | ∈ Psh(X), the coefficients mj are positive integers
and the right hand side is a positive current in D′+n−1,n−1(X).

Proof. Let Z =
⋃
Zj be the support of div(f). Observe that the sum in the right hand

side is locally finite and that d′d′′ log |f | is supported on Z, since

d′ log |f |2 = d′ log(ff) =
f df

ff
=
df

f
on X r Z.

In a neighborhood Ω of a point a ∈ Zj ∩Zreg, we can find local coordinates (w1, . . . , wn)
such that Zj ∩ Ω is given by the equation w1 = 0. Then Th. 2.6.6 shows that f can
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be written f(w) = u(w)w
mj

1 with an invertible holomorphic function u on a smaller
neighborhood Ω′ ⊂ Ω. Then we have

id′d′′ log |f | = id′d′′
(
log |u|+mj log |w1|

)
= mj id

′d′′ log |w1|.

For z ∈ C, Cor. I.3.4 implies

id′d′′ log |z|2 = −id′′
(dz
z

)
= −iπδ0 dz ∧ dz = 2π [0].

If Φ : Cn −→ C is the projection z 7−→ z1 and H ⊂ Cn the hyperplane {z1 = 0}, formula
(1.2.19) shows that

id′d′′ log |z1| = id′d′′ log |Φ(z)| = Φ⋆(id′d′′ log |z|) = πΦ⋆([0]) = π [H],

because Φ is a submersion. We get therefore i
πd
′d′′ log |f | = mj [Zj ] in Ω′. This implies

that the Lelong-Poincaré equation is valid at least on X r Zsing. As dimZsing < n − 1,
Cor. 2.11 shows that the equation holds everywhere on X . �

§ 3. Definition of Monge-Ampère Operators

Let X be a n-dimensional complex manifold. We denote by d = d′ + d′′ the usual
decomposition of the exterior derivative in terms of its (1, 0) and (0, 1) parts, and we set

dc =
1

2iπ
(d′ − d′′).

It follows in particular that dc is a real operator, i.e. dcu = dcu, and that ddc = i
π
d′d′′. Al-

though not quite standard, the 1/2iπ normalization is very convenient for many purposes,
since we may then forget the factor 2π almost everywhere (e.g. in the Lelong-Poincaré
equation (2.15)). In this context, we have the following integration by part formula.

(3.1) Formula. Let Ω ⊂⊂ X be a smoothly bounded open set in X and let f, g be forms
of class C2 on Ω of pure bidegrees (p, p) and (q, q) with p+ q = n− 1. Then

∫

Ω

f ∧ ddcg − ddcf ∧ g =

∫

∂Ω

f ∧ dcg − dcf ∧ g.

Proof. By Stokes’ theorem the right hand side is the integral over Ω of

d(f ∧ dcg − dcf ∧ g) = f ∧ ddcg − ddcf ∧ g + (df ∧ dcg + dcf ∧ dg).

As all forms of total degree 2n and bidegree 6= (n, n) are zero, we get

df ∧ dcg =
1

2iπ
(d′′f ∧ d′g − d′f ∧ d′′g) = −dcf ∧ dg. �

Let u be a plurisubharmonic function on X and let T be a closed positive current
of bidimension (p, p), i.e. of bidegree (n − p, n − p). Our desire is to define the wedge



§ 3. Definition of Monge-Ampère Operators 145

product ddcu ∧ T even when neither u nor T are smooth. A priori, this product does
not make sense because ddcu and T have measure coefficients and measures cannot be
multiplied; see [Kiselman 1983] for interesting counterexamples. Assume however that
u is a locally bounded plurisubharmonic function. Then the current uT is well defined
since u is a locally bounded Borel function and T has measure coefficients. According to
[Bedford-Taylor 1982] we define

ddcu ∧ T = ddc(uT )

where ddc( ) is taken in the sense of distribution (or current) theory.

(3.2) Proposition. The wedge product ddcu ∧ T is again a closed positive current.

Proof. The result is local. In an open set Ω ⊂ Cn, we can use convolution with a
family of regularizing kernels to find a decreasing sequence of smooth plurisubharmonic
functions uk = u ⋆ ρ1/k converging pointwise to u. Then u 6 uk 6 u1 and Lebesgue’s
dominated convergence theorem shows that ukT converges weakly to uT ; thus ddc(ukT )
converges weakly to ddc(uT ) by the weak continuity of differentiations. However, since
uk is smooth, ddc(ukT ) coincides with the product ddcuk ∧ T in its usual sense. As
T > 0 and as ddcuk is a positive (1, 1)-form, we have ddcuk∧T > 0, hence the weak limit
ddcu ∧ T is > 0 (and obviously closed). �

Given locally bounded plurisubharmonic functions u1, . . . , uq, we define inductively

ddcu1 ∧ ddcu2 ∧ . . . ∧ ddcuq ∧ T = ddc(u1dd
cu2 ∧ . . . ∧ ddcuq ∧ T ).

By (3.2) the product is a closed positive current. In particular, when u is a locally
bounded plurisubharmonic function, the bidegree (n, n) current (ddcu)n is well defined
and is a positive measure. If u is of class C2, a computation in local coordinates gives

(ddcu)n = det
( ∂2u

∂zj∂zk

)
· n!
πn

idz1 ∧ dz1 ∧ . . . ∧ idzn ∧ dzn.

The expression “Monge-Ampère operator” classically refers to the non-linear partial dif-
ferential operator u 7−→ det(∂2u/∂zj∂zk). By extension, all operators (ddc)q defined
above are also called Monge-Ampère operators.

Now, let Θ be a current of order 0. When K ⊂⊂ X is an arbitrary compact subset,
we define a mass semi-norm

||Θ||K =
∑

j

∫

Kj

∑

I,J

|ΘI,J |

by taking a partition K =
⋃
Kj where each Kj is contained in a coordinate patch and

where ΘI,J are the corresponding measure coefficients. Up to constants, the semi-norm
||Θ||K does not depend on the choice of the coordinate systems involved. When K itself
is contained in a coordinate patch, we set β = ddc|z|2 over K ; then, if Θ > 0, there are
constants C1, C2 > 0 such that

C1||Θ||K 6

∫

K

Θ ∧ βp 6 C2||Θ||K .
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We denote by L1(K), resp. by L∞(K), the space of integrable (resp. bounded measurable)
functions on K with respect to any smooth positive density on X .

(3.3) Chern-Levine-Nirenberg inequalities (1969). For all compact subsets K,L of
X with L ⊂ K◦, there exists a constant CK,L > 0 such that

||ddcu1 ∧ . . . ∧ ddcuq ∧ T ||L 6 CK,L ||u1||L∞(K) . . . ||uq||L∞(K) ||T ||K.

Proof. By induction, it is sufficient to prove the result for q = 1 and u1 = u. There is a
covering of L by a family of balls B′j ⊂⊂ Bj ⊂ K contained in coordinate patches of X .
Let χ ∈D(Bj) be equal to 1 on B

′
j . Then

||ddcu ∧ T ||
L∩B′

j
6 C

∫

B
′

j

ddcu ∧ T ∧ βp−1 6 C

∫

Bj

χddcu ∧ T ∧ βp−1.

As T and β are closed, an integration by parts yields

||ddcu ∧ T ||
L∩B′

j
6 C

∫

Bj

uT ∧ ddcχ ∧ βp−1 6 C′||u||L∞(K)||T ||K

where C′ is equal to C multiplied by a bound for the coefficients of the smooth form
ddcχ ∧ βp−1. �

(3.4) Remark. With the same notations as above, any plurisubharmonic function V
on X satisfies inequalities of the type

a) ||ddcV ||L 6 CK,L ||V ||L1(K).

b) sup
L
V+ 6 CK,L ||V ||L1(K).

In fact the inequality

∫

L∩B′

j

ddcV ∧ βn−1 6

∫

Bj

χddcV ∧ βn−1 =

∫

Bj

V ddcχ ∧ βn−1

implies a), and b) follows from the mean value inequality.

(3.5) Remark. Products of the form Θ = γ1 ∧ . . . ∧ γq ∧ T with mixed (1, 1)-forms
γj = ddcuj or γj = dvj ∧ dcwj + dwj ∧ dcvj are also well defined whenever uj , vj , wj are
locally bounded plurisubharmonic functions. Moreover, for L ⊂ K◦, we have

||Θ||L 6 CK,L||T ||K
∏
||uj ||L∞(K)

∏
||vj ||L∞(K)

∏
||wj ||L∞(K).

To check this, we may suppose vj , wj > 0 and ||vj|| = ||wj || = 1 in L∞(K). Then the
inequality follows from (3.3) by the polarization identity

2(dvj ∧ dcwj + dwj ∧ dcvj) = ddc(vj + wj)
2 − ddcv2j − ddcw2

j − vjddcwj − wjddcvj

in which all ddc operators act on plurisubharmonic functions.
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(3.6) Corollary. Let u1, . . . , uq be continuous (finite) plurisubharmonic functions and
let uk1 , . . . , u

k
q be sequences of plurisubharmonic functions converging locally uniformly to

u1, . . . , uq. If Tk is a sequence of closed positive currents converging weakly to T , then

a) uk1dd
cuk2 ∧ . . . ∧ ddcukq ∧ Tk −→ u1dd

cu2 ∧ . . . ∧ ddcuq ∧ T weakly.

b) ddcuk1 ∧ . . . ∧ ddcukq ∧ Tk −→ ddcu1 ∧ . . . ∧ ddcuq ∧ T weakly.

Proof. We observe that b) is an immediate consequence of a) by the weak continuity of
ddc. By using induction on q, it is enough to prove result a) when q = 1. If (uk) converges
locally uniformly to a finite continuous plurisubharmonic function u, we introduce local
regularizations uε = u ⋆ ρε and write

ukTk − uT = (uk − u)Tk + (u− uε)Tk + uε(Tk − T ).

As the sequence Tk is weakly convergent, it is locally uniformly bounded in mass, thus
||(uk − u)Tk||K 6 ||uk − u||L∞(K)||Tk||K converges to 0 on every compact set K. The
same argument shows that ||(u− uε)Tk||K can be made arbitrarily small by choosing ε
small enough. Finally uε is smooth, so uε(Tk − T ) converges weakly to 0. �

Now, we prove a deeper monotone continuity theorem due to [Bedford-Taylor 1982]
according to which the continuity and uniform convergence assumptions can be dropped
if each sequence (ukj ) is decreasing and Tk is a constant sequence.

(3.7) Theorem. Let u1, . . . , uq be locally bounded plurisubharmonic functions and let
uk1 , . . . , u

k
q be decreasing sequences of plurisubharmonic functions converging pointwise to

u1, . . . , uq. Then

a) uk1dd
cuk2 ∧ . . . ∧ ddcukq ∧ T −→ u1dd

cu2 ∧ . . . ∧ ddcuq ∧ T weakly.

b) ddcuk1 ∧ . . . ∧ ddcukq ∧ T −→ ddcu1 ∧ . . . ∧ ddcuq ∧ T weakly.

Proof. Again by induction, observing that a) =⇒ b) and that a) is obvious for q = 1
thanks to Lebesgue’s bounded convergence theorem. To proceed with the induction step,
we first have to make some slight modifications of our functions uj and u

k
j .

As the sequence (ukj ) is decreasing and as uj is locally bounded, the family (ukj )k∈N
is locally uniformly bounded. The results are local, so we can work on a Stein open set
Ω ⊂⊂ X with strongly pseudoconvex boundary. We use the following notations:

(3.8) let ψ be a strongly plurisubharmonic function of class C∞ near Ω with ψ < 0
on Ω and ψ = 0, dψ 6= 0 on ∂Ω ;

(3.8′) we set Ωδ = {z ∈ Ω ; ψ(z) < −δ} for all δ > 0.
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0

−1

−M

R

Aψ

Ωδ ΩrΩδ

ukj

III-1 Construction of vkj

After addition of a constant we can assume that −M 6 ukj 6 −1 near Ω. Let us denote
by (uk,εj ), ε ∈ ]0, ε0], an increasing family of regularizations converging to ukj as ε → 0
and such that −M 6 uk,εj 6 −1 on Ω. Set A = M/δ with δ > 0 small and replace ukj
by vkj = max{Aψ, ukj } and uk,εj by vk,εj = maxε{Aψ, uk,εj } where maxε = max ⋆ ρε is a
regularized max function.

Then vkj coincides with ukj on Ωδ since Aψ < −Aδ = −M on Ωδ, and v
k
j is equal to

Aψ on the corona Ω \Ωδ/M . Without loss of generality, we can therefore assume that all
ukj (and similarly all uk,εj ) coincide with Aψ on a fixed neighborhood of ∂Ω. We need a
lemma.

(3.9) Lemma. Let fk be a decreasing sequence of upper semi-continuous functions
converging to f on some separable locally compact space X and µk a sequence of positive
measures converging weakly to µ on X. Then every weak limit ν of fkµk satisfies ν 6 fµ.

Indeed if (gp) is a decreasing sequence of continuous functions converging to fk0 for
some k0, then fkµk 6 fk0µk 6 gpµk for k > k0, thus ν 6 gpµ as k → +∞. The monotone
convergence theorem then gives ν 6 fk0µ as p→ +∞ and ν 6 fµ as k0 → +∞. �

Proof of Theorem 3.7 (end).. Assume that a) has been proved for q − 1. Then

Sk = ddcuk2 ∧ . . . ∧ ddcukq ∧ T −→ S = ddcu2 ∧ . . . ∧ ddcuq ∧ T.

By 3.3 the sequence (uk1S
k) has locally bounded mass, hence is relatively compact for

the weak topology. In order to prove a), we only have to show that every weak limit Θ
of uk1S

k is equal to u1S. Let (m,m) be the bidimension of S and let γ be an arbitrary
smooth and strongly positive form of bidegree (m,m). Then the positive measures Sk∧γ
converge weakly to S ∧ γ and Lemma 3.9 shows that Θ ∧ γ 6 u1S ∧ γ, hence Θ 6 u1S.
To get the equality, we set β = ddcψ > 0 and show that

∫
Ω
u1S ∧ βm 6

∫
Ω
Θ ∧ βm, i.e.

∫

Ω

u1dd
cu2 ∧ . . . ∧ ddcuq ∧ T ∧ βm 6 lim inf

k→+∞

∫

Ω

uk1dd
cuk2 ∧ . . . ∧ ddcukq ∧ T ∧ βm.
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As u1 6 uk1 6 uk,ε11 for every ε1 > 0, we get

∫

Ω

u1dd
cu2 ∧ . . . ∧ ddcuq ∧ T ∧ βm

6

∫

Ω

uk,ε11 ddcu2 ∧ . . . ∧ ddcuq ∧ T ∧ βm

=

∫

Ω

ddcuk,ε11 ∧ u2ddcu3 ∧ . . . ∧ ddcuq ∧ T ∧ βm

after an integration by parts (there is no boundary term because uk,ε11 and u2 both vanish
on ∂Ω). Repeating this argument with u2, . . . , uq, we obtain

∫

Ω

u1dd
cu2 ∧ . . . ∧ ddcuq ∧ T ∧ βm

6

∫

Ω

ddcuk,ε11 ∧ . . . ∧ ddcuk,εq−1

q−1 ∧ uqT ∧ βm

6

∫

Ω

uk,ε11 ddcuk,ε22 ∧ . . . ∧ ddcuk,εqq ∧ T ∧ βm.

Now let εq → 0, . . . , ε1 → 0 in this order. We have weak convergence at each step and
uk,ε11 = 0 on the boundary; therefore the integral in the last line converges and we get
the desired inequality

∫

Ω

u1dd
cu2 ∧ . . . ∧ ddcuq ∧ T ∧ βm 6

∫

Ω

uk1dd
cuk2 ∧ . . . ∧ ddcukq ∧ T ∧ βm. �

(3.10) Corollary. The product ddcu1 ∧ . . . ∧ ddcuq ∧ T is symmetric with respect to
u1, . . . , uq.

Proof. Observe that the definition was unsymmetric. The result is true when u1, . . . , uq
are smooth and follows in general from Th. 3.7 applied to the sequences ukj = uj ⋆ ρ1/k,
1 6 j 6 q. �

(3.11) Proposition. Let K,L be compact subsets of X such that L ⊂ K◦. For any
plurisubharmonic functions V, u1, . . . , uq on X such that u1, . . . , uq are locally bounded,
there is an inequality

||V ddcu1 ∧ . . . ∧ ddcuq ||L 6 CK,L ||V ||L1(K)||u1||L∞(K) . . . ||uq||L∞(K).

Proof. We may assume that L is contained in a strongly pseudoconvex open set Ω = {ψ <
0} ⊂ K (otherwise we cover L by small balls contained in K). A suitable normalization
gives −2 6 uj 6 −1 on K ; then we can modify uj on Ω \ L so that uj = Aψ on Ω \ Ωδ
with a fixed constant A and δ > 0 such that L ⊂ Ωδ. Let χ > 0 be a smooth function
equal to −ψ on Ωδ with compact support in Ω. If we take ||V ||L1(K) = 1, we see that
V+ is uniformly bounded on Ωδ by 3.4 b); after subtraction of a fixed constant we can
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assume V 6 0 on Ωδ. First suppose q 6 n− 1. As uj = Aψ on Ω \ Ωδ, we find

∫

Ωδ

−V ddcu1 ∧ . . . ∧ ddcuq ∧ βn−q

=

∫

Ω

V ddcu1 ∧ . . . ∧ ddcuq ∧ βn−q−1 ∧ ddcχ−Aq
∫

Ω\Ωδ

V βn−1 ∧ ddcχ

=

∫

Ω

χddcV ∧ ddcu1 ∧ . . . ∧ ddcuq ∧ βn−q−1 −Aq
∫

Ω\Ωδ

V βn−1 ∧ ddcχ.

The first integral of the last line is uniformly bounded thanks to 3.3 and 3.4 a), and the
second one is bounded by ||V ||L1(Ω) 6 constant. Inequality 3.11 follows for q 6 n− 1. If
q = n, we can work instead on X × C and consider V, u1, . . . , uq as functions on X × C

independent of the extra variable in C. �

§ 4. Case of Unbounded Plurisubharmonic Functions

We would like to define ddcu1 ∧ . . .∧ddcuq ∧T also in some cases when u1, . . . , uq are
not bounded below everywhere, especially when the uj have logarithmic poles. Consider
first the case q = 1 and let u be a plurisubharmonic function on X . The pole set of
u is by definition P (u) = u−1(−∞). We define the unbounded locus L(u) to be the
set of points x ∈ X such that u is unbounded in every neighborhood of x. Clearly
L(u) is closed and we have L(u) ⊃ P (u) but in general these sets are different: in fact,

u(z) =
∑
k−2 log(|z − 1/k|+ e−k

3

) is everywhere finite in C but L(u) = {0}.

(4.1) Proposition. We make two additional assumptions:

a) T has non zero bidimension (p, p) (i.e. degree of T < 2n).

b) X is covered by a family of Stein open sets Ω ⊂⊂ X whose boundaries ∂Ω do not
intersect L(u) ∩ Supp T .

Then the current uT has locally finite mass in X.

For any current T , hypothesis 4.1 b) is clearly satisfied when u has a discrete un-
bounded locus L(u); an interesting example is u = log |F | where F = (F1, . . . , FN ) are
holomorphic functions having a discrete set of common zeros. Observe that the current
uT need not have locally finite mass when T has degree 2n (i.e. T is a measure); example:
T = δ0 and u(z) = log |z| in Cn. The result also fails when the sets Ω are not assumed
to be Stein; example: X = blow-up of Cn at 0, T = [E] = current of integration on the
exceptional divisor and u(z) = log |z| (see § 7.12 for the definition of blow-ups).

Proof. By shrinking Ω slightly, we may assume that Ω has a smooth strongly pseu-
doconvex boundary. Let ψ be a defining function of Ω as in (3.8). By subtracting a
constant to u, we may assume u 6 −ε on Ω. We fix δ so small that Ω r Ωδ does not
intersect L(u)∩ Supp T and we select a neighborhood ω of (ΩrΩδ)∩ Supp T such that
ω ∩ L(u) = ∅. Then we define

us(z) =

{
max{u(z), Aψ(z)} on ω,
max{u(z), s} on Ωδ = {ψ < −δ}.
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By construction u > −M on ω for some constant M > 0. We fix A > M/δ and take
s 6 −M , so

max{u(z), Aψ(z)} = max{u(z), s} = u(z) on ω ∩ Ωδ

and our definition of us is coherent. Observe that us is defined on ω ∪ Ωδ, which is a
neighborhood of Ω ∩ Supp T . Now, us = Aψ on ω ∩ (Ωr Ωε/A), hence Stokes’ theorem
implies

∫

Ω

ddcus ∧ T ∧ (ddcψ)p−1 −
∫

Ω

Addcψ ∧ T ∧ (ddcψ)p−1

=

∫

Ω

ddc
[
(us − Aψ)T ∧ (ddcψ)p−1

]
= 0

because the current [. . .] has a compact support contained in Ωε/A. Since us and ψ both
vanish on ∂Ω, an integration by parts gives

∫

Ω

usT ∧ (ddcψ)p =

∫

Ω

ψddcus ∧ T ∧ (ddcψ)p−1

> −||ψ||L∞(Ω)

∫

Ω

T ∧ ddcus ∧ (ddcψ)p−1

= −||ψ||L∞(Ω)A

∫

Ω

T ∧ (ddcψ)p.

Finally, take A = M/δ, let s tend to −∞ and use the inequality u > −M on ω. We
obtain

∫

Ω

uT ∧ (ddcψ)p > −M
∫

ω

T ∧ (ddcψ)p + lim
s→−∞

∫

Ωδ

usT ∧ (ddcψ)p

> −
(
M + ||ψ||L∞(Ω)M/δ

) ∫

Ω

T ∧ (ddcψ)p.

The last integral is finite. This concludes the proof. �

(4.2) Remark. If Ω is smooth and strongly pseudoconvex, the above proof shows in
fact that

||uT ||Ω 6
C

δ
||u||L∞((ΩrΩδ)∩Supp T )||T ||Ω

when L(u)∩Supp T ⊂ Ωδ. In fact, if u is continuous and if ω is chosen sufficiently small,
the constant M can be taken arbitrarily close to ||u||L∞((ΩrΩδ)∩Supp T ). Moreover, the

maximum principle implies

||u+||L∞(Ω∩Supp T ) = ||u+||L∞(∂Ω∩Supp T ),

so we can achieve that u < −ε on a neighborhood of Ω ∩ Supp T by subtracting
||u||L∞((ΩrΩδ)∩Supp T )+2ε [Proof of maximum principle: if u(z0) > 0 at z0 ∈ Ω∩Supp T
and u 6 0 near ∂Ω ∩ Supp T , then

∫

Ω

u+T ∧ (ddcψ)p =

∫

Ω

ψddcu+ ∧ T ∧ (ddcψ)p−1 6 0,
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a contradiction]. �

(4.3) Corollary. Let u1, . . . , uq be plurisubharmonic functions on X such that X is
covered by Stein open sets Ω with ∂Ω ∩ L(uj) ∩ Supp T = ∅. We use again induction to
define

ddcu1 ∧ ddcu2 ∧ . . . ∧ ddcuq ∧ T = ddc(u1dd
cu2 . . . ∧ ddcuq ∧ T ).

Then, if uk1 , . . . , u
k
q are decreasing sequences of plurisubharmonic functions converging

pointwise to u1, . . . , uq, q 6 p, properties (3.7 a, b) hold.

0

−1

−M

R

Ωr ΩδL(uj)

ω

Aψ

ukj

Supp T

III-2 Modified construction of vkj

Proof. Same proof as for Th. 3.7, with the following minor modification: the max
procedure vkj := max{ukj , Aψ} is applied only on a neighborhood ω of Supp T ∩ (ΩrΩδ)

with δ > 0 small, and ukj is left unchanged near Supp T ∩ Ωδ. Observe that the integration

by part process requires the functions ukj and u
k,ε
j to be defined only near Ω∩Supp T . �

(4.4) Proposition. Let Ω ⊂⊂ X be a Stein open subset. If V is a plurisubharmonic
function on X and u1, . . . , uq, 1 6 q 6 n − 1, are plurisubharmonic functions such that
∂Ω ∩ L(uj) = ∅, then V ddcu1 ∧ . . . ∧ ddcuq has locally finite mass in Ω.

Proof. Same proof as for 3.11, when δ > 0 is taken so small that Ωδ ⊃ L(uj) for all
1 6 j 6 q. �

Finally, we show that Monge-Ampère operators can also be defined in the case of
plurisubharmonic functions with non compact pole sets, provided that the mutual inter-
sections of the pole sets are of sufficiently small Hausdorff dimension with respect to the
dimension p of T .

(4.5) Theorem. Let u1, . . . , uq be plurisubharmonic functions on X. The currents
u1dd

cu2 ∧ . . . ∧ ddcuq ∧ T and ddcu1 ∧ . . . ∧ ddcuq ∧ T are well defined and have locally
finite mass in X as soon as q 6 p and

H2p−2m+1

(
L(uj1) ∩ . . . ∩ L(ujm) ∩ Supp T

)
= 0

for all choices of indices j1 < . . . < jm in {1, . . . , q}.
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The proof is an easy induction on q, thanks to the following improved version of the
Chern-Levine-Nirenberg inequalities.

(4.6) Proposition. Let A1, . . . , Aq ⊂ X be closed sets such that

H2p−2m+1

(
Aj1 ∩ . . . ∩ Ajm ∩ Supp T

)
= 0

for all choices of j1 < . . . < jm in {1, . . . , q}. Then for all compact sets K, L of X with
L ⊂ K◦, there exist neighborhoods Vj of K ∩ Aj and a constant C = C(K,L,Aj) such
that the conditions uj 6 0 on K and L(uj) ⊂ Aj imply

a) ||u1ddcu2 ∧ . . . ∧ ddcuq ∧ T ||L 6 C||u1||L∞(KrV1) . . . ||uq||L∞(KrVq)||T ||K

b) ||ddcu1 ∧ . . . ∧ ddcuq ∧ T ||L 6 C||u1||L∞(KrV1) . . . ||uq||L∞(KrVq)||T ||K.

Proof. We need only show that every point x0 ∈ K◦ has a neighborhood L such that a),
b) hold. Hence it is enough to work in a coordinate open set. We may thus assume that
X ⊂ Cn is open, and after a regularization process uj = limuj ⋆ ρε for j = q, q− 1, . . . , 1
in this order, that u1, . . . , uq are smooth. We proceed by induction on q in two steps:

Step 1. (bq−1) =⇒ (bq),
Step 2. (aq−1) and (bq) =⇒ (aq),

where (b0) is the trivial statement ||T ||L 6 ||T ||K and (a0) is void. Observe that we have
(aq) =⇒ (aℓ) and (bq) =⇒ (bℓ) for ℓ 6 q 6 p by taking uℓ+1(z) = . . . = uq(z) = |z|2. We
need the following elementary fact.

(4.7) Lemma. Let F ⊂ Cn be a closed set such that H2s+1(F ) = 0 for some integer
0 6 s < n. Then for almost all choices of unitary coordinates (z1, . . . , zn) = (z′, z′′) with
z′ = (z1, . . . , zs), z

′′ = (zs+1, . . . , zn) and almost all radii of balls B′′ = B(0, r′′) ⊂ Cn−s,
the set {0} × ∂B′′ does not intersect F .

Proof. The unitary group U(n) has real dimension n2. There is a proper submersion

Φ : U(n)×
(
Cn−s r {0}

)
−→ Cn r {0}, (g, z′′) 7−→ g(0, z′′),

whose fibers have real dimension N = n2 − 2s. It follows that the inverse image Φ−1(F )
has zero Hausdorff measure HN+2s+1 = Hn2+1. The set of pairs (g, r′′) ∈ U(n) × R⋆+
such that g({0} × ∂B′′) intersects F is precisely the image of Φ−1(F ) in U(n)× R⋆+ by
the Lipschitz map (g, z′′) 7→ (g, |z′′|). Hence this set has zero Hn2+1-measure. �

Proof of step 1.. Take x0 = 0 ∈ K◦. Suppose first 0 ∈ A1 ∩ . . . ∩ Aq and set F =
A1 ∩ . . . ∩ Aq ∩ Supp T . Since H2p−2q+1(F ) = 0, Lemma 4.7 implies that there are

coordinates z′ = (z1, . . . , zs), z
′′ = (zs+1, . . . , zn) with s = p − q and a ball B

′′
such

that F ∩
(
{0} × ∂B′′

)
= ∅ and {0} × B

′′ ⊂ K◦. By compactness of K, we can find

neighborhoods Wj of K ∩Aj and a ball B′ = B(0, r′) ⊂ Cs such that B
′×B′′ ⊂ K◦ and

(4.8) W 1 ∩ . . . ∩W q ∩ Supp T ∩
(
B
′ ×

(
B
′′
r (1− δ)B′′

))
= ∅

for δ > 0 small. If 0 /∈ Aj for some j, we choose instead Wj to be a small neighborhood

of 0 such thatW j ⊂ (B
′×(1−δ)B′′)rAj ; property (4.8) is then automatically satisfied.
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Let χj > 0 be a function with compact support in Wj , equal to 1 near K ∩Aj if Aj ∋ 0
(resp. equal to 1 near 0 if Aj 6∋ 0) and let χ(z′) > 0 be a function equal to 1 on 1/2B′

with compact support in B′. Then
∫

B′×B′′

ddc(χ1u1) ∧ . . . ∧ ddc(χquq) ∧ T ∧ χ(z′) (ddc|z′|2)s = 0

because the integrand is ddc exact and has compact support in B′ ×B′′ thanks to (4.8).
If we expand all factors ddc(χjuj), we find a term

χ1 . . . χqχ(z
′)ddcu1 ∧ . . . ∧ ddcuq ∧ T > 0

which coincides with ddcu1∧. . .∧ddcuq∧T on a small neighborhood of 0 where χj = χ = 1.
The other terms involve

dχj ∧ dcuj + duj ∧ dcχj + ujdd
cχj

for at least one index j. However dχj and ddcχj vanish on some neighborhood V ′j
of K ∩ Aj and therefore uj is bounded on B

′ ×B′′ r V ′j . We then apply the induction
hypothesis (bq−1) to the current

Θ = ddcu1 ∧ . . . ∧ ̂ddcuj ∧ . . . ∧ ddcuq ∧ T

and the usual Chern-Levine-Nirenberg inequality to the product of Θ with the mixed
term dχj ∧ dcuj + duj ∧ dcχj . Remark 3.5 can be applied because χj is smooth and is

therefore a difference χ
(1)
j −χ

(2)
j of locally bounded plurisubharmonic functions in Cn. Let

K ′ be a compact neighborhood of B
′ ×B′′ with K ′ ⊂ K◦, and let Vj be a neighborhood

of K ∩ Aj with V j ⊂ V ′j . Then with L′ := (B
′ ×B′′)r V ′j ⊂ (K ′ r Vj)

◦ we obtain

||(dχj∧dcuj + duj∧dcχj) ∧Θ||
B

′×B′′ = ||(dχj∧dcuj + duj∧dcχj) ∧Θ||L′

6 C1||uj||L∞(K′rVj)||Θ||K′rVj
,

||Θ||K′rVj
6 ||Θ||K′ 6 C2||u1||L∞(KrV1) . . .

̂||uj|| . . . ||uq||L∞(KrVq)||T ||K .

Now, we may slightly move the unitary basis in Cn and get coordinate systems zm =
(zm1 , . . . , z

m
n ) with the same properties as above, such that the forms

(ddc|zm′|2)s = s!

πs
i dzm1 ∧ dzm1 ∧ . . . ∧ i dzms ∧ dzms , 1 6 m 6 N

define a basis of
∧s,s

(Cn)⋆. It follows that all measures

ddcu1 ∧ . . . ∧ ddcuq ∧ T ∧ i dzm1 ∧ dzm1 ∧ . . . ∧ i dzms ∧ dzms
satisfy estimate (bq) on a small neighborhood L of 0.

Proof of Step 2.. We argue in a similar way with the integrals
∫

B′×B′′

χ1u1dd
c(χ2u2) ∧ . . . ddc(χquq) ∧ T ∧ χ(z′)(ddc|z′|2)s ∧ ddc|zs+1|2

=

∫

B′×B′′

|zs+1|2ddc(χ1u1) ∧ . . . ddc(χquq) ∧ T ∧ χ(z′)(ddc|z′|2)s.
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We already know by (bq) and Remark 3.5 that all terms in the right hand integral
admit the desired bound. For q = 1, this shows that (b1) =⇒ (a1). Except for
χ1 . . . χqχ(z

′) u1ddcu2 ∧ . . .∧ ddcuq ∧T , all terms in the left hand integral involve deriva-
tives of χj . By construction, the support of these derivatives is disjoint from Aj , thus
we only have to obtain a bound for

∫

L

u1dd
cu2 ∧ . . . ∧ ddcuq ∧ T ∧ α

when L = B(x0, r) is disjoint from Aj for some j > 2, say L∩A2 = ∅, and α is a constant
positive form of type (p − q, p − q). Then B(x0, r + ε) ⊂ K◦ r V 2 for some ε > 0 and
some neighborhood V2 of K∩A2. By the max construction used e.g. in Prop. 4.1, we can
replace u2 by a plurisubharmonic function ũ2 equal to u2 in L and to A(|z−x0|2−r2)−M
in B(x0, r+ ε)rB(x0, r+ ε/2), with M = ||u2||L∞(KrV2) and A =M/εr. Let χ > 0 be
a smooth function equal to 1 on B(x0, r + ε/2) with support in B(x0, r). Then

∫

B(x0,r+ε)

u1dd
c(χũ2) ∧ ddcu3 ∧ . . . ∧ ddcuq ∧ T ∧ α

=

∫

B(x0,r+ε)

χũ2dd
cu1 ∧ ddcu3 ∧ . . . ∧ ddcuq ∧ T ∧ α

6 O(1) ||u1||L∞(KrV1) . . . ||uq||L∞(KrVq)||T ||K

where the last estimate is obtained by the induction hypothesis (bq−1) applied to ddcu1∧
ddcu3 ∧ . . . ∧ ddcuq ∧ T . By construction

ddc(χũ2) = χddcũ2 + (smooth terms involving dχ)

coincides with ddcu2 in L, and (aq−1) implies the required estimate for the other terms
in the left hand integral. �

(4.9) Proposition. With the assumptions of Th. 4.5, the analogue of the monotone
convergence Theorem 3.7 (a,b) holds.

Proof. By the arguments already used in the proof of Th. 3.7 (e.g. by Lemma 3.9), it is
enough to show that

∫

B′×B′′

χ1 . . . χq u1 ∧ ddcu2 ∧ . . . ∧ ddcuq ∧ T ∧ α

6 lim inf
k→+∞

∫

B′×B′′

χ1 . . . χq u
k
1dd

cuk2 ∧ . . . ∧ ddcukq ∧ T ∧ α

where α = χ(z′)(ddc|z′|2)s is closed. Here the functions χj , χ are chosen as in the proof
of Step 1 in 4.7, especially their product has compact support in B′×B′′ and χj = χ = 1
in a neighborhood of the given point x0. We argue by induction on q and also on the
number m of functions (uj)j>1 which are unbounded near x0. If uj is bounded near x0,
we take W ′′j ⊂⊂ W ′j ⊂⊂ Wj to be small balls of center x0 on which uj is bounded and

we modify the sequence ukj on the corona Wj rW ′′j so as to make it constant and equal

to a smooth function A|z − x0|2 + B on the smaller corona Wj rW ′j . In that case, we
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take χj equal to 1 near W
′
j and Supp χj ⊂ Wj . For every ℓ = 1, . . . , q, we are going to

check that

lim inf
k→+∞

∫

B′×B′′

χ1u
k
1dd

c(χ2u
k
2) ∧ . . .

ddc(χℓ−1u
k
ℓ−1) ∧ ddc(χℓuℓ) ∧ ddc(χℓ+1uℓ+1) . . . dd

c(χquq) ∧ T ∧ α

6 lim inf
k→+∞

∫

B′×B′′

χ1u
k
1dd

c(χ2u
k
2) ∧ . . .

ddc(χℓ−1u
k
ℓ−1) ∧ ddc(χℓukℓ ) ∧ ddc(χℓ+1uℓ+1) . . . dd

c(χquq) ∧ T ∧ α.

In order to do this, we integrate by parts χ1u
k
1dd

c(χℓuℓ) into χℓuℓdd
c(χ1u

k
1) for ℓ > 2,

and we use the inequality uℓ 6 ukℓ . Of course, the derivatives dχj , d
cχj , dd

cχj produce
terms which are no longer positive and we have to take care of these. However, Supp dχj
is disjoint from the unbounded locus of uj when uj is unbounded, and contained in
Wj r W

′
j when uj is bounded. The number m of unbounded functions is therefore

replaced by m − 1 in the first case, whereas in the second case ukj = uj is constant and
smooth on Supp dχj , so q can be replaced by q− 1. By induction on q +m (and thanks
to the polarization technique 3.5), the limit of the terms involving derivatives of χj is
equal on both sides to the corresponding terms obtained by suppressing all indices k.
Hence these terms do not give any contribution in the inequalities. �

We finally quote the following simple consequences of Th. 4.5 when T is arbitrary
and q = 1, resp. when T = 1 has bidegree (0, 0) and q is arbitrary.

(4.10) Corollary. Let T be a closed positive current of bidimension (p, p) and let u be
a plurisubharmonic function on X such that L(u) ∩ Supp T is contained in an analytic
set of dimension at most p− 1. Then uT and ddcu ∧ T are well defined and have locally
finite mass in X. �

(4.11) Corollary. Let u1, . . . , uq be plurisubharmonic functions on X such that L(uj)
is contained in an analytic set Aj ⊂ X for every j. Then ddcu1 ∧ . . . ∧ ddcuq is well
defined as soon as Aj1 ∩ . . . ∩ Ajm has codimension at least m for all choices of indices
j1 < . . . < jm in {1, . . . , q}. �

In the particular case when uj = log |fj | for some non zero holomorphic function fj
on X , we see that the intersection product of the associated zero divisors [Zj] = ddcuj
is well defined as soon as the supports |Zj | satisfy codim |Zj1 | ∩ . . . ∩ |Zjm | = m for
every m. Similarly, when T = [A] is an analytic p-cycle, Cor. 4.10 shows that [Z] ∧ [A]
is well defined for every divisor Z such that dim |Z| ∩ |A| = p − 1. These observations
easily imply the following

(4.12) Proposition. Suppose that the divisors Zj satisfy the above codimension con-
dition and let (Ck)k>1 be the irreducible components of the point set intersection |Z1| ∩
. . . ∩ |Zq|. Then there exist integers mk > 0 such that

[Z1] ∧ . . . ∧ [Zq] =
∑

mk[Ck].

The integer mk is called the multiplicity of intersection of Z1, . . . , Zq along the compo-
nent Ck.
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Proof. The wedge product has bidegree (q, q) and support in C =
⋃
Ck where codimC =

q, so it must be a sum as above with mk ∈ R+. We check by induction on q that mk is
a positive integer. If we denote by A some irreducible component of |Z1| ∩ . . . ∩ |Zq−1|,
we need only check that [A] ∧ [Zq] is an integral analytic cycle of codimension q with
positive coefficients on each component Ck of the intersection. However [A] ∧ [Zq] =
ddc(log |fq| [A]). First suppose that no component of A ∩ f−1q (0) is contained in the
singular part Asing. Then the Lelong-Poincaré equation applied on Areg shows that
ddc(log |fq| [A]) =

∑
mk[Ck] on X r Asing, where mk is the vanishing order of fq along

Ck in Areg. Since C ∩ Asing has codimension q + 1 at least, the equality must hold on
X . In general, we replace fq by fq − ε so that the divisor of fq − ε has no component
contained in Asing. Then ddc(log |fq − ε| [A]) is an integral codimension q cycle with
positive multiplicities on each component of A ∩ f−1q (ε) and we conclude by letting ε
tend to zero. �

§ 5. Generalized Lelong Numbers

The concepts we are going to study mostly concern the behaviour of currents or
plurisubharmonic functions in a neighborhood of a point at which we have for instance
a logarithmic pole. Since the interesting applications are local, we assume from now on
(unless otherwise stated) thatX is a Stein manifold, i.e. thatX has a strictly plurisubhar-
monic exhaustion function. Let ϕ : X −→ [−∞,+∞[ be a continuous plurisubharmonic
function (in general ϕ may have −∞ poles, our continuity assumption means that eϕ is
continuous). The sets

S(r) = {x ∈ X ; ϕ(x) = r},(5.1)

B(r) = {x ∈ X ; ϕ(x) < r},(5.1′)

B(r) = {x ∈ X ; ϕ(x) 6 r}(5.1′′)

will be called pseudo-spheres and pseudo-balls associated with ϕ. Note that B(r) is not
necessarily equal to the closure of B(r), but this is often true in concrete situations. The
most simple example we have in mind is the case of the function ϕ(z) = log |z− a| on an
open subset X ⊂ Cn ; in this case B(r) is the euclidean ball of center a and radius er ;
moreover, the forms

(5.2)
1

2
ddce2ϕ =

i

2π
d′d′′|z|2, ddcϕ =

i

π
d′d′′ log |z − a|

can be interpreted respectively as the flat hermitian metric on Cn and as the pull-back
over Cn of the Fubini-Study metric of Pn−1, translated by a.

(5.3) Definition. We say that ϕ is semi-exhaustive if there exists a real number R such
that B(R) ⊂⊂ X. Similarly, ϕ is said to be semi-exhaustive on a closed subset A ⊂ X if
there exists R such that A ∩B(R) ⊂⊂ X.

We are interested especially in the set of poles S(−∞) = {ϕ = −∞} and in the
behaviour of ϕ near S(−∞). Let T be a closed positive current of bidimension (p, p) on
X . Assume that ϕ is semi-exhaustive on Supp T and that B(R) ∩ Supp T ⊂⊂ X . Then
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P = S(−∞)∩SuppT is compact and the results of §2 show that the measure T ∧ (ddcϕ)p
is well defined. Following [Demailly 1982b, 1987a], we introduce:

(5.4) Definition. If ϕ is semi-exhaustive on Supp T and if R is such that B(R) ∩
Supp T ⊂⊂ X, we set for all r ∈ ]−∞, R[

ν(T, ϕ, r) =

∫

B(r)

T ∧ (ddcϕ)p,

ν(T, ϕ) =

∫

S(−∞)

T ∧ (ddcϕ)p = lim
r→−∞

ν(T, ϕ, r).

The number ν(T, ϕ) will be called the (generalized) Lelong number of T with respect to
the weight ϕ.

If we had not required T ∧ (ddcϕ)p to be defined pointwise on ϕ−1(−∞), the assump-
tion that X is Stein could have been dropped: in fact, the integral over B(r) always
makes sense if we define

ν(T, ϕ, r) =

∫

B(r)

T ∧
(
ddcmax{ϕ, s}

)p
with s < r.

Stokes’ formula shows that the right hand integral is actually independent of s. The
example given after (4.1) shows however that T ∧ (ddcϕ)p need not exist on ϕ−1(−∞) if
ϕ−1(−∞) contains an exceptional compact analytic subset. We leave the reader consider
by himself this more general situation and extend our statements by the max{ϕ, s}
technique. Observe that r 7−→ ν(T, ϕ, r) is always an increasing function of r. Before
giving examples, we need a formula.

(5.5) Formula. For any convex increasing function χ : R −→ R we have

∫

B(r)

T ∧ (ddcχ ◦ ϕ)p = χ′(r − 0)p ν(T, ϕ, r)

where χ′(r − 0) denotes the left derivative of χ at r.

Proof. Let χε be the convex function equal to χ on [r − ε,+∞[ and to a linear function
of slope χ′(r− ε−0) on ]−∞, r− ε]. We get ddc(χε ◦ϕ) = χ′(r− ε−0)ddcϕ on B(r− ε)
and Stokes’ theorem implies

∫

B(r)

T ∧ (ddcχ ◦ ϕ)p =
∫

B(r)

T ∧ (ddcχε ◦ ϕ)p

>

∫

B(r−ε)
T ∧ (ddcχε ◦ ϕ)p

= χ′(r − ε− 0)pν(T, ϕ, r − ε).

Similarly, taking χ̃ε equal to χ on ]−∞, r − ε] and linear on [r − ε, r], we obtain

∫

B(r−ε)
T ∧ (ddcχ ◦ ϕ)p 6

∫

B(r)

T ∧ (ddcχ̃ε ◦ ϕ)p = χ′(r − ε− 0)pν(T, ϕ, r).
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The expected formula follows when ε tends to 0. �

We get in particular
∫
B(r)

T ∧ (ddce2ϕ)p = (2e2r)pν(T, ϕ, r), whence the formula

(5.6) ν(T, ϕ, r) = e−2pr
∫

B(r)

T ∧
(1
2
ddce2ϕ

)p
.

Now, assume that X is an open subset of Cn and that ϕ(z) = log |z − a| for some
a ∈ X . Formula (5.6) gives

ν(T, ϕ, log r) = r−2p
∫

|z−a|<r
T ∧

( i

2π
d′d′′|z|2

)p
.

The positive measure σT = 1
p!
T ∧ ( i

2
d′d′′|z|2)p = 2−p

∑
TI,I . i

ndz1 ∧ . . . ∧ dzn is called
the trace measure of T . We get

(5.7) ν(T, ϕ, log r) =
σT

(
B(a, r)

)

πpr2p/p!

and ν(T, ϕ) is the limit of this ratio as r → 0. This limit is called the (ordinary) Lelong
number of T at point a and is denoted ν(T, a). This was precisely the original definition
of Lelong, see [Lelong 1968]. Let us mention a simple but important consequence.

(5.8) Consequence. The ratio σT
(
B(a, r)

)
/r2p is an increasing function of r. More-

over, for every compact subset K ⊂ X and every r0 < d(K, ∂X) we have

σT
(
B(a, r)

)
6 Cr2p for a ∈ K and r 6 r0,

where C = σT
(
K +B(0, r0)

)
/r2p0 .

All these results are particularly interesting when T = [A] is the current of integration
over an analytic subset A ⊂ X of pure dimension p. Then σT

(
B(a, r)

)
is the euclidean

area of A ∩ B(a, r), while πpr2p/p! is the area of a ball of radius r in a p-dimensional
subspace of Cn. Thus ν(T, ϕ, log r) is the ratio of these areas and the Lelong number
ν(T, a) is the limit ratio.

(5.9) Remark. It is immediate to check that

ν([A], x) =

{
0 for x /∈ A,
1 when x ∈ A is a regular point.

We will see later that ν([A], x) is always an integer (Thie’s theorem 8.7).

(5.10) Remark. When X = Cn, ϕ(z) = log |z − a| and A = X (i.e. T = 1), we obtain
in particular

∫
B(a,r)

(ddc log |z − a|)n = 1 for all r. This implies

(ddc log |z − a|)n = δa.
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This fundamental formula can be viewed as a higher dimensional analogue of the usual
formula ∆ log |z − a| = 2πδa in C. �

We next prove a result which shows in particular that the Lelong numbers of a closed
positive current are zero except on a very small set.

(5.11) Proposition. If T is a closed positive current of bidimension (p, p), then for each
c > 0 the set Ec = {x ∈ X ; ν(T, x) > c} is a closed set of locally finite H2p Hausdorff
measure in X.

Proof. By (5.7), we infer ν(T, a) = limr→0 σT
(
B(a, r)

)
p!/πpr2p. The function a 7→

σT
(
B(a, r)

)
is clearly upper semicontinuous. Hence the decreasing limit ν(T, a) as r

decreases to 0 is also upper semicontinuous in a. This implies that Ec is closed. Now,
let K be a compact subset in X and let {aj}16j6N , N = N(ε), be a maximal collection
of points in Ec ∩K such that |aj − ak| > 2ε for j 6= k. The balls B(aj, 2ε) cover Ec ∩K,
whereas the balls B(aj, ε) are disjoint. If Kc,ε is the set of points which are at distance
6 ε of Ec ∩K, we get

σT (Kc,ε) >
∑

σT
(
B(aj, ε)

)
> N(ε) cπpε2p/p!,

since ν(T, aj) > c. By the definition of Hausdorff measure, we infer

H2p(Ec ∩K) 6 lim inf
ε→0

∑(
diamB(aj, 2ε)

)2p

6 lim inf
ε→0

N(ε)(4ε)2p 6
p!42p

cπp
σT (Ec ∩K). �

Finally, we conclude this section by proving two simple semi-continuity results for
Lelong numbers.

(5.12) Proposition. Let Tk be a sequence of closed positive currents of bidimension
(p, p) converging weakly to a limit T . Suppose that there is a closed set A such that
Supp Tk ⊂ A for all k and such that ϕ is semi-exhaustive on A with A ∩ B(R) ⊂⊂ X.
Then for all r < R we have

∫

B(r)

T ∧ (ddcϕ)p 6 lim inf
k→+∞

∫

B(r)

Tk ∧ (ddcϕ)p

6 lim sup
k→+∞

∫

B(r)

Tk ∧ (ddcϕ)p 6

∫

B(r)

T ∧ (ddcϕ)p.

When r tends to −∞, we find in particular

lim sup
k→+∞

ν(Tk, ϕ) 6 ν(T, ϕ).

Proof. Let us prove for instance the third inequality. Let ϕℓ be a sequence of smooth
plurisubharmonic approximations of ϕ with ϕ 6 ϕℓ < ϕ + 1/ℓ on {r − ε 6 ϕ 6 r + ε}.
We set

ψℓ =

{
ϕ on B(r),
max{ϕ, (1 + ε)(ϕℓ − 1/ℓ)− rε} on X rB(r).
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This definition is coherent since ψℓ = ϕ near S(r), and we have

ψℓ = (1 + ε)(ϕℓ − 1/ℓ)− rε near S(r + ε/2)

as soon as ℓ is large enough, i.e. (1 + ε)/ℓ 6 ε2/2. Let χε be a cut-off function equal to
1 in B(r + ε/2) with support in B(r + ε). Then

∫

B(r)

Tk ∧ (ddcϕ)p 6

∫

B(r+ε/2)

Tk ∧ (ddcψℓ)
p

= (1 + ε)p
∫

B(r+ε/2)

Tk ∧ (ddcϕℓ)
p

6 (1 + ε)p
∫

B(r+ε)

χεTk ∧ (ddcϕℓ)
p.

As χε(dd
cϕℓ)

p is smooth with compact support and as Tk converges weakly to T , we
infer

lim sup
k→+∞

∫

B(r)

Tk ∧ (ddcϕ)p 6 (1 + ε)p
∫

B(r+ε)

χεT ∧ (ddcϕℓ)
p.

We then let ℓ tend to +∞ and ε tend to 0 to get the desired inequality. The first
inequality is obtained in a similar way, we define ψℓ so that ψℓ = ϕ on X r B(r) and
ψℓ = max{(1 − ε)(ϕℓ − 1/ℓ) + rε} on B(r), and we take χε = 1 on B(r − ε) with
Supp χε ⊂ B(r − ε/2). Then for ℓ large

∫

B(r)

Tk ∧ (ddcϕ)p >

∫

B(r−ε/2)
Tk ∧ (ddcψℓ)

p

> (1− ε)p
∫

B(r−ε/2)
χεTk ∧ (ddcϕℓ)

p. �

(5.13) Proposition. Let ϕk be a (non necessarily monotone) sequence of continuous
plurisubharmonic functions such that eϕk converges uniformly to eϕ on every compact
subset of X. Suppose that {ϕ < R} ∩ Supp T ⊂⊂ X. Then for r < R we have

lim sup
k→+∞

∫

{ϕk6r}∩{ϕ<R}
T ∧ (ddcϕk)

p 6

∫

{ϕ6r}
T ∧ (ddcϕ)p.

In particular lim supk→+∞ ν(T, ϕk) 6 ν(T, ϕ).

When we take ϕk(z) = log |z − ak| with ak → a, Prop. 5.13 implies the upper
semicontinuity of a 7→ ν(T, a) which was already noticed in the proof of Prop. 5.11.

Proof. Our assumption is equivalent to saying that max{ϕk, t} converges locally uni-
formly to max{ϕ, t} for every t. Then Cor. 3.6 shows that T∧(ddcmax{ϕk, t})p converges
weakly to T ∧ (ddcmax{ϕ, t})p. If χε is a cut-off function equal to 1 on {ϕ 6 r + ε/2}
with support in {ϕ < r + ε}, we get

lim
k→+∞

∫

X

χεT ∧ (ddcmax{ϕk, t})p =
∫

X

χεT ∧ (ddcmax{ϕ, t})p.
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For k large, we have {ϕk 6 r} ∩ {ϕ < R} ⊂ {ϕ < r + ε/2}, thus when ε tends to 0 we
infer

lim sup
k→+∞

∫

{ϕk6r}∩{ϕ<R}
T ∧ (ddcmax{ϕk, t})p 6

∫

{ϕ6r}
T ∧ (ddcmax{ϕ, t})p.

When we choose t < r, this is equivalent to the first inequality in statement (5.13). �

§ 6. The Jensen-Lelong Formula

We assume in this section that X is Stein, that ϕ is semi-exhaustive on X and
that B(R) ⊂⊂ X . We set for simplicity ϕ>r = max{ϕ, r}. For every r ∈ ] − ∞, R[,
the measures ddc(ϕ>r)

n are well defined. By Cor. 3.6, the map r 7−→ (ddcϕ>r)
n is

continuous on ]−∞, R[ with respect to the weak topology. As (ddcϕ>r)
n = (ddcϕ)n on

X \B(r) and as ϕ>r ≡ r, (ddcϕ>r)
n = 0 on B(r), the left continuity implies (ddcϕ>r)

n >
1lX\B(r)(dd

cϕ)n. Here 1lA denotes the characteristic function of any subset A ⊂ X .
According to the definition introduced in [Demailly 1985a], the collection of Monge-
Ampère measures associated with ϕ is the family of positive measures µr such that

(6.1) µr = (ddcϕ>r)
n − 1lX\B(r)(dd

cϕ)n, r ∈ ]−∞, R[.

The measure µr is supported on S(r) and r 7−→ µr is weakly continuous on the left by the
bounded convergence theorem. Stokes’ formula shows that

∫
B(s)

(ddcϕ>r)
n−(ddcϕ)n = 0

for s > r, hence the total mass µr(S(r)) = µr(B(s)) is equal to the difference between
the masses of (ddcϕ)n and 1lX\B(r)(dd

cϕ)n over B(s), i.e.

(6.2) µr
(
S(r)

)
=

∫

B(r)

(ddcϕ)n.

(6.3) Example. When (ddcϕ)n = 0 on X \ ϕ−1(−∞), formula (6.1) can be simplified
into µr = (ddcϕ>r)

n. This is so for ϕ(z) = log |z|. In this case, the invariance of ϕ under
unitary transformations implies that µr is also invariant. As the total mass of µr is equal
to 1 by 5.10 and (6.2), we see that µr is the invariant measure of mass 1 on the euclidean
sphere of radius er.

(6.4) Proposition. Assume that ϕ is smooth near S(r) and that dϕ 6= 0 on S(r), i.e.
r is a non critical value. Then S(r) = ∂B(r) is a smooth oriented real hypersurface and
the measure µr is given by the (2n− 1)-volume form (ddcϕ)n−1 ∧ dcϕ↾S(r).

Proof. Write max{t, r} = limk→+∞ χk(t) where χ is a decreasing sequence of smooth
convex functions with χk(t) = r for t 6 r − 1/k, χk(t) = t for t > r + 1/k. Theorem 3.6
shows that (ddcχk ◦ ϕ)n converges weakly to (ddcϕ>r)

n. Let h be a smooth function h
with compact support near S(r). Let us apply Stokes’ theorem with S(r) considered as
the boundary of X \B(r) :

∫

X

h(ddcϕ>r)
n = lim

k→+∞

∫

X

h(ddcχk ◦ ϕ)n

= lim
k→+∞

∫

X

−dh ∧ (ddcχk ◦ ϕ)n−1 ∧ dc(χk ◦ ϕ)
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= lim
k→+∞

∫

X

−χ′k(ϕ)n dh ∧ (ddcϕ)n−1 ∧ dcϕ

=

∫

X\B(r)

−dh ∧ (ddcϕ)n−1 ∧ dcϕ

=

∫

S(r)

h (ddcϕ)n−1 ∧ dcϕ+

∫

X\B(r)

h (ddcϕ)n−1 ∧ ddcϕ.

Near S(r) we thus have an equality of measures

(ddcϕ>r)
n = (ddcϕ)n−1 ∧ dcϕ↾S(r) + 1lX\B(r)(dd

cϕ)n. �

(6.5) Jensen-Lelong formula. Let V be any plurisubharmonic function on X. Then
V is µr-integrable for every r ∈ ]−∞, R[ and

µr(V )−
∫

B(r)

V (ddcϕ)n =

∫ r

−∞
ν(ddcV, ϕ, t) dt.

Proof. Proposition 3.11 shows that V is integrable with respect to the measure (ddcϕ>r)
n,

hence V is µr-integrable. By definition

ν(ddcV, ϕ, t) =

∫

ϕ(z)<t

ddcV ∧ (ddcϕ)n−1

and the Fubini theorem gives

∫ r

−∞
ν(ddcV, ϕ, t) dt =

∫∫

ϕ(z)<t<r

ddcV (z) ∧ (ddcϕ(z))n−1 dt

=

∫

B(r)

(r − ϕ)ddcV ∧ (ddcϕ)n−1.(6.6)

We first show that Formula 6.5 is true when ϕ and V are smooth. As both members
of the formula are left continuous with respect to r and as almost all values of ϕ are
non critical by Sard’s theorem, we may assume r non critical. Formula 3.1 applied with
f = (r − ϕ)(ddcϕ)n−1 and g = V shows that integral (6.6) is equal to

∫

S(r)

V (ddcϕ)n−1 ∧ dcϕ−
∫

B(r)

V (ddcϕ)n = µr(V )−
∫

B(r)

V (ddcϕ)n.

Formula 6.5 is thus proved when ϕ and V are smooth. If V is smooth and ϕ merely
continuous and finite, one can write ϕ = limϕk where ϕk is a decreasing sequence
of smooth plurisubharmonic functions (because X is Stein). Then ddcV ∧ (ddcϕk)

n−1

converges weakly to ddcV ∧(ddcϕ)n−1 and (6.6) converges, since 1lB(r)(r−ϕ) is continuous
with compact support on X . The left hand side of Formula 6.5 also converges because
the definition of µr implies

µk,r(V )−
∫

ϕk<r

V (ddcϕk)
n =

∫

X

V
(
(ddcϕk,>r)

n − (ddcϕk)
n
)
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and we can apply again weak convergence on a neighborhood of B(r). If ϕ takes −∞
values, replace ϕ by ϕ>−k where k → +∞. Then µr(V ) is unchanged,

∫
B(r)

V (ddcϕ>−k)n

converges to
∫
B(r)

V (ddcϕ)n and the right hand side of Formula 6.5 is replaced by∫ r
−k ν(dd

cV, ϕ, t) dt. Finally, for V arbitrary, write V = lim ↓ Vk with a sequence of

smooth functions Vk. Then dd
cVk ∧ (ddcϕ)n−1 converges weakly to ddcV ∧ (ddcϕ)n−1 by

Prop. 4.4, so the integral (6.6) converges to the expected limit and the same is true for
the left hand side of 6.5 by the monotone convergence theorem. �

For r < r0 < R, the Jensen-Lelong formula implies

(6.7) µr(V )− µr0(V ) +

∫

B(r0)\B(r)

V (ddcϕ)n =

∫ r

r0

ν(ddcV, ϕ, t) dt.

(6.8) Corollary. Assume that (ddcϕ)n = 0 on X \S(−∞). Then r 7→ µr(V ) is a convex
increasing function of r and the lelong number ν(ddcV, ϕ) is given by

ν(ddcV, ϕ) = lim
r→−∞

µr(V )

r
.

Proof. By (6.7) we have

µr(V ) = µr0(V ) +

∫ r

r0

ν(ddcV, ϕ, t) dt.

As ν(ddcV, ϕ, t) is increasing and nonnegative, it follows that r 7−→ µr(V ) is convex and
increasing. The formula for ν(ddcV, ϕ) = limt→−∞ ν(ddcV, ϕ, t) is then obvious. �

(6.9) Example. Let X be an open subset of Cn equipped with the semi-exhaustive
function ϕ(z) = log |z − a|, a ∈ X . Then (ddcϕ)n = δa and the Jensen-Lelong formula
becomes

µr(V ) = V (a) +

∫ r

−∞
ν(ddcV, ϕ, t) dt.

As µr is the mean value measure on the sphere S(a, er), we make the change of variables
r 7→ log r, t 7→ log t and obtain the more familiar formula

(6.9 a) µ(V, S(a, r)) = V (a) +

∫ r

0

ν(ddcV, a, t)
dt

t

where ν(ddcV, a, t) = ν(ddcV, ϕ, log t) is given by (5.7):

(6.9 b) ν(ddcV, a, t) =
1

πn−1t2n−2/(n− 1)!

∫

B(a,t)

1

2π
∆V.

In this setting, Cor. 6.8 implies

(6.9 c) ν(ddcV, a) = lim
r→0

µ
(
V, S(a, r)

)

log r
= lim
r→0

supS(a,r) V

log r
.
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To prove the last equality, we may assume V 6 0 after subtraction of a constant. In-
equality > follows from the obvious estimate µ(V, S(a, r)) 6 supS(a,r) V , while inequality
6 follows from the standard Harnack estimate

(6.9 d) sup
S(a,εr)

V 6
1− ε

(1 + ε)2n−1
µ
(
V, S(a, r)

)

when ε is small (this estimate follows easily from the Green-Riesz representation formula
1.4.6 and 1.4.7). As supS(a,r) V = supB(a,r) V , Formula (6.9 c) can also be rewritten
ν(ddcV, a) = lim infz→a V (z)/ log |z − a|. Since supS(a,r) V is a convex (increasing) func-
tion of log r, we infer that

(6.9 e) V (z) 6 γ log |z − a|+O(1)

with γ = ν(ddcV, a), and ν(ddcV, a) is the largest constant γ which satisfies this inequa-
lity. Thus ν(ddcV, a) = γ is equivalent to V having a logarithmic pole of coefficient γ.

§ 6.10. Special case. Take in particular V = log |f | where f is a holomorphic function
on X . The Lelong-Poincaré formula shows that ddc log |f | is equal to the zero divisor
[Zf ] =

∑
mj [Hj ], where Hj are the irreducible components of f−1(0) and mj is the

multiplicity of f on Hj . The trace 1
2π∆ log |f | is then the euclidean area measure of

Zf (with corresponding multiplicities mj). By Formula (6.9 c), we see that the Lelong
number ν([Zf ], a) is equal to the vanishing order orda(f), that is, the smallest integer m
such that Dαf(a) 6= 0 for some multiindex α with |α| = m. In dimension n = 1, we have
1
2π∆ log f =

∑
mjδaj . Then (6.9 a) is the usual Jensen formula

µ
(
log |f |, S(0, r)

)
− log |f(0)| =

∫ r

0

ν(t)
dt

t
=

∑
mj log

r

|aj|

where ν(t) is the number of zeros aj in the disk D(0, t), counted with multiplicities mj .

(6.11) Example. Take ϕ(z) = logmax |zj |λj where λj > 0. Then B(r) is the polydisk
of radii (er/λ1 , . . . , er/λn). If some coordinate zj is non zero, say z1, we can write ϕ(z) as

λ1 log |z1| plus some function depending only on the (n − 1) variables zj/z
λ1/λj

1 . Hence
(ddcϕ)n = 0 on Cn \ {0}. It will be shown later that

(6.11 a) (ddcϕ)n = λ1 . . . λn δ0.

We now determine the measures µr. At any point z where not all terms |zj |λj are equal,
the smallest one can be omitted without changing ϕ in a neighborhood of z. Thus ϕ
depends only on (n− 1)-variables and (ddcϕ>r)

n = 0, µr = 0 near z. It follows that µr
is supported by the distinguished boundary |zj | = er/λj of the polydisk B(r). As ϕ is
invariant by all rotations zj 7−→ eiθjzj , the measure µr is also invariant and we see that
µr is a constant multiple of dθ1 . . . dθn. By formula (6.2) and (6.11 a) we get

(6.11 b) µr = λ1 . . . λn (2π)
−ndθ1 . . . dθn.

In particular, the Lelong number ν(ddcV, ϕ) is given by

ν(ddcV, ϕ) = lim
r→−∞

λ1 . . . λn
r

∫

θj∈[0,2π]
V (er/λ1+iθ1 , . . . , er/λn+iθn)

dθ1 . . . dθn
(2π)n

.
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These numbers have been introduced and studied by [Kiselman 1986]. We call them
directional Lelong numbers with coefficients (λ1, . . . , λn). For an arbitrary current T , we
define

(6.11 c) ν(T, x, λ) = ν
(
T, logmax |zj − xj |λj

)
.

The above formula for ν(ddcV, ϕ) combined with the analogue of Harnack’s inequality
(6.9 d) for polydisks gives

ν(ddcV, x, λ) = lim
r→0

λ1 . . . λn
log r

∫
V (r1/λ1eiθ1 , . . . , r1/λneiθn)

dθ1 . . . dθn
(2π)n

= lim
r→0

λ1 . . . λn
log r

sup
θ1,...,θn

V (r1/λ1eiθ1 , . . . , r1/λneiθn).(6.11 d)

§ 7. Comparison Theorems for Lelong Numbers

Let T be a closed positive current of bidimension (p, p) on a Stein manifoldX equipped
with a semi-exhaustive plurisubharmonic weight ϕ. We first show that the Lelong num-
bers ν(T, ϕ) only depend on the asymptotic behaviour of ϕ near the polar set S(−∞).
In a precise way:

(7.1) First comparison theorem. Let ϕ, ψ : X −→ [−∞,+∞[ be continuous plurisub-
harmonic functions. We assume that ϕ, ψ are semi-exhaustive on Supp T and that

ℓ := lim sup
ψ(x)

ϕ(x)
< +∞ as x ∈ Supp T and ϕ(x)→ −∞.

Then ν(T, ψ) 6 ℓpν(T, ϕ), and the equality holds if ℓ = limψ/ϕ.

Proof. Definition 6.4 shows immediately that ν(T, λϕ) = λpν(T, ϕ) for every scalar
λ > 0. It is thus sufficient to verify the inequality ν(T, ψ) 6 ν(T, ϕ) under the hypothesis
lim supψ/ϕ < 1. For all c > 0, consider the plurisubharmonic function

uc = max(ψ − c, ϕ).

Let Rϕ and Rψ be such that Bϕ(Rϕ) ∩ Supp T and Bψ(Rψ) ∩ Supp T be relatively
compact in X . Let r < Rϕ and a < r be fixed. For c > 0 large enough, we have uc = ϕ
on ϕ−1([a, r]) and Stokes’ formula gives

ν(T, ϕ, r) = ν(T, uc, r) > ν(T, uc).

The hypothesis lim supψ/ϕ < 1 implies on the other hand that there exists t0 < 0 such
that uc = ψ − c on {uc < t0} ∩ Supp T . We infer

ν(T, uc) = ν(T, ψ − c) = ν(T, ψ),

hence ν(T, ψ) 6 ν(T, ϕ). The equality case is obtained by reversing the roles of ϕ and ψ
and observing that limϕ/ψ = 1/l. �
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Assume in particular that zk = (zk1 , . . . , z
k
n), k = 1, 2, are coordinate systems centered

at a point x ∈ X and let

ϕk(z) = log |zk| = log
(
|zk1 |2 + . . .+ |zkn|2

)1/2
.

We have limz→x ϕ2(z)/ϕ1(z) = 1, hence ν(T, ϕ1) = ν(T, ϕ2) by Th. 7.1.

(7.2) Corollary. The usual Lelong numbers ν(T, x) are independent of the choice of
local coordinates. �

This result had been originally proved by [Siu 1974] with a much more delicate proof.
Another interesting consequence is:

(7.3) Corollary. On an open subset of Cn, the Lelong numbers and Kiselman numbers
are related by

ν(T, x) = ν
(
T, x, (1, . . . , 1)

)
.

Proof. By definition, the Lelong number ν(T, x) is associated with the weight ϕ(z) =
log |z−x| and the Kiselman number ν

(
T, x, (1, . . . , 1)

)
to the weight ψ(z) = logmax |zj−

xj |. It is clear that limz→x ψ(z)/ϕ(z) = 1, whence the conclusion. �

Another consequence of Th. 7.1 is that ν(T, x, λ) is an increasing function of each
variable λj . Moreover, if λ1 6 . . . 6 λn, we get the inequalities

λp1ν(T, x) 6 ν(T, x, λ) 6 λpnν(T, x).

These inequalities will be improved in section 7 (see Cor. 9.16). For the moment, we just
prove the following special case.

(7.4) Corollary. For all λ1, . . . , λn > 0 we have

(
ddc log max

16j6n
|zj |λj

)n
=

(
ddc log

∑

16j6n

|zj |λj

)n
= λ1 . . . λn δ0.

Proof. In fact, our measures vanish on Cn r {0} by the arguments explained in exam-
ple 6.11. Hence they are equal to c δ0 for some constant c > 0 which is simply the Lelong
number of the bidimension (n, n)-current T = [X ] = 1 with the corresponding weight.
The comparison theorem shows that the first equality holds and that

(
ddc log

∑

16j6n

|zj |λj

)n
= ℓ−n

(
ddc log

∑

16j6n

|zj |ℓλj

)n

for all ℓ > 0. By taking ℓ large and approximating ℓλj with 2[ℓλj/2], we may assume
that λj = 2sj is an even integer. Then formula (5.6) gives

∫
∑
|zj |2sj<r2

(
ddc log

∑
|zj |2sj

)n
= r−2n

∫
∑
|zj |2sj<r2

(
ddc

∑
|zj |2sj

)n

= s1 . . . sn r
−2n

∫
∑
|wj|2<r2

2n
( i

2π
d′d′′|w|2

)n
= λ1 . . . λn
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by using the s1 . . . sn-sheeted change of variables wj = z
sj
j . �

Now, we assume that T = [A] is the current of integration over an analytic set
A ⊂ X of pure dimension p. The above comparison theorem will enable us to give a
simple proof of P. Thie’s main result [Thie 1967]: the Lelong number ν([A], x) can be
interpreted as the multiplicity of the analytic set A at point x. Our starting point is the
following consequence of Th. II.3.19 applied simultaneously to all irreducible components
of (A, x).

(7.5) Lemma. For a generic choice of local coordinates z′ = (z1, . . . , zp) and
z′′ = (zp+1, . . . , zn) on (X, x), the germ (A, x) is contained in a cone |z′′| 6 C|z′|. If
B′ ⊂ Cp is a ball of center 0 and radius r′ small, and B′′ ⊂ Cn−p is the ball of center 0
and radius r′′ = Cr′, then the projection

pr : A ∩ (B′ ×B′′) −→ B′

is a ramified covering with finite sheet number m. �

We use these properties to compute the Lelong number of [A] at point x. When z ∈ A
tends to x, the functions

ϕ(z) = log |z| = log(|z′|2 + |z′′|2)1/2, ψ(z) = log |z′|.

are equivalent. As ϕ, ψ are semi-exhaustive on A, Th. 7.1 implies

ν([A], x) = ν([A], ϕ) = ν([A], ψ).

Let us apply formula (5.6) to ψ : for every t < r′ we get

ν([A], ψ, log t) = t−2p
∫

{ψ<log t}
[A] ∧

(1
2
ddce2ψ

)p

= t−2p
∫

A∩{|z′|<t}

(1
2
pr⋆ddc|z′|2

)p

= mt−2p
∫

Cp∩{|z′|<t}

(1
2
ddc|z′|2

)p
= m,

hence ν([A], ψ) = m. Here, we have used the fact that pr is an étale covering with m
sheets over the complement of the ramification locus S ⊂ B′, and the fact that S is of
zero Lebesgue measure in B′. We have thus obtained simultaneously the following two
results:

(7.6) Theorem and Definition. Let A be an analytic set of dimension p in a complex
manifold X of dimension n. For a generic choice of local coordinates z′ = (z1, . . . , zp),
z′′ = (zp+1, . . . , zn) near a point x ∈ A such that the germ (A, x) is contained in a
cone |z′′| 6 C|z′|, the sheet number m of the projection (A, x)→ (Cp, 0) onto the first p
coordinates is independent of the choice of z′, z′′. This number m is called the multiplicity
of A at x.

(7.7) Theorem ([Thie 1967]). One has ν([A], x) = m. �
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There is another interesting version of the comparison theorem which compares the
Lelong numbers of two currents obtained as intersection products (in that case, we take
the same weight for both).

(7.8) Second comparison theorem. Let u1, . . . , uq and v1, . . . , vq be plurisubharmonic
functions such that each q-tuple satisfies the hypotheses of Th. 4.5 with respect to T .
Suppose moreover that uj = −∞ on Supp T ∩ ϕ−1(−∞) and that

ℓj := lim sup
vj(z)

uj(z)
< +∞ when z ∈ Supp T r u−1j (−∞), ϕ(z)→ −∞.

Then

ν(ddcv1 ∧ . . . ∧ ddcvq ∧ T, ϕ) 6 ℓ1 . . . ℓq ν(dd
cu1 ∧ . . . ∧ ddcuq ∧ T, ϕ).

Proof. By homogeneity in each factor vj , it is enough to prove the inequality with
constants ℓj = 1 under the hypothesis lim sup vj/uj < 1. We set

wj,c = max{vj − c, uj}.

Our assumption implies that wj,c coincides with vj−c on a neighborhood Supp T ∩{ϕ <
r0} of Supp T ∩ {ϕ < −∞}, thus

ν(ddcv1 ∧ . . . ∧ ddcvq ∧ T, ϕ) = ν(ddcw1,c ∧ . . . ∧ ddcwq,c ∧ T, ϕ)

for every c. Now, fix r < Rϕ. Proposition 4.9 shows that the current ddcw1,c ∧ . . . ∧
ddcwq,c∧T converges weakly to ddcu1∧. . .∧ddcuq∧T when c tends to +∞. By Prop. 5.12
we get

lim sup
c→+∞

ν(ddcw1,c ∧ . . . ∧ ddcwq,c ∧ T, ϕ) 6 ν(ddcu1 ∧ . . . ∧ ddcuq ∧ T, ϕ). �

(7.9) Corollary. If ddcu1 ∧ . . . ∧ ddcuq ∧ T is well defined, then at every point x ∈ X
we have

ν
(
ddcu1 ∧ . . . ∧ ddcuq ∧ T, x

)
> ν(ddcu1, x) . . . ν(dd

cuq, x) ν(T, x).

Proof. Apply (7.8) with ϕ(z) = v1(z) = . . . = vq(z) = log |z − x| and observe that
ℓj := lim sup vj/uj = 1/ν(ddcuj , x) (there is nothing to prove if ν(ddcuj , x) = 0). �

Finally, we present an interesting stability property of Lelong numbers due to
[Siu 1974]: almost all slices of a closed positive current T along linear subspaces passing
through a given point have the same Lelong number as T . Before giving a proof of this,
we need a useful formula known as Crofton’s formula.

(7.10) Lemma. Let α be a closed positive (p, p)-form on Cn r {0} which is invariant
under the unitary group U(n). Then α has the form

α =
(
ddcχ(log |z|)

)p
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where χ is a convex increasing function. Moreover α is invariant by homotheties if and
only if χ is an affine function, i.e. α = λ (ddc log |z|)p.

Proof. A radial convolution αε(z) =
∫
R
ρ(t/ε)α(etz) dt produces a smooth form with

the same properties as α and limε→0 αε = α. Hence we can suppose that α is smooth
on Cn r {0}. At a point z = (0, . . . , 0, zn), the (p, p)-form α(z) ∈ ∧p,p

(Cn)⋆ must be
invariant by U(n−1) acting on the first (n−1) coordinates. We claim that the subspace of
U(n−1)-invariants in

∧p,p
(Cn)⋆ is generated by (ddc|z|2)p and (ddc|z|2)p−1∧ idzn∧dzn.

In fact, a form β =
∑
βI,JdzI ∧ dzJ is invariant by U(1)n−1 ⊂ U(n − 1) if and only if

βI,J = 0 for I 6= J , and invariant by the permutation group Sn−1 ⊂ U(n−1) if and only
if all coefficients βI,I (resp. βJn,Jn) with I, J ⊂ {1, . . . , n− 1} are equal. Hence

β = λ
∑

|I|=p
dzI ∧ dzI + µ

( ∑

|J|=p−1
dzJ ∧ dzJ

)
∧ dzn ∧ dzn.

This proves our claim. As d|z|2 ∧ dc|z|2 = i
π |zn|2dzn ∧ dzn at (0, . . . , 0, zn), we conclude

that
α(z) = f(z)(ddc|z|2)p + g(z)(ddc|z|2)p−1 ∧ d|z|2 ∧ dc|z|2

for some smooth functions f, g on Cnr {0}. The U(n)-invariance of α shows that f and
g are radial functions. We may rewrite the last formula as

α(z) = u(log |z|)(ddc log |z|)p + v(log |z|)(ddc log |z|)p−1 ∧ d log |z| ∧ dc log |z|.

Here (ddc log |z|)p is a positive (p, p)-form coming from Pn−1, hence it has zero contraction
in the radial direction, while the contraction of the form (ddc log |z|)p−1 ∧ d log |z| ∧
dc log |z| by the radial vector field is (ddc log |z|)p−1. This shows easily that α(z) > 0 if
and only if u, v > 0. Next, the closedness condition dα = 0 gives u′ − v = 0. Thus u is
increasing and we define a convex increasing function χ by χ′ = u1/p. Then v = u′ =
pχ′p−1χ′′ and

α(z) =
(
ddcχ(log |z|)

)p
.

If α is invariant by homotheties, the functions u and v must be constant, thus v = 0 and
α = λ(ddc log |z|)p. �

(7.11) Corollary (Crofton’s formula). Let dv be the unique U(n)-invariant measure of
mass 1 on the Grassmannian G(p, n) of p-dimensional subspaces in Cn. Then

∫

S∈G(p,n)

[S] dv(S) = (ddc log |z|)n−p.

Proof. The left hand integral is a closed positive bidegree (n− p, n− p) current which is
invariant by U(n) and by homotheties. By Lemma 7.10, this current must coincide with
the form λ(ddc log |z|)n−p for some λ > 0. The coefficient λ is the Lelong number at 0.
As ν([S], 0) = 1 for every S, we get λ =

∫
G(p,n)

dv(S) = 1. �

We now recall a few basic facts of slicing theory; see [Federer 1969] for details. Let
σ : M → M ′ be a submersion of smooth differentiable manifolds and let Θ be a locally
flat current on M , that is a current which can be written locally as Θ = U + dV where
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U , V have locally integrable coefficients. It can be shown that every current Θ such
that both Θ and dΘ have measure coefficients is locally flat; in particular, closed positive
currents are locally flats. Then, for almost every x′ ∈ M ′, there is a well defined slice
Θx′ , which is the current on the fiber σ−1(x′) defined by

Θx′ = U↾σ−1(x′) + dV↾σ−1(x′).

The restrictions of U , V to the fibers exist for almost all x′ by the Fubini theorem. It is
easy to show by a regularization Θε = Θ ⋆ ρε that the slices of a closed positive current
are again closed and positive: in fact Uε,x′ and Vε,x′ converge to Ux′ and Vx′ in L1

loc, thus
Θε,x′ converges weakly to Θx′ for almost every x′. This kind of slicing can be referred
to as parallel slicing (if we think of σ as being a projection map). The kind of slicing we
need (where the slices are taken over linear subspaces passing through a given point) is
of a slightly different nature and is called concurrent slicing.

The possibility of concurrent slicing is proved as follows. Let T be a closed positive
current of bidimension (p, p) in the ball B(0, R) ⊂ Cn. Let

Y =
{
(x, S) ∈ Cn ×G(q, n) ; x ∈ S

}

be the total space of the tautological rank q vector bundle over the Grassmannian G(q, n),
equipped with the obvious projections

σ : Y −→ G(q, n), π : Y −→ Cn.

We set YR = π−1(B(0, R)) and Y ⋆R = π−1(B(0, R) r {0}). The restriction π0 of π
to Y ⋆R is a submersion onto B(0, R) r {0}, so we have a well defined pull-back π⋆0T
over Y ⋆R. We would like to extend it as a pull-back π⋆T over YR, so as to define slices
T↾S = (π⋆T )↾σ−1(S) ; of course, these slices can be non zero only if the dimension of S is
at least equal to the degree of T , i.e. if q > n − p. We first claim that π⋆0T has locally
finite mass near the zero section π−1(0) of σ. In fact let ωG be a unitary invariant Kähler
metric over G(q, n) and let β = ddc|z|2 in Cn. Then we get a Kähler metric on Y defined
by ωY = σ⋆ωG + π⋆β. If N = (q − 1)(n − q) is the dimension of the fibers of π, the
projection formula π⋆(u ∧ π⋆v) = (π⋆u) ∧ v gives

π⋆ω
N+p
Y =

∑

16k6p

(
N + p

k

)
βk ∧ π⋆(σ⋆ωN+p−k

G ).

Here π⋆(σ
⋆ωN+p−k

G ) is a unitary and homothety invariant (p−k, p−k) closed positive form

on Cn r {0}, so π⋆(σ⋆ωN+p−k
G ) is proportional to (ddc log |z|)p−k. With some constants

λk > 0, we thus get

∫

Y ⋆
r

π⋆0T ∧ ωN+p
Y =

∑

06k6p

λk

∫

B(0,r)r{0}
T ∧ βk ∧ (ddc log |z|)p−k

=
∑

06k6p

λk2
−(p−k)r−2(p−k)

∫

B(0,r)r{0}
T ∧ βp < +∞.

The Skoda-El Mir theorem 2.3 shows that the trivial extension π̃⋆0T of π⋆0T is a closed
positive current on YR. Of course, the zero section π−1(0) might also carry some extra
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mass of the desired current π⋆T . Since π−1(0) has codimension q, this extra mass cannot
exist when q > n− p = codimπ⋆T and we simply set π⋆T = π̃⋆0T . On the other hand, if
q = n− p, we set

(7.12) π⋆T := π̃⋆0T + ν(T, 0) [π−1(0)].

We can now apply parallel slicing with respect to σ : YR → G(q, n), which is a submersion:
for almost all S ∈ G(q, n), there is a well defined slice T↾S = (π⋆T )↾σ−1(S). These slices
coincide with the usual restrictions of T to S if T is smooth.

(7.13) Theorem ([Siu 1974]). For almost all S ∈ G(q, n) with q > n − p, the slice T↾S
satisfies ν(T↾S , 0) = ν(T, 0).

Proof. If q = n − p, the slice T↾S consists of some positive measure with support in
S r {0} plus a Dirac measure ν(T, 0) δ0 coming from the slice of ν(T, 0) [π−1(0)]. The
equality ν(T↾S , 0) = ν(T, 0) thus follows directly from (7.12).

In the general case q > n − p, it is clearly sufficient to prove the following two
properties:

a) ν(T, 0, r) =

∫

S∈G(q,n)

ν(T↾S , 0, r) dv(S) for all r ∈ ]0, R[ ;

b) ν(T↾S , 0) > ν(T, 0) for almost all S.

In fact, a) implies that ν(T, 0) is the average of all Lelong numbers ν(T↾S , 0) and the
conjunction with b) implies that these numbers must be equal to ν(T, 0) for almost all S.
In order to prove a) and b), we can suppose without loss of generality that T is smooth
on B(0, R)r {0}. Otherwise, we perform a small convolution with respect to the action
of Gln(C) on Cn:

Tε =

∫

g∈Gln(C)

ρε(g) g
⋆T dv(g)

where (ρε) is a regularizing family with support in an ε-neighborhood of the unit element
of Gln(C). Then Tε is smooth in B(0, (1 − ε)R) r {0} and converges weakly to T .
Moreover, we have ν(Tε, 0) = ν(T, 0) by (7.2) and ν(T↾S , 0) > lim supε→0 ν(Tε,↾S , 0) by
(5.12), thus a), b) are preserved in the limit. If T is smooth on B(0, R)r {0}, the slice
T↾S is defined for all S and is simply the restriction of T to S r {0} (carrying no mass
at the origin).

a) Here we may even assume that T is smooth at 0 by performing an ordinary convolution.
As T↾S has bidegree (n− p, n− p), we have

ν(T↾S , 0, r) =

∫

S∩B(0,r)

T ∧ αq−(n−p)S =

∫

B(0,r)

T ∧ [S] ∧ αp+q−nS

where αS = ddc log |w| and w = (w1, . . . , wq) are orthonormal coordinates on S. We
simply have to check that

∫

S∈G(q,n)

[S] ∧ αp+q−nS dv(S) = (ddc log |z|)p.
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However, both sides are unitary and homothety invariant (p, p)-forms with Lelong number
1 at the origin, so they must coincide by Lemma 7.11.

b) We prove the inequality when S = Cq × {0}. By the comparison theorem 7.1, for
every r > 0 and ε > 0 we have

∫

B(0,r)

T ∧ γpε > ν(T, 0) where(7.14)

γε =
1

2
ddc log(ε|z1|2 + . . .+ ε|zq |2 + |zq+1|2 + . . .+ |zn|2).

We claim that the current γpε converges weakly to

[S] ∧ αp+q−nS = [S] ∧
(1
2
ddc log(|z1|2 + . . .+ |zq|2)

)p+q−n

as ε tends to 0. In fact, the Lelong number of γpε at 0 is 1, hence by homogeneity

∫

B(0,r)

γpε ∧ (ddc|z|2)n−p = (2r2)n−p

for all ε, r > 0. Therefore the family (γpε ) is relatively compact in the weak topology.
Since γ0 = lim γε is smooth on Cn r S and depends only on n− q variables (n− q 6 p),
we have lim γpε = γp0 = 0 on CnrS. This shows that every weak limit of (γpε ) has support
in S. Each of these is the direct image by inclusion of a unitary and homothety invariant
(p+ q− n, p+ q − n)-form on S with Lelong number equal to 1 at 0. Therefore we must
have

lim
ε→0

γpε = (iS)⋆(α
p+q−n
S ) = [S] ∧ αp+q−nS ,

and our claim is proved (of course, this can also be checked by direct elementary calcu-
lations). By taking the limsup in (7.14) we obtain

ν(T↾S , 0, r + 0) =

∫

B(0,r)

T ∧ [S] ∧ αp+q−nS > ν(T, 0)

(the singularity of T at 0 does not create any difficulty because we can modify T by a
ddc-exact form near 0 to make it smooth everywhere). Property b) follows when r tends
to 0. �

§ 8. Siu’s Semicontinuity Theorem

Let X , Y be complex manifolds of dimension n, m such that X is Stein. Let ϕ :
X × Y −→ [−∞,+∞[ be a continuous plurisubharmonic function. We assume that ϕ is
semi-exhaustive with respect to Supp T , i.e. that for every compact subset L ⊂ Y there
exists R = R(L) < 0 such that

(8.1) {(x, y) ∈ Supp T × L ; ϕ(x, y) 6 R} ⊂⊂ X × Y.

Let T be a closed positive current of bidimension (p, p) on X . For every point y ∈ Y ,
the function ϕy(x) := ϕ(x, y) is semi-exhaustive on Supp T ; one can therefore associate
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with y a generalized Lelong number ν(T, ϕy). Proposition 5.13 implies that the map
y 7→ ν(T, ϕy) is upper semi-continuous, hence the upperlevel sets

(8.2) Ec = Ec(T, ϕ) = {y ∈ Y ; ν(T, ϕy) > c} , c > 0

are closed. Under mild additional hypotheses, we are going to show that the sets Ec are
in fact analytic subsets of Y , following [Demailly 1987a].

(8.3) Definition. We say that a function f(x, y) is locally Hölder continuous with
respect to y on X × Y if every point of X × Y has a neighborhood Ω on which

|f(x, y1)− f(x, y2)| 6M |y1 − y2|γ

for all (x, y1) ∈ Ω, (x, y2) ∈ Ω, with some constants M > 0, γ ∈ ]0, 1], and suitable
coordinates on Y .

(8.4) Theorem ([Demailly 1987a]). Let T be a closed positive current on X and let

ϕ : X × Y −→ [−∞,+∞[

be a continuous plurisubharmonic function. Assume that ϕ is semi-exhaustive on Supp T
and that eϕ(x,y) is locally Hölder continuous with respect to y on X × Y . Then the
upperlevel sets

Ec(T, ϕ) = {y ∈ Y ; ν(T, ϕy) > c}
are analytic subsets of Y .

This theorem can be rephrased by saying that y 7−→ ν(T, ϕy) is upper semi-conti-
nuous with respect to the analytic Zariski topology. As a special case, we get the following
important result of [Siu 1974]:

(8.5) Corollary. If T is a closed positive current of bidimension (p, p) on a complex
manifold X, the upperlevel sets Ec(T ) = {x ∈ X ; ν(T, x) > c} of the usual Lelong
numbers are analytic subsets of dimension 6 p.

Proof. The result is local, so we may assume thatX ⊂ Cn is an open subset. Theorem 8.4
with Y = X and ϕ(x, y) = log |x−y| shows that Ec(T ) is analytic. Moreover, Prop. 5.11
implies dimEc(T ) 6 p. �

(8.6) Generalization. Theorem 8.4 can be applied more generally to weight functions
of the type

ϕ(x, y) = max
j

log
(∑

k

|Fj,k(x, y)|λj,k

)

where Fj,k are holomorphic functions onX×Y and where γj,k are positive real constants;
in this case eϕ is Hölder continuous of exponent γ = min{λj,k, 1} and ϕ is semi-exhaustive
with respect to the whole space X as soon as the projection pr2 :

⋂
F−1j,k (0) −→ Y is

proper and finite.

For example, when ϕ(x, y) = logmax |xj − yj |λj on an open subset X of Cn , we see
that the upperlevel sets for Kiselman’s numbers ν(T, x, λ) are analytic in X (a result first
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proved in [Kiselman 1986]. More generally, set ψλ(z) = logmax |zj |λj and ϕ(x, y, g) =
ψλ

(
g(x−y)

)
where x, y ∈ Cn and g ∈ Gl(Cn). Then ν(T, ϕy,g) is the Kiselman number of

T at y when the coordinates have been rotated by g. It is clear that ϕ is plurisubharmonic
in (x, y, g) and semi-exhaustive with respect to x, and that eϕ is locally Hölder continuous
with respect to (y, g). Thus the upperlevel sets

Ec = {(y, g) ∈ X ×Gl(Cn) ; ν(T, ϕy,g) > c}

are analytic in X×Gl(Cn). However this result is not meaningful on a manifold, because
it is not invariant under coordinate changes. One can obtain an invariant version as
follows. Let X be a manifold and let JkOX be the bundle of k-jets of holomorphic
functions on X . We consider the bundle Sk over X whose fiber Sk,y is the set of n-tuples
of k-jets u = (u1, . . . , un) ∈ (JkOX,y)

n such that uj(y) = 0 and du1 ∧ . . . ∧ dun(y) 6= 0.
Let (zj) be local coordinates on an open set Ω ⊂ X . Modulo O(|z− y|k+1), we can write

uj(z) =
∑

16|α|6k
aj,α(z − y)α

with det(aj,(0,...,1k,...,0)) 6= 0. The numbers ((yj), (aj,α)) define a coordinate system on
the total space of Sk ↾Ω. For (x, (y, u)) ∈ X × Sk, we introduce the function

ϕ(x, y, u) = logmax |uj(x)|λj = logmax
∣∣∣

∑

16|α|6k
aj,α(x− y)α

∣∣∣
λj

which has all properties required by Th. 8.4 on a neighborhood of the diagonal x = y, i.e.
a neighborhood of X ×X Sk in X ×Sk. For k large, we claim that Kiselman’s directional
Lelong numbers

ν(T, y, u, λ) := ν(T, ϕy,u)

with respect to the coordinate system (uj) at y do not depend on the selection of the
jet representives and are therefore canonically defined on Sk. In fact, a change of uj by
O(|z − y|k+1) adds O(|z − y|(k+1)λj ) to eϕ, and we have eϕ > O(|z − y|maxλj ). Hence
by (7.1) it is enough to take k + 1 > maxλj/minλj . Theorem 8.4 then shows that the
upperlevel sets Ec(T, ϕ) are analytic in Sk. �

Proof of the Semicontinuity Theorem 8.4. As the result is local on Y , we may assume
without loss of generality that Y is a ball in Cm. After addition of a constant to ϕ, we
may also assume that there exists a compact subset K ⊂ X such that

{(x, y) ∈ X × Y ;ϕ(x, y) 6 0} ⊂ K × Y.

By Th. 7.1, the Lelong numbers depend only on the asymptotic behaviour of ϕ near the
(compact) polar set ϕ−1(−∞) ∩ (SuppT × Y ). We can add a smooth strictly plurisub-
harmonic function on X × Y to make ϕ strictly plurisuharmonic. Then Richberg’s ap-
proximation theorem for continuous plurisubharmonic functions shows that there exists
a smooth plurisubharmonic function ϕ̃ such that ϕ 6 ϕ̃ 6 ϕ + 1. We may therefore
assume that ϕ is smooth on (X × Y ) \ ϕ−1(−∞).

• First step: construction of a local plurisubharmonic potential.
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Our goal is to generalize the usual construction of plurisubharmonic potentials asso-
ciated with a closed positive current ([Lelong 1967], [Skoda 1972a]). We replace here the
usual kernel |z − ζ|−2p arising from the hermitian metric of Cn by a kernel depending
on the weight ϕ. Let χ ∈ C∞(R,R) be an increasing function such that χ(t) = t for
t 6 −1 and χ(t) = 0 for t > 0. We consider the half-plane H = {z ∈ C ; Rez < −1} and
associate with T the potential function V on Y ×H defined by

(8.7) V (y, z) = −
∫ 0

Rez

ν(T, ϕy , t)χ
′(t) dt.

For every t > Re z, Stokes’ formula gives

ν(T, ϕy, t) =

∫

ϕ(x,y)<t

T (x) ∧ (ddcxϕ̃(x, y, z))
p

with ϕ̃(x, y, z) := max{ϕ(x, y),Rez}. The Fubini theorem applied to (8.7) gives

V (y, z) = −
∫
x∈X,ϕ(x,y)<t

Re z<t<0

T (x) ∧ (ddcxϕ̃(x, y, z))
p χ′(t)dt

=

∫

x∈X
T (x) ∧ χ(ϕ̃(x, y, z)) (ddcxϕ̃(x, y, z))p.

For all (n− 1, n− 1)-form h of class C∞ with compact support in Y ×H, we get

〈ddcV, h〉 = 〈V, ddch〉

=

∫

X×Y×H
T (x) ∧ χ(ϕ̃(x, y, z))(ddcϕ̃(x, y, z))p ∧ ddch(y, z).

Observe that the replacement of ddcx by the total differentiation ddc = ddcx,y,z does not
modify the integrand, because the terms in dx, dx must have total bidegree (n, n). The
current T (x) ∧ χ(ϕ̃(x, y, z))h(y, z) has compact support in X × Y ×H. An integration
by parts can thus be performed to obtain

〈ddcV, h〉 =
∫

X×Y×H
T (x) ∧ ddc(χ ◦ ϕ̃(x, y, z)) ∧ (ddcϕ̃(x, y, z))p ∧ h(y, z).

On the corona {−1 6 ϕ(x, y) 6 0} we have ϕ̃(x, y, z) = ϕ(x, y), whereas for ϕ(x, y) < −1
we get ϕ̃ < −1 and χ ◦ ϕ̃ = ϕ̃. As ϕ̃ is plurisubharmonic, we see that ddcV (y, z) is the
sum of the positive (1, 1)-form

(y, z) 7−→
∫

{x∈X;ϕ(x,y)<−1}
T (x) ∧ (ddcx,y,zϕ̃(x, y, z))

p+1

and of the (1, 1)-form independent of z

y 7−→
∫

{x∈X;−16ϕ(x,y)60}
T ∧ ddcx,y(χ ◦ ϕ) ∧ (ddcx,yϕ)

p.

As ϕ is smooth outside ϕ−1(−∞), this last form has locally bounded coefficients. Hence
ddcV (y, z) is > 0 except perhaps for locally bounded terms. In addition, V is continuous
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on Y ×H because T ∧ (ddcϕ̃y,z)p is weakly continuous in the variables (y, z) by Th. 3.5.
We therefore obtain the following result.

(8.8) Proposition. There exists a positive plurisubharmonic function ρ in C∞(Y ) such
that ρ(y) + V (y, z) is plurisubharmonic on Y ×H.

If we let Re z tend to −∞, we see that the function

U0(y) = ρ(y) + V (y,−∞) = ρ(y)−
∫ 0

−∞
ν(T, ϕy , t)χ

′(t)dt

is locally plurisubharmonic or ≡ −∞ on Y . Furthermore, it is clear that U0(y) = −∞
at every point y such that ν(T, ϕy) > 0. If Y is connected and U0 6≡ −∞, we already
conclude that the density set

⋃
c>0Ec is pluripolar in Y .

• Second step: application of Kiselman’s minimum principle.

Let a > 0 be arbitrary. The function

Y ×H ∋ (y, z) 7−→ ρ(y) + V (y, z)− aRez

is plurisubharmonic and independent of Im z. By Kiselman’s theorem 1.7.8, the Legendre
transform

Ua(y) = inf
r<−1

{
ρ(y) + V (y, r)− ar

}

is locally plurisubharmonic or ≡ −∞ on Y .

(8.9) Lemma. Let y0 ∈ Y be a given point.

a) If a > ν(T, ϕy0), then Ua is bounded below on a neighborhood of y0.

b) If a < ν(T, ϕy0), then Ua(y0) = −∞.

Proof. By definition of V (cf. (8.7)) we have

(8.10) V (y, r) 6 −ν(T, ϕy, r)
∫ 0

r

χ′(t)dt = rν(T, ϕy, r) 6 rν(T, ϕy).

Then clearly Ua(y0) = −∞ if a < ν(T, ϕy0). On the other hand, if ν(T, ϕy0) < a, there
exists t0 < 0 such that ν(T, ϕy0 , t0) < a. Fix r0 < t0. The semi-continuity property
(5.13) shows that there exists a neighborhood ω of y0 such that supy∈ω ν(T, ϕy, r0) < a.
For all y ∈ ω, we get

V (y, r) > −C − a
∫ r0

r

χ′(t)dt = −C + a(r − r0),

and this implies Ua(y) > −C − ar0. �

(8.11) Theorem. If Y is connected and if Ec 6= Y , then Ec is a closed complete
pluripolar subset of Y , i.e. there exists a continuous plurisubharmonic function w : Y −→
[−∞,+∞[ such that Ec = w−1(−∞).
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Proof. We first observe that the family (Ua) is increasing in a, that Ua = −∞ on Ec
for all a < c and that supa<c Ua(y) > −∞ if y ∈ Y \ Ec (apply Lemma 8.9). For any
integer k > 1, let wk ∈ C∞(Y ) be a plurisubharmonic regularization of Uc−1/k such that

wk > Uc−1/k on Y and wk 6 −2k on Ec ∩ Yk where Yk = {y ∈ Y ; d(y, ∂Y ) > 1/k}.
Then Lemma 8.9 a) shows that the family (wk) is uniformly bounded below on every
compact subset of Y \ Ec. We can also choose wk uniformly bounded above on every
compact subset of Y because Uc−1/k 6 Uc. The function

w =

+∞∑

k=1

2−kwk

satifies our requirements. �

• Third step: estimation of the singularities of the potentials Ua.

(8.12) Lemma. Let y0 ∈ Y be a given point, L a compact neighborhood of y0, K ⊂ X
a compact subset and r0 a real number < −1 such that

{(x, y) ∈ X × L;ϕ(x, y) 6 r0} ⊂ K × L.

Assume that eϕ(x,y) is locally Hölder continuous in y and that

|f(x, y1)− f(x, y2)| 6M |y1 − y2|γ

for all (x, y1, y2) ∈ K×L×L. Then, for all ε ∈ ]0, 1[, there exists a real number η(ε) > 0
such that all y ∈ Y with |y − y0| < η(ε) satisfy

Ua(y) 6 ρ(y) +
(
(1− ε)pν(T, ϕy0)− a

)(
γ log |y − y0|+ log

2eM

ε

)
.

Proof. First, we try to estimate ν(T, ϕy, r) when y ∈ L is near y0. Set





ψ(x) = (1− ε)ϕy0(x) + εr − ε/2
ψ(x) = max

(
ϕy(x), (1− ε)ϕy0(x) + εr − ε/2

)

ψ(x) = ϕy(x)

if

if

if

ϕy0(x) 6 r − 1

r − 1 6ϕy0(x) 6 r

r 6ϕy0(x) 6 r0

and verify that this definition is coherent when |y − y0| is small enough. By hypothesis

|eϕy(x) − eϕy0
(x)| 6M |y − y0|γ.

This inequality implies

ϕy(x) 6 ϕy0(x) + log
(
1 +M |y − y0|γe−ϕy0

(x)
)

ϕy(x) > ϕy0(x) + log
(
1−M |y − y0|γe−ϕy0

(x)
)
.

In particular, for ϕy0(x) = r, we have (1− ε)ϕy0(x) + εr − ε/2 = r − ε/2, thus

ϕy(x) > r + log(1−M |y − y0|γe−r).
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Similarly, for ϕy0(x) = r − 1, we have (1− ε)ϕy0(x) + εr − ε/2 = r − 1 + ε/2, thus

ϕy(x) 6 r − 1 + log(1 +M |y − y0|γe1−r).

The definition of ψ is thus coherent as soon as M |y − y0|γe1−r 6 ε/2 , i.e.

γ log |y − y0|+ log
2eM

ε
6 r.

In this case ψ coincides with ϕy on a neighborhood of {ψ = r} , and with

(1− ε)ϕy0(x) + εr − ε/2

on a neighborhood of the polar set ψ−1(−∞). By Stokes’ formula applied to ν(T, ψ, r),
we infer

ν(T, ϕy, r) = ν(T, ψ, r) > ν(T, ψ) = (1− ε)pν(T, ϕy0).
From (8.10) we get V (y, r) 6 rν(T, ϕy, r), hence

Ua(y) 6 ρ(y) + V (y, r)− ar 6 ρ(y) + r
(
ν(T, ϕy, r)− a

)
,

Ua(y) 6 ρ(y) + r
(
(1− ε)pν(T, ϕy0)− a

)
.(8.13)

Suppose γ log |y− y0|+ log(2eM/ε) 6 r0 , i.e. |y− y0| 6 (ε/2eM)1/γer0/γ ; one can then
choose r = γ log |y − y0| + log(2eM/ε), and by (8.13) this yields the inequality asserted
in Th. 8.12. �

• Fourth step: application of the Hörmander-Bombieri-Skoda theorem.

The end of the proof relies on the following crucial result, which is a consequence of
the Hörmander-Bombieri-Skoda theorem ([Bombieri 1970], [Skoda 1972a], [Skoda 1976]);
it will be proved in Chapter 8, see Cor. 8.?.?.

(8.14) Proposition. Let u be a plurisubharmonic function on a complex manifold Y .
The set of points in a neighborhood of which e−u is not integrable is an analytic subset
of Y . �

Proof of Theorem 8.4 (end).. The main idea in what follows is due to [Kiselman 1979].
For a, b > 0, we let Za,b be the set of points in a neighborhood of which exp(−Ua/b) is
not integrable. Then Za,b is analytic, and as the family (Ua) is increasing in a, we have
Za′,b′ ⊃ Za′′,b′′ if a

′ 6 a′′, b′ 6 b′′.

Let y0 ∈ Y be a given point. If y0 /∈ Ec, then ν(T, ϕy0) < c by definition of Ec.
Choose a such that ν(T, ϕy0) < a < c. Lemma 8.9 a) implies that Ua is bounded below
in a neighborhood of y0, thus exp(−Ua/b) is integrable and y0 /∈ Za,b for all b > 0.

On the other hand, if y0 ∈ Ec and if a < c, then Lemma 8.12 implies for all ε > 0
that

Ua(y) 6 (1− ε)(c− a)γ log |y − y0|+ C(ε)

on a neighborhood of y0. Hence exp(−Ua/b) is non integrable at y0 as soon as b <
(c− a)γ/2m, where m = dimY . We obtain therefore

Ec =
⋂

a<c
b<(c−a)γ/2m

Za,b.
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This proves that Ec is an analytic subset of Y . �

Finally, we use Cor. 8.5 to derive an important decomposition formula for currents,
which is again due to [Siu 1974]. We first begin by two simple observations.

(8.15) Lemma. If T is a closed positive current of bidimension (p, p) and A is an
irreducible analytic set in X, we set

mA = inf{ν(T, x) ; x ∈ A}.

Then ν(T, x) = mA for all x ∈ A r
⋃
A′j, where (A′j) is a countable family of proper

analytic subsets of A. We say that mA is the generic Lelong number of T along A.

Proof. By definition of mA and Ec(T ), we have ν(T, x) > mA for every x ∈ A and

ν(T, x) = mA on Ar
⋃

c∈Q, c>mA

A ∩Ec(T ).

However, for c > mA, the intersection A ∩ Ec(T ) is a proper analytic subset of A. �

(8.16) Proposition. Let T be a closed positive current of bidimension (p, p) and let A
be an irreducible p-dimensional analytic subset of X. Then 1lAT = mA[A], in particular
T −mA[A] is positive.

Proof. As the question is local and as a closed positive current of bidimension (p, p)
cannot carry any mass on a (p − 1)-dimensional analytic subset, it is enough to work
in a neighborhood of a regular point x0 ∈ A. Hence, by choosing suitable coordinates,
we can suppose that X is an open set in Cn and that A is the intersection of X with a
p-dimensional linear subspace. Then, for every point a ∈ A, the inequality ν(T, a) > mA

implies
σT

(
B(a, r)

)
> mA π

pr2p/p! = mAσ[A]

(
B(a, r)

)

for all r such that B(a, r) ⊂ X . Now, set Θ = T − mA[A] and β = ddc|z|2. Our
inequality says that

∫
1lB(a,r)Θ ∧ βp > 0. If we integrate this with respect to some

positive continuous function f with compact support in A, we get
∫
X
grΘ∧βp > 0 where

gr(z) =

∫

A

1lB(a,r)(z) f(a) dλ(a) =

∫

a∈A∩B(z,r)

f(a) dλ(a).

Here gr is continuous on Cn, and as r tends to 0 the function gr(z)/(π
pr2p/p!) converges to

f on A and to 0 on XrA, with a global uniform bound. Hence we obtain
∫
1lAf Θ∧βp >

0. Since this inequality is true for all continuous functions f > 0 with compact support in
A, we conclude that the measure 1lAΘ∧βp is positive. By a linear change of coordinates,
we see that

1lAΘ ∧
(
ddc

∑

16j6n

λj |uj|2
)n

> 0

for every basis (u1, . . . , un) of linear forms and for all coefficients λj > 0. Take λ1 = . . . =
λp = 1 and let the other λj tend to 0. Then we get

1lAΘ ∧ idu1 ∧ du1 ∧ . . . ∧ dup ∧ dup > 0.
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This implies 1lAΘ > 0, or equivalently 1lAT > mA[A]. By Cor. 2.4 we know that 1lAT is
a closed positive current, thus 1lAT = λ[A] with λ > 0. We have just seen that λ > mA.
On the other hand, T > 1lAT = λ[A] clearly implies mA > λ. �

(8.16) Siu’s decomposition formula. If T is a closed positive current of bidimen-
sion (p, p), there is a unique decomposition of T as a (possibly finite) weakly convergent
series

T =
∑

j>1

λj [Aj ] +R, λj > 0,

where [Aj] is the current of integration over an irreducible p-dimensional analytic set
Aj ⊂ X and where R is a closed positive current with the property that dimEc(R) < p
for every c > 0.

Proof of uniqueness.. If T has such a decomposition, the p-dimensional components of
Ec(T ) are (Aj)λj>c, for ν(T, x) =

∑
λjν([Aj ], x) + ν(R, x) is non zero only on

⋃
Aj ∪⋃

Ec(R), and is equal to λj generically on Aj
(
more precisely, ν(T, x) = λj at every

regular point of Aj which does not belong to any intersection Aj ∪ Ak, k 6= j or to⋃
Ec(R)

)
. In particular Aj and λj are unique.

Proof of existence.. Let (Aj)j>1 be the countable collection of p-dimensional components
occurring in one of the sets Ec(T ), c ∈ Q⋆+, and let λj > 0 be the generic Lelong number
of T along Aj . Then Prop. 8.16 shows by induction on N that RN = T −∑

16j6N λj [Aj]
is positive. As RN is a decreasing sequence, there must be a limit R = limN→+∞ RN in
the weak topology. Thus we have the asserted decomposition. By construction, R has
zero generic Lelong number along Aj , so dimEc(R) < p for every c > 0. �

It is very important to note that some components of lower dimension can actually
occur in Ec(R), but they cannot be subtracted because R has bidimension (p, p). A
typical case is the case of a bidimension (n− 1, n− 1) current T = ddcu with u =
log(|Fj|γ1+. . . |FN |γN ) and Fj ∈ O(X). In general

⋃
Ec(T ) =

⋂
F−1j (0) has dimension <

n− 1. In that case, an important formula due to King plays the role of (8.17). We state
it in a somewhat more general form than its original version [King 1970].

(8.18) King’s formula. Let F1, . . . , FN be holomorphic functions on a complex man-
ifold X, such that the zero variety Z =

⋂
F−1j (0) has codimension > p, and set u =

log
∑ |Fj |γj with arbitrary coefficients γj > 0. Let (Zk)k>1 be the irreducible components

of Z of codimension p exactly. Then there exist multiplicities λk > 0 such that

(ddcu)p =
∑

k>1

λk[Zk] +R,

where R is a closed positive current such that 1lZR = 0 and codimEc(R) > p for every
c > 0. Moreover the multiplicities λk are integers if γ1, . . . , γN are integers, and λk =
γ1 . . . γp if γ1 6 . . . 6 γN and some partial Jacobian determinant of (F1, . . . , Fp) of order
p does not vanish identically along Zk.

Proof. Observe that (ddcu)p is well defined thanks to Cor. 4.11. The comparison theo-
rem 7.8 applied with ϕ(z) = log |z − x|, v1 = . . . = vp = u, u1 = . . . = up = ϕ and T = 1
shows that the Lelong number of (ddcu)p is equal to 0 at every point of X r Z. Hence
Ec((dd

cu)p) is contained in Z and its (n−p)-dimensional components are members of the
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family (Zk). The asserted decomposition follows from Siu’s formula 8.16. We must have
1lZk

R = 0 for all irreducible components of Z: when codimZk > p this is automatically
true, and when codimZk = p this follows from (8.16) and the fact that codimEc(R) > p.
If det(∂Fj/∂zk)16j,k6p 6= 0 at some point x0 ∈ Zk, then (Z, x0) = (Zk, x0) is a smooth
germ defined by the equations F1 = . . . = Fp = 0. If we denote v = log

∑
j6p |Fj |γj with

γ1 6 . . . 6 γN , then u ∼ v near Zk and Th. 7.8 implies ν((ddcu)p, x) = ν((ddcv)p, x) for
all x ∈ Zk near x0. On the other hand, if G := (F1, . . . , Fp) : X → Cp, Cor. 7.4 gives

(ddcv)p = G⋆
(
ddc log

∑

16j6p

|zj |γj
)p

= γ1 . . . γpG
⋆δ0 = γ1 . . . γp [Zk]

near x0. This implies that the generic Lelong number of (ddcu)p along Zk is λk = γ1 . . . γp.
The integrality of λk when γ1, . . . , γN are integers will be proved in the next section. �

§ 9. Transformation of Lelong Numbers by Direct Images

Let F : X → Y be a holomorphic map between complex manifolds of respective
dimensions dimX = n, dimY = m, and let T be a closed positive current of bidimension
(p, p) on X . If F↾Supp T is proper, the direct image F⋆T is defined by

(9.1) 〈F⋆T, α〉 = 〈T, F ⋆α〉

for every test form α of bidegree (p, p) on Y . This makes sense because Supp T ∩
F−1(Supp α) is compact. It is easily seen that F⋆T is a closed positive current of bidi-
mension (p, p) on Y .

(9.2) Example. Let T = [A] where A is a p-dimensional irreducible analytic set in X
such that F↾A is proper. We know by Remmert’s theorem 2.7.8 that F (A) is an analytic
set in Y . Two cases may occur. Either F↾A is generically finite and F induces an étale
covering A r F−1(Z) −→ F (A)r Z for some nowhere dense analytic subset Z ⊂ F (A),
or F↾A has generic fibers of positive dimension and dimF (A) < dimA. In the first case,
let s < +∞ be the covering degree. Then for every test form α of bidegree (p, p) on Y
we get

〈F⋆[A], α〉 =
∫

A

F ⋆α =

∫

ArF−1(Z)

F ⋆α = s

∫

F (A)rZ

α = s 〈[F (A)], α〉

because Z and F−1(Z) are negligible sets. Hence F⋆[A] = s[F (A)]. On the other hand,
if dimF (A) < dimA = p, the restriction of α to F (A)reg is zero, and therefore so is this
the restriction of F ⋆α to Areg. Hence F⋆[A] = 0. �

Now, let ψ be a continuous plurisubharmonic function on Y which is semi-exhaustive
on F (Supp T ) (this set certainly contains SuppF⋆T ). Since F↾Supp T is proper, it follows
that ψ ◦ F is semi-exhaustive on Supp T , for

Supp T ∩ {ψ ◦ F < R} = F−1
(
F (Supp T ) ∩ {ψ < R}

)
.

(9.3) Proposition. If F (Supp T ) ∩ {ψ < R} ⊂⊂ Y , we have

ν(F⋆T, ψ, r) = ν(T, ψ ◦ F, r) for all r < R,
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in particular ν(F⋆T, ψ) = ν(T, ψ ◦ F ).

Here, we do not necessarily assume that X or Y are Stein; we thus replace ψ with
ψ>s = max{ψ, s}, s < r, in the definition of ν(F⋆T, ψ, r) and ν(T, ψ ◦ F, r).

Proof. The first equality can be written

∫

Y

F⋆T ∧ 1l{ψ<r}(dd
cψ>s)

p =

∫

X

T ∧ (1l{ψ<r} ◦ F )(ddcψ>s ◦ F )p.

This follows almost immediately from the adjunction formula (9.1) when ψ is smooth
and when we write 1l{ψ<R} = lim ↑ gk for some sequence of smooth functions gk. In
general, we write ψ>s as a decreasing limit of smooth plurisubharmonic functions and
we apply our monotone continuity theorems (if Y is not Stein, Richberg’s theorem shows
that we can obtain a decreasing sequence of almost plurisubharmonic approximations
such that the negative part of ddc converges uniformly to 0 ; this is good enough to apply
the monotone continuity theorem; note that the integration is made on compact subsets,
thanks to the semi-exhaustivity assumption on ψ). �

It follows from this that understanding the transformation of Lelong numbers under
direct images is equivalent to understanding the effect of F on the weight. We are
mostly interested in computing the ordinary Lelong numbers ν(F⋆T, y) associated with
the weight ψ(w) = log |w− y| in some local coordinates (w1, . . . , wm) on Y near y. Then
Prop. 9.3 gives

ν(F⋆T, y) = ν(T, log |F − y|) with(9.4)

log |F (z)− y| = 1

2
log

∑
|Fj(z)− yj|2, Fj = wj ◦ F.

We are going to show that ν(T, log |F − y|) is bounded below by a linear combination
of the Lelong numbers of T at points x in the fiber F−1(y), with suitable multiplicities
attached to F at these points. These multiplicities can be seen as generalizations of the
notion of multiplicity of an analytic map introduced by [Stoll 1966].

(9.5) Definition. Let x ∈ X and y = F (x). Suppose that the codimension of the fiber
F−1(y) at x is > p. Then we set

µp(F, x) = ν
(
(ddc log |F − y|)p, x

)
.

Observe that (ddc log |F − y|)p is well defined thanks to Cor. 4.10. The second com-
parison theorem 7.8 immediately shows that µp(F, x) is independent of the choice of local
coordinates on Y (and also on X , since Lelong nombers do not depend on coordinates).
By definition, µp(F, x) is the mass carried by {x} of the measure

(ddc log |F (z)− y|)p ∧ (ddc log |z − x|)n−p.

We are going to give a more geometric interpretation of this multiplicity, from which it
will follow that µp(F, x) is always a positive integer (in particular, the proof of (8.18)
will be complete).
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(9.6) Example. For p = n = dimX , the assumption codimx F
−1(y) > p means

that the germ of map F : (X, x) −→ (Y, y) is finite. Let Ux be a neighborhood of x
such that Ux ∩ F−1(y) = {x}, let Wy be a neighborhood of y disjoint from F (∂Ux)
and let Vx = Ux ∩ F−1(Wy). Then F : Vx → Wy is proper and finite, and we have
F⋆[Vx] = s [F (Vx)] where s is the local covering degree of F : Vx → F (Vx) at x. Therefore

µn(F, x) =

∫

{x}

(
ddc log |F − y|

)n
= ν

(
[Vx], log |F − y|

)
= ν

(
F⋆[Vx], y

)

= s ν
(
F (Vx), y

)
.

In the particular case when dimY = dimX , we have (F (Vx), y) = (Y, y), so µn(F, x) = s.
In general, it is a well known fact that the ideal generated by (F1 − y1, . . . , Fm − ym) in
OX,x has the same integral closure as the ideal generated by n generic linear combinations
of the generators, that is, for a generic choice of coordinates w′ = (w1, . . . , wn), w

′′ =
(wn+1, . . . , wm) on (Y, y), we have |F (z)−y| 6 C|w′ ◦F (z)| (this is a simple consequence
of Lemma 7.5 applied to A = F (Vx)). Hence for p = n, the comparison theorem 7.1 gives

µn(F, x) = µn(w
′ ◦ F, x) = local covering degree of w′ ◦ F at x,

for a generic choice of coordinates (w′, w′′) on (Y, y). �

(9.7) Geometric interpretation of µp(F, x). An application of Crofton’s formula 7.11
shows, after a translation, that there is a small ball B(x, r0) on which

(ddc log |F (z)− y|)p ∧ (ddc log |z − x|)n−p =∫

S∈G(p,n)

(ddc log |F (z)− y|)p ∧ [x+ S] dv(S).(9.7 a)

For a rigorous proof of (9.7 a), we replace log |F (z) − y| by the “regularized” function
1
2 log(|F (z)− y|2 + ε2) and let ε tend to 0 on both sides. By (4.3) (resp. by (4.10)), the
wedge product (ddc log |F (z) − y|)p ∧ [x + S] is well defined on a small ball B(x, r0) as
soon as x+S does not intersect F−1(y) ∩ ∂B(x, r0) (resp. intersects F

−1(y)∩B(x, r0) at
finitely many points); thanks to the assumption codim(F−1(y), x) > p, Sard’s theorem
shows that this is the case for all S outside a negligible closed subset E in G(p, n) (resp.
by Bertini, an analytic subset A in G(p, n) with A ⊂ E). Fatou’s lemma then implies
that the inequality > holds in (9.7 a). To get equality, we observe that we have bounded
convergence on all complements G(p, n)r V (E) of neighborhoods V (E) of E. However
the mass of

∫
V (E)

[x+S] dv(S) in B(x, r0) is proportional to v(V (E)) and therefore tends

to 0 when V (E) is small; this is sufficient to complete the proof, since Prop. 4.6 b) gives

∫

z∈B(x,r0)

(
ddc log(|F (z)− y|2 + ε2)

)p ∧
∫

S∈V (E)

[x+ S] dv(S) 6 C v(V (E))

with a constant C independent of ε. By evaluating (9.7 a) on {x}, we get

(9.7 b) µp(F, x) =

∫

S∈G(p,n)rA

ν
(
(ddc log |F↾x+S − z|)p, x

)
dv(S).
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Let us choose a linear parametrization gS : Cp → S depending analytically on local
coordinates of S in G(p, n). Then Theorem 8.4 with T = [Cp] and ϕ(z, S) = log |F ◦
gS(z) − y| shows that

ν
(
(ddc log |F↾x+S − z|)p, x

)
= ν

(
[Cp], log |F ◦ gS(z)− y|

)

is Zariski upper semicontinuous in S on G(p, n) r A. However, (9.6) shows that these
numbers are integers, so S 7→ ν

(
(ddc log |F↾x+S − z|)p, x

)
must be constant on a Zariski

open subset in G(p, n). By (9.7 b), we obtain

(9.7 c) µp(F, x) = µp(F↾x+S , x) = local degree of w′ ◦ F↾x+S at x

for generic subspaces S ∈ G(p, n) and generic coordinates w′ = (w1, . . . , wp), w
′′ =

(wp+1, . . . , wm) on (Y, y). �

(9.8) Example. Let F : Cn −→ Cn be defined by

F (z1, . . . , zn) = (zs11 , . . . , z
sn
n ), s1 6 . . . 6 sn.

We claim that µp(F, 0) = s1 . . . sp. In fact, for a generic p-dimensional subspace S ⊂ Cn

such that z1, . . . , zp are coordinates on S and zp+1, . . . , zn are linear forms in z1, . . . , zp,
and for generic coordinates w′ = (w1, . . . , wp), w

′′ = (wp+1, . . . , wn) on Cn, we can rear-
range w′ by linear combinations so that wj ◦F↾S is a linear combination of (z

sj
j , . . . , z

sn
n )

and has non zero coefficient in z
sj
j as a polynomial in (zj , . . . , zp). It is then an exercise

to show that w′ ◦ F↾S has covering degree s1 . . . sp at 0 [ compute inductively the roots
zn, zn−1, . . . , zj of wj ◦F↾S(z) = aj and use Lemma II.3.10 to show that the sj values of
zj lie near 0 when (a1, . . . , ap) are small ]. �

We are now ready to prove the main result of this section, which describes the be-
haviour of Lelong numbers under proper morphisms. A similar weaker result was already
proved in [Demailly 1982b] with some other non optimal multiplicities µp(F, x).

(9.9) Theorem. Let T be a closed positive current of bidimension (p, p) on X and let
F : X −→ Y be an analytic map such that the restriction F↾Supp T is proper. Let I(y) be
the set of points x ∈ Supp T ∩F−1(y) such that x is equal to its connected component in
Supp T ∩ F−1(y) and codim(F−1(y), x) > p. Then we have

ν(F⋆T, y) >
∑

x∈I(y)
µp(F, x) ν(T, x).

In particular, we have ν(F⋆T, y) >
∑

x∈I(y) ν(T, x). This inequality no longer holds

if the summation is extended to all points x ∈ Supp T ∩ F−1(Y ) and if this set contains
positive dimensional connected components: for example, if F : X −→ Y contracts some
exceptional subspace E in X to a point y0 (e.g. if F is a blow-up map, see § 7.12), then
T = [E] has direct image F⋆[E] = 0 thanks to (9.2).

Proof. We proceed in three steps.
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Step 1. Reduction to the case of a single point x in the fiber. It is sufficient to prove
the inequality when the summation is taken over an arbitrary finite subset {x1, . . . , xN}
of I(y). As xj is equal to its connected component in Supp T ∩ F−1(y), it has a fon-
damental system of relative open-closed neighborhoods, hence there are disjoint neigh-
borhoods Uj of xj such that ∂Uj does not intersect Supp T ∩ F−1(y). Then the image
F (∂Uj ∩ Supp T ) is a closed set which does not contain y. Let W be a neighborhood of
y disjoint from all sets F (∂Uj ∩ Supp T ), and let Vj = Uj ∩ F−1(W ). It is clear that Vj
is a neighborhood of xj and that F↾Vj

: Vj →W has a proper restriction to Supp T ∩Vj .
Moreover, we obviously have F⋆T >

∑
j(F↾Vj

)⋆T on W . Therefore, it is enough to check
the inequality ν(F⋆T, y) > µp(F, x) ν(T, x) for a single point x ∈ I(y), in the case when
X ⊂ Cn, Y ⊂ Cm are open subsets and x = y = 0.

Step 2. Reduction to the case when F is finite. By (9.4), we have

ν(F⋆T, 0) = inf
V ∋0

∫

V

T ∧ (ddc log |F |)p

= inf
V ∋0

lim
ε→0

∫

V

T ∧
(
ddc log(|F |+ ε|z|N )

)p
,

and the integrals are well defined as soon as ∂V does not intersect the set Supp T∩F−1(0)
(may be after replacing log |F | by max{log |F |, s} with s ≪ 0). For every V and ε, the
last integral is larger than ν(G⋆T, 0) where G is the finite morphism defined by

G : X −→ Y × Cn, (z1, . . . , zn) 7−→ (F1(z), . . . , Fm(z), z
N
1 , . . . , z

N
n ).

We claim that for N large enough we have µp(F, 0) = µp(G, 0). In fact, x ∈ I(y)
implies by definition codim(F−1(0), 0) > p. Hence, if S = {u1 = . . . = un−p = 0}
is a generic p-dimensional subspace of Cn, the germ of variety F−1(0) ∩ S defined by
(F1, . . . , Fm, u1, . . . , un−p) is {0}. Hilbert’s Nullstellensatz implies that some powers
of z1, . . . , zn are in the ideal (Fj , uk). Therefore |F (z)| + |u(z)| > C|z|a near 0 for
some integer a independent of S (to see this, take coefficients of the uk’s as additional
variables); in particular |F (z)| > C|z|a for z ∈ S near 0. The comparison theorem 7.1
then shows that µp(F, 0) = µp(G, 0) for N > a. If we are able to prove that ν(G⋆T, 0) >
µp(G, 0)ν(T, 0) in case G is finite, the obvious inequality ν(F⋆T, 0) > ν(G⋆T, 0) concludes
the proof.

Step 3. Proof of the inequality ν(F⋆T, y) > µp(F, x) ν(T, x) when F is finite and F−1(y) =
x. Then ϕ(z) = log |F (z) − y| has a single isolated pole at x and we have µp(F, x) =
ν((ddcϕ)p, x). It is therefore sufficient to apply to following Proposition.

(9.10) Proposition. Let ϕ be a semi-exhaustive continuous plurisubharmonic function
on X with a single isolated pole at x. Then

ν(T, ϕ) > ν(T, x) ν((ddcϕ)p, x).

Proof. Since the question is local, we can suppose that X is the ball B(0, r0) in Cn

and x = 0. Set X ′ = B(0, r1) with r1 < r0 and Φ(z, g) = ϕ ◦ g(z) for g ∈ Gln(C).
Then there is a small neighborhood Ω of the unitary group U(n) ⊂ Gln(C) such that Φ
is plurisubharmonic on X ′ × Ω and semi-exhaustive with respect to X ′. Theorem 8.4
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implies that the map g 7→ ν(T, ϕ◦g) is Zariski upper semi-continuous on Ω. In particular,
we must have ν(T, ϕ ◦ g) 6 ν(T, ϕ) for all g ∈ Ω r A in the complement of a complex
analytic set A. Since Gln(C) is the complexification of U(n), the intersection U(n) ∩ A
must be a nowhere dense real analytic subset of U(n). Therefore, if dv is the Haar
measure of mass 1 on U(n), we have

ν(T, ϕ) >

∫

g∈U(n)

ν(T, ϕ ◦ g) dv(g)

= lim
r→0

∫

g∈U(n)

dv(g)

∫

B(0,r)

T ∧ (ddcϕ ◦ g)p.(9.11)

Since
∫
g∈U(n)

(ddcϕ◦g)pdv(g) is a unitary invariant (p, p)-form on B, Lemma 7.10 implies

∫

g∈U(n)

(ddcϕ ◦ g)pdv(g) =
(
ddcχ(log |z|)

)p

where χ is a convex increasing function. The Lelong number at 0 of the left hand side is
equal to ν((ddcϕ)p, 0), and must be equal to the Lelong number of the right hand side,
which is limt→−∞ χ′(t)p (to see this, use either Formula (5.5) or Th. 7.8). Thanks to the
last equality, Formulas (9.11) and (5.5) imply

ν(T, ϕ) > lim
r→0

∫

B(0,r)

T ∧
(
ddcχ(log |z|)

)p

= lim
r→0

χ′(log r − 0)pν(T, 0, r) > ν((ddcϕ)p, 0) ν(T, 0). �

Another interesting question is to know whether it is possible to get inequalities in
the opposite direction, i.e. to find upper bounds for ν(F⋆T, y) in terms of the Lelong
numbers ν(T, x). The example T = [Γ] with the curve Γ : t 7→ (ta, ta+1, t) in C3 and
F : C3 → C2, (z1, z2, z3) 7→ (z1, z2), for which ν(T, 0) = 1 and ν(F⋆T, 0) = a, shows that
this may be possible only when F is finite. In this case, we have:

(9.12) Theorem. Let F : X → Y be a proper and finite analytic map and let T be a
closed positive current of bidimension (p, p) on X. Then

(a) ν(F⋆T, y) 6
∑

x∈Supp T∩F−1(y)

µp(F, x) ν(T, x)

where µp(F, x) is the multiplicity defined as follows: if H : (X, x)→ (Cn, 0) is a germ of
finite map, we set

σ(H, x) = inf
{
α > 0 ; ∃C > 0, |H(z)| > C|z − x|α near x

}
,(b)

µp(F, x) = inf
G

σ(G ◦ F, x)p
µp(G, 0)

,(c)

where G runs over all germs of maps (Y, y) −→ (Cn, 0) such that G ◦ F is finite.

Proof. If F−1(y) = {x1, . . . , xN}, there is a neighborhood W of y and disjoint neigh-
borhoods Vj of xj such that F−1(W ) =

⋃
Vj . Then F⋆T =

∑
(F↾Vj

)⋆T on W , so it
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is enough to consider the case when F−1(y) consists of a single point x. Therefore, we
assume that F : V → W is proper and finite, where V , W are neighborhoods of 0 in Cn,
Cm and F−1(0) = {0}. Let G : (Cm, 0) −→ (Cn, 0) be a germ of map such that G ◦ F
is finite. Hilbert’s Nullstellensatz shows that there exists α > 0 and C > 0 such that
|G ◦ F (z)| > C|z|α near 0. Then the comparison theorem 7.1 implies

ν(G⋆F⋆T, 0) = ν(T, log |G ◦ F |) 6 αpν(T, log |z|) = αpν(T, 0).

On the other hand, Th. 9.9 applied to Θ = F⋆T on W gives

ν(G⋆F⋆T, 0) > µp(G, 0) ν(F⋆T, 0).

Therefore

ν(F⋆T, 0) 6
αp

µp(G, 0)
ν(T, 0).

The infimum of all possible values of α is by definition σ(G ◦ F, 0), thus by taking the
infimum over G we obtain

ν(F⋆T, 0) 6 µp(F, 0) ν(T, 0). �

(9.13) Example. Let F (z1, . . . , zn) = (zs11 , . . . , z
sn
n ), s1 6 . . . 6 sn as in 9.8. Then we

have

µp(F, 0) = s1 . . . sp, µp(F, 0) = sn−p+1 . . . sn.

To see this, let s be the lowest common multiple of s1, . . . , sn and let G(z1, . . . , zn) =

(z
s/s1
1 , . . . , z

s/sn
n ). Clearly µp(G, 0) = (s/sn−p+1) . . . (s/sn) and σ(G◦F, 0) = s, so we get

by definition µp(F, 0) 6 sn−p+1 . . . sn. Finally, if T = [A] is the current of integration over
the p-dimensional subspace A = {z1 = . . . = zn−p = 0}, then F⋆[A] = sn−p+1 . . . sn [A]
because F↾A has covering degree sn−p+1 . . . sn. Theorem 9.12 shows that we must have
sn−p+1 . . . sn 6 µp(F, 0), QED. If λ1 6 . . . 6 λn are positive real numbers and sj is taken
to be the integer part of kλj as k tends to +∞, Theorems 9.9 and 9.12 imply in the limit
the following:

(9.14) Corollary. For 0 < λ1 6 . . . 6 λn, Kiselman’s directional Lelong numbers satisfy
the inequalities

λ1 . . . λp ν(T, x) 6 ν(T, x, λ) 6 λn−p+1 . . . λn ν(T, x). �

(9.15) Remark. It would be interesting to have a direct geometric interpretation
of µp(F, x). In fact, we do not even know whether µp(F, x) is always an integer.
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§ 10. A Schwarz Lemma. Application to Number Theory

In this section, we show how Jensen’s formula and Lelong numbers can be used to
prove a fairly general Schwarz lemma relating growth and zeros of entire functions in Cn.
In order to simplify notations, we denote by |F |r the supremum of the modulus of a
function F on the ball of center 0 and radius r. Then, following [Demailly 1982a], we
present some applications with a more arithmetical flavour.

(10.1) Schwarz lemma. Let P1, . . . , PN ∈ C[z1, . . . , zn] be polynomials of degree δ,
such that their homogeneous parts of degree δ do not vanish simultaneously except at 0.
Then there is a constant C > 2 such that for all entire functions F ∈ O(Cn) and all
R > r > 1 we have

log |F |r 6 log |F |R − δ1−nν([ZF ], log |P |) log
R

Cr

where ZF is the zero divisor of F and P = (P1, . . . , PN ) : C
n −→ CN . Moreover

ν([ZF ], log |P |) >
∑

w∈P−1(0)

ord(F,w)µn−1(P,w)

where ord(F,w) denotes the vanishing order of F at w and µn−1(P,w) is the (n − 1)-
multiplicity of P at w, as defined in (9.5) and (9.7).

Proof. Our assumptions imply that P is a proper and finite map. The last inequality is
then just a formal consequence of formula (9.4) and Th. 9.9 applied to T = [ZF ]. Let Qj
be the homogeneous part of degree δ in Pj . For z0 ∈ B(0, r), we introduce the weight
functions

ϕ(z) = log |P (z)|, ψ(z) = log |Q(z − z0)|.

Since Q−1(0) = {0} by hypothesis, the homogeneity of Q shows that there are constants
C1, C2 > 0 such that

(10.2) C1|z|δ 6 |Q(z)| 6 C2|z|δ on Cn.

The homogeneity also implies (ddcψ)n = δn δz0 . We apply the Lelong Jensen formula 6.5
to the measures µψ,s associated with ψ and to V = log |F |. This gives

(10.3) µψ,s(log |F |)− δn log |F (z0)| =
∫ s

−∞
dt

∫

{ψ<t}
[ZF ] ∧ (ddcψ)n−1.

By (6.2), µψ,s has total mass δn and has support in

{ψ(z) = s} = {Q(z − z0) = es} ⊂ B
(
0, r + (es/C1)

1/δ
)
.

Note that the inequality in the Schwarz lemma is obvious if R 6 Cr, so we can assume
R > Cr > 2r. We take s = δ log(R/2) + logC1 ; then

{ψ(z) = s} ⊂ B(0, r +R/2) ⊂ B(0, R).
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In particular, we get µψ,s(log |F |) 6 δn log |F |R and formula (10.3) gives

(10.4) log |F |R − log |F (z0)| > δ−n
∫ s

s0

dt

∫

{ψ<t}
[ZF ] ∧ (ddcψ)n−1

for any real number s0 < s. The proof will be complete if we are able to compare the
integral in (10.4) to the corresponding integral with ϕ in place of ψ. The argument for
this is quite similar to the proof of the comparison theorem, if we observe that ψ ∼ ϕ at
infinity. We introduce the auxiliary function

w =

{
max{ψ, (1− ε)ϕ+ εt− ε} on {ψ > t− 2},
(1− ε)ϕ+ εt− ε on {ψ 6 t− 2},

with a constant ε to be determined later, such that (1−ε)ϕ+εt−ε > ψ near {ψ = t−2}
and (1− ε)ϕ+ εt− ε < ψ near {ψ = t}. Then Stokes’ theorem implies

∫

{ψ<t}
[ZF ] ∧ (ddcψ)n−1 =

∫

{ψ<t}
[ZF ] ∧ (ddcw)n−1

> (1− ε)n−1
∫

{ψ<t−2}
[ZF ] ∧ (ddcϕ)n−1 > (1− ε)n−1ν([ZF ], log |P |).(10.5)

By (10.2) and our hypothesis |z0| < r, the condition ψ(z) = t implies

|Q(z − z0)| = et =⇒ et/δ/C
1/δ
1 6 |z − z0| 6 et/δ/C

1/δ
2 ,

|P (z)−Q(z − z0)| 6 C3(1 + |z0|)(1 + |z|+ |z0|)δ−1 6 C4r(r + et/δ)δ−1,
∣∣∣ P (z)

Q(z − z0)
− 1

∣∣∣ 6 C4re
−t/δ(re−t/δ + 1)δ−1 6 2δ−1C4re

−t/δ,

provided that t > δ log r. Hence for ψ(z) = t > s0 > δ log(2δC4r), we get

|ϕ(z)− ψ(z)| =
∣∣∣ log |P (z)|

|Q(z − z0)|
∣∣∣ 6 C5re

−t/δ.

Now, we have

[
(1− ε)ϕ+ εt− ε

]
− ψ = (1− ε)(ϕ− ψ) + ε(t− 1− ψ),

so this difference is < C5re
−t/δ − ε on {ψ = t} and > −C5re

(2−t)/δ + ε on {ψ = t− 2}.
Hence it is sufficient to take ε = C5re

(2−t)/δ. This number has to be < 1, so we take
t > s0 > 2 + δ log(C5r). Moreover, (10.5) actually holds only if P−1(0) ⊂ {ψ < t − 2},
so by (10.2) it is enough to take t > s0 > 2 + log(C2(r + C6)

δ) where C6 is such that
P−1(0) ⊂ B(0, C6). Finally, we see that we can choose

s = δ logR − C7, s0 = δ log r + C8,

and inequalities (10.4), (10.5) together imply

log |F |R − log |F (z0)| > δ−n
(∫ s

s0

(1− C5re
(2−t)/δ)n−1 dt

)
ν([ZF ], log |P |).
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The integral is bounded below by

∫ δ log(R/r)−C7

C8

(1− C9e
−t/δ) dt > δ log(R/Cr).

This concludes the proof, by taking the infimum when z0 runs over B(0, r). �

(10.6) Corollary. Let S be a finite subset of Cn and let δ be the minimal degree of
algebraic hypersurfaces containing S. Then there is a constant C > 2 such that for all
F ∈ O(Cn) and all R > r > 1 we have

log |F |r 6 log |F |R − ord(F, S)
δ + n(n− 1)/2

n!
log

R

Cr

where ord(F, S) = minw∈S ord(F,w).

Proof. In view of Th. 10.1, we only have to select suitable polynomials P1, . . . , PN . The
vector space C[z1, . . . , zn]<δ of polynomials of degree < δ in Cn has dimension

m(δ) =

(
δ + n− 1

n

)
=
δ(δ + 1) . . . (δ + n− 1)

n!
.

By definition of δ, the linear forms

C[z1, . . . , zn]<δ −→ C, P 7−→ P (w), w ∈ S

vanish simultaneously only when P = 0. Hence we can find m = m(δ) points w1, . . . ,
wm ∈ S such that the linear forms P 7→ P (wj) define a basis of C[z1, . . . , zn]

⋆
<δ. This

means that there is a unique polynomial P ∈ C[z1, . . . , zn]<δ which takes given val-
ues P (wj) for 1 6 j 6 m. In particular, for every multiindex α, |α| = δ, there is a
unique polynomial Rα ∈ C[z1, . . . , zn]<δ such that Rα(wj) = wαj . Then the polynomials
Pα(z) = zα −Rα(z) have degree δ, vanish at all points wj and their homogeneous parts
of maximum degree Qα(z) = zα do not vanish simultaneously except at 0. We simply
use the fact that µn−1(P,wj) > 1 to get

ν([ZF ], log |P |) >
∑

w∈P−1(0)

ord(F,w) > m(δ) ord(F, S).

Theorem 10.1 then gives the desired inequality, because m(δ) is a polynomial with posi-
tive coefficients and with leading terms

1

n!

(
δn + n(n− 1)/2 δn−1 + . . .

)
. �

Let S be a finite subset of Cn. According to [Waldschmidt 1976], we introduce
for every integer t > 0 a number ωt(S) equal to the minimal degree of polynomials
P ∈ C[z1, . . . , zn] which vanish at order> t at every point of S. The obvious subadditivity
property

ωt1+t2(S) 6 ωt1(S) + ωt2(S)
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easily shows that

Ω(S) := inf
t>0

ωt(S)

t
= lim
t→+∞

ωt(S)

t
.

We call ω1(S) the degree of S (minimal degree of algebraic hypersurfaces containing S)
and Ω(S) the singular degree of S. If we apply Cor. 10.6 to a polynomial F vanishing at
order t on S and fix r = 1, we get

log |F |R > t
δ + n(n− 1)/2

n!
log

R

C
+ log |F |1

with δ = ω1(S), in particular

degF > t
ω1(S) + n(n− 1)/2

n!
.

The minimum of degF over all such F is by definition ωt(S). If we divide by t and take
the infimum over t, we get the interesting inequality

(10.7)
ωt(S)

t
> Ω(S) >

ω1(S) + n(n− 1)/2

n!
.

(10.8) Remark. The constant ω1(S)+n(n−1)/2
n!

in (10.6) and (10.7) is optimal for n = 1, 2
but not for n > 3. It can be shown by means of Hörmander’s L2 estimates [Waldschmidt
1978] that for every ε > 0 the Schwarz lemma (10.6) holds with coefficient Ω(S)− ε :

log |F |r 6 log |F |R − ord(F, S)(Ω(S)− ε) log R

Cεr
,

and that Ω(S) > (ωu(S) + 1)/(u + n − 1) for every u > 1 ; this last inequality is due
to [Esnault-Viehweg 1983], who used deep tools of algebraic geometry; [Azhari 1990]
reproved it recently by means of Hörmander’s L2 estimates. Rather simple examples
[Demailly 1982a] lead to the conjecture

Ω(S) >
ωu(S) + n− 1

u+ n− 1
for every u > 1.

The special case u = 1 of the conjecture was first stated by [Chudnovsky 1979].

Finally, let us mention that Cor. 10.6 contains Bombieri’s theorem on algebraic values
of meromorphic maps satisfying algebraic differential equations [Bombieri 1970]. Recall
that an entire function F ∈ O(Cn) is said to be of order 6 ρ if for every ε > 0 there is a
constant Cε such that |F (z)| 6 Cε exp(|z|ρ+ε). A meromorphic function is said to be of
order 6 ρ if it can be written G/H where G, H are entire functions of order 6 ρ.

(10.9) Theorem ([Bombieri 1970]). Let F1, . . . , FN be meromorphic functions on Cn,
such that F1, . . . , Fd, n < d 6 N , are algebraically independent over Q and have fi-
nite orders ρ1, . . . , ρd. Let K be a number field of degree [K : Q]. Suppose that the
ring K[f1, . . . , fN ] is stable under all derivations d/dz1, . . . , d/dzn. Then the set S of
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points z ∈ Cn, distinct from the poles of the Fj’s, such that (F1(z), . . . , FN (z)) ∈ KN is
contained in an algebraic hypersurface whose degree δ satisfies

δ + n(n− 1)/2

n!
6
ρ1 + . . .+ ρd

d− n [K : Q].

Proof. If the set S is not contained in any algebraic hypersurface of degree < δ, the linear
algebra argument used in the proof of Cor. 10.6 shows that we can find m = m(δ) points
w1, . . . , wm ∈ S which are not located on any algebraic hypersurface of degree < δ. Let
H1, . . . , Hd be the denominators of F1, . . . , Fd. The standard arithmetical methods of
transcendental number theory allow us to construct a sequence of entire functions in the
following way: we set

G = P (F1, . . . , Fd)(H1 . . .Hd)
s

where P is a polynomial of degree 6 s in each variable with integer coefficients. The
polynomials P are chosen so that G vanishes at a very high order at each point wj . This
amounts to solving a linear system whose unknowns are the coefficients of P and whose
coefficients are polynomials in the derivatives of the Fj ’s (hence lying in the number field
K). Careful estimates of size and denominators and a use of the Dirichlet-Siegel box
principle lead to the following lemma, see e.g. [Waldschmidt 1978].

(10.10) Lemma. For every ε > 0, there exist constants C1, C2 > 0, r > 1 and an
infinite sequence Gt of entire functions, t ∈ T ⊂ N (depending on m and on the choice
of the points wj), such that

a) Gt vanishes at order > t at all points w1, . . . , wm ;

b) |Gt|r > (C1t)
−t [K:Q] ;

c) |Gt|R(t) 6 Ct2 where R(t) = (td−n/ log t)1/(ρ1+...+ρd+ε).

An application of Cor. 10.6 to F = Gt and R = R(t) gives the desired bound for the
degree δ as t tends to +∞ and ε tends to 0. If δ0 is the largest integer which satisfies
the inequality of Th. 10.9, we get a contradiction if we take δ = δ0 + 1. This shows that
S must be contained in an algebraic hypersurface of degree δ 6 δ0. �
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Chapter IV

Sheaf Cohomology and Spectral Sequences

One of the main topics of this book is the computation of various cohomology groups arising in
algebraic geometry. The theory of sheaves provides a general framework in which many cohomology
theories can be treated in a unified way. The cohomology theory of sheaves will be constructed here
by means of Godement’s simplicial flabby resolution. However, we have emphasized the analogy with
Alexander-Spanier cochains in order to give a simple definition of the cup product. In this way, all the
basic properties of cohomology groups (long exact sequences, Mayer Vietoris exact sequence, Leray’s
theorem, relations with Cech cohomology, De Rham-Weil isomorphism theorem) can be derived in a
very elementary way from the definitions. Spectral sequences and hypercohomology groups are then
introduced, with two principal examples in view: the Leray spectral sequence and the Hodge-Frölicher
spectral sequence. The basic results concerning cohomology groups with constant or locally constant
coefficients (invariance by homotopy, Poincaré duality, Leray-Hirsch theorem) are also included, in order
to present a self-contained approach of algebraic topology.

§ 1. Basic Results of Homological Algebra

Let us first recall briefly some standard notations and results of homological algebra
that will be used systematically in the sequel. Let R be a commutative ring with unit. A
differential module (K, d) is a R-module K together with an endomorphism d : K → K,
called the differential, such that d ◦ d = 0. The modules of cycles and of boundaries of
K are defined respectively by

(1.1) Z(K) = ker d, B(K) = Im d.

Our hypothesis d◦d = 0 implies B(K) ⊂ Z(K). The homology group of K is by definition
the quotient module

(1.2) H(K) = Z(K)/B(K).

A morphism of differential modules ϕ : K −→ L is a R-homomorphism ϕ : K −→ L such
that d ◦ϕ = ϕ ◦ d ; here we denote by the same symbol d the differentials of K and L. It
is then clear that ϕ

(
Z(K)

)
⊂ Z(L) and ϕ

(
B(K)

)
⊂ B(L). Therefore, we get an induced

morphism on homology groups, denoted

(1.3) H(ϕ) : H(K) −→ H(L).

It is easily seen that H is a functor, i.e. H(ψ ◦ ϕ) = H(ψ) ◦ H(ϕ). We say that two
morphisms ϕ, ψ : K −→ L are homotopic if there exists a R-linear map h : K −→ L such
that

(1.4) d ◦ h+ h ◦ d = ψ − ϕ.
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Then h is said to be a homotopy between ϕ and ψ. For every cocycle z ∈ Z(K), we infer
ψ(z) − ϕ(z) = dh(z), hence the maps H(ϕ) and H(ψ) coincide. The module K itself is
said to be homotopic to 0 if IdK is homotopic to 0 ; then H(K) = 0.

(1.5) Snake lemma. Let

0 −→ K
ϕ−→ L

ψ−→M −→ 0

be a short exact sequence of morphisms of differential modules. Then there exists a homo-
morphism ∂ : H(M) −→ H(K), called the connecting homomorphism, and a homology
exact sequence

H(K)
H(ϕ)−−−→ H(L)

H(ψ)−−−→ H(M)

տ ∂ /

Moreover, to any commutative diagram of short exact sequences

0 −→ K −→ L −→ M −→ 0y y y

0 −→ K̃ −→ L̃ −→ M̃ −→ 0

is associated a commutative diagram of homology exact sequences

H(K) −→ H(L) −→ H(M)
∂−→ H(K) −→ · · ·y y y y

H(K̃) −→ H(L̃) −→ H(M̃)
∂−→ H(K̃) −→ · · · .

Proof. We first define the connecting homomorphism ∂ : let m ∈ Z(M) represent a given
cohomology class {m} in H(M). Then

∂{m} = {k} ∈ H(K)

is the class of any element k ∈ ϕ−1dψ−1(m), as obtained through the following construc-
tion:

l ∈ L ψ7−−−→ m ∈M
y d

y d

k ∈ K ϕ7−−−→ dl ∈ L ψ7−−−→ 0 ∈M.

The element l is chosen to be a preimage of m by the surjective map ψ ; as ψ(dl) =
d(m) = 0, there exists a unique element k ∈ K such that ϕ(k) = dl. The element k is
actually a cocycle in Z(K) because ϕ is injective and

ϕ(dk) = dϕ(k) = d(dl) = 0 =⇒ dk = 0.

The map ∂ will be well defined if we show that the cohomology class {k} depends only
on {m} and not on the choices made for the representatives m and l. Consider another
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representative m′ = m + dm1. Let l1 ∈ L such that ψ(l1) = m1. Then l has to be
replaced by an element l′ ∈ L such that

ψ(l′) = m+ dm1 = ψ(l + dl1).

It follows that l′ = l + dl1 + ϕ(k1) for some k1 ∈ K, hence

dl′ = dl + dϕ(k1) = ϕ(k) + ϕ(dk1) = ϕ(k′),

therefore k′ = k + dk1 and k′ has the same cohomology class as k.

Now, let us show that ker ∂ = ImH(ψ). If {m} is in the image of H(ψ), we can take
m = ψ(l) with dl = 0, thus ∂{m} = 0. Conversely, if ∂{m} = {k} = 0, we have k = dk1
for some k1 ∈ K, hence dl = ϕ(k) = dϕ(k1), z := l−ϕ(k1) ∈ Z(L) and m = ψ(l) = ψ(z)
is in ImH(ψ). We leave the verification of the other equalities ImH(ϕ) = kerH(ψ),
Im ∂ = kerH(ϕ) and of the commutation statement to the reader. �

In most applications, the differential modules come with a natural Z-grading. A
homological complex is a graded differential module K• =

⊕
q∈ZKq together with a

differential d of degree −1, i.e. d =
⊕
dq with dq : Kq −→ Kq−1 and dq−1 ◦ dq =

0. Similarly, a cohomological complex is a graded differential module K• =
⊕

q∈ZK
q

with differentials dq : Kq −→ Kq+1 such that dq+1 ◦ dq = 0 (superscripts are always
used instead of subscripts in that case). The corresponding (co)cycle, (co)boundary and
(co)homology modules inherit a natural Z-grading. In the case of cohomology, say, these
modules will be denoted

Z•(K•) =
⊕

Zq(K•), B•(K•) =
⊕

Bq(K•), H•(K•) =
⊕

Hq(K•).

Unless otherwise stated, morphisms of complexes are assumed to be of degree 0, i.e. of
the form ϕ• =

⊕
ϕq with ϕq : Kq −→ Lq. Any short exact sequence

0 −→ K•
ϕ•

−→ L•
ψ•

−→M• −→ 0

gives rise to a corresponding long exact sequence of cohomology groups

(1.6) Hq(K•)
Hq(ϕ•)−−−→ Hq(L•)

Hq(ψ•)−−−→ Hq(M•)
∂q

−→ Hq+1(K•)
Hq+1(ϕ•)−−−→ · · ·

and there is a similar homology long exact sequence with a connecting homomorphism ∂q
of degree −1. When dealing with commutative diagrams of such sequences, the following
simple lemma is often useful; the proof consists in a straightforward diagram chasing.

(1.7) Five lemma. Consider a commutative diagram of R-modules

A1 −→ A2 −→ A3 −→ A4 −→ A5yϕ1

yϕ2

yϕ3

yϕ4

yϕ5

B1 −→ B2 −→ B3 −→ B4 −→ B5

where the rows are exact sequences. If ϕ2 and ϕ4 are injective and ϕ1 surjective, then
ϕ3 is injective. If ϕ2 and ϕ4 is surjective and ϕ5 injective, then ϕ3 is surjective. In
particular, ϕ3 is an isomorphism as soon as ϕ1, ϕ2, ϕ4, ϕ5 are isomorphisms.
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§ 2. The Simplicial Flabby Resolution of a Sheaf

Let X be a topological space and let A be a sheaf of abelian groups on X (see § II-2
for the definition). All the sheaves appearing in the sequel are assumed implicitly to
be sheaves of abelian groups, unless otherwise stated. The first useful notion is that of
resolution.

(2.1) Definition. A (cohomological) resolution of A is a differential complex of sheaves
(L•, d) with Lq = 0, dq = 0 for q < 0, such that there is an exact sequence

0 −→ A j−→L0 d0−→L1 −→ · · · −→Lq dq−→Lq+1 −→ · · · .

If ϕ : A −→ B is a morphism of sheaves and (M•, d) a resolution of B, a morphism of
resolutions ϕ• :L• −→ M• is a commutative diagram

0 −→ A

j−→ L

0 d0−→ L

1 −→ · · · −→ L

q dq−→ L

q+1 −→ · · ·yϕ
yϕ0

yϕ1
yϕq

yϕq+1

0 −→ B

j−→ M

0 d0−→ M

1 −→ · · · −→ M

q dq−→ M

q+1 −→ · · · .

(2.2) Example. Let X be a differentiable manifold and Eq the sheaf of germs of
C

∞ differential forms of degree q with real values. The exterior derivative d defines a
resolution (E•, d) of the sheaf R of locally constant functions with real values. In fact
Poincaré’s lemma asserts that d is locally exact in degree q > 1, and it is clear that the
sections of ker d0 on connected open sets are constants. �

In the sequel, we will be interested by special resolutions in which the sheavesLq have
no local “rigidity”. For that purpose, we introduce flabby sheaves, which have become a
standard tool in sheaf theory since the publication of Godement’s book [Godement 1957].

(2.3) Definition. A sheaf F is called flabby if for every open subset U of X, the
restriction map F(X) −→ F(U) is onto, i.e. if every section of F on U can be extended
to X.

Let π : A −→ X be a sheaf on X . We denote by A[0] the sheaf of germs of sections
X −→ A which are not necessarily continuous. In other words, A[0](U) is the set of all
maps f : U −→ A such that f(x) ∈ Ax for all x ∈ U , or equivalently A[0](U) =

∏
x∈U Ax.

It is clear that A[0] is flabby and there is a canonical injection

j : A −→ A[0]

defined as follows: to any s ∈ Ax we associate the germ s̃ ∈ A[0]
x equal to the continuous

section y 7−→ s̃(y) near x such that s̃(x) = s. In the sequel we merely denote s̃ : y 7−→ s(y)
for simplicity. The sheaf A[0] is called the canonical flabby sheaf associated to A. We
define inductively

A

[q] = (A[q−1])[0].
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The stalk A
[q]
x can be considered as the set of equivalence classes of maps f : Xq+1 −→ A

such that f(x0, . . . , xq) ∈ Axq
, with two such maps identified if they coincide on a set of

the form

(2.4) x0 ∈ V, x1 ∈ V (x0), . . . , xq ∈ V (x0, . . . , xq−1),

where V is an open neighborhood of x and V (x0, . . . , xj) an open neighborhood of
xj , depending on x0, . . . , xj. This is easily seen by induction on q, if we identify a
map f : Xq+1 → A to the map X → A

[q−1], x0 7→ fx0
such that fx0

(x1, . . . , xq) =
f(x0, x1, . . . , xq). Similarly, A[q](U) is the set of equivalence classes of functions Xq+1 ∋
(x0, . . . , xq) 7−→ f(x0, . . . , xq) ∈ Axq

, with two such functions identified if they coincide
on a set of the form

(2.4′) x0 ∈ U, x1 ∈ V (x0), . . . , xq ∈ V (x0, . . . , xq−1).

Here, we may of course suppose V (x0, . . . , xq−1) ⊂ . . . ⊂ V (x0, x1) ⊂ V (x0) ⊂ U . We
define a differential dq : A[q] −→ A[q+1] by

(dqf)(x0, . . . , xq+1) =(2.5)
∑

06j6q

(−1)jf(x0, . . . , x̂j , . . . , xq+1) + (−1)q+1f(x0, . . . , xq)(xq+1).

The meaning of the last term is to be understood as follows: the element s = f(x0, . . . , xq)
is a germ in Axq

, therefore s defines a continuous section xq+1 7→ s(xq+1) of A in a
neighborhood V (x0, . . . , xq) of xq. In low degrees, we have the formulas

(js)(x0) = s(x0), s ∈ Ax,
(d0f)(x0, x1) = f(x1)− f(x0)(x1), f ∈ A[0]

x ,(2.6)

(d1f)(x0, x1, x2) = f(x1, x2)− f(x0, x2) + f(x0, x1)(x2), f ∈ A[1]
x .

(2.7) Theorem ([Godement 1957]). The complex (A[•], d) is a resolution of the sheaf
A, called the simplicial flabby resolution of A.

Proof. For s ∈ Ax, the associated continuous germ obviously satisfies s(x0)(x1) = s(x1)
for x0 ∈ V , x1 ∈ V (x0) small enough. The reader will easily infer from this that d0◦j = 0
and dq+1 ◦ dq = 0. In order to verify that (A[•], d) is a resolution of A, we show that the
complex

· · · −→ 0 −→ Ax
j−→ A[0]

x
d0−→ · · · −→ A[q]

x
dq−→ A[q+1]

x −→ · · ·
is homotopic to zero for every point x ∈ X . Set A[−1] = A, d−1 = j and

h0 : A

[0]
x −→ Ax, h0(f) = f(x) ∈ Ax,

hq : A

[q]
x −→ A[q−1]

x , hq(f)(x0, . . . , xq−1) = f(x, x0, . . . , xq−1).

A straightforward computation shows that (hq+1 ◦ dq + dq−1 ◦ hq)(f) = f for all q ∈ Z

and f ∈ A[q]
x . �

If ϕ : A −→B is a sheaf morphism, it is clear that ϕ induces a morphism of resolutions

(2.8) ϕ[•] : A[•] −→B[•].

For every short exact sequence A → B → C of sheaves, we get a corresponding short
exact sequence of sheaf complexes

(2.9) A

[•] −→B[•] −→ C[•].
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§ 3. Cohomology Groups with Values in a Sheaf

§ 3.A. Definition and Functorial Properties

If π : A → X is a sheaf of abelian groups, the cohomology groups of A on X are (in
a vague sense) algebraic invariants which describe the rigidity properties of the global
sections of A.

(3.1) Definition. For every q ∈ Z, the q-th cohomology group of X with values in A is

Hq(X,A) = Hq
(
A

[•](X)
)
=

= ker
(
dq : A[q](X)→ A[q+1](X)

)
/ Im(dq−1 : A[q−1](X)→ A[q](X)

)

with the convention A[q] = 0, dq = 0, Hq(X,A) = 0 when q < 0.

For any subset S ⊂ X , we denote by A↾S the restriction of A to S, i.e. the sheaf
A↾S = π−1(S) equipped with the projection π↾S onto S. Then we write Hq(S,A↾S) =
Hq(S,A) for simplicity. When U is open, we see that (A[q])↾U coincides with (A↾U )

[q],
thus we have Hq(U,A) = Hq

(
A

[•](U)
)
. It is easy to show that every exact sequence of

sheaves 0→ A→L0 →L1 induces an exact sequence

(3.2) 0 −→ A(X) −→ L0(X) −→L1(X).

If we apply this to Lq = A[q], q = 0, 1, we conclude that

(3.3) H0(X,A) = A(X).

Let ϕ : A −→B be a sheaf morphism; (2.8) shows that there is an induced morphism

(3.4) Hq(ϕ) : Hq(X,A) −→ Hq(X,B)

on cohomology groups. Let 0 → A → B → C → 0 be an exact sequence of sheaves.
Then we have an exact sequence of groups

0 −→ A[0](X) −→B[0](X) −→ C[0](X) −→ 0

because A[0](X) =
∏
x∈X Ax. Similarly, (2.9) yields for every q an exact sequence of

groups
0 −→ A[q](X) −→B[q](X) −→ C[q](X) −→ 0.

If we take (3.3) into account, the snake lemma implies:

(3.5) Theorem. To any exact sequence of sheaves 0→ A→B→ C→ 0 is associated
a long exact sequence of cohomology groups

0 −→ A(X) −→ B(X) −→ C(X) −→ H1(X,A) −→ · · ·
· · · −→ Hq(X,A) −→ Hq(X,B) −→ Hq(X,C) −→ Hq+1(X,A) −→ · · · .

(3.6) Corollary. Let B→ C be a surjective sheaf morphism and let A be its kernel. If
H1(X,A) = 0, then B(X)→ C(X) is surjective. �
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§ 3.B. Exact Sequence Associated to a Closed Subset

Let S be a closed subset of X and U = X r S. For any sheaf A on X , the presheaf

Ω 7−→ A(S ∩ Ω), Ω ⊂ X open

with the obvious restriction maps satisfies axioms (II-2.4′) and (II-2.4′′), so it defines a
sheaf onX which we denote by AS. This sheaf should not be confused with the restriction
sheaf A↾S , which is a sheaf on S. We easily find

(3.7) (AS)x = Ax if x ∈ S, (AS)x = 0 if x ∈ U.

Observe that these relations would completely fail if S were not closed. The restriction
morphism f 7→ f↾S induces a surjective sheaf morphism A → A

S. We let AU be its
kernel, so that we have the relations

(3.8) (AU )x = 0 if x ∈ S, (AU )x = Ax if x ∈ U.

From the definition, we obtain in particular

(3.9) A

S(X) = A(S), AU (X) = {sections of A(X) vanishing on S}.

Theorem 3.5 applied to the exact sequence 0 → AU → A → AS → 0 on X gives a long
exact sequence

(3.9) 0 −→ AU (X) −→ A(X) −→ A(S) −→ H1(X,AU) · · ·
−→ Hq(X,AU) −→ Hq(X,A) −→ Hq(X,AS) −→ Hq+1(X,AU) · · ·

§ 3.C. Mayer-Vietoris Exact Sequence

Let U1, U2 be open subsets of X and U = U1 ∪U2, V = U1 ∩U2. For any sheaf A on
X and any q we have an exact sequence

0 −→ A[q](U) −→ A[q](U1)⊕A[q](U2) −→ A[q](V ) −→ 0

where the injection is given by f 7−→ (f↾U1
, f↾U2

) and the surjection by (g1, g2) 7−→
g2↾V − g1↾V ; the surjectivity of this map follows immediately from the fact that A[q] is
flabby. An application of the snake lemma yields:

(3.11) Theorem. For any sheaf A on X and any open sets U1, U2 ⊂ X, set U = U1∪U2,
V = U1 ∩ U2. Then there is an exact sequence

Hq(U,A) −→ Hq(U1,A)⊕Hq(U2,A) −→ Hq(V,A) −→ Hq+1(U,A) · · · �
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§ 4. Acyclic Sheaves

Given a sheaf A on X , it is usually very important to decide whether the cohomology
groups Hq(U,A) vanish for q > 1, and if this is the case, for which type of open sets U .
Note that one cannot expect to have H0(U,A) = 0 in general, since a sheaf always has
local sections.

(4.1) Definition. A sheaf A is said to be acyclic on an open subset U if Hq(U,A) = 0
for q > 1.

§ 4.A. Case of Flabby Sheaves

We are going to show that flabby sheaves are acyclic. First we need the following
simple result.

(4.2) Proposition. Let A be a sheaf with the following property: for every section f of
A on an open subset U ⊂ X and every point x ∈ X, there exists a neighborhood Ω of x
and a section h ∈ A(Ω) such that h = f on U ∩ Ω. Then A is flabby.

A consequence of this proposition is that flabbiness is a local property: a sheaf A is
flabby on X if and only if it is flabby on a neighborhood of every point of X .

Proof. Let f ∈ A(U) be given. Consider the set of pairs (v, V ) where v in B(V ) is an
extension of f on an open subset V ⊃ U . This set is inductively ordered, so there exists
a maximal extension (v, V ) by Zorn’s lemma. The assumption shows that V must be
equal to X . �

(4.3) Proposition. Let 0 −→ A j−→ B p−→ C −→ 0 be an exact sequence of sheaves.
If A is flabby, the sequence of groups

0 −→ A(U)
j−→B(U)

p−→ C(U) −→ 0

is exact for every open set U . If A and B are flabby, then C is flabby.

Proof. Let g ∈ C(U) be given. Consider the set E of pairs (v, V ) where V is an open
subset of U and v ∈ B(V ) is such that p(v) = g on V . It is clear that E is inductively
ordered, so E has a maximal element (v, V ), and we will prove that V = U . Otherwise,
let x ∈ U r V and let h be a section of B in a neighborhood of x such that p(hx) = gx.
Then p(h) = g on a neighborhood Ω of x, thus p(v − h) = 0 on V ∩ Ω and v − h = j(u)
with u ∈ A(V ∩ Ω). If A is flabby, u has an extension ũ ∈ A(X) and we can define a
section w ∈B(V ∪ Ω) such that p(w) = g by

w = v on V, w = h+ j(ũ) on Ω,

contradicting the maximality of (v, V ). Therefore V = U , v ∈ B(U) and p(v) = g on
U . The first statement is proved. If B is also flabby, v has an extension ṽ ∈B(X) and
g̃ = p(ṽ) ∈ C(X) is an extension of g. Hence C is flabby. �

(4.4) Theorem. A flabby sheaf A is acyclic on all open sets U ⊂ X.
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Proof. Let Zq = ker
(
dq : A[q] → A[q+1]

)
. Then Z0 = A and we have an exact sequence

of sheaves
0 −→Zq −→ A[q] dq−→Zq+1 −→ 0

because Im dq = ker dq+1 = Zq+1. Proposition 4.3 implies by induction on q that all
sheaves Zq are flabby, and yields exact sequences

0 −→Zq(U) −→ A[q](U)
dq−→ Zq+1(U) −→ 0.

For q > 1, we find therefore

ker
(
dq : A[q](U)→ A[q+1](U)

)
=Zq(U)

= Im
(
dq−1 : A[q−1](U)→ A[q](U)

)
,

that is, Hq(U,A) = Hq
(
A

[•](U)
)
= 0. �

§ 4.B. Soft Sheaves over Paracompact Spaces

We now discuss another general situation which produces acyclic sheaves. Recall
that a topological space X is said to be paracompact if X is Hausdorff and if every open
covering of X has a locally finite refinement. For instance, it is well known that every
metric space is paracompact. A paracompact space X is always normal ; in particular,
for any locally finite open covering (Uα) of X there exists an open covering (Vα) such
that V α ⊂ Uα. We will also need another closely related concept.

(4.5) Definition. We say that a subspace S is strongly paracompact in X if S is
Hausdorff and if the following property is satisfied: for every covering (Uα) of S by open
sets in X, there exists another such covering (Vβ) and a neighborhood W of S such
that each set W ∩ V β is contained in some Uα, and such that every point of S has a
neighborhood intersecting only finitely many sets Vβ.

It is clear that a strongly paracompact subspace S is itself paracompact. Conversely,
the following result is easy to check:

(4.6) Lemma. A subspace S is strongly paracompact in X as soon as one of the following
situations occurs:

a) X is paracompact and S is closed;

b) S has a fundamental family of paracompact neighborhoods in X ;

c) S is paracompact and has a neighborhood homeomorphic to some product S × T , in
which S is embedded as a slice S × {t0}. �

(4.7) Theorem. Let A be a sheaf on X and S a strongly paracompact subspace of
X. Then every section f of A on S can be extended to a section of A on some open
neighborhood Ω of A.

Proof. Let f ∈ A(S). For every point z ∈ S there exists an open neighborhood Uz and a
section f̃z ∈ A(Uz) such that f̃z(z) = f(z). After shrinking Uz, we may assume that f̃z
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and f coincide on S ∩Uz. Let (Vα) be an open covering of S that is locally finite near S
and W a neighborhood of S such that W ∩ V α ⊂ Uz(α) (Def. 4.5). We let

Ω =
{
x ∈W ∩

⋃
Vα ; f̃z(α)(x) = f̃z(β)(x), ∀α, β with x ∈ V α ∩ V β

}
.

Then (Ω∩Vα) is an open covering of Ω and all pairs of sections f̃z(α) coincide in pairwise
intersections. Thus there exists a section F of A on Ω which is equal to f̃z(α) on Ω∩Vα.
It remains only to show that Ω is a neighborhood of S. Let z0 ∈ S. There exists a
neighborhood U ′ of z0 which meets only finitely many sets Vα1

, . . . , Vαp
. After shrinking

U ′, we may keep only those Vαl
such that z0 ∈ V αl

. The sections f̃z(αl) coincide at z0,
so they coincide on some neighborhood U ′′ of this point. Hence W ∩ U ′′ ⊂ Ω, so Ω is a
neighborhood of S. �

(4.8) Corollary. If X is paracompact, every section f ∈ A(S) defined on a closed set
S extends to a neighborhood Ω of S. �

(4.9) Definition. A sheaf A on X is said to be soft if every section f of A on a closed
set S can be extended to X, i.e. if the restriction map A(X) −→ A(S) is onto for every
closed set S.

(4.10) Example. On a paracompact space, every flabby sheaf A is soft: this is a
consequence of Cor. 4.8.

(4.11) Example. On a paracompact space, the Tietze-Urysohn extension theorem
shows that the sheaf CX of germs of continuous functions on X is a soft sheaf of rings.
However, observe that CX is not flabby as soon as X is not discrete.

(4.12) Example. If X is a paracompact differentiable manifold, the sheaf EX of germs
of C∞ functions on X is a soft sheaf of rings. �

Until the end of this section, we assume that X is a paracompact topological space.
We first show that softness is a local property.

(4.13) Proposition. A sheaf A is soft on X if and only if it is soft in a neighborhood
of every point x ∈ X.

Proof. If A is soft on X , it is soft on any closed neighborhood of a given point. Con-
versely, let (Uα)α∈I be a locally finite open covering of X which refine some covering by
neighborhoods on which A is soft. Let (Vα) be a finer covering such that V α ⊂ Uα, and
f ∈ A(S) be a section of A on a closed subset S of X . We consider the set E of pairs
(g, J), where J ⊂ I and where g is a section over FJ := S ∪⋃

α∈J V α, such that g = f

on S. As the family (V α) is locally finite, a section of A over FJ is continuous as soon
it is continuous on S and on each V α. Then (f, ∅) ∈ E and E is inductively ordered by
the relation

(g′, J ′) −→ (g′′, J ′′) if J ′ ⊂ J ′′ and g′ = g′′ on FJ ′

No element (g, J), J 6= I, can be maximal: the assumption shows that g↾FJ∩V α
has an

extension to V α, thus such a g has an extension to FJ∪{α} for any α /∈ J . Hence E has
a maximal element (g, I) defined on FI = X . �
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(4.14) Proposition. Let 0 → A→ B → C→ 0 be an exact sequence of sheaves. If A
is soft, the map B(S) → C(S) is onto for any closed subset S of X. If A and B are
soft, then C is soft.

By the above inductive method, this result can be proved in a way similar to its
analogue for flabby sheaves. We therefore obtain:

(4.15) Theorem. On a paracompact space, a soft sheaf is acyclic on all closed subsets.
�

(4.16) Definition. The support of a section f ∈ A(X) is defined by

Supp f =
{
x ∈ X ; f(x) 6= 0

}
.

Supp f is always a closed set: as A → X is a local homeomorphism, the equality
f(x) = 0 implies f = 0 in a neighborhood of x.

(4.17) Theorem. Let (Uα)α∈I be an open covering of X. If A is soft and f ∈ A(X),
there exists a partition of f subordinate to (Uα), i.e. a family of sections fα ∈ A(X) such
that (Supp fα) is locally finite, Supp fα ⊂ Uα and

∑
fα = f on X.

Proof. Assume first that (Uα) is locally finite. There exists an open covering (Vα) such
that V α ⊂ Uα. Let (fα)α∈J , J ⊂ I, be a maximal family of sections fα ∈ A(X) such
that Supp fα ⊂ Uα and

∑
α∈J fα = f on S =

⋃
α∈J V α. If J 6= I and β ∈ I r J , there

exists a section fβ ∈ A(X) such that

fβ = 0 on X r Uβ and fβ = f −
∑

α∈J
fα on S ∪ V β

because (X r Uβ) ∪ S ∪ V β is closed and f −∑
fα = 0 on (X r Uα) ∩ S. This is a

contradiction unless J = I.

In general, let (Vj) be a locally finite refinement of (Uα), such that Vj ⊂ Uρ(j), and
let (f ′j) be a partition of f subordinate to (Vj). Then fα =

∑
j∈ρ−1(α) f

′
j is the required

partition of f . �

Finally, we discuss a special situation which occurs very often in practice. Let R be
a sheaf of commutative rings on X ; the rings Rx are supposed to have a unit element.
Assume that A is a sheaf of modules over R. It is clear that A[0] is a R[0]-module, and
thus also a R-module. Therefore all sheaves A[q] are R-modules and the cohomology
groups Hq(U,A) have a natural structure of R(U)-module.

(4.18) Lemma. If R is soft, every sheaf A of R-modules is soft.

Proof. Every section f ∈ A(S) defined on a closed set S has an extension to some open
neighborhood Ω. Let ψ ∈ R(X) be such that ψ = 1 on S and ψ = 0 on X r Ω. Then
ψf , defined as 0 on X r Ω, is an extension of f to X . �

(4.19) Corollary. Let A be a sheaf of EX-modules on a paracompact differentiable
manifold X. Then Hq(X,A) = 0 for all q > 1.
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§ 5. Čech Cohomology

§ 5.A. Definitions

In many important circumstances, cohomology groups with values in a sheaf A can
be computed by means of the complex of Čech cochains, which is directly related to the
spaces of sections of A on sufficiently fine coverings of X . This more concrete approach
was historically the first one used to define sheaf cohomology ([Leray 1950], [Cartan
1950]); however Čech cohomology does not always coincide with the “good” cohomology
on non paracompact spaces. Let U = (Uα)α∈I be an open covering of X . For the sake
of simplicity, we denote

Uα0α1...αq
= Uα0

∩ Uα1
∩ . . . ∩ Uαq

.

The group Cq(U,A) of Čech q-cochains is the set of families

c = (cα0α1...αq
) ∈

∏

(α0,...,αq)∈Iq+1

A(Uα0α1...αq
).

The group structure on Cq(U,A) is the obvious one deduced from the addition law on
sections of A. The Čech differential δq : Cq(U,A) −→ Cq+1(U,A) is defined by the
formula

(5.1) (δqc)α0...αq+1
=

∑

06j6q+1

(−1)j c
α0...α̂j ...αq+1 ↾Uα0...αq+1

,

and we set Cq(U,A) = 0, δq = 0 for q < 0. In degrees 0 and 1, we get for example

q = 0, c = (cα), (δ0c)αβ = cβ − cα ↾Uαβ
,(5.2)

q = 1, c = (cαβ), (δ1c)αβγ = cβγ − cαγ + cαβ ↾Uαβγ
.(5.2′)

Easy verifications left to the reader show that δq+1 ◦ δq = 0. We get therefore a cochain
complex

(
C•(U,A), δ

)
, called the complex of Čech cochains relative to the covering U.

(5.3) Definition. The Čech cohomology group of A relative to U is

Ȟq(U,A) = Hq
(
C•(U,A)

)
.

Formula (5.2) shows that the set of Čech 0-cocycles is the set of families (cα) ∈∏
A(Uα) such that cβ = cα on Uα ∩ Uβ . Such a family defines in a unique way a global

section f ∈ A(X) with f↾Uα
= cα. Hence

(5.4) Ȟ0(U,A) = A(X).

Now, let V = (Vβ)β∈J be another open covering of X that is finer than U ; this means
that there exists a map ρ : J → I such that Vβ ⊂ Uρ(β) for every β ∈ J . Then we can
define a morphism ρ• : C•(U,A) −→ C•(V,A) by

(5.5) (ρqc)β0...βq
= cρ(β0)...ρ(βq) ↾Vβ0...βq

;
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the commutation property δρ• = ρ•δ is immediate. If ρ′ : J → I is another refinement
map such that Vβ ⊂ Uρ′(β) for all β, the morphisms ρ•, ρ′• are homotopic. To see this,
we define a map hq : Cq(U,A) −→ Cq−1(V,A) by

(hqc)β0...βq−1
=

∑

06j6q−1
(−1)jcρ(β0)...ρ(βj)ρ′(βj)...ρ′(βq−1) ↾Vβ0...βq−1

.

The homotopy identity δq−1 ◦ hq + hq+1 ◦ δq = ρ′q − ρq is easy to verify. Hence ρ• and
ρ′• induce a map depending only on U, V :

(5.6) Hq(ρ•) = Hq(ρ′•) : Ȟq(U,A) −→ Ȟq(V,A).

Now, we want to define a direct limit Ȟq(X,A) of the groups Ȟq(U,A) by means of
the refinement mappings (5.6). In order to avoid set theoretic difficulties, the coverings
used in this definition will be considered as subsets of the power set P(X), so that the
collection of all coverings becomes actually a set.

(5.7) Definition. The Čech cohomology group Ȟq(X,A) is the direct limit

Ȟq(X,A) = lim−→
U

Ȟq(U,A)

when U runs over the collection of all open coverings of X. Explicitly, this means that
the elements of Ȟq(X,A) are the equivalence classes in the disjoint union of the groups
Ȟq(U,A), with an element in Ȟq(U,A) and another in Ȟq(V,A) identified if their
images in Ȟq(W,A) coincide for some refinement W of the coverings U and V.

If ϕ : A → B is a sheaf morphism, we have an obvious induced morphism ϕ• :
C•(U,A) −→ C•(U,B), and therefore we find a morphism

Hq(ϕ•) : Ȟq(U,A) −→ Ȟq(U,B).

Let 0→ A→B→ C→ 0 be an exact sequence of sheaves. We have an exact sequence
of groups

(5.8) 0 −→ Cq(U,A) −→ Cq(U,B) −→ Cq(U,C),

but in general the last map is not surjective, because every section in C(Uα0,...,αq
) need

not have a lifting in B(Uα0,...,αq
). The image of C•(U,B) in C•(U,C) will be denoted

C•
B

(U,C) and called the complex of liftable cochains of C in B. By construction, the
sequence

(5.9) 0 −→ Cq(U,A) −→ Cq(U,B) −→ Cq
B

(U,C) −→ 0

is exact, thus we get a corresponding long exact sequence of cohomology

(5.10) Ȟq(U,A) −→ Ȟq(U,B) −→ Ȟq
B

(U,C) −→ Ȟq+1(U,A) −→ · · · .

If A is flabby, Prop. 4.3 shows that we have Cq
B

(U,C) = Cq(U,C), hence Ȟq
B

(U,C) =
Ȟq(U,C).
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(5.11) Proposition. Let A be a sheaf on X. Assume that either

a) A is flabby, or :

b) X is paracompact and A is a sheaf of modules over a soft sheaf of rings R on X.

Then Ȟq(U,A) = 0 for every q > 1 and every open covering U = (Uα)α∈I of X.

Proof. b) Let (ψα)α∈I be a partition of unity in R subordinate to U (Prop. 4.17). We
define a map hq : Cq(U,A) −→ Cq−1(U,A) by

(5.12) (hqc)α0...αq−1
=

∑

ν∈I
ψν cνα0...αq−1

where ψν cνα0...αq−1
is extended by 0 on Uα0...αq−1

∩ ∁Uν . It is clear that

(δq−1hqc)α0...αq
=

∑

ν∈I
ψν

(
cα0...αq

− (δqc)να0...αq

)
,

i.e. δq−1hq + hq+1δq = Id. Hence δqc = 0 implies δq−1hqc = c if q > 1.

a) First we show that the result is true for the sheaf A[0]. One can find a family of sets
Lν ⊂ Uν such that (Lν) is a partition of X . If ψν is the characteristic function of Lν ,
Formula (5.12) makes sense for any cochain c ∈ Cq(U,A[0]) because A[0] is a module
over the ring Z[0] of germs of arbitrary functions X → Z. Hence Ȟq(U,A[0]) = 0 for
q > 1. We shall prove this property for all flabby sheaves by induction on q. Consider
the exact sequence

0 −→ A −→ A[0] −→ C −→ 0

where C = A[0]/A. By the remark after (5.10), we have exact sequences

A

[0](X) −→ C(X) −→ Ȟ1(U,A) −→ Ȟ1(U,A[0]) = 0,

Ȟq(U,C) −→ Ȟq+1(U,A) −→ Ȟq+1(U,A[0]) = 0.

Then A[0](X) −→ C(X) is surjective by Prop. 4.3, thus Ȟ1(U,A) = 0. By 4.3 again, C
is flabby; the induction hypothesis Ȟq(U,C) = 0 implies that Ȟq+1(U,A) = 0. �

§ 5.B. Leray’s Theorem for Acyclic Coverings

We first show the existence of a natural morphism from Čech cohomology to ordinary
cohomology. Let U = (Uα)α∈I be a covering of X . Select a map λ : X → I such that
x ∈ Uλ(x) for every x ∈ X . To every cochain c ∈ Cq(U,A) we associate the section

λqc = f ∈ A[q](X) such that

(5.13) f(x0, . . . , xq) = cλ(x0)...λ(xq)(xq) ∈ Axq
;

note that the right hand side is well defined as soon as

x0 ∈ X, x1 ∈ Uλ(x0), . . . , xq ∈ Uλ(x0)...λ(xq−1).
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A comparison of (2.5) and (5.13) immediately shows that the section of A[q+1](X) asso-
ciated to δqc is

∑

06j6q+1

(−1)j c
λ(x0)...λ̂(xj)...λ(xq+1)

(xq+1) = (dqf)(x0, . . . , xq+1).

In this way we get a morphism of complexes λ• : C•(U,A) −→ A

[•](X). There is a
corresponding morphism

(5.14) Hq(λ•) : Ȟq(U,A) −→ Hq(X,A).

If V = (Vβ)β∈J is a refinement of U such that Vβ ⊂ Uρ(β) and x ∈ Vµ(x) for all x, β, we
get a commutative diagram

Ȟq(U,A)
Hq(ρ•)−−−−→ Ȟq(V,A)

Hq(λ•)ց ւ Hq(µ•)

Hq(X,A)

with λ = ρ ◦ µ. In particular, (5.6) shows that the map Hq(λ•) in (5.14) does not
depend on the choice of λ : if λ′ is another choice, then Hq(λ•) and Hq(λ′•) can be both
factorized through the group Ȟq(V,A) with Vx = Uλ(x) ∩ Uλ′(x) and µ = IdX . By the
universal property of direct limits, we get an induced morphism

(5.15) Ȟq(X,A) −→ Hq(X,A).

Let 0 → A → B → C → 0 be an exact sequence of sheaves. There is a commutative
diagram

0 −→ C•(U,A) −→ C•(U,B) −→ C•
B

(U,C) −→ 0y y y

0 −→ A

[•](X) −→ B

[•](X) −→ C

[•](X) −→ 0

where the vertical arrows are given by the morphisms λ•. We obtain therefore a com-
mutative diagram

(5.16)

Ȟq(U,A) −→ Ȟq(U,B) −→ Ȟq
B

(U,C) −→ Ȟq+1(U,A) −→ Ȟq+1(U,B)y y y y y
Hq(X,A) −→ Hq(X,B) −→ Hq(X,C) −→ Hq+1(X,A) −→ Hq+1(X,B).

(5.17) Theorem (Leray). Assume that

Hs(Uα0...αt
,A) = 0

for all indices α0, . . . , αt and s > 1. Then (5.14) gives an isomorphism Ȟq(U,A) ≃
Hq(X,A).

We say that the covering U is acyclic (with respect to A) if the hypothesis of Th. 5.17
is satisfied. Leray’s theorem asserts that the cohomology groups of A on X can be
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computed by means of an arbitrary acyclic covering (if such a covering exists), without
using the direct limit procedure.

Proof. By induction on q, the result being obvious for q = 0. Consider the exact sequence
0→ A→ B→ C→ 0 with B = A[0] and C = A[0]/A. As B is acyclic, the hypothesis
on A and the long exact sequence of cohomology imply Hs(Uα0...αt

,C) = 0 for s > 1,
t > 0. Moreover C•

B

(U,C) = C•(U,C) thanks to Cor. 3.6. The induction hypothesis in
degree q and diagram (5.16) give

Ȟq(U,B) −→ Ȟq(U,C) −→ Ȟq+1(U,A) −→ 0y ≃
y ≃

y
Hq(X,B) −→ Hq(X,C) −→ Hq+1(X,A) −→ 0,

hence Ȟq+1(U,A) −→ Hq+1(X,A) is also an isomorphism. �

(5.18) Remark. The morphism H1(λ•) : Ȟ1(U,A) −→ H1(X,A) is always injective.
Indeed, we have a commutative diagram

Ȟ0(U,B) −→ Ȟ0
B

(U,C) −→ Ȟ1(U,A) −→ 0y =
y∩ y

H0(X,B) −→ H0(X,C) −→ H1(X,A) −→ 0,

where Ȟ0
B

(U,C) is the subspace of C(X) = H0(X,C) consisting of sections which can
be lifted in B over each Uα. As a consequence, the refinement mappings

H1(ρ•) : Ȟ1(U,A) −→ Ȟ1(V,A)

are also injective. �

§ 5.C. Čech Cohomology on Paracompact Spaces

We will prove here that Čech cohomology theory coincides with the ordinary one on
paracompact spaces.

(5.19) Proposition. Assume that X is paracompact. If

0 −→ A −→B −→ C −→ 0

is an exact sequence of sheaves, there is an exact sequence

Ȟq(X,A) −→ Ȟq(X,B) −→ Ȟq(X,C) −→ Ȟq+1(X,A) −→ · · ·

which is the direct limit of the exact sequences (5.10) over all coverings U.

Proof. We have to show that the natural map

lim−→ Ȟq
B

(U,C) −→ lim−→ Ȟq(U,C)

is an isomorphism. This follows easily from the following lemma, which says essentially
that every cochain in C becomes liftable in B after a refinement of the covering.
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(5.20) Lifting lemma. Let U = (Uα)α∈I be an open covering of X and c ∈ Cq(U,C).
If X is paracompact, there exists a finer covering V = (Vβ)β∈J and a refinement map
ρ : J → I such that ρqc ∈ Cq

B

(V,C).

Proof. Since U admits a locally finite refinement, we may assume that U itself is locally
finite. There exists an open coveringW = (Wα)α∈I of X such that Wα ⊂ Uα. For every
point x ∈ X , we can select an open neighborhood Vx of x with the following properties:

a) if x ∈Wα, then Vx ⊂ Wα ;

b) if x ∈ Uα or if Vx ∩Wα 6= ∅, then Vx ⊂ Uα ;

c) if x ∈ Uα0...αq
, then cα0...αq

∈ Cq(Uα0...αq
,C) admits a lifting in B(Vx).

Indeed, a) (resp. c)) can be achieved because x belongs to only finitely many sets Wα

(resp. Uα), and so only finitely many sections of C have to be lifted in B. b) can be
achieved because x has a neighborhood V ′x that meets only finitely many sets Uα ; then
we take

Vx ⊂ V ′x ∩
⋂

Uα∋x
Uα ∩

⋂

Uα 6∋x
(V ′x rWα).

Choose ρ : X → I such that x ∈ Wρ(x) for every x. Then a) implies Vx ⊂ Wρ(x), so
V = (Vx)x∈X is finer than U, and ρ defines a refinement map. If Vx0...xq

6= ∅, we have

Vx0
∩Wρ(xj) ⊃ Vx0

∩ Vxj
6= ∅ for 0 6 j 6 q,

thus Vx0
⊂ Uρ(x0)...ρ(xq) by b). Now, c) implies that the section cρ(x0)...ρ(xq) admits a

lifting in B(Vx0
), and in particular in B(Vx0...xq

). Therefore ρqc is liftable in B. �

(5.21) Theorem. If X is a paracompact topological space, the canonical morphism
Ȟq(X,A) ≃ Hq(X,A) is an isomorphism.

Proof. Argue by induction on q as in Leray’s theorem, with the Čech cohomology exact
sequence over U replaced by its direct limit in (5.16). �

In the next chapters, we will be concerned only by paracompact spaces, and most
often in fact by manifolds that are either compact or countable at infinity. In these cases,
we will not distinguish Hq(X,A) and Ȟq(X,A).

§ 5.D. Alternate Čech Cochains

For explicit calculations, it is sometimes useful to consider a slightly modified Čech
complex which has the advantage of producing much smaller cochain groups. If A is a
sheaf and U = (Uα)α∈I an open covering of X , we let ACq(U,A) ⊂ Cq(U,A) be the
subgroup of alternate Čech cochains, consisting of Čech cochains c = (cα0...αq

) such that

(5.22)

{
cα0...αq

= 0 if αi = αj , i 6= j,

cασ(0)...ασ(q)
= ε(σ) cα0...αq

for any permutation σ of {1, . . . , q} of signature ε(σ). Then the Čech differential (5.1) of
an alternate cochain is still alternate, so AC•(U,A) is a subcomplex of C•(U,A). We
are going to show that the inclusion induces an isomorphism in cohomology:

(5.23) Hq
(
AC•(U,A)

)
≃ Hq

(
C•(U,A)

)
= Ȟq(U,A).



212 Chapter IV. Sheaf Cohomology and Spectral Sequences

Select a total ordering on the index set I. For each such ordering, we can define a
projection πq : Cq(U,A) −→ ACq(U,A) ⊂ Cq(U,A) by

c 7−→ alternate c̃ such that c̃α0...αq
= cα0...αq

whenever α0 < . . . < αq.

As π• is a morphism of complexes, it is enough to verify that π• is homotopic to the
identity on C•(U,A). For a given multi-index α = (α0, . . . , αq), which may contain
repeated indices, there is a unique permutation

(
m(0), . . . , m(q)

)
of (0, . . . , q) such that

αm(0) 6 . . . 6 αm(q) and m(l) < m(l + 1) whenever αm(l) = αm(l+1).

For p 6 q, we let ε(α, p) be the sign of the permutation

(0, . . . , q) 7−→
(
m(0), . . . , m(p− 1), 0, 1, . . . , m̂(0), . . . , ̂m(p− 1), . . . , q

)

if the elements αm(0), . . . , αm(p) are all distinct, and ε(α, p) = 0 otherwise. Finally, we
set hq = 0 for q 6 0 and

(hqc)α0...αq−1
=

∑

06p6q−1
(−1)pε(α, p) c

αm(0)...αm(p)α0α1...α̂m(0)... ̂αm(p−1)...αq−1

for q > 1 ; observe that the index αm(p) is repeated twice in the right hand side. A rather
tedious calculation left to the reader shows that

(δq−1hqc+ hq+1δqc)α0...αq
= cα0...αq

− ε(α, q) cαm(0)...αm(q)
= (c− πqc)α0...αq

.

An interesting consequence of the isomorphism (5.23) is the following:

(5.24) Proposition. Let A be a sheaf on a paracompact space X. If X has arbitrarily
fine open coverings or at least one acyclic open covering U = (Uα) such that more than
n+ 1 distinct sets Uα0

, . . . , Uαn
have empty intersection, then Hq(X,A) = 0 for q > n.

Proof. In fact, we have ACq(U,A) = 0 for q > n. �

§ 6. The De Rham-Weil Isomorphism Theorem

In § 3 we defined cohomology groups by means of the simplicial flabby resolution.
We show here that any resolution by acyclic sheaves could have been used instead. Let
(L•, d) be a resolution of a sheaf A. We assume in addition that allLq are acyclic on X ,
i.e. Hs(X,Lq) = 0 for all q > 0 and s > 1. Set Zq = ker dq. Then Z0 = A and for every
q > 1 we get a short exact sequence

0 −→ Zq−1 −→Lq−1 dq−1

−→Zq −→ 0.

Theorem 3.5 yields an exact sequence

(6.1) Hs(X,Lq−1)
dq−1

−→ Hs(X,Zq)
∂s,q

−→ Hs+1(X,Zq−1)→ Hs+1(X,Lq−1) = 0.
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If s > 1, the first group is also zero and we get an isomorphism

∂s,q : Hs(X,Zq)
≃−→ Hs+1(X,Zq−1).

For s = 0 we have H0(X,Lq−1) = Lq−1(X) and H0(X,Zq) = Zq(X) is the q-cocycle
group of L•(X), so the connecting map ∂0,q gives an isomorphism

Hq
(
L

•(X)
)
=Zq(X)/dq−1Lq−1(x)

∂̃0,q

−→ H1(X,Zq−1).

The composite map ∂q−1,1 ◦ · · · ◦ ∂1,q−1 ◦ ∂̃0,q therefore defines an isomorphism

Hq
(
L

•(X)
) ∂̃0,q

−→H1(X,Zq−1)
∂1,q−1

−→ · · ·∂
q−1,1

−→ Hq(X,Z0)=Hq(X,A).(6.2)

This isomorphism behaves functorially with respect to morphisms of resolutions. Our
assertion means that for every sheaf morphism ϕ : A → B and every morphism of
resolutions ϕ• : L• −→ M•, there is a commutative diagram

(6.3)

Hs
(
L

•(X)
)
−→ Hs(X,A)

yHs(ϕ•)
yHs(ϕ)

Hs
(
M

•(X)
)
−→ Hs(X,B).

If Wq = ker(dq : Mq → M

q+1), the functoriality comes from the fact that we have
commutative diagrams

0→Zq−1 →Lq−1 →Zq → 0 , Hs(X,Zq)
∂s,q

−→ Hs+1(X,Zq−1)
yϕq−1

yϕq−1
yϕq

yHs(ϕq)
yHs+1(ϕq−1)

0→Wq−1 →Mq−1 →Wq → 0 , Hs(X,Wq)
∂s,q

−→ Hs+1(X,Wq−1).

(6.4) De Rham-Weil isomorphism theorem. If (L•, d) is a resolution of A by
sheaves Lq which are acyclic on X, there is a functorial isomorphism

Hq
(
L

•(X)
)
−→ Hq(X,A). �

(6.5) Example: De Rham cohomology. Let X be a n-dimensional paracompact
differential manifold. Consider the resolution

0→ R→ E0 d→ E1 → · · · → Eq d→ Eq+1 → · · · → En → 0

given by the exterior derivative d acting on germs of C∞ differential q-forms (cf. Exam-
ple 2.2). The De Rham cohomology groups of X are precisely

(6.6) Hq
DR(X,R) = Hq

(
E

•(X)
)
.

All sheaves Eq are EX-modules, so Eq is acyclic by Cor. 4.19. Therefore, we get an
isomorphism

(6.7) Hq
DR(X,R)

≃−→ Hq(X,R)
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from the De Rham cohomology onto the cohomology with values in the constant sheaf R.
Instead of using C∞ differential forms, one can consider the resolution of R given by the
exterior derivative d acting on currents:

0→ R→D′n
d→D′n−1 → · · · →D′n−q

d→D′n−q−1 → · · · →D′0 → 0.

The sheaves D′q are also EX -modules, hence acyclic. Thanks to (6.3), the inclusion
E

q ⊂D′n−q induces an isomorphism

(6.8) Hq
(
E

•(X)
)
≃ Hq

(
D

′
n−•(X)

)
,

both groups being isomorphic to Hq(X,R). The isomorphism between cohomology of
differential forms and singular cohomology (another topological invariant) was first es-
tablished by [De Rham 1931]. The above proof follows essentially the method given by
[Weil 1952], in a more abstract setting. As we will see, the isomorphism (6.7) can be put
under a very explicit form in terms of Čech cohomology. We need a simple lemma.

(6.9) Lemma. Let X be a paracompact differentiable manifold. There are arbitrarily
fine open coverings U = (Uα) such that all intersections Uα0...αq

are diffeomorphic to
convex sets.

Proof. Select locally finite coverings Ω′j ⊂⊂ Ωj of X by open sets diffeomorphic to
concentric euclidean balls in Rn. Let us denote by τjk the transition diffeomorphism from
the coordinates in Ωk to those in Ωj . For any point a ∈ Ω′j , the function x 7→ |x − a|2
computed in terms of the coordinates of Ωj becomes |τjk(x) − τjk(a)|2 on any patch
Ωk ∋ a. It is clear that these functions are strictly convex at a, thus there is a euclidean
ball B(a, ε) ⊂ Ω′j such that all functions are strictly convex on B(a, ε) ∩ Ω′k ⊂ Ωk (only
a finite number of indices k is involved). Now, choose U to be a (locally finite) covering
of X by such balls Uα = B(aα, εα) with Uα ⊂ Ω′ρ(α). Then the intersection Uα0...αq

is

defined in Ωk, k = ρ(α0), by the equations

|τjk(x)− τjk(aαm
)|2 < ε2αm

where j = ρ(αm), 0 6 m 6 q. Hence the intersection is convex in the open coordinate
chart Ωρ(α0). �

Let Ω be an open subset of Rn which is starshaped with respect to the origin. Then the
De Rham complex R −→ E•(Ω) is acyclic: indeed, Poincaré’s lemma yields a homotopy
operator kq : Eq(Ω) −→ Eq−1(Ω) such that

kqfx(ξ1, . . . , ξq−1) =

∫ 1

0

tq−1 ftx(x, ξ1, . . . , ξq−1) dt, x ∈ Ω, ξj ∈ Rn,

k0f = f(0) ∈ R for f ∈ E0(Ω).

Hence Hq
DR(Ω,R) = 0 for q > 1. Now, consider the resolution E• of the constant sheaf R

on X , and apply the proof of the De Rham-Weil isomorphism theorem to Čech cohomol-
ogy groups over a covering U chosen as in Lemma 6.9. Since the intersections Uα0...αs

are convex, all Čech cochains in Cs(U,Zq) are liftable in Eq−1 by means of kq. Hence
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for all s = 1, . . . , q we have isomorphisms ∂s,q−s : Ȟs(U,Zq−s) −→ Ȟs+1(U,Zq−s−1)
for s > 1 and we get a resulting isomorphism

∂q−1,1 ◦ · · · ◦ ∂1,q−1 ◦ ∂̃0,q : Hq
DR(X,R)

≃−→ Ȟq(U,R)

We are going to compute the connecting homomorphisms ∂s,q−s and their inverses ex-
plicitly.

Let c in Cs(U,Zq−s) such that δsc = 0. As cα0...αs
is d-closed, we can write c =

d(kq−sc) where the cochain kq−sc ∈ Cs(U,Eq−s−1) is defined as the family of sections
kq−scα0...αs

∈ Eq−s−1(Uα0...αs
). Then d(δskq−sc) = δs(dkq−sc) = δsc = 0 and

∂s,q−s{c} = {δskq−sc} ∈ Ȟs+1(U,Zq−s−1).

The isomorphismHq
DR(X,R)

≃−→ Ȟq(U,R) is thus defined as follows: to the cohomology
class {f} of a closed q-form f ∈ Eq(X), we associate the cocycle (c0α) = (f↾Uα

) ∈
C0(U,Zq), then the cocycle

c1αβ = kqc0β − kqc0α ∈ C1(U,Zq−1),

and by induction cocycles (csα0...αs
) ∈ Cs(U,Zq−s) given by

(6.10) cs+1
α0...αs+1

=
∑

06j6s+1

(−1)j kq−scs
α0...α̂j ...αs+1

on Uα0...αs+1
.

The image of {f} in Ȟq(U,R) is the class of the q-cocycle (cqα0...αq
) in Cq(U,R).

Conversely, let (ψα) be a C∞ partition of unity subordinate to U. Any Čech cocycle
c ∈ Cs+1(U,Zq−s−1) can be written c = δsγ with γ ∈ Cs(U,Eq−s−1) given by

γα0...αs
=

∑

ν∈I
ψν cνα0...αs

,

(cf. Prop. 5.11 b)), thus {c′} = (∂s,q−s)−1{c} can be represented by the cochain c′ =
dγ ∈ Cs(U,Zq−s) such that

c′α0...αs
=

∑

ν∈I
dψν ∧ cνα0...αs

= (−1)q−s−1
∑

ν∈I
cνα0...αs

∧ dψν .

For a reason that will become apparent later, we shall in fact modify the sign of our
isomorphism ∂s,q−s by the factor (−1)q−s−1. Starting from a class {c} ∈ Ȟq(U,R), we
obtain inductively {b} ∈ Ȟ0(U,Zq) such that

(6.11) bα0
=

∑

ν0,...,νq−1

cν0...νq−1α0
dψν0 ∧ . . . ∧ dψνq−1

on Uα0
,

corresponding to {f} ∈ Hq
DR(X,R) given by the explicit formula

(6.12) f =
∑

νq

ψνqbνq =
∑

ν0,...,νq

cν0...νq ψνqdψν0 ∧ . . . ∧ dψνq−1
.
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The choice of sign corresponds to (6.2) multiplied by (−1)q(q−1)/2.

(6.13) Example: Dolbeault cohomology groups. Let X be a C-analytic manifold
of dimension n, and let Ep,q be the sheaf of germs of C∞ differential forms of type (p, q)
with complex values. For every p = 0, 1, . . . , n, the Dolbeault-Grothendieck Lemma I-2.9
shows that (Ep,•, d′′) is a resolution of the sheaf ΩpX of germs of holomorphic forms of
degree p on X . The Dolbeault cohomology groups of X already considered in chapter 1
can be defined by

(6.14) Hp,q(X,C) = Hq
(
E

p,•(X)
)
.

The sheaves Ep,q are acyclic, so we get the Dolbeault isomorphism theorem, originally
proved in [Dolbeault 1953], which relates d′′-cohomology and sheaf cohomology:

(6.15) Hp,q(X,C)
≃−→ Hq(X,ΩpX).

The case p = 0 is especially interesting:

(6.16) H0,q(X,C) ≃ Hq(X,OX).

As in the case of De Rham cohomology, there is an inclusion Ep,q ⊂ D′n−p,n−q and the
complex of currents (D′n−p,n−•, d

′′) defines also a resolution of ΩpX . Hence there is an
isomorphism:

(6.17) Hp,q(X,C) = Hq
(
E

p,•(X)
)
≃ Hq

(
D

′
n−p,n−•(X)

)
.

§ 7. Cohomology with Supports

As its name indicates, cohomology with supports deals with sections of sheaves having
supports in prescribed closed sets. We first introduce what is an admissible family of
supports.

(7.1) Definition. A family of supports on a topological space X is a collection Φ of
closed subsets of X with the following two properties:

a) If F , F ′ ∈ Φ, then F ∪ F ′ ∈ Φ ;

b) If F ∈ Φ and F ′ ⊂ F is closed, then F ′ ∈ Φ.

(7.2) Example. Let S be an arbitrary subset of X . Then the family of all closed subsets
of X contained in S is a family of supports.

(7.3) Example. The collection of all compact (non necessarily Hausdorff) subsets of X
is a family of supports, which will be denoted simply c in the sequel. �

(7.4) Definition. For any sheaf A and any family of supports Φ on X, AΦ(X) will
denote the set of all sections f ∈ A(X) such that Supp f ∈ Φ.
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It is clear that AΦ(X) is a subgroup of A(X). We can now introduce cohomology
groups with arbitrary supports.

(7.5) Definition. The cohomology groups of A with supports in Φ are

Hq
Φ(X,A) = Hq

(
A

[•]
Φ (X)

)
.

The cohomology groups with compact supports will be denoted Hq
c (X,A) and the coho-

mology groups with supports in a subset S will be denoted Hq
S(X,A).

In particular H0
Φ(X,A) = AΦ(X). If 0 → A → B → C → 0 is an exact sequence,

there are corresponding exact sequences

(7.6) 0 −→ A

[q]
Φ (X) −→ B

[q]
Φ (X) −→ C

[q]
Φ (X) −→ · · ·

Hq
Φ(X,A) −→ Hq

Φ(X,B) −→ Hq
Φ(X,C) −→ Hq+1

Φ (X,A) −→ · · · .

When A is flabby, there is an exact sequence

(7.7) 0 −→ AΦ(X) −→BΦ(X) −→ CΦ(X) −→ 0

and every g ∈ CΦ(X) can be lifted to v ∈BΦ(X) without enlarging the support: apply
the proof of Prop. 4.3 to a maximal lifting which extends w = 0 on W = ∁(Supp g). It
follows that a flabby sheaf A is Φ-acyclic, i.e. Hq

Φ(X,A) = 0 for all q > 1. Similarly,
assume that X is paracompact and that A is soft, and suppose that Φ has the following
additional property: every set F ∈ Φ has a neighborhood G ∈ Φ. An adaptation of the
proofs of Prop. 4.3 and 4.13 shows that (7.7) is again exact. Therefore every soft sheaf
is also Φ-acyclic in that case.

As a consequence of (7.6), any resolution L• of A by Φ-acyclic sheaves provides a
canonical De Rham-Weil isomorphism

(7.8) Hq
(
L

•
Φ(X)

)
−→ Hq

Φ(X,A).

(7.9) Example: De Rham cohomology with compact support. In the special case
of the De Rham resolution R −→ E• on a paracompact manifold, we get an isomorphism

(7.10) Hq
DR,c(X,R) := Hq

(
(D•(X)

) ≃−→ Hq
c (X,R),

where Dq(X) is the space of smooth differential q-forms with compact support in X .
These groups are called the De Rham cohomology groups of X with compact support.
WhenX is oriented, dimX = n, we can also consider the complex of compactly supported
currents:

0 −→ E′n(X)
d−→ E′n−1(X) −→ · · · −→ E′n−q(X)

d−→ E′n−q−1(X) −→ · · · .

Note that D•(X) and E′n−•(X) are respectively the subgroups of compactly supported
sections in E• and D′n−•, both of which are acyclic resolutions of R. Therefore the
inclusion D•(X) ⊂ E′n−•(X) induces an isomorphism

(7.11) Hq
(
D

•(X)
)
≃ Hq

(
E

′
n−•(X)

)
,
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both groups being isomorphic to Hq
c (X,R). �

Now, we concentrate our attention on cohomology groups with compact support. We
assume until the end of this section that X is a locally compact space.

(7.12) Proposition. There is an isomorphism

Hq
c (X,A) = lim−→

U⊂⊂X
Hq(U,AU)

where AU is the sheaf of sections of A vanishing on X r U (cf. §3).

Proof. By definition

Hq
c (X,A) = Hq

(
A

[•]
c (X)

)
= lim−→

U⊂⊂X
Hq

(
(A[•])U (U)

)

since sections of (A[•])U (U) can be extended by 0 on X r U . However, (A[•])U is a
resolution of AU and (A[q])U is a Z[q]-module, so it is acyclic on U . The De Rham-Weil
isomorphism theorem implies

Hq
(
(A[•])U (U)

)
= Hq(U,AU )

and the proposition follows. The reader should take care of the fact that (A[q])U does
not coincide in general with (AU )

[q]. �

The cohomology groups with compact support can also be defined by means of Čech
cohomology.

(7.13) Definition. Assume that X is a separable locally compact space. If U = (Uα) is
a locally finite covering of X by relatively compact open subsets, we let Cqc (U,A) be the
subgroups of cochains such that only finitely many coefficients cα0...αq

are non zero. The

Čech cohomology groups with compact support are defined by

Ȟq
c (U,A) = Hq

(
C•c (U,A)

)

Ȟq
c (X,A) = lim−→

U

Hq
(
C•c (U,A)

)

For such coverings U, Formula (5.13) yields canonical morphisms

(7.14) Hq(λ•) : Ȟq
c (U,A) −→ Hq

c (X,A).

Now, the lifting Lemma 5.20 is valid for cochains with compact supports, and the same
proof as the one given in §5 gives an isomorphism

(7.15) Ȟq
c (X,A) ≃ Hq

c (X,A).
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§ 8. Cup Product

Let R be a sheaf of commutative rings and A, B sheaves of R-modules on a space
X . We denote by A⊗

R

B the sheaf on X defined by

(8.1) (A⊗
R

B)x = Ax ⊗Rx
Bx,

with the weakest topology such that the range of any section given by A(U)⊗
R(U)B(U)

is open in A⊗
R

B for any open set U ⊂ X . Given f ∈ A[p]
x and g ∈B[q]

x , the cup product

f ` g ∈ (A⊗
R

B)
[p+q]
x is defined by

(8.2) f ` g(x0, . . . , xp+q) = f(x0, . . . , xp)(xp+q)⊗ g(xp, . . . , xp+q).

A simple computation shows that

(8.3) dp+q(f ` g) = (dpf) ` g + (−1)p f ` (dqg).

In particular, f ` g is a cocycle if f, g are cocycles, and we have

(f + dp−1f ′) ` (g + dq−1g′) = f ` g + dp+q−1
(
f ′ ` g + (−1)pf ` g′ + f ′ ` dg′

)
.

Consequently, there is a well defined R(X)-bilinear morphism

(8.4) Hp(X,A)×Hq(X,B) −→ Hp+q(X,A⊗
R

B)

which maps a pair ({f}, {g}) to {f ` g}.
Let 0 → B → B

′ → B

′′ → 0 be an exact sequence of sheaves. Assume that the
sequence obtained after taking the tensor product by A is also exact:

0 −→ A⊗
R

B −→ A⊗
R

B

′ −→ A⊗
R

B

′′ −→ 0.

Then we obtain connecting homomorphisms

∂q : Hq(X,B′′) −→ Hq+1(X,B),

∂q : Hq(X,A⊗
R

B

′′) −→ Hq+1(X,A⊗
R

B).

For every α ∈ Hp(X,A), β′′ ∈ Hq(X,B′′) we have

∂p+q(α ` β′′) = (−1)p α ` (∂qβ′′),(8.5)

∂p+q(β′′ ` α) = (∂qβ′′) ` α,(8.5′)

where the second line corresponds to the tensor product of the exact sequence by A on the
right side. These formulas are deduced from (8.3) applied to a representant f ∈ A[p](X)
of α and to a lifting g′ ∈B′[q](X) of a representative g′′ of β′′ (note that dpf = 0).

(8.6) Associativity and anticommutativity. Let i : A ⊗
R

B −→ B ⊗
R

A be the
canonical isomorphism s⊗ t 7→ t⊗ s. For all α ∈ Hp(X,A), β ∈ Hq(X,B) we have

β ` α = (−1)pq i(α ` β).
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If C is another sheaf of R-modules and γ ∈ Hr(X,C), then

(α ` β) ` γ = α ` (β ` γ).

Proof. The associativity property is easily seen to hold already for all cochains

(f ` g) ` h = f ` (g ` h), f ∈ A[p]
x , g ∈B[q]

x , h ∈ C[r]
x .

The commutation property is obvious for p = q = 0, and can be proved in general by
induction on p+ q. Assume for example q > 1. Consider the exact sequence

0 −→B −→B′ −→B′′ −→ 0

where B′ = B

[0] and B′′ = B

[0]/B. This exact sequence splits on each stalk (but
not globally, nor even locally): a left inverse B

[0]
x → Bx of the inclusion is given by

g 7→ g(x). Hence the sequence remains exact after taking the tensor product with A.
Now, as B′ is acyclic, the connecting homomorphism Hq−1(X,B′′) −→ Hq(X,B) is
onto, so there is β′′ ∈ Hq−1(X,B′′) such that β = ∂q−1β′′. Using (8.5′), (8.5) and the
induction hypothesis, we find

β ` α = ∂p+q−1(β′′ ` α) = ∂p+q−1
(
(−1)p(q−1) i(α ` β′′)

)

= (−1)p(q−1) i∂p+q−1(α ` β′′) = (−1)p(q−1)(−1)p i(α ` β). �

Theorem 8.6 shows in particular that H•(X,R) is a graded associative and supercom-
mutative algebra, i.e. β ` α = (−1)pq α ` β for all classes α ∈ Hp(X,R), β ∈ Hq(X,R).
If A is a R-module, then H•(X,A) is a graded H•(X,R)-module.

(8.7) Remark. The cup product can also be defined for Čech cochains. Given c ∈
Cp(U,A) and c′ ∈ Cq(U,B), the cochain c ` c′ ∈ Cp+q(U,A⊗

R

B) is defined by

(c ` c′)α0...αp+q
= cα0...αp

⊗ c′αp...αp+q
on Uα0...αp+q

.

Straightforward calculations show that

δp+q(c ` c′) = (δpc) ` c′ + (−1)p c ` (δqc′)

and that there is a commutative diagram

Ȟp(U,A)×Ȟq(U,B) −→ Ȟp+q(U,A⊗
R

B)y y
Hp(X,A)×Hq(X,B) −→ Hp+q(X,A⊗

R

B),

where the vertical arrows are the canonical morphisms Hs(λ•) of (5.14). Note that the
commutativity already holds in fact on cochains.

(8.8) Remark. Let Φ and Ψ be families of supports on X . Then Φ∩Ψ is again a family
of supports, and Formula (8.2) defines a bilinear map

(8.9) Hp
Φ(X,A)×H

q
Ψ(X,B) −→ Hp+q

Φ∩Ψ(X,A⊗RB)
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on cohomology groups with supports. This follows immediately from the fact that
Supp(f ` g) ⊂ Supp f ∩ Supp g.

(8.10) Remark. Assume that X is a differentiable manifold. Then the cohomology
complex H•DR(X,R) has a natural structure of supercommutative algebra given by the
wedge product of differential forms. We shall prove the following compatibility statement:

Let Hq(X,R) −→ Hq
DR(X,R) be the De Rham-Weil isomorphism given by Formula

(6.12). Then the cup product c′ ` c′′ is mapped on the wedge product f ′ ∧ f ′′ of the
corresponding De Rham cohomology classes.

By remark 8.7, we may suppose that c′, c′′ are Čech cohomology classes of respective
degrees p, q. Formulas (6.11) and (6.12) give

f ′↾Uνp
=

∑

ν0,...,νp−1

c′ν0...νp−1νp dψν0 ∧ . . . ∧ dψνp−1
,

f ′′ =
∑

νp,...,νp+q

c′′νp...νp+q
ψνp+q

dψνp ∧ . . . ∧ dψνp+q−1
.

We get therefore

f ′ ∧ f ′′ =
∑

ν0,...,νp+q

c′ν0...νp c
′′
νp...νp+q

ψνp+q
dψν0 ∧ . . . ∧ ψνp+q−1

,

which is precisely the image of c ` c′ in the De Rham cohomology. �

§ 9. Inverse Images and Cartesian Products

§ 9.A. Inverse Image of a Sheaf

Let F : X → Y be a continuous map between topological spaces X, Y , and let
π : A → Y be a sheaf of abelian groups. Recall that inverse image F−1A is defined as
the sheaf-space

F−1A = A×Y X =
{
(s, x) ; π(s) = F (x)

}

with projection π′ = pr2 : F−1A→ X . The stalks of F−1A are given by

(9.1) (F−1A)x = AF (x),

and the sections σ ∈ F−1A(U) can be considered as continuous mappings σ : U → A
such that π ◦ σ = F . In particular, any section s ∈ A(U) has a pull-back

(9.2) F ⋆s = s ◦ F ∈ F−1A
(
F−1(U)

)
.

For any v ∈ A[q]
y , we define F ⋆v ∈ (F−1A)[q]x by

(9.3) F ⋆v(x0, . . . , xq) = v
(
F (x0), . . . , F (xq)

)
∈ (F−1A)xq

= AF (xq)
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for x0 ∈ V (x), x1 ∈ V (x0), . . . , xq ∈ V (x0, . . . , xq−1). We get in this way a morphism
of complexes F ⋆ : A[•](Y ) −→ (F−1A)[•](X). On cohomology groups, we thus have an
induced morphism

(9.4) F ⋆ : Hq(Y,A) −→ Hq(X,F−1A).

Let 0 → A → B → C → 0 be an exact sequence of sheaves on X . Thanks to property
(9.1), there is an exact sequence

0 −→ F−1A −→ F−1B −→ F−1C −→ 0.

It is clear on the definitions that the morphism F ⋆ in (9.4) commutes with the associated
cohomology exact sequences. Also, F ⋆ preserves the cup product, i.e. F ⋆(α ` β) =
F ⋆α ` F ⋆β whenever α, β are cohomology classes with values in sheaves A, B on X .
Furthermore, if G : Y → Z is a continuous map, we have

(9.5) (G ◦ F )⋆ = F ⋆ ◦G⋆.

(9.6) Remark. Similar definitions can be given for Čech cohomology. If U = (Uα)α∈I
is an open covering of Y , then F−1U =

(
F−1(Uα)

)
α∈I is an open covering of X . For

c ∈ Cq(U,A), we set

(F ⋆c)α0...αq
= cα0...αq

◦ F ∈ Cq(F−1U, F−1A).

This definition is obviously compatible with the morphism from Čech cohomology to
ordinary cohomology.

(9.7) Remark. Let Φ be a family of supports on Y . We define F−1Ψ to be the family
of closed sets K ⊂ X such that F (K) is contained in some set L ∈ Ψ. Then (9.4) can be
generalized in the form

(9.8) F ⋆ : Hq
Ψ(Y,A) −→ Hq

F−1Ψ
(X,F−1A).

(9.9) Remark. Assume that X and Y are paracompact differentiable manifolds and
that F : X → Y is a C∞ map. If (ψα)α∈I is a partition of unity subordinate to U, then
(ψα ◦ F )α∈I is a partition of unity on X subordinate to F−1U. Let c ∈ Cq(U,R). The
differential form associated to F ⋆c in the De Rham cohomology is

g =
∑

ν0,...,νq

cν0...νq(ψνq ◦ F )d(ψν0 ◦ F ) ∧ . . . ∧ d(ψνq−1
◦ F )

= F ⋆
( ∑

ν0,...,νq

cν0...νq ψνqdψν0 ∧ . . . ∧ dψνq−1

)
.

Hence we have a commutative diagram

Hq
DR(Y,R)

≃−→Ȟq(Y,R)
≃−→Hq(Y,R)yF ⋆

yF ⋆
yF ⋆

Hq
DR(X,R)

≃−→Ȟq(X,R)
≃−→Hq(X,R).
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§ 9.B. Cohomology Groups of a Subspace

Let A be a sheaf on a topological space X , let S be a subspace of X and iS : S −֒→ X
the inclusion. Then i−1S A is the restriction of A to S, so that Hq(S,A) = Hq(S, i−1S A) by
definition. For any two subspaces S′ ⊂ S, the inclusion of S′ in S induces a restriction
morphism

Hq(S,A) −→ Hq(S′,A).

(9.10) Theorem. Let A be a sheaf on X and S a strongly paracompact subspace in X.
When Ω ranges over open neighborhoods of S, we have

Hq(S,A) = lim−→
Ω⊃S

Hq(Ω,A).

Proof. When q = 0, the property is equivalent to Prop. 4.7. The general case follows
by induction on q if we use the long cohomology exact sequences associated to the short
exact sequence

0 −→ A −→ A[0] −→ A[0]/A −→ 0

on S and on its neighborhoods Ω (note that the restriction of a flabby sheaf to S is soft
by Prop. 4.7 and the fact that every closed subspace of a strongly paracompact subspace
is strongly paracompact). �

§ 9.C. Cartesian Product

We use here the formalism of inverse images to deduce the cartesian product from
the cup product. Let R be a fixed commutative ring and A → X , B → Y sheaves of
R-modules. We define the external tensor product by

(9.11) A

×RB = pr−11 A⊗R pr−12 B

where pr1, pr2 are the projections of X × Y onto X , Y respectively. The sheaf A×RB
is thus the sheaf on X × Y whose stalks are

(9.12) (A×RB)(x,y) = Ax ⊗RBy.

For all cohomology classes α ∈ Hp(X,A), β ∈ Hq(Y,B) the cartesian product α × β ∈
Hp+q(X × Y,A×RB) is defined by

(9.13) α × β = (pr⋆1α) ` (pr⋆2β).

More generally, let Φ and Ψ be families of supports in X and Y respectively. If Φ × Ψ
denotes the family of all closed subsets of X×Y contained in products K×L of elements
K ∈ Φ, L ∈ Ψ, the cartesian product defines a R-bilinear map

(9.14) Hp
Φ(X,A)×H

q
Ψ(Y,B) −→ Hp+q

Φ×Ψ(X × Y,A×RB).

If A′ → X , B′ → Y are sheaves of abelian groups and if α′, β′ are cohomology classes
of degree p′, q′ with values in A′, B′, one gets easily

(9.15) (α× β) ` (α′ × β′) = (−1)qp′(α ` α′)× (β ` β′).

Furthermore, if F : X ′ → X and G : Y ′ → Y are continuous maps, then

(9.16) (F ×G)⋆(α× β) = (F ⋆α)× (G⋆β).
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§ 10. Spectral Sequence of a Filtered Complex

§ 10.A. Construction of the Spectral Sequence

The theory of spectral sequences consists essentially in computing the homology
groups of a differential module (K, d) by “successive approximations”, once a filtra-
tion Fp(K) is given in K and the cohomology groups of the graded modules Gp(K) are
known. Let us first recall some standard definitions and notations concerning filtrations.

(10.1) Definition. Let R be a commutative ring. A filtration of a R-module M is a
sequence of submodules Mp ⊂ M , p ∈ Z, also denoted Mp = Fp(M), such that Mp+1 ⊂
Mp for all p ∈ Z,

⋃
Mp =M and

⋂
Mp = {0}. The associated graded module is

G(M) =
⊕

p∈Z
Gp(M), Gp(M) =Mp/Mp+1.

Let (K, d) be a differential module equipped with a filtration (Kp) by differential
submodules (i.e. dKp ⊂ Kp for every p). For any number r ∈ N ∪ {∞}, we define
Zpr , B

p
r ⊂ Gp(K) = Kp/Kp+1 by

Zpr = Kp ∩ d−1Kp+r mod Kp+1, Zp∞ = Kp ∩ d−1{0} mod Kp+1,(10.2)

Bpr = Kp ∩ dKp−r+1 mod Kp+1, Bp∞ = Kp ∩ dK mod Kp+1.(10.2′)

(10.3) Lemma. For every p and r, there are inclusions

. . . ⊂ Bpr ⊂ Bpr+1 ⊂ . . . ⊂ Bp∞ ⊂ Zp∞ ⊂ . . . ⊂ Zpr+1 ⊂ Zpr ⊂ . . .

and the differential d induces an isomorphism

d̃ : Zpr /Z
p
r+1 −→ Bp+rr+1/B

p+r
r .

Proof. It is clear that (Zpr ) decreases with r, that (Bpr ) increases with r, and that
Bp∞ ⊂ Zp∞. By definition

Zpr = (Kp ∩ d−1Kp+r)/(Kp+1 ∩ d−1Kp+r),

Bpr = (Kp ∩ dKp−r+1)/(Kp+1 ∩ dKp−r+1).

The differential d induces a morphism

Zpr −→ (dKp ∩Kp+r)/(dKp+1 ∩Kp+r)

whose kernel is (Kp ∩ d−1{0})/(Kp+1 ∩ d−1{0}) = Zp∞, whence isomorphisms

d̂ : Zpr /Z
p
∞ −→ (Kp+r ∩ dKp)/(Kp+r ∩ dKp+1),

d̃ : Zpr /Z
p
r+1 −→ (Kp+r ∩ dKp)/(Kp+r ∩ dKp+1 +Kp+r+1 ∩ dKp).

The right hand side of the last arrow can be identified to Bp+rr+1/B
p+r
r , for

Bp+rr = (Kp+r ∩ dKp+1)/(Kp+r+1 ∩ dKp+1),

Bp+rr+1 = (Kp+r ∩ dKp)/(Kp+r+1 ∩ dKp). �
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Now, for each r ∈ N, we define a complex E•r =
⊕

p∈ZE
p
r with a differential dr :

Epr −→ Ep+rr of degree r as follows: we set Epr = Zpr /B
p
r and take

(10.4) dr : Zpr /B
p
r−→−→ Zpr /Z

p
r+1

d̃−→ Bp+rr+1/B
p+r
r −֒→ Zp+rr /Bp+rr

where the first arrow is the obvious projection and the third arrow the obvious inclusion.
Since dr is induced by d, we actually have dr ◦ dr = 0 ; this can also be seen directly by
the fact that Bp+rr+1 ⊂ Zp+rr+1 .

(10.5) Theorem and definition. There is a canonical isomorphism E•r+1 ≃ H•(E•r ).
The sequence of differential complexes (E•r , d

•
r) is called the spectral sequence of the filtered

differential module (K, d).

Proof. Since d̃ is an isomorphism in (10.4), we have

ker dr = Zpr+1/B
p
r , Im dr = Bp+rr+1/B

p+r
r .

Hence the image of dr : E
p−r
r −→ Epr is Bpr+1/B

p
r and

Hp(E•r ) = (Zpr+1/B
p
r )/(B

p
r+1/B

p
r ) ≃ Zpr+1/B

p
r+1 = Epr+1. �

(10.6) Theorem. Consider the filtration of the homology module H(K) defined by

Fp
(
H(K)

)
= Im

(
H(Kp) −→ H(K)

)
.

Then there is a canonical isomorphism

Ep∞ = Gp
(
H(K)

)
.

Proof. Clearly Fp
(
H(K)

)
= (Kp ∩ d−1{0})/(Kp ∩ dK), whereas

Zp∞ = (Kp ∩ d−1{0})/(Kp+1 ∩ d−1{0}), Bp∞ = (Kp ∩ dK)/(Kp+1 ∩ dK),

Ep∞ = Zp∞/B
p
∞ = (Kp ∩ d−1{0})/(Kp+1 ∩ d−1{0}+Kp ∩ dK).

It follows that Ep∞ ≃ Fp
(
H(K)

)
/Fp+1

(
H(K)

)
. �

In most applications, the differential module K has a natural grading compatible
with the filtration. Let us consider for example the case of a cohomology complex K• =⊕

l∈ZK
l. The filtration K•p = Fp(K

•) is said to be compatible with the differential
complex structure if each K•p is a subcomplex of K•, i.e.

K•p =
⊕

l∈Z
Kl
p

where (Kl
p) is a filtration of Kl. Then we define Zp,qr , Bp,qr , Ep,qr to be the sets of elements

of Zpr , B
p
r , E

p
r of total degree p+ q. Therefore
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(10.7) Zp,qr = Kp+q
p ∩ d−1Kp+q+1

p+r mod Kp+q
p+1 , Zpr =

⊕
Zp,qr ,

(10.7′) Bp,qr = Kp+q
p ∩ dKp+q−1

p−r+1 mod Kp+q
p+1 , Bpr =

⊕
Bp,qr ,

(10.7′′) Ep,qr = Zp,qr /Bp,qr , Epr =
⊕
Ep,qr ,

and the differential dr has bidegree (r,−r + 1), i.e.

(10.8) dr : Ep,qr −→ Ep+r , q−r+1
r .

For an element of pure bidegree (p, q), p is called the filtering degree, q the complementary
degree and p+ q the total degree.

(10.9) Definition. A filtration (K•p) of a complex K• is said to be regular if for each

degree l there are indices ν(l) 6 N(l) such that Kl
p = Kl for p < ν(l) and Kl

p = 0 for
p > N(l).

If the filtration is regular, then (10.7) and (10.7′) show that

Zp,qr = Zp,qr+1 = . . . = Zp,q∞ for r > N(p+ q + 1)− p,
Bp,qr = Bp,qr+1 = . . . = Bp,q∞ for r > p+ 1− ν(p+ q − 1),

therefore Ep,qr = Ep,q∞ for r > r0(p, q). We say that the spectral sequence converges to its
limit term, and we write symbolically

(10.10) Ep,qr =⇒ Hp+q(K•)

to express the following facts: there is a spectral sequence whose terms of the r-th
generation are Ep,qr , the sequence converges to a limit term Ep,q∞ , and Ep,l−p∞ is the term
Gp

(
H l(K•)

)
in the graded module associated to some filtration of H l(K•).

(10.11) Definition. The spectral sequence is said to collapse in E•r if all terms Zp,qk ,
Bp,qk , Ep,qk are constant for k > r, or equivalently if dk = 0 in all bidegrees for k > r.

(10.12) Special case. Assume that there exists an integer r > 2 and an index q0 such
that Ep,qr = 0 for q 6= q0. Then this property remains true for larger values of r, and we
must have dr = 0. It follows that the spectral sequence collapses in E•r and that

H l(K•) = El−q0,q0r .

Similarly, if Ep,qr = 0 for p 6= p0 and some r > 1 then

H l(K•) = Ep0,l−p0r . �

§ 10.B. Computation of the First Terms

Consider an arbitrary spectral sequence. For r = 0, we have Zp0 = Kp/Kp+1, B
p
0 =

{0}, thus

(10.13) Ep0 = Kp/Kp+1 = Gp(K).
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The differential d0 is induced by d on the quotients, and

(10.14) Ep1 = H
(
Gp(K)

)
.

Now, there is a short exact sequence of differential modules

0 −→ Gp+1(K) −→ Kp/Kp+2 −→ Gp(K) −→ 0.

We get therefore a connecting homomorphism

(10.15) Ep1 = H
(
Gp(K)

) ∂−→ H
(
Gp+1(K)

)
= Ep+1

1 .

We claim that ∂ coincides with the differential d1 : indeed, both are induced by d. When
K• is a filtered cohomology complex, d1 is the connecting homomorphism

(10.16) Ep,q1 = Hp+q
(
Gp(K

•)
) ∂−→ Hp+q+1

(
Gp+1(K

•)
)
= Ep+1,q

1 .

§ 11. Spectral Sequence of a Double Complex

A double complex is a bigraded module K•,• =
⊕
Kp,q together with a differential

d = d′ + d′′ such that

(11.1) d′ : Kp,q −→ Kp+1,q, d′′ : Kp,q+1 −→ Kp,q+1,

and d ◦ d = 0. In particular, d′ and d′′ satisfy the relations

(11.2) d′2 = d′′2 = 0, d′d′′ + d′′d′ = 0.

The simple complex associated to K•,• is defined by

Kl =
⊕

p+q=l

Kp,q

together with the differential d. We will suppose here that both graduations of K•,• are
positive, i.e. Kp,q = 0 for p < 0 or q < 0. The first filtration of K• is defined by

(11.3) Kl
p =

⊕

i+j=l, i>p

Ki,j =
⊕

p6i6l

Ki,l−i.

The graded module associated to this filtration is of course Gp(K
l) = Kp,l−p, and the

differential induced by d on the quotient coincides with d′′ because d′ takes Kl
p to Kl+1

p+1.
Thus we have a spectral sequence beginning by

(11.4) Ep,q0 = Kp,q, d0 = d′′, Ep,q1 = Hq
d′′(K

p,•).

By (10.16), d1 is the connecting homomorphism associated to the short exact sequence

0 −→ Kp+1,• −→ Kp,• ⊕Kp+1,• −→ Kp,• −→ 0
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where the differential is given by (d mod Kp+2,•) for the central term and by d′′ for
the two others. The definition of the connecting homomorphism in the proof of Th. 1.5
shows that

d1 = ∂ : Hq
d′′(K

p,•) −→ Hq
d′′(K

p+1,•)

is induced by d′. Consequently, we find

(11.5) Ep,q2 = Hp
d′(E

•,q
1 ) = Hp

d′

(
Hq
d′′(K

•,•)
)
.

For such a spectral sequence, several interesting additional features can be pointed
out. For all r and l, there is an injective homomorphism

E0,l
r+1 −֒→ E0,l

r

whose image can be identified with the set of dr-cocycles in E
0,l
r ; the coboundary group

is zero because Ep,qr = 0 for q < 0. Similarly, El,0r is equal to its cocycle submodule, and
there is a surjective homomorphism

El,0r −→−→ El,0r+1 ≃ El,0r /drE
l−r,r−1
r .

Furthermore, the filtration on H l(K•) begins at p = 0 and stops at p = l, i.e.

(11.6) F0

(
H l(K•)

)
= H l(K•), Fp

(
H l(K•)

)
= 0 for p > l.

Therefore, there are canonical maps

(11.7)
H l(K•)−→−→ G0

(
H l(K•)

)
= E0,l

∞ −֒→ E0,l
r ,

El,0r −→−→ El,0∞ = Gl
(
H l(K•)

)
−֒→ H l(K•).

These maps are called the edge homomorphisms of the spectral sequence.

(11.8) Theorem. There is an exact sequence

0 −→ E1,0
2 −→ H1(K•) −→ E0,1

2
d2−→ E2,0

2 −→ H2(K•)

where the non indicated arrows are edge homomorphisms.

Proof. By 11.6, the graded module associated to H1(K•) has only two components, and
we have an exact sequence

0 −→ E1,0
∞ −→ H1(K•) −→ E0,1

∞ −→ 0.

However E1,0
∞ = E1,0

2 because all differentials dr starting from E1,0
r or abuting to E1,0

r

must be zero for r > 2. Similarly, E0,1
∞ = E0,1

3 and E2,0
∞ = E2,0

3 , thus there is an exact
sequence

0 −→ E0,1
∞ −→ E0,1

2
d2−→ E2,0

2 −→ E2,0
∞ −→ 0.

A combination of the two above exact sequences yields

0 −→ E1,0
2 −→ H1(K•) −→ E0,1

2
d2−→ E2,0

2 −→ E2,0
∞ −→ 0.
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Taking into account the injection E2,0
∞ −֒→ H2(K•) in (11.7), we get the required exact

sequence. �

(11.9) Example. Let X be a complex manifold of dimension n. Consider the double
complex Kp,q = C∞p,q(X,C) together with the exterior derivative d = d′+d′′. Then there
is a spectral sequence which starts from the Dolbeault cohomology groups

Ep,q1 = Hp,q(X,C)

and which converges to the graded module associated to a filtration of the De Rham
cohomology groups:

Ep,qr =⇒ Hp+q
DR (X,C).

This spectral sequence is called the Hodge-Frölicher spectral sequence [Frölicher 1955].
We will study it in much more detail in chapter 6 when X is compact. �

Frequently, the spectral sequence under consideration can be obtained from two dis-
tinct double complexes and one needs to compare the final cohomology groups. The
following lemma can often be applied.

(11.10) Lemma. Let Kp,q −→ Lp,q be a morphism of double complexes (i.e. a double
sequence of maps commuting with d′ and d′′). Then there are induced morphisms

KE
•,•
r −→ LE

•,•
r , r > 0

of the associated spectral sequences. If one of these morphisms is an isomorphism for
some r, then H l(K•) −→ H l(L•) is an isomorphism.

Proof. If the r-terms are isomorphic, they have the same cohomology groups, thus

KE
•,•
r+1 ≃ LE

•,•
r+1 and KE

•,•
∞ ≃ LE

•,•
∞ in the limit. The lemma follows from the fact that

if a morphism of graded modules ϕ : M −→ M ′ induces an isomorphism G•(M) −→
G•(M ′), then ϕ is an isomorphism. �

§ 12. Hypercohomology Groups

Let (L•, δ) be a complex of sheaves

0 −→ L0 δ0−→ L1 −→ · · · −→Lq δq−→ · · ·

on a topological space X . We denote by Hq = Hq(L•) the q-th sheaf of cohomology
of this complex; thus Hq is a sheaf of abelian groups over X . Our goal is to define
“generalized cohomology groups” attached to L• on X , in such a way that these groups
only depend on the cohomology sheaves Hq. For this, we associate to L• the double
complex of groups

(12.1) Kp,q
L

= (Lq)[p](X)

with differential d′ = dp given by (2.5), and with d′′ = (−1)p(δq)[p]. As (δq)[•] :
(Lq)[•] −→ (Lq+1)[•] is a morphism of complexes, we get the expected relation d′d′′ +
d′′d′ = 0.
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(12.2) Definition. The groups Hq(K•
L

) are called the hypercohomology groups of L•

and are denoted Hq(X,L•).

Clearly H0(X,L•) = H0(X) where H0 = ker δ0 is the first cohomology sheaf of L•.
If ϕ• :L• −→ M• is a morphism of sheaf complexes, there is an associated morphism of
double complexes ϕ•,• : K•,•

L

−→ K•,•
M

, hence a natural morphism

(12.3) Hq(ϕ•) : Hq(X,L•) −→ Hq(X,M•).

We first list a few immediate properties of hypercohomology groups, whose proofs are
left to the reader.

(12.4) Proposition. The following properties hold:

a) If Lq = 0 for q 6= 0, then Hq(X,L•) = Hq(X,L0).

b) If L•[s] denotes the complex L• shifted of s indices to the right, i.e. L•[s]q =Lq−s,
then Hq(X,L•[s]) = Hq−s(X,L•).

c) If 0 −→L• −→ M• −→ N• −→ 0 is an exact sequence of sheaf complexes, there is a
long exact sequence

· · ·Hq(X,L•) −→ Hq(X,M•) −→ Hq(X,N•)
∂−→ Hq+1(X,L•) · · · . �

If L• is a sheaf complex, the spectral sequence associated to the first filtration of K•
L

is given by
Ep,q1 = Hq

d′′(K
p,•
L

) = Hq
(
(L•)[p](X)

)
.

However by (2.9) the functor A 7−→ A

[p](X) preserves exact sequences. Therefore, we
get

Ep,q1 =
(
H

q(L•)
)[p]

(X),(12.5)

Ep,q2 = Hp
(
X,Hq(L•)

)
,(12.5′)

since Ep,q2 = Hp
d′(E

•,q
1 ). If ϕ• : L• −→ M

• is a morphism, an application of Lemma
11.10 to the E2-term of the associated first spectral sequences of K•,•

L

and K•,•
M

yields:

(12.6) Corollary. If ϕ• : L• −→ M

• is a quasi-isomorphism
(
this means that ϕ•

induces an isomorphism H•(L•) −→ H•(M•)
)
, then

Hl(ϕ•) : Hl(X,L•) −→ Hl(X,M•)

is an isomorphism.

Now, we may reverse the roles of the indices p, q and of the differentials d′, d′′. The
second filtration Fp(K

l
L

) =
⊕

j>pK
l−j,j
L

is associated to a spectral sequence such that

Ẽp,q1 = Hq
d′(K

•,p
L

) = Hq
d′

(
(Lp)[•](X)

)
, hence

Ẽp,q1 = Hq(X,Lp),(12.7)

Ẽp,q2 = Hp
δ

(
Hq(X,L•)

)
.(12.7′)
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These two spectral sequences converge to limit terms which are the graded modules
associated to filtrations of H•(X,L•) ; these filtrations are in general different. Let us
mention two interesting special cases.

• Assume first that the complex L• is a resolution of a sheaf A, so that H0 = A and
H

q = 0 for q > 1. Then we find

Ep,02 = Hp(X,A), Ep,q2 = 0 for q > 1.

It follows that the first spectral sequence collapses in E•2 , and 10.12 implies

(12.8) Hl(X,L•) ≃ H l(X,A).

• Now, assume that the sheaves Lq are acyclic. The second spectral sequence gives

Ẽp,02 = Hp
(
L

•(X)
)
, Ẽp,q2 = 0 for q > 1,

Hl(X,L•) ≃ H l
(
L

•(X)
)
.(12.9)

If both conditions hold, i.e. if L• is a resolution of a sheaf A by acyclic sheaves,
then (12.8) and (12.9) can be combined to obtain a new proof of the De Rham-Weil
isomorphism H l(X,A) ≃ H l

(
L

•(X)
)
.

§ 13. Direct Images and the Leray Spectral Sequence

§ 13.A. Direct Images of a Sheaf

Let X, Y be topological spaces, F : X → Y a continuous map and A a sheaf of abelian
groups on X . Recall that the direct image F⋆A is the presheaf on Y defined for any open
set U ⊂ Y by

(13.1) (F⋆A)(U) = A
(
F−1(U)

)
.

Axioms (II-2.4′ and (II-2.4′′) are clearly satisfied, thus F⋆A is in fact a sheaf. The
following result is obvious:

(13.2) A is flabby =⇒ F⋆A is flabby.

Every sheaf morphism ϕ : A→B induces a corresponding morphism

F⋆ϕ : F⋆A −→ F⋆B,

so F⋆ is a functor on the category of sheaves on X to the category of sheaves on Y .
This functor is exact on the left: indeed, to every exact sequence 0 → A → B → C is
associated an exact sequence

0 −→ F⋆A −→ F⋆B −→ F⋆C,

but F⋆B → F⋆C need not be onto if B → C is. All this follows immediately from
the considerations of §3. In particular, the simplicial flabby resolution (A[•], d) yields a
complex of sheaves

(13.3) 0 −→ F⋆A
[0] −→ F⋆A

[1] −→ · · · −→ F⋆A
[q] F⋆d

q

−→ F⋆A
[q+1] −→ · · · .
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(13.4) Definition. The q-th direct image of A by F is the q-th cohomology sheaf of the
sheaf complex (13.3). It is denoted

RqF⋆A = Hq(F⋆A
[•]).

As F⋆ is exact on the left, the sequence 0→ F⋆A→ F⋆A
[0] → F⋆A

[1] is exact, thus

(13.5) R0F⋆A = F⋆A.

We now compute the stalks of RqF⋆A. As the kernel or cokernel of a sheaf morphism is
obtained stalk by stalk, we have

(RqF⋆A)y = Hq
(
(F⋆A

[•])y
)
= lim−→

U∋y
Hq

(
F⋆A

[•](U)
)
.

The very definition of F⋆ and of sheaf cohomology groups implies

Hq
(
F⋆A

[•](U)
)
= Hq

(
A

[•](F−1(U))
)
= Hq

(
F−1(U),A

)
,

hence we find

(13.6) (RqF⋆A)y = lim−→
U∋y

Hq
(
F−1(U),A

)
,

i.e. RqF⋆A is the sheaf associated to the presheaf U 7→ Hq
(
F−1(U),A

)
. We must stress

here that the stronger relation RqF⋆A(U) = Hq
(
F−1(U),A

)
need not be true in general.

If the fiber F−1(y) is strongly paracompact in X and if the family of open sets F−1(U) is
a fundamental family of neighborhoods of F−1(y) (this situation occurs for example if X
and Y are locally compact spaces and F a proper map, or if F = pr1 : X = Y ×S −→ Y
where S is compact), Th. 9.10 implies the more natural relation

(13.6′) (RqF⋆A)y = Hq
(
F−1(y),A

)
.

Let 0 → A → B → C → 0 be an exact sequence of sheaves on X . Apply the long
exact sequence of cohomology on every open set F−1(U) and take the direct limit over U .
We get an exact sequence of sheaves:

(13.7) 0 −→ F⋆A −→ F⋆B −→ F⋆C −→ R1F⋆A −→ · · ·
· · · −→ RqF⋆A −→ RqF⋆B −→ RqF⋆C −→ Rq+1F⋆A −→ · · · .

§ 13.B. Leray Spectral Sequence

For any continuous map F : X → Y , the Leray spectral sequence relates the coho-
mology groups of a sheaf A on X and those of its direct images RqF⋆A on Y . Consider
the two spectral sequences E•r , Ẽ

•
r associated with the complex of sheaves L• = F⋆A

[•]

on Y , as in § 12. By definition we have Hq(L•) = RqF⋆A. By (12.5′) the second term
of the first spectral sequence is

Ep,q2 = Hp(Y,RqF⋆A),
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and this spectral sequence converges to the graded module associated to a filtration of
Hl(Y, F⋆A

[•]). On the other hand, (13.2) implies that F⋆A
[q] is flabby. Hence, the second

special case (12.9) can be applied:

Hl(Y, F⋆A
[•]) ≃ H l

(
F⋆A

[•](Y )
)
= H l

(
A

[•](X)
)
= H l(X,A).

We may conclude this discussion by the following

(13.8) Theorem. For any continuous map F : X → Y and any sheaf A of abelian
groups on X, there exists a spectral sequence whose E•2 term is

Ep,q2 = Hp(Y,RqF⋆A),

which converges to a limit term Ep,l−p∞ equal to the graded module associated with a
filtration of H l(X,A). The edge homomorphism

H l(Y, F⋆A)−→−→ El,0∞ −֒→ H l(X,A)

coincides with the composite morphism

F# : H l(Y, F⋆A)
F ⋆

−→ H l(X,F−1F⋆A)
Hl(µF )−−−→ H l(X,A)

where µF : F−1F⋆A −→ A is the canonical sheaf morphism.

Proof. Only the last statement remains to be proved. The morphism µF is defined
as follows: every element s ∈ (F−1F⋆A)x = (F⋆A)F (x) is the germ of a section s̃ ∈
F⋆A(V ) = A

(
F−1(V )

)
on a neighborhood V of F (x). Then F−1(V ) is a neighborhood

of x and we let µF s be the germ of s̃ at x.

Now, we observe that to any commutative diagram of topological spaces and contin-
uous maps is associated a commutative diagram involving the direct image sheaves and
their cohomology groups:

X
F−→ Y H l(X,A)

F#

←−H l(Y, F⋆A)
G
y yH G#

x xH#

X ′
F ′

−→ Y ′ H l(X ′, G⋆A)
F ′#

←−H l(Y ′, F ′⋆G⋆A).

There is a similar commutative diagram in which F# and F ′# are replaced by the
edge homomorphisms of the spectral sequences of F and F ′ : indeed there is a natural
morphism H−1F ′⋆B −→ F⋆G

−1
B for any sheaf B on X ′, so we get a morphism of sheaf

complexes

H−1F ′⋆(G⋆A)
[•] −→ F⋆G

−1(G⋆A)
[•] −→ F⋆(G

−1G⋆A)
[•] −→ F⋆A

[•],

hence also a morphism of the spectral sequences associated to both ends.

The special case X ′ = Y ′ = Y , G = F , F ′ = H = IdY then shows that our statement
is true for F if it is true for F ′. Hence we may assume that F is the identity map; in
this case, we need only show that the edge homomorphism of the spectral sequence of
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F⋆A
[•] = A[•] is the identity map. This is an immediate consequence of the fact that we

have a quasi-isomorphism

(· · · → 0→ A→ 0→ · · ·) −→ A[•]. �

(13.9) Corollary. If RqF⋆A = 0 for q > 1, there is an isomorphism H l(Y, F⋆A) ≃
H l(X,A) induced by F#.

Proof. We are in the special case 10.12 with Ep,q2 = 0 for q 6= 0, so

H l(Y, F⋆A) = El,02 ≃ H l(X,A). �

(13.10) Corollary. Let F : X −→ Y be a proper finite-to-one map. For any sheaf A on
X, we have RqF⋆A = 0 for q > 1 and there is an isomorphism H l(Y, F⋆A) ≃ H l(X,A).

Proof. By definition of higher direct images, we have

(RqF⋆A)y = lim−→
U∋y

Hq
(
A

[•](F−1(U)
))
.

If F−1(y) = {x1, . . . , xm}, the assumptions imply that
(
F−1(U)

)
is a fundamental system

of neighborhoods of {x1, . . . , xm}. Therefore

(RqF⋆A)y =
⊕

16j6m

Hq
(
A

[•]
xj

)
=

{⊕
Axj

for q = 0,
0 for q > 1,

and we conclude by Cor. 13.9. �

Corollary 13.10 can be applied in particular to the inclusion j : S → X of a closed
subspace S. Then j⋆A coincides with the sheaf AS defined in §3 and we get Hq(S,A) =
Hq(X,AS). It is very important to observe that the property Rqj⋆A = 0 for q > 1 need
not be true if S is not closed.

§ 13.C. Topological Dimension

As a first application of the Leray spectral sequence, we are going to derive some
properties related to the concept of topological dimension.

(13.11) Definition. A non empty space X is said to be of topological dimension 6 n if
Hq(X,A) = 0 for any q > n and any sheaf A on X. We let topdimX be the smallest
such integer n if it exists, and +∞ otherwise.

(13.12) Criterion. For a paracompact space X, the following conditions are equivalent:

a) topdimX 6 n ;

b) the sheaf Zn = ker(A[n] −→ A[n+1]) is soft for every sheaf A ;

c) every sheaf A admits a resolution 0 → L

0 → · · · → L

n → 0 of length n by soft
sheaves.
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Proof. b) =⇒ c). Take Lq = A[q] for q < n and Ln =Zn.

c) =⇒ a). For every sheaf A, the De Rham-Weil isomorphism implies Hq(X,A) =
Hq

(
L

•(X)
)
= 0 when q > n.

a) =⇒ b). Let S be a closed set and U = X r S. As in Prop. 7.12, (A[•])U is an acyclic
resolution of AU . Clearly ker

(
(A[n])U → (A[n+1])U

)
= Zn

U , so the isomorphisms (6.2)
obtained in the proof of the De Rham-Weil theorem imply

H1(X,Zn
U ) ≃ Hn+1(X,AU) = 0.

By (3.10), the restriction map Zn(X) −→Zn(S) is onto, so Zn is soft. �

(13.13) Theorem. The following properties hold:

a) If X is paracompact and if every point of X has a neighborhood of topological dimen-
sion 6 n, then topdimX 6 n.

b) If S ⊂ X, then topdimS 6 topdimX provided that S is closed or X metrizable.

c) If X, Y are metrizable spaces, one of them locally compact, then

topdim (X × Y ) 6 topdimX + topdimY.

d) If X is metrizable and locally homeomorphic to a subspace of Rn, then topdimX 6 n.

Proof. a) Apply criterion 13.12 b) and the fact that softness is a local property (Prop.
4.12).

b) When S is closed in X , the property follows from Cor. 13.10. When X is metrizable,
any subset S is strongly paracompact. Let j : S −→ X be the injection and A a sheaf
on S. As A = (j⋆A)↾S , we have

Hq(S,A) = Hq(S, j⋆A) = lim−→
Ω⊃S

Hq(Ω, j⋆A)

by Th. 9.10. We may therefore assume that S is open in X . Then every point of S has
a neighborhood which is closed in X , so we conclude by a) and the first case of b).

c) Thanks to a) and b), we may assume for example that X is compact. Let A be a
sheaf on X × Y and π : X × Y −→ Y the second projection. Set nX = topdimX ,
nY = topdimY . In virtue of (13.6′), we have Rqπ⋆A = 0 for q > nX . In the Leray
spectral sequence, we obtain therefore

Ep,q2 = Hp(Y,Rqπ⋆A) = 0 for p > nY or q > nX ,

thus Ep,l−p∞ = 0 when l > nX + nY and we infer H l(X × Y,A) = 0.

d) The unit interval [0, 1] ⊂ R is of topological dimension 6 1, because [0, 1] admits
arbitrarily fine coverings

(13.14) Uk =
(
[0, 1] ∩ ](α− 1)/k, (α+ 1)/k[

)
06α6k

for which only consecutive open sets Uα, Uα+1 intersect; we may therefore apply Prop.
5.24. Hence Rn ≃ ]0, 1[n⊂ [0, 1]n is of topological dimension 6 n by b) and c). Property
d) follows. �
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§ 14. Alexander-Spanier Cohomology

§ 14.A. Invariance by Homotopy

Alexander-Spanier’s theory can be viewed as the special case of sheaf cohomology
theory with constant coefficients, i.e. with values in constant sheaves.

(14.1) Definition. Let X be a topological space, R a commutative ring and M a R-
module. The constant sheaf X ×M is denoted M for simplicity. The Alexander-Spanier
q-th cohomology group with values in M is the sheaf cohomology group Hq(X,M).

In particular H0(X,M) is the set of locally constant functions X → M , therefore
H0(X,M) ≃ME, where E is the set of connected components of X . We will not repeat
here the properties of Alexander-Spanier cohomology groups that are formal consequences
of those of general sheaf theory, but we focus our attention instead on new features, such
as invariance by homotopy.

(14.2) Lemma. Let I denote the interval [0, 1] of real numbers. Then H0(I,M) = M
and Hq(I,M) = 0 for q 6= 0.

Proof. Let us employ alternate Čech cochains for the coverings Un defined in (13.14).
As I is paracompact, we have

Hq(I,M) = lim−→ Ȟq(Un,M).

However, the alternate Čech complex has only two non zero components and one non
zero differential:

AC0(Un,M) =
{
(cα)06α6n

}
=Mn+1,

AC1(Un,M) =
{
(cαα+1)06α6n−1

}
=Mn,

d0 : (cα) 7−→ (c′αα+1) = (cα+1 − cα).
We see that d0 is surjective, and that ker d0 =

{
(m,m, . . . ,m)

}
=M . �

For any continuous map f : X −→ Y , the inverse image of the constant sheaf M on
Y is f−1M =M . We get therefore a morphism

(14.3) f⋆ : Hq(Y,M) −→ Hq(X,M),

which, as already mentioned in §9, is compatible with cup product.

(14.4) Proposition. For any space X, the projection π : X×I −→ X and the injections
it : X −→ X × I, x 7−→ (x, t) induce inverse isomorphisms

Hq(X,M)
π⋆

−−→←−−
i⋆t

Hq(X × I,M).

In particular, i⋆t does not depend on t.

Proof. As π ◦ it = Id, we have i⋆t ◦ π⋆ = Id, so it is sufficient to check that π⋆ is an
isomorphism. However (Rqπ⋆M)x = Hq(I,M) in virtue of (13.6′), so we get

R0π⋆M =M, Rqπ⋆M = 0 for q 6= 0
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and conclude by Cor. 13.9. �

(14.4) Theorem. If f, g : X −→ Y are homotopic maps, then

f⋆ = g⋆ : Hq(Y,M) −→ Hq(X,M).

Proof. Let H : X × I −→ Y be a homotopy between f and g, with f = H ◦ i0 and
g = H ◦ i1. Proposition 14.3 implies

f⋆ = i⋆0 ◦H⋆ = i⋆1 ◦H⋆ = g⋆. �

We denote f ∼ g the homotopy equivalence relation. Two spaces X, Y are said to
be homotopically equivalent (X ∼ Y ) if there exist continuous maps u : X −→ Y ,
v : Y −→ X such that v ◦ u ∼ IdX and u ◦ v ∼ IdY . Then Hq(X,M) ≃ Hq(Y,M) and
u⋆, v⋆ are inverse isomorphisms.

(14.5) Example. A subspace S ⊂ X is said to be a (strong) deformation retract of X
if there exists a retraction of X onto S, i.e. a map r : X −→ S such that r ◦ j = IdS
(j = inclusion of S in X), which is a deformation of IdX , i.e. there exists a homotopy
H : X × I −→ X relative to S between IdX and j ◦ r :

H(x, 0) = x, H(x, 1) = r(x) on X, H(x, t) = x on S × I.

Then X and S are homotopically equivalent. In particular X is said to be contractible if
X has a deformation retraction onto a point x0. In this case

Hq(X,M) = Hq({x0},M) =

{
M for q = 0
0 for q 6= 0.

(14.6) Corollary. If X is a compact differentiable manifold, the cohomology groups
Hq(X,R) are finitely generated over R.

Proof. Lemma 6.9 shows that X has a finite covering U such that the intersections
Uα0...αq

are contractible. Hence U is acyclic, Hq(X,R) = Hq
(
C•(U, R)

)
and each Čech

cochain space is a finitely generated (free) module. �

(14.7) Example: Cohomology Groups of Spheres. Set

Sn =
{
x ∈ Rn+1 ; x20 + x21 + . . .+ x2n = 1

}
, n > 1.

We will prove by induction on n that

(14.8) Hq(Sn,M) =
{
M for q = 0 or q = n
0 otherwise.

As Sn is connected, we have H0(Sn,M) =M . In order to compute the higher cohomol-
ogy groups, we apply the Mayer-Vietoris exact sequence 3.11 to the covering (U1, U2)
with

U1 = Sn r {(−1, 0, . . . , 0)}, U2 = Sn r {(1, 0, . . . , 0)}.
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Then U1, U2 ≈ Rn are contractible, and U1 ∩ U2 can be retracted by deformation on the
equator Sn ∩ {x0 = 0} ≈ Sn−1. Omitting M in the notations of cohomology groups, we
get exact sequences

H0(U1)⊕H0(U2) −→ H0(U1 ∩ U2) −→ H1(Sn) −→ 0,(14.9′)

0 −→ Hq−1(U1 ∩ U2) −→ Hq(Sn) −→ 0, q > 2.(14.9′′)

For n = 1, U1 ∩ U2 consists of two open arcs, so we have

H0(U1)⊕H0(U2) = H0(U1 ∩ U2) =M ×M,

and the first arrow in (14.9′) is (m1, m2) 7−→ (m2 −m1, m2 −m1). We infer easily that
H1(S1) =M and that

Hq(S1) = Hq−1(U1 ∩ U2) = 0 for q > 2.

For n > 2, U1 ∩ U2 is connected, so the first arrow in (14.9′) is onto and H1(Sn) = 0.
The second sequence (14.9′′) yields Hq(Sn) ≃ Hq−1(Sn−1). An induction concludes the
proof. �

§ 14.B. Relative Cohomology Groups and Excision Theorem

LetX be a topological space and S a subspace. We denote byM [q](X,S) the subgroup
of sections u ∈M [q](X) such that u(x0, . . . , xq) = 0 when

(x0, . . . , xq) ∈ Sq, x1 ∈ V (x0), . . . , xq ∈ V (x0, . . . , xq−1).

ThenM [•](X,S) is a subcomplex ofM [•](X) and we define the relative cohomology group
of the pair (X,S) with values in M as

(14.10) Hq(X,S ; M) = Hq
(
M [•](X,S)

)
.

By definition of M [q](X,S), there is an exact sequence

(14.11) 0 −→M [q](X,S) −→M [q](X) −→ (M↾S)
[q](S) −→ 0.

The reader should take care of the fact that (M↾S)
[q](S) does not coincide with the

module of sectionsM [q](S) of the sheafM [q] on X , except if S is open. The snake lemma
shows that there is an “exact sequence of the pair”:

(14.12) Hq(X,S ; M)→ Hq(X,M)→ Hq(S,M)→ Hq+1(X,S ; M) · · · .

We have in particular H0(X,S ; M) =ME, where E is the set of connected components
of X which do not meet S. More generally, for a triple (X,S, T ) with X ⊃ S ⊃ T , there
is an “exact sequence of the triple”:

0 −→M [q](X,S) −→M [q](X, T ) −→M [q](S, T ) −→ 0,(14.12′)

Hq(X,S ;M) −→ Hq(X, T ; M) −→ Hq(S, T ; M) −→ Hq+1(X,S ; M).
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The definition of the cup product in (8.2) shows that α ` β vanishes on S ∪ S′ if α, β
vanish on S, S′ respectively. Therefore, we obtain a bilinear map

(14.13) Hp(X,S ; M)×Hq(X,S′ ; M ′) −→ Hp+q(X,S ∪ S′ ; M ⊗M ′).

If f : (X,S) −→ (Y, T ) is a morphism of pairs, i.e. a continuous map X → Y such that
f(S) ⊂ T , there is an induced pull-back morphism

(14.14) f⋆ : Hq(Y, T ; M) −→ Hq(X,S ; M)

which is compatible with the cup product. Two morphisms of pairs f, g are said to be
homotopic when there is a pair homotopy H : (X × I, S × I) −→ (Y, T ). An application
of the exact sequence of the pair shows that

π⋆ : Hq(X,S ; M) −→ Hq(X × I, S × I ; M)

is an isomorphism. It follows as above that f⋆ = g⋆ as soon as f, g are homotopic.

(14.15) Excision theorem. For subspaces T ⊂ S◦ of X, the restriction morphism
Hq(X,S ; M) −→ Hq(X r T, S r T ; M) is an isomorphism.

Proof. Under our assumption, it is not difficult to check that the surjective restriction
map M [q](X,S) −→ M [q](X r T, S r T ) is also injective, because the kernel consists of
sections u ∈ M [q](X) such that u(x0, . . . , xq) = 0 on (X r T )q+1 ∪ Sq+1, and this set is
a neighborhood of the diagonal of Xq+1. �

(14.16) Proposition. If S is open or strongly paracompact in X, the relative cohomology
groups can be written in terms of cohomology groups with supports in X r S :

Hq(X,S ; M) ≃ Hq
XrS(X,M).

In particular, if X r S is relatively compact in X, we have

Hq(X,S ; M) ≃ Hq
c (X r S,M).

Proof. We have an exact sequence

(14.17) 0 −→M
[•]
XrS(X) −→M [•](X) −→M [•](S) −→ 0

where M
[•]
XrS(X) denotes sections with support in X r S. If S is open, then M [•](S) =

(M↾S)
[•](S), hence M

[•]
XrS(X) = M [•](X,S) and the result follows. If S is strongly

paracompact, Prop. 4.7 and Th. 9.10 show that

Hq
(
M [•](S)

)
= Hq

(
lim−→
Ω⊃S

M [•](Ω)
)
= lim−→

Ω⊃S
Hq(Ω,M) = Hq(S,M↾S).

If we consider the diagram

0 −→ M
[•]
XrS(X) −→ M [•](X) −→ M [•](S) −→ 0

y y Id
y ↾ S

0 −→ M [•](X,S) −→ M [•](X) −→ (M↾S)
[•](S) −→ 0
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we see that the last two vertical arrows induce isomorphisms in cohomology. Therefore,
the first one also does. �

(14.18) Corollary. Let X, Y be locally compact spaces and f, g : X → Y proper maps.
We say that f, g are properly homotopic if they are homotopic through a proper homotopy
H : X × I −→ Y . Then

f⋆ = g⋆ : Hq
c (Y,M) −→ Hq

c (X,M).

Proof. Let X̂ = X ∪ {∞}, Ŷ = Y ∪ {∞} be the Alexandrov compactifications of X , Y .
Then f, g,H can be extended as continuous maps

f̂ , ĝ : X̂ −→ Ŷ , Ĥ : X̂ × I −→ Ŷ

with f̂(∞) = ĝ(∞) = H(∞, t) = ∞, so that f̂ , ĝ are homotopic as maps (X̂,∞) −→
(Ŷ ,∞). Proposition 14.16 implies Hq

c (X,M) = Hq(X̃,∞ ; M) and the result follows.
�

§ 15. Künneth Formula

§ 15.A. Flat Modules and Tor Functors

The goal of this section is to investigate homological properties related to tensor
products. We work in the category of modules over a commutative ring R with unit.
All tensor products appearing here are tensor products over R. The starting point is
the observation that tensor product with a given module is a right exact functor: if
0→ A→ B → C → 0 is an exact sequence and M a R-module, then

A⊗M −→ B ⊗M −→ C ⊗M −→ 0

is exact, but the map A ⊗M −→ B ⊗M need not be injective. A counterexample is
given by the sequence

0 −→ Z
2×−→ Z −→ Z/2Z −→ 0 over R = Z

tensorized by M = Z/2Z. However, the injectivity holds if M is a free R-module. More
generally, one says that M is a flat R-module if the tensor product by M preserves
injectivity, or equivalently, if ⊗M is a left exact functor.

A flat resolution C• of a R-module A is a homology exact sequence

· · · −→ Cq −→ Cq−1 −→ · · · −→ C1 −→ C0 −→ A −→ 0

where Cq are flat R-modules and Cq = 0 for q < 0. Such a resolution always exists
because every module A is a quotient of a free module C0. Inductively, we take Cq+1 to
be a free module such that ker(Cq → Cq−1) is a quotient of Cq+1. In terms of homology
groups, we have H0(C•) = A and Hq(C•) = 0 for q 6= 0. Given R-modules A,B and free
resolutions d′ : C• −→ A, d′′ : D• −→ B, we consider the double homology complex

Kp,q = Cp ⊗Dq, d = d′ ⊗ Id+(−1)p Id⊗d′′
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and the associated first and second spectral sequences. Since Cp is free, we have

E1
p,q = Hq(Cp ⊗D•) =

{
Cp ⊗B for q = 0,
0 for q 6= 0.

Similarly, the second spectral sequence also collapses and we have

Hl(K•) = Hl(C• ⊗B) = Hl(A⊗D•).

This implies in particular that the homology groups Hl(K•) do not depend on the choice
of the resolutions C• or D•.

(15.1) Definition. The q-th torsion module of A and B is

Torq(A,B) = Hq(K•) = Hq(C• ⊗B) = Hq(A⊗D•).

Since the definition of K• is symmetric with respect to A, B, we have Torq(A,B) ≃
Torq(B,A). By the right-exactness of ⊗B, we find in particular Tor0(A,B) = A ⊗ B.
Moreover, if B is flat, ⊗B is also left exact, thus Torq(A,B) = 0 for all q > 1 and all
modules A. If 0 → A → A′ → A′′ → 0 is an exact sequence, there is a corresponding
exact sequence of homology complexes

0 −→ A⊗D• −→ A′ ⊗D• −→ A′′ ⊗D• −→ 0,

thus a long exact sequence

(15.2)
−→ Torq(A,B)−→ Torq(A

′, B)−→ Torq(A
′′, B)−→ Torq−1(A,B)

· · ·−→ A⊗B −→ A′ ⊗B −→ A′′ ⊗B −→ 0.

It follows that B is flat if and only if Tor1(A,B) = 0 for every R-module A.

Suppose now that R is a principal ring. Then every module A has a free resolution
0→ C1 → C0 → A→ 0 because the kernel of any surjective map C0 → A is free (every
submodule of a free module is free). It follows that one always has Torq(A,B) = 0 for
q > 2. In this case, we denote Tor1(A,B) = A ⋆ B and call it the torsion product of A
and B. The above exact sequence (15.2) reduces to

(15.3) 0→ A ⋆ B → A′ ⋆ B → A′′ ⋆ B → A⊗B → A′ ⊗B → A′′ ⊗B → 0.

In order to compute A ⋆ B, we may restrict ourselves to finitely generated modules,
because every module is a direct limit of such modules and the ⋆ product commutes with
direct limits. Over a principal ring R, every finitely generated module is a direct sum of
a free module and of cyclic modules R/aR. It is thus sufficient to compute R/aR⋆R/bR.
The obvious free resolution R

a×−→ R of R/aR shows that R/aR ⋆ R/bR is the kernel of
the map R/bR

a×−→ R/bR. Hence

(15.4) R/aR ⋆ R/bR ≃ R/(a ∧ b)R

where a∧b denotes the greatest common divisor of a and b. It follows that a module B is
flat if and only if it is torsion free. If R is a field, every R-module is free, thus A⋆B = 0
for all A and B.
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§ 15.B. Künneth and Universal Coefficient Formulas

The algebraic Künneth formula describes the cohomology groups of the tensor product
of two differential complexes.

(15.5) Algebraic Künneth formula. Let (K•, d′), (L•, d′′) be complexes of R-modules
and (K⊗L)• the simple complex associated to the double complex (K⊗L)p,q = Kp⊗Lq.
If K• or L• is torsion free, there is a split exact sequence

0→
⊕

p+q=l

Hp(K•)⊗Hq(L•)
µ→ H l

(
(K ⊗ L)•

)
→

⊕

p+q=l+1

Hp(K•)⋆ Hq(L•)

→ 0

where the map µ is defined by µ({kp}×{lq}) = {kp⊗ lq} for all cocycles {kp} ∈ Hp(K•),
{lq} ∈ Hq(L•).

(15.6) Corollary. If R is a field, or if one of the graded modules H•(K•), H•(L•) is
torsion free, then

H l
(
(K ⊗ L)•

)
≃

⊕

p+q=l

Hp(K•)⊗Hq(L•).

Proof. Assume for example that K• is torsion free. There is a short exact sequence of
complexes

0 −→ Z• −→ K•
d′−→ B•+1 −→ 0

where Z•, B• ⊂ K• are respectively the graded modules of cocycles and coboundaries
in K•, considered as subcomplexes with zero differential. As B•+1 is torsion free, the
tensor product of the above sequence with L• is still exact. The corresponding long exact
sequence for the associated simple complexes yields:

H l
(
(B ⊗ L)•

)
−→ H l

(
(Z ⊗ L)•

)
−→ H l

(
(K ⊗ L)•

) d′−→ H l+1
(
(B ⊗ L)•

)

−→ H l+1
(
(Z ⊗ L)•

)
· · · .(15.7)

The first and last arrows are connecting homomorphisms; in this situation, they are easily
seen to be induced by the inclusion B• ⊂ Z•. Since the differential of Z• is zero, the
simple complex (Z ⊗ L)• is isomorphic to the direct sum

⊕
p Z

p ⊗ L•−p, where Zp is
torsion free. Similar properties hold for (B ⊗ L)•, hence

H l
(
(Z ⊗ L)•

)
=

⊕

p+q=l

Zp ⊗Hq(L•), H l
(
(B ⊗ L)•

)
=

⊕

p+q=l

Bp ⊗Hq(L•).

The exact sequence

0 −→ Bp −→ Zp −→ Hp(K•) −→ 0

tensorized by Hq(L•) yields an exact sequence of the type (15.3):

0→ Hp(K•) ⋆ Hq(L•)→ Bp⊗Hq(L•)→ Zp ⊗Hq(L•)

→ Hp(K•)⊗Hq(L•)→ 0.
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By the above equalities, we get

0 −→
⊕

p+q=l

Hp(K•) ⋆ Hq(L•) −→ H l
(
(B ⊗ L)•

)
−→ H l

(
(Z ⊗ L)•

)

−→
⊕

p+q=l

Hp(K•)⊗Hq(L•) −→ 0.

In our initial long exact sequence (15.7), the cokernel of the first arrow is thus
⊕

p+q=l

Hp(K•)⊗Hq(L•)

and the kernel of the last arrow is the torsion sum
⊕

p+q=l+1H
p(K•) ⋆ Hq(L•). This

gives the exact sequence of the lemma. We leave the computation of the map µ as an
exercise for the reader. The splitting assertion can be obtained by observing that there
always exists a torsion free complex K̃• that splits (i.e. Z̃• ⊂ K̃• splits), and a morphism

K̃• −→ K• inducing an isomorphism in cohomology; then the projection K̃• −→ Z̃•

yields a projection

H l
(
(K̃ ⊗ L)•

)
−→ H l

(
(Z̃ ⊗ L)•

)
≃

⊕

p+q=l

Z̃p ⊗Hq(L•)

−→
⊕

p+q=l

Hp(K̃•)⊗Hq(L•).

To construct K̃•, let Z̃• −→ Z• be a surjective map with Z̃• free, B̃• the inverse image of
B• in Z̃• and K̃• = Z̃•⊕ B̃•+1, where the differential K̃• −→ K̃•+1 is given by Z̃• −→ 0
and B̃•+1 ⊂ Z̃•+1 ⊕ 0 ; as B̃• is free, the map B̃•+1 −→ B•+1 can be lifted to a map
B̃•+1 −→ K•, and this lifting combined with the composite Z̃• → Z• ⊂ K• yields the
required complex morphism K̃• = Z̃• ⊕ B̃•+1 −→ K•. �

(15.8) Universal coefficient formula. Let K• be a complex of R-modules and M a
R-module such that either K• or M is torsion free. Then there is a split exact sequence

0 −→ Hp(K•)⊗M −→ Hp(K• ⊗M) −→ Hp+1(K•) ⋆ M −→ 0.

Indeed, this is a special case of Formula 15.5 when the complex L• is reduced to
one term L0 = M . In general, it is interesting to observe that the spectral sequence of
K• ⊗ L• collapses in E2 if K• is torsion free: Hk

(
(K ⊗ L)•

)
is in fact the direct sum of

the terms Ep,q2 = Hp
(
K• ⊗Hq(L•)

)
thanks to (15.8).

§ 15.C. Künneth Formula for Sheaf Cohomology

Here we apply the general algebraic machinery to compute cohomology groups over
a product space X × Y . The main argument is a combination of the Leray spectral
sequence with the universal coefficient formula for sheaf cohomology.

(15.9) Theorem. Let A be a sheaf of R-modules over a topological space X and M a
R-module. Assume that either A or M is torsion free and that either X is compact or
M is finitely generated. Then there is a split exact sequence

0 −→ Hp(X,A)⊗M −→ Hp(X,A⊗M) −→ Hp+1(X,A) ⋆M −→ 0.
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Proof. If M is finitely generated, we get (A ⊗M)[•](X) = A[•](X) ⊗M easily, so the
above exact sequence is a consequence of Formula 15.8. If X is compact, we may consider
Čech cochains Cq(U,A⊗M) over finite coverings. There is an obvious morphism

Cq(U,A)⊗M −→ Cq(U,A⊗M)

but this morphism need not be surjective nor injective. However, since

(A⊗M)x = Ax ⊗M = lim−→
V ∋x

A(V )⊗M,

the following properties are easy to verify:

a) If c ∈ Cq(U,A ⊗ M), there is a refinement V of U and ρ : V −→ U such that
ρ⋆c ∈ Cq(V,A⊗M) is in the image of Cq(V,A)⊗M .

b) If a tensor t ∈ Cq(U,A)⊗M is mapped to 0 in Cq(U,A⊗M), there is a refinement
V of U such that ρ⋆t ∈ Cq(V,A)⊗M equals 0.

From a) and b) it follows that

Ȟq(X,A⊗M) = lim−→
U

Hq
(
C•(U,A⊗M)

)
= lim−→

U

Hq
(
C•(U,A)⊗M

)

and the desired exact sequence is the direct limit of the exact sequences of Formula 15.8
obtained for K• = C•(U,A). �

(15.10) Theorem (Künneth). Let A and B be sheaves of R-modules over topological
spaces X and Y . Assume that A is torsion free, that Y is compact and that either X is
compact or the cohomology groups Hq(Y,B) are finitely generated R-modules. There is
a split exact sequence

0 −→
⊕

p+q=l

Hp(X,A)⊗Hq(Y,B)
µ−→ H l(X × Y,A×B)

−→
⊕

p+q=l+1

Hp(X,A) ⋆ Hq(Y,B) −→ 0

where µ is the map given by the cartesian product
⊕
αp ⊗ βq 7−→

∑
αp × βq.

Proof. We compute H l(X,A×B) by means of the Leray spectral sequence of the pro-
jection π : X × Y −→ X . This means that we are considering the differential sheaf
L

q = π⋆(A×B)[q] and the double complex

Kp,q = (Lq)[p](X).

By (12.5′) we have KE
p,q
2 = Hp

(
X,Hq(L•)

)
. As Y is compact, the cohomology sheaves

H

q(L•) = Rqπ⋆(A×B) are given by

Rqπ⋆(A×B)x=H
q({x} × Y,A×B↾{x}×Y )=H

q(Y,Ax ⊗B)=Ax ⊗Hq(Y,B)
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thanks to the compact case of Th. 15.9 where M = Ax is torsion free. We obtain
therefore

Rqπ⋆(A×B) = A⊗Hq(Y,B),

KE
p,q
2 = Hp

(
X,A⊗Hq(Y,B)

)
.

Theorem 15.9 shows that the E2-term is actually given by the desired exact sequence,
but it is not a priori clear that the spectral sequence collapses in E2. In order to check
this, we consider the double complex

Cp,q = A[p](X)⊗B[q](Y )

and construct a natural morphism C•,• −→ K•,•. We may consider the set Kp,q =(
π⋆(A×B)[q]

)[p]
(X) as the set of equivalence classes of functions

h
(
ξ0, . . . , ξp) ∈ π⋆(A×B)

[q]
ξp

= lim−→ (A×B)[q]
(
π−1

(
V (ξp)

))

or more precisely

h
(
ξ0, . . . , ξp ; (x0, y0), . . . , (xq, yq)

)
∈ Axq

⊗Byq with

ξ0 ∈ X, ξj ∈ V (ξ0, . . . , ξj−1), 1 6 j 6 p,

(x0, y0) ∈ V (ξ0, . . . , ξp)× Y,
(xj, yj) ∈ V

(
ξ0, . . . , ξp ; (x0, y0), . . . , (xj−1, yj−1)

)
, 1 6 j 6 q.

Then f ⊗ g ∈ Cp,q is mapped to h ∈ Kp,q by the formula

h
(
ξ0, . . . , ξp ; (x0, y0), . . . , (xq, yq)

)
= f(ξ0, . . . , ξp)(xq)⊗ g(y0, . . . , yq).

As A[p](X) is torsion free, we find

CE
p,q
1 = A[p](X)⊗Hq(Y,B).

Since either X is compact or Hq(Y,B) finitely generated, Th. 15.9 yields

CE
p,q
2 = Hp

(
X,A⊗Hq(Y,B)

)
≃ KE

p,q
2

hence H l(K•) ≃ H l(C•) and the algebraic Künneth formula 15.5 concludes the proof.
�

(15.11) Remark. The exact sequences of Th. 15.9 and of Künneth’s theorem also
hold for cohomology groups with compact support, provided that X and Y are locally
compact and A (or B) is torsion free. This is an immediate consequence of Prop. 7.12
on direct limits of cohomology groups over compact subsets.

(15.12) Corollary. When A and B are torsion free constant sheaves, e.g. A =B = Z

or R, the Künneth formula holds as soon as X or Y has the same homotopy type as a
finite cell complex.

Proof. If Y satisfies the assumption, we may suppose in fact that Y is a finite cell complex
by the homotopy invariance. Then Y is compact and H•(Y,B) is finitely generated, so
Th. 15.10 can be applied. �
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§ 16. Poincaré duality

§ 16.A. Injective Modules and Ext Functors

The study of duality requires some algebraic preliminaries on the Hom functor and
its derived functors Extq. Let R be a commutative ring with unit, M a R-module and

0 −→ A −→ B −→ C −→ 0

an exact sequence of R-modules. Then we have exact sequences

0 −→HomR(M,A) −→ HomR(M,B) −→ HomR(M,C),

HomR(A,M)←− HomR(B,M)←− HomR(C,M)←− 0,

i.e. Hom(M, •) is a covariant left exact functor and Hom(•,M) a contravariant right exact
functor. The module M is said to be projective if Hom(M, •) is also right exact, and
injective if Hom(•,M) is also left exact. Every free R-module is projective. Conversely,
if M is projective, any surjective morphism F −→ M from a free module F onto M
must split

(
IdM has a preimage in Hom(M,F )

)
; if R is a principal ring, “projective” is

therefore equivalent to “free”.

(16.1) Proposition. Over a principal ring R, a module M is injective if and only if
it is divisible, i.e. if for every x ∈ M and λ ∈ R r {0}, there exists y ∈ M such that
λy = x.

Proof. If M is injective, the exact sequence 0 −→ R
λ×−→ R −→ R/λR −→ 0 shows that

M = Hom(R,M)
λ×−→ Hom(R,M) =M

must be surjective, thus M is divisible.

Conversely, assume that R is divisible. Let f : A −→M be a morphism and B ⊃ A.
Zorn’s lemma implies that there is a maximal extension f̃ : Ã −→ M of f where A ⊂
Ã ⊂ B. If Ã 6= B, select x ∈ B r Ã and consider the ideal I of elements λ ∈ R such that
λx ∈ Ã. As R is principal we have I = λ0R for some λ0. If λ0 6= 0, select y ∈ M such
that λ0y = f̃(λ0x) and if λ0 = 0 take y arbitrary. Then f̃ can be extended to Ã + Rx
by letting f̃(x) = y. This is a contradiction, so we must have Ã = B. �

(16.2) Proposition. Every module M can be embedded in an injective module M̃ .

Proof. Assume first R = Z. Then set

M ′ = HomZ(M,Q/Z), M ′′ = HomZ(M
′,Q/Z) ⊂ Q/ZM

′

.

Since Q/Z is divisible, Q/Z and Q/ZM
′

are injective. It is therefore sufficient to show
that the canonical morphism M −→ M ′′ is injective. In fact, for any x ∈ M r {0}, the
subgroup Zx is cyclic (finite or infinite), so there is a non trivial morphism Zx −→ Q/Z,
and we can extend this morphism into a morphism u : M −→ Q/Z. Then u ∈ M ′ and
u(x) 6= 0, so M −→M ′′ is injective.

Now, for an arbitrary ring R, we set M̃ = HomZ

(
R,Q/ZM

′)
. There are R-linear

embeddings

M = HomR(R,M) −֒→ HomZ(R,M) −֒→ HomZ

(
R,Q/ZM

′)
= M̃
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and since HomR(•, M̃) ≃ HomZ

(
•,Q/ZM ′)

, it is clear that M̃ is injective over the ring R.
�

As a consequence, any module has a (cohomological) resolution by injective modules.
Let A,B be given R-modules, let d′ : B → D• be an injective resolution of B and let
d′′ : C• → A be a free (or projective) resolution of A. We consider the cohomology
double complex

Kp,q = Hom(Cq, D
p), d = d′ + (−1)p(d′′)†

(† means transposition) and the associated first and second spectral sequences. Since
Hom(•, Dp) and Hom(Cq, •) are exact, we get

Ep,01 = Hom(A,Dp), Ẽp,01 = Hom(Cp, B),

Ep,q1 = Ẽp,q1 = 0 for q 6= 0.

Therefore, both spectral sequences collapse in E1 and we get

H l(K•) = H l
(
Hom(A,D•)

)
= H l

(
Hom(C•, B)

)
;

in particular, the cohomology groups H l(K•) do not depend on the choice of the resolu-
tions C• or D•.

(16.3) Definition. The q-th extension module of A, B is

ExtqR(A,B) = Hq(K•) = Hq
(
Hom(A,D•)

)
= Hq

(
Hom(C•, B)

)
.

By the left exactness of Hom(A, •), we get in particular Ext0(A,B) = Hom(A,B).
If A is projective or B injective, then clearly Extq(A,B) = 0 for all q > 1. Any exact
sequence 0 → A → A′ → A′′ → 0 is converted into an exact sequence by Hom(•, D•),
thus we get a long exact sequence

0 −→ Hom(A′′, B) −→ Hom(A′, B) −→ Hom(A,B) −→ Ext1(A′′, B) · · ·
−→ Extq(A′′, B) −→ Extq(A′, B) −→ Extq(A,B) −→ Extq+1(A′′, B) · · ·

Similarly, any exact sequence 0→ B → B′ → B′′ → 0 yields

0 −→ Hom(A,B) −→ Hom(A,B′) −→ Hom(A,B′′) −→ Ext1(A,B) · · ·
−→ Extq(A,B) −→ Extq(A,B′) −→ Extq(A,B′′) −→ Extq+1(A,B) · · ·

Suppose now that R is a principal ring. Then the resolutions C• or D• can be taken
of length 1 (any quotient of a divisible module is divisible), thus Extq(A,B) is always
0 for q > 2. In this case, we simply denote Ext1(A,B) = Ext(A,B). When A is
finitely generated, the computation of Ext(A,B) can be reduced to the cyclic case, since
Ext(A,B) = 0 when A is free. For A = R/aR, the obvious free resolution R

a×−→R gives

(16.4) ExtR(R/aR,B) = B/aB.
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(16.5) Lemma. Let K• be a homology complex and let M →M• be an injective resolu-
tion of a R-moduleM . Let L• be the simple complex associated to Lp,q = HomR(Kq,M

p).
There is a split exact sequence

0 −→ Ext
(
Hq−1(K•),M

)
−→ Hq(L•) −→ Hom

(
Hq(K•),M

)
−→ 0.

Proof. As the functor HomR(•,Mp) is exact, we get

LE
p,q
1 = Hom

(
Hq(K•),M

p
)
,

LE
p,q
2 =





Hom
(
Hq(K•),M

)
for p = 0,

Ext
(
Hq(K•),M

)
for p = 1,

0 for p > 2.

The spectral sequence collapses in E2, therefore we get

G0

(
Hq(L•)

)
= Hom

(
Hq(K•),M

)
,

G1

(
Hq(L•)

)
= Ext

(
Hq−1(K•),M

)

and the expected exact sequence follows. By the same arguments as at the end of the
proof of Formula 15.5, we may assume that K• is split, so that there is a projection
Kq −→ Zq. Then the composite morphism

Hom
(
Hq(K•),M

)
= Hom(Zq/Bq,M) −→ Hom(Kq/Bq,M)

⊂ Zq(L•) −→ Hq(L•)

defines a splitting of the exact sequence. �

§ 16.B. Poincaré Duality for Sheaves

Let A be a sheaf of abelian groups on a locally compact topological space X of finite
topological dimension n = topdimX . By 13.12 c), A admits a soft resolution L• of
length n. If M → M0 → M1 → 0 is an injective resolution of a R-module M , we
introduce the double complex of presheaves Fp,q

A,M defined by

(16.6) F

p,q
A,M (U) = HomR

(
L

n−q
c (U),Mp

)
,

where the restriction map Fp,q
A,M (U) −→ F

p,q
A,M (V ) is the adjoint of the inclusion map

L

n−q
c (V ) −→Ln−q

c (U) when V ⊂ U . As Ln−q is soft, any f ∈ Ln−q
c (U) can be written

as f =
∑
fα with (fα) subordinate to any open covering (Uα) of U ; it follows easily

that Fp,q
A,M satisfy axioms (II-2.4) of sheaves. The injectivity of Mp implies that Fp,q

A,M

is a flabby sheaf. By Lemma 16.5, we get a split exact sequence

0 −→ Ext
(
Hn−q+1
c (X,A),M

)
−→ Hq

(
F

•
A,M (X)

)

−→ Hom
(
Hn−q
c (X,A),M

)
−→ 0.(16.7)

This can be seen as an abstract Poincaré duality formula, relating the cohomology groups
of a differential sheaf F•

A,M “dual” of A to the dual of the cohomology with compact

support of A. In concrete applications, it still remains to compute Hq
(
F

•
A,M (X)

)
. This

can be done easily when X is a manifold and A is a constant or locally constant sheaf.
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§ 16.C. Poincaré Duality on Topological Manifolds

Here, X denotes a paracompact topological manifold of dimension n.

(16.8) Definition. Let L be a R-module. A locally constant sheaf of stalk L on X is
a sheaf A such that every point has a neighborhood Ω on which A↾Ω is R-isomorphic to
the constant sheaf L.

Thus, a locally constant sheaf A can be seen as a discrete fiber bundle over X whose
fibers are R-modules and whose transition automorphisms are R-linear. If X is locally
contractible, a locally constant sheaf of stalk L is given, up to isomorphism, by a rep-
resentation ρ : π1(X) −→ AutR(L) of the fundamental group of X , up to conjugation;
denoting by X̃ the universal covering of X , the sheaf A associated to ρ can be viewed
as the quotient of X̃ × L by the diagonal action of π1(X). We leave the reader check
himself the details of these assertions: in fact similar arguments will be explained in full
details in §V-6 when properties of flat vector bundles are discussed.

Let A be a locally constant sheaf of stalk L, let L• be a soft resolution of A and
F

p,q
A,M the associated flabby sheaves. For an arbitrary open set U ⊂ X, Formula (16.7)

gives a (non canonical) isomorphism

Hq
(
F

•
A,M (U)

)
≃ Hom

(
Hn−q
c (U,A),M

)
⊕ Ext

(
Hn−q+1
c (U,A),M

)

and in the special case q = 0 a canonical isomorphism

(16.9) H0
(
F

•
A,M (U)

)
= Hom

(
Hn
c (U,A),M

)
.

For an open subset Ω homeomorphic to Rn, we have A↾Ω ≃ L. Proposition 14.16 and
the exact sequence of the pair yield

Hq
c (Ω, L) ≃ Hq(Sn, {∞} ; L) =

{
L for q = n,
0 for q 6= n.

If Ω ≃ Rn, we find

H0
(
F

•
A,M (Ω)

)
≃ Hom(L,M), H1

(
F

•
A,M (Ω)

)
≃ Ext(L,M)

and Hq
(
F

•
A,M (Ω)

)
= 0 for q 6= 0, 1. Consider open sets V ⊂ Ω where V is a deformation

retract of Ω. Then the restriction map Hq
(
F

•
A,M (Ω)

)
−→ Hq

(
F

•
A,M (V )

)
is an isomor-

phism. Taking the direct limit over all such neighborhoods V of a given point x ∈ Ω,
we see that H0(F•

A,M ) and H1(F•
A,M ) are locally constant sheaves of stalks Hom(L,M)

and Ext(L,M), and that Hq(F•
A,M ) = 0 for q 6= 0, 1. When Ext(L,M) = 0, the complex

F

•
A,M is thus a flabby resolution of H0 = H0(F•

A,M ) and we get isomorphisms

Hq
(
F

•
A,M (X)

)
= Hq(X,H0),(16.10)

H

0(U) = H0(F•
A,M (U)

)
= Hom

(
Hn
c (U,A),M

)
.(16.11)

(16.12) Definition. The locally constant sheaf τX = H0(F•Z,Z) of stalk Z defined by

τX(U) = HomZ

(
Hn
c (U,Z),Z

)
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is called the orientation sheaf (or dualizing sheaf) of X.

This sheaf is given by a homomorphism π1(X) −→ {1,−1} ; it is not difficult to check
that τX coincides with the trivial sheaf Z if and only if X is orientable (cf. exercice 18.?).
In general, Hn

c (U,A) = Hn
c (U,Z)⊗ZA(U) for any small open set U on which A is trivial,

thus
H

0(F•
A,M ) = τX ⊗Z Hom(A,M).

A combination of (16.7) and (16.10) then gives:

(16.13) Poincaré duality theorem. Let X be a topological manifold, let A be a locally
constant sheaf over X of stalk L and let M be a R-module such that Ext(L,M) = 0.
There is a split exact sequence

0 −→ Ext
(
Hn−q+1
c (X,A),M

)
−→ Hq

(
X, τX ⊗ Hom(A,M)

)

−→ Hom
(
Hn−q
c (X,A),M

)
−→ 0.

In particular, if either X is orientable or R has characteristic 2, then

0 −→ Ext
(
Hn−q+1
c (X,R), R

)
−→ Hq(X,R) −→ Hom

(
Hn−q
c (X,R), R

)

−→ 0. �

(16.14) Corollary. Let X be a connected topological manifold, n = dimX. Then for
any R-module L

a) Hn
c (X, τX ⊗ L) ≃ L ;

b) Hn
c (X,L) ≃ L/2L if X is not orientable.

Proof. First assume that L is free. For q = 0 and A = τX ⊗ L, the Poincaré duality
formula gives an isomorphism

Hom
(
Hn
c (X, τX ⊗ L),M

)
≃ Hom(L,M)

and the isomorphism is functorial with respect to morphisms M −→M ′. Taking M = L
or M = Hn

c (X, τX ⊗ L), we easily obtain the existence of inverse morphisms

Hn
c (X, τX ⊗ L) −→ L and L −→ Hn

c (X, τX ⊗ L),

hence equality a). Similarly, for A = L we get

Hom
(
Hn
c (X,L),M

)
≃ H0

(
X, τX ⊗ Hom(L,M)

)
.

If X is non orientable, then τX is non trivial and the global sections of the sheaf τX ⊗
Hom(L,M) consist of 2-torsion elements of Hom(L,M), that is

Hom
(
Hn
c (X,L),M

)
≃ Hom(L/2L,M).

Formula b) follows. If L is not free, the result can be extended by using a free resolution
0→ L1 → L0 → L→ 0 and the associated long exact sequence. �
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(16.15) Remark. If X is a connected non compact n-dimensional manifold, it can be
proved (exercise 18.?) that Hn(X,A) = 0 for every locally constant sheaf A on X . �

Assume from now on thatX is oriented. ReplacingM by L⊗M and using the obvious
morphism M −→ Hom(L, L⊗M), the Poincaré duality theorem yields a morphism

(16.16) Hq(X,M) −→ Hom
(
Hn−q
c (X,L), L⊗M

)
,

in other words, a bilinear pairing

(16.16′) Hn−q
c (X,L)×Hq(X,M) −→ L⊗M.

(16.17) Proposition. Up to the sign, the above pairing is given by the cup product,
modulo the identification Hn

c (X,L⊗M) ≃ L⊗M .

Proof. By functoriality in L, we may assume L = R. Then we make the following special
choices of resolutions:

L

q = R[q] for q < n, L

n = ker(R[q] −→ R[q+1]),

M0 = an injective module containing M [n]
c (X)/dn−1M [n−1]

c (X).

We embed M in M0 by λ 7→ u⊗Z λ where u ∈ Z[n](X) is a representative of a generator
of Hn

c (X,Z), and we set M1 =M0/M . The projection map M0 −→M1 can be seen as
an extension of

d̃n : M [n]
c (X)/dn−1M [n−1]

c (X) −→ dnM [n]
c (X),

since Ker d̃n ≃ Hn
c (X,M) =M . The inclusion dnM

[n]
c (X) ⊂M1 can be extended into a

map π :M
[n+1]
c (X) −→M1. The cup product bilinear map

M [q](U)×R[n−q]
c (U) −→M [n]

c (X) −→M0

gives rise to a morphism M [q](U) −→ FqR,M (U) defined by

(16.18)
M [q](U)−→ Hom

(
L

n−q
c (U),M0

)
⊕Hom

(
L

n−q+1
c (U),M1

)

f 7−→ (g 7−→ f ` g) ⊕
(
h 7−→ π(f ` h)

)
.

This morphism is easily seen to give a morphism of differential sheaves M [•] −→ F•R,M ,

when M [•] is truncated in degree n, i.e. when M [n] is replaced by Ker dn. The induced
morphism

M = H0(M [•]) −→ H0(F•R,M )

is then the identity map, hence the cup product morphism (16.18) actually induces the
Poincaré duality map (16.16). �

(16.19) Remark. If X is an oriented differentiable manifold, the natural isomorphism
Hn
c (X,R) ≃ R given by 16.14 a) corresponds in De Rham cohomology to the integration

morphism f 7−→
∫
X
f , f ∈Dn(X). Indeed, by a partition of unity, we may assume that

Supp f ⊂ Ω ≃ Rn. The proof is thus reduced to the case X = Rn, which itself reduces
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to X = R since the cup product is compatible with the wedge product of forms. Let us
consider the covering U = (]k − 1, k + 1[)k∈Z and a partition of unity (ψk) subordinate
to U. The Čech differential

AC0(U,Z) −→ AC1(U,Z)

(ck) 7−→ (ck k+1) = (ck+1 − ck)

shows immediately that the generators of H1
c (R,Z) are the 1-cocycles c such that c01 =

±1 and ck k+1 = 0 for k 6= 0. By Formula (6.12), the associated closed differential form
is

f = c01ψ1dψ0 + c10ψ0dψ1,

hence f = ±1[0,1]dψ0 and f does satisfy
∫
R
f = ±1.

(16.20) Corollary. If X is an oriented C∞ manifold, the bilinear map

Hn−q
c (X,R)×Hq(X,R) −→ R, ({f}, {g}) 7−→

∫

X

f ∧ g

is well defined and identifies Hq(X,R) to the dual of Hn−q
c (X,R).
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Chapter V

Hermitian Vector Bundles

This chapter introduces the basic definitions concerning vector bundles and connections. In the first
sections, the concepts of connection, curvature form, first Chern class are considered in the framework of
differentiable manifolds. Although we are mainly interested in complex manifolds, the ideas which will
be developed in the next chapters also involve real analysis and real geometry as essential tools. In the
second part, the special features of connections over complex manifolds are investigated in detail: Chern
connections, first Chern class of type (1, 1), induced curvature forms on sub- and quotient bundles, . . . .
These general concepts are then illustrated by the example of universal vector bundles over Pn and over
Grassmannians.

§ 1. Definition of Vector Bundles

Let M be a C∞ differentiable manifold of dimension m and let K = R or K = C be
the scalar field. A (real, complex) vector bundle of rank r over M is a C∞ manifold E
together with

i) a C∞ map π : E −→M called the projection,

ii) a K-vector space structure of dimension r on each fiber Ex = π−1(x)

such that the vector space structure is locally trivial. This means that there exists an
open covering (Vα)α∈I of M and C∞ diffeomorphisms called trivializations

θα : E↾Vα
−→ Vα ×Kr, where E↾Vα

= π−1(Vα),

such that for every x ∈ Vα the map

Ex
θα−→ {x} ×Kr −→ Kr

is a linear isomorphism. For each α, β ∈ I, the map

θαβ = θα ◦ θ−1β : (Vα ∩ Vβ)×Kr −→ (Vα ∩ Vβ)×Kr

acts as a linear automorphism on each fiber {x} ×Kr. It can thus be written

θαβ(x, ξ) = (x, gαβ(x) · ξ), (x, ξ) ∈ (Vα ∩ Vβ)×Kr

where (gαβ)(α,β)∈I×I is a collection of invertible matrices with coefficients in C∞(Vα ∩
Vβ ,K), satisfying the cocycle relation

(1.1) gαβ gβγ = gαγ on Vα ∩ Vβ ∩ Vγ .
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The collection (gαβ) is called a system of transition matrices. Conversely, any collection
of invertible matrices satisfying (1.1) defines a vector bundle E, obtained by gluing the
charts Vα ×Kr via the identifications θαβ.

(1.2) Example. The product manifold E =M ×Kr is a vector bundle over M , and is
called the trivial vector bundle of rank r over M . We shall often simply denote it Kr for
brevity.

(1.3) Example. A much more interesting example of real vector bundle is the tangent
bundle TM ; if τα : Vα −→ Rn is a collection of coordinate charts on M , then θα =
π × dτα : TM↾Vα

−→ Vα × Rm define trivializations of TM and the transition matrices
are given by gαβ(x) = dταβ(x

β) where ταβ = τα ◦ τ−1β and xβ = τβ(x). The dual T ⋆M
of TM is called the cotangent bundle and the p-th exterior power ΛpT ⋆M is called the
bundle of differential forms of degree p on M .

(1.4) Definition. If Ω ⊂ M is an open subset and k a positive integer or +∞, we let
C

k(Ω, E) denote the space of Ck sections of E↾Ω, i.e. the space of Ck maps s : Ω −→ E
such that s(x) ∈ Ex for all x ∈ Ω (that is π ◦ s = IdΩ).

Let θ : E↾V −→ V × Kr be a trivialization of E. To θ, we associate the C∞ frame
(e1, . . . , er) of E↾V defined by

eλ(x) = θ−1(x, ελ), x ∈ V,

where (ελ) is the standard basis of Kr. A section s ∈ Ck(V,E) can then be represented
in terms of its components θ(s) = σ = (σ1, . . . , σr) by

s =
∑

16λ6r

σλeλ on V, σλ ∈ Ck(V,K).

Let (θα) be a family of trivializations relative to a covering (Vα) of M . Given a global
section s ∈ Ck(M,E), the components θα(s) = σα = (σα1 , . . . , σ

α
r ) satisfy the transition

relations

(1.5) σα = gαβ σ
β on Vα ∩ Vβ.

Conversely, any collection of vector valued functions σα : Vα −→ Kr satisfying the
transition relations defines a global section s of E.

More generally, we shall also consider differential forms on M with values in E. Such
forms are nothing else than sections of the tensor product bundle ΛpT ⋆M ⊗R E. We
shall write

C

k
p(Ω, E) = Ck(Ω,ΛpT ⋆M ⊗R E)(1.6)

C

k
•(Ω, E) =

⊕

06p6m

C

k
p(Ω, E).(1.7)
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§ 2. Linear Connections

A (linear) connection D on the bundle E is a linear differential operator of order 1
acting on C∞• (M,E) and satisfying the following properties:

D : C∞q (M,E) −→ C∞q+1(M,E),(2.1)

D(f ∧ s) = df ∧ s+ (−1)pf ∧Ds(2.1′)

for any f ∈ C∞p (M,K) and s ∈ C∞q (M,E), where df stands for the usual exterior
derivative of f .

Assume that θ : E↾Ω → Ω × Kr is a trivialization of E↾Ω, and let (e1, . . . , er) be the
corresponding frame of E↾Ω. Then any s ∈ C∞q (Ω, E) can be written in a unique way

s =
∑

16λ6r

σλ ⊗ eλ, σλ ∈ C∞q (Ω,K).

By axiom (2.1′) we get

Ds =
∑

16λ6r

(
dσλ ⊗ eλ + (−1)pσλ ∧Deλ

)
.

If we write Deµ =
∑

16λ6r aλµ ⊗ eλ where aλµ ∈ C∞1 (Ω,K), we thus have

Ds =
∑

λ

(
dσλ +

∑

µ

aλµ ∧ σµ
)
⊗ eλ.

Identify E↾Ω with Ω × Kr via θ and denote by d the trivial connection dσ = (dσλ) on
Ω×Kr. Then the operator D can be written

(2.2) Ds ≃θ dσ + A ∧ σ

where A = (aλµ) ∈ C∞1 (Ω,Hom(Kr,Kr)). Conversely, it is clear that any operator D
defined in such a way is a connection on E↾Ω. The matrix 1-form A will be called the

connection form of D associated to the trivialization θ. If θ̃ : E↾Ω → Ω ×Kr is another
trivialization and if we set

g = θ̃ ◦ θ−1 ∈ C∞(Ω,Gl(Kr))

then the new components σ̃ = (σ̃λ) are related to the old ones by σ̃ = gσ. Let Ã be the

connection form of D with respect to θ̃. Then

Ds ≃
θ̃
dσ̃ + Ã ∧ σ̃

Ds ≃θ g−1(dσ̃ + Ã ∧ σ̃) = g−1(d(gσ) + Ã ∧ gσ)
= dσ + (g−1Ãg + g−1dg) ∧ σ.

Therefore we obtain the gauge transformation law :

(2.3) A = g−1Ãg + g−1dg.
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§ 3. Curvature Tensor

Let us compute D2 : C∞q (M,E) → C

∞
q+2(M,E) with respect to the trivialization

θ : E↾Ω → Ω×Kr. We obtain

D2s ≃θ d(dσ +A ∧ σ) + A ∧ (dσ + A ∧ σ)
= d2σ + (dA ∧ σ −A ∧ dσ) + (A ∧ dσ + A ∧A ∧ σ)
= (dA+A ∧ A) ∧ σ.

It follows that there exists a global 2-form Θ(D) ∈ C∞2 (M,Hom(E,E)) called the cur-
vature tensor of D, such that

D2s = Θ(D) ∧ s,
given with respect to any trivialization θ by

(3.1) Θ(D) ≃θ dA+A ∧ A.

(3.2) Remark. If E is of rank r = 1, then A ∈ C∞1 (M,K) and Hom(E,E) is canonically
isomorphic to the trivial bundle M ×K, because the endomorphisms of each fiber Ex are
homotheties. With the identification Hom(E,E) = K, the curvature tensor Θ(D) can be
considered as a closed 2-form with values in K:

(3.3) Θ(D) = dA.

In this case, the gauge transformation law can be written

(3.4) A = Ã+ g−1dg, g = θ̃ ◦ θ−1 ∈ C∞(Ω,K⋆).

It is then immediately clear that dA = dÃ, and this equality shows again that dA does
not depend on θ. �

Now, we show that the curvature tensor is closely related to commutation properties
of covariant derivatives.

(3.5) Definition. If ξ is a C∞ vector field with values in TM , the covariant derivative
of a section s ∈ C∞(M,E) in the direction ξ is the section ξD · s ∈ C∞(M,E) defined
by ξD · s = Ds · ξ.

(3.6) Proposition. For all sections s ∈ C

∞(M,E) and all vector fields ξ, η ∈
C

∞(M,TM), we have

ξD · (ηD · s)− ηD · (ξD · s) = [ξ, η]D · s+Θ(D)(ξ, η) · s

where [ξ, η] ∈ C∞(M,TM) is the Lie bracket of ξ, η.

Proof. Let (x1, . . . , xm) be local coordinates on an open set Ω ⊂ M . Let θ : E↾Ω −→
Ω × Kr be a trivialization of E and let A be the corresponding connection form. If
ξ =

∑
ξj ∂/∂xj and A =

∑
Aj dxj , we find

(3.7) ξDs ≃θ (dσ +Aσ) · ξ =
∑

j

ξj

( ∂σ
∂xj

+ Aj · σ
)
.
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Now, we compute the above commutator [ξD, ηD] at a given point z0 ∈ Ω. Without
loss of generality, we may assume A(z0) = 0 ; in fact, one can always find a gauge
transformation g near z0 such that g(z0) = Id and dg(z0) = A(z0) ; then (2.3) yields

Ã(z0) = 0. If η =
∑
ηk ∂/∂xk, we find ηD · s ≃θ

∑
ηk ∂σ/∂xk at z0, hence

ηD · (ξD · s) ≃θ
∑

k

ηk
∂

∂xk

∑

j

ξj

( ∂σ
∂xj

+ Aj · σ
)
,

ξD · (ηD · s)− ηD · (ξD · s) ≃θ

≃θ
∑

j,k

(
ξk
∂ηj
∂xk
− ηk

∂ξj
∂xk

) ∂σ
∂xj

+
∑

j,k

∂Aj
∂xk

(ξjηk − ηjξk) · σ

= dσ([ξ, η]) + dA(ξ, η) · σ,

whereas Θ(D) ≃θ dA and [ξ, η]Ds ≃θ dσ([ξ, η]) at point z0. �

§ 4. Operations on Vector Bundles

Let E, F be vector bundles of rank r1, r2 over M . Given any functorial operation
on vector spaces, a corresponding operation can be defined on bundles by applying the
operation on each fiber. For example E⋆, E ⊕ F , Hom(E, F ) are defined by

(E⋆)x = (Ex)
⋆, (E ⊕ F )x = Ex ⊕ Fx, Hom(E, F )x = Hom(Ex, Fx).

The bundles E and F can be trivialized over the same covering Vα of M (otherwise take
a common refinement). If (gαβ) and (γαβ) are the transition matrices of E and F , then
for example E⊗F , ΛkE, E⋆ are the bundles defined by the transition matrices gαβ⊗γαβ ,
Λkgαβ, (g

†
αβ)
−1 where † denotes transposition.

Suppose now that E, F are equipped with connections DE , DF . Then natural con-
nections can be associated to all derived bundles. Let us mention a few cases. First, we
let

(4.1) DE⊕F = DE ⊕DF .

It follows immediately that

(4.1′) Θ(DE⊕F ) = Θ(DE)⊕Θ(DF ).

DE⊗F will be defined in such a way that the usual formula for the differentiation of a
product remains valid. For every s ∈ C∞• (M,E), t ∈ C∞• (M,F ), the wedge product s∧ t
can be combined with the bilinear map E × F −→ E ⊗ F in order to obtain a section
s ∧ t ∈ C∞(M,E ⊗ F ) of degree deg s + deg t. Then there exists a unique connection
DE⊗F such that

(4.2) DE⊗F (s ∧ t) = DEs ∧ t+ (−1)deg ss ∧DF t.

As the products s ∧ t generate C∞• (M,E ⊗ F ), the uniqueness is clear. If E, F are
trivial on an open set Ω ⊂ M and if AE , AF , are their connection 1-forms, the induced
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connection DE⊗F is given by the connection form AE ⊗ IdF +IdE ⊗AF . The existence
follows. An easy computation shows that D2

E⊗F (s ∧ t) = D2
Es ∧ t+ s ∧D2

F t, thus

(4.2′) Θ(DE⊗F ) = Θ(DE)⊗ IdF +IdE ⊗Θ(DF ).

Similarly, there are unique connections DE⋆ and DHom(E,F ) such that

(DE⋆u) · s = d(u · s)− (−1)deg uu ·DEs,(4.3)

(DHom(E,F )v) · s = DF (v · s)− (−1)deg vv ·DEs(4.4)

whenever s ∈ C∞• (M,E), u ∈ C∞• (M,E⋆), v ∈ C∞•
(
Hom(E, F )

)
. It follows that

0 = d2(u · s) =
(
Θ(DE⋆) · u

)
· s+ u ·

(
Θ(DE) · s

)
.

If † denotes the transposition operator Hom(E,E)→ Hom(E⋆, E⋆), we thus get

(4.3′) Θ(DE⋆) = −Θ(DE)
†.

With the identification Hom(E, F ) = E⋆ ⊗ F , Formula (4.2′) implies

(4.4′) Θ(DHom(E,F )) = IdE⋆ ⊗Θ(DF )−Θ(DE)
† ⊗ IdF .

Finally, ΛkE carries a natural connection DΛkE . For every s1, . . . , sk in C∞• (M,E) of
respective degrees p1, . . . , pk, this connection satisfies

DΛkE(s1 ∧ . . . ∧ sk) =
∑

16j6k

(−1)p1+...+pj−1s1 ∧ . . .DEsj . . . ∧ sk,(4.5)

Θ(DΛkE) · (s1 ∧ . . . ∧ sk) =
∑

16j6k

s1 ∧ . . . ∧Θ(DE) · sj ∧ . . . ∧ sk.(4.5′)

In particular, the determinant bundle, defined by detE = ΛrE where r is the rank of E,
has a curvature form given by

(4.6) Θ(DdetE) = TE
(
Θ(DE)

)

where TE : Hom(E,E) −→ K is the trace operator. As a conclusion of this paragraph,
we mention the following simple identity.

(4.7) Bianchi identity. DHom(E,E)

(
Θ(DE)

)
= 0.

Proof. By definition of DHom(E,E), we find for any s ∈ C∞(M,E)

DHom(E,E)

(
Θ(DE)

)
· s = DE

(
Θ(DE) · s

)
−Θ(DE) · (DEs)

= D3
Es−D3

Es = 0. �
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§ 5. Pull-Back of a Vector Bundle

Let M̃ , M be C∞ manifolds and ψ : M̃ →M a smooth map. If E is a vector bundle
on M , one can define in a natural way a C∞ vector bundle π̃ : Ẽ → M̃ and a C∞ linear
morphism Ψ : Ẽ → E such that the diagram

Ẽ
Ψ−→ Eyπ̃

yπ
M̃

ψ−→ M

commutes and such that Ψ : Ẽx −→ Eψ(x) is an isomorphism for every x ∈ M . The

bundle Ẽ can be defined by

(5.1) Ẽ = {(x̃, ξ) ∈ M̃ × E ; ψ(x̃) = π(ξ)}

and the maps π̃ and Ψ are then the restrictions to Ẽ of the projections of M̃ ×E on M̃
and E respectively.

If θα : E↾Vα
−→ Vα ×Kr are trivializations of E, the maps

θ̃α = θα ◦Ψ : Ẽ↾ψ−1(Vα) −→ ψ−1(Vα)×Kr

define trivializations of Ẽ with respect to the covering Ṽα = ψ−1(Vα) of M̃ . The corre-
sponding system of transition matrices is given by

(5.2) g̃αβ = gαβ ◦ ψ on Ṽα ∩ Ṽβ .

(5.3) Definition. Ẽ is termed the pull-back of E under the map ψ and is denoted

Ẽ = ψ⋆E.

Let D be a connection on E. If (Aα) is the collection of connection forms of D with

respect to the θα’s, one can define a connection D̃ on Ẽ by the collection of connection
forms Ãα = ψ⋆Aα ∈ C∞1

(
Ṽα,Hom(Kr,Kr)

)
, i.e. for every s̃ ∈ C∞p (Ṽα, Ẽ)

D̃s̃ ≃
θ̃α
dσ̃ + ψ⋆Aα ∧ σ̃.

Given any section s ∈ C∞p (M,E), one defines a pull back ψ⋆s which is a section in

C

∞
p (M̃, Ẽ) : for s = f ⊗ u, f ∈ C∞p (M,K), u ∈ C∞(M,E), set ψ⋆s = ψ⋆f ⊗ (u ◦ ψ).

Then we have the formula

(5.4) D̃(ψ⋆s) = ψ⋆(Ds).

Using (5.4), a simple computation yields

(5.5) Θ(D̃) = ψ⋆(Θ(D)).
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§ 6. Parallel Translation and Flat Vector Bundles

Let γ : [0, 1] −→ M be a smooth curve and s : [0, 1] → E a C∞ section of E along
γ, i.e. a C∞ map s such that s(t) ∈ Eγ(t) for all t ∈ [0, 1]. Then s can be viewed as a
section of Ẽ = γ⋆E over [0, 1]. The covariant derivative of s is the section of E along γ
defined by

(6.1)
Ds

dt
= D̃s(t) · d

dt
∈ Eγ(t),

where D̃ is the induced connection on Ẽ. If A is a connection form of D with respect to
a trivialization θ : E↾Ω −→ Ω×Kr, we have D̃s ≃θ dσ + γ⋆A · σ, i.e.

(6.2)
Ds

dt
≃θ

dσ

dt
+
(
A(γ(t)) · γ′(t)

)
· σ(t) for γ(t) ∈ Ω.

For v ∈ Eγ(0) given, the Cauchy uniqueness and existence theorem for ordinary linear
differential equations implies that there exists a unique section s of Ẽ such that s(0) = v
and Ds/dt = 0.

(6.3) Definition. The linear map

Tγ : Eγ(0) −→ Eγ(1), v = s(0) 7−→ s(1)

is called parallel translation along γ.

If γ = γ2γ1 is the composite of two paths γ1, γ2 such that γ2(0) = γ1(1), it is clear
that Tγ = Tγ2 ◦ Tγ1 , and the inverse path γ−1 : t 7→ γ(1− t) is such that Tγ−1 = T−1γ . It
follows that Tγ is a linear isomorphism from Eγ(0) onto Eγ(1).

More generally, if h :W −→M is a C∞ map from a domain W ⊂ Rp into M and if s
is a section of h⋆E, we define covariant derivatives Ds/∂tj, 1 6 j 6 p, by D̃ = h⋆D and

(6.4)
Ds

∂tj
= D̃s · ∂

∂tj
.

Since ∂/∂tj, ∂/∂tk commute and since Θ(D̃) = h⋆Θ(D), Prop. 3.6 implies

(6.5)
D

∂tj

Ds

∂tk
− D

∂tk

Ds

∂tj
= Θ(D̃)

( ∂

∂tj
,
∂

∂tk

)
· s = Θ(D)h(t)

( ∂h
∂tj

,
∂h

∂tk

)
· s(t).

(6.6) Definition. The connection D is said to be flat if Θ(D) = 0.

Assume from now on that D is flat. We then show that Tγ only depends on the
homotopy class of γ. Let h : [0, 1]× [0, 1] −→ M be a smooth homotopy h(t, u) = γu(t)
from γ0 to γ1 with fixed end points a = γu(0), b = γu(1). Let v ∈ Ea be given and
let s(t, u) be such that s(0, u) = v and Ds/∂t = 0 for all u ∈ [0, 1]. Then s is C∞ in
both variables (t, u) by standard theorems on the dependence of parameters. Moreover
(6.5) implies that the covariant derivatives D/∂t, D/∂u commute. Therefore, if we set
s′ = Ds/∂u, we find Ds′/∂t = 0 with initial condition s′(0, u) = 0 (recall that s(0, u)
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is a constant). The uniqueness of solutions of differential equations implies that s′ is
identically zero on [0, 1] × [0, 1], in particular Tγu(v) = s(1, u) must be constant, as
desired.

(6.7) Proposition. Assume that D is flat. If Ω is a simply connected open subset of
M , then E↾Ω admits a C∞ parallel frame (e1, . . . , er), in the sense that Deλ = 0 on Ω,
1 6 λ 6 r. For any two simply connected open subsets Ω,Ω′ the transition automorphism
between the corresponding parallel frames (eλ) and (e′λ) is locally constant.

The converse statement “E has parallel frames near every point implies that Θ(D) =
0 ” can be immediately verified from the equality Θ(D) = D2.

Proof. Choose a base point a ∈ Ω and define a linear isomorphism Φ : Ω× Ea −→ E↾Ω

by sending (x, v) on Tγ(v) ∈ Ex, where γ is any path from a to x in Ω (two such
paths are always homotopic by hypothesis). Now, for any path γ from a to x, we
have by construction (D/dt)Φ(γ(t), v) = 0. Set ev(x) = Φ(x, v). As γ may reach any
point x ∈ Ω with an arbitrary tangent vector ξ = γ′(1) ∈ TxM , we get Dev(x) · ξ =
(D/dt)Φ(γ(t), v)↾t=1 = 0. Hence Dev is parallel for any fixed vector v ∈ Ea ; Prop. 6.7
follows. �

Assume that M is connected. Let a be a base point and M̃ −→ M the universal
covering ofM . The manifold M̃ can be considered as the set of pairs (x, [γ]), where [γ] is
a homotopy class of paths from a to x. Let π1(M) be the fundamental group of M with

base point a, acting on M̃ on the left by [κ] · (x, [γ]) = (x, [γκ−1]). If D is flat, π1(M)
acts also on Ea by ([κ], v) 7→ Tκ(v), [κ] ∈ π1(M), v ∈ Ea, and we have a well defined
map

Ψ : M̃ × Ea −→ E, Ψ(x, [γ]) = Tγ(v).

Then Ψ is invariant under the left action of π1(M) on M̃ ×Ea defined by

[κ] ·
(
(x, [γ]), v

)
=

(
(x, [γκ−1]), Tκ(v)

)
,

therefore we have an isomorphism E ≃ (M̃ × Ea)/π1(M).

Conversely, let S be a K-vector space of dimension r together with a left action of
π1(M). The quotient E = (M̃ × S)/π1(M) is a vector bundle over M with locally
constant transition automorphisms (gαβ) relatively to any covering (Vα) of M by simply
connected open sets. The relation σα = gαβ σ

β implies dσα = gαβ dσ
β on Vα ∩ Vβ . We

may therefore define a connection D on E by letting Ds ≃θα dσα on each Vα. Then
clearly Θ(D) = 0.

§ 7. Hermitian Vector Bundles and Connections

A complex vector bundle E is said to be hermitian if a positive definite hermitian
form | |2 is given on each fiber Ex in such a way that the map E → R+, ξ 7→ |ξ|2 is
smooth. The notion of a euclidean (real) vector bundle is similar, so we leave the reader
adapt our notations to that case.

Let θ : E↾Ω −→ Ω × Cr be a trivialization and let (e1, . . . , er) be the corresponding
frame of E↾Ω. The associated inner product of E is given by a positive definite hermitian
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matrix (hλµ) with C
∞ coefficients on Ω, such that

〈eλ(x), eµ(x)〉 = hλµ(x), ∀x ∈ Ω.

When E is hermitian, one can define a natural sesquilinear map

C

∞
p (M,E)×C∞q (M,E) −→ C∞p+q(M,C)

(s, t) 7−→ {s, t}(7.1)

combining the wedge product of forms with the hermitian metric on E ; if s =
∑
σλ ⊗ eλ,

t =
∑
τµ ⊗ eµ, we let

{s, t} =
∑

16λ,µ6r

σλ ∧ τµ 〈eλ, eµ〉.

A connection D is said to be compatible with the hermitian structure of E, or briefly
hermitian, if for every s ∈ C∞p (M,E), t ∈ C∞q (M,E) we have

(7.2) d{s, t} = {Ds, t}+ (−1)p{s,Dt}.

Let (e1, . . . , er) be an orthonormal frame of E↾Ω. Denote θ(s) = σ = (σλ) and θ(t) =
τ = (τλ). Then

{s, t} = {σ, τ} =
∑

16λ6r

σλ ∧ τλ,

d{s, t} = {dσ, τ}+ (−1)p{σ, dτ}.
Therefore D↾Ω is hermitian if and only if its connection form A satisfies

{Aσ, τ}+ (−1)p{σ,Aτ} = {(A+ A⋆) ∧ σ, τ} = 0

for all σ, τ , i.e.

(7.3) A⋆ = −A or (aµλ) = −(aλµ).

This means that iA is a 1-form with values in the space Herm(Cr,Cr) of hermitian
matrices. The identity d2{s, t} = 0 implies {D2s, t}+ {s,D2t} = 0, i.e. {Θ(D) ∧ s, t}+
{s,Θ(D) ∧ t} = 0. Therefore Θ(D)⋆ = −Θ(D) and the curvature tensor Θ(D) is such
that

i Θ(D) ∈ C∞2 (M,Herm(E,E)).

(7.4) Special case. If E is a hermitian line bundle (r = 1), D↾Ω is a hermitian connec-
tion if and only if its connection form A associated to any given orthonormal frame of
E↾Ω is a 1-form with purely imaginary values.

If θ, θ̃ : E↾Ω → Ω are two such trivializations on a simply connected open subset
Ω ⊂ M , then g = θ̃ ◦ θ−1 = eiϕ for some real phase function ϕ ∈ C∞(Ω,R). The gauge
transformation law can be written

A = Ã+ i dϕ.

In this case, we see that i Θ(D) ∈ C∞2 (M,R).
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(7.5) Remark. If s, s′ ∈ C∞(M,E) are two sections of E along a smooth curve γ :
[0, 1] −→M , one can easily verify the formula

d

dt
〈s(t), s′(t)〉 = 〈Ds

dt
, s′〉+ 〈s, Ds

′

dt
〉.

In particular, if (e1, . . . , er) is a parallel frame of E along γ such that
(
e1(0), . . . , er(0)

)

is orthonormal, then
(
e1(t), . . . , er(t)

)
is orthonormal for all t. All parallel translation

operators Tγ defined in §6 are thus isometries of the fibers. It follows that E has a
flat hermitian connection D if and only if E can be defined by means of locally constant
unitary transition automorphisms gαβ, or equivalently if E is isomorphic to the hermitian

bundle (M̃×S)/π1(M) defined by a unitary representation of π1(M) in a hermitian vector
space S. Such a bundle E is said to be hermitian flat.

§ 8. Vector Bundles and Locally Free Sheaves

We denote here by E the sheaf of germs of C∞ complex functions on M . Let F −→
M be a C∞ complex vector bundle of rank r. We let F be the sheaf of germs of
C

∞ sections of F , i.e. the sheaf whose space of sections on an open subset U ⊂M is
F(U) = C∞(U, F ). It is clear that F is a E-module. Furthermore, if F↾Ω ≃ Ω × Cr is
trivial, the sheaf F↾Ω is isomorphic to Er↾Ω as a E↾Ω-module.

(8.1) Definition. A sheaf S of modules over a sheaf of rings R is said to be locally free
of rank k if every point in the base has a neighborhood Ω such that S↾Ω is R-isomorphic
to Rk

↾Ω.

Suppose that S is a locally free E-module of rank r. There exists a covering (Vα)α∈I
of M and sheaf isomorphisms

θα : S↾Vα
−→ Er↾Vα

.

Then we have transition isomorphisms gαβ = θα ◦θ−1β : Er → Er defined on Vα∩Vβ , and
such an isomorphism is the multiplication by an invertible matrix withC∞ coefficients on
Vα∩Vβ . The concepts of vector bundle and of locally free E-module are thus completely
equivalent.

Assume now that F −→M is a line bundle (r = 1). Then every collection of transition
automorphisms g = (gαβ) defines a Čech 1-cocycle with values in the multiplicative sheaf
E

⋆ of invertible C∞ functions on M . In fact the definition of the Čech differential (cf.
(IV-5.1)) gives (δg)αβγ = gβγg

−1
αγ gαβ, and we have δg = 1 in view of (1.1). Let θ′α

be another family of trivializations and (g′αβ) the associated cocycle (it is no loss of
generality to assume that both are defined on the same covering since we may otherwise
take a refinement). Then we have

θ′α ◦ θ−1α : Vα × C −→ Vα × C, (x, ξ) 7−→ (x, uα(x)ξ), uα ∈ E⋆(Vα).

It follows that gαβ = g′αβu
−1
α uβ, i.e. that the Čech 1-cocycles g, g′ differ only by the Čech

1-coboundary δu. Therefore, there is a well defined map which associates to every line
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bundle F overM the Čech cohomology class {g} ∈ H1(M,E⋆) of its cocycle of transition
automorphisms. It is easy to verify that the cohomology classes associated to two line
bundles F, F ′ are equal if and only if these bundles are isomorphic: if g = g′ · δu, then
the collection of maps

F↾Vα

θα−→ Vα × C −→ Vα × C
θ′−1
α−→ F ′↾Vα

(x, ξ) 7−→ (x, uα(x)ξ)

defines a global isomorphism F → F ′. It is clear that the multiplicative group structure
on H1(M,E⋆) corresponds to the tensor product of line bundles (the inverse of a line
bundle being given by its dual). We may summarize this discussion by the following:

(8.2) Theorem. The group of isomorphism classes of complex C∞ line bundles is in
one-to-one correspondence with the Čech cohomology group H1(M,E⋆).

§ 9. First Chern Class

Throughout this section, we assume that E is a complex line bundle (that is, rkE =
r = 1). Let D be a connection on E. By (3.3), Θ(D) is a closed 2-form on M . Moreover,
if D′ is another connection on E, then (2.2) shows that D′ = D + Γ ∧ • where Γ ∈
C

∞
1 (M,C). By (3.3), we get

(9.1) Θ(D′) = Θ(D) + dΓ.

This formula shows that the De Rham class {Θ(D)} ∈ H2
DR(M,C) does not depend

on the particular choice of D. If D is chosen to be hermitian with respect to a given
hermitian metric on E (such a connection can always be constructed by means of a
partition of unity) then iΘ(D) is a real 2-form, thus {i Θ(D)} ∈ H2

DR(M,R). Consider
now the one-to-one correspondence given by Th. 8.2:

{isomorphism classes of line bundles} −→ H1(M,E⋆)

class {E} defined by the cocycle (gαβ) 7−→ class of (gαβ).

Using the exponential exact sequence of sheaves

0 −→ Z −→ E −→ E⋆ −→ 1

f 7−→ e2πif

and the fact that H1(M,E) = H2(M,E) = 0, we obtain:

(9.2) Theorem and Definition. The coboundary morphism

H1(M,E⋆)
∂−→ H2(M,Z)

is an isomorphism. The first Chern class of a line bundle E is the image c1(E) in
H2(M,Z) of the Čech cohomology class of the 1-cocycle (gαβ) associated to E :

(9.3) c1(E) = ∂{(gαβ)}.
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Consider the natural morphism

(9.4) H2(M,Z) −→ H2(M,R) ≃ H2
DR(M,R)

where the isomorphism ≃ is that given by the De Rham-Weil isomorphism theorem and
the sign convention of Formula (IV-6.11).

(9.5) Theorem. The image of c1(E) in H2
DR(M,R) under (9.4) coincides with the De

Rham cohomology class { i
2πΘ(D)} associated to any (hermitian) connection D on E.

Proof. Choose an open covering (Vα)α∈I of M such that E is trivial on each Vα, and
such that all intersections Vα∩Vβ are simply connected (as in §IV-6, choose the Vα to be
small balls relative to a given locally finite covering ofM by coordinate patches). Denote
by Aα the connection forms of D with respect to a family of isometric trivializations

θα : E↾Vα
−→ Vα × Cr.

Let gαβ ∈ E⋆(Vα ∩ Vβ) be the corresponding transition automorphisms. Then |gαβ| = 1,
and as Vα∩Vβ is simply connected, we may choose real functions uαβ ∈ E(Vα∩Vβ) such
that

gαβ = exp(2πi uαβ).

By definition, the first Chern class c1(E) is the Čech 2-cocycle

c1(E) =∂{(gαβ)} = {(δu)αβγ)} ∈ H2(M,Z) where

(δu)αβγ :=uβγ − uαγ + uαβ.

Now, if Eq (resp. Zq) denotes the sheaf of real (resp. real d-closed) q-forms on M , the
short exact sequences

0−→Z1−→ E1 d−→Z2−→ 0
0−→ R −→ E0 d−→Z1−→ 0

yield isomorphisms (with the sign convention of (IV-6.11))

H2
DR(M,R) := H0(M,Z2)/dH0(M,E1)

−∂−→ H1(M,Z1),(9.6)

H1(M,Z1)
∂−→ H2(M,R).(9.7)

Formula 3.4 gives Aβ = Aα+g
−1
αβdgαβ. Since Θ(D) = dAα on Vα, the image of { i

2π
Θ(D)}

under (9.6) is the Čech 1-cocycle with values in Z1

{
− i

2π
(Aβ − Aα)

}
=

{ 1

2πi
g−1αβdgαβ

}
= {duαβ}

and the image of this cocycle under (9.7) is the Čech 2-cocycle {δu} in H2(M,R). But
{δu} is precisely the image of c1(E) ∈ H2(M,Z) in H2(M,R). �

Let us assume now that M is oriented and that s ∈ C∞(M,E) is transverse to the
zero section of E, i.e. that Ds ∈ Hom(TM,E) is surjective at every point of the zero set
Z := s−1(0). Then Z is an oriented 2-codimensional submanifold ofM (the orientation of
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Z is uniquely defined by those ofM and E). We denote by [Z] the current of integration
over Z and by {[Z]} ∈ H2

DR(M,R) its cohomology class.

(9.8) Theorem. We have {[Z]} = c1(E)R.

Proof. Consider the differential 1-form

u = s−1 ⊗Ds ∈ C∞1 (M r Z,C).

Relatively to any trivialization θ of E↾Ω, one has D↾Ω ≃θ d+A ∧ •, thus

u↾Ω =
dσ

σ
+A where σ = θ(s).

It follows that u has locally integrable coefficients on M . If dσ/σ is considered as a
current on Ω, then

d
(dσ
σ

)
= d

(
σ⋆
dz

z

)
= σ⋆d

(dz
z

)
= σ⋆(2πiδ0) = 2πi[Z]

because of the Cauchy residue formula (cf. Lemma I-2.10) and because σ is a submersion
in a neighborhood of Z (cf. (I-1.19)). Now, we have dA = Θ(D) and Th. 9.8 follows from
the resulting equality:

(9.9) du = 2πi [Z] + Θ(E). �

§ 10. Connections of Type (1,0) and (0,1) over Complex Mani-
folds

Let X be a complex manifold, dimCX = n and E a C∞ vector bundle of rank r over
X ; here, E is not assumed to be holomorphic. We denote by C∞p,q(X,E) the space of
C

∞ sections of the bundle Λp,qT ⋆X ⊗E. We have therefore a direct sum decomposition

C

∞
l (X,E) =

⊕

p+q=l

C

∞
p,q(X,E).

Connections of type (1, 0) or (0, 1) are operators acting on vector valued forms, which
imitate the usual operators d′, d′′ acting on C∞p,q(X,C). More precisely, a connection of
type (1,0) on E is a differential operatorD′ of order 1 acting onC∞•,•(X,E) and satisfying
the following two properties:

D′ : C∞p,q(X,E) −→ C∞p+1,q(X,E),(10.1)

D′(f ∧ s) = d′f ∧ s+ (−1)deg ff ∧D′s(10.1′)

for any f ∈ C∞p1,q1(X,C), s ∈ C∞p2,q2(X,E). The definition of a connection D′′ of type
(0,1) is similar. If θ : E↾Ω → Ω×Cr is a C∞ trivialization of E↾Ω and if σ = (σλ) = θ(s),
then all such connections D′ and D′′ can be written

D′s ≃θ d′σ +A′ ∧ σ,(10.2′)

D′′s ≃θ d′′σ +A′′ ∧ σ(10.2′′)
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where A′ ∈ C∞1,0
(
Ω,Hom(Cr,Cr)

)
, A′′ ∈ C∞0,1

(
Ω,Hom(Cr,Cr)

)
are arbitrary forms with

matrix coefficients.

It is clear that D = D′ +D′′ is then a connection in the sense of §2 ; conversely any
connection D admits a unique decomposition D = D′+D′′ in terms of a (1,0)-connection
and a (0,1)-connection.

Assume now that E has a hermitian structure and that θ is an isometry. The connec-
tionD is hermitian if and only if the connection form A = A′+A′′ satisfies A⋆ = −A, and
this condition is equivalent to A′ = −(A′′)⋆. From this observation, we get immediately:

(10.3) Proposition. Let D′′0 be a given (0, 1)-connection on a hermitian bundle
π : E → X. Then there exists a unique hermitian connection D = D′ +D′′ such that
D′′ = D′′0 .

§ 11. Holomorphic Vector Bundles

From now on, the vector bundles E in which we are interested are supposed to have
a holomorphic structure:

(11.1) Definition. A vector bundle π : E → X is said to be holomorphic if E is a
complex manifold, if the projection map π is holomorphic and if there exists a covering
(Vα)α∈I of X and a family of holomorphic trivializations θα : E↾Vα

→ Vα × Cr.

It follows that the transition matrices gαβ are holomorphic on Vα ∩ Vβ . In complete
analogy with the discussion of §8, we see that the concept of holomorphic vector bundle
is equivalent to the concept of locally free sheaf of modules over the ring O of germs of
holomorphic functions on X . We shall denote by O(E) the associated sheaf of germs
of holomorphic sections of E. In the case r = 1, there is a one-to-one correspondence
between the isomorphism classes of holomorphic line bundles and the Čech cohomology
group H1(X,O⋆).

(11.2) Definition. The group H1(X,O⋆) of isomorphism classes of holomorphic line
bundles is called the Picard group of X.

If s ∈ C∞p,q(X,E), the components σα = (σαλ )16λ6r = θα(s) of s under θα are related
by

σα = gαβ · σβ on Vα ∩ Vβ .
Since d′′gαβ = 0, it follows that

d′′σα = gαβ · d′′σβ on Vα ∩ Vβ .

The collection of forms (d′′σα) therefore corresponds to a unique global (p, q+1)-form d′′s
such that θα(d

′′s) = d′′σα, and the operator d′′ defined in this way is a (0, 1)-connection
on E.

(11.3) Definition. The operator d′′ is called the canonical (0, 1)-connection of the
holomorphic bundle E.
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It is clear that d′′2 = 0. Therefore, for any integer p = 0, 1, . . . , n, we get a complex

C

∞
p,0(X,E)

d′′−→ · · · −→ C∞p,q(X,E)
d′′−→ C∞p,q+1(X,E) −→ · · ·

known as the Dolbeault complex of (p, •)-forms with values in E.

(11.4) Notation. The q-th cohomology group of the Dolbeault complex is denoted
Hp,q(X,E) and is called the (p, q) Dolbeault cohomology group with values in E.

The Dolbeault-Grothendieck lemma I-2.11 shows that the complex of sheaves d′′ :
C

∞
0,•(X,E) is a soft resolution of the sheaf O(E). By the De Rham-Weil isomorphism

theorem IV-6.4, we get:

(11.5) Proposition. H0,q(X,E) ≃ Hq
(
X,O(E)

)
.

Most often, we will identify the locally free sheaf O(E) and the bundle E itself ;
the above sheaf cohomology group will therefore be simply denoted Hq(X,E). Another
standard notation in analytic or algebraic geometry is:

(11.6) Notation. If X is a complex manifold, ΩpX denotes the vector bundle ΛpT ⋆X or
its sheaf of sections.

It is clear that the complex C∞p,•(X,E) is identical to the complex C∞0,•(X,Ω
p
X ⊗E),

therefore we obtain a canonical isomorphism:

(11.7) Dolbeault isomorphism. Hp,q(X,E) ≃ Hq(X,ΩpX ⊗ E).

In particular, Hp,0(X,E) is the space of global holomorphic sections of the bundle
ΩpX ⊗E.

§ 12. Chern Connection

Let π : E → X be a hermitian holomorphic vector bundle of rank r. By Prop. 10.3,
there exists a unique hermitian connection D such that D′′ = d′′.

(12.1) Definition. The unique hermitian connection D such that D′′ = d′′ is called
the Chern connection of E. The curvature tensor of this connection will be denoted by
Θ(E) and is called the Chern curvature tensor of E.

Let us compute D with respect to an arbitrary holomorphic trivialization θ : E↾Ω →
Ω×Cr. Let H = (hλµ)16λ,µ6r denote the hermitian matrix with C∞ coefficients repre-
senting the metric along the fibers of E↾Ω. For any s, t ∈ C∞•,•(X,E) and σ = θ(s), τ =
θ(t) one can write

{s, t} =
∑

λ,µ

hλµσλ ∧ τµ = σ† ∧Hτ,
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where σ† is the transposed matrix of σ. It follows that

{Ds, t}+(−1)deg s{s,Dt} = d{s, t}
= (dσ)† ∧Hτ + (−1)deg σσ† ∧ (dH ∧ τ +Hdτ)

=
(
dσ +H

−1
d′H ∧ σ

)† ∧Hτ + (−1)deg σσ† ∧ (dτ +H
−1
d′H ∧ τ)

using the fact that dH = d′H + d′H and H
†
= H. Therefore the Chern connection D

coincides with the hermitian connection defined by

Ds ≃θ dσ +H
−1
d′H ∧ σ,(12.2)

D′ ≃θ d′ +H
−1
d′H ∧ • = H

−1
d′(H•), D′′ = d′′.(12.3)

It is clear from this relations that D′2 = D′′2 = 0. Consequently D2 is given by to
D2 = D′D′′+D′′D′, and the curvature tensor Θ(E) is of type (1, 1). Since d′d′′+d′′d′ = 0,
we get

(D′D′′ +D′′D′)s ≃θ H
−1
d′H ∧ d′′σ + d′′(H

−1
d′H ∧ σ) = d′′(H

−1
d′H) ∧ σ.

(12.4) Theorem. The Chern curvature tensor is such that

i Θ(E) ∈ C∞1,1(X,Herm(E,E)).

If θ : E↾Ω → Ω × Cr is a holomorphic trivialization and if H is the hermitian matrix
representing the metric along the fibers of E↾Ω, then

i Θ(E) = i d′′(H
−1
d′H) on Ω.

Let (e1, . . . , er) be a C∞ orthonormal frame of E over a coordinate patch Ω ⊂ X
with complex coordinates (z1, . . . , zn). On Ω the Chern curvature tensor can be written

(12.5) iΘ(E) = i
∑

16j,k6n, 16λ,µ6r

cjkλµ dzj ∧ dzk ⊗ e⋆λ ⊗ eµ

for some coefficients cjkλµ ∈ C. The hermitian property of iΘ(E) means that cjkλµ =
ckjµλ.

(12.6) Special case. When r = rank E = 1, the hermitian matrix H is a positive
function which we write H = e−ϕ, ϕ ∈ C∞(Ω,R). By the above formulas we get

(12.7) D′ ≃θ d′ − d′ϕ ∧ • = eϕd′(e−ϕ•),

(12.8) iΘ(E) = id′d′′ϕ on Ω.

Especially, we see that i Θ(E) is a closed real (1,1)-form on X .
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(12.9) Remark. In general, it is not possible to find local frames (e1, . . . , er) of E↾Ω

that are simultaneously holomorphic and orthonormal. In fact, we have in this case
H = (δλµ), so a necessary condition for the existence of such a frame is that Θ(E) = 0
on Ω. Conversely, if Θ(E) = 0, Prop. 6.7 and Rem. 7.5 show that E possesses local
orthonormal parallel frames (eλ) ; we have in particularD′′eλ = 0, so (eλ) is holomorphic;
such a bundle E arising from a unitary representation of π1(X) is said to be hermitian
flat. The next proposition shows in a more local way that the Chern curvature tensor
is the obstruction to the existence of orthonormal holomorphic frames: a holomorphic
frame can be made “almost orthonormal” only up to curvature terms of order 2 in a
neighborhood of any point.

(12.10) Proposition. For every point x0 ∈ X and every coordinate system (zj)16j6n
at x0, there exists a holomorphic frame (eλ)16λ6r in a neighborhood of x0 such that

〈eλ(z), eµ(z)〉 = δλµ −
∑

16j,k6n

cjkλµ zjzk +O(|z|3)

where (cjkλµ) are the coefficients of the Chern curvature tensor Θ(E)x0
. Such a frame

(eλ) is called a normal coordinate frame at x0.

Proof. Let (hλ) be a holomorphic frame of E. After replacing (hλ) by suitable linear
combinations with constant coefficients, we may assume that

(
hλ(x0)

)
is an orthonormal

basis of Ex0
. Then the inner products 〈hλ, hµ〉 have an expansion

〈hλ(z), hµ(z)〉 = δλµ +
∑

j

(ajλµ zj + a′jλµ zj) +O(|z|2)

for some complex coefficients ajλµ, a
′
jλµ such that a′jλµ = ajµλ. Set first

gλ(z) = hλ(z)−
∑

j,µ

ajλµ zj hµ(z).

Then there are coefficients ajkλµ, a
′
jkλµ, a

′′
jkλµ such that

〈gλ(z), gµ(z)〉 = δλµ +O(|z|2)
= δλµ +

∑

j,k

(
ajkλµ zjzk + a′jkλµ zjzk + a′′jkλµzjzk

)
+O(|z|3).

The holomorphic frame (eλ) we are looking for is

eλ(z) = gλ(z)−
∑

j,k,µ

a′jkλµ zjzk gµ(z).

Since a′′jkλµ = a′jkµλ, we easily find

〈eλ(z), eµ(z)〉 = δλµ +
∑

j,k

ajkλµ zjzk +O(|z|3),

d′〈eλ, eµ〉 = {D′eλ, eµ} =
∑

j,k

ajkλµ zk dzj +O(|z|2),

Θ(E) · eλ = D′′(D′eλ) =
∑

j,k,µ

ajkλµ dzk ∧ dzj ⊗ eµ +O(|z|),

therefore cjkλµ = −ajkλµ. �
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§ 13. Lelong-Poincaré Equation and First Chern Class

Our goal here is to extend the Lelong-Poincaré equation III-2.15 to any meromorphic
section of a holomorphic line bundle.

(13.1) Definition. A meromorphic section of a bundle E → X is a section s defined
on an open dense subset of X, such that for every trivialization θα : E↾Vα

→ Vα×Cr the
components of σα = θα(s) are meromorphic functions on Vα.

Let E be a hermitian line bundle, s a meromorphic section which does not vanish
on any component of X and σ = θ(s) the corresponding meromorphic function in a
trivialization θ : E↾Ω → Ω×C. The divisor of s is the current on X defined by div s↾Ω =
div σ for all trivializing open sets Ω. One can write div s =

∑
mjZj, where the sets

Zj are the irreducible components of the sets of zeroes and poles of s (cf. § II-5). The
Lelong-Poincaré equation (II-5.32) gives

i

π
d′d′′ log |σ| =

∑
mj [Zj],

and from the equalities |s|2 = |σ|2e−ϕ and d′d′′ϕ = Θ(E) we get

(13.2) id′d′′ log |s|2 = 2π
∑

mj [Zj ]− i Θ(E).

This equality can be viewed as a complex analogue of (9.9) (except that here the hyper-
surfaces Zj are not necessarily smooth). In particular, if s is a non vanishing holomorphic
section of E↾Ω, we have

(13.3) i Θ(E) = −id′d′′ log |s|2 on Ω.

(13.4) Theorem. Let E → X be a line bundle and let s be a meromorphic section of E
which does not vanish identically on any component of X. If

∑
mjZj is the divisor of

s, then

c1(E)R =
{∑

mj [Zj]
}
∈ H2(X,R).

Proof. Apply Formula (13.2) and Th. 9.5, and observe that the bidimension (1, 1)-current
id′d′′ log |s|2 = d

(
id′′ log |s|2

)
has zero cohomology class. �

(13.5) Example. If ∆ =
∑
mjZj is an arbitrary divisor on X , we associate to ∆ the

sheaf O(∆) of germs of meromorphic functions f such that div(f) + ∆ > 0. Let (Vα) be
a covering of X and uα a meromorphic function on Vα such that div(uα) = ∆ on Vα.
Then O(∆)↾Vα

= u−1α O, thus O(∆) is a locally free O-module of rank 1. This sheaf can be
identified to the line bundle E over X defined by the cocycle gαβ := uα/uβ ∈ O⋆(Vα∩Vβ).
In fact, there is a sheaf isomorphism O(∆) −→ O(E) defined by

O(∆)(Ω) ∋ f 7−→ s ∈ O(E)(Ω) with θα(s) = fuα on Ω ∩ Vα.

The constant meromorphic function f = 1 induces a meromorphic section s of E such
that div s = div uα = ∆ ; in the special case when ∆ > 0, the section s is holomorphic
and its zero set s−1(0) is the support of ∆. By Th. 13.4, we have

(13.6) c1
(
O(∆)

)
R
= {[∆]}.
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Let us consider the exact sequence 1 → O

⋆ → M

⋆ → Div → 0 already described in
(II-5.36). There is a corresponding cohomology exact sequence

(13.7) M

⋆(X) −→ Div(X)
∂0

−→ H1(X,O⋆).

The connecting homomorphism ∂0 is equal to the map

∆ 7−→ isomorphism class of O(∆)

defined above. The kernel of this map consists of divisors which are divisors of global
meromorphic functions in M⋆(X). In particular, two divisors ∆1 and ∆2 give rise to
isomorphic line bundles O(∆1) ≃ O(∆2) if and only if ∆2 −∆1 = div(f) for some global
meromorphic function f ∈ M⋆(X) ; such divisors are called linearly equivalent. The
image of ∂0 consists of classes of line bundles E such that E has a global meromorphic
section which does not vanish on any component of X . Indeed, if s is such a section and
∆ = div s, there is an isomorphism

(13.8) O(∆)
≃−→ O(E), f 7−→ fs. �

The last result of this section is a characterization of 2-forms on X which can be
written as the curvature form of a hermitian holomorphic line bundle.

(13.9) Theorem. Let X be an arbitrary complex manifold.

a) For any hermitian line bundle E over M , the Chern curvature form i
2π

Θ(E) is a
closed real (1, 1)-form whose De Rham cohomology class is the image of an integral
class.

b) Conversely, let ω be a C∞ closed real (1, 1)-form such that {ω} ∈ H2
DR(X,R) is the

image of an integral class. Then there exists a hermitian line bundle E → X such
that i

2π
Θ(E) = ω.

Proof. a) is an immediate consequence of Formula (12.9) and Th. 9.5, so we have only to
prove the converse part b). By Prop. III-1.20, there exist an open covering (Vα) of X and
functions ϕα ∈ C∞(Vα,R) such that i

2πd
′d′′ϕα = ω on Vα. It follows that the function

ϕβ−ϕα is pluriharmonic on Vα∩Vβ. If (Vα) is chosen such that the intersections Vα∩Vβ
are simply connected, then Th. I-3.35 yields holomorphic functions fαβ on Vα ∩ Vβ such
that

2Re fαβ = ϕβ − ϕα on Vα ∩ Vβ .
Now, our aim is to prove (roughly speaking) that

(
exp(−fαβ)

)
is a cocycle in O⋆ that

defines the line bundle E we are looking for. The Čech differential (δf)αβγ = fβγ−fαγ+
fαβ takes values in the constant sheaf iR because

2Re (δf)αβγ = (ϕγ − ϕβ)− (ϕγ − ϕα) + (ϕβ − ϕα) = 0.

Consider the real 1-forms Aα = i
4π (d

′′ϕα − d′ϕα). As d′(ϕβ − ϕα) is equal to d′(fαβ +

fαβ) = dfαβ, we get

(δA)αβ = Aβ − Aα =
i

4π
d(fαβ − fαβ) =

1

2π
d Im fαβ.
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Since ω = dAα, it follows by (9.6) and (9.7) that the Čech cohomology class {δ( 1
2π Im fαβ)}

is equal to {ω} ∈ H2(X,R), which is by hypothesis the image of a 2-cocycle (nαβγ) ∈
H2(X,Z). Thus we can write

δ
( 1

2π
Im fαβ

)
= (nαβγ) + δ(cαβ)

for some 1-chain (cαβ) with values in R. If we replace fαβ by fαβ − 2πicαβ, then we can
achieve cαβ = 0, so δ(fαβ) ∈ 2πiZ and gαβ := exp(−fαβ) will be a cocycle with values in
O

⋆. Since

ϕβ − ϕα = 2Re fαβ = − log |gαβ|2,

the line bundle E associated to this cocycle admits a global hermitian metric defined in
every trivialization by the matrix Hα = (exp(−ϕα)) and therefore

i

2π
Θ(E) =

i

2π
d′d′′ϕα = ω on Vα. �

§ 14. Exact Sequences of Hermitian Vector Bundles

Let us consider an exact sequence of holomorphic vector bundles over X :

(14.1) 0 −→ S
j−→ E

g−→ Q −→ 0.

Then E is said to be an extension of S by Q. A (holomorphic, resp. C∞) splitting of
the exact sequence is a (holomorphic, resp. C∞) homomorphism h : Q −→ E which is a
right inverse of the projection E −→ Q, i.e. such that g ◦ h = IdQ.

Assume that a C∞ hermitian metric on E is given. Then S and Q can be endowed
with the induced and quotient metrics respectively. Let us denote by DE , DS , DQ the
corresponding Chern connections. The adjoint homomorphisms

j⋆ : E −→ S, g⋆ : Q −→ E

are C∞ and can be described respectively as the orthogonal projection of E onto S and
as the orthogonal splitting of the exact sequence (14.1). They yield a C∞ (in general
non analytic) isomorphism

(14.2) j⋆ ⊕ g : E
≃−→ S ⊕Q.

(14.3) Theorem. According to the C∞ isomorphism j⋆ ⊕ g, DE can be written

DE =

(
DS −β⋆
β DQ

)

where β ∈ C∞1,0
(
X,Hom(S,Q)

)
is called the second fundamental of S in E and where

β⋆ ∈ C∞0,1
(
X,Hom(Q, S)

)
is the adjoint of β. Furthermore, the following identities hold:
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a) D′Hom(S,E)j = g⋆ ◦ β, d′′j = 0 ;

b) D′Hom(E,Q)g = −β ◦ j⋆, d′′g = 0 ;

c) D′Hom(E,S)j
⋆= 0, d′′j⋆= β⋆ ◦ g ;

d) D′Hom(Q,E)g
⋆= 0, d′′g⋆= −j ◦ β⋆.

Proof. If we define ∇E ≃ DS ⊕ DQ via (14.2), then ∇E is a hermitian connection on
E. By (7.3), we have therefore DE = ∇E + Γ ∧ •, where Γ ∈ C∞1 (X,Hom(E,E)) and
Γ⋆ = −Γ. Let us write

Γ =

(
α γ

β δ

)
, α⋆ = −α, δ⋆ = −δ, γ = −β⋆,

(14.4) DE =

(
DS + α γ

β DQ + δ

)
.

For any section u ∈ C∞•,•(X,E) we have

DEu = DE(jj
⋆u+g⋆gu)

= jDS(j
⋆u)+g⋆DQ(gu)+(DHom(S,E)j)∧j⋆u+(DHom(E,Q)g

⋆)∧gu.

A comparison with (14.4) yields

DHom(S,E)j = j ◦ α+ g⋆ ◦ β,
DHom(E,Q)g

⋆ = j ◦ γ + g⋆ ◦ δ,

Since j is holomorphic, we have d′′j = j ◦ α0,1 + g⋆ ◦ β0,1 = 0, thus α0,1 = β0,1 = 0. But
α⋆ = −α, hence α = 0 and β ∈ C∞1,0(Hom(S,Q)) ; identity a) follows. Similarly, we get

DS(j
⋆u) = j⋆DEu+ (DHom(E,S)j

⋆) ∧ u,
DQ(gu) = gDEu+ (DHom(E,Q)g) ∧ u,

and comparison with (14.4) yields

DHom(E,S)j
⋆ = −α ◦ j⋆ − γ ◦ g = β⋆ ◦ g,

DHom(E,Q)g = −β ◦ j⋆ − δ ◦ g.

Since d′′g = 0, we get δ0,1 = 0, hence δ = 0. Identities b), c), d) follow from the above
computations. �

(14.5) Theorem. We have d′′(β⋆) = 0, and the Chern curvature of E is

Θ(E) =

(
Θ(S)− β⋆ ∧ β D′Hom(Q,S)β

⋆

d′′β Θ(Q)− β ∧ β⋆
)
.

Proof. A computation of D2
E yields

D2
E =

(
D2
S − β⋆ ∧ β −(DS ◦ β⋆ + β⋆ ◦DQ)

β ◦DS +DQ ◦ β D2
Q − β ∧ β⋆

)
.
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Formula (13.4) implies

DHom(S,Q)β = β ◦DS +DQ ◦ β,
DHom(Q,S)β

⋆ = DS ◦ β⋆ + β⋆ ◦DQ.

Since D2
E is of type (1,1), it follows that d′′β⋆ = D′′Hom(Q,S)β

⋆ = 0. The proof is achieved.
�

A consequence of Th. 14.5 is that Θ(S) and Θ(Q) are given in terms of Θ(E) by
the following formulas, where Θ(E)↾S, Θ(E)↾Q denote the blocks in the matrix of Θ(E)
corresponding to Hom(S, S) and Hom(Q,Q):

Θ(S) = Θ(E)↾S + β⋆ ∧ β,(14.6)

Θ(Q) = Θ(E)↾Q + β ∧ β⋆.(14.7)

By 14.3 c) the second fundamental form β vanishes identically if and only if the orthogonal
splitting E ≃ S ⊕Q is holomorphic ; then we have Θ(E) = Θ(S)⊕Θ(Q).

Next, we show that the d′′-cohomology class {β⋆}∈H0,1
(
X,Hom(Q, S)

)
characterizes

the isomorphism class of E among all extensions of S by Q. Two extensions E and F
are said to be isomorphic if there is a commutative diagram of holomorphic maps

(14.8)

0 −→ S −→ E −→ Q −→ 0∣∣∣∣ y ∣∣∣∣
0 −→ S −→ F −→ Q −→ 0

in which the rows are exact sequences. The central vertical arrow is then necessarily an
isomorphism. It is easily seen that 0 → S → E → Q→ 0 has a holomorphic splitting if
and only if E is isomorphic to the trivial extension S ⊕Q.

(14.9) Proposition. The correspondence

{E} 7−→ {β⋆}

induces a bijection from the set of isomorphism classes of extensions of S by Q onto
the cohomology group H1

(
X,Hom(Q, S)

)
. In particular {β⋆} vanishes if and only if the

exact sequence

0 −→ S
j−→ E

g−→ Q −→ 0

splits holomorphically.

Proof. a) The map is well defined, i.e. {β⋆} does not depend on the choice of the hermitian
metric on E. Indeed, a new hermitian metric produces a new C∞ splitting ĝ⋆ and a new
form β̂⋆ such that d′′ĝ⋆ = −j ◦ β̂⋆. Then gg⋆ = gĝ⋆ = IdQ, thus ĝ − g = j ◦ v for some
section v ∈ C∞

(
X,Hom(Q, S)

)
. It follows that β̂⋆ − β⋆ = −d′′v. Moreover, it is clear

that an isomorphic extension F has the same associated form β⋆ if F is endowed with
the image of the hermitian metric of E.
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b) The map is injective. Let E and F be extensions of S by Q. Select C∞ splittings
E, F ≃ S⊕Q. We endow S,Q with arbitrary hermitian metrics and E, F with the direct
sum metric. Then we have corresponding (0, 1)-connections

D′′E =

(
D′′S −β⋆
0 D′′Q

)
, D′′F =

(
D′′S −β̃⋆
0 D′′Q

)
.

Assume that β̃⋆ = β⋆ + d′′v for some v ∈ C∞
(
X,Hom(Q, S)

)
. The isomorphism Ψ :

E −→ F of class C∞ defined by the matrix

(
IdS v
0 IdQ

)
.

is then holomorphic, because the relation D′′S ◦ v − v ◦D′′Q = d′′v = β̃⋆ − β⋆ implies

D′′Hom(E,F )Ψ = D′′F ◦Ψ−Ψ ◦D′′E

=

(
D′′S −β̃⋆
0 D′′Q

)(
IdS v
0 IdQ

)
−

(
IdS v
0 IdQ

)(
D′′S −β⋆
0 D′′Q

)

=

(
0 −β̃⋆ + β⋆ + (D′′S ◦ v − v ◦D′′Q)
0 0

)
= 0.

Hence the extensions E and F are isomorphic.

c) The map is surjective. Let γ be an arbitrary d′′-closed (0, 1)-form on X with values
in Hom(Q, S). We define E as the C∞ hermitian vector bundle S⊕Q endowed with the
(0, 1)-connection

D′′E =

(
D′′S γ
0 D′′Q

)
.

We only have to show that this connection is induced by a holomorphic structure on
E ; then we will have β⋆ = −γ. However, the Dolbeault-Grothendieck lemma im-
plies that there is a covering of X by open sets Uα on which γ = d′′vα for some
vα ∈ C∞

(
Uα,Hom(Q, S)

)
. Part b) above shows that the matrix

(
IdS vα
0 IdQ

)

defines an isomorphism ψα from E↾Uα
onto the trivial extension (S ⊕ Q)↾Uα

such that
D′′Hom(E,S⊕Q)ψα = 0. The required holomorphic structure on E↾Uα

is the inverse image

of the holomorphic structure of (S⊕Q)↾Uα
by ψα ; it is independent of α because vα−vβ

and ψα ◦ ψ−1β are holomorphic on Uα ∩ Uβ. �

(14.10) Remark. If E and F are extensions of S by Q such that the corresponding

forms β⋆ and β̃⋆ = u ◦ β⋆ ◦ v−1 differ by u ∈ H0
(
X,Aut(S)

)
, v ∈ H0

(
X,Aut(Q)

)
,

it is easy to see that the bundles E and F are isomorphic. To see this, we need
only replace the vertical arrows representing the identity maps of S and Q in (14.8)
by u and v respectively. Thus, if we want to classify isomorphism classes of bun-
dles E which are extensions of S by Q rather than the extensions themselves, the
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set of classes is the quotient of H1
(
X,Hom(Q, S)

)
by the action of H0

(
X,Aut(S)

)
×

H0
(
X,Aut(Q)

)
. In particular, if S,Q are line bundles and if X is compact connected,

then H0
(
X,Aut(S)

)
, H0

(
X,Aut(Q)

)
are equal to C⋆ and the set of classes is the pro-

jective space P
(
H1(X,Hom(Q, S))

)
.

§ 15. Line Bundles O(k) over Pn

§ 15.A. Algebraic properties of O(k)

Let V be a complex vector space of dimension n+1, n > 1. The quotient topological
space P (V ) = (V r {0})/C⋆ is called the projective space of V , and can be considered as
the set of lines in V if {0} is added to each class C⋆ · x. Let

π : V r {0} −→ P (V )

x 7−→ [x] = C⋆ · x

be the canonical projection. When V = Cn+1, we simply denote P (V ) = Pn. The space
Pn is the quotient S2n+1/S1 of the unit sphere S2n+1 ⊂ Cn+1 by the multiplicative
action of the unit circle S1 ⊂ C, so Pn is compact. Let (e0, . . . , en) be a basis of V , and
let (x0, . . . , xn) be the coordinates of a vector x ∈ V r {0}. Then (x0, . . . , xn) are called
the homogeneous coordinates of [x] ∈ P (V ). The space P (V ) can be covered by the open
sets Ωj defined by Ωj = {[x] ∈ P (V ) ; xj 6= 0} and there are homeomorphisms

τj : Ωj −→ Cn

[x] 7−→ (z0, . . . , ẑj , . . . , zn), zl = xl/xj for l 6= j.

The collection (τj) defines a holomorphic atlas on P (V ), thus P (V ) = Pn is a compact
n-dimensional complex analytic manifold.

Let −V be the trivial bundle P (V )×V . We denote by O(−1) ⊂ −V the tautological line

subbundle

(15.1) O(−1) =
{
([x], ξ) ∈ P (V )× V ; ξ ∈ C · x

}

such that O(−1)[x] = C · x ⊂ V , x ∈ V r {0}. Then O(−1)↾Ωj
admits a non vanishing

holomorphic section

[x] −→ εj([x]) = x/xj = z0e0 + . . .+ ej + zj+1ej+1 + . . .+ znen,

and this shows in particular that O(−1) is a holomorphic line bundle.

(15.2) Definition. For every k ∈ Z, the line bundle O(k) is defined by

O(1) = O(−1)⋆, O(0) = P (V )× C,

O(k) = O(1)⊗k = O(1)⊗ · · · ⊗ O(1) for k > 1,

O(−k) = O(−1)⊗k for k > 1
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We also introduce the quotient vector bundle H = −V/O(−1) of rank n. Therefore we

have canonical exact sequences of vector bundles over P (V ) :

(15.3) 0→ O(−1)→ −V → H → 0, 0→ H⋆ → −V
⋆ → O(1)→ 0.

The total manifold of the line bundle O(−1) gives rise to the so called monoidal
transformation, or Hopf σ-process :

(15.4) Lemma. The holomorphic map µ : O(−1)→ V defined by

µ : O(−1) −֒→ −V = P (V )× V pr2−→ V

sends the zero section P (V )×{0} of O(−1) to the point {0} and induces a biholomorphism
of O(−1)r

(
P (V )× {0}

)
onto V r {0}.

Proof. The inverse map µ−1 : V r {0} −→ O(−1) is clearly defined by

µ−1 : x 7−→
(
[x], x

)
. �

The spaceH0(Pn,O(k)) of global holomorphic sections of O(k) can be easily computed
by means of the above map µ.

(15.5) Theorem. H0
(
P (V ),O(k)

)
= 0 for k < 0, and there is a canonical isomorphism

H0
(
P (V ),O(k)

)
≃ SkV ⋆, k > 0,

where SkV ⋆ denotes the k-th symmetric power of V ⋆.

(15.6) Corollary. We have dimH0
(
Pn,O(k)

)
=

(
n+k
n

)
for k > 0, and this group is 0

for k < 0.

Proof. Assume first that k > 0. There exists a canonical morphism

Φ : SkV ⋆ −→ H0
(
P (V ),O(k)

)
;

indeed, any element a ∈ SkV ⋆ defines a homogeneous polynomial of degree k on V
and thus by restriction to O(−1) ⊂ −V a section Φ(a) = ã of (O(−1)⋆)⊗k = O(k) ; in

other words Φ is induced by the k-th symmetric power Sk−V
⋆ → O(k) of the canonical

morphism −V
⋆ → O(1) in (15.3).

Assume now that k ∈ Z is arbitrary and that s is a holomorphic section of O(k). For
every x ∈ V r {0} we have s([x]) ∈ O(k)[x] and µ−1(x) ∈ O(−1)[x]. We can therefore
associate to s a holomorphic function on V r {0} defined by

f(x) = s([x]) · µ−1(x)k, x ∈ V r {0}.

Since dimV = n + 1 > 2, f can be extended to a holomorphic function on V and f is
clearly homogeneous of degree k (µ and µ−1 are homogeneous of degree 1). It follows
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that f = 0, s = 0 if k < 0 and that f is a homogeneous polynomial of degree k on V if
k > 0. Thus, there exists a unique element a ∈ SkV ⋆ such that

f(x) = a · xk = ã([x]) · µ−1(x)k.

Therefore Φ is an isomorphism. �

The tangent bundle on Pn is closely related to the bundles H and O(1) as shown by
the following proposition.

(15.7) Proposition. There is a canonical isomorphism of bundles

TP (V ) ≃ H ⊗ O(1).

Proof. The differential dπx of the projection π : V r {0} → P (V ) may be considered as
a map

dπx : V → T[x]P (V ).

As dπx(x) = 0, dπx can be factorized through V/C · x = V/O(−1)[x] = H[x]. Hence we
get an isomorphism

dπ̃x : H[x] −→ T[x]P (V ),

but this isomorphism depends on x and not only on the base point [x] in P (V ). The
formula π(λx+ ξ) = π(x+ λ−1ξ), λ ∈ C⋆, ξ ∈ V , shows that dπλx = λ−1dπx, hence the
map

dπ̃x ⊗ µ−1(x) : H[x] −→
(
TP (V )⊗ O(−1)

)
[x]

depends only on [x]. Therefore H ≃ TP (V )⊗ O(−1). �

§ 15.B. Curvature of the Tautological Line Bundle

Assume now that V is a hermitian vector space. Then (15.3) yields exact sequences
of hermitian vector bundles. We shall compute the curvature of O(1) and H.

Let a ∈ P (V ) be fixed. Choose an orthonormal basis (e0, e1, . . . , en) of V such that
a = [e0]. Consider the embedding

Cn −֒→ P (V ), 0 7−→ a

which sends z = (z1, . . . , zn) to [e0 + z1e1 + · · ·+ znen]. Then

ε(z) = e0 + z1e1 + · · ·+ znen

defines a non-zero holomorphic section of O(−1)↾Cn and Formula (13.3) for Θ
(
O(1)

)
=

−Θ
(
O(−1)

)
implies

Θ
(
O(1)

)
= d′d′′ log |ε(z)|2 = d′d′′ log(1 + |z|2) on Cn,(15.8)

Θ
(
O(1)

)
a
=

∑

16j6n

dzj ∧ dzj .(15.8′)
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On the other hand, Th. 14.3 and (14.7) imply

d′′g⋆ = −j ◦ β⋆, Θ(H) = β ∧ β⋆,

where j : O(−1) −→ −V is the inclusion, g⋆ : H −→ −V the orthogonal splitting and β⋆ ∈
C

∞
0,1

(
P (V ),Hom(H,O(−1))

)
. The images (ẽ1, . . . , ẽn) of e1, . . . , en in H = −V/O(−1)

define a holomorphic frame of H↾Cn and we have

g⋆ · ẽj = ej −
〈ej , ε〉
|ε|2 = ej −

zj
1 + |z|2 ε, d′′g⋆a · ẽj = −dzj ⊗ ε,

β⋆a =
∑

16j6n

dzj ⊗ ẽ⋆j ⊗ ε, βa =
∑

16j6n

dzj ⊗ ε⋆ ⊗ ẽj ,

Θ(H)a =
∑

16j,k6n

dzj ∧ dzk ⊗ ẽ⋆k ⊗ ẽj .(15.9)

(15.10) Theorem. The cohomology algebra H•(Pn,Z) is isomorphic to the quotient
ring Z[h]/(hn+1) where the generator h is given by h = c1(O(1)) in H

2(Pn,Z).

Proof. Consider the inclusion Pn−1 = P (Cn × {0}) ⊂ Pn. Topologically, Pn is obtained
from Pn−1 by attaching a 2n-cell B2n to Pn−1, via the map

f : B2n −→ Pn

z 7−→ [z, 1− |z|2], z ∈ Cn, |z| 6 1

which sends S2n−1 = {|z| = 1} onto Pn−1. That is, Pn is homeomorphic to the quotient
space of B2n∐Pn−1, where every point z ∈ S2n−1 is identified with its image f(z) ∈ Pn−1.
We shall prove by induction on n that

(15.11) H2k(Pn,Z) = Z, 0 6 k 6 n, otherwise H l(Pn,Z) = 0.

The result is clear for P0, which is reduced to a single point. For n > 1, consider
the covering (U1, U2) of Pn such that U1 is the image by f of the open ball B◦2n and
U2 = Pnr{f(0)}. Then U1 ≈ B◦2n is contractible, whereas U2 = (B2nr{0})∐S2n−1Pn−1.
Moreover U1 ∩ U2 ≈ B◦2n r {0} can be retracted on the (2n − 1)-sphere of radius 1/2.
For q > 2, the Mayer-Vietoris exact sequence IV-3.11 yields

· · · Hq−1(Pn−1,Z) −→ Hq−1(S2n−1,Z)

−→ Hq(Pn,Z) −→ Hq(Pn−1,Z) −→ Hq(S2n−1,Z) · · · .

For q = 1, the first term has to be replaced by H0(Pn−1,Z)⊕ Z, so that the first arrow
is onto. Formula (15.11) follows easily by induction, thanks to our computation of the
cohomology groups of spheres in IV-14.6.

We know that h = c1(O(1)) ∈ H2(Pn,Z). It will follow necessarily that hk is a
generator of H2k(Pn,Z) if we can prove that hn is the fundamental class in H2n(P,Z),
or equivalently that

(15.12) c1
(
O(1)

)n
R
=

∫

Pn

( i

2π
Θ(O(1))

)n
= 1.



§ 15. Line Bundles O(k) over P
n 281

This equality can be verified directly by means of (15.8), but we will avoid this com-
putation. Observe that the element e⋆n ∈

(
Cn+1

)⋆
defines a section ẽ⋆n of H0(Pn,O(1))

transverse to 0, whose zero set is the hyperplane Pn−1. As { i
2πΘ(O(1))} = {[Pn−1]} by

Th. 13.4, we get

c1(O(1)) =

∫

P1

[P0] = 1 for n = 1 and

c1(O(1))
n =

∫

Pn

[Pn−1] ∧
( i

2π
Θ(O(1))

)n−1
=

∫

Pn−1

( i

2π
Θ(O(1))

)n−1

in general. Since O(−1)↾Pn−1 can be identified with the tautological line subbundle
OPn−1(−1) over Pn−1, we have Θ(O(1))↾Pn−1 = Θ(OPn−1(1)) and the proof is achieved by
induction on n. �

§ 15.C. Tautological Line Bundle Associated to a Vector Bundle

Let E be a holomorphic vector bundle of rank r over a complex manifold X . The pro-
jectivized bundle P (E) is the bundle with Pr−1 fibers over X defined by P (E)x = P (Ex)
for all x ∈ X . The points of P (E) can thus be identified with the lines in the fibers of E.
For any trivialization θα : E↾Uα

→ Uα × Cr of E we have a corresponding trivialization

θ̃α : P (E)↾Uα
→ Uα × Pr−1, and it is clear that the transition automorphisms are the

projectivizations g̃αβ ∈ H0
(
Uα ∩ Uβ , PGL(r,C)

)
of the transition automorphisms gαβ

of E.

Similarly, we have a dual projectivized bundle P (E⋆) whose points can be identified
with the hyperplanes of E (every hyperplane F in Ex corresponds bijectively to the
line of linear forms in E⋆x which vanish on F ); note that P (E) and P (E⋆) coincide
only when r = rkE = 2. If π : P (E⋆) → X is the natural projection, there is a
tautological hyperplane subbundle S of π⋆E over P (E⋆) such that S[ξ] = ξ−1(0) ⊂ Ex
for all ξ ∈ E⋆x r {0}.[
exercise: check that S is actually locally trivial over P (E⋆)

]
.

(15.13) Definition. The quotient line bundle π⋆E/S is denoted OE(1) and is called the
tautological line bundle associated to E. Hence there is an exact sequence

0 −→ S −→ π⋆E −→ OE(1) −→ 0

of vector bundles over P (E⋆).

Note that (13.3) applied with V = E⋆x implies that the restriction of OE(1) to each
fiber P (E⋆x) ≃ Pr−1 coincides with the line bundle O(1) introduced in Def. 15.2. Theo-
rem 15.5 can then be extended to the present situation and yields:

(15.14) Theorem. For every k ∈ Z, the direct image sheaf π⋆OE(k) on X vanishes for
k < 0 and is isomorphic to O(SkE) for k > 0.

Proof. For k > 0, the k-th symmetric power of the morphism π⋆E → OE(1) gives a
morphism π⋆SkE → OE(k). This morphism together with the pull-back morphism yield
canonical arrows

ΦU : H0(U, SkE)
π⋆

−→ H0
(
π−1(U), π⋆SkE

)
−→ H0

(
π−1(U),OE(k)

)
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for any open set U ⊂ X . The right hand side is by definition the space of sections of
π⋆OE(k) over U , hence we get a canonical sheaf morphism

Φ : O(SkE) −→ π⋆OE(k).

It is easy to check that this Φ coincides with the map Φ introduced in the proof of
Cor. 15.6 when X is reduced to a point. In order to check that Φ is an isomorphism,
we may suppose that U is chosen so small that E↾U is trivial, say E↾U = U × V with
dimV = r. Then P (E⋆) = U×P (V ⋆) and OE(1) = p⋆O(1) where O(1) is the tautological
line bundle over P (V ⋆) and p : P (E⋆)→ P (V ⋆) is the second projection. Hence we get

H0
(
π−1(U),OE(k)

)
= H0

(
U × P (V ⋆), p⋆O(1)

)

= OX(U)⊗H0
(
P (V ⋆),O(1)

)

= OX(U)⊗ SkV = H0(U, SkE),

as desired; the reason for the second equality is that p⋆O(1) coincides with O(1) on each
fiber {x} × P (V ⋆) of p, thus any section of p⋆O(1) over U × P (V ⋆) yields a family of
sections H0

(
{x} × P (V ⋆),O(k)

)
depending holomorphically in x. When k < 0 there are

no non zero such sections, thus π⋆OE(k) = 0. �

Finally, suppose that E is equipped with a hermitian metric. Then the morphism
π⋆E → OE(1) endows OE(1) with a quotient metric. We are going to compute the
associated curvature form Θ

(
OE(1)

)
.

Fix a point x0 ∈ X and a ∈ P (E⋆x0
). Then Prop. 12.10 implies the existence

of a normal coordinate frame (eλ)16λ6r) of E at x0 such that a is the hyperplane
〈e2, . . . , er〉 = (e⋆1)

−1(0) at x0. Let (z1, . . . , zn) be local coordinates on X near x0 and
let (ξ1, . . . , ξr) be coordinates on E⋆ with respect to the dual frame (e⋆1, . . . , e

⋆
r). If we

assign ξ1 = 1, then (z1, . . . , zn, ξ2, . . . , ξr) define local coordinates on P (E⋆) near a, and
we have a local section of OE(−1) := OE(1)⋆ ⊂ π⋆E⋆ defined by

ε(z, ξ) = e⋆1(z) +
∑

26λ6r

ξλ e
⋆
λ(z).

The hermitian matrix (〈e⋆λ, e⋆µ〉) is just the congugate of the inverse of matrix (〈eλ, eµ〉) =
Id−

(∑
cjkλµ zjzk

)
+O(|z|3), hence we get

〈e⋆λ(z), e⋆µ(z)〉 = δλµ +
∑

16j,k6n

cjkµλ zjzk +O(|z|3),

where (cjkλµ) are the curvature coefficients of Θ(E) ; accordingly we have Θ(E⋆) =
−Θ(E)†. We infer from this

|ε(z, ξ)|2 = 1 +
∑

16j,k6n

cjk11 zjzk +
∑

26λ6r

|ξλ|2 +O(|z|3).

Since Θ
(
OE(1)

)
= d′d′′ log |ε(z, ξ)|2, we get

Θ
(
OE(1)

)
a
=

∑

16j,k6n

cjk11 dzj ∧ dzk +
∑

26λ6r

dξλ ∧ dξλ.
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Note that the first summation is simply −〈Θ(E⋆)a, a〉/|a|2 = − curvature of E⋆ in the
direction a. A unitary change of variables then gives the slightly more general formula:

(15.15) Formula. Let (eλ) be a normal coordinate frame of E at x0 ∈ X and let
Θ(E)x0

=
∑
cjkλµ dzj ∧ dzk ⊗ e⋆λ ⊗ eµ. At any point a ∈ P (E⋆) represented by a vector∑

aλe
⋆
λ ∈ E⋆x0

of norm 1, the curvature of OE(1) is

Θ
(
OE(1)

)
a
=

∑

16j,k6n, 16λ,µ6r

cjkµλ aλaµ dzj ∧ dzk +
∑

16λ6r−1
dζλ ∧ dζλ,

where (ζλ) are coordinates near a on P (E⋆), induced by unitary coordinates on the hy-
perplane a⊥ ⊂ E⋆x0

. �

§ 16. Grassmannians and Universal Vector Bundles

§ 16.A. Universal Subbundles and Quotient Vector Bundles

If V is a complex vector space of dimension d, we denote by Gr(V ) the set of all
r-codimensional vector subspaces of V . Let a ∈ Gr(V ) and W ⊂ V be fixed such that

V = a⊕W, dimCW = r.

Then any subspace x ∈ Gr(V ) in the open subset

ΩW = {x ∈ Gr(V ) ; x⊕W = V }

can be represented in a unique way as the graph of a linear map u in Hom(a,W ). This
gives rise to a covering of Gr(V ) by affine coordinate charts ΩW ≃ Hom(a,W ) ≃ Cr(d−r).
Indeed, let (e1, . . . , er) and (er+1, . . . , en) be respective bases of W and a. Every point
x ∈ ΩW is the graph of a linear map

(16.1) u : a −→ W, u(ek) =
∑

16j6r

zjkej , r + 1 6 k 6 d,

i.e. x = Vect
(
ek +

∑
16j6r zjkej

)
r+16k6d

. We choose (zjk) as complex coordinates on

ΩW . These coordinates are centered at a = Vect(er+1, . . . , ed).

(16.2) Proposition. Gr(V ) is a compact complex analytic manifold of dimension n =
r(d− r).

Proof. It is immediate to verify that the coordinate change between two affine charts
of Gr(V ) is holomorphic. Fix an arbitrary hermitian metric on V . Then the unitary
group U(V ) is compact and acts transitively on Gr(V ). The isotropy subgroup of a point
a ∈ Gr(V ) is U(a)×U(a⊥), hence Gr(V ) is diffeomorphic to the compact quotient space
U(V )/U(a)× U(a⊥). �

Next, we consider the tautological subbundle S ⊂ −V := Gr(V )×V defined by Sx = x

for all x ∈ Gr(V ), and the quotient bundle Q = −V/S of rank r :

(16.3) 0 −→ S −→ −V −→ Q −→ 0.
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An interesting special case is r = d − 1, Gd−1(V ) = P (V ), S = O(−1), Q = H. The
case r = 1 is dual, we have the identification G1(V ) = P (V ⋆) because every hyperplane
x ⊂ V corresponds bijectively to the line in V ⋆ of linear forms ξ ∈ V ⋆ that vanish on x.
Then the bundles O(−1) ⊂ −V

⋆ and H on P (V ⋆) are given by

O(−1)[ξ] = C.ξ ≃ (V/x)⋆ = Q⋆x,

H[ξ] = V ⋆/C.ξ ≃ x⋆ = S⋆x,

therefore S = H⋆, Q = O(1). This special case will allow us to compute H0(Gr(V ), Q)
in general.

(16.4) Proposition. There is an isomorphism

V = H0
(
Gr(V ),−V

) ∼−→ H0
(
Gr(V ), Q

)
.

Proof. Let V = W ⊕W ′ be an arbitrary direct sum decomposition of V with codimW =
r − 1. Consider the projective space

P (W ⋆) = G1(W ) ⊂ Gr(V ),

its tautological hyperplane subbundle H⋆ ⊂ −W = P (W ⋆) ×W and the exact sequence

0→ H⋆ → −W → O(1)→ 0. Then S↾P (W ⋆) coincides with H
⋆ and

Q↾P (W ⋆) = (−W ⊕−W
′)/H⋆ = (−W/H

⋆)⊕−W
′ = O(1)⊕−W

′.

Theorem 15.5 implies H0(P (W ⋆),O(1)) =W , therefore the space

H0(P (W ⋆), Q↾P (W ⋆)) =W ⊕W ′

is generated by the images of the constant sections of −V . SinceW is arbitrary, Prop. 16.4

follows immediately. �

Let us compute the tangent space TGr(V ). The linear group Gl(V ) acts transitively
on Gr(V ), and the tangent space to the isotropy subgroup of a point x ∈ Gr(V ) is the
set of elements u ∈ Hom(V, V ) in the Lie algebra such that u(x) ⊂ x. We get therefore

TxGr(V ) ≃ Hom(V, V )/{u ; u(x) ⊂ x}
≃ Hom(V, V/x)/

{
ũ ; ũ(x) = {0}

}

≃ Hom(x, V/x) = Hom(Sx, Qx).

(16.5) Corollary. TGr(V ) = Hom(S,Q) = S⋆ ⊗Q. �
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§ 16.B. Plücker Embedding

There is a natural map, called the Plücker embedding,

(16.6) jr : Gr(V ) −֒→ P (ΛrV ⋆)

constructed as follows. If x ∈ Gr(V ) is defined by r independent linear forms ξ1, . . . , ξr ∈
V ⋆, we set

jr(x) = [ξ1 ∧ · · · ∧ ξr].

Then x is the subspace of vectors v ∈ V such that v (ξ1∧· · ·∧ξr) = 0, so jr is injective.
Since the linear group Gl(V ) acts transitively on Gr(V ), the rank of the differential djr
is a constant. As jr is injective, the constant rank theorem implies:

(16.7) Proposition. The map jr is a holomorphic embedding. �

Now, we define a commutative diagram

(16.8)
ΛrQ

Jr−→ O(1)
↓ ↓

Gr(V )
jr−֒→ P (ΛrV ⋆)

as follows: for x = ξ−11 (0) ∩ · · · ∩ ξ−1r (0) ∈ Gr(V ) and ṽ = ṽ1 ∧ · · · ∧ ṽr ∈ ΛrQx where
ṽk ∈ Qx = V/x is the image of vk ∈ V in the quotient, we let Jr(ṽ) ∈ O(1)jr(x) be the
linear form on O(−1)jr(x) = C.ξ1 ∧ . . . ∧ ξr such that

〈Jr(ṽ), λξ1 ∧ . . . ∧ ξr〉 = λ det
(
ξj(vk)

)
, λ ∈ C.

Then Jr is an isomorphism on the fibers, so ΛrQ can be identified with the pull-back of
O(1) by jr.

§ 16.C. Curvature of the Universal Vector Bundles

Assume now that V is a hermitian vector space. We shall generalize our curvature
computations of §15.C to the present situation. Let a ∈ Gr(V ) be a given point. We
take W to be the orthogonal complement of a in V and select an orthonormal basis
(e1, . . . , ed) of V such that W = Vect(e1, . . . , er), a = Vect(er+1, . . . , ed). For any point
x ∈ Gr(V ) in ΩW with coordinates (zjk), we set

εk(x) = ek +
∑

16j6r

zjkej , r + 1 6 k 6 d,

ẽj(x) = image of ej in Qx = V/x, 1 6 j 6 r.

Then (ẽ1, . . . , ẽr) and (εr+1, . . . , εd) are holomorphic frames of Q and S respectively. If
g⋆ : Q −→ −V is the orthogonal splitting of g : −V −→ Q, then

g⋆ · ẽj = ej +
∑

r+16k6d

ζjkεk
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for some ζjk ∈ C. After an easy computation we find

0 = 〈ẽj , gεk〉 = 〈g⋆ẽj , εk〉 = ζjk + zjk +
∑

l,m

ζjmzlmzlk,

so that ζjk = −zjk +O(|z|2). Formula (13.3) yields

d′′g⋆a · ẽj = −
∑

r+16k6d

dzjk ⊗ εk,

β⋆a =
∑

j,k

dzjk ⊗ ẽ⋆j ⊗ εk, βa =
∑

j,k

dzjk ⊗ ε⋆k ⊗ ẽj ,

Θ(Q)a = (β ∧ β⋆)a =
∑

j,k,l

dzjk ∧ dzlk ⊗ ẽ⋆l ⊗ ẽj ,(16.9)

Θ(S)a = (β⋆ ∧ β)a = −
∑

j,k,l

dzjk ∧ dzjl ⊗ ε⋆k ⊗ εl.(16.10)
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Chapter VI

Hodge Theory

The goal of this chapter is to prove a number of basic facts in the Hodge theory of real or complex
manifolds. The theory rests essentially on the fact that the De Rham (or Dolbeault) cohomology groups
of a compact manifold can be represented by means of spaces of harmonic forms, once a Riemannian
metric has been chosen. At this point, some knowledge of basic results about elliptic differential operators
is required. The special properties of compact Kähler manifolds are then investigated in detail: Hodge
decomposition theorem, hard Lefschetz theorem, Jacobian and Albanese variety, . . . ; the example of
curves is treated in detail. Finally, the Hodge-Frölicher spectral sequence is applied to get some results
on general compact complex manifolds, and it is shown that Hodge decomposition still holds for manifolds
in the Fujiki class (C).

§ 1. Differential Operators on Vector Bundles

We first describe some basic concepts concerning differential operators (symbol, com-
position, adjunction, ellipticity), in the general setting of vector bundles. Let M be a
C

∞ differentiable manifold, dimRM = m, and let E, F be K-vector bundles over M ,
with K = R or K = C, rankE = r, rankF = r′.

(1.1) Definition. A (linear) differential operator of degree δ from E to F is a K-linear
operator P : C∞(M,E)→ C∞(M,F ), u 7→ Pu of the form

Pu(x) =
∑

|α|6δ
aα(x)D

αu(x),

where E↾Ω ≃ Ω × Kr, F↾Ω ≃ Ω × Kr
′

are trivialized locally on some open chart Ω ⊂M
equipped with local coordinates (x1, . . . , xm), and where aα(x) =

(
aαλµ(x)

)
16λ6r′, 16µ6r

are r′ × r-matrices with C∞ coefficients on Ω. Here Dα = (∂/∂x1)
α1 . . . (∂/∂xm)

αm as
usual, and u = (uµ)16µ6r, D

αu = (Dαuµ)16µ6r are viewed as column matrices.

If t ∈ K is a parameter and f ∈ C∞(M,K), u ∈ C∞(M,E), a simple calculation
shows that e−tf(x)P (etf(x)u(x)) is a polynomial of degree δ in t, of the form

e−tf(x)P (etf(x)) = tδσP (x, df(x)) · u(x) + lower order terms cj(x)t
j, j < δ,

where σP is the polynomial map from T ⋆M → Hom(E, F ) defined by

(1.2) T ⋆M,x ∋ ξ 7→ σP (x, ξ) ∈ Hom(Ex, Fx), σP (x, ξ) =
∑

|α|=δ
aα(x)ξ

α.
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The formula involving e−tfP (etfu) shows that σP (x, ξ) actually does not depend on the
choice of coordinates nor on the trivializations used for E, F . It is clear that σP (x, ξ) is
smooth on T ⋆M as a function of (x, ξ), and is a homogeneous polynomial of degree δ in ξ.
We say that σP is the principal symbol of P . Now, if E, F , G are vector bundles and

P : C∞(M,E)→ C∞(M,F ), Q : C∞(M,F )→ C∞(M,G)

are differential operators of respective degrees δP , δQ, it is easy to check that Q ◦ P :
C

∞(M,E)→ C∞(M,G) is a differential operator of degree δP + δQ and that

(1.3) σQ◦P (x, ξ) = σQ(x, ξ)σP (x, ξ).

Here the product of symbols is computed as a product of matrices.

Now, assume thatM is oriented and is equipped with a smooth volume form dV (x) =
γ(x)dx1 ∧ . . . dxm, where γ(x) > 0 is a smooth density. If E is a euclidean or hermitian
vector bundle, we have a Hilbert space L2(M,E) of global sections u of E with measurable
coefficients, satisfying the L2 estimate

(1.4) ‖u‖2 =

∫

M

|u(x)|2 dV (x) < +∞.

We denote by

(1.4′) 〈〈u, v〉〉 =
∫

M

〈u(x), v(x)〉 dV (x), u, v ∈ L2(M,E)

the corresponding L2 inner product.

(1.5) Definition. If P : C∞(M,E)→ C∞(M,F ) is a differential operator and both E,
F are euclidean or hermitian, there exists a unique differential operator

P ⋆ : C∞(M,F )→ C∞(M,E),

called the formal adjoint of P , such that for all sections u ∈ C∞(M,E) and v ∈
C

∞(M,F ) there is an identity

〈〈Pu, v〉〉 = 〈〈u, P ⋆v〉〉, whenever Supp u ∩ Supp v ⊂⊂M.

Proof. The uniqueness is easy, using the density of the set of elements u ∈ C∞(M,E)
with compact support in L2(M,E). Since uniqueness is clear, it is enough, by a par-
tition of unity argument, to show the existence of P ⋆ locally. Now, let Pu(x) =∑
|α|6δ aα(x)D

αu(x) be the expansion of P with respect to trivializations of E, F given
by orthonormal frames over some coordinate open set Ω ⊂ M . Assuming Supp u ∩
Supp v ⊂⊂ Ω, an integration by parts yields

〈〈Pu, v〉〉 =
∫

Ω

∑

|α|6δ,λ,µ
aαλµD

αuµ(x)vλ(x) γ(x) dx1, . . . , dxm

=

∫

Ω

∑

|α|6δ,λ,µ
(−1)|α|uµ(x)Dα(γ(x) aαλµvλ(x) dx1, . . . , dxm

=

∫

Ω

〈u,
∑

|α|6δ
(−1)|α|γ(x)−1Dα

(
γ(x) taαv(x)

)
〉 dV (x).
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Hence we see that P ⋆ exists and is uniquely defined by

�(1.6) P ⋆v(x) =
∑

|α|6δ
(−1)|α|γ(x)−1Dα

(
γ(x) taαv(x)

)
.

It follows immediately from (1.6) that the principal symbol of P ⋆ is

(1.7) σP ⋆(x, ξ) = (−1)δ
∑

|α|=δ

taαξ
α = (−1)δσP (x, ξ)⋆.

(1.8) Definition. A differential operator P is said to be elliptic if

σP (x, ξ) ∈ Hom(Ex, Fx)

is injective for every x ∈M and ξ ∈ T ⋆M,x r {0}.

§ 2. Formalism of PseudoDifferential Operators

We assume throughout this section that (M, g) is a compact Riemannian manifold.
For any positive integer k and any hermitian bundle F → M , we denote by W k(M,F )
the Sobolev space of sections s : M → F whose derivatives up to order k are in L2.
Let ‖ ‖k be the norm of the Hilbert space W k(M,F ). Let P be an elliptic differential
operator of order d acting on C∞(M,F ). We need the following basic facts of elliptic
PDE theory, see e.g. [Hörmander 1963].

(2.1) Sobolev lemma. For k > l + m
2 , W

k(M,F ) ⊂ Cl(M,F ).

(2.2) Rellich lemma. For every integer k, the inclusion

W k+1(M,F ) −֒→ W k(M,F )

is a compact linear operator.

(2.3) G̊arding’s inequality. Let P̃ be the extension of P to sections with distribution

coefficients. For any u ∈ W 0(M,F ) such that P̃ u ∈ W k(M,F ), then u ∈ W k+d(M,F )
and

‖u‖k+d 6 Ck(‖P̃ u‖k + ‖u‖0),
where Ck is a positive constant depending only on k.

(2.4) Corollary. The operator P : C∞(M,F ) → C

∞(M,F ) has the following proper-
ties:

i) kerP is finite dimensional.

ii) P
(
C

∞(M,F )
)
is closed and of finite codimension; furthermore, if P ⋆ is the formal

adjoint of P , there is a decomposition

C

∞(M,F ) = P
(
C

∞(M,F )
)
⊕ kerP ⋆
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as an orthogonal direct sum in W 0(M,F ) = L2(M,F ).

Proof. (i) G̊arding’s inequality shows that ‖u‖k+d 6 Ck‖u‖0 for any u in kerP . Thanks
to the Sobolev lemma, this implies that kerP is closed in W 0(M,F ). Moreover, the unit
closed ‖ ‖0-ball of kerP is contained in the ‖ ‖d-ball of radius C0, thus compact by the
Rellich lemma. Riesz’ theorem implies that dim kerP < +∞.

(ii) We first show that the extension

P̃ :W k+d(M,F )→ W k(M,F )

has a closed range for any k. For every ε > 0, there exists a finite number of elements
v1, . . . , vN ∈W k+d(M,F ), N = N(ε), such that

(2.5) ‖u‖0 6 ε‖u‖k+d +
N∑

j=1

|〈〈u, vj〉〉0| ;

indeed the set

K(vj) =
{
u ∈W k+d(M,F ) ; ε‖u‖k+d +

N∑

j=1

|〈〈u, vj〉〉0| 6 1
}

is relatively compact in W 0(M,F ) and
⋂

(vj)
K(vj) = {0}. It follows that there exist

elements (vj) such thatK(vj) is contained in the unit ball ofW 0(M,F ),QED. Substitute
||u||0 by the upper bound (2.5) in G̊arding’s inequality; we get

(1− Ckε)‖u‖k+d 6 Ck

(
‖P̃u‖k +

N∑

j=1

|〈〈u, vj〉〉0|
)
.

Define G =
{
u ∈W k+d(M,F ) ; u ⊥ vj , 1 6 j 6 n} and choose ε = 1/2Ck. We obtain

‖u‖k+d 6 2Ck‖P̃u‖k, ∀u ∈ G.
This implies that P̃ (G) is closed. Therefore

P̃
(
W k+d(M,F )

)
= P̃ (G) + Vect

(
P̃ (v1), . . . , P̃ (vN )

)

is closed inW k(M,F ). Take in particular k = 0. Since C∞(M,F ) is dense inW d(M,F ),
we see that in W 0(M,F )

(
P̃
(
W d(M,F )

))⊥
=

(
P
(
C

∞(M,F )
))⊥

= ker P̃ ⋆.

We have proved that

(2.6) W 0(M,F ) = P̃
(
W d(M,F )

)
⊕ ker P̃ ⋆.

Since P ⋆ is also elliptic, it follows that ker P̃ ⋆ is finite dimensional and that ker P̃ ⋆ =
kerP ⋆ is contained in C∞(M,F ). Thanks to G̊arding’s inequality, the decomposition
formula (2.6) yields

W k(M,F ) = P̃
(
W k+d(M,F )

)
⊕ kerP ⋆,(2.7)

C

∞(M,F ) = P
(
C

∞(M,F )
)
⊕ kerP ⋆.(2.8)
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§ 3. Harmonic Forms and Hodge Theory on Riemannian Mani-
folds

§ 3.1. Euclidean Structure of the Exterior Algebra

Let (M, g) be an oriented Riemannian C∞-manifold, dimRM = m, and E → M
a hermitian vector bundle of rank r over M . We denote respectively by (ξ1, . . . , ξm)
and (e1, . . . , er) orthonormal frames of TM and E over an open subset Ω ⊂ M , and by
(ξ⋆1 , . . . , ξ

⋆
m), (e

⋆
1, . . . , e

⋆
r) the corresponding dual frames of T ⋆M , E

⋆. Let dV stand for the
Riemannian volume form on M . The exterior algebra ΛT ⋆M has a natural inner product
〈•, •〉 such that

(3.1) 〈u1 ∧ . . . ∧ up, v1 ∧ . . . ∧ vp〉 = det(〈uj , vk〉)16j,k6p, uj , vk ∈ T ⋆M

for all p, with ΛT ⋆M =
⊕

ΛpT ⋆M as an orthogonal sum. Then the covectors ξ⋆I = ξ⋆i1 ∧
· · · ∧ ξ⋆ip , i1 < i2 < · · · < ip, provide an orthonormal basis of ΛT ⋆M . We also denote by

〈•, •〉 the corresponding inner product on ΛT ⋆M ⊗E.

(3.2) Hodge Star Operator. The Hodge-Poincaré-De Rham operator ⋆ is the collec-
tion of linear maps defined by

⋆ : ΛpT ⋆M → Λm−pT ⋆M , u ∧ ⋆ v = 〈u, v〉 dV, ∀u, v ∈ ΛpT ⋆M .

The existence and uniqueness of this operator is easily seen by using the duality
pairing

ΛpT ⋆M × Λm−pT ⋆M −→ R

(u, v) 7−→ u ∧ v/dV =
∑

ε(I, ∁I) uIv∁I ,(3.3)

where u =
∑
|I|=p uI ξ

⋆
I , v =

∑
|J|=m−p vJ ξ

⋆
J , where ∁I stands for the (ordered) comple-

mentary multi-index of I and ε(I, ∁I) for the signature of the permutation (1, 2, . . . , m) 7→
(I, ∁I). From this, we find

(3.4) ⋆ v =
∑

|I|=p
ε(I, ∁I)vI ξ

⋆
∁I .

More generally, the sesquilinear pairing {•, •} defined in (V-7.1) yields an operator ⋆ on
vector valued forms, such that

⋆ : ΛpT ⋆M ⊗E → Λm−pT ⋆M ⊗E, {s, ⋆ t} = 〈s, t〉 dV, s, t ∈ ΛpT ⋆M ⊗ E,(3.3′)

⋆ t =
∑

|I|=p,λ
ε(I, ∁I) tI,λ ξ

⋆
∁I ⊗ eλ(3.4′)

for t =
∑
tI,λ ξ

⋆
I ⊗ eλ. Since ε(I, ∁I)ε(∁I, I) = (−1)p(m−p) = (−1)p(m−1), we get imme-

diately

(3.5) ⋆ ⋆ t = (−1)p(m−1)t on ΛpT ⋆M ⊗E.
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It is clear that ⋆ is an isometry of Λ•T ⋆M ⊗E.

We shall also need a variant of the ⋆ operator, namely the conjugate-linear operator

# : ΛpT ⋆M ⊗ E −→ Λm−pT ⋆M ⊗ E⋆

defined by s∧# t = 〈s, t〉 dV, where the wedge product ∧ is combined with the canonical
pairing E × E⋆ → C. We have

(3.6) # t =
∑

|I|=p,λ
ε(I, ∁I) tI,λ ξ

⋆
∁I ⊗ e⋆λ.

(3.7) Contraction by a Vector Field.. Given a tangent vector θ ∈ TM and a form
u ∈ ΛpT ⋆M , the contraction θ u ∈ Λp−1T ⋆M is defined by

θ u (η1, . . . , ηp−1) = u(θ, η1, . . . , ηp−1), ηj ∈ TM .

In terms of the basis (ξj), • • is the bilinear operation characterized by

ξl (ξ⋆i1 ∧ . . . ∧ ξ⋆ip) =
{
0 if l /∈ {i1, . . . , ip},
(−1)k−1ξ⋆i1 ∧ . . . ξ̂⋆ik . . . ∧ ξ⋆ip if l = ik.

This formula is in fact valid even when (ξj) is non orthonormal. A rather easy compu-
tation shows that θ • is a derivation of the exterior algebra, i.e. that

θ (u ∧ v) = (θ u) ∧ v + (−1)deg uu ∧ (θ v).

Moreover, if θ̃ = 〈•, θ〉 ∈ T ⋆M , the operator θ • is the adjoint map of θ̃ ∧ •, that is,

(3.8) 〈θ u, v〉 = 〈u, θ̃ ∧ v〉, u, v ∈ ΛT ⋆M .

Indeed, this property is immediately checked when θ = ξl, u = ξ⋆I , v = ξ⋆J .

§ 3.2. Laplace-Beltrami Operators

Let us consider the Hilbert space L2(M,ΛpT ⋆M ) of p-forms u on M with measurable
coefficients such that

‖u‖2 =

∫

M

|u|2 dV < +∞.

We denote by 〈〈 , 〉〉 the global inner product on L2-forms. One can define similarly the
Hilbert space L2(M,ΛpT ⋆M ⊗ E).

(3.9) Theorem. The operator d⋆ = (−1)mp+1 ⋆ d ⋆ is the formal adjoint of the exterior
derivative d acting on C∞(M,ΛpT ⋆M ⊗ E).

Proof. If u ∈ C∞(M,ΛpT ⋆M ), v ∈ C∞(M,Λp+1T ⋆M⊗) are compactly supported we get

〈〈du, v〉〉 =
∫

M

〈du, v〉 dV =

∫

M

du ∧ ⋆ v

=

∫

M

d(u ∧ ⋆ v)− (−1)pu ∧ d ⋆ v = −(−1)p
∫

M

u ∧ d ⋆ v
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by Stokes’ formula. Therefore (3.4) implies

〈〈du, v〉〉 = −(−1)p(−1)p(m−1)
∫

M

u ∧ ⋆ ⋆ d ⋆ v = (−1)mp+1〈〈u, ⋆ d ⋆ v〉〉. �

(3.10) Remark. If m is even, the formula reduces to d⋆ = − ⋆ d ⋆.

(3.11) Definition. The operator ∆ = dd⋆ + d⋆d is called the Laplace-Beltrami operator
of M .

Since d⋆ is the adjoint of d, the Laplace operator ∆ is formally self-adjoint, i.e.
〈〈∆u, v〉〉 = 〈〈u,∆v〉〉 when the forms u, v are of class C∞ and compactly supported.

(3.12) Example. Let M be an open subset of Rm and g =
∑m

i=1 dx
2
i . In that case we

get

u =
∑

|I|=p
uIdxI , du =

∑

|I|=p,j

∂uI
∂xj

dxj ∧ dxI ,

〈〈u, v〉〉 =
∫

M

〈u, v〉 dV =

∫

M

∑

I

uIvI dV

One can write dv =
∑
dxj ∧ (∂v/∂xj) where ∂v/∂xj denotes the form v in which all

coefficients vI are differentiated as ∂vI/∂xj. An integration by parts combined with
contraction gives

〈〈d⋆u, v〉〉 = 〈〈u, dv〉〉 =
∫

M

〈u,
∑

j

dxj ∧
∂v

∂xj
〉 dV

=

∫

M

∑

j

〈 ∂
∂xj

u,
∂v

∂xj
〉 dV = −

∫

M

〈
∑

j

∂

∂xj

∂u

∂xj
, v〉 dV,

d⋆u = −
∑

j

∂

∂xj

∂u

∂xj
= −

∑

I,j

∂uI
∂xj

∂

∂xj
dxI .

We get therefore

dd⋆u = −
∑

I,j,k

∂2uI
∂xj∂xk

dxk ∧
( ∂

∂xj
dxI

)
,

d⋆du = −
∑

I,j,k

∂2uI
∂xj∂xk

∂

∂xj
(dxk ∧ dxI).

Since
∂

∂xj
(dxk ∧ dxI) =

( ∂

∂xj
dxk

)
dxI − dxk ∧

( ∂

∂xj
dxI

)
,

we obtain

∆u = −
∑

I

(∑

j

∂2uI
∂x2j

)
dxI .
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In the case of an arbitrary riemannian manifold (M, g) we have

u =
∑

uI ξ
⋆
I ,

du =
∑

I,j

(ξj · uI) ξ⋆j ∧ ξ⋆I +
∑

I

uI dξ
⋆
I ,

d⋆u = −
∑

I,j

(ξj · uI) ξj ξ⋆I +
∑

I,K

αI,KuI ξ
⋆
K ,

for some C∞ coefficients αI,K , |I| = p, |K| = p− 1. It follows that the principal part of
∆ is the same as that of the second order operator

u 7−→ −
∑

I

(∑

j

ξ2j · uI
)
ξ⋆I .

As a consequence, ∆ is elliptic.

Assume now that DE is a hermitian connection on E. The formal adjoint operator
of DE acting on C∞(M,ΛpT ⋆M ⊗ E) is

(3.13) D⋆
E = (−1)mp+1 ⋆ DE ⋆ .

Indeed, if s ∈ C∞(M,ΛpT ⋆M ⊗E), t ∈ C∞(M,Λp+1T ⋆M ⊗E) have compact support, we
get

〈〈DEs, t〉〉 =
∫

M

〈DEs, t〉 dV =

∫

M

{DEs, ⋆ t}

=

∫

M

d{s, ⋆ t} − (−1)p{s,DE ⋆ t} = (−1)mp+1〈〈s, ⋆ DE ⋆ t〉〉.

(3.14) Definition. The Laplace-Beltrami operator associated to DE is the second order
operator ∆E = DED

⋆
E +D⋆

EDE .

∆E is a self-adjoint elliptic operator with principal part

s 7−→ −
∑

I,λ

(∑

j

ξ2j · sI,λ
)
ξ⋆I ⊗ eλ.

§ 3.3. Harmonic Forms and Hodge Isomorphism

Let E be a hermitian vector bundle over a compact Riemannian manifold (M, g).
We assume that E possesses a flat hermitian connection DE (this means that Θ(DE) =
D2
E = 0, or equivalently, that E is given by a representation π1(M) → U(r), cf. §V-6).

A fundamental example is of course the trivial bundle E = M × C with the connection
DE = d. Thanks to our flatness assumption, DE defines a generalized De Rham complex

DE : C∞(M,ΛpT ⋆M ⊗ E) −→ C∞(M,Λp+1T ⋆M ⊗ E).

The cohomology groups of this complex will be denoted by Hp
DR(M,E).
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The space of harmonic forms of degree p with respect to the Laplace-Beltrami operator
∆E = DED

⋆
E +D⋆

EDE is defined by

(3.15) H

p(M,E) =
{
s ∈ C∞(M,ΛpT ⋆M ⊗E) ; ∆Es = 0

}
.

Since 〈〈∆Es, s〉〉 = ||DEs||2 + ||D⋆
Es||2, we see that s ∈ Hp(M,E) if and only if DEs =

D⋆
Es = 0.

(3.16) Theorem. For any p, there exists an orthogonal decomposition

C

∞(M,ΛpT ⋆M ⊗E) = Hp(M,E)⊕ ImDE ⊕ ImD⋆
E ,

ImDE = DE
(
C

∞(M,Λp−1T ⋆M ⊗ E)
)
,

ImD⋆
E = D⋆

E

(
C

∞(M,Λp+1T ⋆M ⊗ E)
)
.

Proof. It is immediate thatHp(M,E) is orthogonal to both subspaces ImDE and ImD⋆
E .

The orthogonality of these two subspaces is also clear, thanks to the assumption D2
E = 0 :

〈〈DEs,D⋆
Et〉〉 = 〈〈D2

Es, t〉〉 = 0.

We apply now Cor. 2.4 to the elliptic operator ∆E = ∆⋆
E acting on p-forms, i.e. on the

bundle F = ΛpT ⋆M ⊗ E. We get

C

∞(M,ΛpT ⋆M ⊗E) = Hp(M,E)⊕∆E

(
C

∞(M,ΛpT ⋆M ⊗ E)
)
,

Im∆E = Im(DED
⋆
E +D⋆

EDE) ⊂ ImDE + ImD⋆
E . �

(3.17) Hodge isomorphism theorem. The De Rham cohomology group Hp
DR(M,E)

is finite dimensional and Hp
DR(M,E) ≃ Hp(M,E).

Proof. According to decomposition 3.16, we get

BpDR(M,E) = DE
(
C

∞(M,Λp−1T ⋆M ⊗ E)
)
,

ZpDR(M,E) = kerDE = (ImD⋆
E)
⊥ = Hp(M,E)⊕ ImDE .

This shows that every De Rham cohomology class contains a unique harmonic represen-
tative. �

(3.18) Poincaré duality. The bilinear pairing

Hp
DR(M,E)×Hm−p

DR (M,E⋆) −→ C, (s, t) 7−→
∫

M

s ∧ t

is a non degenerate duality.

Proof. First note that there exists a naturally defined flat connection DE⋆ such that for
any s1 ∈ C∞• (M,E), s2 ∈ C∞• (M,E⋆) we have

(3.19) d(s1 ∧ s2) = (DEs1) ∧ s2 + (−1)deg s1s1 ∧DE⋆s2.
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It is then a consequence of Stokes’ formula that the map (s, t) 7→
∫
M
s∧t can be factorized

through cohomology groups. Let s ∈ C∞(M,ΛpT ⋆M ⊗ E). We leave to the reader the
proof of the following formulas (use (3.19) in analogy with the proof of Th. 3.9):

DE⋆(# s) = (−1)p#D⋆
Es,

δE⋆(# s) = (−1)p+1#DEs,(3.20)

∆E⋆(# s) = #∆Es,

Consequently #s ∈ Hm−p(M,E⋆) if and only if s ∈ Hp(M,E). Since
∫

M

s ∧# s =

∫

M

|s|2 dV = ‖s‖2,

we see that the Poincaré pairing has zero kernel in the left hand factor Hp(M,E) ≃
Hp
DR(M,E). By symmetry, it has also zero kernel on the right. The proof is achieved.

�

§ 4. Hermitian and Kähler Manifolds

Let X be a complex n-dimensional manifold. A hermitian metric on X is a positive
definite hermitian form of class C∞ on TX ; in a coordinate system (z1, . . . , zn), such
a form can be written h(z) =

∑
16j,k6n hjk(z) dzj ⊗ dzk, where (hjk) is a positive her-

mitian matrix with C∞ coefficients. According to (III-1.8), the fundamental (1, 1)-form
associated to h is the positive form of type (1, 1)

ω = −Im h =
i

2

∑
hjkdzj ∧ dzk, 1 6 j, k 6 n.

(4.1) Definition.

a) A hermitian manifold is a pair (X,ω) where ω is a C∞ positive definite (1, 1)-form
on X.

b) The metric ω is said to be kähler if dω = 0.

c) X is said to be a Kähler manifold if X carries at least one Kähler metric.

Since ω is real, the conditions dω = 0, d′ω = 0, d′′ω = 0 are all equivalent. In local
coordinates we see that d′ω = 0 if and only if

∂hjk
∂zl

=
∂hlk
∂zj

, 1 6 j, k, l 6 n.

A simple computation gives

ωn

n!
= det(hjk)

∧

16j6n

( i

2
dzj ∧ dzj

)
= det(hjk) dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn,

where zn = xn + iyn. Therefore the (n, n)-form

(4.2) dV =
1

n!
ωn
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is positive and coincides with the hermitian volume element of X . If X is compact,
then

∫
X
ωn = n! Volω(X) > 0. This simple remark already implies that compact Kähler

manifolds must satisfy some restrictive topological conditions:

(4.3) Consequence.

a) If (X,ω) is compact Kähler and if {ω} denotes the cohomology class of ω in H2(X,R),
then {ω}n 6= 0.

b) If X is compact Kähler, then H2k(X,R) 6= 0 for 0 6 k 6 n. In fact, {ω}k is a non
zero class in H2k(X,R).

(4.4) Example. The complex projective space Pn is Kähler. A natural Kähler metric
ω on Pn, called the Fubini-Study metric, is defined by

p⋆ω =
i

2π
d′d′′ log

(
|ζ0|2 + |ζ1|2 + · · ·+ |ζn|2

)

where ζ0, ζ1, . . . , ζn are coordinates of Cn+1 and where p : Cn+1 \ {0} → Pn is the pro-
jection. Let z = (ζ1/ζ0, . . . , ζn/ζ0) be non homogeneous coordinates on Cn ⊂ Pn. Then
(V-15.8) and (V-15.12) show that

ω =
i

2π
d′d′′ log(1 + |z|2) = i

2π
c
(
O(1)

)
,

∫

Pn

ωn = 1.

Furthermore {ω} ∈ H2(Pn,Z) is a generator of the cohomology algebra H•(Pn,Z) in
virtue of Th. V-15.10.

(4.5) Example. A complex torus is a quotient X = Cn/Γ by a lattice Γ of rank 2n.
Then X is a compact complex manifold. Any positive definite hermitian form ω =
i
∑
hjkdzj ∧ dzk with constant coefficients defines a Kähler metric on X .

(4.6) Example. Every (complex) submanifold Y of a Kähler manifold (X,ω) is Kähler
with metric ω↾Y . Especially, all submanifolds of Pn are Kähler.

(4.7) Example. Consider the complex surface

X = (C2 \ {0})/Γ

where Γ = {λn ; n ∈ Z}, λ < 1, acts as a group of homotheties. Since C2 \ {0} is
diffeomorphic to R⋆+×S3, we have X ≃ S1× S3. Therefore H2(X,R) = 0 by Künneth’s
formula IV-15.10, and property 4.3 b) shows that X is not Kähler. More generally, one
can obtaintake Γ to be an infinite cyclic group generated by a holomorphic contraction
of C2, of the form

(
z1
z2

)
7−→

(
λ1z1
λ2z2

)
, resp.

(
z1
z2

)
7−→

(
λz1

λz2 + zp1

)
,

where λ, λ1, λ2 are complex numbers such that 0 < |λ1| 6 |λ2| < 1, 0 < |λ| < 1, and p a
positive integer. These non Kähler surfaces are called Hopf surfaces.
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The following Theorem shows that a hermitian metric ω on X is Kähler if and only
if the metric ω is tangent at order 2 to a hermitian metric with constant coefficients at
every point of X .

(4.8) Theorem. Let ω be a C∞ positive definite (1, 1)-form on X. In order that
ω be Kähler, it is necessary and sufficient that to every point x0 ∈ X corresponds a
holomorphic coordinate system (z1, . . . , zn) centered at x0 such that

(4.9) ω = i
∑

16l,m6n

ωlm dzl ∧ dzm, ωlm = δlm +O(|z|2).

If ω is Kähler, the coordinates (zj)16j6n can be chosen such that

(4.10) ωlm = 〈 ∂
∂zl

,
∂

∂zm
〉 = δlm −

∑

16j,k6n

cjklm zjzk +O(|z|3),

where (cjklm) are the coefficients of the Chern curvature tensor

(4.11) Θ(TX )x0
=

∑

j,k,l,m

cjklm dzj ∧ dzk ⊗
( ∂

∂zl

)⋆
⊗ ∂

∂zm

associated to (TX , ω) at x0. Such a system (zj) will be called a geodesic coordinate system
at x0.

Proof. It is clear that (4.9) implies dx0
ω = 0, so the condition is sufficient. Assume

now that ω is Kähler. Then one can choose local coordinates (x1, . . . , xn) such that
(dx1, . . . , dxn) is an ω-orthonormal basis of T ⋆x0

X . Therefore

ω = i
∑

16l,m6n

ω̃lm dxl ∧ dxm, where

ω̃lm = δlm +O(|x|) = δlm +
∑

16j6n

(ajlmxj + a′jlmxj) +O(|x|2).(4.12)

Since ω is real, we have a′jlm = ajml ; on the other hand the Kähler condition ∂ωlm/∂xj =
∂ωjm/∂xl at x0 implies ajlm = aljm. Set now

zm = xm +
1

2

∑

j,l

ajlmxjxl, 1 6 m 6 n.

Then (zm) is a coordinate system at x0, and

dzm = dxm +
∑

j,l

ajlmxjdxl,

i
∑

m

dzm ∧ dzm = i
∑

m

dxm ∧ dxm + i
∑

j,l,m

ajlmxj dxl ∧ dxm

+ i
∑

j,l,m

ajlmxj dxm ∧ dxl +O(|x|2)

= i
∑

l,m

ω̃lm dxl ∧ dxm +O(|x|2) = ω +O(|z|2).
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Condition (4.9) is proved. Suppose the coordinates (xm) chosen from the beginning so
that (4.9) holds with respect to (xm). Then the Taylor expansion (4.12) can be refined
into

ω̃lm = δlm +O(|x|2)(4.13)

= δlm +
∑

j,k

(
ajklmxjxk + a′jklmxjxk + a′′jklmxjxk

)
+O(|x|3).

These new coefficients satisfy the relations

a′jklm = a′kjlm, a′′jklm = a′jkml, ajklm = akjml.

The Kähler condition ∂ωlm/∂xj = ∂ωjm/∂xl at x = 0 gives the equality a′jklm = a′lkjm ;
in particular a′jklm is invariant under all permutations of j, k, l. If we set

zm = xm +
1

3

∑

j,k,l

a′jklm xjxkxl, 1 6 m 6 n,

then by (4.13) we find

dzm = dxm +
∑

j,k,l

a′jklm xjxk dxl, 1 6 m 6 n,

ω = i
∑

16m6n

dzm ∧ dzm + i
∑

j,k,l,m

ajklm xjxk dxl ∧ dxm +O(|x|3),

ω = i
∑

16m6n

dzm ∧ dzm + i
∑

j,k,l,m

ajklm zjzk dzl ∧ dzm +O(|z|3).(4.14)

It is now easy to compute the Chern curvature tensor Θ(TX)x0
in terms of the coefficients

ajklm. Indeed

〈 ∂
∂zl

,
∂

∂zm
〉 = δlm +

∑

j,k

ajklm zjzk +O(|z|3),

d′〈 ∂
∂zl

,
∂

∂zm
〉 =

{
D′

∂

∂zl
,
∂

∂zm

}
=

∑

j,k

ajklm zk dzj +O(|z|2),

Θ(TX) · ∂
∂zl

= D′′D′
( ∂

∂zl

)
= −

∑

j,k,m

ajklm dzj ∧ dzk ⊗
∂

∂zm
+O(|z|),

therefore cjklm = −ajklm and the expansion (4.10) follows from (4.14). �

(4.15) Remark. As a by-product of our computations, we find that on a Kähler mani-
fold the coefficients of Θ(TX) satisfy the symmetry relations

cjklm = ckjml, cjklm = clkjm = cjmlk = clmjk.
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§ 5. Basic Results of Kähler Geometry

§ 5.1. Operators of Hermitian Geometry

Let (X,ω) be a hermitian manifold and let zj = xj + iyj, 1 6 j 6 n, be analytic
coordinates at a point x ∈ X such that ω(x) = i

∑
dzj ∧ dzj is diagonalized at this

point. The associated hermitian form is the h(x) = 2
∑
dzj ⊗ dzj and its real part is

the euclidean metric 2
∑

(dxj)
2 + (dyj)

2. It follows from this that |dxj| = |dyj| = 1/
√
2,

|dzj | = |dzj | = 1, and that (∂/∂z1, . . . , ∂/∂zn) is an orthonormal basis of (T ⋆xX,ω).
Formula (3.1) with uj , vk in the orthogonal sum (C⊗ TX)⋆ = T ⋆X ⊕ T ⋆X defines a natural
inner product on the exterior algebra Λ•(C⊗ TX)⋆. The norm of a form

u =
∑

I,J

uI,JdzI ∧ dzJ ∈ Λ(C⊗ TX)⋆

at the given point x is then equal to

(5.1) |u(x)|2 =
∑

I,J

|uI,J (x)|2.

The Hodge ⋆ operator (3.2) can be extended to C-valued forms by the formula

(5.2) u ∧ ⋆ v = 〈u, v〉 dV.

It follows that ⋆ is a C-linear isometry

⋆ : Λp,qT ⋆X −→ Λn−q,n−pT ⋆X .

The usual operators of hermitian geometry are the operators d, δ = −⋆d ⋆, ∆ = dδ+ δd
already defined, and their complex counterparts

(5.3)





d = d′ + d′′,

δ = d′⋆ + d′′⋆, d′⋆ = (d′)⋆ = − ⋆ d′′⋆, d′′⋆ = (d′′)⋆ = − ⋆ d′⋆,
∆′ = d′d′⋆ + d′⋆d′, ∆′′ = d′′d′′⋆ + d′′⋆d′′.

Another important operator is the operator L of type (1,1) defined by

(5.4) Lu = ω ∧ u

and its adjoint Λ = ⋆−1L⋆ :

(5.5) 〈u,Λv〉 = 〈Lu, v〉.

§ 5.2. Commutation Identities

If A,B are endomorphisms of the algebra C∞•,•(X,C), their graded commutator (or
graded Lie bracket) is defined by

(5.6) [A,B] = AB − (−1)abBA
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where a, b are the degrees of A and B respectively. If C is another endomorphism of
degree c, the following Jacobi identity is easy to check:

(5.7) (−1)ca
[
A, [B,C]

]
+ (−1)ab

[
B, [C,A]

]
+ (−1)bc

[
C, [A,B]

]
= 0.

For any α ∈ Λp,qT ⋆X , we still denote by α the endomorphism of type (p, q) on Λ•,•T ⋆X
defined by u 7→ α ∧ u. Consider further a real (1,1)-form

γ ∈ Λ1,1T ⋆X .

There exists an ω-orthogonal basis (ζ1, ζ2, . . . , ζn) in TX which diagonalizes both forms
ω and γ :

ω = i
∑

16j6n

ζ⋆j ∧ ζ
⋆

j , γ = i
∑

16j6n

γj ζ
⋆
j ∧ ζ

⋆

j , γj ∈ R.

(5.8) Proposition. For every form u =
∑
uJ,K ζ

⋆
J ∧ ζ

⋆

K , one has

[γ,Λ]u =
∑

J,K

(∑

j∈J
γj +

∑

j∈K
γj −

∑

16j6n

γj

)
uJ,K ζ

⋆
J ∧ ζ

⋆

K .

Proof. If u is of type (p, q), a brute-force computation yields

Λu = i(−1)p
∑

J,K,l

uJ,K (ζl ζ⋆J) ∧ (ζl ζ
⋆

K), 1 6 l 6 n,

γ ∧ u = i(−1)p
∑

J,K,m

γmuJ,K ζ
⋆
m ∧ ζ⋆J ∧ ζ

⋆

m ∧ ζ
⋆

K , 1 6 m 6 n,

[γ,Λ]u =
∑

J,K,l,m

γm uJ,K

((
ζ⋆l ∧ (ζm ζ⋆J)

)
∧
(
ζ
⋆

l ∧ (ζm ζ
⋆

K)
)

−
(
ζm (ζ⋆l ∧ ζ⋆J)

)
∧
(
ζm (ζ

⋆

l ∧ ζ
⋆

K)
))

=
∑

J,K,m

γm uJ,K

(
ζ⋆m ∧ (ζm ζ⋆J) ∧ ζ

⋆

K

+ ζ⋆J ∧ ζ
⋆

m ∧ (ζm ζ
⋆

K)− ζ⋆J ∧ ζ
⋆

K

)

=
∑

J,K

( ∑

m∈J
γm +

∑

m∈K
γm −

∑

16m6n

γm

)
uJ,K ζ

⋆
J ∧ ζ

⋆

K . �

(5.9) Corollary. For every u ∈ Λp,qT ⋆X , we have

[L,Λ]u = (p+ q − n)u.

Proof. Indeed, if γ = ω, we have γ1 = · · · = γn = 1. �

This result can be generalized as follows: for every u ∈ Λk(C⊗ TX)⋆, we have

(5.10) [Lr,Λ]u = r(k − n+ r − 1)Lr−1u.

In fact, it is clear that

[Lr,Λ]u =
∑

06m6r−1
Lr−1−m[L,Λ]Lmu

=
∑

06m6r−1
(2m+ k − n)Lr−1−mLmu =

(
r(r − 1) + r(k − n)

)
Lr−1u.
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§ 5.3. Primitive Elements and Hard Lefschetz Theorem

In this subsection, we prove a fundamental decomposition theorem for the represen-
tation of the unitary group U(TX) ≃ U(n) acting on the spaces Λp,qT ⋆X of (p, q)-forms.
It turns out that the representation is never irreducible if 0 < p, q < n.

(5.11) Definition. A homogeneous element u ∈ Λk(C ⊗ TX)⋆ is called primitive if
Λu = 0. The space of primitive elements of total degree k will be denoted

Primk T ⋆X =
⊕

p+q=k

Primp,q T ⋆X .

Let u ∈ Primk T ⋆X . Then

ΛsLru = Λs−1(ΛLr − LrΛ)u = r(n− k − r + 1)Λs−1Lr−1u.

By induction, we get for r > s

(5.12) ΛsLru = r(r − 1) · · · (r − s+ 1) · (n− k − r + 1) · · · (n− k − r + s)Lr−su.

Apply (5.12) for r = n + 1. Then Ln+1u is of degree > 2n and therefore we have
Ln+1u = 0. This gives

(n+ 1) · · ·
(
n+ 1− (s− 1)

)
· (−k)(−k + 1) · · · (−k + s− 1)Ln+1−su = 0.

The integral coefficient is 6= 0 if s 6 k, hence:

(5.13) Corollary. If u ∈ Primk T ⋆X , then Lsu = 0 for s > (n+ 1− k)+.

(5.14) Corollary. Primk T ⋆X = 0 for n+ 1 6 k 6 2n.

Proof. Apply Corollary 5.13 with s = 0. �

(5.15) Primitive decomposition formula. For every u ∈ Λk(C ⊗ TX)⋆, there is a
unique decomposition

u =
∑

r>(k−n)+

Lrur, ur ∈ Primk−2r T ⋆X .

Furthermore ur = Φk,r(L,Λ)u where Φk,r is a non commutative polynomial in L,Λ
with rational coefficients. As a consequence, there are direct sum decompositions of U(n)-
representations

Λk(C⊗ TX)⋆ =
⊕

r>(k−n)+

Lr Primk−2r T ⋆X ,

Λp,qT ⋆X =
⊕

r>(p+q−n)+

Lr Primp−r,q−r T ⋆X .
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Proof of the uniqueness of the decomposition. Assume that u = 0 and that ur 6= 0 for
some r. Let s be the largest integer such that us 6= 0. Then

Λsu = 0 =
∑

(k−n)+6r6s

ΛsLrur =
∑

(k−n)+6r6s

Λs−rΛrLrur.

But formula (5.12) shows that ΛrLrur = ck,rur for some non zero integral coefficient
ck,r = r!(n − k + r + 1) · · · (n − k + 2r). Since ur is primitive we get ΛsLrur = 0 when
r < s, hence us = 0, a contradiction.

Proof of the existence of the decomposition. We prove by induction on s > (k−n)+ that
Λsu = 0 implies

(5.16) u =
∑

(k−n)+6r<s

Lrur, ur = Φk,r,s(L,Λ)u ∈ Primk−2r T ⋆X .

The Theorem will follow from the step s = n+ 1.

Assume that the result is true for s and that Λs+1u = 0. Then Λsu is in Primk−2s T ⋆X .
Since s > (k − n)+ we have ck,s 6= 0 and we set

us =
1

ck,s
Λsu ∈ Primk−2s T ⋆X ,

u′ = u− Lsus =
(
1− 1

ck,s
LsΛs

)
u.

By formula (5.12), we get

Λsu′ = Λsu− ΛsLsus = Λsu− ck,sus = 0.

The induction hypothesis implies

u′ =
∑

(k−n)+6r<s

Lru′r, u
′
r = Φk,r,s(L,Λ)u

′ ∈ Primk−2r T ⋆X ,

hence u =
∑

(k−n)+6r6s L
rur with




ur = u′r = Φk,r,s(L,Λ)

(
1− 1

ck,s
LsΛs

)
u, r < s,

us =
1
ck,s

Λsu.

It remains to prove the validity of the decomposition 5.16) for the initial step s = (k−n)+,
i.e. that Λsu = 0 implies u = 0. If k 6 n, then s = 0 and there is nothing to prove.
We are left with the case k > n, Λk−nu = 0. Then v = ⋆ u ∈ Λ2n−k(C ⊗ TX)⋆ and
2n− k < n. Since the decomposition exists in degree 6 n by what we have just proved,
we get

v = ⋆ u =
∑

r>0

Lrvr, vr ∈ Prim2n−k−2r T ⋆X ,

0 = ⋆ Λk−nu = Lk−n ⋆ u =
∑

r>0

Lr+k−nvr,
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with degree (Lr+k−nvr) = 2n−k+2(k−n) = k. The uniqueness part shows that vr = 0
for all r , hence u = 0. The Theorem is proved. �

(5.17) Corollary. The linear operators

Ln−k : Λk(C⊗ TX)⋆ −→ Λ2n−k(C⊗ TX)⋆,

Ln−p−q : Λp,qT ⋆X −→ Λn−q,n−pT ⋆X ,

are isomorphisms for all integers k 6 n, p+ q 6 n.

Proof. For every u ∈ ΛkCT
⋆
X , the primitive decomposition u =

∑
r>0 L

rur is mapped

bijectively onto that of Ln−ku :

Ln−ku =
∑

r>0

Lr+n−kur. �

§ 6. Commutation Relations

§ 6.1. Commutation Relations on a Kähler Manifold

Assume first that X = Ω ⊂ Cn is an open subset and that ω is the standard Kähler
metric

ω = i
∑

16j6n

dzj ∧ dzj .

For any form u ∈ C∞(Ω,Λp,qT ⋆X) we have

d′u =
∑

I,J,k

∂uI,J
∂zk

dzk ∧ dzI ∧ dzJ ,(6.1′)

d′′u =
∑

I,J,k

∂uI,J
∂zk

dzk ∧ dzI ∧ dzJ .(6.1′′)

Since the global L2 inner product is given by

〈〈u, v〉〉 =
∫

Ω

∑

I,J

uI,JvI,J dV,

easy computations analogous to those of Example 3.12 show that

d′⋆u = −
∑

I,J,k

∂uI,J
∂zk

∂

∂zk
(dzI ∧ dzJ ),(6.2′)

d′′⋆u = −
∑

I,J,k

∂uI,J
∂zk

∂

∂zk
(dzI ∧ dzJ).(6.2′′)

We first prove a lemma due to [Akizuki and Nakano 1954].
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(6.3) Lemma. In Cn, we have [d′′⋆, L] = id′.

Proof. Formula (6.2′′) can be written more briefly

d′′⋆u = −
∑

k

∂

∂zk

( ∂u
∂zk

)
.

Then we get

[d′′⋆, L]u = −
∑

k

∂

∂zk

( ∂

∂zk
(ω ∧ u)

)
+ ω ∧

∑

k

∂

∂zk

( ∂u
∂zk

)
.

Since ω has constant coefficients, we have
∂

∂zk
(ω ∧ u) = ω ∧ ∂u

∂zk
and therefore

[d′′⋆, L] u = −
∑

k

(
∂

∂zk

(
ω ∧ ∂u

∂zk

)
− ω ∧

( ∂

∂zk

∂u

∂zk

))

= −
∑

k

( ∂

∂zk
ω
)
∧ ∂u

∂zk
.

Clearly
∂

∂zk
ω = −idzk, so

[d′′⋆, L] u = i
∑

k

dzk ∧
∂u

∂zk
= id′u. �

We are now ready to derive the basic commutation relations in the case of an arbitrary
Kähler manifold (X,ω).

(6.4) Theorem. If (X,ω) is Kähler, then

[d′′⋆, L]= id′, [d′⋆, L]= −id′′,
[Λ, d′′] = −id′⋆, [Λ, d′] = id′′⋆.

Proof. It is sufficient to verify the first relation, because the second one is the conjugate
of the first, and the relations of the second line are the adjoint of those of the first line.
If (zj) is a geodesic coordinate system at a point x0 ∈ X , then for any (p, q)-forms u, v
with compact support in a neighborhood of x0, (4.9) implies

〈〈u, v〉〉 =
∫

M

(∑

I,J

uIJvIJ +
∑

I,J,K,L

aIJKL uIJvKL

)
dV,

with aIJKL(z) = O(|z|2) at x0. An integration by parts as in (3.12) and (6.2′′) yields

d′′⋆u = −
∑

I,J,k

∂uI,J
∂zk

∂

∂zk
(dzI ∧ dzJ ) +

∑

I,J,K,L

bIJKL uIJ dzK ∧ dzL,
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where the coefficients bIJKL are obtained by derivation of the aIJKL’s. Therefore
bIJKL = O(|z|). Since ∂ω/∂zk = O(|z|), the proof of Lemma 6.3 implies here [d′′⋆, L]u =
id′u+O(|z|), in particular both terms coincide at every given point x0 ∈ X . �

(6.5) Corollary. If (X,ω) is Kähler, the complex Laplace-Beltrami operators satisfy

∆′ = ∆′′ =
1

2
∆.

Proof. It will be first shown that ∆′′ = ∆′. We have

∆′′ = [d′′, d′′⋆] = −i
[
d′′, [Λ, d′]

]
.

Since [d′, d′′] = 0, Jacobi’s identity (5.7) implies

−
[
d′′, [Λ, d′]

]
+

[
d′, [d′′,Λ]

]
= 0,

hence ∆′′ =
[
d′,−i[d′′,Λ]

]
= [d′, d′⋆] = ∆′. On the other hand

∆ = [d′ + d′′, d′⋆ + d′′⋆] = ∆′ +∆′′ + [d′, d′′⋆] + [d′′, d′⋆].

Thus, it is enough to prove:

(6.6) Lemma. [d′, d′′⋆] = 0, [d′′, d′⋆] = 0.

Proof. We have [d′, d′′⋆] = −i
[
d′, [Λ, d′]

]
and (5.7) implies

−
[
d′, [Λ, d′]

]
+

[
Λ, [d′, d′]

]
+

[
d′, [d′,Λ]

]
= 0,

hence −2
[
d′, [Λ, d′]

]
= 0 and [d′, d′′⋆] = 0. The second relation [d′′, d′⋆] = 0 is the adjoint

of the first. �

(6.7) Theorem. ∆ commutes with all operators ⋆, d′, d′′, d′⋆, d′′⋆, L,Λ.

Proof. The identities [d′,∆′] = [d′⋆,∆′] = 0, [d′′,∆′′] = [d′′⋆,∆′′] = 0 and [∆, ⋆] = 0 are
immediate. Furthermore, the equality [d′, L] = d′ω = 0 together with the Jacobi identity
implies

[L,∆′] =
[
L, [d′, d′⋆]

]
= −

[
d′, [d′⋆, L]

]
= i[d′, d′′] = 0.

By adjunction, we also get [∆′,Λ] = 0. �

§ 6.2. Commutation Relations on Hermitian Manifolds

We are going to extend the commutation relations of § 6.1 to an arbitrary hermitian
manifold (X,ω). In that case ω is no longer tangent to a constant metric, and the
commutation relations involve extra terms arising from the torsion of ω. Theorem 6.8
below is taken from [Demailly 1984], but the idea was already contained in [Griffiths 1966].

(6.8) Theorem. Let τ be the operator of type (1, 0) and order 0 defined by τ = [Λ, d′ω].
Then
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a) [d′′⋆, L]= i(d′ + τ),
b) [d′⋆, L] = −i(d′′ + τ),
c) [Λ, d′′] = −i(d′⋆ + τ⋆),
d) [Λ, d′] = i(d′′⋆ + τ⋆) ;

d′ω will be called the torsion form of ω, and τ the torsion operator.

Proof. b) follows from a) by conjugation, whereas c), d) follow from a), b) by adjunction.
It is therefore enough to prove relation a).

Let (zj)16j6n be complex coordinates centered at a point x0 ∈ X , such that the n-
tuple (∂/∂z1, . . . , ∂/∂zn) is an orthonormal basis of Tx0

X for the metric ω(x0). Consider
the metric with constant coefficients

ω0 = i
∑

16j6n

dzj ∧ dzj .

The metric ω can then be written

ω = ω0 + γ with γ = O(|z|).

Denote by 〈 , 〉0, L0, Λ0, d
′⋆
0 , d

′′⋆
0 the inner product and the operators associated to

the constant metric ω0, and let dV0 = ωn0 /2
nn!. The proof of relation a) is based on a

Taylor expansion of L, Λ, d′⋆, d′′⋆ in terms of the operators with constant coefficients
L0, Λ0, d

′⋆
0 , d

′′⋆
0 .

(6.9) Lemma. Let u, v ∈ C∞(X,Λp,qT ⋆X). Then in a neighborhood of x0

〈u, v〉 dV = 〈u− [γ,Λ0]u, v〉0 dV0 +O(|z|2).

Proof. In a neighborhood of x0, let

γ = i
∑

16j6n

γj ζ
⋆
j ∧ ζ

⋆

j , γ1 6 γ2 6 · · · 6 γn,

be a diagonalization of the (1,1)-form γ(z) with respect to an orthonormal basis (ζj)16j6n
of TzX for ω0(z). We thus have

ω = ω0 + γ = i
∑

λj ζ
⋆
j ∧ ζ

⋆

j

with λj = 1 + γj and γj = O(|z|). Set now

J = {j1, . . . , jp}, ζ⋆J = ζ⋆j1 ∧ · · · ∧ ζ⋆jp , λJ = λj1 · · ·λjp ,

u =
∑

uJ,K ζ
⋆
J ∧ ζ

⋆

K , v =
∑

vJ,K ζ
⋆
J ∧ ζ

⋆

K

where summations are extended to increasing multi-indices J , K such that |J | = p,
|K| = q. With respect to ω we have 〈ζ⋆j , ζ⋆j 〉 = λ−1j , hence

〈u, v〉 dV =
∑

J,K

λ−1J λ−1K uJ,KvJ,K λ1 · · ·λn dV0

=
∑

J,K

(
1−

∑

j∈J
γj −

∑

j∈K
γj +

∑

16j6n

γj

)
uJ,KvJ,K dV0 +O(|z|2).
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Lemma 6.9 follows if we take Prop. 5.8 into account. �

(6.10) Lemma. d′′⋆ = d′′⋆0 +
[
Λ0, [d

′′⋆
0 , γ]

]
at point x0, i.e. at this point both operators

have the same formal expansion.

Proof. Since d′′⋆ is an operator of order 1, Lemma 6.9 shows that d′′⋆ coincides at point
x0 with the formal adjoint of d′′ for the metric

〈〈u, v〉〉1 =

∫

X

〈u− [γ,Λ0]u, v〉0 dV0.

For any compactly supported u ∈ C∞(X,Λp,qT ⋆X), v ∈ C∞(X,Λp,q−1T ⋆X) we get by
definition

〈〈u, d′′v〉〉1 =

∫

X

〈u− [γ,Λ0]u, d
′′v〉0 dV0 =

∫

X

〈d′′⋆0 u− d′′⋆0 [γ,Λ0]u, v〉0 dV0.

Since ω and ω0 coincide at point x0 and since γ(x0) = 0 we obtain at this point

d′′⋆u = d′′⋆0 u− d′′⋆0 [γ,Λ0]u = d′′⋆0 u−
[
d′′⋆0 , [γ,Λ0]

]
u ;

d′′⋆ = d′′⋆0 −
[
d′′⋆0 , [γ,Λ0]

]
.

We have [Λ0, d
′′⋆
0 ] = [d′′, L0]

⋆ = 0 since d′′ω0 = 0. The Jacobi identity (5.7) implies

[
d′′⋆0 , [γ,Λ0]

]
+

[
Λ0, [d

′′⋆
0 , γ]

]
= 0,

and Lemma 6.10 follows. �

Proof Proof of formula 6.8 a). The equality L = L0 + γ and Lemma 6.10 yield

(6.11) [L, d′′⋆] = [L0, d
′′⋆
0 ] +

[
L0,

[
Λ0, [d

′′⋆
0 , γ]

]]
+ [γ, d′′⋆0 ]

at point x0, because the triple bracket involving γ twice vanishes at x0. From the Jacobi
identity applied to C = [d′′⋆0 , γ], we get

(6.12)





[
L0, [Λ0, C]

]
= −[Λ0, [C,L0]

]
−
[
C, [L0,Λ0]

]
,

[C,L0] =
[
L0, [d

′′⋆
0 , γ]

]
=

[
γ, [L0, d

′′⋆
0 ]

]
(since [γ, L0] = 0).

Lemma 6.3 yields [L0, d
′′⋆
0 ] = −id′, hence

(6.13) [C,L0] = −[γ, id′] = id′γ = id′ω.

On the other hand, C is of type (1, 0) and Cor. 5.9 gives

(6.14)
[
C, [L0,Λ0]

]
= −C = −[d′′⋆0 , γ].

From (6.12), (6.13), (6.14) we get

[
L0,

[
Λ0, [d

′′⋆
0 , γ]

]]
= −[Λ0, id

′ω] + [d′′⋆0 , γ].
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This last equality combined with (6.11) implies

[L, d′′⋆] = [L0, d
′′⋆
0 ]− [Λ0, id

′ω] = −i(d′ + τ)

at point x0. Formula 6.8 a) is proved. �

(6.15) Corollary. The complex Laplace-Beltrami operators satisfy

∆′′ = ∆′ + [d′, τ⋆]− [d′′, τ⋆],

[d′, d′′⋆] = −[d′, τ⋆], [d′′, d′⋆] = −[d′′, τ⋆],
∆ = ∆′ +∆′′ − [d′, τ⋆]− [d′′, τ⋆].

Therefore ∆′, ∆′′ and 1
2∆ no longer coincide, but they differ by linear differential oper-

ators of order 1 only.

Proof. As in the Kähler case (Cor. 6.5 and Lemma 6.6), we find

∆′′ = [d′′, d′′⋆] =
[
d′′,−i[Λ, d′]− τ⋆]

=
[
d′,−i[d′′,Λ]

]
− [d′′, τ⋆

]
= ∆′ + [d′, τ⋆]− [d′′, τ⋆],

[d′, d′′⋆ + τ⋆] = −i
[
d′, [Λ, d′]

]
= 0,

and the first two lines are proved. The third one is an immediate consequence of the
second. �

§ 7. Groups Hp,q(X,E) and Serre Duality

Let (X,ω) be a compact hermitian manifold and E a holomorphic hermitian vector
bundle of rank r over X . We denote by DE the Chern connection of E, by D⋆

E = −⋆DE ⋆
the formal adjoint of DE , and by D′⋆E , D

′′⋆
E the components of D⋆

E of type (−1, 0) and
(0,−1).

Corollary 6.8 implies that the principal part of the operator ∆′′E = D′′D′′⋆E +D′′⋆E D′′

is one half that of ∆E . The operator ∆′′E acting on each space C∞(X,Λp,qT ⋆X ⊗ E) is
thus a self-adjoint elliptic operator. Since D′′2 = 0, the following results can be obtained
in a way similar to those of § 3.3.

(7.1) Theorem. For every bidegree (p, q), there exists an orthogonal decomposition

C

∞(X,Λp,qT ⋆X ⊗E) = Hp,q(X,E)⊕ ImD′′E ⊕ ImD′′⋆E

where Hp,q(X,E) is the space of ∆′′E-harmonic forms in C∞(X,Λp,qT ⋆X ⊗E).

The above decomposition shows that the subspace of d′′-cocycles in C∞(X,Λp,qT ⋆X ⊗
E) is Hp,q(X,E)⊕ ImD′′E . From this, we infer

(7.2) Hodge isomorphism theorem. The Dolbeault cohomology group Hp,q(X,E) is
finite dimensional, and there is an isomorphism

Hp,q(X,E) ≃ Hp,q(X,E).
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(7.3) Serre duality theorem. The bilinear pairing

Hp,q(X,E)×Hn−p,n−q(X,E⋆) −→ C, (s, t) 7−→
∫

M

s ∧ t

is a non degenerate duality.

Proof. Let s1 ∈ C∞(X,Λp,qT ⋆X ⊗ E), s2 ∈ C∞(X,Λn−p,n−q−1T ⋆X ⊗ E). Since s1 ∧ s2 is
of bidegree (n, n− 1), we have

(7.4) d(s1 ∧ s2) = d′′(s1 ∧ s2) = d′′s1 ∧ s2 + (−1)p+qs1 ∧ d′′s2.

Stokes’ formula implies that the above bilinear pairing can be factorized through Dol-
beault cohomology groups. The # operator defined in § 3.1 is such that

# : C∞(X,Λp,qT ⋆X ⊗ E) −→ C∞(X,Λn−p,n−qT ⋆X ⊗E⋆).

Furthermore, (3.20) implies

d′′(# s) = (−1)deg s#D′′⋆E s, D′′⋆E⋆(# s) = (−1)deg s+1#D′′⋆E s,

∆′′E⋆(# s) = #∆′′Es,

where DE⋆ is the Chern connection of E⋆. Consequently, s ∈ Hp,q(X,E) if and only if
# s ∈ Hn−p,n−q(X,E⋆). Theorem 7.3 is then a consequence of the fact that the integral
‖s‖2 =

∫
X
s ∧# s does not vanish unless s = 0. �

§ 8. Cohomology of Compact Kähler Manifolds

§ 8.1. Bott-Chern Cohomology Groups

LetX be for the moment an arbitrary complex manifold. The following “cohomology”
groups are helpful to describe Hodge theory on compact complex manifolds which are
not necessarily Kähler.

(8.1) Definition. We define the Bott-Chern cohomology groups of X to be

Hp,q
BC(X,C) =

(
C

∞(X,Λp,qT ⋆X) ∩ ker d
)
/d′d′′C∞(X,Λp−1,q−1T ⋆X).

Then H•,•BC(X,C) has the structure of a bigraded algebra, which we call the Bott-Chern
cohomology algebra of X.

As the group d′d′′C∞(X,Λp−1,q−1T ⋆X) is contained in both coboundary groups
d′′C∞(X,Λp,q−1T ⋆X) or dC∞(X,Λp+q−1(C⊗ TX)⋆), there are canonical morphisms

Hp,q
BC(X,C) −→ Hp,q(X,C),(8.2)

Hp,q
BC(X,C) −→ Hp+q

DR (X,C),(8.3)

of the Bott-Chern cohomology to the Dolbeault or De Rham cohomology. These mor-
phisms are homomorphisms of C-algebras. It is also clear from the definition that we
have the symmetry property Hq,p

BC(X,C) = Hp,q
BC(X,C). It can be shown from the Hodge-

Frölicher spectral sequence (see § 11 and Exercise 13.??) that Hp,q
BC(X,C) is always finite

dimensional if X is compact.
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§ 8.2. Hodge Decomposition Theorem

We suppose from now on that (X,ω) is a compact Kähler manifold. The equality
∆ = 2∆′′ shows that ∆ is homogeneous with respect to bidegree and that there is an
orthogonal decomposition

(8.4) H

k(X,C) =
⊕

p+q=k

H

p,q(X,C).

As ∆′′ = ∆′ = ∆′′, we also haveHq,p(X,C) = Hp,q(X,C). Using the Hodge isomorphism
theorems for the De Rham and Dolbeault cohomology, we get:

(8.5) Hodge decomposition theorem. On a compact Kähler manifold, there are
canonical isomorphisms

Hk(X,C) ≃
⊕

p+q=k

Hp,q(X,C) (Hodge decomposition),

Hq,p(X,C) ≃ Hp,q(X,C) (Hodge symmetry).

The only point which is not a priori completely clear is that this decomposition is
independent of the Kähler metric. In order to show that this is the case, one can use
the following Lemma, which allows us to compare all three types of cohomology groups
considered in § 8.1.

(8.6) Lemma. Let u be a d-closed (p, q)-form. The following properties are equivalent:

a) u is d-exact ;

b′) u is d′-exact ;

b′′) u is d′′-exact ;

c) u is d′d′′-exact, i.e. u can be written u = d′d′′v.

d) u is orthogonal to Hp,q(X,C).

Proof. It is obvious that c) implies a), b′), b′′) and that a) or b′) or b′′) implies d). It is
thus sufficient to prove that d) implies c). As du = 0, we have d′u = d′′u = 0, and as u is
supposed to be orthogonal toHp,q(X,C), Th. 7.1 implies u = d′′s, s ∈ C∞(X,Λp,q−1T ⋆X).
By the analogue of Th. 7.1 for d′, we have s = h + d′v + d′⋆w, with h ∈ Hp,q−1(X,C),
v ∈ C∞(X,Λp−1,q−1T ⋆X) and w ∈ C∞(X,Λp+1,q−1T ⋆X). Therefore

u = d′′d′v + d′′d′⋆w = −d′d′′v − d′⋆d′′w

in view of Lemma 6.6. As d′u = 0, the component d′⋆d′′w orthogonal to ker d′ must be
zero. �

From Lemma 8.6 we infer the following Corollary, which in turn implies that the
Hodge decomposition does not depend on the Kähler metric.
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(8.7) Corollary. Let X be a compact Kähler manifold. Then the natural morphisms

Hp,q
BC(X,C) −→ Hp,q(X,C),

⊕

p+q=k

Hp,q
BC(X,C) −→ Hk

DR(X,C)

are isomorphisms.

Proof. The surjectivity of Hp,q
BC(X,C)→ Hp,q(X,C) comes from the fact that every class

in Hp,q(X,C) can be represented by a harmonic (p, q)-form, thus by a d-closed (p, q)-
form; the injectivity means nothing more than the equivalence (8.5 b′′)⇔ (8.5 c). Hence
Hp,q

BC(X,C) ≃ Hp,q(X,C) ≃ Hp,q(X,C), and the isomorphism
⊕

p+q=kH
p,q
BC(X,C) −→

Hk
DR(X,C) follows from (8.4). �

Let us quote now two simple applications of Hodge theory. The first of these is
a computation of the Dolbeault cohomology groups of Pn. As H2p

DR(P
n,C) = C and

Hp,p(Pn,C) ∋ {ωp} 6= 0, the Hodge decomposition formula implies:

(8.8) Application. The Dolbeault cohomology groups of Pn are

Hp,p(Pn,C) = C for 0 6 p 6 n, Hp,q(Pn,C) = 0 for p 6= q. �

(8.9) Proposition. Every holomorphic p-form on a compact Kähler manifold X is
d-closed.

Proof. If u is a holomorphic form of type (p, 0) then d′′u = 0. Furthermore d′′⋆u is of
type (p,−1), hence d′′⋆u = 0. Therefore ∆u = 2∆′′u = 0, which implies du = 0. �

(8.10) Example. Consider the Heisenberg group G ⊂ Gl3(C), defined as the subgroup
of matrices

M =




1 x z
0 1 y
0 0 1


 , (x, y, z) ∈ C3.

Let Γ be the discrete subgroup of matrices with entries x, y, z ∈ Z[i] (or more generally
in the ring of integers of an imaginary quadratic field). Then X = G/Γ is a compact
complex 3-fold, known as the Iwasawa manifold. The equality

M−1dM =




0 dx dz − xdy
0 0 dy
0 0 0




shows that dx, dy, dz − xdy are left invariant holomorphic 1-forms on G. These forms
induce holomorphic 1-forms on the quotient X = G/Γ. Since dz − xdy is not d-closed,
we see that X cannot be Kähler.

§ 8.3. Primitive Decomposition and Hard Lefschetz Theorem

We first introduce some standard notation. The Betti numbers and Hodge numbers
of X are by definition

(8.11) bk = dimCH
k(X,C), hp,q = dimCH

p,q(X,C).
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Thanks to Hodge decomposition, these numbers satisfy the relations

(8.12) bk =
∑

p+q=k

hp,q, hq,p = hp,q .

As a consequence, the Betti numbers b2k+1 of a compact Kähler manifold are even.
Note that the Serre duality theorem gives the additional relation hp,q = hn−p,n−q , which
holds as soon as X is compact. The existence of primitive decomposition implies other
interesting specific features of the cohomology algebra of compact Kähler manifolds.

(8.13) Lemma. If u =
∑

r>(k−n)+ L
rur is the primitive decomposition of a harmonic

k-form u, then all components ur are harmonic.

Proof. Since [∆, L] = 0, we get 0 = ∆u =
∑
r L

r∆ur, hence ∆ur = 0 by uniqueness. �

Let us denote by PrimHk(X,C) =
⊕

p+q=k PrimH
p,q(X,C) the spaces of primitive

harmonic k-forms and let bk,prim, h
p,q
prim be their respective dimensions. Lemma 8.13

yields

H

p,q(X,C) =
⊕

r>(p+q−n)+

Lr PrimHp−r,q−r(X,C),(8.14)

hp,q =
∑

r>(p+q−n)+

hp−r,q−rprim .(8.15)

Formula (8.15) can be rewritten

(8.15′)





if p+ q 6 n, hp,q = hp,qprim + hp−1,q−1prim + · · ·
if p+ q > n, hp,q = hn−q,n−pprim + hn−q−1,n−p−1prim + · · · .

(8.16) Corollary. The Hodge and Betti numbers satisfy the inequalities

a) if k = p+ q 6 n, then hp,q > hp−1,q−1, bk > bk−2,

b) if k = p+ q > n, then hp,q > hp+1,q+1, bk > bk+2. �

Another important result of Hodge theory (which is in fact a direct consequence of
Cor. 5.17) is the

(8.17) Hard Lefschetz theorem. The mappings

Ln−k : Hk(X,C)−→ H2n−k(X,C), k 6 n,
Ln−p−q : Hp,q(X,C)−→ Hn−q,n−p(X,C), p+ q 6 n,

are isomorphisms. �

§ 9. Jacobian and Albanese Varieties



314 Chapter VI. Hodge Theory

§ 9.1. Description of the Picard Group

An important application of Hodge theory is a description of the Picard group
H1(X,O⋆) of a compact Kähler manifold. We assume here that X is connected. The
exponential exact sequence 0→ Z→ O→ O⋆ → 1 gives

0 −→H1(X,Z) −→ H1(X,O) −→ H1(X,O⋆)(9.1)
c1−→H2(X,Z) −→ H2(X,O)

because the map exp(2πi•) : H0(X,O) = C −→ H0(X,O⋆) = C⋆ is onto. We have
H1(X,O) ≃ H0,1(X,C) by (V-11.6). The dimension of this group is called the irregularity
of X and is usually denoted

(9.2) q = q(X) = h0,1 = h1,0.

Therefore we have b1 = 2q and

(9.3) H1(X,O) ≃ Cq, H0(X,Ω1
X) = H1,0(X,C) ≃ Cq.

(9.4) Lemma. The image of H1(X,Z) in H1(X,O) is a lattice.

Proof. Consider the morphisms

H1(X,Z) −→ H1(X,R) −→ H1(X,C) −→ H1(X,O)

induced by the inclusions Z ⊂ R ⊂ C ⊂ O. Since the Čech cohomology groups with
values in Z, R can be computed by finite acyclic coverings, we see that H1(X,Z) is a
finitely generated Z-module and that the image of H1(X,Z) in H1(X,R) is a lattice. It
is enough to check that the map H1(X,R) −→ H1(X,O) is an isomorphism. However,
the commutative diagram

0−→C−→ E

0 d−→ E

1 d−→ E

2 −→· · ·y y y y

0−→O−→E0,0 d′′−→E0,1 d′′−→E0,2−→· · ·

shows that the map H1(X,R) −→ H1(X,O) corresponds in De Rham and Dolbeault
cohomologies to the composite mapping

H1
DR(X,R) ⊂ H1

DR(X,C) −→ H0,1(X,C).

Since H1,0(X,C) and H0,1(X,C) are complex conjugate subspaces in H1
DR(X,C), we

conclude that H1
DR(X,R) −→ H0,1(X,C) is an isomorphism. �

As a consequence of this lemma, H1(X,Z) ≃ Z2q. The q-dimensional complex torus

(9.5) Jac(X) = H1(X,O)/H1(X,Z)

is called the Jacobian variety of X and is isomorphic to the subgroup of H1(X,O⋆)
corresponding to line bundles of zero first Chern class. On the other hand, the kernel of

H2(X,Z) −→ H2(X,O) = H0,2(X,C)
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which consists of integral cohomology classes of type (1, 1), is equal to the image of c1 in
H2(X,Z). This subgroup is called the Neron-Severi group of X , and is denoted NS(X).
The exact sequence (9.1) yields

(9.6) 0 −→ Jac(X) −→ H1(X,O⋆)
c1−→ NS(X) −→ 0.

The Picard group H1(X,O⋆) is thus an extension of the complex torus Jac(X) by the
finitely generated Z-module NS(X).

(9.7) Corollary. The Picard group of Pn is H1(Pn,O⋆) ≃ Z, and every line bundle over
Pn is isomorphic to one of the line bundles O(k), k ∈ Z.

Proof. We have Hk(Pn,O) = H0,k(Pn,C) = 0 for k > 1 by Appl. 8.8, thus Jac(Pn) = 0
and NS(Pn) = H2(Pn,Z) ≃ Z. Moreover, c1

(
O(1)

)
is a generator of H2(Pn,Z) in virtue

of Th. V-15.10. �

§ 9.2. Albanese Variety

A proof similar to that of Lemma 9.4 shows that the image of H2n−1(X,Z) in
Hn−1,n(X,C) via the composite map

(9.8) H2n−1(X,Z)→ H2n−1(X,R)→ H2n−1(X,C)→ Hn−1,n(X,C)

is a lattice. The q-dimensional complex torus

(9.9) Alb(X) = Hn−1,n(X,C)/ ImH2n−1(X,Z)

is called the Albanese variety of X . We first give a slightly different description of Alb(X),
based on the Serre duality isomorphism

Hn−1,n(X,C) ≃
(
H1,0(X,C)

)⋆ ≃
(
H0(X,Ω1

X)
)⋆
.

(9.10) Lemma. For any compact oriented differentiable manifold M with dimRM = m,
there is a natural isomorphism

H1(M,Z)→ Hm−1(M,Z)

where H1(M,Z) is the first homology group of M , that is, the abelianization of π1(M).

Proof. This is a well known consequence of Poincaré duality, see e.g. [Spanier 1966].
We will content ourselves with a description of the morphism. Fix a base point a ∈ M .
Every homotopy class [γ] ∈ π1(M, a) can be represented by as a composition of closed
loops diffeomorphic to S1. Let γ be such a loop. As every oriented vector bundle over
S1 is trivial, the normal bundle to γ is trivial. Hence γ(S1) has a neighborhood U
diffeomorphic to S1 × Rm−1, and there is a diffeomorphism ϕ : S1 × Rm−1 → U with
ϕ↾S1×{0} = γ. Let {δ0} ∈ Hm−1

c (Rm−1,Z) be the fundamental class represented by the
Dirac measure δ0 ∈D′0(Rm−1) in De Rham cohomology. Then the cartesian product 1×
{δ0} ∈ Hm−1

c (S1×Rm−1,Z) is represented by the current [S1]⊗ {δ0} ∈D′1(S1 × Rm−1)
and the current of integration over γ is precisely the direct image current

Iγ := ϕ⋆([S
1]⊗ δ0) = (ϕ−1)⋆([S1]⊗ δ0).
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Its cohomology class {Iγ} ∈ Hm−1
c (U,R) is thus the image of the class

(ϕ−1)⋆
(
1× {δ0}

)
∈ Hm−1

c (U,Z).

Therefore, we have obtained a well defined morphism

π1(M, a) −→ Hm−1
c (U,Z) −→ Hm−1(M,Z), [γ] 7−→ (ϕ−1)⋆

(
1× {δ0}

)

and the image of [γ] in Hm−1(M,R) is the De Rham cohomology class of the integration
current Iγ . �

Thanks to Lemma 9.10, we can reformulate the definition of the Albanese variety as

(9.11) Alb(X) =
(
H0(X,Ω1

X)
)⋆
/ ImH1(X,Z)

where H1(X,Z) is mapped to
(
H0(X,Ω1

X)
)⋆

by

[γ] 7−→ Ĩγ =
(
u 7→

∫

γ

u
)
.

Observe that the integral only depends on the homotopy class [γ] because all holomorphic
1-forms u on X are closed by Prop. 8.9.

We are going to show that there exists a canonical holomorphic map α : X → Alb(X).
Let a be a base point inX . For any x ∈ X , we select a path ξ from a to x and associate to
x the linear form in

(
H0(X,Ω1

X)
)⋆

defined by Ĩξ. By construction the class of this linear

form mod ImH1(X,Z) does not depend on ξ, since Ĩξ′ −1ξ is in the image of H1(X,Z)
for any other path ξ′. It is thus legitimate to define the Albanese map as

(9.12) α : X −→ Alb(X), x 7−→
(
u 7→

∫ x

a

u
)

mod Im H1(X,Z).

Of course, if we fix a basis (u1, . . . , uq) of H
0(X,Ω1

X), the Albanese map can be seen in
coordinates as the map

(9.13) α : X −→ Cq/Λ, x 7−→
(∫ x

a

u1, . . . ,

∫ x

a

uq

)
mod Λ,

where Λ ⊂ Cq is the group of periods of (u1, . . . , uq) :

(9.13′) Λ =
{(∫

γ

u1, . . . ,

∫

γ

uq

)
; [γ] ∈ π1(X, a)

}
.

It is then clear that α is a holomorphic map. With the original definition (9.9) of the
Albanese variety, it is not difficult to see that α is the map given by

(9.14) α : X −→ Alb(X), x 7−→ {In−1,nξ } mod H2n−1(X,Z),

where {In−1,nξ } ∈ Hn−1,n(X,C) denotes the (n − 1, n)-component of the De Rham co-
homology class {Iξ}.
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§ 10. Complex Curves

We show here how Hodge theory can be used to derive quickly the basic properties
of compact manifolds of complex dimension 1 (also called complex curves or Riemann
surfaces). Let X be such a curve. We shall always assume in this section that X is
compact and connected. Since every positive (1, 1)-form on a curve defines a Kähler
metric, the results of § 8 and § 9 can be applied.

§ 10.1. Riemann-Roch Formula

Denoting g = h1(X,O), we find

H1(X,O) ≃ Cg, H0(X,Ω1
X) ≃ Cg,(10.1)

H0(X,Z) = Z, H1(X,Z) = Z2g, H2(X,Z) = Z.(10.2)

The classification of oriented topological surfaces shows that X is homeomorphic to a
sphere with g handles ( = torus with g holes), but this property will not be used in the
sequel. The number g is called the genus of X .

Any divisor on X can be written ∆ =
∑
mjaj where (aj) is a finite sequence of points

and mj ∈ Z. Let E be a line bundle over X . We shall identify E and the associated
locally free sheaf O(E). According to V-13.2, we denote by E(∆) the sheaf of germs of
meromorphic sections f of E such that div f + ∆ > 0, i.e. which have a pole of order
6 mj at aj if mj > 0, and which have a zero of order > |mj | at aj if mj < 0. Clearly

(10.3) E(∆) = E ⊗ O(∆), O(∆ +∆′) = O(∆)⊗ O(∆′).

For any point a ∈ X and any integer m > 0, there is an exact sequence

0 −→ E −→ E(m[a]) −→ S −→ 0

where S = E(m[a])/E is a sheaf with only one non zero stalk Sa isomorphic to Cm.
Indeed, if z is a holomorphic coordinate near a, the stalk Sa corresponds to the polar
parts

∑
−m6k<0 ckz

k in the power series expansions of germs of meromorphic sections at
point a. We get an exact sequence

H0
(
X,E(m[a])

)
−→ Cm −→ H1(X,E).

When m is chosen larger than dimH1(X,E), we see that E(m[a]) has a non zero section
and conclude:

(10.4) Theorem. Let a be a given point on a curve. Then every line bundle E has non
zero meromorphic sections f with a pole at a and no other poles.

If ∆ is the divisor of a meromorphic section f of E, we have E ≃ O(∆), so the map

Div(X) −→ H1(X,O⋆), ∆ 7−→ O(∆)

is onto (cf. (V-13.8)). On the other hand, Div is clearly a soft sheaf, thus H1(X,Div) = 0.
The long cohomology sequence associated to the exact sequence 1→ O⋆ → M⋆ → Div→
0 implies:
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(10.5) Corollary. On any complex curve, one has H1(X,M⋆) = 0 and there is an exact
sequence

0 −→ C⋆ −→ M⋆(X) −→ Div(X) −→ H1(X,O⋆) −→ 0.

The first Chern class c1(E) ∈ H2(X,Z) can be interpreted as an integer. This integer
is called the degree of E. If E ≃ O(∆) with ∆ =

∑
mjaj , formula V-13.6 shows that the

image of c1(E) in H2(X,R) is the De Rham cohomology class of the associated current
[∆] =

∑
mjδaj , hence

(10.6) c1(E) =

∫

X

[∆] =
∑

mj .

If
∑
mjaj is the divisor of a meromorphic function, we have

∑
mj = 0 because the

associated bundle E = O(
∑
mjaj) is trivial.

(10.7) Theorem. Let E be a line bundle on a complex curve X. Then

a) H0(X,E) = 0 if c1(E) < 0 or if c1(E) = 0 and E is non trivial ;

b) For every positive (1, 1)-form ω on X with
∫
X
ω = 1, E has a hermitian metric such

that i
2π

Θ(E) = c1(E)ω. In particular, E has a metric of positive (resp. negative)
curvature if and only if c1(E) > 0 (resp. if and only if c1(E) < 0).

Proof. a) If E has a non zero holomorphic section f , then its degree is c1(E) =
∫
X
div f >

0. In fact, we even have c1(E) > 0 unless f does not vanish, in which case E is trivial.

b) Select an arbitrary hermitian metric h on E. Then c1(E)ω − i
2π

Θh(E) is a real
(1, 1)-form cohomologous to zero (the integral over X is zero), so Lemma 8.6 c) implies

c1(E)ω − i

2π
Θh(E) = id′d′′ϕ

for some real function ϕ ∈ C∞(X,R). If we replace the initial metric of E by h′ = h e−ϕ,
we get a metric of constant curvature c1(E)ω. �

(10.8) Riemann-Roch formula. Let E be a holomorphic line bundle and let hq(E) =
dimHq(X,E). Then

h0(E)− h1(E) = c1(E)− g + 1.

Moreover h1(E) = h0(K ⊗E⋆), where K = Ω1
X is the canonical line bundle of X.

Proof. We claim that for every line bundle F and every divisor ∆ we have the equality

(10.9) h0
(
F (∆)

)
− h1

(
F (∆)

)
= h0(F )− h1(F ) +

∫

X

[∆].

If we write E = O(∆) and apply the above equality with F = O, the Riemann-Roch
formula results from (10.6), (10.9) and from the equalities

h0(O) = dimH0(X,O) = 1, h1(O) = dimH1(X,O) = g.
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However, (10.9) need only be proved when ∆ > 0 : otherwise we are reduced to this case
by writing ∆ = ∆1−∆2 with ∆1,∆2 > 0 and by applying the result to the pairs (F,∆1)
and

(
F (∆),∆2

)
. If ∆ =

∑
mjaj > 0, there is an exact sequence

0 −→ F −→ F (∆) −→ S −→ 0

where Saj ≃ Cmj and the other stalks are zero. Let m =
∑
mj =

∫
X
[∆]. The sheaf S

is acyclic, because its support {aj} is of dimension 0. Hence there is an exact sequence

0 −→ H0(F ) −→ H0
(
F (∆)

)
−→ Cm −→ H1(F ) −→ H1

(
F (∆)

)
−→ 0

and (10.9) follows. The equality h1(E) = h0(K ⊗ E⋆) is a consequence of the Serre
duality theorem

(
H0,1(X,E)

)⋆ ≃ H1,0(X,E⋆), i.e.
(
H1(X,E)

)⋆ ≃ H0(X,K ⊗ E⋆). �

(10.10) Corollary (Hurwitz’ formula). c1(K) = 2g − 2.

Proof. Apply Riemann-Roch to E = K and observe that

(10.11)
h0(K) = dimH0(X,Ω1

X) = g

h1(K) = dimH1(X,Ω1
X) = h1,1 = b2 = 1

(10.12) Corollary. For every a ∈ X and every m ∈ Z

h0
(
K(−m[a])

)
= h1

(
O(m[a])

)
= h0

(
O(m[a])

)
−m+ g − 1.

§ 10.2. Jacobian of a Curve

By the Neron-Severi sequence (9.6), there is an exact sequence

(10.13) 0 −→ Jac(X) −→ H1(X,O⋆)
c1−→ Z −→ 0,

where the Jacobian Jac(X) is a g-dimensional torus. Choose a base point a ∈ X . For
every point x ∈ X , the line bundle O([x] − [a]) has zero first Chern class, so we have a
well-defined map

(10.14) Φa : X −→ Jac(X), x 7−→ O([x]− [a]).

Observe that the Jacobian Jac(X) of a curve coincides by definition with the Albanese
variety Alb(X).

(10.15) Lemma. The above map Φa coincides with the Albanese map α : X −→ Alb(X)
defined in (9.12).

Proof. By holomorphic continuation, it is enough to prove that Φa(x) = α(x) when x is
near a. Let z be a complex coordinate and let D′ ⊂⊂ D be open disks centered at a.
Relatively to the covering

U1 = D, U2 = X \D′,
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the line bundle O([x]− [a]) is defined by the Čech cocycle c ∈ C1(U,O⋆) such that

c12(z) =
z − x
z − a on U12 = D \D′.

On the other hand, we compute α(x) by Formula (9.14). The path integral current I[a,x] ∈
D

′
1(X) is equal to 0 on U2. Lemma I-2.10 implies d′′(dz/2πiz) = δ0 dz ∧ dz/2i = δ0

according to the usual identification of distributions and currents of degree 0, thus

I0,1[a,x] = d′′
( dz

2πiz
⋆ I0,1[a,x]

)
on U1.

Therefore {I0,1[a,x]} ∈ H0,1(X,C) is equal to the Čech cohomology class {c′} in H1(X,O)

represented by the cocycle

c′12(z) =
dw

2πiw
⋆ I0,1[a,x] =

1

2πi

∫ x

a

dw

w − z =
1

2πi
log

z − x
z − a on U12

and we have c = exp(2πic′) in H1(X,O⋆). �

The nature of Φa depends on the value of the genus g. A careful examination of Φa
will enable us to determine all curves of genus 0 and 1.

(10.16) Theorem. The following properties are equivalent:

a) g = 0 ;

b) X has a meromorphic function f having only one simple pole p ;

c) X is biholomorphic to P1.

Proof. c) =⇒ a) is clear.

a) =⇒ b). Since g = 0, we have Jac(X) = 0. If p, p′ ∈ X are distinct points, the
bundle O([p′] − [p]) has zero first Chern class, therefore it is trivial and there exists a
meromorphic function f with div f = [p′]− [p]. In particular p is the only pole of f , and
this pole is simple.

b) =⇒ c). We may consider f as a map X −→ P1 = C ∪ {∞}. For every value w ∈ C,
the function f − w must have exactly one simple zero x ∈ X because

∫
X
div(f −w) = 0

and p is a simple pole. Therefore f : X → P1 is bijective and X is biholomorphic to
P1. �

(10.17) Theorem. The map Φa is always injective for g > 1.

a) If g = 1, Φa is a biholomorphism. In particular every curve of genus 1 is biholomor-
phic to a complex torus C/Γ.

b) If g > 2, Φa is an embedding.

Proof. If Φa is not injective, there exist points x1 6= x2 such that O([x1]− [x2]) is trivial;
then there is a meromorphic function f such that div f = [x1]−[x2] and Th. 10.16 implies
that g = 0.
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When g = 1, Φa is an injective map X −→ Jac(X) ≃ C/Γ, thus Φa is open. It
follows that Φa(X) is a compact open subset of C/Γ, so Φa(X) = C/Γ and Φa is a
biholomorphism of X onto C/Γ.

In order to prove that Φa is an embedding when g > 2, it is sufficient to show that the
holomorphic 1-forms u1, . . . , ug do not all vanish at a given point x ∈ X . In fact, X has no
non constant meromorphic function having only a simple pole at x, thus h0

(
O([x])

)
= 1

and Cor. 10.12 implies

h0
(
K(−[x])

)
= g − 1 < h0(K) = g.

Hence K has a section u which does not vanish at x. �

§ 10.3. Weierstrass Points of a Curve

We want to study how many meromorphic functions have a unique pole of multiplicity
6 m at a given point a ∈ X , i.e. we want to compute h0

(
O(m[a])

)
. As we shall see soon,

these numbers may depend on a only if m is small. We have c1
(
K(−m[a])

)
= 2g−2−m,

so the degree is < 0 and h0
(
K(−m[a])

)
= 0 for m > 2g−1 by 10.7 a). Cor. 10.12 implies

(10.18) h0
(
O(m[a])

)
= m− g + 1 for m > 2g − 1.

It remains to compute h0
(
K(−m[a])

)
for 0 6 m 6 2g− 2 and g > 1. Let u1, . . . , ug be a

basis of H0(X,K) and let z be a complex coordinate centered at a. Any germ u ∈ O(K)a
can be written u = U(z) dz with U(z) =

∑
m∈N

1
m!U

(m)(a)zm dz. The unique non zero

stalk of the quotient sheaf O
(
K(−m[a])

)
/O

(
K(−(m+ 1)[a])

)
is canonically isomorphic

to Km+1
a via the map u 7→ U (m)(a)(dz)m+1, which is independant of the choice of z.

Hence
∧g (

O(K)/O(K − g[a])
)
≃ K1+2+...+g

a and the Wronskian

(10.19) W (u1, . . . , ug) =

∣∣∣∣∣∣∣∣∣∣

U1(z) . . . Ug(z)
U ′1(z) . . . U ′g(z)
...

...

U
(g−1)
1 (z) . . . U

(g−1)
g (z)

∣∣∣∣∣∣∣∣∣∣

dz1+2+...+g

defines a global section W (u1, . . . , ug) ∈ H0(X,Kg(g+1)/2). At the given point a, we can
find linear combinations ũ1, . . . , ũg of u1, . . . , ug such that

ũj(z) =
(
zsj−1 +O(zsj )

)
dz, s1 < . . . < sg.

We know that not all sections of K vanish at a and that c1(K) = 2g − 2, thus s1 = 1
and sg 6 2g − 1. We have W (ũ1, . . . , ũg) ∼ W (zs1−1dz, . . . , zsg−1dz) at point a, and an
easy induction on

∑
sj combined with differentiation in z yields

W (zs1−1dz, . . . , zsg−1dz) = C zs1+...+sg−g(g+1)/2 dzg(g+1)/2

for some positive integer constant C. In particular, W (u1, . . . , ug) is not identically zero
and vanishes at a with multiplicity

(10.20) µa = s1 + . . .+ sg − g(g + 1)/2 > 0
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unless s1 = 1, s2 = 2, . . ., sg = g. Now, we have

h0
(
K(−m[a])

)
= card{j ; sj > m} = g − card{j ; sj 6 m}

and Cor. 10.12 gives

(10.21) h0
(
O(m[a])

)
= m+ 1− card{j ; sj 6 m}.

If a is not a zero of W (u1, . . . , ug), we find

(10.22)

{
h0

(
O(m[a])

)
= 1 for m 6 g,

h0
(
O(m[a])

)
= m+ 1− g for m > g.

The zeroes of W (u1, . . . , ug) are called the Weierstrass points of X , and the associated
Weierstrass sequence is the sequence wm = h0

(
O(m[a])

)
, m ∈ N. We have wm−1 6 wm 6

wm−1+1 and s1 < . . . < sg are precisely the integers m > 1 such that wm = wm−1. The
numbers sj ∈ {1, 2, . . . , 2g − 1} are called the gaps and µa the weight of the Weierstrass
point a. Since W (u1, . . . , ug) is a section of Kg(g+1)/2, Hurwitz’ formula implies

(10.23)
∑

a∈X
µa = c1(K

g(g+1)/2) = g(g + 1)(g − 1).

In particular, a curve of genus g has at most g(g + 1)(g − 1) Weierstrass points.

§ 11. Hodge-Frölicher Spectral Sequence

LetX be a compact complex n-dimensional manifold. We consider the double complex
Kp,q = C

∞(X,Λp,qT ⋆X), d = d′ + d′′. The Hodge-Frölicher spectral sequence is by
definition the spectral sequence associated to this double complex (cf. IV-11.9). It starts
with

(11.1) Ep,q1 = Hp,q(X,C)

and the limit term Ep,q∞ is the graded module associated to a filtration of the De Rham
cohomology group Hk(X,C), k = p + q. In particular, if the numbers bk and hp,q are
still defined as in (8.11), we have

(11.2) bk =
∑

p+q=k

dimEp,q∞ 6
∑

p+q=k

dimEp,q1 =
∑

p+q=k

hp,q.

The equality is equivalent to the degeneration of the spectral sequence at E•1 . As a conse-
quence, the Hodge-Frölicher spectral sequence of a compact Kähler manifold degenerates
in E•1 .

(11.3) Theorem and Definition. The existence of an isomorphism

Hk
DR(X,C) ≃

⊕

p+q=k

Hp,q(X,C)
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is equivalent to the degeneration of the Hodge-Frölicher spectral sequence at E1. In this
case, the isomorphism is canonically defined and we say that X admits a Hodge decom-
position. �

In general, interesting informations can be deduced from the spectral sequence. The-
orem IV-11.8 shows in particular that

(11.4) b1 > dimE1,0
2 + (dimE0,1

2 − dimE2,0
2 )+.

However, E1,0
2 is the central cohomology group in the sequence

d1 = d′ : E0,0
1 −→ E1,0

1 −→ E2,0
1 ,

and as E0,0
1 is the space of holomorphic functions on X , the first map d1 is zero (by the

maximum principle, holomorphic functions are constant on each connected component
of X ). Hence dimE1,0

2 > h1,0− h2,0. Similarly, E0,1
2 is the kernel of a map E0,1

1 → E1,1
1 ,

thus dimE0,1
2 > h0,1 − h1,1. By (11.4) we obtain

(11.5) b1 > (h1,0 − h2,0)+ + (h0,1 − h1,1 − h2,0)+.
Another interesting relation concerns the topological Euler-Poincaré characteristic

χtop(X) = b0 − b1 + . . .− b2n−1 + b2n.

We need the following simple lemma.

(11.6) Lemma. Let (C•, d) a bounded complex of finite dimensional vector spaces over
some field. Then, the Euler characteristic

χ(C•) =
∑

(−1)q dimCq

is equal to the Euler characteristic χ
(
H•(C•)

)
of the cohomology module.

Proof. Set

cq = dimCq , zq = dimZq(C•), bq = dimBq(C•), hq = dimHq(C•).

Then
cq = zq + bq+1, hq = zq − bq.

Therefore we find∑
(−1)q cq =

∑
(−1)q zq −

∑
(−1)q bq =

∑
(−1)q hq . �

In particular, if the term E•r of the spectral sequence of a filtered complex K• is a
bounded and finite dimensional complex, we have

χ(E•r ) = χ(E•r+1) = . . . = χ(E•∞) = χ
(
H•(K•)

)

because E•r+1 = H•(E•r ) and dimEl∞ = dimH l(K•). In the Hodge-Frölicher spectral
sequence, we have dimEl1 =

∑
p+q=l h

p,q , hence:

(11.7) Theorem. For any compact complex manifold X, one has

χtop(X) =
∑

06k62n

(−1)kbk =
∑

06p,q6n

(−1)p+qhp,q.
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§ 12. Effect of a Modification on Hodge Decomposition

In this section, we show that the existence of a Hodge decomposition on a compact
complex manifold X is guaranteed as soon as there exists such a decomposition on a
modification X̃ of X (see II-??.?? for the Definition). This leads us to extend Hodge
theory to a class of manifolds which are non necessarily Kähler, the so called Fujiki class
(C) of manifolds bimeromorphic to Kähler manifolds.

§ 12.1. Sheaf Cohomology Reinterpretation of Hp,q

BC
(X,C)

We first give a description ofHp,q
BC(X,C) in terms of the hypercohomology of a suitable

complex of sheaves. This interpretation, combined with the analogue of the Hodge-
Frölicher spectral sequence, will imply in particular that Hp,q

BC(X,C) is always finite
dimensional when X is compact. Let us denote by Ep,q the sheaf of germs of C∞ forms
of bidegree (p, q), and by Ωp the sheaf of germs of holomorphic p-forms on X . For a fixed
bidegree (p0, q0), we let k0 = p0 + q0 and we introduce a complex of sheaves (L•p0,q0 , δ),
also denoted L• for simplicity, such that

L

k =
⊕

p+q=k,p<p0,q<q0

E

p,q for k 6 k0 − 2,

L

k−1 =
⊕

p+q=k,p>p0,q>q0

E

p,q for k > k0.

The differential δk on Lk is chosen equal to the exterior derivative d for k 6= k0 − 2 (in
the case k 6 k0 − 3, we neglect the components which fall outside Lk+1), and we set

δk0−2 = d′d′′ : Lk0−2 = Ep0−1,q0−1 −→Lk0−1 = Ep0,q0 .

We find in particular Hp0,q0
BC (X,C) = Hk0−1

(
L

•(X)
)
. We observe that L• has subcom-

plexes (S′ •, d′) and (S′′ •, d′′) defined by

S

′ k= ΩkX for 0 6 k 6 p0 − 1, S

′ k = 0 otherwise,

S

′′ k= ΩkX for 0 6 k 6 q0 − 1, S

′′ k= 0 otherwise.

If p0 = 0 or q0 = 0 we set instead S′ 0 = C or S′′ 0 = C, and take the other components
to be zero. Finally, we let S• = S′ • + S′′ • ⊂ L• (the sum is direct except for S0); we
denote by M• the sheaf complex defined in the same way as L•, except that the sheaves
E

p,q are replaced by the sheaves of currents D′n−p,n−q .

(12.1) Lemma. The inclusions S• ⊂L• ⊂ M• induce isomorphisms

H

k(S•) ≃ Hk(L•) ≃ Hk(M•),

and these cohomology sheaves vanish for k 6= 0, p0 − 1, q0 − 1.

Proof. We will prove the result only for the inclusion S• ⊂L•, the other case S• ⊂ M•
is identical. Let us denote by Zp,q the sheaf of d′′-closed differential forms of bidegree
(p, q). We consider the filtration

Fp(L
k) =Lk ∩

⊕

r>p

E

r,•
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and the induced filtration on S•. In the case of L•, the first spectral sequence has the
following terms E•0 and E•1 :

if p < p0 Ep,•0 : 0 −→ Ep,0 d′′−→ Ep,1 −→ · · · d′′−→ Ep,q0−1 −→ 0,

if p > p0 Ep,•0 : 0 −→ Ep,q0 d′′−→ Ep,q0+1 −→ · · · −→ Ep,q d′′−→ · · · ,
if p < p0 Ep,01 = ΩpX , Ep,q0−11 ≃Zp,q0 , Ep,q1 = 0 for q 6= 0, q0 − 1,

if p > p0 Ep,q0−11 =Zp,q0 , Ep,q1 = 0 for q 6= q0 − 1.

The isomorphism in the third line is given by

E

p,q0−1/d′′Ep,q0−2 ≃ d′′Ep,q0−1 ≃Zp,q0 .

The map d1 : Ep0−1,q0−11 −→ Ep0,q0−11 is induced by d′d′′ acting on Ep0−1,q0−1, but
thanks to the previous identification, this map becomes d′ acting on Zp0−1,q0 . Hence E•1
consists of two sequences

E•,01 : 0 −→ Ω0
X

d′−→ Ω1
X −→ · · ·

d′−→ Ωp0−1X −→ 0,

E•,q0−11 : 0 −→Z0,q0 d′−→Z1,q0 −→ · · · −→Zp,q0 d′−→ · · · ;

if these sequences overlap (q0 = 1), only the second one has to be considered. The term
E•1 in the spectral sequence of S• has the same first line, but the second is reduced to

E0,q0−1
1 = dΩq0−2X (resp. = C for q0 = 1). Thanks to Lemma 12.2 below, we see that the

two spectral sequences coincide in E•2 , with at most three non zero terms:

E0,0
2 = C, Ep0−1,02 = dΩp0−2X for p0 > 2, E0,q0−1

2 = dΩq0−2X for q0 > 2.

Hence Hk(S•) ≃ Hk(L•) and these sheaves vanish for k 6= 0, p0 − 1, q0 − 1. �

(12.2) Lemma. The complex of sheaves

0 −→ Z0,q0 d′−→Z1,q0 −→ · · · −→ Zp,q0 d′−→ · · ·

is a resolution of dΩq0−1X for q0 > 1, resp. of C for q0 = 0.

Proof. Embed Z•,q0 in the double complex

Kp,q = Ep,q for q < q0, Kp,q = 0 for q > q0.

For the first fitration of K•, we find

Ep,q0−11 =Zp,q0 , Ep,q1 = 0 for q 6= q0 − 1

The second fitration gives Ẽp,q1 = 0 for q > 1 and

Ẽp,01 = H0(K•,p) =

{
H0(Ep,•) = ΩpX for p 6 q0 − 1
0 for p > q0,

thus the cohomology of Z•,q0 coincides with that of (ΩpX , d)06p<q0 . �
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Lemma IV-11.10 and formula (IV-12.9) imply

Hk(X,S•) ≃ Hk(X,L•) ≃ Hk(X,M•)(12.3)

≃ Hk
(
L

•(X)
)
≃ Hk

(
M

•(X)
)

because the sheavesLk andMk are soft. In particular, the groupHp,q
BC(X,C) can be com-

puted either by means of C∞ differential forms or by means of currents. This property
also holds for the De Rham or Dolbeault groups Hk(X,C), Hp,q(X,C), as was already
remarked in §IV-6. Another important consequence of (12.3) is:

(12.4) Theorem. If X is compact, then dimHp,q
BC(X,C) < +∞.

Proof. We show more generally that the hypercohomology groups Hk(X,S•) are finite
dimensional. As there is an exact sequence

0 −→ C −→ S′ • ⊕S′′ • −→ S• −→ 0

and a corresponding long exact sequence for hypercohomology groups, it is enough to
show that the groups Hk(X,S′ •) are finite dimensional. This property is proved for
S

′ • = S′ •p0 by induction on p0. For p0 = 0 or 1, the complex S′ • is reduced to its term
S

′ 0, thus

Hk(X,S•) = Hk(X,S′ 0) =

{
Hk(X,C) for p0 = 0
Hk(X,O) for p0 = 1

and this groups are finite dimensional. In general, we have an exact sequence

0 −→ Ωp0X −→ S•p0+1 −→ S•p0 −→ 0

where Ωp0X denotes the subcomplex of S•p0+1 reduced to one term in degree p0. As

Hk(X,Ωp0X ) = Hk−p0(X,Ωp0X ) = Hp0,k−p0(X,C)

is finite dimensional, the Theorem follows. �

(12.5) Definition. We say that a compact manifold admits a strong Hodge decomposi-
tion if the natural maps

Hp,q
BC(X,C) −→ Hp,q(X,C),

⊕

p+q=k

Hp,q
BC(X,C) −→ Hk(X,C)

are isomorphisms.

This implies of course that there are natural isomorphisms

Hk(X,C) ≃
⊕

p+q=k

Hp,q(X,C), Hq,p(X,C) ≃ Hp,q(X,C)

and that the Hodge-Frölicher spectral sequence degenerates in E•1 . It follows from § 8
that all Kähler manifolds admit a strong Hodge decomposition.
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§ 12.2. Direct and Inverse Image Morphisms

Let F : X −→ Y be a holomorphic map between complex analytic manifolds of
respective dimensions n,m, and r = n−m. We have pull-back morphisms

(12.6)
F ⋆ : Hk(Y,C)−→ Hk(X,C),
F ⋆ : Hp,q(Y,C)−→ Hp,q(X,C),
F ⋆ : Hp,q

BC(Y,C)−→ Hp,q
BC(X,C),

commuting with the natural morphisms (8.2), (8.3).

Assume now that F is proper. Theorem I-1.14 shows that one can define direct image
morphisms

F⋆ : D

′
k(X) −→D′k(Y ), F⋆ : D

′
p,q(X) −→D′p,q(Y ),

commuting with d′, d′′. To F⋆ therefore correspond cohomology morphisms

(12.7)
F⋆ : Hk(X,C)−→ Hk−2r(Y,C),
F⋆ : Hp,q(X,C)−→ Hp−r,q−r(Y,C),
F⋆ : Hp,q

BC(X,C)−→ Hp−r,q−r
BC (Y,C),

which commute also with (8.2), (8.3). In addition, I-1.14 c) implies the adjunction
formula

(12.8) F⋆(α ` F ⋆β) = (F⋆α) ` β

whenever α is a cohomology class (of any of the three above types) on X , and β a
cohomology class (of the same type) on Y .

§ 12.3. Modifications and the Fujiki Class (C)

Recall that a modification of a compact manifoldX is a holomorphic map µ : X̃ −→ X
such that

i) X̃ is a compact complex manifold of the same dimension as X ;

ii) there exists an analytic subset S ⊂ X of codimension > 1 such that µ : X̃\µ−1(S) −→
X \ S is a biholomorphism.

(12.9) Theorem. If X̃ admits a strong Hodge decomposition, and if µ : X̃ −→ X is a
modification, then X also admits a strong Hodge decomposition.

Proof. We first observe that µ⋆µ
⋆f = f for every smooth form f on Y . In fact, this

property is equivalent to the equality

∫

Y

(µ⋆µ
⋆f) ∧ g =

∫

X

µ⋆(f ∧ g) =
∫

Y

f ∧ g

for every smooth form g on Y , and this equality is clear because µ is a biholomorphism
outside sets of Lebesgue measure 0. Consequently, the induced cohomology morphism
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µ⋆ is surjective and µ⋆ is injective (but these maps need not be isomorphisms). Now, we
have commutative diagrams

Hp,q
BC(X̃,C) −→Hp,q(X̃,C),

⊕

p+q=k

Hp,q
BC(X̃,C) −→Hk(X̃,C)

µ⋆
yxµ⋆ µ⋆

yxµ⋆ µ⋆
yxµ⋆ µ⋆

yxµ⋆

Hp,q
BC(X,C) −→Hp,q(X,C),

⊕

p+q=k

Hp,q
BC(X,C) −→Hk(X,C)

with either upward or downward vertical arrows. Hence the surjectivity or injectivity of
the top horizontal arrows implies that of the bottom horizontal arrows. �

(12.10) Definition. A manifold X is said to be in the Fujiki class (C) if X admits a

Kähler modification X̃.

By Th. 12.9, Hodge decomposition still holds for a manifold in the class (C). We will
see later that there exist non-Kähler manifolds in (C), for example all non projective
Moǐsezon manifolds (cf. §?.?). The class (C) has been first introduced in [Fujiki 1978].
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Chapter VII

Positive Vector Bundles and Vanishing Theorems

In this chapter, we prove a few vanishing theorems for hermitian vector bundles over compact complex
manifolds. All these theorems are based on an a priori inequality for (p, q)-forms with values in a vector
bundle, known as the Bochner-Kodaira-Nakano inequality. This inequality naturally leads to several
positivity notions for the curvature of a vector bundle ([Kodaira 1953, 1954], [Griffiths 1969] and [Nakano
1955, 1973]). The corresponding algebraic notion of ampleness introduced by Grothendieck [EGA 1960-
67] and developped further by [Nakai 1963] and [Hartshorne 1966] is also discussed. The differential
geometric techniques yield optimal vanishing results in the case of line bundles (Kodaira-Akizuki-Nakano
and Girbau vanishing theorems) and also some partial results in the case of vector bundles (Nakano
vanishing theorem). As an illustration, we compute the cohomology groups Hp,q(Pn,O(k)) ; much finer
results will be obtained in chapters 8–11. Finally, the Kodaira vanishing theorem is combined with a
blowing-up technique in order to establish the projective embedding theorem for manifolds admitting a
Hodge metric.

§ 1. Bochner-Kodaira-Nakano Identity

Let (X,ω) be a hermitian manifold, dimCX = n, and let E be a hermitian holomor-
phic vector bundle of rank r over X . We denote by D = D′+D′′ its Chern connection (or
DE if we want to specify the bundle), and by δ = δ′ + δ′′ the formal adjoint operator of
D. The operators L,Λ of chapter 6 are extended to vector valued forms in Λp,qT ⋆X ⊗E
by taking their tensor product with IdE . The following result extends the commutation
relations of chapter 6 to the case of bundle valued operators.

(1.1) Theorem. If τ is the operator of type (1, 0) defined by τ = [Λ, d′ω] on C∞•,•(X,E),
then

a) [δ′′E , L] = i(D′E + τ),
b) [δ′E , L] = −i(D′′E + τ),
c) [Λ, D′′E ]= −i(δ′E + τ⋆),
d) [Λ, D′E ]= i(δ′′E + τ⋆).

Proof. Fix a point x0 in X and a coordinate system z = (z1, . . . , zn) centered at x0. Then
Prop. V-12.?? shows the existence of a normal coordinate frame (eλ) at x0. Given any
section s =

∑
λ σλ ⊗ eλ ∈ C∞p,q(X,E), it is easy to check that the operators DE , δ

′′
E , . . .

have Taylor expansions of the type

DEs =
∑

λ

dσλ ⊗ eλ +O(|z|), δ′′Es =
∑

λ

δ′′σλ ⊗ eλ +O(|z|), . . .
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in terms of the scalar valued operators d, δ, . . .. Here the terms O(|z|) depend on the
curvature coefficients of E. The proof of Th. 1.1 is then reduced to the case of scalar
valued operators, which is granted by Th. VI-10.1. �

The Bochner-Kodaira-Nakano identity expresses the antiholomorphic Laplace op-
erator ∆′′ = D′′δ′′ + δ′′D′′ acting on C∞•,•(X,E) in terms of its conjugate operator
∆′ = D′δ′ + δ′D′, plus some extra terms involving the curvature of E and the torsion of
the metric ω (in case ω is not Kähler). Such identities appear frequently in riemannian
geometry (Weitzenböck formula).

(1.2) Theorem. ∆′′ = ∆′ + [iΘ(E),Λ] + [D′, τ⋆]− [D′′, τ⋆].

Proof. Equality 1.1 d) yields δ′′ = −i[Λ, D′]− τ⋆, hence

∆′′ = [D′′, δ′′] = −i[D′′,
[
Λ, D′]

]
− [D′′, τ⋆].

The Jacobi identity VI-10.2 and relation 1.1 c) imply

[
D′′, [Λ, D′]

]
=

[
Λ, [D′, D′′]] +

[
D′, [D′′,Λ]

]
= [Λ,Θ(E)] + i[D′, δ′ + τ⋆],

taking into account that [D′, D′′] = D2 = Θ(E). Theorem 1.2 follows. �

(1.3) Corollary ([Akizuki-Nakano 1955]). If ω is Kähler, then

∆′′ = ∆′ + [iΘ(E),Λ].

In the latter case, ∆′′ −∆′ is therefore an operator of order 0 closely related to the
curvature of E. When ω is not Kähler, Formula 1.2 is not really satisfactory, because it
involves the first order operators [D′, τ⋆] and [D′′, τ⋆]. In fact, these operators can be
combined with ∆′ in order to yield a new positive self-adjoint operator ∆′τ .

(1.4) Theorem ([Demailly 1985]). The operator ∆′τ = [D′ + τ, δ′ + τ⋆] is a positive
and formally self-adjoint operator with the same principal part as the Laplace operator ∆′.
Moreover

∆′′ = ∆′τ + [iΘ(E),Λ] + Tω,

where Tω is an operator of order 0 depending only on the torsion of the hermitian metric
ω :

Tω =
[
Λ,

[
Λ,

i

2
d′d′′ω

]]
−

[
d′ω, (d′ω)⋆

]
.

Proof. The first assertion is clear, because the equality (D′ + τ)⋆ = δ′ + τ⋆ implies the
self-adjointness of ∆′τ and

〈〈∆′τu, u〉〉 = ‖D′u+ τu‖2 + ‖δ′u+ τ⋆u‖2 > 0

for any compactly supported form u ∈ C∞p,q(X,E). In order to prove the formula, we
need two lemmas.

(1.5) Lemma. a) [L, τ ] = 3d′ω, b) [Λ, τ ] = −2iτ⋆.
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Proof. a) Since [L, d′ω] = 0, the Jacobi identity implies

[L, τ ] =
[
L, [Λ, d′ω]

]
= −

[
d′ω, [L,Λ]

]
= 3d′ω,

taking into account Cor. VI-10.4 and the fact that d′ω is of degree 3.

b) By 1.1 a) we have τ = −i[δ′′, L]−D′, hence

[Λ, τ ] = −i
[
Λ, [δ′′, L]

]
− [Λ, D′] = −i

([
Λ, [δ′′, L]

]
+ δ′′ + τ⋆

)
.

Using again VI-10.4 and the Jacobi identity, we get

[
Λ, [δ′′, L]

]
= −

[
L, [Λ, δ′′]

]
−

[
δ′′, [L,Λ]

]

= −
[
[d′′, L],Λ

]⋆ − δ′′ = −[d′′ω,Λ]⋆ − δ′′ = τ⋆ − δ′′.

A substitution in the previous equality gives [Λ, τ ] = −2iτ⋆. �

(1.6) Lemma. The following identities hold:

a) [D′, τ⋆] = −[D′, δ′′] = [τ, δ′′],

b) −[D′′, τ⋆] = [τ, δ′ + τ⋆] + Tω.

Proof. a) The Jacobi identity implies

−
[
D′, [Λ, D′]

]
+

[
D′, [D′,Λ]

]
+

[
Λ, [D′, D′]

]
= 0,

hence −2
[
D′, [Λ, D′]

]
= 0 and likewise

[
δ′′, [δ′′, L]

]
= 0. Assertion a) is now a conse-

quence of 1.1 a) and d).

b) In order to verify b), we start from the equality τ⋆ = i
2
[Λ, τ ] provided by Lemma 1.5

b). It follows that

(1.7) [D′′, τ⋆] =
i

2

[
D′′, [Λ, τ ]

]
.

The Jacobi identity will now be used several times. One obtains

[
D′′, [Λ, τ ]

]
=

[
Λ, [τ,D′′]

]
+

[
τ, [D′′,Λ]

]
;(1.8)

[τ,D′′] = [D′′, τ ] =
[
D′′, [Λ, d′ω]

]
=

[
Λ, [d′ω,D′′]

]
+

[
d′ω, [D′′,Λ]

]
(1.9)

= [Λ, d′′d′ω] + [d′ω,A]

with A = [D′′,Λ] = i(δ′ + τ⋆). From (1.9) we deduce

(1.10)
[
Λ, [τ,D′′]

]
=

[
Λ, [Λ, d′′d′ω]

]
+
[
Λ, [d′ω,A]

]
.

Let us compute now the second Lie bracket in the right hand side of (1.10:

[
Λ, [d′ω,A]

]
=

[
A, [Λ, d′ω]

]
−

[
d′ω, [A,Λ]

]
= [τ, A] +

[
d′ω, [Λ, A]

]
;(1.11)

[Λ, A] = i[Λ, δ′ + τ⋆] = i[D′ + τ, L]⋆.(1.12)
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Lemma 1.5 b) provides [τ, L] = −3d′ω, and it is clear that [D′, L] = d′ω. Equalities
(1.12) and (1.11) yield therefore

[Λ, A] = −2i(d′ω)⋆,[
Λ, [d′ω,A]

]
=

[
τ, [D′′,Λ]

]
− 2i[d′ω, (d′ω)⋆].(1.13)

Substituting (1.10) and (1.13) in (1.8) we get

[
D′′, [Λ, τ ]

]
=

[
Λ, [Λ, d′′d′ω]

]
+ 2

[
τ, [D′′,Λ]

]
− 2i

[
d′ω, (d′ω)⋆

]
(1.14)

= 2i
(
Tω + [τ, δ′ + τ⋆]

)
.

Formula b) is a consequence of (1.7) and (1.14). �

Theorem 1.4 follows now from Th. 1.2 if Formula 1.6 b) is rewritten

∆′ + [D′, τ⋆]− [D′′, τ⋆] = [D′ + τ, δ′ + τ⋆] + Tω.

When ω is Kähler, then τ = Tω = 0 and Lemma 1.6 a) shows that [D′, δ′′] = 0.
Together with the adjoint relation [D′′, δ′] = 0, this equality implies

(1.15) ∆ = ∆′ +∆′′.

When ω is not Kähler, Lemma 1.6 a) can be written [D′+ τ, δ′′] = 0 and we obtain more
generally

[D + τ, δ + τ⋆] =
[
(D′ + τ) +D′′, (δ′ + τ⋆) + δ′′

]
= ∆′τ +∆′′.

(1.16) Proposition. Set ∆τ = [D + τ, δ + τ⋆]. Then ∆τ = ∆′τ +∆′′.

§ 2. Basic a Priori Inequality

Let (X,ω) be a compact hermitian manifold, dimCX = n, and E a hermitian holo-
morphic vector bundle over X . For any section u ∈ C∞p,q(X,E) we have 〈〈∆′′u, u〉〉 =
‖D′′u‖2 + ‖δ′′u‖2 and the similar formula for ∆′τ gives 〈〈∆′τu, u〉〉 > 0. Theorem 1.4
implies therefore

(2.1) ‖D′′u‖2 + ‖δ′′u‖2 >

∫

X

(
〈[iΘ(E),Λ]u, u〉+ 〈Tωu, u〉

)
dV.

This inequality is known as the Bochner-Kodaira-Nakano inequality. When u is ∆′′-
harmonic, we get in particular

(2.2)

∫

X

(
〈[iΘ(E),Λ]u, u〉+ 〈Tωu, u〉

)
dV 6 0.

These basic a priori estimates are the starting point of all vanishing theorems. Observe
that [iΘ(E),Λ] + Tω is a hermitian operator acting pointwise on Λp,qT ⋆X ⊗ E (the
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hermitian property can be seen from the fact that this operator coincides with ∆′′ −∆′τ
on smooth sections). Using Hodge theory (Cor. VI-11.2), we get:

(2.3) Corollary. If the hermitian operator [iΘ(E),Λ] + Tω is positive definite on
Λp,qT ⋆X ⊗ E, then Hp,q(X,E) = 0. �

In some circumstances, one can improve Cor. 2.3 thanks to the following “analytic
continuation lemma” due to [Aronszajn 1957]:

(2.4) Lemma. Let M be a connected C∞-manifold, F a vector bundle over M , and
P a second order elliptic differential operator acting on C∞(M,F ). Then any section
α ∈ ker P vanishing on a non-empty open subset of M vanishes identically on M .

(2.5) Corollary. Assume that X is compact and connected. If

[iΘ(E),Λ] + Tω ∈ Herm
(
Λp,qT ⋆X ⊗E

)

is semi-positive on X and positive definite in at least one point x0 ∈ X, then we have
Hp,q(X,E) = 0.

Proof. By (2.2) every ∆′′-harmonic (p, q)-form u must vanish in the neighborhood of x0
where [iΘ(E),Λ] + Tω > 0, thus u ≡ 0. Hodge theory implies Hp,q(X,E) = 0. �

§ 3. Kodaira-Akizuki-Nakano Vanishing Theorem

The main goal of vanishing theorems is to find natural geometric or algebraic con-
ditions on a bundle E that will ensure that some cohomology groups with values in E
vanish. In the next three sections, we prove various vanishing theorems for cohomology
groups of a hermitian line bundle E over a compact complex manifold X .

(3.1) Definition. A hermitian holomorphic line bundle E on X is said to be positive
(resp. negative) if the hermitian matrix

(
cjk(z)

)
of its Chern curvature form

iΘ(E) = i
∑

16j,k6n

cjk(z) dzj ∧ dzk

is positive (resp. negative) definite at every point z ∈ X.

Assume that X has a Kähler metric ω. Let

γ1(x) 6 . . . 6 γn(x)

be the eigenvalues of iΘ(E)x with respect to ωx at each point x ∈ X , and let

iΘ(E)x = i
∑

16j6n

γj(x) ζj ∧ ζj , ζj ∈ T ⋆xX
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be a diagonalization of iΘ(E)x. By Prop. VI-8.3 we have

〈[iΘ(E),Λ]u, u〉 =
∑

J,K

(∑

j∈J
γj +

∑

j∈K
γj −

∑

16j6n

γj

)
|uJ,K |2

> (γ1 + . . .+ γq − γp+1 − . . .− γn)|u|2(3.2)

for any form u =
∑
J,K uJ,K ζJ ∧ ζK ∈ Λp,qT ⋆X .

(3.3) Akizuki-Nakano vanishing theorem (1954). Let E be a holomorphic line
bundle on X.

a) If E is positive, then Hp,q(X,E) = 0 for p+ q > n+ 1.

b) If E is negative, then Hp,q(X,E) = 0 for p+ q 6 n− 1.

Proof. In case a), choose ω = iΘ(E) as a Kähler metric on X . Then we have γj(x) = 1
for all j and x, so that

〈〈[iΘ(E),Λ]u, u〉〉 > (p+ q − n)||u||2

for any u ∈ Λp,qT ⋆X ⊗ E. Assertion a) follows now from Corollary 2.3. Property b) is
proved similarly, by taking ω = −iΘ(E). One can also derive b) from a) by Serre duality
(Theorem VI-11.3). �

When p = 0 or p = n, Th. 3.3 can be generalized to the case where iΘ(E) degenerates
at some points. We use here the standard notations

(3.4) ΩpX = ΛpT ⋆X, KX = ΛnT ⋆X, n = dimCX ;

KX is called the canonical line bundle of X .

(3.5) Theorem ([Grauert-Riemenschneider 1970]). Let (X,ω) be a compact and
connected Kähler manifold and E a line bundle on X.

a) If iΘ(E) > 0 on X and iΘ(E) > 0 in at least one point x0 ∈ X, then

Hq(X,KX ⊗ E) = 0 for q > 1.

b) If iΘ(E) 6 0 on X and iΘ(E) < 0 in at least one point x0 ∈ X, then

Hq(X,E) = 0 for q 6 n− 1.

It will be proved in Volume II, by means of holomorphic Morse inequalities, that the
Kähler assumption is in fact unnecessary. This improvement is a deep result first proved
by [Siu 1984] with a different ad hoc method.

Proof. For p = n, formula (3.2) gives

(3.6) 〈〈[iΘ(E),Λ]u, u〉〉 > (γ1 + . . .+ γq)|u|2

and a) follows from Cor. 2.5. Now b) is a consequence of a) by Serre duality. �
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§ 4. Girbau’s Vanishing Theorem

Let E be a line bundle over a compact connected Kähler manifold (X,ω). Girbau’s
theorem deals with the (possibly everywhere) degenerate semi-positive case. We first
state the corresponding generalization of Th. 4.5.

(4.1) Theorem. If iΘ(E) is semi-positive and has at least n−s+1 positive eigenvalues
at a point x0 ∈ X for some integer s ∈ {1, . . . , n}, then

Hq(X,KX ⊗E) = 0 for q > s.

Proof. Apply 2.5 and inequality (3.6), and observe that γq(x0) > 0 for all q > s. �

(4.2) Theorem ([Girbau 1976]). If iΘ(E) is semi-positive and has at least n − s + 1
positive eigenvalues at every point x ∈ X, then

Hp,q(X,E) = 0 for p+ q > n+ s.

Proof. Let us consider on X the new Kähler metric

ωε = εω + iΘ(E), ε > 0,

and let iΘ(E) = i
∑
γj ζj ∧ ζj be a diagonalization of iΘ(E) with respect to ω and with

γ1 6 . . . 6 γn. Then

ωε = i
∑

(ε+ γj) ζj ∧ ζj .

The eigenvalues of iΘ(E) with respect to ωε are given therefore by

(4.3) γj,ε = γj/(ε+ γj) ∈ [0, 1[, 1 6 j 6 n.

On the other hand, the hypothesis is equivalent to γs > 0 on X . For j > s we have
γj > γs, thus

(4.4) γj,ε =
1

1 + ε/γj
>

1

1 + ε/γs
> 1− ε/γs, s 6 j 6 n.

Let us denote the operators and inner products associated to ωε with ε as an index. Then
inequality (3.2) combined with (4.4) implies

〈[iΘ(E),Λε]u, u〉ε >
((
q − s+ 1)

)
(1− ε/γs)− (n− p)

)
|u|2

=
(
p+ q − n− s+ 1− (q − s+ 1)ε/γs

)
|u|2.

Theorem 4.2 follows now from Cor. 2.3 if we choose

ε <
p+ q − n− s+ 1

q − s+ 1
min
x∈X

γs(x). �

(4.5) Remark. The following example due to [Ramanujam 1972, 1974] shows that
Girbau’s result is no longer true for p < n when iΘ(E) is only assumed to have n− s+1
positive eigenvalues on a dense open set.
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Let V be a hermitian vector space of dimension n + 1 and X the manifold obtained
from P (V ) ≃ Pn by blowing-up one point a. The manifold X may be described as
follows: if P (V/Ca) is the projective space of lines ℓ containing a, then

X =
{
(x, ℓ) ∈ P (V )× P (V/Ca) ; x ∈ ℓ

}
.

We have two natural projections

π1 : X −→ P (V ) ≃ Pn,

π2 : X −→ Y = P (V/Ca) ≃ Pn−1.

It is clear that the preimage π−11 (x) is the single point
(
x, ℓ = (ax)

)
if x 6= a and that

π−11 (a) = {a} × Y ≃ Pn−1, therefore

π1 : X \ ({a} × Y ) −→ P (V ) \ {a}

is an isomorphism. On the other hand, π2 is a locally trivial fiber bundle over Y with
fiber π−12 (ℓ) = ℓ ≃ P1, in particular X is smooth and n-dimensional. Consider now the
line bundle E = π⋆1O(1) over X , with the hermitian metric induced by that of O(1). Then
E is semi-positive and iΘ(E) has n positive eigenvalues at every point of X \ ({a}× Y ),
hence the assumption of Th. 4.2 is satisfied on X \ ({a} × Y ). However, we will see that

Hp,p(X,E) 6= 0, 0 6 p 6 n− 1,

in contradiction with the expected generalization of (4.2) when 2p > n+ 1. Let j : Y ≃
{a}× Y −→ X be the inclusion. Then π1 ◦ j : Y → {a} and π2 ◦ j = IdY ; in particular
j⋆E = (π1◦j)⋆O(1) is the trivial bundle Y ×O(1)a. Consider now the composite morphism

Hp,p(Y,C)⊗H0
(
P (V ),O(1)

)
−→ Hp,p(X,E)

j⋆−→Hp,p(Y,C)⊗ O(1)a
u⊗s 7−→ π⋆2u⊗ π⋆1s,

given by u⊗s 7−→ (π2◦j)⋆u⊗(π1◦j)⋆s = u⊗s(a) ; it is surjective and Hp,p(Y,C) 6= 0 for
0 6 p 6 n− 1, so we have Hp,p(X,E) 6= 0. �

§ 5. Vanishing Theorem for Partially Positive Line Bundles

Even in the case when the curvature form iΘ(E) is not semi-positive, some cohomology
groups of high tensor powers Ek still vanish under suitable assumptions. The prototype
of such results is the following assertion, which can be seen as a consequence of the
Andreotti-Grauert theorem [Andreotti-Grauert 1962], see IX-?.?; the special case where
E is > 0 (that is, s = 1) is due to [Kodaira 1953] and [Serre 1956].

(5.1) Theorem. Let F be a holomorphic vector bundle over a compact complex manifold
X, s a positive integer and E a hermitian line bundle such that iΘ(E) has at least n−s+1
positive eigenvalues at every point x ∈ X. Then there exists an integer k0 > 0 such that

Hq(X,Ek ⊗ F ) = 0 for q > s and k > k0.
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Proof. The main idea is to construct a hermitian metric ωε on X in such a way that
all negative eigenvalues of iΘ(E) with respect to ωε will be of small absolute value. Let
ω denote a fixed hermitian metric on X and let γ1 6 . . . 6 γn be the corresponding
eigenvalues of iΘ(E).

(5.2) Lemma. Let ψ ∈ C∞(R,R). If A is a hermitian n × n matrix with eigenvalues
λ1 6 . . . 6 λn and corresponding eigenvectors v1, . . . , vn, we define ψ[A] as the hermitian
matrix with eigenvalues ψ(λj) and eigenvectors vj, 1 6 j 6 n. Then the map A 7−→ ψ[A]
is C∞ on Herm(Cn).

Proof. Although the result is very well known, we give here a short proof. Without loss
of generality, we may assume that ψ is compactly supported. Then we have

ψ[A] =
1

2π

∫ +∞

−∞
ψ̂(t)eitAdt

where ψ̂ is the rapidly decreasing Fourier transform of ψ. The equality
∫ t
0
(t−u)puq du =

p! q!/(p+ q + 1)! and obvious power series developments yield

DA(e
itA) ·B = i

∫ t

0

ei(t−u)AB eiuAdu.

Since eiuA is unitary, we get ‖DA(eitA)‖ 6 |t|. A differentiation under the integral
sign and Leibniz’ formula imply by induction on k the bound ‖Dk

A(e
itA)‖ 6 |t|k. Hence

A 7−→ ψ[A] is smooth. �

Let us consider now the positive numbers

t0 = inf
X
γs > 0, M = sup

X
max
j
|γj| > 0.

We select a function ψε ∈ C∞(R,R) such that

ψε(t) = t for t > t0, ψε(t) > t for 0 6 t 6 t0, ψε(t) =M/ε for t 6 0.

By Lemma 5.2, ωε := ψε[iΘ(E)] is a smooth hermitian metric on X . Let us write

iΘ(E) = i
∑

16j6n

γj ζj ∧ ζj , ωε = i
∑

16j6n

ψε(γj) ζj ∧ ζj

in an orthonormal basis (ζ1, . . . , ζn) of T
⋆X for ω. The eigenvalues of iΘ(E) with respect

to ωε are given by γj,ε = γj/ψε(γj) and the construction of ψε shows that −ε 6 γj,ε 6 1,
1 6 j 6 n, and γj,ε = 1 for s 6 j 6 n. Now, we have

Hq(X,Ek ⊗ F ) ≃ Hn,q(X,Ek ⊗G)

where G = F ⊗K⋆
X . Let e, (gλ)16λ6r and (ζj)16j6n denote orthonormal frames of E,

G and (T ⋆X,ωε) respectively. For

u =
∑

|J|=q,λ
uJ,λ ζ1 ∧ . . . ∧ ζn ∧ ζJ ⊗ ek ⊗ gλ ∈ Λn,qT ⋆X ⊗ Ek ⊗G,
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inequality (3.2) yields

〈[iΘ(E),Λε]u, u〉ε =
∑

J,λ

(∑

j∈J
γj,ε

)
|uJ,λ|2 >

(
q − s+ 1− (s− 1)ε

)
|u|2.

Choosing ε = 1/s and q > s, the right hand side becomes > (1/s)|u|2. Since Θ(Ek⊗G) =
kΘ(E)⊗ IdG+Θ(G), there exists an integer k0 such that

[
iΘ(Ek ⊗G),Λε

]
+ Tωε

acting on Λn,qT ⋆X ⊗ Ek ⊗G

is positive definite for q > s and k > k0. The proof is complete. �

§ 6. Positivity Concepts for Vector Bundles

Let E be a hermitian holomorphic vector bundle of rank r over X , where dimCX = n.
Denote by (e1, . . . , er) an orthonormal frame of E over a coordinate patch Ω ⊂ X with
complex coordinates (z1, . . . , zn), and

(6.1) iΘ(E) = i
∑

16j,k6n, 16λ,µ6r

cjkλµ dzj ∧ dzk ⊗ e⋆λ ⊗ eµ, cjkλµ = ckjµλ

the Chern curvature tensor. To iΘ(E) corresponds a natural hermitian form θE on
TX ⊗E defined by

θE =
∑

j,k,λ,µ

cjkλµ(dzj ⊗ e⋆λ)⊗ (dzk ⊗ e⋆µ),

and such that

θE(u, u) =
∑

j,k,λ,µ

cjkλµ(x) ujλukµ, u ∈ TxX ⊗Ex.(6.2)

(6.3) Definition ([Nakano 1955]). E is said to be Nakano positive (resp. Nakano semi-
negative) if θE is positive definite (resp. semi-negative) as a hermitian form on TX ⊗E,
i.e. if for every u ∈ TX ⊗E, u 6= 0, we have

θE(u, u) > 0 (resp. 6 0).

We write >Nak (resp. 6Nak) for Nakano positivity (resp. semi-negativity).

(6.4) Definition ([Griffiths 1969]). E is said to be Griffiths positive (resp. Griffiths
semi-negative) if for all ξ ∈ TxX, ξ 6= 0 and s ∈ Ex, s 6= 0 we have

θE(ξ ⊗ s, ξ ⊗ s) > 0 (resp. 6 0).

We write >Grif (resp. 6Grif) for Griffiths positivity (resp. semi-negativity).

It is clear that Nakano positivity implies Griffiths positivity and that both concepts
coincide if r = 1 (in the case of a line bundle, E is merely said to be positive). One
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can generalize further by introducing additional concepts of positivity which interpolate
between Griffiths positivity and Nakano positivity.

(6.5) Definition. Let T and E be complex vector spaces of dimensions n, r respectively,
and let Θ be a hermitian form on T ⊗E.

a) A tensor u ∈ T ⊗E is said to be of rank m if m is the smallest > 0 integer such that
u can be written

u =

m∑

j=1

ξj ⊗ sj, ξj ∈ T, sj ∈ E.

b) Θ is said to be m-positive (resp. m-semi-negative) if Θ(u, u) > 0 (resp. Θ(u, u) 6 0)
for every tensor u ∈ T ⊗ E of rank 6 m, u 6= 0. In this case, we write

Θ >m 0 (resp. Θ 6m 0).

We say that the bundle E is m-positive if θE >m 0. Griffiths positivity corresponds
to m = 1 and Nakano positivity to m > min(n, r).

(6.6) Proposition. A bundle E is Griffiths positive if and only if E⋆ is Griffiths nega-
tive.

Proof. By (V-4.3′) we get iΘ(E⋆) = −iΘ(E)†, hence

θE⋆(ξ1 ⊗ s2, ξ2 ⊗ s1) = −θE(ξ1 ⊗ s1, ξ2 ⊗ s2), ∀ξ1, ξ2 ∈ TX, ∀s1, s2 ∈ E,

where sj = 〈•, sj〉 ∈ E⋆. Proposition 6.6 follows immediately. �

It should be observed that the corresponding duality property for Nakano positive
bundles is not true. In fact, using (6.1) we get

iΘ(E⋆) = −i
∑

j,k,λ,µ

cjkµλdzj ∧ dzk ⊗ e⋆⋆λ ⊗ e⋆µ,

(6.7) θE⋆(v, v) = −
∑

j,k,µ,λ

cjkµλvjλvkµ,

for any v =
∑
vjλ (∂/∂zj) ⊗ e⋆λ ∈ TX ⊗ E⋆. The following example shows that Nakano

positivity or negativity of θE and θE⋆ are unrelated.

(6.8) Example. Let H be the rank n bundle over Pn defined in § V-15. For any
u =

∑
ujλ(∂/∂zj) ⊗ ẽλ ∈ TX ⊗H, v =

∑
vjλ(∂/∂zj) ⊗ ẽ⋆λ ∈ TX ⊗H⋆, 1 6 j, λ 6 n,

formula (V-15.9) implies

(6.9)





θH(u, u) =
∑

ujλuλj

θH⋆(v, v) =
∑

vjjvλλ =
∣∣∑ vjj

∣∣2.
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It is then clear that H >Grif 0 and H⋆ 6Nak 0 , but H is neither >Nak 0 nor 6Nak 0.

(6.10) Proposition. Let 0 → S → E → Q → 0 be an exact sequence of hermitian
vector bundles. Then

a) E >Grif 0 =⇒ Q >Grif 0,

b) E 6Grif 0 =⇒ S 6Grif 0,

c) E 6Nak 0 =⇒ S 6Nak 0,

and analogous implications hold true for strict positivity.

Proof. If β is written
∑
dzj ⊗ βj , βj ∈ hom(S,Q), then formulas (V-14.6) and (V-14.7)

yield

iΘ(S) = iΘ(E)↾S −
∑

dzj ∧ dzk ⊗ β⋆kβj ,

iΘ(Q) = iΘ(E)↾Q +
∑

dzj ∧ dzk ⊗ βjβ⋆k .

Since β · (ξ ⊗ s) = ∑
ξjβj · s and β⋆ · (ξ ⊗ s) = ∑

ξkβ
⋆
k · s we get

θS(ξ ⊗ s, ξ′ ⊗ s′) = θE(ξ ⊗ s, ξ′ ⊗ s′)−
∑

j,k

ξjξ
′
k〈βj · s, βk · s′〉,

θS(u, u) = θE(u, u)− |β · u|2,

θQ(ξ ⊗ s, ξ′ ⊗ s′) = θE(ξ ⊗ s, ξ′ ⊗ s′) +
∑

j,k

ξjξ
′
k〈β⋆k · s, β⋆j · s′〉,

θQ(ξ ⊗ s, ξ ⊗ s) = θE(ξ ⊗ s, ξ ⊗ s) + |β⋆ · (ξ ⊗ s)|2. �

SinceH is a quotient bundle of the trivial bundle −V , Example 6.8 shows that E >Nak 0

does not imply Q >Nak 0.

§ 7. Nakano Vanishing Theorem

Let (X,ω) be a compact Kähler manifold, dimCX = n, and E −→ X a hermitian
vector bundle of rank r. We are going to compute explicitly the hermitian operator
[iΘ(E),Λ] acting on Λp,qT ⋆X⊗E. Let x0 ∈ X and (z1, . . . , zn) be local coordinates such
that (∂/∂z1, . . . , ∂/∂zn) is an orthonormal basis of (TX, ω) at x0. One can write

ωx0
= i

∑

16j6n

dzj ∧ dzj ,

iΘ(E)x0
= i

∑

j,k,λ,µ

cjkλµ dzj ∧ dzk ⊗ e⋆λ ⊗ eµ

where (e1, . . . , er) is an orthonormal basis of Ex0
. Let

u =
∑

|J|=p, |K|=q,λ
uJ,K,λ dzJ ∧ dzK ⊗ eλ ∈

(
Λp,qT ⋆X ⊗ E

)
x0
.



§ 7. Nakano Vanishing Theorem 341

A simple computation as in the proof of Prop. VI-8.3 gives

Λu = i(−1)p
∑

J,K,λ,s

uJ,K,λ

( ∂

∂zs
dzJ

)
∧
( ∂

∂zs
dzK

)
⊗ eλ,

iΘ(E) ∧ u = i(−1)p
∑

j,k,λ,µ,J,K

cjkλµ uJ,K,λ dzj ∧ dzJ ∧ dzk ∧ dzK ⊗ eµ,

[iΘ(E),Λ]u =
∑

j,k,λ,µ,J,K

cjkλµ uJ,K,λ dzj ∧
( ∂

∂zk
dzJ

)
∧ dzK ⊗ eµ

+
∑

j,k,λ,µ,J,K

cjkλµ uJ,K,λ dzJ ∧ dzk ∧
( ∂

∂zj
dzK

)
⊗ eµ

−
∑

j,λ,µ,J,K

cjjλµ uJ,K,λ dzJ ∧ dzK ⊗ eµ.

We extend the definition of uJ,K,λ to non increasing multi-indices J = (js), K = (ks)
by deciding that uJ,K,λ = 0 if J or K contains identical components repeated and that
uJ,K,λ is alternate in the indices (js), (ks). Then the above equality can be written

〈[iΘ(E),Λ]u, u〉 =
∑

cjkλµ uJ,jS,λuJ,kS,µ

+
∑

cjkλµ ukR,K,λujR,K,µ

−
∑

cjjλµ uJ,K,λuJ,K,µ,

extended over all indices j, k, λ, µ, J,K,R, S with |R| = p−1, |S| = q−1. This hermitian
form appears rather difficult to handle for general (p, q) because of sign compensation.
Two interesting cases are p = n and q = n.

• For u =
∑
uK,λ dz1 ∧ . . . ∧ dzn ∧ dzK ⊗ eλ of type (n, q), we get

(7.1) 〈[iΘ(E),Λ]u, u〉 =
∑

|S|=q−1

∑

j,k,λ,µ

cjkλµ ujS,λukS,µ,

because of the equality of the second and third summations in the general formula.
Since ujS,λ = 0 for j ∈ S, the rank of the tensor (ujS,λ)j,λ ∈ Cn ⊗ Cr is in fact 6
min{n− q + 1, r}. We obtain therefore:

(7.2) Lemma. Assume that E >m 0 in the sense of Def. 6.5. Then the hermitian
operator [iΘ(E),Λ] is positive definite on Λn,qT ⋆X ⊗E for q > 1 and m > min{n− q +
1, r}.

(7.3) Theorem. Let X be a compact connected Kähler manifold of dimension n and
E a hermitian vector bundle of rank r. If θE >m 0 on X and θE >m 0 in at least one
point, then

Hn,q(X,E) = Hq(X,KX ⊗ E) = 0 for q > 1 and m > min{n− q + 1, r}.

• Similarly, for u =
∑
uJ,λ dzJ ∧ dz1 ∧ . . . ∧ dzn ⊗ eλ of type (p, n), we get

〈[iΘ(E),Λ]u, u〉 =
∑

|R|=p−1

∑

j,k,λ,µ

cjkλµ ukR,λujR,µ,
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because of the equality of the first and third summations in the general formula. The
indices j, k are twisted, thus [iΘ(E),Λ] defines a positive hermitian form under the as-
sumption iΘ(E)† >m 0, i.e. iΘ(E⋆) <m 0, with m > min{n− p+ 1, r}. Serre duality(
Hp,0(X,E)

)⋆
= Hn−p,n(X,E⋆) gives:

(7.4) Theorem. Let X and E be as above. If θE 6m 0 on X and θE <m 0 in at least
one point, then

Hp,0(X,E) = H0(X,ΩpX ⊗ E) = 0 for p < n and m > min{p+ 1, r}.

The special case m = r yields:

(7.5) Corollary. For X and E as above:

a) Nakano vanishing theorem (1955):

E >Nak 0, strictly in one point =⇒ Hn,q(X,E) = 0 for q > 1.

b) E 6Nak 0, strictly in one point =⇒ Hp,0(X,E) = 0 for p < n.

§ 8. Relations Between Nakano and Griffiths Positivity

It is clear that Nakano positivity implies Griffiths positivity. The main result of § 8
is the following “converse” to this property [Demailly-Skoda 1979].

(8.1) Theorem. For any hermitian vector bundle E,

E >Grif 0 =⇒ E ⊗ detE >Nak 0.

To prove this result, we first use (V-4.2′) and (V-4.6). If End(E ⊗ detE) is identified
to hom(E,E), one can write

Θ(E ⊗ detE) = Θ(E) + TrE(Θ(E))⊗ IdE ,

θE⊗detE = θE +TrE θE ⊗ h,
where h denotes the hermitian metric on E and where TrE θE is the hermitian form on
TX defined by

TrE θE(ξ, ξ) =
∑

16λ6r

θE(ξ ⊗ eλ, ξ ⊗ eλ), ξ ∈ TX,

for any orthonormal frame (e1, . . . , er) of E. Theorem 8.1 is now a consequence of the
following simple property of hermitian forms on a tensor product of complex vector
spaces.

(8.2) Proposition. Let T,E be complex vector spaces of respective dimensions n, r, and
h a hermitian metric on E. Then for every hermitian form Θ on T ⊗ E

Θ >Grif 0 =⇒ Θ+ TrE Θ⊗ h >Nak 0.
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We first need a lemma analogous to Fourier inversion formula for discrete Fourier
transforms.

(8.3) Lemma. Let q be an integer > 3, and xλ, yµ, 1 6 λ, µ 6 r, be complex numbers.
Let σ describe the set Urq of r-tuples of q-th roots of unity and put

x′σ =
∑

16λ6r

xλσλ, y′σ =
∑

16µ6r

yµσµ, σ ∈ Urq .

Then for every pair (α, β), 1 6 α, β 6 r, the following identity holds:

q−r
∑

σ∈Ur
q

x′σy
′
σσασβ =





xαyβ if α 6= β,∑

16µ6r

xµyµ if α = β.

Proof. The coefficient of xλyµ in the summation q−r
∑
σ∈Ur

q
x′σy

′
σσασβ is given by

q−r
∑

σ∈Ur
q

σασβσλσµ.

This coefficient equals 1 when the pairs {α, µ} and {β, λ} are equal (in which case
σασβσλσµ = 1 for any one of the qr elements of Urq ). Hence, it is sufficient to prove
that ∑

σ∈Ur
q

σασβσλσµ = 0

when the pairs {α, µ} and {β, λ} are distinct.

If {α, µ} 6= {β, λ}, then one of the elements of one of the pairs does not belong to the
other pair. As the four indices α, β, λ, µ play the same role, we may suppose for example
that α /∈ {β, λ}. Let us apply to σ the substitution σ 7→ τ , where τ is defined by

τα = e2πi/qσα, τν = σν for ν 6= α.

We get

∑

σ

σασβσλσµ =
∑

τ

=





e2πi/q
∑

σ

if α 6= µ,

e4πi/q
∑

σ

if α = µ,

Since q > 3 by hypothesis, it follows that

∑

σ

σασβσλσµ = 0.

Proof of Proposition 8.2.. Let (tj)16j6n be a basis of T , (eλ)16λ6r an orthonormal basis
of E and ξ =

∑
j ξjtj ∈ T , u =

∑
j,λ ujλ tj ⊗ eλ ∈ T ⊗ E. The coefficients cjkλµ of Θ
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with respect to the basis tj ⊗ eλ satisfy the symmetry relation cjkλµ = ckjµλ, and we
have the formulas

Θ(u, u) =
∑

j,k,λ,µ

cjkλµujλukµ,

TrE Θ(ξ, ξ) =
∑

j,k,λ

cjkλλξjξk,

(Θ + TrE Θ⊗ h)(u, u) =
∑

j,k,λ,µ

cjkλµujλukµ + cjkλλujµukµ.

For every σ ∈ Urq (cf. Lemma 8.3), put

u′jσ =
∑

16λ6r

ujλσλ ∈ C,

ûσ =
∑

j

u′jσtj ∈ T , êσ =
∑

λ

σλeλ ∈ E.

Lemma 8.3 implies

q−r
∑

σ∈Ur
q

Θ(ûσ ⊗ êσ, ûσ ⊗ êσ) = q−r
∑

σ∈Ur
q

cjkλµu
′
jσu
′
kσσλσµ

=
∑

j,k,λ6=µ
cjkλµujλukµ +

∑

j,k,λ,µ

cjkλλujµukµ.

The Griffiths positivity assumption shows that the left hand side is > 0, hence

(Θ + TrE Θ⊗ h)(u, u) >
∑

j,k,λ

cjkλλujλukλ > 0

with strict positivity if Θ >Grif 0 and u 6= 0. �

(8.4) Example. Take E = H over Pn = P (V ). The exact sequence

0 −→ O(−1) −→ −V −→ H −→ 0

implies det−V = detH ⊗ O(−1). Since det−V is a trivial bundle, we get (non canonical)

isomorphisms
detH ≃ O(1),
TPn = H ⊗ O(1) ≃ H ⊗ detH.

We already know that H >Grif 0, hence TPn >Nak 0. A direct computation based on
(6.9) shows that

θTPn(u, u) = (θH +TrH θH ⊗ h)(u, u)

=
∑

16j,k6n

ujkukj + ujkujk =
1

2

∑

16j,k6n

|ujk + ukj |2.
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In addition, we have TPn >Grif 0. However, the Serre duality theorem gives

Hq(Pn, KPn ⊗ TPn)⋆ ≃ Hn−q(Pn, T ⋆Pn)

= H1,n−q(Pn,C) =

{
C if q = n− 1,
0 if q 6= n− 1.

For n > 2, Th. 7.3 implies that TPn has no hermitian metric such that θTPn >2 0 on
Pn and θTPn >2 0 in one point. This shows that the notion of 2-positivity is actually
stronger than 1-positivity (i.e. Griffiths positivity).

(8.5) Remark. Since TrH θH = θ
O(1) is positive and θTPn is not >Nak 0 when n > 2,

we see that Prop. 8.2 is best possible in the sense that there cannot exist any constant
c < 1 such that

Θ >Grif 0 =⇒ Θ+ cTrE Θ⊗ h >Nak 0.

§ 9. Applications to Griffiths Positive Bundles

We first need a preliminary result.

(9.1) Proposition. Let T be a complex vector space and (E, h) a hermitian vector space
of respective dimensions n, r with r > 2. Then for any hermitian form Θ on T ⊗ E and
any integer m > 1

Θ >Grif 0 =⇒ mTrE Θ⊗ h−Θ >m 0.

Proof. Let us distinguish two cases.

a) m = 1. Let u ∈ T ⊗E be a tensor of rank 1. Then u can be written u = ξ1⊗ e1 with
ξ1 ∈ T, ξ1 6= 0, and e1 ∈ E, |e1| = 1. Complete e1 into an orthonormal basis (e1, . . . , er)
of E. One gets immediately

(TrE Θ⊗ h)(u, u) = TrE Θ(ξ1, ξ1) =
∑

16λ6r

Θ(ξ1 ⊗ eλ, ξ1 ⊗ eλ)

> Θ(ξ1 ⊗ e1, ξ1 ⊗ e1) = Θ(u, u).

b) m > 2. Every tensor u ∈ T ⊗ E of rank 6 m can be written

u =
∑

16λ6q

ξλ ⊗ eλ , ξλ ∈ T,

with q = min(m, r) and (eλ)16λ6r an orthonormal basis of E. Let F be the vector
subspace of E generated by (e1, . . . , eq) and ΘF the restriction of Θ to T ⊗ F . The first
part shows that

Θ′ := TrF ΘF ⊗ h−ΘF >Grif 0.
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Proposition 9.2 applied to Θ′ on T ⊗ F yields

Θ′ + TrF Θ′ ⊗ h = qTrF ΘF ⊗ h−ΘF >q 0.

Since u ∈ T ⊗ F is of rank 6 q 6 m, we get (for u 6= 0)

Θ(u, u) = ΘF (u, u) < q(TrF ΘF ⊗ h)(u, u)
= q

∑

16j,λ6q

Θ(ξj ⊗ eλ, ξj ⊗ eλ) 6 mTrE Θ⊗ h(u, u). �

Proposition 9.1 is of course also true in the semi-positive case. From these facts, we
deduce

(9.2) Theorem. Let E be a Griffiths (semi-)positive bundle of rank r > 2. Then for
any integer m > 1

E⋆ ⊗ (detE)m >m 0 (resp. >m 0).

Proof. Apply Prop. 8.1 to Θ = −θE⋆ >Grif 0 and observe that

θdetE = −θdetE⋆ = TrE⋆ Θ.

(9.3) Theorem. Let 0 → S → E → Q → 0 be an exact sequence of hermitian vector
bundles. Then for any m > 1

E >m 0 =⇒ S ⊗ (detQ)m >m 0.

Proof. Formulas (V-14.6) and (V-14.7) imply

iΘ(S) >m iβ⋆ ∧ β , iΘ(Q) >m iβ ∧ β⋆,

iΘ(detQ) = TrQ(iΘ(Q)) > TrQ(iβ ∧ β⋆).
If we write β =

∑
dzj ⊗ βj as in the proof of Prop. 6.10, then

TrQ(iβ ∧ β⋆) =
∑

idzj ∧ dzk TrQ(βjβ⋆k)

=
∑

idzj ∧ dzk TrS(β⋆kβj) = TrS(−iβ⋆ ∧ β).

Furthermore, it has been already proved that −iβ⋆ ∧ β >Nak 0. By Prop. 8.1 applied to
the corresponding hermitian form Θ on TX ⊗ S, we get

mTrS(−iβ⋆ ∧ β) ⊗ IdS +iβ⋆ ∧ β >m 0,

and Th. 9.3 follows.

(9.4) Corollary. Let X be a compact n-dimensional complex manifold, E a vector
bundle of rank r > 2 and m > 1 an integer. Then
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a) E >Grif 0 =⇒ Hn,q(X,E ⊗ det E) = 0 for q > 1 ;

b) E >Grif 0 =⇒ Hn,q
(
X,E⋆ ⊗ (det E)m

)
= 0 for q > 1

and m > min{n− q + 1, r} ;
c) Let 0→ S → E → Q→ 0 be an exact sequence of vector bundles and m = min{n−

q+1, rk S}, q > 1. If E >m 0 and if L is a line bundle such that L⊗ (detQ)−m > 0,
then

Hn,q(X,S ⊗ L) = 0.

Proof. Immediate consequence of Theorems 7.3, 8.1, 9.2 and 9.3. �

Note that under our hypotheses ω = i TrE Θ(E) = iΘ(ΛrE) is a Kähler metric on
X . Corollary 2.5 shows that it is enough in a), b), c) to assume semi-positivity and strict
positivity in one point (this is true a priori only if X is supposed in addition to be Kähler,
but this hypothesis can be removed by means of Siu’s result mentioned after (4.5).

a) is in fact a special case of a result of [Griffiths 1969], which we will prove in full
generality in volume II (see the chapter on vanishing theorems for ample vector bundles);
property b) will be also considerably strengthened there. Property c) is due to [Skoda
1978] for q = 0 and to [Demailly 1982c] in general. Let us take the tensor product of the
exact sequence in c) with (det Q)l. The corresponding long cohomology exact sequence
implies that the natural morphism

Hn,q
(
X,E ⊗ (det Q)l

)
−→ Hn,q

(
X,Q⊗ (det Q)l

)

is surjective for q > 0 and l,m > min{n − q, rk S}, bijective for q > 1 and l,m >
min{n− q + 1, rk S}.

§ 10. Cohomology Groups of O(k) over Pn

As an illustration of the above results, we compute now the cohomology groups of all
line bundles O(k)→ Pn. This precise evaluation will be needed in the proof of a general
vanishing theorem for vector bundles, due to Le Potier (see volume II). As in §V-15, we
consider a complex vector space V of dimension n+ 1 and the exact sequence

(10.1) 0 −→ O(−1) −→ −V −→ H −→ 0

of vector bundles over Pn = P (V ). We thus have det−V = detH ⊗ O(−1), and as

TP (V ) = H ⊗ O(1) by Th. V-15.7, we find

(10.2) KP (V ) = detT ⋆P (V ) = detH⋆ ⊗ O(−n) = det−V
⋆ ⊗ O(−n− 1)

where det−V is a trivial line bundle.

Before going further, we need some notations. For every integer k ∈ N, we consider
the homological complex C•,k(V ⋆) with differential γ such that

(10.3)





Cp,k(V ⋆) = ΛpV ⋆ ⊗ Sk−pV ⋆, 0 6 p 6 k,

= 0 otherwise,

γ : ΛpV ⋆ ⊗ Sk−pV ⋆ −→ Λp−1V ⋆ ⊗ Sk−p+1V ⋆,
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where γ is the linear map obtained by contraction with the Euler vector field IdV ∈ V ⊗
V ⋆, through the obvious maps V ⊗ΛpV ⋆ −→ Λp−1V ⋆ and V ⋆⊗Sk−pV ⋆ −→ Sk−p+1V ⋆.
If (z0, . . . , zn) are coordinates on V , the module Cp,k(V ⋆) can be identified with the space
of p-forms

α(z) =
∑

|I|=p
αI(z) dzI

where the αI ’s are homogeneous polynomials of degree k− p. The differential γ is given
by contraction with the Euler vector field ξ =

∑
06j6n zj ∂/∂zj.

Let us denote by Zp,k(V ⋆) the space of p-cycles of C•,k(V ⋆), i.e. the space of forms
α ∈ Cp,k(V ⋆) such that ξ α = 0. The exterior derivative d also acts on C•,k(V ⋆) ; we
have

d : Cp,k(V ⋆) −→ Cp+1,k(V ⋆),

and a trivial computation shows that dγ + γd = k · IdC•,k(V ⋆) .

(10.4) Theorem. For k 6= 0, C•,k(V ⋆) is exact and there exist canonical isomorphisms

C•,k(V ⋆) = ΛpV ⋆ ⊗ Sk−pV ⋆ ≃ Zp,k(V ⋆)⊕ Zp−1,k(V ⋆).

Proof. The identity dγ + γd = k · Id implies the exactness. The isomorphism is given by
1
kγd⊕ γ and its inverse by P1 +

1
kd ◦P2. �

Let us consider now the canonical mappings

π : V \ {0} −→ P (V ), µ′ : V \ {0} −→ O(−1)

defined in §V-15. As T[z]P (V ) ≃ V/Cξ(z) for all z ∈ V \ {0}, every form α ∈ Zp,k(V ⋆)
defines a holomorphic section of π⋆

(
ΛpT ⋆P (V )

)
, α(z) being homogeneous of degree k

with respect to z. Hence α(z)⊗µ′(z)−k is a holomorphic section of π⋆
(
ΛpT ⋆P (V )⊗O(k)

)
,

and since its homogeneity degree is 0, it induces a holomorphic section of ΛpT ⋆P (V ) ⊗
O(k). We thus have an injective morphism

(10.5) Zp,k(V ⋆) −→ Hp,0
(
P (V ),O(k)

)
.

(10.6) Theorem. The groups Hp,0
(
P (V ),O(k)

)
are given by

a) Hp,0
(
P (V ),O(k)

)
≃ Zp,k(V ⋆) for k > p > 0,

b) Hp,0
(
P (V ),O(k)

)
= 0 for k 6 p and (k, p) 6= (0, 0).

Proof. Let s be a holomorphic section of ΛpT ⋆P (V )⊗ O(k). Set

α(z) = (dπz)
⋆
(
s([z])⊗ µ′(z)k

)
, z ∈ V \ {0}.

Then α is a holomorphic p-form on V \ {0} such that ξ α = 0, and the coefficients of
α are homogeneous of degree k − p on V \ {0} (recall that dπλz = λ−1dπz). It follows
that α = 0 if k < p and that α ∈ Zp,k(V ⋆) if k > p. The injective morphism (10.5) is
therefore also surjective. Finally, Zp,p(V ⋆) = 0 for p = k 6= 0, because of the exactness
of C•,k(V ⋆) when k 6= 0. The proof is complete. �
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(10.7) Theorem. The cohomology groups Hp,q
(
P (V ),O(k)

)
vanish in the following

cases:

a) q 6= 0, n, p ;

b) q = 0, k 6 p and (k, p) 6= (0, 0) ;

c) q = n, k > −n + p and (k, p) 6= (0, n) ;

d) q = p 6= 0, n, k 6= 0.

The remaining non vanishing groups are:

b) Hp,0
(
P (V ),O(k)

)
≃ Zp,k(V ⋆) for k > p ;

c) Hp,n
(
P (V ),O(k)

)
≃ Zn−p,−k(V ) for k < −n + p ;

d) Hp,p
(
P (V ),C

)
= C, 0 6 p 6 n.

Proof. • d) is already known, and so is a) when k = 0 (Th. VI-13.3).

• b) and b) follow from Th. 10.6, and c), c) are equivalent to b), b) via Serre duality:

Hp,q
(
P (V ),O(k)

)⋆
= Hn−p,n−q(P (V ),O(−k)

)
,

thanks to the canonical isomorphism
(
Zp,k(V )

)⋆
= Zp,k(V ⋆).

• Let us prove now property a) when k 6= 0 and property d). By Serre duality, we may
assume k > 0. Then

ΛpT ⋆P (V ) ≃ KP (V ) ⊗ Λn−pTP (V ).

It is very easy to verify that E >Nak 0 implies ΛsE >Nak 0 for every integer s. Since
TP (V ) >Nak 0, we get therefore

F = Λn−pTP (V )⊗ O(k) >Nak 0 for k > 0,

and the Nakano vanishing theorem implies

Hp,q
(
P (V ),O(k)

)
= Hq

(
P (V ),ΛpT ⋆P (V )⊗ O(k)

)

= Hq
(
P (V ), KP (V ) ⊗ F

)
= 0, q > 1. �

§ 11. Ample Vector Bundles

§ 11.A. Globally Generated Vector Bundles

All definitions concerning ampleness are purely algebraic and do not involve differ-
ential geometry. We shall see however that ampleness is intimately connected with the
differential geometric notion of positivity. For a general discussion of properties of ample
vector bundles in arbitrary characteristic, we refer to [Hartshorne 1966].

(11.1) Definition. Let E → X be a holomorphic vector bundle over an arbitrary
complex manifold X.
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a) E is said to be globally generated if for every x ∈ X the evaluation map H0(X,E)→
Ex is onto.

b) E is said to be semi-ample if there exists an integer k0 such that SkE is globally
generated for k > k0.

Any quotient of a trivial vector bundle is globally generated, for example the tau-
tological quotient vector bundle Q over the Grassmannian Gr(V ) is globally generated.
Conversely, every globally generated vector bundle E of rank r is isomorphic to the
quotient of a trivial vector bundle of rank 6 n+ r, as shown by the following result.

(11.2) Proposition. If a vector bundle E of rank r is globally generated, then there
exists a finite dimensional subspace V ⊂ H0(X,E), dimV 6 n+r, such that V generates
all fibers Ex, x ∈ X.

Proof. Put an arbitrary hermitian metric on E and consider the Fréchet space F =
H0(X,E)⊕n+r of (n+r)-tuples of holomorphic sections of E, endowed with the topology
of uniform convergence on compact subsets of X . For every compact set K ⊂ X , we set

A(K) = {(s1, . . . , sn+r) ∈ F which do not generate E on K}.
It is enough to prove that A(K) is of first category in F : indeed, Baire’s theorem will
imply that A(X) =

⋃
A(Kν) is also of first category, if (Kν) is an exhaustive sequence

of compact subsets of X . It is clear that A(K) is closed, because A(K) is characterized
by the closed condition

min
K

∑

i1<···<ir
|si1 ∧ · · · ∧ sir | = 0.

It is therefore sufficient to prove that A(K) has no interior point. By hypothesis, each
fiber Ex, x ∈ K, is generated by r global sections s′1, . . . , s

′
r. We have in fact s′1∧· · ·∧s′r 6=

0 in a neighborhood Ux of x. By compactness of K, there exist finitely many sections
s′1, . . . , s

′
N which generate E in a neighborhood Ω of the set K.

If T is a complex vector space of dimension r, define Rk(T
p) as the set of p-tuples

(x1, . . . , xp) ∈ T p of rank k. Given a ∈ Rk(T p), we can reorder the p-tuple in such a way
that a1 ∧ · · · ∧ ak 6= 0. Complete these k vectors into a basis (a1, . . . , ak, b1, . . . , br−k)
of T . For every point x ∈ T p in a neighborhood of a, then (x1, . . . , xk, b1, . . . , br−k) is
again a basis of T . Therefore, we will have x ∈ Rk(T p) if and only if the coordinates of
xl, k+1 6 l 6 N , relative to b1, . . . , br−k vanish. It follows that Rk(T

p) is a (non closed)
submanifold of T p of codimension (r − k)(p− k).

Now, we have a surjective affine bundle-morphism

Φ : Ω× CN(n+r) −→ En+r

(x, λ) 7−→
(
sj(x) +

∑

16k6N

λjks
′
k(x)

)
16j6n+r

.

Therefore Φ−1(Rk(En+r)) is a locally trivial differentiable bundle over Ω, and the codi-
mension of its fibers in CN(n+r) is (r− k)(n+ r− k) > n+1 if k < r ; it follows that the
dimension of the total space Φ−1(Rk(En+r)) is 6 N(n+ r)− 1. By Sard’s theorem

⋃

k<r

P2

(
Φ−1

(
Rk(E

n+r)
))
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is of zero measure in CN(n+r). This means that for almost every value of the parameter
λ the vectors sj(x) +

∑
k λjks

′
k(x) ∈ Ex, 1 6 j 6 n+ r, are of maximum rank r at each

point x ∈ Ω. Therefore A(K) has no interior point. �

Assume now that V ⊂ H0(X,E) generates E on X . Then there is an exact sequence

(11.3) 0 −→ S −→ −V −→ E −→ 0

of vector bundles over X , where Sx = {s ∈ V ; s(x) = 0}, codimV Sx = r. One obtains
therefore a commutative diagram

(11.4)
E

ΨV−→ Q
↓ ↓
X

ψV−→ Gr(V )

where ψV , ΨV are the holomorphic maps defined by

ψV (x) = Sx, x ∈ X,
ΨV (u) = {s ∈ V ; s(x) = u} ∈ V/Sx, u ∈ Ex.

In particular, we see that every globally generated vector bundle E of rank r is the pull-
back of the tautological quotient vector bundle Q of rank r over the Grassmannian by
means of some holomorphic map X −→ Gr(V ). In the special case when rkE = r = 1,
the above diagram becomes

(11.4′)
E

ΨV−→ O(1)
↓ ↓
X

ψV−→ P (V ⋆)

(11.5) Corollary. If E is globally generated, then E possesses a hermitian metric such
that E >Grif 0 (and also E⋆ 6Nak 0).

Proof. Apply Prop. 6.11 to the exact sequence (11.3), where −V is endowed with an

arbitrary hermitian metric. �

When E is of rank r = 1, then SkE = E⊗k and any hermitian metric of E⊗k yields
a metric on E after extracting k-th roots. Thus:

(11.6) Corollary. If E is a semi-ample line bundle, then E > 0. �

In the case of vector bundles (r > 2) the answer is unknown, mainly because there is
no known procedure to get a Griffiths semipositive metric on E from one on SkE.

§ 11.B. Ampleness

We are now turning ourselves to the definition of ampleness. If E −→ X is a
holomorphic vector bundle, we define the bundle JkE of k-jets of sections of E by
(JkE)x = Ox(E)/

(
M

k+1
x · Ox(E)

)
for every x ∈ X , where Mx is the maximal ideal

of Ox. Let (e1, . . . , er) be a holomorphic frame of E and (z1, . . . , zn) analytic coordinates
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on an open subset Ω ⊂ X . The fiber (JkE)x can be identified with the set of Taylor
developments of order k :

∑

16λ6r,|α|6k
cλ,α(z − x)α eλ(z),

and the coefficients cλ,α define coordinates along the fibers of JkE. It is clear that the
choice of another holomorphic frame (eλ) would yield a linear change of coordinates
(cλ,α) with holomorphic coefficients in x. Hence JkE is a holomorphic vector bundle of

rank r
(
n+k
n

)
.

(11.7) Definition.

a) E is said to be very ample if all evaluation maps

H0(X,E)→ (J1E)x, H0(X,E)→ Ex ⊕ Ey, x, y ∈ X, x 6= y,

are surjective.

b) E is said to be ample if there exists an integer k0 such that SkE is very ample for
k > k0.

(11.8) Example. O(1) → Pn is a very ample line bundle (immediate verification).
Since the pull-back of a (very) ample vector bundle by an embedding is clearly also
(very) ample, diagram (V-16.8) shows that ΛrQ → Gr(V ) is very ample. However, Q
itself cannot be very ample if r > 2, because dimH0(Gr(V ), Q) = dimV = d, whereas

rank(J1Q) = (rankQ)
(
1 + dimGr(V )

)
= r

(
1 + r(d− r)

)
> d if r > 2.

(11.9) Proposition. If E is very ample of rank r, there exists a subspace V of H0(X,E),
dimV 6 max

(
nr + n + r, 2(n + r)

)
, such that all the evaluation maps V → Ex ⊕ Ey,

x 6= y, and V → (J1E)x, x ∈ X, are surjective.

Proof. The arguments are exactly the same as in the proof of Prop. 11.4, if we consider
instead the bundles J1E −→ X and E ×E −→ X ×X \∆X of respective ranks r(n+1)
and 2r, and sections s′1, . . . , s

′
N ∈ H0(X,E) generating these bundles. �

(11.10) Proposition. Let E → X be a holomorphic vector bundle.

a) If V ⊂ H0(X,E) generates J1E −→ X and E × E −→ X ×X \∆X , then ψV is an
embedding.

b) Conversely, if rankE = 1 and if there exists V ⊂ H0(X,E) generating E such that
ψV is an embedding, then E is very ample.

Proof. b) is immediate, because E = ψ⋆V (O(1)) and O(1) is very ample. Note that the
result is false for r > 2 as shown by the example E = Q over X = Gr(V ).

a) Under the assumption of a), it is clear since Sx = {s ∈ V ; s(x) = 0} that Sx = Sy
implies x = y, hence ψV is injective. Therefore, it is enough to prove that the map x 7→ Sx
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has an injective differential. Let x ∈ X and W ⊂ V such that Sx ⊕W = V . Choose
a coordinate system in a neighborhood of x in X and a small tangent vector h ∈ TxX .
The element Sx+h ∈ Gr(V ) is the graph of a small linear map u = O(|h|) : Sx → W .
Thus we have

Sx+h = {s′ = s+ t ∈ V ; s ∈ Sx, t = u(s) ∈W, s′(x+ h) = 0}.

Since s(x) = 0 and |t| = O(|h|), we find

s′(x+ h) = s′(x) + dxs
′ · h+O(|s′| · |h|2) = t(x) + dxs · h+O(|s| · |h|2),

thus s′(x + h) = 0 if and only if t(x) = −dxs · h + O(|s| · |h|2). Thanks to the fiber
isomorphism ΨV : Ex → V/Sx ≃W , t(x) 7−→ t mod Sx, we get:

u(s) = t = ΨV (t(x)) = −ΨV
(
dxs · h+O(|s| · |h|2)

)
.

Recall that TyGr(V ) = hom(Sy, Qy) = hom(y, V/y) (see V-16.5) and use these identifi-
cations at y = Sx. It follows that

(11.11) (dxψV ) · h = u =
(
Sx → V/Sx, s 7−→ −ΨV (dxs · h)

)
,

Now hypothesis a) implies that Sx ∋ s 7−→ dxs ∈ hom(TxX,Ex) is onto, hence dxψV is
injective. �

(11.12) Corollary. If E is an ample line bundle, then E > 0.

Proof. If E is very ample, diagram (11.4′) shows that E is the pull-back of O(1) by the
embedding ψV , hence iΘ(E) = ψ⋆V

(
iΘ(O(1))

)
> 0 with the induced metric. The ample

case follows by extracting roots. �

(11.13) Corollary. If E is a very ample vector bundle, then E carries a hermitian
metric such that E⋆ <Nak 0, in particular E >Grif 0.

Proof. Choose V as in Prop. 11.9 and select an arbitrary hermitian metric on V . Then
diagram 11.4 yields E = ψ⋆VQ, hence θE = Ψ⋆V θQ. By formula (V-16.9) we have for every
ξ ∈ TGr(V ) = hom(S,Q) and t ∈ Q :

θQ(ξ ⊗ t, ξ ⊗ t) =
∑

j,k,l

ξjkξlktltj =
∑

k

∣∣∣
∑

j

tjξjk

∣∣∣
2

= |〈•, t〉 ◦ ξ|2.

Let h ∈ TxX , t ∈ Ex. Thanks to formula (11.11), we get

θE(h⊗ t, h⊗ t) = θQ
(
(dxψV · h)⊗ΨV (t), (dxψV · h)⊗ΨV (t)

)

=
∣∣〈•,ΨV (t)〉 ◦ (dxψV · h)

∣∣2 =
∣∣Sx ∋ s 7−→ 〈ΨV (dxs · h),ΨV (t)〉

∣∣2

=
∣∣Sx ∋ s 7−→ 〈dxs · h, t〉

∣∣2 > 0.

As Sx ∋ s 7→ dxs ∈ T ⋆X ⊗ E is surjective, it follows that θE(h⊗ t, h⊗ t) 6= 0 when
h 6= 0, t 6= 0. Now, dxs defines a linear form on TX ⊗E⋆ and the above formula for the
curvature of E clearly yields

θE⋆(u, u) = −|Sx ∋ s 7−→ dxs · u|2 < 0 if u 6= 0. �
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(11.14) Problem ([Griffiths 1969]). If E is an ample vector bundle over a compact
manifold X, then is E >Grif 0 ?

Griffiths’ problem has been solved in the affirmative when X is a curve (see [Ume-
mura 1973] and also [Campana-Flenner 1990]), but the general case is still unclear and
seems very deep. The next sections will be concerned with the important result of
Kodaira asserting the equivalence between positivity and ampleness for line bundles.

§ 12. Blowing-up along a Submanifold

Here we generalize the blowing-up process already considered in Remark 4.5 to arbi-
trary manifolds. Let X be a complex n-dimensional manifold and Y a closed submanifold
with codimX Y = s.

(12.1) Notations. The normal bundle of Y in X is the vector bundle over Y defined as
the quotient NY = (TX)↾Y /TY . The fibers of NY are thus given by NyY = TyX/TyY
at every point y ∈ Y . We also consider the projectivized normal bundle P (NY ) → Y
whose fibers are the projective spaces P (NyY ) associated to the fibers of NY .

The blow-up of X with center Y (to be constructed later) is a complex n-dimensional

manifold X̃ together with a holomorphic map σ : X̃ −→ X such that:

i) E := σ−1(Y ) is a smooth hypersurface in X̃, and the restriction σ : E → Y is a
holomorphic fiber bundle isomorphic to the projectivized normal bundle P (NY )→ Y .

ii) σ : X̃ \ E −→ X \ Y is a biholomorphism.

In order to construct X̃ and σ, we first define the set-theoretic underlying objects as the
disjoint sums

X̃= (X \ Y )∐ E, where E := P (NY ),
σ= IdX\Y ∐ π, where π : E −→ Y.
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E

σ

X̃

X

VII-1 Blow-up of one point in X .

This means intuitively that we have replaced each point y ∈ Y by the projective space of
all directions normal to Y . When Y is reduced to a single point, the geometric picture
is given by Fig. 1 below. In general, the picture is obtained by slicing X transversally to
Y near each point and by blowing-up each slice at the intersection point with Y .

It remains to construct the manifold structure on X̃ and in particular to describe what
are the holomorphic functions near a point of E. Let f, g be holomorphic functions on an
open set U ⊂ X such that f = g = 0 on Y ∩U . Then df and dg vanish on TY↾Y ∩U , hence
df and dg induce linear forms on NY↾Y ∩U . The holomorphic function h(z) = f(z)/g(z)
on the open set

Ug :=
{
z ∈ U ; g(z) 6= 0

}
⊂ U \ Y

can be extended in a natural way to a function h̃ on the set

Ũg = Ug ∪
{
(z, [ξ]) ∈ P (NY )↾Y ∩U ; dgz(ξ) 6= 0

}
⊂ X̃

by letting

h̃(z, [ξ]) =
dfz(ξ)

dgz(ξ)
, (z, [ξ]) ∈ P (NY )↾Y ∩U .

Using this observation, we now define the manifold structure on X̃ by giving explicitly an
atlas. Every coordinate chart ofX\Y is taken to be also a coordinate chart of X̃ . Further-
more, for every point y0 ∈ Y , there exists a neighborhood U of y0 in X and a coordinate
chart τ(z) = (z1, . . . , zn) : U → Cn centered at y0 such that τ(U) = B′ × B′′ for some
balls B′ ⊂ Cs, B′′ ⊂ Cn−s, and such that Y ∩ U = τ−1({0} ×B′′) = {z1= . . .=zs=0}.
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It follows that (zs+1, . . . , zn) are local coordinates on Y ∩ U and that the vector fields
(∂/∂z1, . . . , ∂/∂zs) yield a holomorphic frame of NY↾Y ∩U . Let us denote by (ξ1, . . . , ξs)
the corresponding coordinates along the fibers of NY . Then (ξ1, . . . , ξs, zs+1, . . . , zn) are
coordinates on the total space NY . For every j = 1, . . . , s, we set

Ũj = Ũzj =
{
z ∈ U \ Y ; zj 6= 0

}
∪
{
(z, [ξ]) ∈ P (NY )↾Y ∩U ; ξj 6= 0

}
.

Then (Ũj)16j6s is a covering of Ũ = σ−1(U) and for each j we define a coordinate chart

τ̃j = (w1, . . . , wn) : Ũj −→ Cn by

wk :=
(zk
zj

)∼
for 1 6 k 6 s, k 6= j ; wk := zk for k > s or k = j.

For z ∈ U \ Y , resp. (z, [ξ]) ∈ P (NY )↾Y ∩U , we get

τ̃j(z) = (w1, . . . , wn) =
(z1
zj
, . . . ,

zj−1
zj

, zj,
zj+1

zj
, . . . ,

zs
zj
, zs+1, . . . , zn

)
,

τ̃j(z, [ξ]) = (w1, . . . , wn) =
(ξ1
ξj
, . . . ,

ξj−1
ξj

, 0 ,
ξj+1

ξj
, . . . ,

ξs
ξj
, ξs+1, . . . , ξn

)
.

With respect to the coordinates (wk) on Ũj and (zk) on U , the map σ is given by

Ũj
σ−→ U(12.2)

w
σj7−→ (w1wj , . . . , wj−1wj ; wj ; wj+1wj , . . . , wswj ; ws+1, . . . , wn)

where σj = τ ◦ σ ◦ τ̃−1j , thus σ is holomorphic. The range of the coordinate chart τ̃j is

τ̃j(Ũj) = σ−1j
(
τ(U)

)
, so it is actually open in Cn. Furthermore E ∩ Ũj is defined by the

single equation wj = 0, thus E is a smooth hypersurface in X̃ . It remains only to verify
that the coordinate changes w 7−→ w′ associated to any coordinate change z 7−→ z′ on X
are holomorphic. For that purpose, it is sufficient to verify that (f/g)∼ is holomorphic in

(w1, . . . , wn) on Ũj ∩ Ũg. As g vanishes on Y ∩ U , we can write g(z) =
∑

16k6s zkAk(z)
for some holomorphic functions Ak on U . Therefore

g(z)

zj
= Aj(σj(w)) +

∑

k 6=j
wkAk(σj(w))

has an extension (g/zj)
∼ to Ũj which is a holomorphic function of the variables

(w1, . . . , wn). Since (g/zj)
∼(z, [ξ]) = dgz(ξ)/ξj on E ∩ Ũj , it is clear that

Ũj ∩ Ũg =
{
w ∈ Ũj ; (g/zj)

∼(w) 6= 0
}
.

Hence Ũj ∩ Ũg is open in Ũg and (f/g)∼ = (f/zj)
∼/(g/zj)∼ is holomorphic on Ũj ∩ Ũg.

(12.3) Definition. The map σ : X̃ → X is called the blow-up of X with center Y and

E = σ−1(Y ) ≃ P (NY ) is called the exceptional divisor of X̃.
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According to (V-13.5), we denote by O(E) the line bundle on X̃ associated to the

divisor E and by h ∈ H0(X̃,O(E)) the canonical section such that div(h) = [E]. On the
other hand, we denote by OP (NY )(−1) ⊂ π⋆(NY ) the tautological line subbundle over
E = P (NY ) such that the fiber above the point (z, [ξ]) is Cξ ⊂ NzY .

(12.4) Proposition. O(E) enjoys the following properties:

a) O(E)↾E is isomorphic to OP (NY )(−1).

b) Assume that X is compact. For every positive line bundle L over X, the line bundle

O(−E)⊗ σ⋆(Lk) over X̃ is positive for k > 0 large enough.

Proof. a) The canonical section h ∈ H0(X̃,O(E)) vanishes at order 1 along E, hence the
kernel of its differential

dh : (TX̃)↾E −→ O(E)↾E

is TE. We get therefore an isomorphism NE ≃ O(E)↾E . Now, the map σ : X̃ → X

satisfies σ(E) ⊂ Y , so its differential dσ : TX̃ −→ σ⋆(TX) is such that dσ(TE) ⊂
σ⋆(TY ). Therefore dσ induces a morphism

(12.5) NE −→ σ⋆(NY ) = π⋆(NY )

of vector bundles over E. The vector field ∂/∂wj yields a non vanishing section of NE

on Ũj , and (12.2) implies

dσj

( ∂

∂wj

)
=

∂

∂zj
+

∑

16k6s,k 6=j
wk

∂

∂zk
//

∑

16k6s

ξk
∂

∂zk

at every point (z, [ξ]) ∈ E. This shows that (12.5) is an isomorphism of NE onto
OP (NY )(−1) ⊂ π⋆(NY ), hence

(12.6) O(E)↾E ≃ NE ≃ OP (NY )(−1).

b) Select an arbitrary hermitian metric on TX and consider the induced metrics on NY
and on OP (NY )(1) −→ E = P (NY ). The restriction of OP (NY )(1) to each fiber P (NzY ) is
the standard line bundle O(1) over Ps−1 ; thus by (V-15.10) this restriction has a positive
definite curvature form. Extend now the metric of OP (NY )(1) on E to a metric of O(−E)

on X in an arbitrary way. If F = O(−E)⊗ σ⋆(Lk), then Θ(F ) = Θ(O(−E))+ k σ⋆Θ(L),

thus for every t ∈ TX̃ we have

θF (t, t) = θ
O(−E)(t, t) + k θL

(
dσ(t), dσ(t)

)
.

By the compactness of the unitary tangent bundle to X̃ and the positivity of θL, it is
sufficient to verify that θ

O(−E)(t, t) > 0 for every unit vector t ∈ TzX̃ such that dσ(t) = 0.
However, from the computations of a), this can only happen when z ∈ E and t ∈ TE,
and in that case dσ(t) = dπ(t) = 0, so t is tangent to the fiber P (NzY ). Therefore

θ
O(−E)(t, t) = θ

OP (NY )(1)(t, t) > 0. �
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(12.7) Proposition. The canonical line bundle of X̃ is given by

K
X̃

= O
(
(s− 1)E

)
⊗ σ⋆KX , where s = codimX Y.

Proof. KX is generated on U by the holomorphic n-form dz1 ∧ . . . ∧ dzn. Using (12.2),

we see that σ⋆KX is generated on Ũj by

σ⋆(dz1 ∧ . . . ∧ dzn) = ws−1j dw1 ∧ . . . ∧ dwn.

Since the divisor of the section h ∈ H0(X̃,O(E)) is the hypersurface E defined by the

equation wj = 0 in Ũj , we have a well defined line bundle isomorphism

σ⋆KX −→ O
(
(1− s)E

)
⊗K

X̃
, α 7−→ h1−sσ⋆(α). �

§ 13. Equivalence of Positivity and Ampleness for Line Bundles

We have seen in section 11 that every ample line bundle carries a hermitian metric
of positive curvature. The converse will be a consequence of the following result.

(13.1) Theorem. Let L −→ X be a positive line bundle and Lk the k-th tensor power of
L. For every N -tuple (x1, . . . , xN ) of distinct points of X, there exists a constant C > 0
such that the evaluation maps

H0(X,Lk) −→ (JmLk)x1
⊕ · · · ⊕ (JmLk)xN

are surjective for all integers m > 0, k > C(m+ 1).

(13.2) Lemma. Let σ : X̃ −→ X be the blow-up of X with center the finite set Y =
{x1, . . . , xN}, and let O(E) be the line bundle associated to the exceptional divisor E.
Then

H1(X̃,O(−mE)⊗ σ⋆Lk) = 0

for m > 1, k > Cm and C > 0 large enough.

Proof. By Prop. 12.7 we get K
X̃

= O
(
(n− 1)E

)
⊗ σ⋆KX and

H1
(
X̃,O(−mE)⊗ σ⋆Lk

)
= Hn,1

(
X̃,K−1

X̃
⊗ O(−mE)⊗ σ⋆Lk

)
= Hn,1

(
X̃, F

)

where F = O
(
− (m+ n− 1)E

)
⊗ σ⋆(K−1X ⊗ Lk), so the conclusion will follow from the

Kodaira-Nakano vanishing theorem if we can show that F > 0 when k is large enough.
Fix an arbitrary hermitian metric on KX . Then

Θ(F ) = (m+ n− 1)Θ(O(−E)) + σ⋆
(
kΘ(L)−Θ(KX)

)
.

There is k0 > 0 such that i
(
k0Θ(L) − Θ(KX)

)
> 0 on X , and Prop. 12.4 implies the

existence of C0 > 0 such that i
(
Θ(O(−E)) + C0σ

⋆Θ(L)
)
> 0 on X̃ . Thus iΘ(F ) > 0 for

m > 2− n and k > k0 + C0(m+ n− 1). �
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Proof of Theorem 13.1.. Let vj ∈ H0(Ωj, L
k) be a holomorphic section of Lk in a

neighborhood Ωj of xj having a prescribed m-jet at xj . Set

v(x) =
∑

j

ψj(x)vj(x)

where ψj = 1 in a neighborhood of xj and ψj has compact support in Ωj . Then d′′v =∑
d′′ψj · vj vanishes in a neighborhood of x1, . . . , xN . Let h be the canonical section of

O(E)−1 such that div(h) = [E]. The (0, 1)-form σ⋆d′′v vanishes in a neighborhood of
E = h−1(0), hence

w = h−(m+1)σ⋆d′′v ∈ C∞0,1
(
X̃,O(−(m+ 1)E)⊗ σ⋆Lk

)
.

and w is a d′′-closed form. By Lemma 13.2 there exists a smooth section

u ∈ C∞0,0
(
X̃,O(−(m+ 1)E)⊗ σ⋆Lk

)

such that d′′u = w = h−(m+1)σ⋆d′′v. This implies

σ⋆v − hm+1u ∈ H0(X̃, σ⋆Lk),

and since σ⋆L is trivial near E, there exists a section g ∈ H0(X,Lk) such that σ⋆g =
σ⋆v − hm+1u. As h vanishes at order 1 along E, the m-jet of g at xj must be equal to
that of v (or vj). �

(13.3) Corollary. For any holomorphic line bundle L −→ X, the following conditions
are equivalent:

a) L is ample;

b) L > 0, i.e. L possesses a hermitian metric such that iΘ(L) > 0.

Proof. a) =⇒ b) is given by Cor. 11.12, whereas b) =⇒ a) is a consequence of Th. 13.1
for m = 1. �

§ 14. Kodaira’s Projectivity Criterion

The following fundamental projectivity criterion is due to [Kodaira 1954].

(14.1) Theorem. Let X be a compact complex manifold, dimCX = n. The following
conditions are equivalent.

a) X is projective algebraic, i.e. X can be embedded as an algebraic submanifold of the
complex projective space PN for N large.

b) X carries a positive line bundle L.

c) X carries a Hodge metric, i.e. a Kähler metric ω with rational cohomology class
{ω} ∈ H2(X,Q).

Proof. a) =⇒ b). Take L = O(1)↾X .
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b) =⇒ c). Take ω = i
2πΘ(L) ; then {ω} is the image of c1(L) ∈ H2(X,Z).

c) =⇒ b). We can multiply {ω} by a common denominator of its coefficients and suppose
that {ω} is in the image of H2(X,Z). Then Th. V-13.9 b) shows that there exists a
hermitian line bundle L such that i

2π
Θ(L) = ω > 0.

b) =⇒ a). Corollary 13.3 shows that F = Lk is very ample for some integer k > 0.
Then Prop. 11.9 enables us to find a subspace V of H0(X,F ), dimV 6 2n+2, such that
ψV : X −→ G1(V ) = P (V ⋆) is an embedding. Thus X can be embedded in P2n+1 and
Chow’s theorem II-7.10 shows that the image is an algebraic set in P2n+1. �

(14.2) Remark. The above proof shows in particular that every n-dimensional projec-
tive manifold X can be embedded in P2n+1. This can be shown directly by using generic
projections PN → P2n+1 and Whitney type arguments as in 11.2.

(14.3) Corollary. Every compact Riemann surface X is isomorphic to an algebraic
curve in P3.

Proof. Any positive smooth form ω of type (1, 1) is Kähler, and ω is in fact a Hodge
metric if we normalize its volume so that

∫
X
ω = 1. �

This example can be somewhat generalized as follows.

(14.4) Corollary. Every Kähler manifold (X,ω) such that H2(X,O) = 0 is projective.

Proof. By hypothesis H0,2(X,C) = 0 = H2,0(X,C), hence

H2(X,C) = H1,1(X,C)

admits a basis {α1}, . . . , {αN} ∈ H2(X,Q) where α1, . . . , αN are harmonic real (1, 1)-
forms. Since {ω} is real, we have {ω} = λ1{α1}+ . . .+ λN{αN}, λj ∈ R, thus

ω = λ1α1 + . . .+ λNαN

because ω itself is harmonic. If µ1, . . . , µN are rational numbers sufficiently close to
λ1, . . . , λN , then ω̃ := µ1α1 + · · ·µNαN is close to ω, so ω̃ is a positive definite d-closed
(1, 1)-form, and {ω̃} ∈ H2(X,Q). �

We obtain now as a consequence the celebrated Riemann criterion characterizing
abelian varieties ( = projective algebraic complex tori).

(14.5) Corollary. A complex torus X = Cn/Γ (Γ a lattice of Cn) is an abelian variety
if and only if there exists a positive definite hermitian form h on Cn such that

Im
(
h(γ1, γ2)

)
∈ Z for all γ1, γ2 ∈ Γ.

Proof (Sufficiency of the condition).. Set ω = − Imh. Then ω defines a constant Kähler
metric on Cn, hence also on X = Cn/Γ. Let (a1, . . . , a2n) be an integral basis of the
lattice Γ. We denote by Tj , Tjk the real 1- and 2-tori

Tj = (R/Z)aj , 1 6 j 6 n, Tjk = Tj ⊕ Tk, 1 6 j < k 6 2n.
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Topologically we have X ≈ T1 × . . .× T2n, so the Künneth formula IV-15.7 yields

H•(X,Z) ≃
⊗

16j62n

(
H0(Tj ,Z)⊕H1(Tj ,Z)

)
,

H2(X,Z) ≃
⊕

16j<k62n

H1(Tj ,Z)⊗H1(Tk,Z) ≃
⊕

16j<k62n

H2(Tjk,Z)

where the projection H2(X,Z) −→ H2(Tjk,Z) is induced by the injection Tjk ⊂ X . In
the identification H2(Tjk,R) ≃ R, we get

(14.6) {ω}↾Tjk
=

∫

Tjk

ω = ω(aj, ak) = − Imh(aj , ak).

The assumption on h implies {ω}↾Tjk
∈ H2(Tjk,Z) for all j, k, therefore {ω} ∈ H2(X,Z)

and X is projective by Th. (14.1).

Proof (Necessity of the condition).. If X is projective, then X admits a Kähler metric
ω such that {ω} is in the image of H2(X,Z). In general, ω is not invariant under the
translations τx(y) = y − x of X . Therefore, we replace ω by its “mean value”:

ω̃ =
1

Vol(X)

∫

x∈X
(τ⋆xω) dx,

which has the same cohomology class as ω (τx is homotopic to the identity). Now ω̃ is
the imaginary part of a constant positive definite hermitian form h on Cn, and formula
(14.6) shows that Imh(aj , ak) ∈ Z. �

(14.7) Example. Let X be a projective manifold. We shall prove that the Jacobian
Jac(X) and the Albanese variety Alb(X) (cf. § VI-13 for definitions) are abelian varieties.

In fact, let ω be a Kähler metric on X such that {ω} is in the image of H2(X,Z) and
let h be the hermitian metric on H1(X,O) ≃ H0,1(X,C) defined by

h(u, v) =

∫

X

−2i u ∧ v ∧ ωn−1

for all closed (0, 1)-forms u, v. As

−2i u ∧ v ∧ ωn−1 =
2

n
|u|2 ωn,

we see that h is a positive definite hermitian form on H0,1(X,C). Consider elements
γj ∈ H1(X,Z), j = 1, 2. If we write γj = γ′j + γ′′j in the decomposition H1(X,C) =

H1,0(X,C)⊕H0,1(X,C), we get

h(γ′′1 , γ
′′
2 ) =

∫

X

−2i γ′′1 ∧ γ′2 ∧ ωn−1,

Imh(γ′′1 , γ
′′
2 ) =

∫

X

(γ′1 ∧ γ′′2 + γ′′1 ∧ γ′2) ∧ ωn−1 =

∫

X

γ1 ∧ γ2 ∧ ωn−1 ∈ Z.
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Therefore Jac(X) is an abelian variety.

Now, we observe that Hn−1,n(X,C) is the anti-dual of H0,1(X,C) by Serre duality.
We select on Hn−1,n(X,C) the dual hermitian metric h⋆. Since the Poincaré bilinear
pairing yields a unimodular bilinear map

H1(X,Z)×H2n−1(X,Z) −→ Z,

we easily conclude that Imh⋆(γ′′1 , γ
′′
2 ) ∈ Q for all γ1, γ2 ∈ H2n−1(X,Z). Therefore Alb(X)

is also an abelian variety.
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Chapter VIII

L2 Estimates on Pseudoconvex Manifolds

The main goal of this chapter is to show that the differential geometric technique that has been used
in order to prove vanishing theorems also yields very precise L2 estimates for the solutions of equations
d′′u = v on pseudoconvex manifolds. The central idea, due to [Hörmander 1965], is to introduce weights
of the type e−ϕ where ϕ is a function satisfying suitable convexity conditions. This method leads to gen-
eralizations of many standard vanishing theorems to weakly pseudoconvex manifolds. As a special case,
we obtain the original Hörmander estimates for pseudoconvex domains of Cn, and give some applications
to algebraic geometry (Hörmander-Bombieri-Skoda theorem, properties of zero sets of polynomials in
Cn). We also derive the Ohsawa-Takegoshi extension theorem for L2 holomorphic functions and Skoda’s
L2 estimates for surjective bundle morphisms [Skoda 1972a, 1978], [Demailly 1982c]. Skoda’s estimates
can be used to obtain a quick solution of the Levi problem, and have important applications to local
algebra and Nullstellensatz theorems. Finally, L2 estimates are used to prove the Newlander-Nirenberg
theorem on the analyticity of almost complex structures. We apply it to establish Kuranishi’s theorem
on deformation theory of compact complex manifolds.

§ 1. Non Bounded Operators on Hilbert Spaces

A few preliminaries of functional analysis will be needed here. LetH1,H2 be complex
Hilbert spaces. We consider a linear operator T defined on a subspace DomT ⊂ H1

(called the domain of T ) into H2. The operator T is said to be densely defined if DomT
is dense in H1, and closed if its graph

GrT =
{
(x, Tx) ; x ∈ DomT

}

is closed in H1 ×H2.

Assume now that T is closed and densely defined. The adjoint T ⋆ of T (in Von
Neumann’s sense) is constructed as follows: DomT ⋆ is the set of y ∈ H2 such that the
linear form

DomT ∋ x 7−→ 〈Tx, y〉2
is bounded in H1-norm. Since DomT is dense, there exists for every y in DomT ⋆ a
unique element T ⋆y ∈ H1 such that 〈Tx, y〉2 = 〈x, T ⋆y〉1 for all x ∈ DomT ⋆. It is

immediate to verify that GrT ⋆ =
(
Gr(−T )

)⊥
in H1 ×H2. It follows that T ⋆ is closed

and that every pair (u, v) ∈ H1 ×H2 can be written

(u, v) = (x,−Tx) + (T ⋆y, y), x ∈ DomT, y ∈ DomT ⋆.

Take in particular u = 0. Then

x+ T ⋆y = 0, v = y − Tx = y + TT ⋆y, 〈v, y〉2 = ‖y‖22 + ‖T ⋆y‖21.
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If v ∈ (DomT ⋆)⊥ we get 〈v, y〉2 = 0, thus y = 0 and v = 0. Therefore T ⋆ is densely
defined and our discussion implies:

(1.1) Theorem [Von Neumann 1929]). If T : H1 −→ H2 is a closed and densely
defined operator, then its adjoint T ⋆ is also closed and densely defined and (T ⋆)⋆ = T .
Furthermore, we have the relation KerT ⋆ = (ImT )⊥ and its dual (Ker T )⊥ = ImT ⋆. �

Consider now two closed and densely defined operators T , S :

H1
T−→ H2

S−→ H3

such that S ◦T = 0. By this, we mean that the range T (DomT ) is contained in KerS ⊂
DomS, in such a way that there is no problem for defining the composition S ◦ T . The
starting point of all L2 estimates is the following abstract existence theorem.

(1.2) Theorem. There are orthogonal decompositions

H2 = (KerS ∩Ker T ⋆)⊕ ImT ⊕ ImS⋆,

KerS = (KerS ∩Ker T ⋆)⊕ ImT .

In order that ImT = KerS, it suffices that

(1.3) ‖T ⋆x‖21 + ‖Sx‖23 > C‖x‖22, ∀x ∈ DomS ∩DomT ⋆

for some constant C > 0. In that case, for every v ∈ H2 such that Sv = 0, there exists
u ∈ H1 such that Tu = v and

‖u‖21 6
1

C
‖v‖22.

In particular
ImT = ImT = KerS, ImS⋆ = ImS⋆ = Ker T ⋆.

Proof. Since S is closed, the kernel KerS is closed in H2. The relation (KerS)⊥ = ImS⋆

implies

(1.4) H2 = KerS ⊕ ImS⋆

and similarly H2 = Ker T ⋆ ⊕ ImT . However, the assumption S ◦ T = 0 shows that
ImT ⊂ KerS, therefore

(1.5) KerS = (KerS ∩Ker T ⋆)⊕ ImT .

The first two equalities in Th. 1.2 are then equivalent to the conjunction of (1.4) and
(1.5).

Now, under assumption (1.3), we are going to show that the equation Tu = v is
always solvable if Sv = 0. Let x ∈ DomT ⋆. One can write

x = x′ + x′′ where x′ ∈ KerS and x′′ ∈ (KerS)⊥ ⊂ (ImT )⊥ = KerT ⋆.
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Since x, x′′ ∈ DomT ⋆, we have also x′ ∈ DomT ⋆. We get

〈v, x〉2 = 〈v, x′〉2 + 〈v, x′′〉2 = 〈v, x′〉2

because v ∈ KerS and x′′ ∈ (KerS)⊥. As Sx′ = 0 and T ⋆x′′ = 0, the Cauchy-Schwarz
inequality combined with (1.3) implies

|〈v, x〉2|2 6 ‖v‖22 ‖x′‖22 6
1

C
‖v‖22 ‖T ⋆x′‖21 =

1

C
‖v‖22 ‖T ⋆x‖21.

This shows that the linear form T ⋆X ∋ x 7−→ 〈x, v〉2 is continuous on ImT ⋆ ⊂ H1 with
norm 6 C−1/2‖v‖2. By the Hahn-Banach theorem, this form can be extended to a
continuous linear form on H1 of norm 6 C−1/2‖v‖2, i.e. we can find u ∈ H1 such that
‖u‖1 6 C−1/2‖v‖2 and

〈x, v〉2 = 〈T ⋆x, u〉1, ∀x ∈ DomT ⋆.

This means that u ∈ Dom (T ⋆)⋆ = DomT and v = Tu. We have thus shown that
ImT = KerS, in particular ImT is closed. The dual equality ImS⋆ = Ker T ⋆ follows by
considering the dual pair (S⋆, T ⋆). �

§ 2. Complete Riemannian Manifolds

Let (M, g) be a riemannian manifold of dimension m, with metric

g(x) =
∑

gjk(x) dxj ⊗ dxk, 1 6 j, k 6 m.

The length of a path γ : [a, b] −→M is by definition

ℓ(γ) =

∫ b

a

|γ′(t)|gdt =
∫ b

a

(∑

j,k

gjk
(
γ(t)

)
γ′j(t)γ

′
k(t)

)1/2

dt.

The geodesic distance of two points x, y ∈M is

δ(x, y) = inf
γ
ℓ(γ) over paths γ with γ(a) = x, γ(b) = y,

if x, y are in the same connected component of M , δ(x, y) = +∞ otherwise. It is easy
to check that δ satisfies the usual axioms of distances: for the separation axiom, use the
fact that if y is outside some closed coordinate ball B of radius r centered at x and if
g > c|dx|2 on B, then δ(x, y) > c1/2r. In addition, δ satisfies the axiom:

(2.1) for every x, y ∈M , inf
z∈M

max{δ(x, z), δ(y, z)} = 1

2
δ(x, y).

In fact for every ε > 0 there is a path γ such that γ(a) = x, γ(b) = y, ℓ(γ) < δ(x, y) + ε
and we can take z to be at mid-distance between x and y along γ. A metric space E with
a distance δ satisfying the additional axiom (2.1) will be called a geodesic metric space. It
is then easy to see by dichotomy that any two points x, y ∈ E can be joined by a chain of
points x = x0, x1, . . . , xN = y such that δ(xj, xj+1) < ε and

∑
δ(xj , xj+1) < δ(x, y) + ε.
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(2.2) Lemma (Hopf-Rinow). Let (E, δ) be a geodesic metric space. Then the following
properties are equivalent:

a) E is locally compact and complete ;

b) all closed geodesic balls B(x0, r) are compact.

Proof. Since any Cauchy sequence is bounded, it is immediate that b) implies a). We
now check that a) =⇒ b). Fix x0 and define R to be the supremum of all r > 0
such that B(x0, r) is compact. Since E is locally compact, we have R > 0. Suppose
that R < +∞. Then B(x0, r) is compact for every r < R. Let yν be a sequence of
points in B(x0, R). Fix an integer p. As δ(x0, yν) 6 R, axiom (2.1) shows that we can
find points zν ∈ M such that δ(x0, zν) 6 (1 − 2−p)R and δ(zν , yν) 6 21−pR. Since
B(x0, (1 − 2−p)R) is compact, there is a subsequence (zν(p,q))q∈N converging to a limit
point wp with δ(zν(p,q), wp) 6 2−q. We proceed by induction on p and take ν(p+1, q) to
be a subsequence of ν(p, q). Then

δ(yν(p,q), wp) 6 δ(yν(p,q), zν(p,q)) + δ(zν(p,q), wp) 6 21−pR+ 2−q.

Since (yν(p+1,q)) is a subsequence of (yν(p,q)), we infer that δ(wp, wp+1) 6 3 2−pR by
letting q tend to +∞. By the completeness hypothesis, the Cauchy sequence (wp) con-
verges to a limit point w ∈ M , and the above inequalities show that (yν(p,p)) converges

to w ∈ B(x0, R). Therefore B(x0, R) is compact. Now, each point y ∈ B(x0, R) can be
covered by a compact ball B(y, εy), and the compact set B(x0, R) admits a finite covering
by concentric balls B(yj, εyj/2). Set ε = min εyj . Every point z ∈ B(x0, R + ε/2) is at

distance 6 ε/2 of some point y ∈ B(x0, R), hence at distance 6 ε/2 + εyj/2 of some

point yj, in particular B(x0, R+ ε/2) ⊂ ⋃
B(yj, εyj ) is compact. This is a contradiction,

so R = +∞. �

The following standard definitions and properties will be useful in order to deal with
the completeness of the metric.

(2.3) Definitions.

a) A riemannian manifold (M, g) is said to be complete if (M, δ) is complete as a metric
space.

b) A continuous function ψ : M → R is said to be exhaustive if for every c ∈ R the
sublevel set Mc = {x ∈M ; ψ(x) < c} is relatively compact in M .

c) A sequence (Kν)ν∈N of compact subsets of M is said to be exhaustive if M =
⋃
Kν

and if Kν is contained in the interior of Kν+1 for all ν (so that every compact subset
of M is contained in some Kν).

(2.4) Lemma. The following properties are equivalent:

a) (M, g) is complete;

b) there exists an exhaustive function ψ ∈ C∞(M,R) such that |dψ|g 6 1 ;

c) there exists an exhaustive sequence (Kν)ν∈N of compact subsets of M and functions
ψν ∈ C∞(M,R) such that

ψν = 1 in a neighborhood of Kν , Supp ψν ⊂ K◦ν+1,

0 6 ψν 6 1 and |dψν |g 6 2−ν .
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Proof. a) =⇒ b). Without loss of generality, we may assume thatM is connected. Select
a point x0 ∈M and set ψ0(x) =

1
2
δ(x0, x). Then ψ0 is a Lipschitz function with constant

1
2 , thus ψ0 is differentiable almost everywhere on M and |dψ0|g 6 1

2 . We can find a
smoothing ψ of ψ0 such that |dψ|g 6 1 and |ψ − ψ0| 6 1. Then ψ is an exhaustion
function of M .

b) =⇒ c). Choose ψ as in a) and a function ρ ∈ C∞(R,R) such that ρ = 1 on ]−∞, 1.1],
ρ = 0 on [1.9,+∞[ and 0 6 ρ′ 6 2 on [1, 2]. Then

Kν = {x ∈M ; ψ(x) 6 2ν+1}, ψν(x) = ρ
(
2−ν−1ψ(x)

)

satisfy our requirements.

c) =⇒ b). Set ψ =
∑

2ν(1− ψν).

b) =⇒ a). The inequality |dψ|g 6 1 implies |ψ(x)− ψ(y)| 6 δ(x, y) for all x, y ∈ M , so
all δ-balls must be relatively compact in M . �

§ 3. L2 Hodge Theory on Complete Riemannian Manifolds

Let (M, g) be a riemannian manifold and let F1, F2 be hermitian C∞ vector bundles
over M . If P : C∞(M,F1) −→ C

∞(M,F2) is a differential operator with smooth
coefficients, then P induces a non bounded operator

P̃ : L2(M,F1) −→ L2(M,F2)

as follows: if u ∈ L2(M,F1), we compute P̃ u in the sense of distribution theory and
we say that u ∈ Dom P̃ if P̃ u ∈ L2(M,F2). It follows that P̃ is densely defined, since
DomP contains the setD(M,F1) of compactly supported sections of C∞(M,F1), which
is dense in L2(M,F1). Furthermore Gr P̃ is closed: if uν → u in L2(M,F1) and P̃uν → v
in L2(M,F2) then P̃ uν → P̃u in the weak topology of distributions, thus we must
have P̃ u = v and (u, v) ∈ Gr P̃ . By the general results of § 1, we see that P̃ has a
closed and densely defined Von Neumann adjoint

(
P̃
)⋆
. We want to stress, however,

that
(
P̃
)⋆

does not always coincide with the extension (P ⋆)∼ of the formal adjoint P ⋆ :
C

∞(M,F2) −→ C

∞(M,F1), computed in the sense of distribution theory. In fact u ∈
Dom (P̃ )⋆, resp. u ∈ Dom(P ⋆)∼, if and only if there is an element v ∈ L2(M,F1) such
that 〈u, P̃ f〉 = 〈v, f〉 for all f ∈ Dom P̃ , resp. for all f ∈D(M,F1). Therefore we always
have Dom(P̃ )⋆ ⊂ Dom (P ⋆)∼ and the inclusion may be strict because the integration by
parts to perform may involve boundary integrals for (P̃ )⋆.

(3.1) Example. Consider

P =
d

dx
: L2

(
]0, 1[

)
−→ L2

(
]0, 1[

)

where the L2 space is taken with respect to the Lebesgue measure dx. Then Dom P̃
consists of all L2 functions with L2 derivatives on ]0, 1[. Such functions have a continuous
extension to the interval [0, 1]. An integration by parts shows that

∫ 1

0

u
df

dx
dx =

∫ 1

0

−du
dx
f dx
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for all f ∈ D(]0, 1[), thus P ⋆ = −d/dx = −P . However for f ∈ Dom P̃ the integration
by parts involves the extra term u(1)f(1) − u(0)f(0) in the right hand side, which is
thus continuous in f with respect to the L2 topology if and only if du/dx ∈ L2 and
u(0) = u(1) = 0. Therefore Dom (P̃ )⋆ consists of all u ∈ Dom(P ⋆)∼ = Dom P̃ satisfying
the additional boundary condition u(0) = u(1) = 0. �

Let E →M be a differentiable hermitian bundle. In what follows, we still denote by
D, δ,∆ the differential operators of § VI-2 extended in the sense of distribution theory
(as explained above). These operators are thus closed and densely defined operators
on L2

•(M,E) =
⊕

p L
2
p(M,E). We also introduce the space Dp(M,E) of compactly

supported forms in C∞p (M,E). The theory relies heavily on the following important
result.

(3.2) Theorem. Assume that (M, g) is complete. Then

a) D•(M,E) is dense in DomD, Dom δ and DomD ∩Dom δ respectively for the graph
norms

u 7→ ‖u‖+ ‖Du‖, u 7→ ‖u‖+ ‖δu‖, u 7→ ‖u‖+ ‖Du‖+ ‖δu‖.

b) D⋆ = δ, δ⋆ = D as adjoint operators in Von Neumann’s sense.

c) One has 〈u,∆u〉 = ‖Du‖2 + ‖δu‖2 for every u ∈ Dom∆. In particular

Dom∆ ⊂ DomD ∩Dom δ, Ker∆ = KerD ∩Ker δ,

and ∆ is self-adjoint.

d) If D2 = 0, there are orthogonal decompositions

L2
•(M,E) = H•(M,E)⊕ ImD ⊕ Im δ,

KerD = H•(M,E)⊕ ImD,

where H•(M,E) =
{
u ∈ L2

•(M,E) ; ∆u = 0
}
⊂ C∞• (M,E) is the space of L2

harmonic forms.

Proof. a) We show that every element u ∈ DomD can be approximated in the graph
norm of D by smooth and compactly supported forms. By hypothesis, u and Du belong
to L2

•(M,E). Let (ψν) be a sequence of functions as in Lemma 2.4 c). Then ψνu→ u in
L2
•(M,E) and D(ψνu) = ψνDu+ dψν ∧ u where

|dψν ∧ u| 6 |dψν | |u| 6 2−ν |u|.

Therefore dψν ∧ u → 0 and D(ψνu) → Du. After replacing u by ψνu, we may assume
that u has compact support, and by using a finite partition of unity on a neighborhood
of Supp u we may also assume that Supp u is contained in a coordinate chart of M on
which E is trivial. Let A be the connection form of D on this chart and (ρε) a family of
smoothing kernels. Then u ⋆ ρε ∈D•(M,E) converges to u in L2(M,E) and

D(u ⋆ ρε)− (Du) ⋆ ρε = A ∧ (u ⋆ ρε)− (A ∧ u) ⋆ ρε
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because d commutes with convolution (as any differential operator with constant coeffi-
cients). Moreover (Du)⋆ρε converges to Du in L2(M,E) and A∧(u⋆ρε), (A∧u)⋆ρε both
converge to A ∧ u since A ∧ • acts continuously on L2. Thus D(u ⋆ ρε) converges to Du
and the density ofD•(M,E) in DomD follows. The proof for Dom δ and DomD∩Dom δ
is similar, except that the principal part of δ no longer has constant coefficients in
general. The convolution technique requires in this case the following lemma due to
K.O. Friedrichs (see e.g. [Hörmander 1963]).

(3.3) Lemma. Let Pf =
∑
ak ∂f/∂xk + bf be a differential operator of order 1 on an

open set Ω ⊂ Rn, with coefficients ak ∈ C1(Ω), b ∈ C0(Ω). Then for any v ∈ L2(Rn)
with compact support in Ω we have

lim
ε→0
||P (v ⋆ ρε)− (Pv) ⋆ ρε||L2 = 0.

Proof. It is enough to consider the case when P = a∂/∂xk. As the result is obvious if
v ∈ C1, we only have to show that

||P (v ⋆ ρε)− (Pv) ⋆ ρε||L2 6 C||v||L2

and to use a density argument. A computation of wε = P (v ⋆ ρε) − (Pv) ⋆ ρε by means
of an integration by parts gives

wε(x) =

∫

Rn

(
a(x)

∂v

∂xk
(x− εy)ρ(y)− a(x− εy) ∂v

∂xk
(x− εy)ρ(y)

)
dy

=

∫

Rn

((
a(x)− a(x− εy)

)
v(x− εy)1

ε
∂kρ(y)

+ ∂ka(x− εy)v(x− εy)ρ(y)
)
dy.

If C is a bound for |da| in a neighborhood of Supp v, we get

|wε(x)| 6 C

∫

Rn

|v(x− εy)|
(
|y| |∂kρ(y)|+ |ρ(y)|

)
dy,

so Minkowski’s inequality ||f ⋆ g||Lp 6 ||f ||L1||g||Lp gives

||wε||L2 6 C
( ∫

Rn

(
|y| |∂kρ(y)|+ |ρ(y)|

)
dy

)
||v||L2. �

Proof (end).. b) is equivalent to the fact that

〈〈Du, v〉〉 = 〈〈u, δv〉〉, ∀u ∈ DomD, ∀v ∈ Dom δ.

By a), we can find uν , vν ∈D•(M,E) such that

uν → u, vν → v, Duν → Du and δvν → δv in L2
•(M,E),

and the required equality is the limit of the equalities 〈〈Duν , vν〉〉 = 〈〈uν , δvν〉〉.
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c) Let u ∈ Dom∆. As ∆ is an elliptic operator of order 2, u must be in W 2
• (M,E, loc)

by G̊arding’s inequality. In particular Du, δu ∈ L2(M,E, loc) and we can perform all
integrations by parts that we want if the forms are multiplied by compactly supported
functions ψν . Let us compute

‖ψνDu‖2 + ‖ψνδu‖2 =

= 〈〈ψ2
νDu,Du〉〉+ 〈〈u,D(ψ2

νδu)〉〉
= 〈〈D(ψ2

νu), Du〉〉+ 〈〈u, ψ2
νDδu〉〉 − 2〈〈ψνdψν ∧ u,Du〉〉+ 2〈〈u, ψνdψν ∧ δu〉〉

= 〈〈ψ2
νu,∆u〉〉 − 2〈〈dψν ∧ u, ψνDu〉〉+ 2〈〈u, dψν ∧ (ψνδu)〉〉

6 〈〈ψ2
νu,∆u〉〉+ 2−ν

(
2‖ψνDu‖ ‖u‖+ 2‖ψνδu‖ ‖u‖

)

6 〈〈ψ2
νu,∆u〉〉+ 2−ν

(
‖ψνDu‖2 + ‖ψνδu‖2 + 2‖u‖2

)
.

We get therefore

‖ψνDu‖2 + ‖ψνδu‖2 6
1

1− 2−ν
(
〈〈ψ2

νu,∆u〉〉+ 21−ν‖u‖2
)
.

By letting ν tend to +∞, we obtain ‖Du‖2 + ‖δu‖2 6 〈〈u,∆u〉〉, in particular Du, δu are
in L2

•(M,E). This implies

〈〈u,∆v〉〉 = 〈〈Du,Dv〉〉+ 〈〈δu, δv〉〉, ∀u, v ∈ Dom∆,

because the equality holds for ψνu and v, and because we have ψνu→ u, D(ψνu)→ Du
and δ(ψνu)→ δu in L2. Therefore ∆ is self-adjoint.

d) is an immediate consequence of b), c) and Th. 1.2. �

On a complete hermitian manifold (X,ω), there are of course similar results for the
operators D′, D′′, δ′, δ′′,∆′,∆′′ attached to a hermitian vector bundle E.

§ 4. General Estimate for d′′ on Hermitian Manifolds

Let (X,ω) be a complete hermitian manifold and E a hermitian holomorphic vector
bundle of rank r over X . Assume that the hermitian operator

(4.1) AE,ω = [iΘ(E),Λ] + Tω

is semi-positive on Λp,qT ⋆X ⊗ E. Then for every form u ∈ DomD′′ ∩Dom δ′′ of bidegree
(p, q) we have

(4.2) ‖D′′u‖2 + ‖δ′′u‖2 >

∫

X

〈AE,ωu, u〉 dV.

In fact (4.2) is true for all u ∈ Dp,q(X,E) in view of the Bochner-Kodaira-Nakano
identity VII-2.3, and this result is easily extended to every u in DomD′′ ∩ Dom δ′′ by
density of Dp,q(X,E) (Th. 3.2 a)).

Assume now that a form g ∈ L2
p,q(X,E) is given such that

(4.3) D′′g = 0,
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and that for almost every x ∈ X there exists α ∈ [0,+∞[ such that

|〈g(x), u〉|2 6 α 〈AE,ωu, u〉

for every u ∈ (Λp,qT ⋆X⊗E)x. If the operator AE,ω is invertible, the minimal such number

α is |A−1/2E,ω g(x)|2 = 〈A−1E,ωg(x), g(x)〉, so we shall always denote it in this way even when
AE,ω is no longer invertible. Assume furthermore that

(4.4)

∫

X

〈A−1E,ωg, g〉 dV < +∞.

The basic result of L2 theory can be stated as follows.

(4.5) Theorem. If (X,ω) is complete and AE,ω > 0 in bidegree (p, q), then for any
g ∈ L2

p,q(X,E) satisfying (4.4) such that D′′g = 0 there exists f ∈ L2
p,q−1(X,E) such

that D′′f = g and

‖f‖2 6

∫

X

〈A−1E,ωg, g〉 dV.

Proof. For every u ∈ DomD′′ ∩Dom δ′′ we have

∣∣〈〈u, g〉〉
∣∣2 =

∣∣∣
∫

X

〈u, g〉 dV
∣∣∣
2

6
(∫

X

〈AE,ωu, u〉1/2〈A−1E,ωg, g〉1/2 dV
)2

6

∫

X

〈A−1E,ωg, g〉 dV ·
∫

X

〈AE,ωu, u〉 dV

by means of the Cauchy-Schwarz inequality. The a priori estimate (4.2) implies

∣∣〈〈u, g〉〉
∣∣2 6 C

(
‖D′′u‖2 + ‖δ′′u‖2

)
, ∀u ∈ DomD′′ ∩Dom δ′′

where C is the integral (4.4). Now we just have to repeat the proof of the existence part
of Th. 1.2. For any u ∈ Dom δ′′, let us write

u = u1 + u2, u1 ∈ KerD′′, u2 ∈ (KerD′′)⊥ = Im δ′′.

Then D′′u1 = 0 and δ′′u2 = 0. Since g ∈ KerD′′, we get

∣∣〈〈u, g〉〉
∣∣2 =

∣∣〈〈u1, g〉〉
∣∣2 6 C‖δ′′u1‖2 = C‖δ′′u‖2.

The Hahn-Banach theorem shows that the continuous linear form

L2
p,q−1(X,E) ∋ δ′′u 7−→ 〈〈u, g〉〉

can be extended to a linear form v 7−→ 〈〈v, f〉〉, f ∈ L2
p,q−1(X,E), of norm ‖f‖ 6 C1/2.

This means that
〈〈u, g〉〉 = 〈〈δ′′u, f〉〉, ∀u ∈ Dom δ′′,

i.e. that D′′f = g. The theorem is proved. �
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(4.6) Remark. One can always find a solution f ∈ (KerD′′)⊥ : otherwise replace f by
its orthogonal projection on (KerD′′)⊥. This solution is clearly unique and is precisely
the solution of minimal L2 norm of the equation D′′f = g. We have f ∈ Im δ′′, thus f
satifies the additional equation

(4.7) δ′′f = 0.

Consequently ∆′′f = δ′′D′′f = δ′′g. If g ∈ C∞p,q(X,E), the ellipticity of ∆′′ shows that
f ∈ C∞p,q−1(X,E).

(4.8) Remark. If AE,ω is positive definite, let λ(x) > 0 be the smallest eigenvalue of
this operator at x ∈ X . Then λ is continuous on X and we have

∫

X

〈A−1E,ωg, g〉 dV 6

∫

X

λ(x)−1|g(x)|2 dV.

The above situation occurs for example if ω is complete Kähler, E >m 0 and p = n,
q > 1, m > min{n− q + 1, r} (apply Lemma VII-7.2).

§ 5. Estimates on Weakly Pseudoconvex Manifolds

We first introduce a large class of complex manifolds on which the L2 estimates will
be easily tractable.

(5.1) Definition. A complex manifold X is said to be weakly pseudoconvex if there
exists an exhaustion function ψ ∈ C∞(X,R) such that id′d′′ψ > 0 on X, i.e. ψ is
plurisubharmonic.

For domains Ω ⊂ Cn, the above weak pseudoconvexity notion is equivalent to pseudo-
convexity (cf. Th. I-4.14). Note that every compact manifold is also weakly pseudoconvex
(take ψ ≡ 0). Other examples that will appear later are Stein manifolds, or the total
space of a Griffiths semi-negative vector bundle over a compact manifold (cf. Prop. IX-
?.?).

(5.2) Theorem. Every weakly pseudoconvex Kähler manifold (X,ω) carries a complete
Kähler metric ω̂.

Proof. Let ψ ∈ C∞(X,R) be an exhaustive plurisubharmonic function on X . After
addition of a constant to ψ, we can assume ψ > 0. Then ω̂ = ω + id′d′′(ψ2) is Kähler
and

ω̂ = ω + 2iψd′d′′ψ + 2id′ψ ∧ d′′ψ > ω + 2id′ψ ∧ d′′ψ.
Since dψ = d′ψ + d′′ψ, we get |dψ|

ω̂
=
√
2|d′ψ|

ω̂
6 1 and Lemma 2.4 shows that ω̂ is

complete. �

Observe that we could have set more generally ω̂ = ω + id′d′′(χ ◦ ψ) where χ is a
convex increasing function. Then

ω̂ = ω + i(χ′ ◦ ψ)d′d′′ψ + i(χ′′ ◦ ψ)d′ψ ∧ d′′ψ
> ω + id′(ρ ◦ ψ) ∧ d′′(ρ ◦ ψ)(5.3)
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where ρ(t) =
∫ t
0

√
χ′′(u) du. We thus have |d′(ρ ◦ ψ)|

ω̂
6 1 and ω̂ will be complete as

soon as limt→+∞ ρ(t) = +∞, i.e.

(5.4)

∫ +∞

0

√
χ′′(u) du = +∞.

One can take for example χ(t) = t− log(t) for t > 1.

It follows from the above considerations that almost all vanishing theorems for positive
vector bundles over compact manifolds are also valid on weakly pseudoconvex manifolds.
Let us mention here the analogues of some results proved in Chapter 7.

(5.5) Theorem. For any m-positive vector bundle of rank r over a weakly pseudoconvex
manifold X, we have Hn,q(X,E) = 0 for all q > 1 and m > min{n− q + 1, r}.

Proof. The curvature form iΘ(detE) is a Kähler metric on X , hence X possesses a com-
plete Kähler metric ω. Let ψ ∈ C∞(X,R) be an exhaustive plurisubharmonic function.
For any convex increasing function χ ∈ C∞(R,R), we denote by Eχ the holomorphic
vector bundle E together with the modified metric |u|2χ = |u|2 exp

(
−χ ◦ψ(x)

)
, u ∈ Ex.

We get
iΘ(Eχ) = iΘ(E) + id′d′′(χ ◦ ψ)⊗ IdE >m iΘ(E),

thus AEχ,ω > AE,ω > 0 in bidegree (n, q). Let g be a given form of bidegree (n, q) with
L2
loc coefficients, such that D′′g = 0. The integrals

∫

X

〈A−1Eχ,ω
g, g〉χ dV 6

∫

X

〈A−1E,ωg, g〉 e−χ◦ψ dV,
∫

X

|g|2 e−χ◦ψ dV

become convergent if χ grows fast enough. We can thus apply Th. 4.5 to (X,Eχ, ω) and
find a (n, q− 1) form f such that D′′f = g. If g is smooth, Remark 4.6 shows that f can
also be chosen smooth. �

(5.6) Theorem. If E is a positive line bundle over a weakly pseudoconvex manifold X,
then Hp,q(X,E) = 0 for p+ q > n+ 1.

Proof. The proof is similar to that of Th. 5.5, except that we use here the Kähler metric

ωχ = iΘ(Eχ) = ω + id′d′′(χ ◦ ψ), ω = iΘ(E),

which depends on χ. By (5.4) ωχ is complete as soon as χ is a convex increasing function
that grows fast enough. Apply now Th. 4.5 to (X,Eχ, ωχ) and observe that AEχ,ωχ

=
[iΘ(Eχ),Λχ] = (p + q − n) Id in bidegree (p, q) in virtue of Cor. VI-8.4 It remains
to show that for every form g ∈ C∞p,q(X,E) there exists a choice of χ such that g ∈
L2
p,q(X,Eχ, ωχ). By (5.3) the norm of a scalar form with respect to ωχ is less than its

norm with respect to ω, hence |g|2χ 6 |g|2 exp(−χ ◦ ψ). On the other hand

dVχ 6 C
(
1 + χ′ ◦ ψ + χ′′ ◦ ψ

)n
dV

where C is a positive continuous function on X . The following lemma implies that we
can always choose χ in order that the integral of |g|2χ dVχ converges on X .
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(5.7) Lemma. For any positive function λ ∈ C∞
(
[0,+∞[,R

)
, there exists a smooth con-

vex function χ ∈ C∞
(
[0,+∞[,R

)
such that χ, χ′, χ′′ > λ and (1 + χ′ + χ′′)ne−χ 6 1/λ.

Proof. We shall construct χ such that χ′′ > χ′ > χ > λ and χ′′/χ2 6 C for some constant
C. Then χ satisties the conclusion of the lemma after addition of a constant. Without
loss of generality, we may assume that λ is increasing and λ > 1. We define χ as a power
series

χ(t) =
+∞∑

k=0

a0a1 . . . ak t
k,

where ak > 0 is a decreasing sequence converging to 0 very slowly. Then χ is real
analytic on R and the inequalities χ′′ > χ′ > χ are realized if we choose ak > 1/k, k > 1.
Select a strictly increasing sequence of integers (Np)p>1 so large that 1

p
λ(p + 1)1/Np ∈

[1/p, 1/(p− 1)[. We set

a0 = . . . = aN1−1 = e λ(2),

ak =
1

p
λ(p+ 1)1/Np e1/

√
k, Np 6 k < Np+1.

Then (ak) is decreasing. For t ∈ [0, 1] we have χ(t) > a0 > λ(t) and for t ∈ [1,+∞[ the
choice k = Np where p = [t] is the integer part of t gives

χ(t) > χ(p) > (a0a1 . . . ak)p
k > (akp)

k > λ(p+ 1) > λ(t).

Furthermore, we have

χ(t)2 >
∑

k>0

(a0a1 . . . ak)
2 t2k,

χ′′(t) =
∑

k>0

(k + 1)(k + 2) a0a1 . . . ak+2 t
k,

thus we will get χ′′(t) 6 Cχ(t)2 if we can prove that

m2 a0a1 . . . a2m 6 C′(a0a1 . . . am)
2, m > 0.

However, as 1
p
λ(p+ 1)1/Np is decreasing, we find

a0a1 . . . a2m
(a0a1 . . . am)2

=
am+1 . . . a2m
a0a1 . . . am

6 exp
( 1√

m+ 1
+ · · ·+ 1√

2m
− 1√

1
− · · · − 1√

m
+O(1)

)

6 exp
(
2
√
2m− 4

√
m+O(1)

)
6 C′m−2. �

As a last application, we generalize the Girbau vanishing theorem in the case of weakly
pseudoconvex manifolds. This result is due to [Abdelkader 1980] and [Ohsawa 1981]. We
present here a simplified proof which appeared in [Demailly 1985].
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(5.8) Theorem. Let (X,ω) be a weakly pseudoconvex Kähler manifold. If E is a semi-
positive line bundle such that iΘ(E) has at least n − s + 1 positive eigenvalues at every
point, then

Hp,q(X,E) = 0 for p+ q > n+ s.

Proof. Let χ, ρ ∈ C∞(R,R) be convex increasing functions to be specified later. We use
here the hermitian metric

α = iΘ(Eχ) + exp(−ρ ◦ ψ)ω
= iΘ(E) + id′d′′(χ ◦ ψ) + exp(−ρ ◦ ψ)ω.

Although ω is Kähler, the metric α is not so. Denote by γχ,ωj (resp. γχ,αj ), 1 6 j 6 n,
the eigenvalues of iΘ(Eχ) with respect to ω (resp. α), rearranged in increasing order.

The minimax principle implies γχ,ωj > γ0,ωj , and the hypothesis yields 0 < γ0,ωs 6 γ0,ωs+1 6

. . . 6 γ0,ωn on X . By means of a diagonalization of iΘ(Eχ) with respect to ω, we find

1 > γχ,αj =
γχ,ωj

γχ,ωj + exp(−ρ ◦ ψ) >
γ0,ωj

γ0,ωj + exp(−ρ ◦ ψ)
.

Let ε > 0 be small. Select ρ such that exp(−ρ ◦ ψ(x)) 6 εγ0,ωs (x) at every point. Then
for j > s we get

γχ,αj >
γ0,ωj

γ0,ωj + εγ0,ωj
=

1

1 + ε
> 1− ε,

and Th. VI-8.3 implies

〈
[
iΘ(Eχ),Λα

]
u, u〉α >

(
γχ,α1 + · · ·+ γχ,αp − γχ,αq+1 − . . .− γχ,αn

)
|u|2

>
(
(p− s+ 1)(1− ε)− (n− q)

)
|u|2

>
(
1− (p− s+ 1)ε

)
|u|2.

It remains however to control the torsion term Tα. As ω is Kähler, trivial computations
yield

d′α = −ρ′ ◦ ψ exp(−ρ ◦ ψ) d′ψ ∧ ω,
d′d′′α = exp(−ρ ◦ ψ)

[(
(ρ′ ◦ ψ)2 − ρ′′ ◦ ψ

)
d′ψ ∧ d′′ψ − ρ′ ◦ ψ d′d′′ψ

]
∧ ω.

Since
α > i(χ′ ◦ ψ d′d′′ψ + χ′′ ◦ ψ d′ψ ∧ d′′ψ) + exp(−ρ ◦ ψ)ω,

we get the upper bounds

|d′α|α 6 ρ′ ◦ ψ |d′ψ|α | exp(−ρ ◦ ψ)ω|α 6 ρ′ ◦ ψ (χ′′ ◦ ψ)− 1
2

|d′d′′α|α 6
(ρ′ ◦ ψ)2 + ρ′′ ◦ ψ

χ′′ ◦ ψ +
ρ′ ◦ ψ
χ′ ◦ ψ .

It is then clear that we can choose χ growing sufficiently fast in order that |Tα|α 6 ε. If
ε is chosen sufficiently small, we get AEχ,α > 1

2 Id, and the conclusion is obtained in the
same way as for Th. 5.6. �
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§ 6. Hörmander’s Estimates for non Complete Kähler Metrics

Our aim here is to derive also estimates for a non complete Kähler metric, for example
the standard metric of Cn on a bounded domain Ω ⊂⊂ Cn. A result of this type can be
obtained in the situation described at the end of Remark 4.8. The underlying idea is due
to [Hörmander 1966], although we do not apply his so called “three weights” technique,
but use instead an approximation of the given metric ω by complete Kähler metrics.

(6.1) Theorem. Let (X, ω̂) be a complete Kähler manifold, ω another Kähler metric,
possibly non complete, and E −→ X a m-semi-positive vector bundle. Let g ∈ L2

n,q(X,E)
be such that D′′g = 0 and ∫

X

〈A−1q g, g〉 dV < +∞

with respect to ω, where Aq stands for the operator iΘ(E)∧Λ in bidegree (n, q) and q > 1,
m > min{n− q + 1, r}. Then there exists f ∈ L2

n,q−1(X,E) such that D′′f = g and

‖f‖2 6

∫

X

〈A−1q g, g〉 dV.

Proof. For every ε > 0, the Kähler metric

ωε = ω + εω̂

is complete. The idea of the proof is to apply the L2 estimates to ωε and to let ε tend to
zero. Let us put an index ε to all objects depending on ωε. It follows from Lemma 6.3
below that

(6.2) |u|2ε dVε 6 |u|2 dV, 〈A−1q,εu, u〉ε dVε 6 〈A−1q u, u〉 dV

for every u ∈ Λn,qT ⋆X ⊗ E. If these estimates are taken for granted, Th. 4.5 applied to
ωε yields a section fε ∈ L2

n,q−1(X,E) such that D′′fε = g and

∫

X

|fε|2ε dVε 6
∫

X

〈A−1q,εg, g〉ε dVε 6
∫

X

〈A−1q g, g〉 dV.

This implies that the family (fε) is bounded in L2 norm on every compact subset of X .
We can thus find a weakly convergent subsequence (fεν ) in L

2
loc. The weak limit f is the

solution we are looking for. �

(6.3) Lemma. Let ω, γ be hermitian metrics on X such that γ > ω. For every
u ∈ Λn,qT ⋆X ⊗ E, q > 1, we have

|u|2γ dVγ 6 |u|2 dV, 〈A−1q,γu, u〉γ dVγ 6 〈A−1q u, u〉 dV

where an index γ means that the corresponding term is computed in terms of γ instead
of ω.

Proof. Let x0 ∈ X be a given point and (z1, . . . , zn) coordinates such that

ω = i
∑

16j6n

dzj ∧ dzj , γ = i
∑

16j6n

γj dzj ∧ dzj at x0,
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where γ1 6 . . . 6 γn are the eigenvalues of γ with respect to ω (thus γj > 1). We have
|dzj |2γ = γ−1j and |dzK |2γ = γ−1K for any multi-index K, with the notation γK =

∏
j∈K γj.

For every u =
∑
uK,λdz1 ∧ . . . ∧ dzn ∧ dzK ⊗ eλ, |K| = q, 1 6 λ 6 r, the computations

of § VII-7 yield

|u|2γ =
∑

K,λ

(γ1 . . . γn)
−1γ−1K |uK,λ|2, dVγ = γ1 . . . γn dV,

|u|2γ dVγ =
∑

K,λ

γ−1K |uK,λ|2 dV 6 |u|2 dV,

Λγu =
∑

|I|=q−1

∑

j,λ

i(−1)n+j−1γ−1j ujI,λ (d̂zj) ∧ dzI ⊗ eλ,

where (d̂zj) means dz1 ∧ . . . d̂zj . . . ∧ dzn,

Aq,γu =
∑

|I|=q−1

∑

j,k,λ,µ

γ−1j cjkλµ ujI,λ dz1 ∧ . . . ∧ dzn ∧ dzkI ⊗ eµ,

〈Aq,γu, u〉γ = (γ1 . . . γn)
−1

∑

|I|=q−1
γ−1I

∑

j,k,λ,µ

γ−1j γ−1k cjkλµ ujI,λukI,µ

> (γ1 . . . γn)
−1

∑

|I|=q−1
γ−2I

∑

j,k,λ,µ

γ−1j γ−1k cjkλµ ujI,λukI,µ

= γ1 . . . γn 〈AqSγu, Sγu〉

where Sγ is the operator defined by

Sγu =
∑

K

(γ1 . . . γnγK)−1 uK,λ dz1 ∧ . . . ∧ dzn ∧ dzK ⊗ eλ.

We get therefore

|〈u, v〉γ|2 = |〈u, Sγv〉|2 6 〈A−1q u, u〉〈AqSγv, Sγv〉
6 (γ1 . . . γn)

−1〈A−1q u, u〉〈Aq,γv, v〉γ,

and the choice v = A−1q,γu implies

〈A−1q,γu, u〉γ 6 (γ1 . . . γn)
−1 〈A−1q u, u〉 ;

this relation is equivalent to the last one in the lemma. �

An important special case is that of a semi-positive line bundle E. If we let 0 6
λ1(x) 6 . . . 6 λn(x) be the eigenvalues of iΘ(E)x with respect to ωx for all x ∈ X ,
formula VI-8.3 implies

〈Aqu, u〉 > (λ1 + · · ·+ λq)|u|2,∫

X

〈A−1q g, g〉 dV 6

∫

X

1

λ1 + · · ·+ λq
|g|2 dV.(6.4)
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A typical situation where these estimates can be applied is the case when E is the trivial
line bundle X ×C with metric given by a weight e−ϕ. One can assume for example that
ϕ is plurisubharmonic and that id′d′′ϕ has at least n− q+1 positive eigenvalues at every
point, i.e. λq > 0 on X . This situation leads to very important L2 estimates, which are
precisely those given by [Hörmander 1965, 1966]. We state here a slightly more general
result.

(6.5) Theorem. Let (X,ω) be a weakly pseudoconvex Kähler manifold, E a hermitian
line bundle on X, ϕ ∈ C∞(X,R) a weight function such that the eigenvalues λ1 6 . . . 6
λn of iΘ(E) + id′d′′ϕ are > 0. Then for every form g of type (n, q), q > 1, with L2

loc

(resp. C∞) coefficients such that D′′g = 0 and
∫

X

1

λ1 + · · ·+ λq
|g|2 e−ϕ dV < +∞,

we can find a L2
loc (resp. C∞) form f of type (n, q − 1) such that D′′f = g and

∫

X

|f |2 e−ϕ dV 6

∫

X

1

λ1 + · · ·+ λq
|g|2 e−ϕ dV.

Proof. Apply the general estimates to the bundle Eϕ deduced from E by multiplication
of the metric by e−ϕ ; we have iΘ(Eϕ) = iΘ(E) + id′d′′ϕ. It is not necessary here to
assume in addition that g ∈ L2

n,q(X,Eϕ). In fact, g is in L2
loc and we can exhaust X by

the relatively compact weakly pseudoconvex domains

Xc =
{
x ∈ X ; ψ(x) < c

}

where ψ ∈ C∞(X,R) is a plurisubharmonic exhaustion function (note that − log(c− ψ)
is also such a function on Xc). We get therefore solutions fc on Xc with uniform L2

bounds; any weak limit f gives the desired solution. �

If estimates for (p, q)-forms instead of (n, q)-forms are needed, one can invoke the
isomorphism ΛpT ⋆X ≃ Λn−pTX ⊗ ΛnT ⋆X (obtained through contraction of n-forms by
(n− p)-vectors) to get

Λp,qT ⋆X ⊗E ≃ Λn,qT ⋆X ⊗ F, F = E ⊗ Λn−pTX .

Let us look more carefully to the case p = 0. The (1, 1)-curvature form of ΛnTX with
respect to a hermitian metric ω on TX is called the Ricci curvature of ω. We denote:

(6.6) Definition. Ricci(ω) = iΘ(ΛnTX) = i Tr Θ(TX ).

For any local coordinate system (z1, . . . , zn), the holomorphic n-form dz1 ∧ . . . ∧ dzn
is a section of ΛnT ⋆X , hence Formula V-13.3 implies

(6.7) Ricci(ω) = id′d′′ log |dz1 ∧ . . . ∧ dzn|2ω = −id′d′′ log det(ωjk).

The estimates of Th. 6.5 can therefore be applied to any (0, q)-form g, but λ1 6 . . . 6 λn
must be replaced by the eigenvalues of the (1, 1)-form

(6.8) iΘ(E) + Ricci(ω) + id′d′′ϕ (supposed > 0).



§ 7. Extension of Holomorphic Functions from Subvarieties 379

We consider now domains Ω ⊂ Cn equipped with the euclidean metric of Cn, and the
trivial bundle E = Ω×C. The following result is especially convenient because it requires
only weak plurisubharmonicity and avoids to compute the curvature eigenvalues.

(6.9) Theorem. Let Ω ⊂ Cn be a weakly pseudoconvex open subset and ϕ an upper
semi-continuous plurisubharmonic function on Ω. For every ε ∈ ]0, 1] and every g ∈
L2
p,q(Ω, loc) such that d′′g = 0 and

∫

Ω

(
1 + |z|2

)
|g|2 e−ϕdV < +∞,

we can find a L2
loc form f of type (p, q − 1) such that d′′f = g and

∫

Ω

(
1 + |z|2

)−ε |f |2 e−ϕ dV 6
4

qε2

∫

Ω

(
1 + |z|2

)
|g|2 e−ϕ dV < +∞.

Moreover f can be chosen smooth if g and ϕ are smooth.

Proof. Since ΛpTΩ is a trivial bundle with trivial metric, the proof is immediately
reduced to the case p = 0 (or equivalently p = n). Let us first suppose that ϕ is smooth.
We replace ϕ by Φ = ϕ+ τ where

τ(z) = log
(
1 + (1 + |z|2)ε

)
.

(6.10) Lemma. The smallest eigenvalue λ1(z) of id′d′′τ(z) satisfies

λ1(z) >
ε2

2(1 + |z|2)
(
1 + (1 + |z|2)ε

) .

In fact a brute force computation of the complex hessian Hτz(ξ) and the Cauchy-
Schwarz inequality yield

Hτz(ξ) =

=
ε(1+|z|2)ε−1|ξ|2
1 + (1+|z|2)ε +

ε(ε− 1)(1+|z|2)ε−2|〈ξ, z〉|2
1 + (1+|z|2)ε −ε

2(1+|z|2)2ε−2|〈ξ, z〉|2
(
1 + (1+|z|2)ε

)2

> ε

(
(1 + |z|2)ε−1
1 + (1 + |z|2)ε −

(1− ε)(1 + |z|2)ε−2|z|2
1 + (1 + |z|2)ε − ε(1 + |z|2)2ε−2|z|2

(
1 + (1 + |z|2)ε

)2
)
|ξ|2

= ε
1 + ε|z|2 + (1 + |z|2)ε

(1 + |z|2)2−ε
(
1 + (1 + |z|2)ε

)2 |ξ|2 >
ε2|ξ|2

(1 + |z|2)1−ε
(
1 + (1 + |z|2)ε

)2

>
ε2

2(1 + |z|2)
(
1 + (1 + |z|2)ε

) |ξ|2. �

The Lemma implies e−τ/λ1 6 2(1 + |z|2)/ε2, thus Cor. 6.5 provides an f such that
∫

Ω

(
1 + (1 + |z|2)ε

)−1 |f |2 e−ϕ dV 6
2

qε2

∫

Ω

(
1 + |z|2

)
|g|2 e−ϕ dV < +∞,

and the required estimate follows. If ϕ is not smooth, apply the result to a sequence
of regularized weights ρε ⋆ ϕ > ϕ on an increasing sequence of domains Ωc ⊂⊂ Ω, and
extract a weakly convergent subsequence of solutions. �
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§ 7. Extension of Holomorphic Functions from Subvarieties

The existence theorems for solutions of the d′′ operator easily lead to an extension
theorem for sections of a holomorphic line bundle defined in a neighborhood of an analytic
subset. The following result [Demailly 1982] is an improvement and a generalization of
Jennane’s extension theorem [Jennane 1976].

(7.1) Theorem. Let (X,ω) be a weakly pseudoconvex Kähler manifold, L a hermitian
line bundle and E a hermitian vector bundle over X. Let Y be an analytic subset of X
such that Y = σ−1(0) for some section σ of E, and p the maximal codimension of the
irreducible components of Y . Let f be a holomorphic section of KX ⊗ L defined in the
open set U ⊃ Y of points x ∈ X such that |σ(x)| < 1. If

∫
U
|f |2dV < +∞ and if the

curvature form of L satisfies

iΘ(L) >
( p

|σ|2 +
ε

1 + |σ|2
)
{iΘ(E)σ, σ}

for some ε > 0, there is a section F ∈ H0(X,KX ⊗ L) such that F↾Y = f↾Y and

∫

X

|F |2
(1 + |σ|2)p+ε dV 6

(
1 +

(p+ 1)2

ε

)∫

U

|f |2 dV.

The proof will involve a weight with logarithmic singularities along Y . We must
therefore apply the existence theorem over XrY . This requires to know whether XrY
has a complete Kähler metric.

(7.2) Lemma. Let (X,ω) be a Kähler manifold, and Y = σ−1(0) an analytic subset
defined by a section of a hermitian vector bundle E → X. If X is weakly pseudoconvex
and exhausted by Xc = {x ∈ X ; ψ(x) < c}, then Xc r Y has a complete Kähler metric
for all c ∈ R. The same conclusion holds for X rY if (X,ω) is complete and if for some
constant C > 0 we have ΘE 6Grif C ω ⊗ 〈 , 〉E on X.

Proof. Set τ = log |σ|2. Then d′τ = {D′σ, σ}/|σ|2 and D′′D′σ = D2σ = Θ(E)σ, thus

id′d′′τ = i
{D′σ,D′σ}
|σ|2 − i

{D′σ, σ} ∧ {σ,D′σ}
|σ|4 − {iΘ(E)σ, σ}

|σ|2 .

For every ξ ∈ TX , we find therefore

Hτ(ξ) =
|σ|2 |D′σ · ξ|2 − |〈D′σ · ξ, σ〉|2

|σ|4 − ΘE(ξ ⊗ σ, ξ ⊗ σ)
|σ|2

> −ΘE(ξ ⊗ σ, ξ ⊗ σ)
|σ|2

by the Cauchy-Schwarz inequality. If C is a bound for the coefficients of ΘE on the
compact subset Xc, we get id′d′′τ > −Cω on Xc. Let χ ∈ C∞(R,R) be a convex
increasing function. We set

ω̂ = ω + id′d′′(χ ◦ τ).
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Formula 5.3 shows that ω̂ is positive definite if χ′ 6 1/2C and that ω̂ is complete near
Y = τ−1(−∞) as soon as ∫ 0

−∞

√
χ′′(t) dt = +∞.

One can choose for example χ such that χ(t) = 1
5C (t − log |t|) for t 6 −1. In order to

obtain a complete Kähler metric on Xc r Y , we need also that the metric be complete
near ∂Xc. Such a metric is given by

ω̃ = ω̂ + id′d′′ log(c− ψ)−1 = ω̂ +
id′d′′ψ

c− ψ +
id′ψ ∧ d′′ψ
(c− ψ)2

> id′ log(c− ψ)−1 ∧ d′′ log(c− ψ)−1 ;

ω̃ is complete on Xc r Ω because log(c− ψ)−1 tends to +∞ on ∂Xc. �

Proof of Theorem 7.1.. When we replace σ by (1 + η)σ for some small η > 0 and let η
tend to 0, we see that we can assume f defined in a neighborhood of U . Let h be the
continuous section of L such that h = (1 − |σ|p+1)f on U = {|σ| < 1} and h = 0 on
X r U . We have h↾Y = f↾Y and

d′′h = −p+ 1

2
|σ|p−1 {σ,D′σ} f on U, d′′h = 0 on X r U.

We consider g = d′′h as a (n, 1)-form with values in the hermitian line bundle Lϕ = L,
endowed with the weight e−ϕ given by

ϕ = p log |σ|2 + ε log(1 + |σ|2).

Notice that ϕ is singular along Y . The Cauchy-Schwarz inequality implies i{D′σ, σ} ∧
{σ,D′σ} 6 i{D′σ,D′σ} as in Lemma 7.2, and we find

id′d′′ log(1 + |σ|2) = (1 + |σ|2)i{D′σ,D′σ} − i{D′σ, σ} ∧ {σ,D′σ}
(1 + |σ|2)2

− {iΘ(E)σ, σ}
1 + |σ|2 >

i{D′σ,D′σ}
(1 + |σ|2)2 −

{iΘ(E)σ, σ}
1 + |σ|2 .

The inequality id′d′′ log |σ|2 > −{iΘ(E)σ, σ}/|σ|2 obtained in Lemma 7.2 and the above
one imply

iΘ(Lϕ) = iΘ(L) + p id′d′′ log |σ|2 + ε id′d′′ log(1 + |σ|2)

> iΘ(L)−
( p

|σ|2 +
ε

1 + |σ|2
)
{iΘ(E)σ, σ}+ ε

i{D′σ,D′σ}
(1 + |σ|2)2

> ε
i {D′σ, σ} ∧ {σ,D′σ}
|σ|2 (1 + |σ|2)2 ,

thanks to the hypothesis on the curvature of L and the Cauchy-Schwarz inequality.
Set ξ = (p + 1)/2 |σ|p−1{D′σ, σ} = ∑

ξj dzj in an ω-orthonormal basis ∂/∂zj, and let
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ξ̂ =
∑
ξj∂/∂zj be the dual (0, 1)-vector field. For every (n, 1)-form v with values in Lϕ,

we find ∣∣〈d′′h, v〉
∣∣ =

∣∣〈ξ ∧ f, v〉
∣∣ =

∣∣〈f, ξ̂ v〉
∣∣ 6 |f | |ξ̂ v|,

ξ̂ v =
∑
−iξj dzj ∧ Λv = −iξ ∧ Λv,

|〈d′′h, v〉|2 6 |f |2 |ξ̂ v|2 = |f |2〈−iξ ∧ Λv, ξ̂ v〉
= |f |2〈−iξ ∧ ξ ∧ Λv, v〉 = |f |2〈[iξ ∧ ξ,Λ]v, v〉

6
(p+ 1)2

4ε
|σ|2p (1 + |σ|2)2 |f |2 〈[iΘ(Lϕ),Λ]v, v〉.

Thus, in the notations of Th. 6.1, the form g = d′′h satisfies

〈A−11 g, g〉 6 (p+ 1)2

4ε
|σ|2p(1 + |σ|2)2 |f |2 6

(p+ 1)2

ε
|f |2 eϕ,

where the last equality results from the fact that (1 + |σ|2)2 6 4 on the support of g.
Lemma 7.2 shows that the existence theorem 6.1 can be applied on each set Xc r Y .
Letting c tend to infinity, we infer the existence of a (n, 0)-form u with values in L such
that d′′u = g on X r Y and

∫

XrY

|u|2 e−ϕ dV 6

∫

XrY

〈A−11 g, g〉e−ϕ, thus

∫

XrY

|u|2
|σ|2p(1 + |σ|2)ε dV 6

(p+ 1)2

ε

∫

U

|f |2 dV.

This estimate implies in particular that u is locally L2 near Y . As g is continuous over X ,
Lemma 7.3 below shows that the equality d′′u = g = d′′h extends to X , thus F = h− u
is holomorphic everywhere. Hence u = h− F is continuous on X . As |σ(x)| 6 C d(x, Y )
in a neighborhood of every point of Y , we see that |σ|−2p is non integrable at every point
x0 ∈ Yreg, because codimY 6 p. It follows that u = 0 on Y , so

F↾Y = h↾Y = f↾Y .

The final L2-estimate of Th. 7.1 follows from the inequality

|F |2 = |h− u|2 6 (1 + |σ|−2p) |u|2 + (1 + |σ|2p) |f |2

which implies
|F |2

(1 + |σ|2)p 6
|u|2
|σ|2p + |f |2. �

(7.3) Lemma. Let Ω be an open subset of Cn and Y an analytic subset of Ω. Assume
that v is a (p, q− 1)-form with L2

loc coefficients and w a (p, q)-form with L1
loc coefficients

such that d′′v = w on Ωr Y (in the sense of distribution theory). Then d′′v = w on Ω.

Proof. An induction on the dimension of Y shows that it is sufficient to prove the result
in a neighborhood of a regular point a ∈ Y . By using a local analytic isomorphism, the
proof is reduced to the case where Y is contained in the hyperplane z1 = 0, with a = 0.
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Let λ ∈ C∞(R,R) be a function such that λ(t) = 0 for t 6 1
2 and λ(t) = 1 for t > 1. We

must show that

(7.4)

∫

Ω

w ∧ α = (−1)p+q
∫

Ω

v ∧ d′′α

for all α ∈ Dn−p,n−q(Ω). Set λε(z) = λ(|z1|/ε) and replace α in the integral by λεα.
Then λεα ∈Dn−p,n−q(Ωr Y ) and the hypotheses imply

∫

Ω

w ∧ λεα = (−1)p+q
∫

Ω

v ∧ d′′(λεα) = (−1)p+q
∫

Ω

v ∧ (d′′λε ∧ α+ λεd
′′α).

As w and v have L1
loc coefficients on Ω, the integrals of w ∧ λεα and v ∧ λεd′′α converge

respectively to the integrals of w ∧ α and v ∧ d′′α as ε tends to 0. The remaining term
can be estimated by means of the Cauchy-Schwarz inequality:

∣∣∣
∫

Ω

v ∧ d′′λε ∧ α
∣∣∣
2

6

∫

|z1|6ε
|v ∧ α|2 dV.

∫

Suppα

|d′′λε|2 dV ;

as v ∈ L2
loc(Ω), the integral

∫
|z1|6ε |v ∧ α|

2 dV converges to 0 with ε, whereas

∫

Suppα

|d′′λε|2 dV 6
C

ε2
Vol

(
Supp α ∩ {|z1| 6 ε}

)
6 C′.

Equality (7.4) follows when ε tends to 0. �

(7.5) Corollary. Let Ω ⊂ Cn be a weakly pseudoconvex domain and let ϕ, ψ be
plurisubharmonic functions on Ω, where ψ is supposed to be finite and continuous. Let
σ = (σ1, . . . , σr) be a family of holomorphic functions on Ω, let Y = σ−1(0), p = maxi-
mal codimension of Y and set

a) U = {z ∈ Ω ; |σ(z)|2 < e−ψ(z)}, resp.

b) U ′ = {z ∈ Ω ; |σ(z)|2 < eψ(z)}.
For every ε > 0 and every holomorphic function f on U , there exists a holomorphic
function F on Ω such that F↾Y = f↾Y and

∫

Ω

|F |2 e−ϕ+pψ
(1 + |σ|2eψ)p+ε dV 6

(
1 +

(p+ 1)2

ε

)∫

U

|f |2 e−ϕ+pψ dV, resp.a)

∫

Ω

|F |2 e−ϕ
(eψ + |σ|2)p+ε dV 6

(
1 +

(p+ 1)2

ε

)∫

U

|f |2 e−ϕ−(p+ε)ψ dV.b)

Proof. After taking convolutions with smooth kernels on pseudoconvex subdomains Ωc ⊂
⊂ Ω, we may assume ϕ, ψ smooth. In either case a) or b), apply Th. 7.1 to

a) E = Ω × Cr with the weight eψ , L = Ω × C with the weight e−ϕ+pψ , and U =
{|σ|2eψ < 1}. Then

iΘ(E) = −id′d′′ψ ⊗ IdE 6 0, iΘ(L) = id′d′′ϕ− p id′d′′ψ > p iΘ(E).
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b) E = Ω × Cr with the weight e−ψ , L = Ω × C with the weight e−ϕ−(p+ε)ψ , and
U = {|σ|2e−ψ < 1}. Then

iΘ(E) = id′d′′ψ ⊗ IdE > 0, iΘ(L) = id′d′′ϕ+ (p+ ε) id′d′′ψ > (p+ ε) iΘ(E).

The condition on Θ(L) is satisfied in both cases and KΩ is trivial. �

(7.6) Hörmander-Bombieri-Skoda theorem. Let Ω ⊂ Cn be a weakly pseudoconvex
domain and ϕ a plurisubharmonic function on Ω. For every ε > 0 and every point z0 ∈ Ω
such that e−ϕ is integrable in a neighborhood of z0, there exists a holomorphic function
F on Ω such that F (z0) = 1 and

∫

Ω

|F (z)|2 e−ϕ(z)
(1 + |z|2)n+ε dV < +∞.

[Bombieri 1970] originally stated the theorem with the exponent 3n instead of n+ ε ;
the improved exponent n + ε is due to [Skoda 1975]. The example Ω = Cn, ϕ(z) = 0
shows that one cannot replace ε by 0.

Proof. Apply Cor. 7.5 b) to f ≡ 1, σ(z) = z−z0, p = n and ψ ≡ log r2 where U = B(z0, r)
is a ball such that

∫
U
e−ϕ dV < +∞. �

(7.7) Corollary. Let ϕ be a plurisubharmonic function on a complex manifold X. Let
A be the set of points z ∈ X such that e−ϕ is not locally integrable in a neighborhood of
z. Then A is an analytic subset of X.

Proof. Let Ω ⊂ X be an open coordinate patch isomorphic to a ball of Cn, with coordi-
nates (z1, . . . , zn). Define E ⊂ H0(Ω,O) to be the Hilbert space of holomorphic functions
f on Ω such that ∫

Ω

|f(z)|2e−ϕ(z) dV (z) < +∞.

Then A∩Ω =
⋂
f∈E f

−1(0). In fact, every f in E must obviously vanish on A ; conversely,
if z0 /∈ A, Th. 7.6 shows that there exists f ∈ E such that f(z0) 6= 0. By Th. II-5.5, we
conclude that A is analytic. �

§ 8. Applications to Hypersurface Singularities

We first give some basic definitions and results concerning multiplicities of divisors
on a complex manifold.

(8.1) Proposition. Let X be a complex manifold and ∆ =
∑
λj [Zj ] a divisor on X

with real coefficients λj > 0. Let x ∈ X and fj = 0, 1 6 j 6 N , irreducible equations of
Zj on a neighborhood U of x.

a) The multiplicity of ∆ at x is defined by

µ(∆, x) =
∑

λj ordxfj .
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b) ∆ is said to have normal crossings at a point x ∈ Supp ∆ if all hypersurfaces Zj
containing x are smooth at x and intersect transversally, i.e. if the linear forms dfj
defining the corresponding tangent spaces TxZj are linearly independent at x. The set
nnc(∆) of non normal crossing points is an analytic subset of X.

c) The non-integrability locus nil(∆) is defined as the set of points x ∈ X such that∏ |fj |−2λj is non integrable near x. Then nil(∆) is an analytic subset of X and there
are inclusions

{x ∈ X ; µ(∆, x) > n} ⊂ nil(∆) ⊂ {x ∈ X ; µ(∆, x) > 1}.

Moreover nil(∆) ⊂ nnc(∆) if all coefficients of ∆ satisfy λj < 1.

Proof. b) The set nnc(∆) ∩ U is the union of the analytic sets

fj1 = . . . = fjp = 0, dfj1 ∧ . . . ∧ dfjp = 0,

for each subset {j1, . . . , jp} of the index set {1, . . . , N}. Thus nnc(∆) is analytic.

c) The analyticity of nil(∆) follows from Cor. 7.7 applied to the plurisubharmonic function
ϕ =

∑
2λj log |fj |. Assume first that λj < 1 and that ∆ has normal crossings at x. Let

fj1(x) = . . . = fjs(x) = 0 and fj(x) 6= 0 for j 6= jl. Then, we can choose local coordinates
(w1, . . . , wn) on U such that w1 = fj1(z), . . ., ws = fjs(z), and we have

∫

U

dλ(z)∏ |fj(z)|2λj
6

∫

U

C dλ(w)

|w1|2λ1 . . . |ws|2λs
< +∞.

It follows that nil(∆) ⊂ nnc(∆). Let us prove now the statement relating nil(∆) with
multiplicity sets. Near any point x, we have |fj(z)| 6 Cj |z − x|mj with mj = ordxfj ,
thus ∏

|fj |−2λj > C |z − x|−2µ(∆,x).
It follows that x ∈ nil(∆) as soon as µ(∆, x) > n. On the other hand, we are going to
prove that µ(∆, x) < 1 implies x /∈ nil(∆), i.e.

∏ |fj |−2λj integrable near x. We may
assume λj rational; otherwise replace each λj by a slightly larger rational number in such

a way that µ(∆, x) < 1 is still true. Set f =
∏
f
kλj

j where k is a common denominator.
The result is then a consequence of the following lemma. �

(8.2) Lemma. If f ∈ OX,x is not identically 0, there exists a neighborhood U of x such
that

∫
U
|f |−2λ dV converges for all λ < 1/m, m = ordxf .

Proof. One can assume that f is a Weierstrass polynomial

f(z) = zmn + a1(z
′)zm−1n + · · ·+ am(z

′), aj(z
′) ∈ On−1, aj(0) = 0,

with respect to some coordinates (z1, . . . , zn) centered at x. Let vj(z
′), 1 6 j 6 m, denote

the roots zn of f(z) = 0. On a small neighborhood U of x we have |vj(z′)| 6 1. The
inequality between arithmetic and geometric mean implies∫

{|zn|61}
|f(z)|−2λ dxndyn =

∫

{|zn|61}

∏

16j6m

|zn − vj(z′)|−2λ dxndyn

6
1

m

∫

{|zn|61}

∑

16j6m

|zn − vj(z′)|−2mλ dxndyn

6

∫

{|zn|62}

dxndyn
|zn|2mλ

,
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so the Lemma follows from the Fubini theorem. �

Another interesting application concerns the study of multiplicities of singular points
for algebraic hypersurfaces in Pn. Following [Waldschmidt 1975], we introduce the fol-
lowing definition.

(8.3) Definition. Let S be a finite subset of Pn. For any integer t > 1, we define ωt(S)
as the minimum of the degrees of non zero homogeneous polynomials P ∈ C[z0, . . . , zn]
which vanish at order t at every point of S, i.e. DαP (w) = 0 for every w ∈ S and every
multi-index α = (α0, . . . , αn) of length |α| < t.

It is clear that t 7−→ ωt(S) is a non-decreasing and subadditive function, i.e. for all
integers t1, t2 > 1 we have ωt1+t2(S) 6 ωt1(S) + ωt2(S). One defines

(8.4) Ω(S) = inf
t>1

ωt(S)

t
.

For all integers t, t′ > 1, the monotonicity and subadditivity of ωt(S) show that

ωt(S) 6 ([t/t′] + 1)ωt′(S), hence Ω(S) 6
ωt(S)

t
6

( 1

t′
+

1

t

)
ωt′(S).

We find therefore

(8.5) Ω(S) = lim
t→+∞

ωt(S)

t
.

Our goal is to find a lower bound of Ω(S) in terms of ωt(S). For n = 1, it is obvious that
Ω(S) = ωt(S)/t = cardS for all t. From now on, we assume that n > 2.

(8.6) Theorem. Let t1, t2 > 1 be integers, let P be a homogeneous polynomial of
degree ωt2(S) vanishing at order > t2 at every point of S. If P = P k11 . . . P kNN is the
decomposition of P in irreducible factors and Zj = P−1j (0), we set

α =
t1 + n− 1

t2
, ∆ =

∑
(kjα− [kjα]) [Zj], a = dim

(
nil(∆)

)
.

Then we have the inequality

ωt1(S) + n− a− 1

t1 + n− 1
6
ωt2(S)

t2
.

Let us first make a few comments before giving the proof. If we let t2 tend to infinity
and observe that nil(∆) ⊂ nnc(∆) by Prop. 8.1 c), we get a 6 2 and

(8.7)
ωt1(S) + 1

t1 + n− 1
6 Ω(S) 6

ωt2(S)

t2
.

Such a result was first obtained by [Waldschmidt 1975, 1979] with the lower bound
ωt1(S)/(t1 + n − 1), as a consequence of the Hörmander-Bombieri-Skoda theorem. The
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above improved inequalities were then found by (Esnault-Viehweg 1983), who used rather
deep tools of algebraic geometry. Our proof will consist in a refinement of the Bombieri-
Waldschmidt method due to [Azhari 1990]. It has been conjectured by [Chudnovsky 1979]
that Ω(S) > (ω1(S) + n − 1)/n. Chudnovsky’s conjecture is true for n = 2 (as shown
by (8.7)); this case was first verified independently by [Chudnovsky 1979] and [De-
mailly 1982]. The conjecture can also be verified in case S is a complete polytope,
and the lower bound of the conjecture is then optimal (see [Demailly 1982a] and ??.?.?).
More generally, it is natural to ask whether the inequality

(8.8)
ωt1(S) + n− 1

t1 + n− 1
6 Ω(S) 6

ωt2(S)

t2

always holds; this is the case if there are infinitely many t2 for which P can be chosen in
such a way that nil(∆) has dimension a = 0.

(8.9) Bertini’s lemma. If E ⊂ Pn is an analytic subset of dimension a, there exists a
dense subset in the grassmannian of k-codimensional linear subspaces Y of Pn such that
dim(E ∩ Y ) 6 a− k (when k > a this means that E ∩ Y = ∅ ).

Proof. By induction on n, it suffices to show that dim(E ∩ H) 6 a − 1 for a generic
hyperplane H ⊂ Pn. Let Ej be the (finite) family of irreducible components of E, and
wj ∈ Ej an arbitrary point. Then E∩H =

⋃
Ej∩H and we have dimEj∩H < dimEj 6

a as soon as H avoids all points wj . �

Proof of Theorem 8.6.. By Bertini’s lemma, there exists a linear subspace Y ⊂ Pn of
codimension a+1 such that nil(∆)∩Y = ∅. We consider P as a section of the line bundle
O(D) over Pn, where D = deg P (cf. Th. V-15.5). There are sections σ1, . . . , σa+1 of
O(1) such that Y = σ−1(0). We shall apply Th. 7.1 to E = O(1) with its standard
hermitian metric, and to L = O(k) equipped with the additional weight ϕ = α log |P |2.
We may assume that the open set U = {|σ| < 1} is such that nil(∆)∩U = ∅, otherwise it
suffices to multiply σ by a large constant. This implies that the polynomial Q =

∏
P

[kjα]
j

satisfies ∫

U

|Q|2 e−ϕ dV =

∫

U

∏
|Pj |−2(kjα−[kjα]) dV < +∞.

Set ω = ic
(
O(1)

)
. We have id′d′′ log |P |2 > −ic

(
O(D)

)
= −Dω by the Lelong-Poincaré

equation, thus iΘ(Lϕ) > (k−αD)ω. The desired curvature inequality iΘ(Lϕ) > (a+1+
ε)iΘ(E) is satisfied if k − αD > (a+ 1 + ε). We thus take

k = [αD] + a+ 2.

The section f ∈ H0(U,KPn ⊗ L) = H0
(
U,O(k − n − 1)

)
is taken to be a multiple of Q

by some polynomial. This is possible provided that

k − n− 1 > deg Q ⇐⇒ αD + a+ 2− n− 1 >
∑

[kjα] deg Pj ,

or equivalently, as D =
∑
kj deg Pj ,

(8.10)
∑

(kjα− [kjα]) deg Pj > n− a− 1.
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Then we get f ∈ H0(U,KPn ⊗ L) such that
∫
U
|f |2 e−ϕ dV < +∞. Theorem 7.1 implies

the existence of F ∈ H0(Pn, KPn ⊗ L), i.e. of a polynomial F of degree k − n − 1, such
that ∫

Pn

|F |2e−ϕ dV =

∫

Pn

|F |2
|P |2α dV < +∞ ;

observe that |σ| is bounded, for we are on a compact manifold. Near any w ∈ S, we
have |P (z)| 6 C|z−w|t2 , thus |P (z)|2α 6 C|z − w|2(t1+n−1). This implies that the above
integral can converge only if F vanishes at order > t1 at each point w ∈ S. Therefore

ωt1(S) 6 deg F = k − n− 1 = [αD] + a+ 1− n 6 αωt2(S) + a+ 1− n,

which is the desired inequality.

However, the above proof only works under the additional assumption (8.10). Assume
on the contrary that

β =
∑

(kjα− [kjα]) deg Pj < n− a− 1.

Then the polynomial Q has degree

∑
[kjα] deg Pj = α deg P − β = αD − β,

and Q vanishes at every point w ∈ S with order

ordwQ >
∑

[kjα] ordwPj = α
∑

kj ordwPj −
∑

(kjα− [kjα]) ordwPj

> α ordwP − β > αt2 − β = t1 − (β − n+ 1).

This implies ordwQ > t1 − [β − n+ 1]. As [β − n+ 1] < n− a− 1− n+ 1 = −a 6 0, we
can take a derivative of order −[β − n+ 1] of Q to get a polynomial F with

deg F = αD − β + [β − n+ 1] 6 αD − n+ 1,

which vanishes at order t1 on S. In this case, we obtain therefore

ωt1(S) 6 αD − n+ 1 =
t1 + n− 1

t2
ωt2(S)− n+ 1

and the proof of Th. 8.6 is complete. �

§ 9. Skoda’s L2 Estimates for Surjective Bundle Morphisms

Let (X,ω) be a Kähler manifold, dimX = n, and g : E −→ Q a holomorphic
morphism of hermitian vector bundles over X . Assume in the first instance that g
is surjective. We are interested in conditions insuring for example that the induced
morphism g : Hk(X,KX ⊗E) −→ Hk(X,KX ⊗Q) is also surjective. For that purpose,
it is natural to consider the subbundle S = Ker g ⊂ E and the exact sequence

(9.1) 0 −→ S −→ E
g−→ Q −→ 0.
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Assume for the moment that S and Q are endowed with the metrics induced by that of
E. Let L be a line bundle over X . We consider the tensor product of sequence (9.1) by
L :

(9.2) 0 −→ S ⊗ L −→ E ⊗ L g−→ Q⊗ L −→ 0.

(9.3) Theorem. Let k be an integer such that 0 6 k 6 n. Set r = rk E, q = rkQ,
s = rk S = r − q and

m = min{n− k, s} = min{n− k, r − q}.

Assume that (X,ω) possesses also a complete Kähler metric ω̂, that E >m 0, and that
L −→ X is a hermitian line bundle such that

iΘ(L)− (m+ ε)iΘ(detQ) > 0

for some ε > 0. Then for every D′′-closed form f of type (n, k) with values in Q ⊗ L
such that ‖f‖ < +∞, there exists a D′′-closed form h of type (n, k) with values in E ⊗L
such that f = g · h and

‖h‖2 6 (1 +m/ε) ‖f‖2.

The idea of the proof is essentially due to [Skoda 1978], who actually proved the
special case k = 0. The general case appeared in [Demailly 1982c].

Proof. Let j : S → E be the inclusion morphism, g⋆ : Q → E and j⋆ : E → S the
adjoints of g, j, and

DE =

(
DS −β⋆
β DQ

)
, β ∈ C∞1,0

(
X, hom(S,Q)

)
, β⋆ ∈ C∞0,1

(
X, hom(Q, S)

)
,

the matrix of DE with respect to the orthogonal splitting E ≃ S ⊕Q (cf. §V-14). Then
g⋆f is a lifting of f in E ⊗ L. We shall try to find h under the form

h = g⋆f + ju, u ∈ L2
n,k(X,S ⊗ L).

As the images of S and Q in E are orthogonal, we have |h|2 = |f |2 + |u|2 at every point
of X . On the other hand D′′Q⊗Lf = 0 by hypothesis and D′′g⋆ = −j ◦ β⋆ by V-14.3 d),
hence

D′′E⊗Lh = −j(β⋆ ∧ f) + j D′′S⊗L = j(D′′S⊗L − β⋆ ∧ f).

We are thus led to solve the equation

(9.4) D′′S⊗Lu = β⋆ ∧ f,

and for that, we apply Th. 4.5 to the (n, k+ 1)-form β⋆ ∧ f . One observes now that the
curvature of S ⊗ L can be expressed in terms of β. This remark will be used to prove:

(9.5) Lemma. 〈A−1k (β⋆ ∧ f), (β⋆ ∧ f)〉 6 (m/ε) |f |2.
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If the Lemma is taken for granted, Th. 4.5 yields a solution u of (9.4) in L2
n,q(X,S⊗L)

such that ‖u‖2 6 (m/ε) ‖f‖2. As ‖h‖2 = ‖f‖2 + ‖u‖2, the proof of Th. 9.3 is complete.
�

Proof of Lemma 9.5.. Exactly as in the proof of Th. VII-10.3, formulas (V-14.6) and
(V-14.7) yield

iΘ(S) >m iβ⋆ ∧ β, iΘ(detQ) > TrQ(iβ ∧ β⋆) = TrS(−iβ⋆ ∧ β).

Since C∞1,1(X,HermS) ∋ Θ := −iβ⋆ ∧ β >Grif 0, Prop. VII-10.1 implies

m TrS(−iβ⋆ ∧ β)⊗ IdS +iβ⋆ ∧ β >m 0.

From the hypothesis on the curvature of L we get

iΘ(S ⊗ L) >m iΘ(S)⊗ IdL+(m+ ε) iΘ(detQ)⊗ IdS⊗L

>m
(
iβ⋆ ∧ β + (m+ ε) TrS(−iβ⋆ ∧ β)⊗ IdS

)
⊗ IdL

>m (ε/m) (−iβ⋆ ∧ β) ⊗ IdS ⊗ IdL .

For any v ∈ Λn,k+1T ⋆X ⊗ S ⊗ L, Lemma VII-7.2 implies

(9.6) 〈Ak,S⊗Lv, v〉 > (ε/m) 〈−iβ⋆ ∧ β ∧ Λv, v〉,

because rk(S ⊗ L) = s and m = min{n − k, s}. Let (dz1, . . . , dzn) be an orthonormal
basis of T ⋆X at a given point x0 ∈ X and set

β =
∑

16j6n

dzj ⊗ βj , βj ∈ hom(S,Q).

The adjoint of the operator β⋆ ∧ • = ∑
dzj ∧ β⋆j • is the contraction β • defined by

β v =
∑ ∂

∂zj
(βjv) =

∑
−idzj ∧ Λ(βjv) = −iβ ∧ Λv.

We get consequently 〈−iβ⋆ ∧ β ∧ Λv, v〉 = |β v|2 and (9.6) implies

|〈β⋆ ∧ f, v〉|2 = |〈f, β v〉|2 6 |f |2 |β v|2 6 (m/ε)〈Ak,S⊗Lv, v〉 |f |2. �

If X has a plurisubharmonic exhaustion function ψ, we can select a convex increasing
function χ ∈ C∞(R,R) and multiply the metric of L by the weight exp(−χ ◦ψ) in order
to make the L2 norm of f converge. Theorem 9.3 implies therefore:

(9.7) Corollary. Let (X,ω) be a weakly pseudoconvex Kähler manifold, let g : E → Q
be a surjective bundle morphism with r = rk E, q = rk Q, let m = min{n− k, r − q} and
let L→ X be a hermitian line bundle. Suppose that E >m 0 and

iΘ(L)− (m+ ε) iΘ(detQ) > 0
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for some ε > 0. Then g induces a surjective map

Hk(X,KX ⊗ E ⊗ L) −→ Hk(X,KX ⊗Q⊗ L).

The most remarkable feature of this result is that it does not require any strict
positivity assumption on the curvature (for instance E can be a flat bundle). A careful
examination of the proof shows that it amounts to verify that the image of the coboundary
morphism

−β⋆ ∧ • : Hk(X,KX ⊗Q⊗ L) −→ Hk+1(X,KX ⊗ S ⊗ L)

vanishes; however the cohomology group Hk+1(X,KX ⊗ S ⊗L) itself does not vanish in
general as it would do under a strict positivity assumption (cf. Th. VII-9.4).

We want now to get also estimates when Q is endowed with a metric given a priori,
that can be distinct from the quotient metric of E by g. Then the map
g⋆(gg⋆)−1 : Q→ E is the lifting of Q orthogonal to S = Ker g. The quotient metric
| • |′ on Q is therefore defined in terms of the original metric | • | by

|v|′2 = |g⋆(gg⋆)−1v|2 = 〈(gg⋆)−1v, v〉 = det(gg⋆)−1 〈g̃g⋆v, v〉

where g̃g⋆ ∈ End(Q) denotes the endomorphism of Q whose matrix is the transposed of
the comatrix of gg⋆. For every w ∈ detQ, we find

|w|′2 = det(gg⋆)−1 |w|2.

If Q′ denotes the bundle Q with the quotient metric, we get

iΘ(detQ′) = iΘ(detQ) + id′d′′ log det(gg⋆).

In order that the hypotheses of Th. 9.3 be satisfied, we are led to define a new metric

| • |′ on L by |u|′2 = |u|2
(
det(gg⋆)

)−m−ε
. Then

iΘ(L′) = iΘ(L) + (m+ ε) id′d′′ log det(gg⋆) > (m+ ε) iΘ(detQ′).

Theorem 9.3 applied to (E,Q′, L′) can now be reformulated:

(9.8) Theorem. Let X be a complete Kähler manifold equipped with a Kähler metric ω
on X, let E → Q be a surjective morphism of hermitian vector bundles and let L → X
be a hermitian line bundle. Set r = rk E, q = rk Q and m = min{n − k, r − q} and
suppose E >m 0,

iΘ(L)− (m+ ε)iΘ(detQ) > 0

for some ε > 0. Then for every D′′-closed form f of type (n, k) with values in Q ⊗ L
such that

I =

∫

X

〈g̃g⋆f, f〉 (det gg⋆)−m−1−ε dV < +∞,

there exists a D′′-closed form h of type (n, k) with values in E ⊗ L such that f = g · h
and ∫

X

|h|2 (det gg⋆)−m−ε dV 6 (1 +m/ε) I. �
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Our next goal is to extend Th. 9.8 in the case when g : E −→ Q is only generically
surjective; this means that the analytic set

Y = {x ∈ X ; gx : Ex −→ Qx is not surjective }

defined by the equation Λqg = 0 is nowhere dense in X . Here Λqg is a section of the
bundle hom(ΛqE, detQ).

(9.9) Theorem. The existence statement and the estimates of Th. 9.8 remain true for
a generically surjective morphism g : E → Q provided that X is weakly pseudoconvex.

Proof. Apply Th. 9.8 to each relatively compact domain Xc r Y (these domains are
complete Kähler by Lemma 7.2). From a sequence of solutions on XcrY we can extract
a subsequence converging weakly onXrY as c tends to +∞. One gets a form h satisfying
the estimates, such that D′′h = 0 on X r Y and f = g · h. In order to see that D′′h = 0
on X , it suffices to apply Lemma 7.3 and to observe that h has L2

loc coefficients on X by
our estimates. �

A very special but interesting case is obtained for the trivial bundles E = Ω × Cr,
Q = Ω × C over a pseudoconvex open set Ω ⊂ Cn. Then the morphism g is given by a
r-tuple (g1, . . . , gr) of holomorphic functions on Ω. Let us take k = 0 and L = Ω × C

with the metric given by a weight e−ϕ. If we observe that g̃g⋆ = Id when rk Q = 1,
Th. 9.8 applied on X = Ωr g−1(0) and Lemmas 7.2, 7.3 give:

(9.10) Theorem ([Skoda 1978]). Let Ω be a complete Kähler open subset of Cn and ϕ
a plurisubharmonic function on Ω. Set m = min{n, r − 1}. Then for every holomorphic
function f on Ω such that

I =

∫

ΩrZ

|f |2 |g|−2(m+1+ε)e−ϕ dV < +∞,

where Z = g−1(0), there exist holomorphic functions (h1, . . . , hr) on Ω such that f =∑
gjhj and ∫

ΩrY

|h|2 |g|−2(m+ε)e−ϕ dV 6 (1 +m/ε)I. �

This last theorem can be used in order to obtain a quick solution of the Levi problem
mentioned in §I-4. It can be used also to prove a result of [Diederich-Pflug 1981], relating
the pseudoconvexity property and the existence of complete Kähler metrics for domains
of Cn.

(9.11) Theorem. Let Ω ⊂ Cn be an open subset. Then:

a) Ω is a domain of holomorphy if and only if Ω is pseudoconvex ;

b) If (Ω)◦ = Ω and if Ω has a complete Kähler metric ω̂, then Ω is pseudoconvex.

Note that statement b) can be false if the assumption (Ω)◦ = Ω is omitted: in fact
Cn r {0} is complete Kähler by Lemma 7.2, but it is not pseudoconvex if n > 2.
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Proof. b) By Th. I-4.12, it is enough to verify that Ω is a domain of holomorphy, i.e.
that for every connected open subset U such that U ∩ ∂Ω 6= ∅ and every connected
component W of U ∩Ω there exists a holomorphic function h on Ω such that h↾W cannot
be continued to U . Since (Ω)◦ = Ω, the set U r Ω is not empty. We select a ∈ U r Ω.
Then the integral ∫

Ω

|z − a|−2(n+ε) dV (z)

converges. By Th. 9.10 applied to f(z) = 1, gj(z) = zj − aj and ϕ = 0, there exist
holomorphic functions hj on Ω such that

∑
(zj − aj) hj(z) = 1. This shows that at least

one of the functions hj cannot be analytically continued at a ∈ U .

a) Assume that Ω is pseudoconvex. Given any open connected set U such that U∩∂Ω 6= ∅,
choose a ∈ U ∩ ∂Ω. By Th. I-4.14 c) the function

ϕ(z) = (n+ ε)(log(1 + |z|2)− 2 log d(z, ∁Ω)
)

is plurisubharmonic on Ω. Then the integral

∫

Ω

|z − a|−2(n+ε) e−ϕ(z) dV (z) 6

∫

Ω

(1 + |z|2)−n−ε dV (z)

converges, and we conclude as for b). �

§ 10. Application of Skoda’s L2 Estimates to Local Algebra

We apply here Th. 9.10 to the study of ideals in the ring On = C{z1, . . . , zn} of germs
of holomorphic functions on (Cn, 0). Let I = (g1, . . . , gr) 6= (0) be an ideal of On.

(10.1) Definition. Let k ∈ R+. We associate to I the following ideals:

a) the ideal I
(k)

of germs u ∈ On such that |u| 6 C|g|k for some constant C > 0, where
|g|2 = |g1|2 + · · ·+ |gr|2.

b) the ideal Î(k) of germs u ∈ On such that

∫

Ω

|u|2 |g|−2(k+ε) dV < +∞

on a small ball Ω centered at 0, if ε > 0 is small enough.

(10.2) Proposition. For all k, l ∈ R+ we have

a) I
(k) ⊂ Î(k) ;

b) Ik ⊂ I(k)
if k ∈ N ;

c) I
(k)
.I

(l) ⊂ I(k+l)
;

d) I
(k)
.Î(l) ⊂ Î(k+l).
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All properties are immediate from the definitions except a) which is a consequence of
Lemma 8.2. Before stating the main result, we need a simple lemma.

(10.3) Lemma. If I = (g1, . . . , gr) and r > n, we can find elements g̃1, . . . , g̃n ∈ I such
that C−1|g| 6 |g̃| 6 C|g| on a neighborhood of 0. Each g̃j can be taken to be a linear
combination

g̃j = aj . g =
∑

16k6r

ajkgk, aj ∈ Cr r {0}

where the coefficients ([a1], . . . , [an]) are chosen in the complement of a proper analytic
subset of (Pr−1)n.

It follows from the Lemma that the ideal J = (g̃1, . . . , g̃n) ⊂ I satisfies J(k) = I(k)

and Ĵ(k) = Î(k) for all k.

Proof. Assume that g ∈ O(Ω)r. Consider the analytic subsets in Ω× (Pr−1)n defined by

A =
{
(z, [w1], . . . , [wn]) ; wj . g(z) = 0

}
,

A⋆ =
⋃

irreducible components of A not contained in g−1(0)× (Pr−1)n.

For z /∈ g−1(0) the fiber Az = {([w1], . . . , [wn]) ; wj . g(z) = 0} = A⋆z is a product of
n hyperplanes in Pr−1, hence A ∩ (Ω r g−1(0)) × (Pr−1)n is a fiber bundle with base
Ωr g−1(0) and fiber (Pr−2)n. As A⋆ is the closure of this set in Ω× (Pr−1)n, we have

dimA⋆ = n+ n(r − 2) = n(r − 1) = dim(Pr−1)n.

It follows that the zero fiber

A⋆0 = A⋆ ∩
(
{0} × (Pr−1)n

)

is a proper subset of {0} × (Pr−1)n. Choose (a1, . . . , an) ∈ (Cr r {0})n such that
(0, [a1], . . . , [an]) is not in A⋆0. By an easy compactness argument the set
A⋆ ∩

(
B(0, ε)× (Pr−1)n

)
is disjoint from the neighborhood

B(0, ε)×
∏

[B(aj, ε)]

of (0, [a1], . . . , [an]) for ε small enough. For z ∈ B(0, ε) we have |aj. g(z)| > ε|g(z)| for
some j, otherwise the inequality |aj. g(z)| < ε|g(z)| would imply the existence of hj ∈ Cr

with |hj | < ε and aj . g(z) = hj . g(z). Since g(z) 6= 0, we would have

(z, [a1 − h1], . . . , [an − hn]) ∈ A⋆ ∩
(
B(0, ε)× (Pr−1)n

)
,

a contradiction. We obtain therefore

ε|g(z)| 6 max |aj . g(z)| 6 (max |aj|) |g(z)| on B(0, ε). �

(10.4) Theorem ([Briançon-Skoda 1974]). Set p = min{n− 1, r − 1}. Then

a) Î(k+1) = I Î(k) = I Î(k) for k > p.
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b) I
(k+p) ⊂ Î(k+p) ⊂ Ik for all k ∈ N.

Proof. a) The inclusions I Î(k) ⊂ I Î(k) ⊂ Î(k+1) are obvious thanks to Prop. 10.2, so

we only have to prove that Î(k+1) ⊂ I Î(k). Assume first that r 6 n. Let f ∈ Î(k+1) be
such that ∫

Ω

|f |2 |g|−2(k+1+ε) dV < +∞.

For k > p − 1, we can apply Th. 9.10 with m = r − 1 and with the weight ϕ =
(k −m) log |g|2. Hence f can be written f =

∑
gjhj with

∫

Ω

|h|2 |g|−2(k+ε) dV < +∞,

thus hj ∈ Î(k) and f ∈ I Î(k). When r > n, Lemma 10.3 shows that there is an ideal
J ⊂ I with n generators such that Ĵ(k) = Î(k). We find

Î

(k+1) = Ĵ(k+1) ⊂ J Ĵ(k) ⊂ I Î(k) for k > n− 1.

b) Property a) implies inductively Î(k+p) = Ik Î(p) for all k ∈ N. This gives in particular

Î

(k+p) ⊂ Ik. �

(10.5) Corollary.

a) The ideal I is the integral closure of I, i.e. by definition the set of germs u ∈ On
which satisfy an equation

ud + a1u
d−1 + · · ·+ ad = 0, as ∈ Is, 1 6 s 6 d.

b) Similarly, I
(k)

is the set of germs u ∈ On which satisfy an equation

ud + a1u
d−1 + · · ·+ ad = 0, as ∈ I]ks[, 1 6 s 6 d,

where ]t[ denotes the smallest integer > t.

As the ideal I
(k)

is finitely generated, property b) shows that there always exists a
rational number l > k such that I(l) = I(k).

Proof. a) If u ∈ On satisfies a polynomial equation with coefficients as ∈ Is, then clearly
|as| 6 Cs |g|s and Lemma II-4.10 implies |u| 6 C |g|.

Conversely, assume that u ∈ I. The ring On is Noetherian, so the ideal Î(p) has a
finite number of generators v1, . . . , vN . For every j we have uvj ∈ I Î(p) = I Î(p), hence
there exist elements bjk ∈ I such that

uvj =
∑

16k6N

bjkvk.

The matrix (uδjk − bjk) has the non zero vector (vj) in its kernel, thus u satisfies the
equation det(uδjk − bjk) = 0, which is of the required type.
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b) Observe that v1, . . . , vN satisfy simultaneously some integrability condition∫
Ω
|vj|−2(p+ε) < +∞, thus Î(p) = Î

(p+η) for η ∈ [0, ε[. Let u ∈ I(k). For every in-
teger m ∈ N we have

umvj ∈ I
(km)

Î

(p+η) ⊂ Î(km+η+p).

If k /∈ Q, we can find m such that d(km + ε/2,Z) < ε/2, thus km + η ∈ N for some
η ∈ ]0, ε[. If k ∈ Q, we take m such that km ∈ N and η = 0. Then

umvj ∈ Î(N+p) = IN Î(p) with N = km+ η ∈ N,

and the reasoning made in a) gives det(umδjk − bjk) = 0 for some bjk ∈ IN . This is an
equation of the type described in b), where the coefficients as vanish when s is not a
multiple of m and ams ∈ INs ⊂ I]kms[. �

Let us mention that Briançon and Skoda’s result 10.4 b) is optimal for k = 1. Take
for example I = (g1, . . . , gr) with gj(z) = zrj , 1 6 j 6 r, and f(z) = z1 . . . zr. Then

|f | 6 C|g| and 10.4 b) yields f r ∈ I ; however, it is easy to verify that f r−1 /∈ I. The
theorem also gives an answer to the following conjecture made by J. Mather.

(10.6) Corollary. Let f ∈ On and If = (z1∂f/∂z1, . . . , zn∂f/∂zn). Then f ∈ If , and
for every integer k > 0, fk+n−1 ∈ Ikf .

The Corollary is also optimal for k = 1 : for example, one can verify that the function
f(z) = (z1 . . . zn)

3 + z3n−11 + . . .+ z3n−1n is such that fn−1 /∈ If .
Proof. Set gj(z) = zj ∂f/∂zj, 1 6 j 6 n. By 10.4 b), it suffices to show that |f | 6 C|g|.
For every germ of analytic curve C ∋ t 7−→ γ(t), γ 6≡ 0, the vanishing order of f ◦ γ(t) at
t = 0 is the same as that of

t
d(f ◦ γ)
dt

=
∑

16j6n

t γ′j(t)
∂f

∂zj

(
γ(t)

)
.

We thus obtain

|f ◦ γ(t)| 6 C1 |t|
∣∣∣d(f ◦ γ)

dt

∣∣∣ 6 C2

∑

16j6n

|t γ′j(t)|
∣∣∣ ∂f
∂zj

(
γ(t)

)∣∣∣ 6 C3 |g ◦ γ(t)|

and conclude by the following elementary lemma. �

(10.7) Lemma. Let f, g1, . . . , gr ∈ On be germs of holomorphic functions vanishing at
0. Then we have |f | 6 C|g| for some constant C if and only if for every germ of analytic
curve γ through 0 there exists a constant Cγ such that |f ◦ γ| 6 Cγ |g ◦ γ|.
Proof. If the inequality |f | 6 C|g| does not hold on any neighborhood of 0, the germ of
analytic set (A, 0) ⊂ (Cn+r, 0) defined by

gj(z) = f(z)zn+j , 1 6 j 6 r,

contains a sequence of points
(
zν , gj(zν)/f(zν)

)
converging to 0 as ν tends to +∞,

with f(zν) 6= 0. Hence (A, 0) contains an irreducible component on which f 6≡ 0 and
there is a germ of curve γ̃ = (γ, γn+j) : (C, 0)→ (Cn+r, 0) contained in (A, 0) such that
f ◦γ 6≡ 0. We get gj ◦ γ = (f ◦ γ)γn+j, hence |g ◦ γ(t)| 6 C|t| |f ◦ γ(t)| and the inequality
|f ◦ γ| 6 Cγ |g ◦ γ| does not hold. �
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§ 11. Integrability of Almost Complex Structures

Let M be a C∞ manifold of real dimension m = 2n. An almost complex structure on
M is by definition an endomorphism J ∈ End(TM) of class C∞ such that J2 = − Id.
Then TM becomes a complex vector bundle for which the scalar multiplication by i
is given by J . The pair (M,J) is said to be an almost complex manifold. For such a
manifold, the complexified tangent space TCM = C⊗RTM splits into conjugate complex
subspaces

(11.1) TCM = T 1,0M ⊕ T 0,1M, dimC T
1,0M = dimC T

0,1M = n,

where T 1,0M , T 0,1M ⊂ TCM are the eigenspaces of Id⊗J corresponding to the eigen-
values i and −i. The complexified exterior algebra C ⊗R Λ•T ⋆M = Λ•T ⋆CM has a
corresponding splitting

(11.2) ΛkT ⋆CM =
⊕

p+q=k

Λp,qT ⋆CM

where we denote by definition

(11.3) Λp,qT ⋆CM = Λp(T 1,0M)⋆ ⊗C Λq(T 0,1M)⋆.

As for complex manifolds, we let Csp,q(M,E) be the space of differential forms of class Cs

and bidegree (p, q) on M with values in a complex vector bundle E. There is a natural
antisymmetric bilinear map

θ : C

∞(M,T 1,0M)×C∞(M,T 1,0M) −→ C∞(M,T 0,1M)

which associates to a pair (ξ, η) of (1, 0)-vector fields the (0, 1)-component of the Lie
bracket [ξ, η]. Since

[ξ, fη] = f [ξ, η] + (ξ.f) η, ∀f ∈ C∞(M,C)

we see that θ(ξ, fη) = f θ(ξ, η). It follows that θ is in fact a (2, 0)-form on M with values
in T 0,1M .

If M is a complex analytic manifold and J its natural almost complex structure, we
have in fact θ = 0, because [∂/∂zj, ∂/∂zk] = 0, 1 6 j, k 6 n, for any holomorphic local
coordinate system (z1, . . . , zn).

(11.4) Definition. The form θ ∈ C∞2,0(M,T 0,1M) is called the torsion form of J . The
almost complex structure J is said to be integrable if θ = 0.

(11.5) Example. If M is of real dimension m = 2, every almost complex structure
is integrable, because n = 1 and alternate (2, 0)-forms must be zero. Assume that
M is a smooth oriented surface. To any Riemannian metric g we can associate the
endomorphism J ∈ End(TM) equal to the rotation of +π/2. A change of orientation
changes J into the conjugate structure −J . Conversely, if J is given, TM is a complex line
bundle, so M is oriented, and a Riemannian metric g is associated to J if and only if g is
J-hermitian. As a consequence, there is a one-to-one correspondence between conformal
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classes of Riemannian metrics on M and almost complex structures corresponding to a
given orientation. �

If (M,J) is an almost complex manifold and u ∈ C∞p,q(M,C), we let d′u, d′′u be the
components of type (p+1, q) and (p, q+1) in the exterior derivative du. Let (ξ1, . . . , ξn)
be a frame of T 1,0M↾Ω. The torsion form θ can be written

θ =
∑

16j6n

αj ⊗ ξj , αj ∈ C∞2,0(Ω,C).

Then θ yields conjugate operators θ′, θ′′ on Λ•T ⋆CM such that

(11.6) θ′u =
∑

16j6n

αj ∧ (ξj u), θ′′u =
∑

16j6n

αj ∧ (ξj u).

If u is of bidegree (p, q), then θ′u and θ′′u are of bidegree (p+2, q− 1) and (p− 1, q+2).
It is clear that θ′, θ′′ are derivations, i.e.

θ′(u ∧ v) = (θ′u) ∧ v + (−1)deg uu ∧ (θ′v)

for all smooth forms u, v, and similarly for θ′′.

(11.7) Proposition. We have d = d′ + d′′ − θ′ − θ′′.

Proof. Since all operators occuring in the formula are derivations, it is sufficient to check
the formula for forms of degree 0 or 1. If u is of degree 0, the result is obvious because
θ′u = θ′′u = 0 and du can only have components of types (1, 0) or (0, 1). If u is a 1-form
and ξ, η are complex vector fields, we have

du(ξ, η) = ξ.u(η)− η.du(ξ)− u([ξ, η]).

When u is of type (0, 1) and ξ, η of type (1, 0), we find

(du)2,0(ξ, η) = −u
(
θ(ξ, η)

)

thus (du)2,0 = −θ′u, and of course (du)1,1 = d′u, (du)0,2 = d′′u, θ′′u = 0 by definition.
The case of a (1, 0)-form u follows by conjugation. �

Proposition 11.7 shows that J is integrable if and only if d = d′+ d′′. In this case, we
infer immediately

d′2 = 0, d′d′′ + d′′d′ = 0, d′′2 = 0.

For an integrable almost complex structure, we thus have the same formalism as for a
complex analytic structure, and indeed we shall prove:

(11.8) Newlander-Nirenberg theorem (1957). Every integrable almost complex
structure J on M is defined by a unique analytic structure.

The proof we shall give follows rather closely that of [Hörmander 1966], which was
itself based on previous ideas of [Kohn 1963, 1964]. A function f ∈ C1(Ω,C), Ω ⊂M , is
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said to be J-holomorphic if d′′f = 0. Let f1, . . . , fp ∈ C1(Ω,C) and let h be a function
of class C1 on an open subset of Cp containing the range of f = (f1, . . . , fp). An easy
computation gives

(11.9) d′′(h ◦ f) =
∑

16j6p

( ∂h
∂zj
◦ f

)
d′′fj +

( ∂h
∂zj
◦ f

)
d′fj,

in particular h ◦ f is J-holomorphic as soon as f1, . . . , fp are J-holomorphic and h holo-
morphic in the usual sense.

Constructing a complex analytic structure on M amounts to show the existence of J-
holomorphic complex coordinates (z1, . . . , zn) on a neighborhood Ω of every point a ∈M .
Formula (11.9) then shows that all coordinate changes h : (zk) 7→ (wk) are holomorphic
in the usual sense, so that M is furnished with a complex analytic atlas. The uniqueness
of the analytic structure associated to J is clear, since the holomorphic functions are
characterized by the condition d′′f = 0. In order to show the existence, we need a
lemma.

(11.10) Lemma. For every point a ∈ M and every integer s > 1, there exist C∞

complex coordinates (z1, . . . , zn) centered at a such that

d′′zj = O(|z|s), 1 6 j 6 n.

Proof. By induction on s. Let (ξ⋆1 , . . . , ξ
⋆
n) be a basis of Λ1,0T ⋆CM . One can find complex

functions zj such that dzj(a) = ξ⋆j , i.e.

d′zj(a) = ξ⋆j , d′′zj(a) = 0.

Then (z1, . . . , zn) satisfy the conclusions of the Lemma for s = 1. If (z1, . . . , zn) are
already constructed for the integer s, we have a Taylor expansion

d′′zj =
∑

16k6n

Pjk(z, z) d′zk +O(|z|s+1)

where Pjk(z, w) is a homogeneous polynomial in (z, w) ∈ Cn × Cn of total degree s. As
J is integrable, we have

0 = d′′2zj =
∑

16k,l6n

∂Pjk
∂zl

d′′zl ∧ d′zk +
∂Pjk
∂zl

d′zl ∧ d′zk +O(|z|s)

=
∑

16k<l6n

[∂Pjk
∂zl

− ∂Pjl
∂zk

]
d′zl ∧ d′zk +O(|z|s)

because ∂Pjk/∂zl is of degree s − 1 and d′′zl = O(|z|s). Since the polynomial between
brackets is of degree s− 1, we must have

∂Pjk
∂zl

− ∂Pjl
∂zk

= 0, ∀j, k, l.
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We define polynomials Qj of degree s+ 1

Qj(z, z) =

∫ 1

0

∑

16l6n

zl Pjl(z, tz) dt.

Trivial computations show that

∂Qj
∂zk

=

∫ 1

0

(
Pjk +

∑

16l6n

zl
∂Pjl
∂zk

)
(z, tz) dt

=

∫ 1

0

d

dt

[
t Pjk(z, tz)

]
dt = Pjk(z, z),

d′′
(
zj −Qj(z, z)

)
= d′′zj −

∑

16k6n

∂Qj
∂zk

d′zk −
∑

16k6n

∂Qj
∂zk

d′′zk

= −
∑

16k6n

∂Qj
∂zk

d′′zk +O(|z|s+1) = O(|z|s+1)

because ∂Qj/∂zk is of degree s and d′′zl = O(|z|). The new coordinates

z̃j = zj −Qj(z, z), 1 6 j 6 n

fulfill the Lemma at step s+ 1. �

All usual notions defined on complex analytic manifolds can be extended to integrable
almost complex manifolds. For example, a smooth function ϕ is said to be strictly
plurisubharmonic if id′d′′ϕ is a positive definite (1, 1)-form. Then ω = id′d′′ϕ is a Kähler
metric on (M,J).

In this context, all L2 estimates proved in the previous paragraphs still apply to an
integrable almost complex manifold; remember that the proof of the Bochner-Kodaira-
Nakano identity used only Taylor developments of order 6 2, and the coordinates given
by Lemma 11.10 work perfectly well for that purpose. In particular, Th. 6.5 is still valid.

(11.11) Lemma. Let (z1, . . . , zn) be coordinates centered at a point a ∈M with d′′zj =
O(|z|s), s > 3. Then the functions

ψ(z) = |z|2, ϕε(z) = |z|2 + log(|z|2 + ε2), ε ∈ ]0, 1]

are strictly plurisubharmonic on a small ball |z| < r0.

Proof. We have

id′d′′ψ = i
∑

16j6n

d′zj ∧ d′zj + d′zj ∧ d′′zj + zj d
′d′′zj + zj d

′d′′zj .

The last three terms are O(|z|s) and the first one is positive definite at z = 0, so the
result is clear for ψ. Moreover

id′d′′ϕε = id′d′′ψ + i
(|z|2 + ε2)

∑
d′zj ∧ d′zj −

∑
zjd
′zj ∧

∑
zjd′zj

(|z|2 + ε2)2

+
O(|z|s)
|z|2 + ε2

+
O(|z|s+2)

(|z|2 + ε2)2
.
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We observe that the first two terms are positive definite, whereas the remainder is O(|z|)
uniformly in ε.

Proof of theorem 11.8.. With the notations of the previous lemmas, consider the pseu-
doconvex open set

Ω = {|z| < r} = {ψ(z)− r2 < 0}, r < r0,

endowed with the Kähler metric ω = id′d′′ψ. Let h ∈ D(Ω) be a cut-off function with
0 6 h 6 1 and h = 1 on a neighborhood of z = 0. We apply Th. 6.5 to the (0, 1)-forms

gj = d′′
(
zjh(z)

)
∈ C∞0,1(Ω,C)

for the weight

ϕ(z) = A|z|2 + (n+ 1) log |z|2 = lim
ε→0

A|z|2 + (n+ 1) log(|z|2 + ε2).

Lemma 11.11 shows that ϕ is plurisubharmonic for A > n + 1, and for A large enough
we obtain

id′d′′ϕ+Ricci(ω) > ω on Ω.

By Remark (6.8) we get a function fj such that d′′fj = gj and

∫

Ω

|fj |2e−ϕdV 6

∫

Ω

|gj|2e−ϕdV.

As gj = d′′zj = O(|z|s) and e−ϕ = O(|z|−2n−2) near z = 0, the integral of gj converges
provided that s > 2. Then

∫
|fj(z)|2|z|−2n−2dV converges also at z = 0. Since the

solution fj is smooth, we must have fj(0) = dfj(0) = 0. We set

z̃j = zjh(z)− fj , 1 6 j 6 n.

Then z̃j is J-holomorphic and dz̃j(0) = dzj(0), so (z1, . . . , zn) is a J-holomorphic coor-
dinate system at z = 0. �

In particular, any Riemannian metric on an oriented 2-dimensional real manifold
defines a unique analytic structure. This fact will be used in order to obtain a simple
proof of the well-known:

(11.12) Uniformization theorem. Every simply connected Riemann surface X is
biholomorphic either to P1, C or the unit disk ∆.

Proof. We will merely use the fact that H1(X,R) = 0. If X is compact, then X is a
complex curve of genus 0, so X ≃ P1 by Th. VI-14.16. On the other hand, the elementary
Riemann mapping theorem says that an open set Ω ⊂ C withH1(Ω,R) = 0 is either equal
to C or biholomorphic to the unit disk. Thus, all we have to show is that a non compact
Riemann surface X with H1(X,R) = 0 can be embedded in the complex plane C.

Let Ων be an exhausting sequence of relatively compact connected open sets with
smooth boundary in X . We may assume that X r Ων has no relatively compact con-
nected components, otherwise we “fill the holes” of Ων by taking the union with all such
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components. We let Yν be the double of the manifold with boundary (Ων , ∂Ων), i.e. the
union of two copies of Ων with opposite orientations and the boundaries identified. Then
Yν is a compact oriented surface without boundary.

(11.13) Lemma. We have H1(Yν ,R) = 0.

Proof. Let us first compute H1
c (Ων ,R). Let u be a closed 1-form with compact support

in Ων . By Poincaré duality H1
c (X,R) = 0, so u = df for some function f ∈ D(X). As

df = 0 on a neighborhood of XrΩν and as all connected components of this set are non
compact, f must be equal to the constant zero near X r Ων . Hence u = df is the zero
class in H1

c (Ων ,R) and we get H1
c (Ων ,R) = H1(Ων ,R) = 0. The exact sequence of the

pair (Ων , ∂Ων) yields

R = H0(Ων ,R) −→ H0(∂Ων ,R) −→ H1(Ων , ∂Ων ; R) ≃ H1
c (Ων ,R) = 0,

thus H0(∂Ων,R) = R. Finally, the Mayer-Vietoris sequence applied to small neighbor-
hoods of the two copies of Ων in Yν gives an exact sequence

H0(Ων ,R)
⊕2 −→ H0(∂Ων ,R) −→ H1(Yν ,R) −→ H1(Ων ,R)

⊕2 = 0

where the first map is onto. Hence H1(Yν ,R) = 0. �

Proof End of the proof of the uniformization theorem.. Extend the almost complex
structure of Ων in an arbitrary way to Yν , e.g. by an extension of a Riemannian metric.
Then Yν becomes a compact Riemann surface of genus 0, thus Yν ≃ P1 and we obtain
in particular a holomorphic embedding Φν : Ων → C. Fix a point a ∈ Ω0 and a non
zero linear form ξ⋆ ∈ TaX . We can take the composition of Φν with an affine linear map
C → C so that Φν(a) = 0 and dΦν(a) = ξ⋆. By the well-known properties of injective
holomorphic maps, (Φν) is then uniformly bounded on every small disk centered at a,
thus also on every compact subset of X by a connectedness argument. Hence (Φν) has
a subsequence converging towards an injective holomorphic map Φ : X → C. �
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Chapter IX

Finiteness Theorems for q-Convex Spaces and Stein
Spaces

§ 1. Topological Preliminaries

§ 1.A. Krull Topology of On-Modules

We shall use in an essential way different kind of topological results. The first of these
concern the topology of modules over a local ring and depend on the Artin-Rees and Krull
lemmas. Let R be a noetherian local ring; “local” means that R has a unique maximal
ideal m, or equivalently, that R has an ideal m such that every element α ∈ R r m is
invertible.

(1.1) Nakayama lemma. Let E be a finitely generated R-module such that mE = E.
Then E = {0}.

Proof. By induction on the number of generators of E : if E is generated by x1, . . . , xp,
the hypothesis E = mE shows that xp = α1x1+· · ·+αpxp with αj ∈ m ; as 1−αp ∈ Rrm

is invertible, we see that xp can be expressed in terms of x1, . . . , xp−1 if p > 1 and that
x1 = 0 if p = 1. �

(1.2) Artin-Rees lemma. Let F be a finitely generated R-module and let E be a
submodule. There exists an integer s such that

E ∩m
kF = m

k−s(E ∩m
sF ) for k > s.

Proof. Let Rt be the polynomial ring R[mt] = R + mt + · · · + m
ktk + · · · where t is an

indeterminate. If g1, . . . , gp is a set of generators of the ideal m over R, we see that the
ring Rt is generated by g1t, . . . , gpt over R, hence Rt is also noetherian. Now, we consider
the Rt-modules

Et =
⊕

E tk, Ft =
⊕

(mkF ) tk.

Then Ft is generated over Rt by the generators of F over R, hence the submodule
Et ∩ Ft is finitely generated. Let s be the highest exponent of t in a set of generators
P1(t), . . . , PN (t) of Et ∩ Ft. If we identify the components of tk in the extreme terms of
the equality ⊕ (

E ∩m
kF

)
tk = Et ∩ Ft =

∑

j

(⊕

k

m
k tk

)
Pj(t),
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we get

E ∩m
kF ⊂

∑

l6s

m
k−l(E ∩m

lF ) ⊂ m
k−s(E ∩m

sF ).

The opposite inclusion is clear. �

(1.3) Krull lemma. Let F be a finitely generated R-module and let E be a submodule.
Then

a)
⋂
k>0 m

kF = {0}.

b)
⋂
k>0(E +m

kF ) = E.

Proof. a) Put G =
⋂
k>0 m

kF ⊂ F . By the Artin-Rees lemma, there exists s ∈ N such

that G ∩ m
kF = m

k−s(G ∩ m
sF ). Taking k = s + 1, we find G ⊂ mG, hence mG = G

and G = {0} by the Nakayama lemma.

b) By applying a) to the quotient module F/E we get
⋂
m
k(F/E) = {0}. Property b)

follows. �

Now assume that R = On = C{z1, . . . , zn} and m = (z1, . . . , zn). Then On/m
k is a

finite dimensional vector space generated by the monomials zα, |α| < k. It follows that
E/mkE is a finite dimensional vector space for any finitely generated On-module E. As⋂

m
kE = {0} by 1.3 a), there is an injection

(1.4) E −֒→
∏

k∈N
E/mkE.

We endow E with the Hausdorff topology induced by the product, i.e. with the weakest
topology that makes all projections E −→ E/mkE continuous for the complex vector
space topology on E/mkE. This topology is called the Krull topology (or rather, the
analytic Krull topology; the “algebraic” Krull topology would be obtained by taking the
discrete topology on E/mkE). For E = On, this is the topology of simple convergence
on coefficients, defined by the collection of semi-norms

∑
cαz

α 7−→ |cα|. Observe that
this topology is not complete: the completion of On can be identified with the ring
of formal power series C[[z1, . . . , zn]]. In general, the completion is the inverse limit

Ê = lim
←−

E/mkE. Every On-homomorphism E −→ F is continuous, because the induced
finite dimensional linear maps E/mkE −→ F/mkF are continuous.

(1.5) Theorem. Let E ⊂ F be finitely generated On-modules. Then:

a) The map F −→ G = F/E is open, i.e. the Krull topology of G is the quotient of the
Krull topology of F ;

b) E is closed in F and the topology induced by F on E coincides with the Krull topology
of E.

Proof. a) is an immediate consequence of the fact that the surjective finite dimensional
linear maps F/mkF −→ G/mkG are open.
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b) Let E be the closure of E in F . The image of E in F/mkF is mapped into the closure
of the image of E. As every subspace of a finite dimensional space is closed, the images
of E and E must coincide, i.e. E +m

kF = E +m
kF . Therefore

E ⊂ E ⊂
⋂

(E +m
kF ) = E

thanks to 1.3 b). The topology induced by F on E is the weakest that makes all pro-
jections E −→ E/E ∩ m

kF continuous (via the injections E/E ∩ m
kF −֒→ F/mkF ).

However, the Artin-Rees lemma gives

m
kE ⊂ E ∩m

kF = m
k−s(E ∩m

sF ) ⊂ m
k−sE for k > s,

so the topology induced by F coincides with that induced by
∏
E/mkE. �

§ 1.B. Compact Perturbations of Linear Operators

We now recall some basic results in the perturbation theory of linear operators. These
results will be needed in order to obtain a finiteness criterion for cohomology groups.

(1.6) Definition. Let E, F be Hausdorff locally convex topological vector spaces and
g : E −→ F a continuous linear operator.

a) g is said to be compact if there exists a neighborhood U of 0 in E such that the image
g(U) is compact in F .

b) g is said to be a monomorphism if g is a topological isomorphism of E onto a
closed subspace of F , and a quasi-monomorphism if ker g is finite dimensional and
g̃ : E/ ker g −→ F a monomorphism.

c) g is said to be an epimorphism if g is surjective and open, and a quasi-epimorphism
if g is an epimorphism of E onto a closed finite codimensional subspace F ′ ⊂ F .

d) g is said to be a quasi-isomorphism if g is simultaneously a quasi-monomorphism and
a quasi-epimorphism.

(1.7) Lemma. Assume that E, F are Fréchet spaces. Then

a) g is a (quasi-) monomorphism if and only if g(E) is closed in F and g is injective
(resp. and ker g is finite dimensional ).

b) g is a (quasi-) epimorphism if and only if g is surjective (resp. g(E) is finite codimen-
sional ).

Proof. a) If g(E) is closed, the map g̃ : E/ ker g −→ g(E) is a continuous bijective linear
map between Fréchet spaces, so g̃ is a topological isomorphism by Banach’s theorem.

b) If g is surjective, Banach’s theorem implies that g is open, thus g is an epimorphism.
If g(E) is finite codimensional, let S be a supplementary subspace of g(E) in F , dimS <
+∞. Then the map

G : (E/ ker g)⊕ S −→ F, x̃⊕ y 7−→ g̃(x̃) + y
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is a continuous bijective linear map between Fréchet spaces, so it is a topological iso-
morphism. In particular g(E) = G

(
(E/ ker g) ⊕ {0}

)
is closed as an image of a closed

subspace. Hence g(E) is also a Fréchet space and g : E −→ g(E) is an epimorphism. �

(1.8) Theorem (L. Schwartz). Let h : E −→ F be a compact linear operator.

a) If g : E −→ F is a quasi-monomorphism, then g + h is a quasi-monomorphism.

b) If E, F are Fréchet spaces and if g : E −→ F is a quasi-epimorphism, then g + h is
a quasi-epimorphism.

Proof. Set f = g + h and let U be an open convex symmetric neighborhood of 0 in E
such that K = h(U) is compact.

a) It is sufficient to show that there is a closed finite codimensional subspace E′ ⊂ E
such that f↾E′ is a monomorphism. If we first replace E by a closed supplementary
subspace of ker g, we see that we may assume g injective. Then g is a monomorphism,
so we may assume in fact that E is a subspace of F and that g is the inclusion. Let
V be an open convex symmetric neighborhood of 0 in F such that V ∩ E ⊂ U . There
exists a closed finite codimensional subspace F ′ ⊂ F such that K ∩ F ′ ⊂ 2−1V because⋂
F ′ K ∩ F ′ = {0}. If we replace E by E′ = h−1(F ′) and U by U ′ = U ∩ E′, we get

K ′ := h(U ′) ⊂ K ∩ F ′ ⊂ 2−1V.

Hence, we may assume without loss of generality that K ⊂ 2−1V . Then we show that
f = g + h is actually a monomorphism. If Ω is an arbitrary open neighborhood of
0 in E, we have to check that there exists a neighborhood W of 0 in F such that
f(x) ∈ W =⇒ x ∈ Ω. There is an integer N such that 2−NK ∩ E ⊂ Ω. We choose W
convex and so small that

(W + 2−NK) ∩E ⊂ Ω and 2NW +K ⊂ 2−1V.

Let x ∈ E be such that f(x) ∈W . Then x ∈ 2nU for some n ∈ Z (just take n > n0 large
enough). For any such n > −N we infer

x = g(x) = f(x)− h(x) ∈W + 2nK = 2n(2−nW +K) ⊂ 2n−1V.

Thus x ∈ 2n−1(V ∩ E) ⊂ 2n−1U . By induction we finally get x ∈ 2−NU , so

x ∈ (W + 2−NK) ∩E ⊂ Ω.

b) By Lemma 1.7 b), we only have to show that there is a finite dimensional subspace
S ⊂ F such that the induced map

f̃ : E −→ F −→ F/S

is surjective. If we take S equal to a supplementary subspace of g(E) and replace g, h by

the induced maps g̃, h̃ : E −→ F/S, we may assume that g itself is surjective. Then g
is open, so V = g(U) is a convex open neighborhood of 0 in F . As K is compact, there
exists a finite set of elements b1, . . . , bN ∈ K such that K ⊂ ⋃

(bj + 2−1V ). If we now
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take S = Vect(b1, . . . , bN ) and replace again g, h by g̃, h̃, we obtain K̃ ⊂ 2−1Ṽ where K̃

is the closure of h̃(U) and V = g̃(U), so we may assume in addition that K ⊂ 2−1V .
Then we show that f = g + h is actually surjective. Let y0 ∈ V . There exists x0 ∈ U
such that g(x0) = y0, thus

y1 = y0 − f(x0) = −h(x0) ∈ K ⊂ 2−1V.

By induction, we construct xn ∈ 2−nU such that g(xn) = yn and

yn+1 = yn − f(xn) = −h(xn) ∈ 2−nK ⊂ 2−n−1V.

Hence yn+1 = y0 − f(x0 + · · ·+ xn) tends to 0 in F (as yn+1 ∈ 2−nK), but we still have
to make sure that the series

∑
xn converges in E. Let Up be a fundamental system of

convex neighborhoods of 0 in E such that Up+1 ⊂ 2−1Up. For each p, K is contained
in the union of the open sets g(2nUp ∩ 2−1U) when n ∈ N, equal to g(2−1U) = 2−1V .
There exists an increasing sequence N(p) such that K ⊂ g(2N(p)Up ∩ 2−1U), thus

21−nK ⊂ g(2N(p)+1−nUp ∩ 2−nU).

As yn ∈ 21−nK, we see that we can choose xn ∈ 2N(p)+1−n Up ∩ 2−n U for N(p) < n 6
N(p+ 1) ; then

xN(p)+1 + · · ·+ xN(p+1) ∈ (1 + 2−1 + · · · ) Up ⊂ 2Up.

As E is complete, the series x =
∑
xn converges towards an element x ∈ E such that

f(x) = y0, and f is surjective. �

The following important finiteness theorem due to H. Cartan and J.-P. Serre can be
easily deduced from this.

(1.9) Theorem. Let (E•, d) and (F •, δ) be complexes of Fréchet spaces with continuous
differentials, and ρ• : E• −→ F • a continuous complex morphism. If ρq is compact and
Hq(ρ•) : Hq(E•) −→ Hq(F •) surjective, then Hq(F •) is a Hausdorff finite dimensional
space.

Proof. Consider the operators

g, h : Zq(E•)⊕ F q−1 −→ Zq(F •),

g(x⊕ y) = ρq(x) + δq−1(y), h(x⊕ y) = −ρq(x).

As Zq(E•) ⊂ Eq, Zq(F •) ⊂ F q are closed, all our spaces are Fréchet spaces. Moreover
the hypotheses imply that h is compact and g is surjective since Hq(ρ•) is surjective.
Hence g is an epimorphism and f = g + h = 0⊕ δq−1 is a quasi-epimorphism by 1.8 b).
Therefore Bq(F •) is closed and finite codimensional in Zq(F •), thus Hq(F •) is Hausdorff
and finite dimensional. �

(1.10) Remark. If ρ• : E• −→ F • is a continuous morphism of Fréchet complexes and
if Hq(ρ•) is surjective, then Hq(ρ•) is in fact open, because the above map g is open.
If Hq(ρ•) is bijective, it follows that Hq(ρ•) is necessarily a topological isomorphism
(however Hq(E•) and Hq(F •) need not be Hausdorff). �
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§ 1.C. Abstract Mittag-Leffler Theorem

We will also need the following abstract Mittag-Leffler theorem, which is a very
efficient tool in order to deal with cohomology groups of inverse limits.

(1.11) Proposition. Let (E•ν , δ)ν∈N be a sequence of Fréchet complexes together with
morphisms E•ν+1 −→ E•ν . We assume that the image of E•ν+1 in E•ν is dense and we let
E• = lim←− E•ν be the inverse limit complex.

a) If all maps Hq(E•ν+1) −→ Hq(E•ν), ν ∈ N, are surjective, then the limit
Hq(E•) −→ Hq(E•0) is surjective.

b) If all maps Hq(E•ν+1) −→ Hq(E•ν), ν ∈ N, have a dense range, then
Hq(E•) −→ Hq(E•0) has a dense range.

c) If all maps Hq−1(E•ν+1) −→ Hq−1(E•ν) have a dense range and all maps
Hq(E•ν+1) −→ Hq(E•ν) are injective, ν ∈ N, then Hq(E•) −→ Hq(E•0) is injective.

d) Let ϕ• : F • −→ E• be a morphism of Fréchet complexes that has a dense range. If
every map Hq(F •) −→ Hq(E•ν) has a dense range, then Hq(F •) −→ Hq(E•) has a
dense range.

Proof. If x is an element of E• or of E•µ, µ > ν, we denote by xν its canonical image
in E•ν . Let dν be a translation invariant distance that defines the topology of E•ν . After
replacement of dν(x, y) by

d′ν(x, y) = max
µ6ν

{
dµ(x

µ, yµ)
}
, x, y ∈ E•ν ,

we may assume that all maps E•ν+1 −→ E•ν are Lipschitz continuous with coefficient 1.

a) Let x0 ∈ Zq(E•0) represent a given cohomology class x0 ∈ Hq(E•0). We construct by
induction a convergent sequence xν ∈ Zq(E•ν) such that xν is mapped onto x0. If xν
is already chosen, we can find by assumption xν+1 ∈ Zq(E•ν+1) such that xνν+1 = xν ,
i.e. xνν+1 = xν + δyν for some yν ∈ Eq−1ν . If we replace xν+1 by xν+1 − δyν+1 where
yν+1 ∈ Eq−1ν+1 yields an approximation yνν+1 of yν , we may assume that

max{dν(yν , 0), dν(δyν , 0)} 6 2−ν .

Then (xν) converges to a limit ξ ∈ Zq(E•) and we have ξ0 = x0 + δ
∑
y0ν .

b) The density assumption for cohomology groups implies that the map

Zq(E•ν+1)× Eq−1ν −→ Zq(E•ν), (xν+1, yν) 7−→ xνν+1 + δyν

has a dense range. If we approximate yν by elements coming from Eq−1ν+1, we see that
the map Zq(E•ν+1) −→ Zq(E•ν) has also a dense range. If x0 ∈ Zq(E•0), we can find
inductively a sequence xν ∈ Zq(E•ν) such that dν(x

ν
ν+1, xν) 6 ε2−ν−1 for all ν, thus (xν)

converges to an element ξ ∈ Zq(E•) such that d0(ξ
0, x0) 6 ε and Zq(E•) −→ Zq(E•0)

has a dense range.

c) Let x ∈ Zq(E•) be such that x0 ∈ Hq(E•0) is zero. By assumption, the image
of x in Hq(E•ν) must be also zero, so we can write xν = dyν , yν ∈ Eq−1ν . We have
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zν = yνν+1 − yν ∈ Zq−1(E•ν). Let zν+1 ∈ Zq−1(E•ν+1) be such that zνν+1 approximates
zν . If we replace yν+1 by yν+1 − zν+1, we still have xν+1 = dyν+1 and we may assume
in addition that dν(y

ν
ν+1, yν) 6 2−ν . Then (yν) converges towards an element y ∈ Eq−1

such that x = dy, thus x = 0 and Hq(E•) −→ Hq(E•0) is injective.

d) For every class y ∈ Hq(E•), the hypothesis implies the existence of a sequence xν ∈
Zq(F •) such that ϕq(xν)

ν converges to yν , that is, dν(y
ν, ϕq(xν)

ν + δzν) tends to 0 for
some sequence zν ∈ Eq−1ν . Approximate zν by ϕq−1(wν)ν for some wν ∈ F q−1 and
replace xν by x′ν = xν + δwν . Then ϕ

q(x′ν) converges to y in Zq(E•). �

§ 2. q-Convex Spaces

§ 2.A. q-Convex Functions

The concept of q-convexity, first introduced in [Rothstein 1955], and further devel-
oped by [Andreotti-Grauert 1962], generalizes the concepts of pseudoconvexity already
considered in chapters 1 and 8. Let M be a complex manifold, dimCM = n. A function
v ∈ C2(M,R) is said to be strongly (resp. weakly) q-convex at a point x ∈M if id′d′′v(x)
has at least (n− q+1) strictly positive (resp. nonnegative) eigenvalues, or equivalently if
there exists a (n− q+1)-dimensional subspace F ⊂ TxM on which the complex Hessian
Hxv is positive definite (resp. semi-positive). Weak 1-convexity is thus equivalent to
plurisubharmonicity. Some authors use different conventions for the number of positive
eigenvalues in q-convexity. The reason why we introduce the number n − q + 1 instead
of q is mainly due to the following result:

(2.1) Proposition. If v ∈ C2(M,R) is strongly (weakly) q-convex and if Y is a sub-
manifold of M , then v↾Y is strongly (weakly) q-convex.

Proof. Let d = dimY . For every x ∈ Y , there exists F ⊂ TxM with dimF = n−q+1 such
thatHv is (semi-) positive on F . Then G = F∩TxY has dimension > (n−q+1)−(n−d) =
d − q + 1, and H(v↾Y ) is (semi-) positive on G ⊂ TxY . Hence v↾Y is strongly (weakly)
q-convex at x. �

(2.2) Proposition. Let vj ∈ C2(M,R) be a weakly (strongly) qj-convex function, 1 6
j 6 s, and χ ∈ C2(Rs,R) a convex function that is increasing (strictly increasing) in all
variables. Then v = χ(v1, . . . , vs) is weakly (strongly) q-convex with q − 1 =

∑
(qj − 1).

In particular v1 + · · ·+ vs is weakly (strongly) q-convex.

Proof. A simple computation gives

(2.3) Hv =
∑

j

∂χ

∂tj
(v1, . . . , vs)Hvj +

∑

j,k

∂2χ

∂tj∂tk
(v1, . . . , vs) d

′vj ⊗ d′vk,

and the second sum defines a semi-positive hermitian form. In every tangent space TxM
there exists a subspace Fj of codimension qj − 1 on which Hvj is semi-positive (positive
definite). Then F =

⋂
Fj has codimension 6 q − 1 and Hv is semi-positive (positive

definite) on F . �

The above result cannot be improved, as shown by the trivial example

v1(z) = −2|z1|2 + |z2|2 + |z3|2, v2(z) = |z1|2 − 2|z2|2 + |z3|2 on C3,
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in which case q1 = q2 = 2 but v1 + v2 is only 3-convex. However, formula (2.3) implies
the following result.

(2.4) Proposition. Let vj ∈ C2(M,R), 1 6 j 6 s, be such that every convex linear com-
bination

∑
αjvj , αj > 0,

∑
αj = 1, is weakly (strongly) q-convex. If χ ∈ C2(Rs,R) is a

convex function that is increasing (strictly increasing) in all variables, then χ(v1, . . . , vs)
is weakly (strongly) q-convex. �

The invariance property of Prop. 2.1 immediately suggests the definition of q-conve-
xity on complex spaces or analytic schemes:

(2.5) Definition. Let (X,OX) be an analytic scheme. A function v on X is said to
be strongly (resp. weakly) q-convex of class Ck on X if X can be covered by patches
G : U ≃−→ A, A ⊂ Ω ⊂ CN such that for each patch there exists a function ṽ on Ω with
ṽ↾A ◦G = v↾U , which is strongly (resp. weakly) q-convex of class Ck.

The notion of q-convexity on a patch U does not depend on the way U is embedded
in CN , as shown by the following lemma.

(2.6) Lemma. Let G : U −→ A ⊂ Ω ⊂ CN and G′ : U ′ −→ A′ ⊂ Ω′ ⊂ CN
′

be two
patches of X. Let ṽ be a strongly (weakly) q-convex function on Ω and v = ṽ↾A ◦G. For
every x ∈ U ∩U ′ there exists a strongly (weakly) q-convex function ṽ′ on a neighborhood
W ′ ⊂ Ω′ of G′(x) such that ṽ′↾A′∩W ′ ◦G′ coincides with v on G′−1(W ′).

Proof. The isomorphisms

G′ ◦G−1 : A ⊃ G(U ∩ U ′) −→ G′(U ∩ U ′) ⊂ A′

G ◦G′−1 : A′ ⊃ G′(U ∩ U ′) −→ G(U ∩ U ′) ⊂ A

are restrictions of holomorphic maps H :W −→ Ω′, H ′ :W ′ −→ Ω defined on neighbor-
hoods W ∋ G(x), W ′ ∋ G′(x) ; we can shrink W ′ so that H ′(W ′) ⊂ W . If we compose
the automorphism (z, z′) 7−→ (z, z′ − H(z)) of W × CN

′

with the function v(z) + |z′|2
we see that the function ϕ(z, z′) = ṽ(z) + |z′ −H(z)|2 is strongly (weakly) q-convex on
W × Ω′. Now, W ′ can be embedded in W × Ω′ via the map z′ 7−→

(
H ′(z′), z′

)
, so that

the composite function

ṽ′(z′) = ϕ
(
H ′(z′), z′

)
= ṽ

(
H ′(z′)

)
+ |z′ −H ◦H ′(z′)|2

is strongly (weakly) q-convex on W ′ by Prop. 2.1. Since H ◦G = G′ and H ′ ◦G′ = G on
G′−1(W ′), we have ṽ′ ◦G′ = ṽ ◦G = v on G′−1(W ′) and the lemma follows. �

A consequence of this lemma is that Prop. 2.2 is still valid for an analytic scheme X
(all the extensions ṽj near a given point x ∈ X can be obtained with respect to the same
local embedding).

(2.7) Definition. An analytic scheme (X,OX) is said to be strongly (resp. weakly) q-
convex if X has a C∞ exhaustion function ψ which is strongly (resp. weakly) q-convex
outside an exceptional compact set K ⊂ X. We say that X is strongly q-complete if ψ
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can be chosen so that K = ∅. By convention, a compact scheme X is said to be strongly
0-complete, with exceptional compact set K = X.

We consider the sublevel sets

(2.8) Xc = {x ∈ X ; ψ(x) < c}, c ∈ R.

If K ⊂ Xc, we may select a convex increasing function χ such that χ = 0 on ]−∞, c] and
χ′ > 0 on ]c,+∞[. Then χ ◦ ψ = 0 on Xc, so that χ ◦ ψ is weakly q-convex everywhere
in virtue of (2.3). In the weakly q-convex case, we may therefore always assume K = ∅.
The following properties are almost immediate consequences of the definition:

(2.9) Theorem.

a) A scheme X is strongly (weakly) q-convex if and only if the reduced space Xred is
strongly (weakly) q-convex.

b) If X is strongly (weakly) q-convex, every closed analytic subset Y of Xred is strongly
(weakly) q-convex.

c) If X is strongly (weakly) q-convex, every sublevel set Xc containing the exceptional
compact set K is strongly (weakly) q-convex.

d) If Uj is a weakly qj-convex open subset of X, 1 6 j 6 s, the intersection U =
U1 ∩ . . .∩Us is weakly q-convex with q−1 =

∑
(qj −1) ; U is strongly q-convex (resp.

q-complete) as soon as one of the sets Uj is strongly qj-convex (resp. qj-complete).

Proof. a) is clear, since Def. 2.5 does not involve the structure sheaf OX . In cases b)
and c), let ψ be an exhaustion of the required type on X . Then ψ↾Y and 1/(c− ψ) are
exhaustions on Y and Xc respectively (this is so only if Y is closed). Moreover, these
functions are strongly (weakly) q-convex on Y r(K∩Y ) and XcrK, thanks to Prop. 2.1
and 2.2. For property d), note that a sum ψ = ψ1 + · · · + ψs of exhaustion functions
on the sets Uj is an exhaustion on U , choose the ψj ’s weakly qj -convex everywhere, and
apply Prop. 2.2. �

(2.10) Corollary. Any finite intersection U = U1 ∩ . . . ∩ Us of weakly 1-convex open
subsets is weakly 1-convex. The set U is strongly 1-convex (resp. 1-complete) as soon as
one of the sets Uj is strongly 1-convex (resp. 1-complete).

§ 2.B. Neighborhoods of q-complete subspaces

We prove now a rather useful result asserting the existence of q-complete neighbor-
hoods for q-complete subvarieties. The case q = 1 goes back to [Siu 1976], who used a
much more complicated method. The first step is an approximation-extension theorem
for strongly q-convex functions.

(2.11) Proposition. Let Y be an analytic set in a complex space X and ψ a strongly
q-convex C∞ function on Y . For every continuous function δ > 0 on Y , there exists a
strongly q-convex C∞ function ϕ on a neighborhood V of Y such that ψ 6 ϕ↾Y < ψ+ δ.
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Proof. Let Zk be a stratication of Y as given by Prop. II.5.6, i.e. Zk is an increasing
sequence of analytic subsets of Y such that Y =

⋃
Zk and Zk r Zk−1 is a smooth k-

dimensional manifold (possibly empty for some k’s). We shall prove by induction on k
the following statement:

There exists a C∞ function ϕk on X which is strongly q-convex along Y and on a
closed neighborhood V k of Zk in X, such that ψ 6 ϕk↾Y < ψ + δ.

We first observe that any smooth extension ϕ−1 of ψ to X satisfies the requirements
with Z−1 = V−1 = ∅. Assume that Vk−1 and ϕk−1 have been constructed. Then
Zk r Vk−1 ⊂ Zk r Zk−1 is contained in Zk,reg. The closed set Zk r Vk−1 has a locally
finite covering (Aλ) in X by open coordinate patches Aλ ⊂ Ωλ ⊂ CNλ in which Zk is
given by equations z′λ = (zλ,k+1, . . . , zλ,Nλ

) = 0. Let θλ be C∞ functions with compact
support in Aλ such that 0 6 θλ 6 1 and

∑
θλ = 1 on Zk r Vk−1. We set

ϕk(x) = ϕk−1(x) +
∑

θλ(x) ε
3
λ log(1 + ε−4λ |z′λ|2) on X.

For ελ > 0 small enough, we will have ψ 6 ϕk−1↾Y 6 ϕk↾Y < ψ + δ. Now, we check
that ϕk is still strongly q-convex along Y and near any x0 ∈ V k−1, and that ϕk becomes
strongly q-convex near any x0 ∈ Zk r Vk−1. We may assume that x0 ∈ Supp θµ for
some µ, otherwise ϕk coincides with ϕk−1 in a neighborhood of x0. Select µ and a small
neighborhood W ⊂⊂ Ωµ of x0 such that

a) if x0 ∈ Zk r Vk−1, then θµ(x0) > 0 and Aµ ∩W ⊂⊂ {θµ > 0} ;
b) if x0 ∈ Aλ for some λ (there is only a finite set I of such λ’s), then Aµ ∩W ⊂⊂ Aλ

and zλ↾Aµ∩W has a holomorphic extension z̃λ to W ;

c) if x0 ∈ V k−1, then ϕk−1↾Aµ∩W has a strongly q-convex extension ϕ̃k−1 to W ;

d) if x0 ∈ Y r V k−1, then ϕk−1↾Y ∩W has a strongly q-convex extension ϕ̃k−1 to W .

Otherwise take an arbitrary smooth extension ϕ̃k−1 of ϕk−1↾Aµ∩W to W and let θ̃λ be

an extension of θλ↾Aµ∩W to W . Then

ϕ̃k = ϕ̃k−1 +
∑

θ̃λ ε
3
λ log(1 + ε−4λ |z̃ ′λ|2)

is an extension of ϕk↾Aµ∩W to W , resp. of ϕk↾Y ∩W to W in case d). As the function

log(1+ ε−4λ |z̃ ′λ|2) is plurisubharmonic and as its first derivative 〈z̃ ′λ, dz̃ ′λ〉 (ε4λ+ |z̃ ′λ|2)−1 is
bounded by O(ε−2λ ), we see that

id′d′′ϕ̃k > id′d′′ϕ̃k−1 −O(
∑
ελ).

Therefore, for ελ small enough, ϕ̃k remains q-convex on W in cases c) and d). Since all
functions z̃ ′λ vanish along Zk ∩W , we have

id′d′′ϕ̃k > id′d′′ϕ̃k−1 +
∑

λ∈I
θλ ε

−1
λ id′d′′|z̃ ′λ|2 > id′d′′ϕ̃k−1 + θµ ε

−1
µ id′d′′|z′µ|2

at every point of Zk ∩W . Moreover id′d′′ϕ̃k−1 has at most (q − 1)-negative eigenvalues
on TZk since Zk ⊂ Y , whereas id′d′′|z′µ|2 is positive definite in the normal directions
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to Zk in Ωµ. In case a), we thus find that ϕ̃k is strongly q-convex on W for εµ small
enough; we also observe that only finitely many conditions are required on each ελ if we
choose a locally finite covering of

⋃
Supp θλ by neighborhoods W as above. Therefore,

for ελ small enough, ϕk is strongly q-convex on a neighborhood V
′
k of Zk r Vk−1. The

function ϕk and the set Vk = V ′k ∪ Vk−1 satisfy the requirements at order k. It is clear
that we can choose the sequence ϕk stationary on every compact subset of X ; the limit
ϕ and the open set V =

⋃
Vk fulfill the proposition. �

The second step is the existence of almost plurisubharmonic functions having poles
along a prescribed analytic set. By an almost plurisubharmonic function on a manifold,
we mean a function that is locally equal to the sum of a plurisubharmonic function and
of a smooth function, or equivalently, a function whose complex Hessian has bounded
negative part. On a complex space, we require that our function can be locally extended
as an almost plurisubharmonic function in the ambient space of an embedding.

(2.12) Lemma. Let Y be an analytic subvariety in a complex space X. There is an
almost plurisubharmonic function v on X such that v = −∞ on Y with logarithmic poles
and v ∈ C∞(X r Y ).

Proof. Since IY ⊂ OX is a coherent subsheaf, there is a locally finite covering of X by
patches Aλ isomorphic to analytic sets in balls B(0, rλ) ⊂ CNλ , such that IY admits a
system of generators gλ = (gλ,j) on a neighborhood of each set Aλ. We set

vλ(z) = log |gλ(z)|2 −
1

r2λ − |z − zλ|2
on Aλ,

v(z) =M(1,...,1)

(
. . . , vλ(z), . . .

)
for λ such that Aλ ∋ z,

where Mη is the regularized max function defined in I-3.37. As the generators (gλ,j) can
be expressed in terms of one another on a neighborhood of Aλ ∩ Aµ, we see that the
quotient |gλ|/|gµ| remains bounded on this set. Therefore none of the values vλ(z) for
Aλ ∋ z and z near ∂Aλ contributes to the value of v, since 1/(r2λ−|z−zλ|2) tends to +∞
on ∂Aλ. It follows that v is smooth on X r Y ; as each vλ is almost plurisubharmonic
on Aλ, we also see that v is almost plurisubharmonic on X . �

(2.13) Theorem. Let X be a complex space and Y a strongly q-complete analytic subset.
Then Y has a fundamental family of strongly q-complete neighborhoods V in X.

Proof. By Prop. 2.11 applied to a strongly q-convex exhaustion of Y and δ = 1, there
exists a strongly q-convex function ϕ on a neighborhood W0 of Y such that ϕ↾Y is an
exhaustion. Let W1 be a neighborhood of Y such that W 1 ⊂W0 and such that ϕ↾W 1

is
an exhaustion. We are going to show that every neighborhood W ⊂W1 of Y contains a
strongly q-complete neighborhood V . If v is the function given by Lemma 2.12, we set

ṽ = v + χ ◦ ϕ on W

where χ : R → R is a smooth convex increasing function. If χ grows fast enough, we
get ṽ > 0 on ∂W and the (q − 1)-codimensional subspace on which id′d′′ϕ is positive
definite (in some ambient space) is also positive definite for id′d′′ṽ provided that χ′ be
large enough to compensate the bounded negative part of id′d′′v. Then ṽ is strongly
q-convex. Let θ be a smooth convex increasing function on ] −∞, 0[ such that θ(t) = 0
for t < −3 and θ(t) = −1/t on ] − 1, 0[. The open set V = {z ∈ W ; ṽ(z) < 0} is a
neighborhood of Y and ψ̃ = ϕ+ θ ◦ ṽ is a strongly q-convex exhaustion of V . �
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§ 2.C. Runge Open Subsets

In order to extend the classical Runge theorem into an approximation result for sheaf
cohomology groups, we need the concept of a q-Runge open subset.

(2.14) Definition. An open subset U of a complex space X is said to be q-Runge
(resp. q-Runge complete) in X if for every compact subset L ⊂ U there exists a smooth
exhaustion function ψ on X and a sublevel set Xb of ψ such that L ⊂ Xb ⊂⊂ U and ψ is
strongly q-convex on X rXb (resp. on the whole space X).

(2.15) Example. If X is strongly q-complete and if ψ is a strongly q-convex exhaustion
function of X , then every sublevel set Xc of ψ is q-Runge complete in X : every compact
set L ⊂ Xc satisfies L ⊂ Xb ⊂⊂ Xc for some b < c. More generally, if X is strongly
q-convex and if ψ is strongly q-convex on X rK, every sublevel set Xc containing K is
q-Runge in X .

Later on, we shall need the following technical result.

(2.16) Proposition. Let Y be an analytic subset of a complex space X. If U is a
q-Runge complete open subset of Y and L a compact subset, there exist a neighborhood
V of Y in X and a strongly q-convex exhaustion ψ̃ on V such that U = Y ∩ V and
L ⊂ Y ∩ Vb ⊂⊂ U for some sublevel set Vb of ψ̃.

Proof. Let ψ be a strongly q-convex exhaustion on Y with L ⊂ {ψ < b} ⊂⊂ U as in
Def. 2.14. Then L ⊂ {ψ < b − δ} for some number δ > 0 and Lemma 2.11 gives a
strongly q-convex function ϕ on a neighborhood W0 of Y so that ψ 6 ϕ↾Y < ψ+ δ. The
neighborhood V and the function ψ̃ = ϕ+ θ ◦ ṽ constructed in the proof of Th. 2.13 are
the desired ones: we have ψ 6 ψ̃↾Y = ϕ↾Y < ψ + δ, thus

L ⊂ Y ∩ Vb−δ ⊂ {ψ < b} ⊂⊂ U. �

§ 3. q-Convexity Properties in Top Degrees

It is obvious by definition that a n-dimensional complex manifold M is strongly q-
complete for q > n+ 1 (an arbitrary smooth function is then strongly q-convex !). If M
is connected and non compact, [Greene and Wu 1975] have shown that M is strongly
n-complete, i.e. there is a smooth exhaustion function ψ on M such that id′d′′ψ has at
least one positive eigenvalue everywhere. We need the following lemmas.

(3.1) Lemma. Let ψ be a strongly q-convex function on M and ε > 0 a given number.
There exists a hermitian metric ω on M such that the eigenvalues γ1 6 . . . 6 γn of the
Hessian form id′d′′ψ with respect to ω satisfy γ1 > −ε and γq = . . . = γn = 1.

Proof. Let ω0 be a fixed hermitian metric, A0 ∈ C∞(EndTM) the hermitian endomor-
phism associated to the hermitian form id′d′′ψ with respect to ω0, and γ01 6 . . . 6 γ0n
the eigenvalues of A0 (or id′d′′ψ). We can choose a function η ∈ C∞(M,R) such that
0 < η(x) 6 γ0q (x) at each point x ∈ M . Select a positive function θ ∈ C∞(R,R) such
that

θ(t) > |t|/ε for t 6 0, θ(t) > t for t > 0, θ(t) = t for t > 1.



§ 3. q-Convexity Properties in Top Degrees 415

We let ω be the hermitian metric defined by the hermitian endomorphism

A(x) = η(x) θ[(η(x))−1A0(x)]

where θ[η−1A0] ∈ C∞(EndTM) is defined as in Lemma VII-6.2. By construction, the
eigenvalues of A(x) are αj(x) = η(x)θ

(
γ0j (x)/η(x)

)
> 0 and we have

αj(x) > |γ0j (x)|/ε for γ0j (x) 6 0,

αj(x) > γ0j (x) for γ0j (x) > 0,

αj(x) = γ0j (x) for j > q
(
then γ0j (x) > η(x)

)
.

The eigenvalues of id′d′′ψ with respect to ω are γj(x) = γ0j (x)/αj(x) and they have the
required properties. �

On a hermitian manifold (M,ω), we consider the Laplace operator ∆ω defined by

(3.2) ∆ωv = Traceω(id
′d′′v) =

∑

16j,k6n

ωjk(z)
∂2v

∂zj∂zk

where (ωjk) is the conjugate of the inverse matrix of (ωjk). Note that ∆ω may differ
from the usual Laplace-Beltrami operator if ω is not Kähler. We say that v is strongly
ω-subharmonic if ∆ωv > 0. This property implies clearly that v is strongly n-convex;
however, as

∆ωχ(v1, . . . , vs) =
∑

j

∂χ

∂tj
(v1, . . . , vs)∆ωvj

+
∑

j,k

∂2χ

∂tj∂tk
(v1, . . . , vs) 〈d′vj , d′vk〉ω,

subharmonicity has the advantage of being preserved by all convex increasing transfor-
mations. Conversely, if ψ is strongly n-convex and ω chosen as in Lemma 3.1 with ε
small enough, we get ∆ωψ > 1 − (n − 1)ε > 0, thus ψ is strongly subharmonic for a
suitable metric ω.

(3.3) Lemma. Let U,W ⊂ M be open sets such that for every connected component
Us of U there is a connected component Wt(s) of W such that Wt(s) ∩ Us 6= ∅ and
Wt(s) r Us 6= ∅. Then there exists a function v ∈ C∞(M,R), v > 0, with support
contained in U ∪W , such that v is strongly ω-subharmonic and > 0 on U .

Proof. We first prove that the result is true when U,W are small cylinders with the
same radius and axis. Let a0 ∈ M be a given point and z1, . . . , zn holomorphic co-
ordinates centered at a0. We set Re zj = x2j−1, Im zj = x2j , x

′ = (x2, . . . , x2n) and
ω =

∑
ω̃jk(x)dxj ⊗ dxk. Let U be the cylinder |x1| < r, |x′| < r, and W the cylinder

r − ε < x1 < r + ε, |x′| < r. There are constants c, C > 0 such that

∑
ω̃jk(x)ξjξk > c|ξ|2 and

∑
|ω̃jk(x)| 6 C on U.
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Let χ ∈ C∞(R,R) be a nonnegative function equal to 0 on ]−∞,−r] ∪ [r+ ε,+∞[ and
strictly convex on ] − r, r]. We take explicitly χ(x1) = (x1 + r) exp(−1/(x1 + r)2

)
on

]− r, r] and

v(x) = χ(x1) exp
(
1/(|x′|2 − r2)

)
on U ∪W, v = 0 on M r (U ∪W ).

We have v ∈ C∞(M,R), v > 0 on U , and a simple computation gives

∆ωv(x)

v(x)
= ω̃11(x)

(
4(x1 + r)−5 − 2(x1 + r)−3

)

+
∑

j>1

ω̃1j(x)
(
1 + 2(x1 + r)−2

)
(−2xj)(r2 − |x′|2)−2

+
∑

j,k>1

ω̃jk(x)
(
xjxk

(
4− 8(r2 − |x′|2)

)
− 2(r2 − |x′|2)2δjk

)
(r2 − |x′|2)−4.

For r small, we get

∆ωv(x)

v(x)
> 2c(x1 + r)−5 − C1(x1 + r)−2|x′|(r2 − |x′|2)−2

+ (2c|x′|2 − C2r
4)(r2 − |x′|2)−4

with constants C1, C2 independent of r. The negative term is bounded by C3(x1+r)
−4+

c|x′|2(r2 − |x′|2)−4, hence

∆ωv/v(x) > c(x1 + r)−5 + (c|x′|2 − C2r
4)(r2 − |x′|2)−4.

The last term is negative only when |x′| < C4r
2, in which case it is bounded by C5r

−4 <
c(x1 + r)−5. Hence v is strongly ω-subharmonic on U .

Next, assume that U and W are connected. Then U ∪W is connected. Fix a point
a ∈ W r U . If z0 ∈ U is given, we choose a path Γ ⊂ U ∪W from z0 to a which is
piecewise linear with respect to holomorphic coordinate patches. Then we can find a
finite sequence of cylinders (Uj ,Wj) of the type described above, 1 6 j 6 N , whose axes
are segments contained in Γ, such that

Uj ∪Wj ⊂ U ∪W, W j ⊂ Uj+1 and z0 ∈ U0, a ∈WN ⊂W r U.

For each such pair, we have a function vj ∈ C∞(M) with support in U j ∪W j , vj > 0,
strongly ω-subharmonic and > 0 on Uj . By induction, we can find constants Cj > 0 such
that v0+C1v1+ · · ·+Cjvj is strongly ω-subharmonic on U0∪ . . .∪Uj and ω-subharmonic
on M rW j . Then

wz0 = v0 + C1v1 + . . .+ CNvN > 0

is ω-subharmonic on U and strongly ω-subharmonic > 0 on a neighborhood Ω0 of the
given point z0. Select a denumerable covering of U by such neighborhoods Ωp and
set v(z) =

∑
εpwzp(z) where εp is a sequence converging sufficiently fast to 0 so that

v ∈ C∞(M,R). Then v has the required properties.

In the general case, we find for each pair (Us,Wt(s)) a function vs with support in
Us ∪W t(s), strongly ω-subharmonic and > 0 on Us. Any convergent series v =

∑
εsvs

yields a function with the desired properties. �
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(3.4) Lemma. Let X be a connected, locally connected and locally compact topological

space. If U is a relatively compact open subset of X, we let Ũ be the union of U with all
compact connected components of X r U . Then Ũ is open and relatively compact in X,
and X r Ũ has only finitely many connected components, all non compact.

Proof. A rather easy exercise of general topology. Intuitively, Ũ is obtained by “filling
the holes” of U in X . �

(3.5) Theorem ([Greene-Wu 1975]). Every n-dimensional connected non compact com-
plex manifold M has a strongly subharmonic exhaustion function with respect to any
hermitian metric ω. In particular, M is strongly n-complete.

Proof. Let ϕ ∈ C∞(M,R) be an arbitrary exhaustion function. There exists a sequence
of connected smoothly bounded open sets Ω′ν ⊂⊂M such that Ω

′
ν ⊂ Ω′ν+1 andM =

⋃
Ω′ν .

Let Ων = Ω̃′ν be the relatively compact open set given by Lemma 3.4. Then Ων ⊂ Ων+1,
M =

⋃
Ων and M r Ων has no compact connected component. We set

U1 = Ω2, Uν = Ων+1 r Ων−2 for ν > 2.

Then ∂Uν = ∂Ων+1 ∪ ∂Ων−2 ; any connected component Uν,s of Uν has its boundary
∂Uν,s 6⊂ ∂Ων−2, otherwise Uν,s would be open and closed in M r Ων−2, hence Uν,s
would be a compact component of M r Ων−2. Therefore ∂Uν,s intersects ∂Ων+1 ⊂
Uν+1. If ∂Uν+1,t(s) is a connected component of Uν+1 containing a point of ∂Uν,s, then

Uν+1,t(s)∩Uν,s 6= ∅ and Uν+1,t(s)rU ν,s 6= ∅. Lemma 7 implies that there is a nonnegative
function vν ∈ C∞(M,R) with support in Uν ∪ Uν+1, which is strongly ω-subharmonic
on Uν . An induction yields constants Cν such that

ψν = ϕ+ C1v1 + · · ·+ Cνvν

is strongly ω-subharmonic on Ων ⊂ U0 ∪ . . . ∪ Uν , thus ψ = ϕ +
∑
Cνvν is a strongly

ω-subharmonic exhaustion function on M . �

By an induction on the dimension, the above result can be generalized to an arbitrary
complex space (or analytic scheme), as was first shown by T. Ohsawa.

(3.6) Theorem ([Ohsawa 1984]). Let X be a complex space of maximal dimension n.

a) X is always strongly (n+ 1)-complete.

b) If X has no compact irreducible component of dimension n, then X is strongly n-
complete.

c) If X has only finitely many irreducible components of dimension n, then X is strongly
n-convex.

Proof. We prove a) and b) by induction on n = dimX . For n = 0, property b) is void
and a) is obvious (any function can then be considered as strongly 1-convex). Assume
that a) has been proved in dimension 6 n − 1. Let X ′ be the union of Xsing and of
the irreducible components of X of dimension at most n − 1, and M = X r X ′ the
n-dimensional part of Xreg. As dimX ′ 6 n− 1, the induction hypothesis shows that X ′

is strongly n-complete. By Th. 2.13, there exists a strongly n-convex exhaustion function
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ϕ′ on a neighborhood V ′ of X ′. Take a closed neighborhood V ⊂ V ′ and an arbitrary
exhaustion ϕ on X that extends ϕ′↾V . Since every function on a n-dimensional manifold
is strongly (n+1)-convex, we conclude that X is at worst (n+1)-complete, as stated in
a).

In case b), the hypothesis means that the connected components Mj of M = X rX ′

have non compact closure M j in X . On the other hand, Lemma 3.1 shows that there
exists a hermitian metric ω on M such that ϕ↾M∩V is strongly ω-subharmonic. Consider
the open sets Uj,ν ⊂Mj provided by Lemma 3.7 below. By the arguments already used
in Th. 3.5, we can find a strongly ω-subharmonic exhaustion ψ = ϕ +

∑
j,ν Cj,νvj,ν on

X , with vj,ν strongly ω-subharmonic on Uj,ν , Supp vj,ν ⊂ Uj,ν ∪ Uj,ν+1 and Cj,ν large.
Then ψ is strongly n-convex on X .

(3.7) Lemma. For each j, there exists a sequence of open sets Uj,ν ⊂⊂Mj, ν ∈ N, such
that

a) Mj r V ′ ⊂ ⋃
ν Uj,ν and (Uj,ν) is locally finite in M j ;

b) for every connected component Uj,ν,s of Uj,ν there is a connected component
Uj,ν+1,t(s) of Uj,ν+1 such that Uj,ν+1,t(s) ∩ Uj,ν,s 6= ∅ and Uj,ν+1,t(s) r U j,ν,s 6= ∅.

Proof. By Lemma 3.4 applied to the space M j , there exists a sequence of relatively
compact connected open sets Ωj,ν in M j such that M j rΩj,ν has no compact connected
component, Ωj,ν ⊂ Ωj,ν+1 and M j =

⋃
Ωj,ν . We define a compact set Kj,ν ⊂ Mj and

an open set Wj,ν ⊂M j containing Kj,ν by

Kj,ν = (Ωj,ν r Ωj,ν−1)r V ′, Wj,ν = Ωj,ν+1 r Ωj,ν−2.

By induction on ν, we construct an open set Uj,ν ⊂⊂ Wj,ν rX ′ ⊂ Mj and a finite set
Fj,ν ⊂ ∂Uj,ν rΩj,ν . We let Fj,−1 = ∅. If these sets are already constructed for ν−1, the
compact set Kj,ν ∪ Fj,ν−1 is contained in the open set Wj,ν , thus contained in a finite
union of connected components Wj,ν,s. We can write Kj,ν ∪ Fj,ν−1 =

⋃
Lj,ν,s where

Lj,ν,s is contained in Wj,ν,s rX ′ ⊂Mj . The open set Wj,ν,s rX ′ is connected and non
contained in Ωj,ν ∪ Lj,ν,s, otherwise its closure W j,ν,s would have no boundary point
∈ ∂Ωj,ν+1, thus would be open and compact in M j r Ωj,ν−2, contradiction. We select
a point as ∈ (Wj,ν,s rX ′)r (Ωj,ν ∪ Lj,ν,s) and a smoothly bounded connected open set
Uj,ν,s ⊂⊂ Wj,ν,srX ′ containing Lj,ν,s with as ∈ ∂Uj,ν,s. Finally, we set Uj,ν =

⋃
s Uj,ν,s

and let Fj,ν be the set of all points as. By construction, we have Uj,ν ⊃ Kj,ν ∪ Fj,ν−1,
thus

⋃
Uj,ν ⊃

⋃
Kj,ν =Mj r V ′, and ∂Uj,ν,s ∋ as with as ∈ Fj,ν ⊂ Uj,ν+1. Property b)

follows. �

Proof of Theorem 3.6 c) (end). Let Y ⊂ X be the union of Xsing with all irreducible
components of X that are non compact or of dimension < n. Then dimY 6 n− 1, so Y
is n-convex and Th. 2.13 implies that there is an exhaustion function ψ ∈ C∞(X,R) such
that ψ is strongly n-convex on a neighborhood V of Y . Then the complement K = XrV
is compact and ψ is strongly n-convex on X rK. �

(3.8) Proposition. Let M be a connected non compact n-dimensional complex manifold
and U an open subset of M . Then U is n-Runge complete in M if and only if M r U
has no compact connected component. �
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Proof. First observe that a strongly n-convex function cannot have any local maximum, so
it satisfies the maximum principle. IfMrU has a compact connected component T , then
T has a compact neighborhood L in M such that ∂L ⊂ U . We have maxL ψ = max∂L ψ
for every strongly n-convex function, thus ∂L ⊂ Mb implies L ⊂ Mb ; thus we cannot
find a sublevel set Mb such that ∂L ⊂Mb ⊂⊂ U , and U is not n-Runge in M .

On the other hand, assume that M r U has no compact connected component and
let L be a compact subset of U . Let ω be any hermitian metric on M and ϕ a strongly
ω-subharmonic exhaustion function on M . Set b = 1 + supL ϕ and

P = {x ∈M r U ; ϕ(x) 6 b}.

As M r U has no compact connected component, all its components Tα contain a point
yα in

W = {x ∈ X ; ϕ(x) > b+ 1}.
For every point x ∈ P with x ∈ Tα, there exists a connected open set Vx ⊂⊂ M r L
containing x such that ∂Vx ∋ yα (M r L is a neighborhood of M r U and we can
consider a tubular neighborhood of a path from x to yα in M r L). The compact set P
can be covered by a finite number of open sets Vxj

. Then Lemma 3.3 yields functions vj
with support in V xj

∪W which are strongly ω-subharmonic on Vxj
. Let χ be a convex

increasing function such that χ(t) = 0 on ] −∞, b] and χ′(t) > 0 on ]b,+∞[. Consider
the function

ψ = ϕ+
∑

Cjvj + χ ◦ ϕ.

First, choose Cj large enough so that ψ > b on P . Then choose χ increasing fast enough
so that ψ is strongly ω-subharmonic on W . Then ψ is a strongly n-convex exhaustion
function on M , and as ψ > ϕ on M and ψ = ϕ on L, we see that

L ⊂ {x ∈M ; ψ(x) < b} ⊂ U.

This proves that U is n-Runge complete in M . �

§ 4. Andreotti-Grauert Finiteness Theorems

§ 4.A. Case of Vector Bundles over Manifolds

The crucial point in the proof of the Andreotti-Grauert theorems is the following
special case, which is easily obtained by the methods of chapter 8.

(4.1) Proposition. Let M be a strongly q-complete manifold with q > 1, and E a
holomorphic vector bundle over M . Then:

a) Hk
(
M,O(E)

)
= 0 for k > q.

b) Let U be a q-Runge complete open subset of M . Every d′′-closed form h ∈
C

∞
0,q−1(U,E) can be approximated uniformly with all derivatives on every compact

subset of U by a sequence of global d′′-closed forms h̃ν ∈ C∞0,q−1(M,E).

Proof. We replace E by Ẽ = ΛnTM ⊗ E ; then we can work with forms of bidegree
(n, k) instead of (0, k). Let ψ be a strongly q-convex exhaustion function on M and ω
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the metric given by Lemma 3.1. Select a function ρ ∈ C∞(M,R) which increases rapidly
at infinity so that the hermitian metric ω̃ = eρω is complete on M . Denote by Eχ the
bundle E endowed with the hermitian metric obtained by multiplication of a fixed metric
of E by the weight exp(−ρ ◦ ψ) where χ ∈ C∞(R,R) is a convex increasing function.
We apply Th. VIII-4.5 for the bundle Eχ over the complete hermitian manifold (M, ω̃).
Then

ic(Eχ) = ic(E) + id′d′′(χ ◦ ψ)⊗ IdE >Nak ic(E) + χ′ ◦ ψ id′d′′ψ ⊗ IdE .

The eigenvalues of id′d′′ψ with respect to ω̃ are e−ργj, so Lemma VII-7.2 and Prop. VI-8.3
yield

[ic(Eχ),Λ] + T
ω̃
> [ic(E),Λ] + T

ω̃
+ χ′ ◦ ψ [id′d′′ψ,Λ]⊗ IdE

> [ic(E),Λ] + T
ω̃
+ χ′ ◦ ψ e−ρ(γ1 + · · ·+ γk)⊗ IdE

when this curvature tensor acts on (n, k)-forms. For k > q, we have

γ1 + · · ·+ γk > 1− (q − 1)ε > 0 if ε 6 1/q.

We choose χ0 increasing fast enough so that all the eigenvalues of the above curvature
tensor are > 1 when χ = χ0. Then for every g ∈ C∞n,k(M,E) with D′′g = 0 the equation
D′′f = g can be solved with an estimate

∫

M

|f |2e−χ◦ψdV 6

∫

M

|g|2e−χ◦ψdV,

where χ = χ0 + χ1 and where χ1 is a convex increasing function chosen so that the
integral of g converges. This gives a). In order to prove b), let h ∈ C∞n,q−1(U,E) be such
that D′′h = 0 and let L be an arbitrary compact subset of U . Thanks to Def. 2.14, we
can choose ψ such that there is a sublevel set Mb with L ⊂ Mb ⊂⊂ U . Select b0 < b so
that L ⊂Mb0 , and let θ ∈ C∞(R,R) be a convex increasing function such that θ = 0 on
]−∞, b0[ and θ > 1 on ]b,+∞[. Let η ∈D(U) be a cut-off function such that η = 1 on
Mb. We solve the equation D′′f = g for g = D′′(ηh) with the weight χ = χ0 + νθ ◦ ψ
and let ν tend to infinity. As g has compact support in U rMb and χ ◦ ψ > χ0 ◦ ψ + ν
on this set, we find a solution fν such that

∫

Mb0

|fν |2e−χ0◦ψdV 6

∫

M

|fν |2e−χ◦ψdV 6

∫

UrMb

|g|2e−χ◦ψdV 6 Ce−ν ,

thus fν converges to 0 in L2(Mb0) and hν = ηh − fν ∈ C∞n,q−1(M,E) is a D′′-closed
form converging to h in L2(Mb0). However, if we choose the minimal solution such that
δ′′χfν = 0 as in Rem. VIII-4.6, we get ∆′′χfν = δ′′χg on M and in particular ∆′′χ0

fν = 0
on Mb0 . G̊arding’s inequality VI-3.3 applied to the elliptic operator ∆′′χ0

shows that fν
converges to 0 with all derivatives on L, hence hν converges to h on L. Now, replace L
by an exhaustion Lν of U by compact sets; some diagonal subsequence hν converges to
h in C∞n,q−1(U,E). �
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§ 4.B. A Local Vanishing Result for Sheaves

Let (X,OX) be an analytic scheme and S a coherent sheaf of OX -modules. We wish
to extend Prop. 4.1 to the cohomology groups Hk(X,S). The first step is to show that
the result holds on small open sets, and this is done by means of local resolutions of S.

For a given point x ∈ X , we choose a patch (A,OΩ/J) of X containing x, where A is
an analytic subset of Ω ⊂ CN and J a sheaf of ideals with zero set A. Let iA : A −→ Ω
be the inclusion. Then (iA)⋆S is a coherent OΩ-module supported on A. In particular
there is a neighborhood W0 ⊂ Ω of x and a surjective sheaf morphism

O

p0 −→ (iA)⋆S on W0, (u1, . . . , up0) 7−→
∑

16j6p0

ujGj

where G1, . . . , Gp0 ∈ S(A ∩W0) are generators of (iA)⋆S on W0. If we repeat the pro-
cedure inductively for the kernel of the above surjective morphism, we get a homological
free resolution of (iA)⋆S :

(4.3) O

pl −→ · · · −→ Op1 −→ Op0 −→ (iA)⋆S −→ 0 on Wl

of arbitrary large length l, on neighborhoods Wl ⊂Wl−1 ⊂ . . . ⊂ W0. In particular, after
replacing Ω by W2N and A by A∩W2N , we may assume that (iA)⋆S has a resolution of
length 2N on Ω. In this case, we shall say that A ⊂ Ω is a S-distinguished patch of X .

(4.4) Lemma. Let A ⊂ Ω be a S-distinguished patch of X and U a strongly q-convex
open subset of A. Then

Hk(U,S) = 0 for k > q.

Proof. Theorem 2.13 shows that there exists a strongly q-convex open set V ⊂ Ω such
that U = A ∩ V . Let us denote by Zl the kernel of Opl −→ O

pl−1 for l > 1 and
Z

0 = ker
(
O

p0 −→ (iA)⋆S
)
. There are exact sequences

0 −→ Z0 −→ Op0 −→ (iA)⋆S −→ 0,

0 −→ Zl −→ Opl −→Zl−1 −→ 0, 1 6 l 6 2N.

For k > q, Prop. 4.1 a) gives Hk(V,Opl) = 0, therefore we get

Hk(U,S) ≃ Hk
(
V, (iA)⋆S

)
≃ Hk+1(V,Z0) ≃ . . . ≃ Hk+2N+1(V,Z2N),

and the last group vanishes because topdimV 6 dimR V = 2N . �

§ 4.C. Topological Structure on Spaces of Sections and on Cohomology Groups

Let V ⊂ Ω be a strongly 1-complete open set relatively to a S-distinguished patch
A ⊂ Ω and let U = A ∩ V . By the proof of Lemma 4.4, we have

H1(V,Z0) ≃ H2N+1(V,Z2N) = 0,

hence we get an exact sequence

(4.5) 0 −→ Z0(V ) −→ Op0(V ) −→ S(U) −→ 0.
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We are going to show that the Fréchet space structure on Op0(V ) induces a natural
Fréchet space structure on the groups of sections of S over any open subset. We first
note that Z0(V ) is closed in Op0(V ). Indeed, let fν ∈ Z0(V ) be a sequence converging
to a limit f ∈ Op0(V ) uniformly on compact subsets of V . For every x ∈ V , the germs
(fν)x converge to fx with respect to the topology defined by (1.4) on Op0 . As Z0

x is
closed in Op0x in view of Th. 1.5 b), we get fx ∈ Z0

x for all x ∈ V , thus f ∈Z0(V ).

(4.6) Proposition. The quotient topology on S(U) is independent of the choices made
above.

Proof. For a smaller set U ′ = A ∩ V ′ where V ′ is a strongly 1-convex open subset
of V , the restriction map Op0(V ) −→ O

p0(V ′) is continuous, thus S(U) −→ S(U ′) is
continuous. If (Vα) is a countable covering of V by such sets and Uα = A∩Vα, we get an
injection of S(U) onto the closed subspace of the product

∏
S(Uα) consisting of families

which are compatible in the intersections. Therefore, the Fréchet topology induced by
the product coincides with the original topology of S(U). If we choose other generators
H1, . . . , Hq0 for (iA)⋆S, the germs Hj,x can be expressed in terms of the Gj,x ’s, thus we
get a commutative diagram

O

p0(V )
G−→S(U)−→ 0y ∣∣∣∣

O

q0(V )
H−→S(U)−→ 0

provided that U and V are small enough. If we express the generators Gj in terms
of the Hj ’s, we find a similar diagram with opposite vertical arrows and we conclude
easily that the topology obtained in both cases is the same. Finally, it remains to show
that the topology of S(U) is independent of the embedding A ⊂ Ω near a given point
x ∈ X . We compare the given embedding with the Zariski embedding (A, x) ⊂ Ω′

of minimal dimension d. After shrinking A and changing coordinates, we may assume
Ω = Ω′ × CN−d and that the embedding iA : A −→ Ω is the composite of i′A : A −→ Ω′

and of the inclusion j : Ω′ −→ Ω′×{0} ⊂ Ω. For V ′ ⊂ Ω′ sufficient small and U ′ = A∩V ′,
we have a surjective map G′ : Op0(V ′) −→ S(U ′) obtained by choosing generators G′j of

(i′A)
⋆
S on a neighborhood of x in Ω′. Then we consider the open set V = V ′×CN−d ⊂ Ω

and the surjective map onto S(U ′) equal to the composite

O

p0(V )
j⋆−→ Op0(V ′) G′

−→ S(U).

This map corresponds to a choice of generators Gj ∈ (iA)
⋆
S(V ) equal to the functions

G′j , considered as functions independent of the last variables zd+1, . . . , zN . Since j⋆ is
open, it is obvious that the quotient topology on S(U ′) is the same for both embeddings.

�

Now, there is a natural topology on the cohomology groups Hk(X,S). In fact, let
(Uα) be a countable covering of X by strongly 1-complete open sets, such that each Uα is
contained in a S-distinguished patch. Since the intersections Uα0...αk

are again strongly
1-complete, the covering U is acyclic by Lemma 4.4 and Leray’s theorem shows that
Hk(X,S) is isomorphic to Ȟq(U,S). We consider the product topology on the spaces of
Čech cochains Ck(U,S) =

∏
S(Uα0...αk

) and the quotient topology on Ȟk(U,S). It is
clear that Ȟ0(U,S) is a Fréchet space; however the higher cohomology groups Ȟk(U,S)
need not be Hausdorff because the coboundary groups may be non closed in the cocycle
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groups. The resulting topology on Hk(X,S) is independent of the choice of the covering:
in fact we only have to check that the bijective continuous map Ȟk(U,S) −→ Ȟk(U′,S)
is a topological isomorphism if U′ is a refinement of U, and this follows from Rem. 1.10
applied to the morphism of Čech complexes C•(U,S) −→ C•(U′,S).

Finally, observe that when S is the locally free sheaf associated to a holomorphic
vector bundle E on a smooth manifold X , the topology on Hk

(
X,O(E)

)
is the same

as the topology associated to the Fréchet space structure on the Dolbeault complex(
C

∞
0,•(X,E), d′′

)
: by the analogue of formula (IV-6.11) we have a bijective continuous

map

Ȟk
(
U,O(E)

)
−→ Hk

(
C

∞
0,•(X,E)

)

{(cα0...αk
)} 7−→ f(z) =

∑

α0,...,αq

cα0...αq
(z) θαq

d′′θα0
∧ . . . ∧ d′′θαq−1

where (θα) is a partition of unity subordinate to U. As in Rem. 1.10, the continuity of
the inverse follows by the open mapping theorem applied to the surjective map

Zk
(
C•(U,O(E))

)
⊕C∞0,k−1(X,E) −→ Zk

(
C

∞
0,•(X,E)

)
.

We shall need a few simple additional results.

(4.7) Proposition. The following properties hold:

a) For every x ∈ X, the map S(X) −→ Sx is continuous with respect to the topology of
Sx defined by (1.4).

b) If S′ is a coherent analytic subsheaf of S, the space of global sections S′(X) is closed
in S(X).

c) If U ′ ⊂ U are open in X, the restriction maps Hk(U,S) −→ Hk(U ′,S) are continu-
ous.

d) If U ′ is relatively compact in U , the restriction operator S(U) −→ S(U ′) is compact.

e) Let S −→ S

′ be a morphism of coherent sheaves over X. Then the induced maps
Hk(X,S) −→ Hk(X,S′) are continuous.

Proof. a) Let V ⊂ Ω be a strongly 1-convex open neighborhood of x relatively to a
S-distinguished patch A ⊂ Ω. The map Op0(V ) −→ Op0x is continuous, and the same is
true for Op0x −→ Sx by §1. Therefore the composite Op0(V ) −→ Sx and its factorization
S(U) −→ Sx are continuous.

b) is a consequence of the above property a) and of the fact that each stalk S′x is closed
in Sx (cf. 1.5 b)).

c) The restriction map S(U) −→ S(U ′) is continuous, and the case of higher cohomology
groups follows immediately.

d) Assume first that U = A∩V and U ′ = A∩V ′, where A ⊂ Ω is a S-distinguished patch
and V ′ ⊂⊂ V are strongly 1-convex open subsets of Ω. The operator Op0(V ) −→ Op0(V ′)
is compact by Montel’s theorem, thus S(U) −→ S(U ′) is also compact. In the general
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case, select a finite family of strongly 1-convex sets U ′α ⊂⊂ Uα ⊂ U such that (U ′α) covers

U
′
and Uα is contained in some distinguished patch. There is a commutative diagram

S(U) −−−−−−−−−−−−−−−→ S(U ′)y y
∏
S(Uα) −→

∏
S(U ′α) −→

∏
S(U ′ ∩ U ′α)

where the right vertical arrow is a monomorphism and where the first arrow in the bottom
line is compact. Thus S(U) −→ S(U ′) is compact.

e) It is enough to check that S(U) −→ S′(U) is continuous, and for this we may assume
that U = A ∩ V where V is a small neighborhood of a given point x. Let G1, . . . , Gp0
be generators of Sx, G

′
1, . . . , G

′
p0

their images in S′x. Complete these elements in order
to obtain a system of generators (G′1, . . . , G

′
q0
) of S′x. For V small enough, the map

S(U) −→ S

′(U) is induced by the inclusion Op0(V ) −→ Op0(V ) × {0} ⊂ Oq0(V ), hence
continuous. �

§ 4.D. Cartan-Serre Finiteness Theorem

The above results enable us to prove a finiteness theorem for cohomology groups over
compact analytic schemes.

(4.8) Theorem (Cartan-Serre). Let S be a coherent analytic sheaf over an analytic
scheme (X,OX). If X is compact, all cohomology groups Hk(X,S) are finite dimensional
(and Hausdorff ).

Proof. There exist finitely many strongly 1-complete open sets U ′α ⊂⊂ Uα such that each
Uα is contained in some S-distinguished patch and such that

⋃
U ′α = X . By Prop. 4.7 d),

the restriction map on Čech cochains

C•(U,S) −→ C•(U′,S)

defines a compact morphism of complexes of Fréchet spaces. As the coverings U = (Uα)
and U′ = (U ′α) are acyclic by 4.4, the induced map

Ȟk(U,S) −→ Ȟk(U′,S)

is an isomorphism, both spaces being isomorphic to Hk(X,S). We conclude by Schwartz’
theorem 1.9. �

§ 4.E. Local Approximation Theorem

We show that a local analogue of the approximation result 4.1 b) holds for a sheaf S
over an analytic scheme (X,OX).

(4.9) Lemma. Let A ⊂ Ω be a S-distinguished patch of X, and U ′ ⊂ U ⊂ A open
subsets such that U ′ is q-Runge complete in U . Then the restriction map

Hq−1(U,S) −→ Hq−1(U ′,S)

has a dense range.
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Proof. Let L be an arbitrary compact subset of U ′. Proposition 2.16 applied with Y = U
embedded in some neighborhood in Ω shows that there is a neighborhood V of U in Ω
such that A ∩ V = U and a strongly q-convex function ψ on V such that L ⊂ Ub ⊂⊂ U ′

for some Ub = A ∩ Vb. The proof of Lemma 4.4 gives Hq(V,Z0) = Hq(Vb,Z
0) = 0 and

the cohomology exact sequences of 0 → Z

0 → O

p0 → i⋆AS → 0 over V and Vb yield a
commutative diagram of continuous maps

Hq−1(V,Op0
)
−→ Hq−1(V, i⋆AS

)
= Hq−1(U,S)

y y y

Hq−1(Vb,Op0
)
−→ Hq−1(Vb, i⋆AS

)
= Hq−1(Ub,S)

where the horizontal arrows are surjective. Since Vb is q-Runge complete in V , the left
vertical arrow has a dense range by Prop. 4.1 b). As U ′ is the union of an increasing
sequence of sets Ubν , we only have to show that the range remains dense in the inverse
limit Hq−1(U ′,S). For that, we apply Property 1.11 d) on a suitable covering of U .
Let W be a countable basis of the topology of U , consisting of strongly 1-convex open
subsets contained in S-distinguished patches. We letW′ (resp.Wν) be the subfamily of
W ∈W such that W ⊂⊂ U ′ (resp. W ⊂⊂ Ubν ). Then W, W′, Wν are acyclic coverings
of U, U ′, Ubν and each restriction map C•(W,S) −→ C•(Wν ,S) is surjective. Property
1.11 d) can thus be applied and the lemma follows. �

§ 4.F. Statement and Proof of the Andreotti-Grauert Theorem

(4.10) Theorem ([Andreotti-Grauert 1962]). Let S be a coherent analytic sheaf over a
strongly q-convex analytic scheme (X,OX). Then

a) Hk(X,S) is Hausdorff and finite dimensional for k > q.

Moreover, let U be a q-Runge open subset of X, q > 1. Then

b) the restriction map Hk(X,S)→ Hk(U,S) is an isomorphism for k > q ;

c) the restriction map Hq−1(X,S)→ Hq−1(U,S) has a dense range.

The compact case q = 0 of 4.10 a) is precisely the Cartan-Serre finiteness theorem.
For q > 1, the special case when X is strongly q-complete and U = ∅ yields the following
very important consequence.

(4.11) Corollary. If X is strongly q-complete, then

Hk(X,S) = 0 for k > q.

Assume that q > 1 and let ψ be a smooth exhaustion on X that is strongly q-convex
on X r K. We first consider sublevel sets Xd ⊃ Xc ⊃ K, d > c, and verify assertions
4.10 b), c) for all restriction maps

Hk(Xd,S) −→ Hk(Xc,S), k > q − 1.
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The basic idea, already contained in [Andreotti-Grauert 1962], is to deform Xc into Xd

through a sequence of strongly q-convex open sets (Gj) such that Gj+1 is obtained from
Gj by making a small bump.

(4.12) Lemma. There exist a sequence of strongly q-convex open sets G0 ⊂ . . . ⊂ Gs
and a sequence of strongly q-complete open sets U0, . . . , Us−1 in X such that

a) G0 = Xc, Gs = Xd, Gj+1 = Gj ∪ Uj for 0 6 j 6 s− 1 ;

b) Gj = {x ∈ X ; ψj(x) < cj} where ψj is an exhaustion function on X that is strongly
q-convex on X rK ;

c) Uj is contained in a S-distinguished patch Aj ⊂ Ωj of X ;

d) Gj ∩ Uj is strongly q-complete and q-Runge complete in Uj.

Proof. There exists a finite covering of the compact set Xd r Xc by S-distinguished
patches Aj ⊂ Ωj, 0 6 j < s, where Ωj ⊂ CNj is a euclidean ball and K ∩ Aj = ∅.
Let θj ∈ D(X) be a family of functions such that Supp θj ⊂ Aj, θj > 0,

∑
θj 6 1 and∑

θj = 1 on a neighborhood of Xd rXc. We can find ε0 > 0 so small that

ψj = ψ − ε
∑

06k<j

θk

is still strongly q-convex on X r K for 0 6 j 6 s and ε 6 ε0. We have ψ0 = ψ and
ψs = ψ − ε on Xd rXc, thus

Gj = {x ∈ X ; ψj(x) < c}, 0 6 j 6 s

is an increasing sequence of strongly q-convex open sets such that G0 = Xc, Gs = Xc+ε.
Moreover, as ψj+1 − ψj = −εθj has support in Aj, we have

Gj+1 = Gj ∪ Uj where Uj = Gj+1 ∩Aj .

It follows that conditions a), b), c) are satisfied with c + ε instead of d. Finally, the
functions

ϕj = 1/(c− ψj+1) + 1/(r2j − |z − zj |2), ϕ̃j = 1/(c− ψj) + 1/(r2j − |z − zj |2)

are strongly q-convex exhaustions on Uj and Gj ∩ Uj = Gj ∩ Aj . Let L be an arbitrary
compact subset of Gj ∩ Uj and a = supL ψj < c. Select b ∈]a, c[ and set

ψj,η = ψj + ηϕj on Uj , η > 0.

Then ψj,η is an exhaustion of Uj . As ϕj is bounded below, we have

L ⊂ {ψj,η < b} ⊂⊂ {ψj < c} ∩ Uj = Gj ∩ Uj

for η small enough. Moreover

(1− α)ψj + αψj+1 = ψ − ε
∑

06k<j

θk − αε θj
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is strongly q-convex for all α ∈ [0, 1] and ε 6 ε0 small enough, so Prop. 2.4 implies
that ψj,η is strongly q-convex. By definition, Gj ∩ Uj is thus q-Runge complete in Uj ,
and Lemma 4.12 is proved with Xc+ε instead of Xd. In order to achieve the proof, we
consider an increasing sequence c = c0 < c1 < . . . < cN = d with ck+1 − ck 6 ε0 and
perform the same construction for each pair Xck ⊂ Xck+1

, with c replaced by ck and
ε = ck+1 − ck. �

(4.13) Proposition. For every sublevel set Xc ⊃ K, the group Hk(Xc,S) is Hausdorff
and finite dimensional when k > q. Moreover, for d > c, the restriction map

Hk(Xd,S) −→ Hk(Xc,S)

is an isomorphism when k > q and has a dense range when k = q − 1.

Proof. Thanks to Lemma 4.12, we are led to consider the restriction maps

(4.14) Hk(Gj+1,S) −→ Hk(Gj ,S).

Let us apply the Mayer-Vietoris exact sequence IV-3.11 to Gj+1 = Gj ∪Uj . For k > q we
have Hk(Uj,S) = Hk(Gj ∩ Uj ,S) = 0 by Lemma 4.4. Hence we get an exact sequence

Hq−1(Gj+1,S)−→ Hq−1(Gj ,S)⊕Hq−1(Uj ,S)−→ Hq−1(Gj ∩ Uj ,S) −→
Hk(Gj+1,S)−→ Hk(Gj ,S) −→ 0 −→ · · · , k > q.

In this sequence, all the arrows are induced by restriction maps, so they define continuous
linear operators. We already infer that the map (4.14) is bijective for k > q and surjective
for k = q. There exist a S-acyclic covering V = (Vα) of Xd and a finite family V′ =
(V ′α1

, . . . , V ′αp
) of open sets such that V ′αj

⊂⊂ Vαj
and

⋃
V ′αj
⊃ Xc. Let W be a locally

finite S-acyclic covering of Xc which refines V′ ∩Xc = (V ′αj
∩Xc). The refinement map

C•(V,S) −→ C•(V′ ∩Xc,S) −→ C•(W,S)

is compact because the first arrow is, and it induces a surjective map

Hk(Xd,S) −→ Hk(Xc,S) for k > q.

By Schwartz’ theorem 1.9, we conclude that Hk(Xc,S) is Hausdorff and finite dimen-
sional for k > q. This is equally true for Hq(Gj ,S) because Gj is also a global sublevel
set {x ∈ X ; ψj(x) < cj} containing K. Now, the Mayer-Vietoris exact sequence implies
that the composite

Hq−1(Uj ,S) −→ Hq−1(Gj ∩ Uj ,S) ∂−→ Hq(Gj+1,S)

is equal to zero. However, the first arrow has a dense range by Lemma 4.9. As the target
space is Hausdorff, the second arrow must be zero; we obtain therefore the injectivity of
Hq(Gj+1,S) −→ Hq(Gj ,S) and an exact sequence

Hq−1(Gj+1,S) −→ Hq−1(Gj ,S)⊕Hq−1(Uj,S)−→ Hq−1(Gj ∩ Uj ,S) −→ 0
g⊕u 7−→ u↾Gj∩Uj

− g↾Gj∩Uj
.
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The argument used in Rem. 1.10 shows that the surjective arrow is open. Let g ∈
Hq−1(Gj ,S) be given. By Lemma 4.9, we can approximate g↾Gj∩Uj

by a sequence
uν↾Gj∩Uj

, uν ∈ Hq−1(Uj,S). Then wν = uν↾Gj∩Uj
− g↾Gj∩Uj

tends to zero. As the
second map in the exact sequence is open, we can find a sequence

g′ν ⊕ u′ν ∈ Hq−1(Gj ,S)⊕Hq−1(Uj ,S)

converging to zero which is mapped on wν . Then (g−g′ν)⊕ (uν −u′ν) is mapped on zero,
and there exists a sequence fν ∈ Hq−1(Gj+1,S) which coincides with g − g′ν on Gj and
with uν − u′ν on Uj . In particular fν↾Gj

converges to g and we have shown that

Hq−1(Gj+1,S) −→ Hq−1(Gj ,S)

has a dense range. �

Proof of Andreotti-Grauert’s Theorem 4.10.. LetW be a countable basis of the topology
of X consisting of strongly 1-convex open sets Wα contained in S-distinguished patches
of X . Let L ⊂ U be an arbitrary compact subset. Select a smooth exhaustion function
ψ on X such that ψ is strongly q-convex on X rXb and L ⊂ Xb ⊂⊂ U for some sublevel
set Xb of ψ ; choose c > b such that Xc ⊂⊂ U . For every d ∈ R, we denote by Wd ⊂W
the collection of sets Wα ∈W such that Wα ⊂ Xd. Then Wd is a S-acyclic covering of
Xd. We consider the sequence of Čech complexes

E•ν = C•(Wc+ν ,S), ν ∈ N

together with the surjective projection maps E•ν+1 −→ E•ν , and their inverse limit
E• = C•(W,S). Then we have Hk(E•) = Hk(X,S) and Hk(E•ν) = Hk(Xc+ν ,S).
Propositions 1.11 (a,b,c) and 4.13 imply that Hk(X,S) −→ Hk(Xc,S) is bijective
for k > q and has a dense range for k = q − 1. It already follows that Hk(X,S)
is Hausdorff for k > q. Now, take an increasing sequence of open sets Xcν equal to
sublevel sets of a sequence of exhaustions ψν , such that U =

⋃
Xcν . Then all groups

Hk(Xcν ,S) are in bijection with Hk(X,S) for k > q, and the image of Hq−1(Xcν+1
,S)

in Hq−1(Xcν ,S) is dense because it contains the image of Hq−1(X,S). Proposition 1.11
(a,b,c) again shows that Hk(U,S) −→ Hk(Xc0,S) is bijective for k > q, and d) shows
that Hq−1(X,S) −→ Hq−1(U,S) has a dense range. The theorem follows. �

A combination of Andreotti-Grauert’s theorem with Th. 3.6 yields the following im-
portant consequence.

(4.15) Corollary. Let S be a coherent sheaf over an analytic scheme (X,OX) with
dimX 6 n.

a) We have Hk(X,S) = 0 for all k > n+ 1 ;

b) If X has no n-dimensional compact irreducible component, then we have
Hn(X,S) = 0.

c) If X has only finitely many n-dimensional compact irreducible components, then
Hn(X,S) is finite dimensional. �

The special case of 4.15 b) when X is smooth and S locally free has been first proved
by [Malgrange 1955], and the general case is due to [Siu 1969]. Another consequence is
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the following approximation theorem for coherent sheaves over manifolds, which results
from Prop. 3.8.

(4.16) Proposition. Let S be a coherent sheaf over a non compact connected complex
manifold M with dimM = n. Let U ⊂ M be an open subset such that the complement
M r U has no compact connected component. Then the restriction map Hn−1(M,S)→
Hn−1(U,S) has a dense range. �

§ 5. Grauert’s Direct Image Theorem

The goal of this section is to prove the following fundamental result on direct images
of coherent analytic sheaves, due to [Grauert 1960].

(5.1) Direct image theorem. Let X, Y be complex analytic schemes and let F :
X → Y be a proper analytic morphism. If S is a coherent OX -module, the direct images
RqF⋆S are coherent OY -modules.

We give below a beautiful proof due to [Kiehl-Verdier 1971], which is much sim-
pler than Grauert’s original proof; this proof rests on rather deep properties of nuclear
modules over nuclear Fréchet algebras. We first introduce the basic concept of topolog-
ical tensor product. Our presentation owes much to the seminar lectures by [Douady-
Verdier 1973].

§ 5.A. Topological Tensor Products and Nuclear Spaces

The algebra of holomorphic functions on a product space X × Y is a completion
O(X) ⊗̂ O(Y ) of the algebraic tensor product O(X) ⊗ O(Y ). We are going to describe
the construction and the basic properties of the required topological tensor products ⊗̂.

Let E, F be (real or complex) vector spaces equipped with semi-norms p and q,
respectively. Then E ⊗ F can be equipped with any one of the two natural semi-norms
p⊗π q, p⊗ε q defined by

p⊗π q(t) = inf
{ ∑

16j6N

p(xj) q(yj) ; t =
∑

16j6N

xj ⊗ yj , xj ∈ E , yj ∈ F
}
,

p⊗ε q(t) = sup
||ξ||p61, ||η||q61

∣∣ξ ⊗ η(t)
∣∣, ξ ∈ E′, η ∈ F ′ ;

the inequalities in the last line mean that ξ, η satisfy |ξ(x)| 6 p(x) and |η(y)| 6 q(y) for
all x ∈ E, y ∈ F . Then clearly p⊗ε q 6 p⊗π q, for

p⊗ε q
(∑

xj ⊗ yj
)
6

∑
p⊗ε q(xj ⊗ yj) 6

∑
p(xj) q(yj).

Given x ∈ E, y ∈ F , the Hahn-Banach theorem implies that there exist ξ, η such that
||ξ||p = ||η||q = 1 with ξ(x) = p(x) and η(y) = q(y), hence p⊗ε q(x⊗ y) > p(x) q(y). On
the other hand p⊗π q(x⊗ y) 6 p(x) q(y), thus

p⊗ε q(x⊗ y) = p⊗π q(x⊗ y) = p(x) q(y).
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(5.2) Definition. Let E, F be locally convex topological vector spaces. The topological
tensor product E ⊗̂π F (resp. E ⊗̂ε F ) is the Hausdorff completion of E ⊗ F , equipped
with the family of semi-norms p⊗π q (resp. p⊗ε q) associated to fundamental families of
semi-norms on E and F .

Since we may also write

p⊗π q(t) = inf
{∑

|λj| ; t =
∑

λj xj ⊗ yj , p(xj) 6 1 , q(yj) 6 1
}

where the λj ’s are scalars, we see that the closed unit ball B(p ⊗̂π q) in E ⊗̂π F is
the closed convex hull of B(p) ⊗ B(q). From this, we easily infer that the topological
dual space (E ⊗̂π F )′ is isomorphic to the space of continuous bilinear forms on E × F .
Another simple consequence of this interpretation of B(p ⊗̂π q) is example a) below.

(5.3) Examples.

a) For all discrete spaces I, J , there is an isometry

ℓ1(I) ⊗̂π ℓ1(J) ≃ ℓ1(I × J).

b) For Banach spaces (E, p), (F, q), the closed unit ball in E ⊗̂ε F is dual to the unit
ball B(p′ ⊗̂π q′) of E′ ⊗̂π F ′ through the natural pairing extending the algebraic pairing
of E ⊗ F and E′ ⊗ F ′. If c0(I) denotes the space of bounded sequences on I converging
to zero at infinity, we have c0(I)

′ = ℓ1(I), hence by duality c0(I) ⊗̂ε c0(J) is isometric
to c0(I × J).

c) If X , Y are compact topological spaces and if C(X), C(Y ) are their algebras of
continuous functions with the sup norm, then

C(X) ⊗̂ε C(Y ) ≃ C(X × Y ).

Indeed, C(X)′ is the space of finite Borel measures equipped with the mass norm. Thus
for f ∈ C(X)⊗ C(Y ), the ⊗ε-seminorm is given by

||f ||ε = sup
||µ||61, ||ν||61

µ⊗ ν(f) = sup
X×Y

|f | ;

the last equality is obtained by taking Dirac measures δx, δy for µ, ν (the inequality 6
is obvious). Now C(X)⊗C(Y ) is dense in C(X × Y ) by the Stone-Weierstrass theorem,
hence its completion is C(X × Y ), as desired. �

Let f : E1 → E2 and g : F1 → F2 be continuous morphisms. For all semi-norms p2,
q2 on E2, F2, there exist semi-norms p1, q1 on E1, F1 and constants ||f || = ||f ||p1,p2 ,
||g|| = ||g||q1,q2 such that p2 ◦ f 6 ||f || p1 and q2 ◦ g 6 ||g|| q1. Then we find

(p2 ⊗π q2) ◦ (f ⊗ g) 6 ||f || ||g|| p1⊗π q1

and a similar formula with pj ⊗ε qj . It follows that there are well defined continuous
maps
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(5.4′) f ⊗̂π g : E1 ⊗̂π F1 −→ E2 ⊗̂π F2,
(5.4′′) f ⊗̂ε g : E1 ⊗̂ε F1 −→ E2 ⊗̂ε F2.

Another simple fact is that ⊗̂π preserves open morphisms:

(5.5) Proposition. If f : E1 → E2 and g : F1 → F2 are epimorphisms, then f ⊗̂π g :
E1 ⊗̂π F1 −→ E2 ⊗̂π F2 is an epimorphism.

Proof. Recall that when E is locally convex complete and F Hausdorff, a morphism
u : E → F is open if and only if u(V ) is a neighborhood of 0 for every neighborhood
of 0 (this can be checked essentially by the same proof as 1.8 b)). Here, for any semi-
norms p, q on E1, F1 the closure of f ⊗̂π g

(
B(p ⊗̂π q)

)
contains the closed convex hull

of f
(
B(p)

)
⊗ g

(
B(q)

)
in which f

(
B(p)

)
and g

(
B(q)

)
are neighborhoods of 0, so it is a

neighborhood of 0 in E ⊗̂π F . �

If E1 ⊂ E2 is a closed subspace, every continuous semi-norm p1 on E1 is the restriction
of a continuous semi-norm on E2, and every linear form ξ1 ∈ E′1 such that ||ξ1||p1 6 1 can
be extended to a linear form ξ2 ∈ E2 such that ||ξ2||p2 = ||ξ1||p1 (Hahn-Banach theorem);
similar properties hold for a closed subspace F1 ⊂ F2. We infer that

(p2 ⊗ε q2)↾E1⊗F1
= p1 ⊗ε q1 ,

thus E1 ⊗̂ε F1 is a closed subspace of E2 ⊗̂ε F2. In other words:

(5.6) Proposition. If f : E1 → E2 and g : F1 → F2 are monomorphisms, then
f ⊗̂ε g : E1 ⊗̂ε F1 −→ E2 ⊗̂ε F2 is a monomorphism. �

Unfortunately, 5.5 fails for ⊗̂ε and 5.6 fails for ⊗̂π, even with Fréchet or Banach spaces.
It follows that neither ⊗̂π nor ⊗̂ε are exact functors in the category of Fréchet spaces.
In order to circumvent this difficulty, it is necessary to work in a suitable subcategory.

(5.7) Definition. A morphism f : E → F of complete locally convex spaces is said to
be nuclear if f can be written as

f(x) =
∑

λj ξj(x) yj

where (λj) is a sequence of scalars with
∑ |λj | < +∞, ξj ∈ E′ an equicontinuous sequence

of linear forms and yj ∈ F a bounded sequence.

When E and F are Banach spaces, the space of nuclear morphisms is isomorphic to
E′ ⊗̂π F and the nuclear norm ||f ||ν is defined to be the norm in this space, namely

(5.8) ||f ||ν = inf
{∑

|λj | ; f =
∑

λj ξj ⊗ yj , ||ξj|| 6 1, ||yj|| 6 1
}
.

For general spaces E, F , the equicontinuity of (ξj) means that there is a semi-norm p on
E and a constant C such that |ξj(x)| 6 C p(x) for all j. Then the definition shows that
f : E → F is nuclear if and only if f can be factorized as E → E1 → F1 → F where
E1 → F1 is a nuclear morphism of Banach spaces: indeed we need only take E1 be equal
to the Hausdorff completion Êp of (E, p) and let F1 be the subspace of F generated by
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the closed balanced convex hull of {yj} (= unit ball in F1) ; moreover, if u : S → E and
v : F → T are continuous, the nuclearity of f implies the nuclearity of v ◦ f ◦ u ; its
nuclear decomposition is then v ◦ f ◦ u =

∑
λj (ξj ◦ u)⊗ v(yj).

(5.9) Remark. Every nuclear morphism is compact: indeed, we may assume in Def. 5.7
that (yj) converges to 0 and

∑ |λj | 6 1, otherwise we replace yj by εjyj with εj con-
verging to zero such that

∑ |λj/εj | 6 1 ; then, if U ⊂ F is a neighborhood of 0 such
that |ξj(U)| 6 1 for all j, the image f(U) is contained in the closed convex hull of the
compact set {yj} ∪ {0}, which is compact.

(5.10) Proposition. If E, F,G are Banach spaces and if f : E → F is nuclear, there
is a continuous morphism

f ⊗̂ IdG : E ⊗̂ε G −→ F ⊗̂π G

extending f ⊗ IdG, such that ||f ⊗̂ IdG || 6 ||f ||ν.

Proof. If f =
∑
λj ξj ⊗ yj as in (5.8), then for any t ∈ E ⊗G we have

(f ⊗ IdG)(t) =
∑

λj
(
ξj ⊗ IdG(t)

)
⊗ yj

where (ξj ⊗ IdG)(t) ∈ G has norm

||(ξj ⊗ IdG)(t)|| = sup
η∈G′, ||η||61

∣∣η
(
ξj ⊗ IdG(t)

)∣∣ = sup
η

∣∣ξj ⊗ η(t)
∣∣ 6 ||t||ε.

Therefore ||f ⊗ IdG(t)||π 6
∑ |λj| ||t||ε, and the infimum over all decompositions of f

yields
||f ⊗ IdG(t)||π 6 ||f ||ν||t||ε.

Proposition 5.10 follows. �

If E is a Fréchet space and (pj) an increasing sequence of semi-norms on E defining
the topology of E, we have

E = lim←− Êpj ,

where Êpj is the Hausdorff completion of (E, pj) and Êpj+1
→ Êpj the canonical mor-

phism. Here Êpj is a Banach space for the induced norm p̂j .

(5.11) Definition. A Fréchet space E is said to be nuclear if the topology of E can be
defined by an increasing sequence of semi-norms pj such that each canonical morphism

Êpj+1
−→ Êpj

of Banach spaces is nuclear.

If E, F are arbitrary locally convex spaces, we always have a continuous morphism
E ⊗̂π F → E ⊗̂ε F , because p ⊗ε q 6 p ⊗π q. If E, say, is nuclear, this morphism
yields in fact an isomorphism E ⊗̂ε F ≃ E ⊗̂π F : indeed, by Prop. 5.10, we have
pj ⊗̂π q 6 Cj pj+1 ⊗̂ε q where Cj is the nuclear norm of Êpj+1

→ Êpj . Hence, when E



§ 5. Grauert’s Direct Image Theorem 433

or F is nuclear, we will identify E ⊗̂π F and E ⊗̂ε F and omit ε or π in the notation
E ⊗̂ F .

(5.12) Example. Let D =
∏
D(0, Rj) be a polydisk in Cn. For any t ∈ ]0, 1[, we equip

O(D) with the semi-norm
pt(f) = sup

tD
|f |.

The completion of
(
O(D), pt

)
is the Banach space Et of holomorphic functions on tD

which are continuous up to the boundary. We claim that for t′ < t < 1 the restriction
map

ρt,t′ : Et′ −→ Et

is nuclear. In fact, for f ∈ O(D), we have f(z) =
∑
aαz

α where aα = aα(f) satisfies the
Cauchy inequalities |aα(f)| 6 pt′(f)/(t

′R)α for all α ∈ Nn. The formula f =
∑
aα(f) eα

with eα(z) = zα shows that

||ρt,t′ ||ν 6
∑
||aα||pt′ ||eα||pt 6

∑
(t′R)−α(tR)α = (1− t/t′)−n < +∞.

We infer that O(D) is a nuclear Fréchet space. It is also in a natural way a fully nuclear
Fréchet algebra (see Def. 5.39 below). �

(5.13) Proposition. Let E be a nuclear space. A morphism f : E → F is nuclear if
and only if f admits a factorization E →M → F through a Banach space M .

Proof. By definition, a nuclear map f : E → F always has a factorization through a
Banach space (even if E is not nuclear). Conversely, if E is nuclear, any continuous linear
map E →M into a Banach space M is continuous for some semi-norm pj on E, so this
map has a factorization

E → Êpj+1
→ Êpj →M

in which the second arrow is nuclear. Hence any map E →M → F is nuclear. �

(5.14) Proposition.

a) If E, F are nuclear spaces, then E ⊗̂ F is nuclear.

b) Any closed subspace or quotient space of a nuclear space is nuclear.

c) Any countable product of nuclear spaces is nuclear.

d) Any countable inverse limit of nuclear spaces is nuclear.

Proof. a) If f : E1 → F1 and g : E2 → F2 are nuclear morphisms of Banach spaces, it is
easy to check that f ⊗̂π g and f ⊗̂ε g are nuclear with ||f ⊗̂? g||ν 6 ||f ||ν||g||ν in both

cases. Property a) follows by applying this to the canonical morphisms Êpj+1
→ Êpj and

F̂qj+1
→ F̂qj .

c) Let Ek, k ∈ N, be nuclear spaces and F =
∏
Ek. If (pkj ) is an increasing family of

semi-norms on Ek as in Def. 5.11, then the topology of F is defined by the family of
semi-norms

qj(x) = max
06k6j

pkj (xk), x = (xk) ∈ F.
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Then F̂qj =
⊕

06k6j Êk,pkj and

(
F̂qj+1

→ F̂qj
)
=

⊕

06k6j

(
Êk,pk

j+1
→ Êk,pk

j

)
⊕

(
Êj+1,pj+1

j+1
→ {0}

)

is easily seen to be nuclear.

b) If F ⊂ E is closed, then F̂pj can be identified to a closed subspace of Êpj , the map

F̂pj+1
→ F̂pj is the restriction of Êpj+1

→ Êpj and we have Ê/F pj ≃ Êpj/F̂pj . It is not
true in general that the restriction or quotient of a nuclear morphism is nuclear, but this is
true for a binuclear = (nuclear ◦ nuclear) morphism, as shown by Lemma 5.15 b) below.

Hence F̂p2j+2
→ Êp2j and Ê/F p2j+2

→ Ê/F p2j are nuclear, so (p2j) is a fundamental

family of semi-norms on F or E/F , as required in Def. 5.11.

d) follows immediately from b) and c), since lim←−Ek is a closed subspace of
∏
Ek. �

(5.15) Lemma. Let E, F , G be Banach spaces.

a) If f : E → F is nuclear, then f can be factorized through a Hilbert space H as a
morphism E → H → F .

b) Let g : F → G be another nuclear morphism. If Im(g ◦ f) is contained in a closed
subspace T of G, then g◦f : E → T is nuclear. If ker(g◦f) contains a closed subspace
S of E, the induced map (g ◦ f)∼ : E/S → G is nuclear.

Proof. a) Write f =
∑
j∈I ξj ⊗ yj ∈ E′ ⊗̂π F with

∑ ||ξj|| ||yj|| < +∞. Without loss of
generality, we may suppose ||ξj|| = ||yj ||. Then f is the composition

E −→ ℓ2(I) −→ F, x 7−→
(
ξj(x)

)
, (λj) 7−→

∑
λjyj .

b) Decompose g into g = v ◦ u as in a) and write g ◦ f as the composition

E
f−→ F

u−→ H
v−→ G

where H is a Hilbert space. If Im(g ◦f) ⊂ T and if T ⊂ G is closed, then H1 = v−1(T ) is
a closed subspace of H containing Im(u ◦ f). Therefore g ◦ f : E → T is the composition

E
f−→ F

u−→ H
pr⊥−→ H1

v↾H1−→ T

where f is nuclear and g ◦ f : E −→ T is nuclear. Similar proof for (g ◦ f)∼ : E/S → G
by using decompositions f = v ◦ u : E → H → F and

(g ◦ f)∼ : E/S
ũ−→ H/H1 ≃ H⊥1

v
↾H⊥

1−→ F
g−→ G

where H1 = u(S) satisfies H1 ⊂ ker(g ◦ v) ⊂ H. �

(5.16) Corollary. Let E be a nuclear space and let E → F be a nuclear morphism.
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a) If f(E) is contained in a closed subspace T of F , then the morphism f1 : E → T
induced by f is nuclear.

b) If ker f contains a closed subspace S of E, then f̃ : E/S → F is nuclear.

Proof. Let E
u−→M

v−→ F be a factorization of f through a Banach space M . In case
a), resp. b), M1 = v−1(T ) is a closed subspace of M , resp. M/u(S) is a Banach space,
and we have factorizations

f1 : E
u1−→M1

v1−→ T, f̃ : E/S
ũ−→M/u(S)

ṽ−→ F

where u1, ũ are induced by u and v1, ṽ by v. Hence f1 and f̃ are nuclear. �

(5.17) Proposition. Let 0 → E1 → E2 → E3 → 0 be an exact sequence of Fréchet
spaces and let F be a Fréchet space. If E2 or F is nuclear, there is an exact sequence

0 −→ E1 ⊗̂ F −→ E2 ⊗̂ F −→ E3 ⊗̂ F −→ 0.

Proof. If E2 is nuclear, then so are E1 and E3 by Prop. 5.14 b). Hence E1 ⊗̂ F → E2 ⊗̂ F
is a monomorphism and E2 ⊗̂ F → E3 ⊗̂ F an epimorphism by Prop. 5.6 and 5.5. It
only remains to show that

Im
(
E1 ⊗̂ F −→ E2 ⊗̂ F

)
= ker

(
E2 ⊗̂ F −→ E3 ⊗̂ F

)

and for this, we need only show that the left hand side is dense in the right hand side (we
already know it is closed). Let ϕ ∈ (E2 ⊗̂ F )′ be a linear form, viewed as a continuous
bilinear form on E2 × F . If ϕ vanishes on the image of E1 ⊗̂ F , then ϕ induces a
continuous bilinear form on E3 ×F by passing to the quotient. Hence ϕ must vanish on
the kernel of E2 ⊗̂ F → E3 ⊗̂ F , and our density statement follows by the Hahn-Banach
theorem. �

§ 5.B. Künneth Formula for Coherent Sheaves

As an application of the above general concepts, we now show how topological tensor
products can be used to compute holomorphic functions and cohomology of coherent
sheaves on product spaces.

(5.18) Proposition. Let F be a coherent analytic sheaf on a complex analytic scheme
(X,OX). Then F(X) is a nuclear space.

Proof. Let A ⊂ Ω ⊂ CN be an open patch of X such that the image sheaf (iA)⋆F↾A on
Ω has a resolution

O

p1
Ω −→ O

p0
Ω −→ (iA)⋆F↾A −→ 0

and let D ⊂⊂ Ω be a polydisk. As D is Stein, we get an exact sequence

(5.19) O

p1(D) −→ Op0(D) −→ F(A ∩D) −→ 0.

Hence F(A∩D) is a quotient of the nuclear space Op0(D) and so F(A∩D) is nuclear by
(5.14 b). Let (Uα) be a countable covering of X by open sets of the form A ∩D. Then
F(X) is a closed subspace of

∏
F(Uα), thus F(X) is nuclear by (5.14 b,c). �
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(5.20) Proposition. Let F, G be coherent sheaves on complex analytic schemes X, Y
respectively. Then there is a canonical isomorphism

F

×
G(X × Y ) ≃ F(X) ⊗̂ G(Y ).

Proof. We show the proposition in several steps of increasing generality.

a) X = D ⊂ Cn, Y = D′ ⊂ Cp are polydisks, F = OX , G = OY .

Let pt(f) = suptD |f |, p′t(f) = suptD′ |f | and qt(f) = supt(D×D′) |f | be the semi-

norms defining the topology of O(D), O(D′) and O(D × D′), respectively. Then Êpt is
a closed subspace of the space C(tD) of continuous functions on tD with the sup norm,
and we have pt⊗ε p′t = qt by example (5.3 c). Now, O(D)⊗O(D′) is dense in O(D×D′),
hence its completion with respect to the family (qt) is O(D) ⊗̂ε O(D′) = O(D ×D′).

b) X is embedded in a polydisk D ⊂ Cn, X = A ∩D i−֒→ D,
i⋆F is the cokernel of a morphism Op1D −→ O

p0
D ,

Y = D′ ⊂ Cp is a polydisk and G = OY .

By taking the external tensor product with OY , we get an exact sequence

(5.21) O

p1
D×Y −→ O

p0
D×Y −→ i⋆F×OY −→ 0.

Then we find a commutative diagram

O

p1(D)⊗̂ O(Y ) −→ O

p0(D)⊗̂ O(Y ) −→ F(X)⊗̂ O(Y ) −→ 0y ≃
y ≃

y
O

p1(D×Y ) −→ O

p0(D×Y ) −→ F

×
OY (X × Y ) −→ 0

in which the first line is exact as the image of (5.19) by the exact functor • ⊗̂ O(Y ),
and the second line is exact because the exact sequence of sheaves (5.21) gives an exact
sequence of spaces of sections on the Stein space D × Y ; note that i⋆F×OY (D × Y ) =
F

×
OY (X × Y ). As the first two vertical arrows are isomorphisms by a), the third one

is also an isomorphism.

c) X, F are as in b),
Y is embedded in a polydisk D′ ⊂ Cp, Y = A′ ∩D′ j−֒→ D′

and j⋆G is the cokernel of Oq1D′ −→ Oq0D′ .

Taking the external tensor product with F, we get an exact sequence

F

×
O

q1
D′ −→ F×Oq0D′ −→ F×j⋆G −→ 0

and with the same arguments as above we obtain a commutative diagram

F(X)⊗̂ Oq1(D′) −→ F(X)⊗̂ Oq0(D′) −→ F(X)⊗̂ G(Y ) −→ 0y ≃
y ≃

y
F

×
O

q1
D′(X ×D′) −→ F

×
O

q0
D′(X ×D′) −→ F

×
G(X × Y ) −→ 0.
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d) X, F are as in b),c) and Y , G are arbitrary.

Then Y can be covered by open sets Uα = Aα ∩Dα embedded in polydisks Dα, on
which the image of G admits a two-step resolution. We have F×G(X × Uα) ≃ F(X) ⊗̂
G(Uα) by c), and the same is true over the intersections X×Uαβ because Uαβ = Uα∩Uβ
can be embedded by the cross product embedding jα × jβ : Uαβ → Dα ×Dβ . We have
an exact sequence

0 −→ G(Y ) −→
∏

α

G(Uα) −→
∏

α,β

G(Uαβ)

where the last arrow is (cα) 7→ (cβ − cα), and a commutative diagram with exact lines

0 −→ F(X)⊗̂ G(Y )−→ ∏
F(X)⊗̂ G(Uα)−→

∏
F(X)⊗̂ G(Uαβ)y y ≃

y ≃
0 −→ F×G(X × Y )−→∏

F

×
G(X × Uα)−→

∏
F

×
G(X × Uαβ).

Therefore the first vertical arrow is an isomorphism.

e) X, F, Y , G are arbitrary.

This case is treated exactly in the same way as d) by reversing the roles of F, G and
by using d) to get the isomorphism in the last two vertical arrows. �

(5.22) Corollary. Let F, G be coherent sheaves over complex analytic schemes X, Y
and let π : X × Y → X be the projection. Suppose that H•(Y,G) is Hausdorff.

a) If X is Stein, then Hq(X × Y,F×G) ≃ F(X) ⊗̂ Hq(Y,G).

b) In general, for every open set U ⊂ X,

(
Rqπ⋆(F×G)

)
(U) = F(U) ⊗̂ Hq(Y,G).

c) If Hq(Y,G) is finite dimensional, then

Rqπ⋆(F×G) = F⊗Hq(Y,G).

Proof. a) Let V = (Vα) be a countable Stein covering of Y . By the Leray theorem,
H•(Y,G) is equal to the cohomology of the Čech complex C•(V,G). Similarly X ×V =
(X × Vα) is a Stein covering of X × Y and we have

Hq(X × Y,F×G) = Hq
(
C•(X ×V,F×G)

)
.

However, Prop. 5.20 shows that C•(X×V,F×G) = F(X) ⊗̂ C•(V,G). Our assumption
that C•(V,G) has Hausdorff cohomology implies that the cocycle and coboundary groups
are (nuclear) Fréchet spaces, and that each cohomology group can be computed by means
of short exact sequences in this category. By Prop. 5.17, we thus get the desired equality

Hq
(
C•(X ×V,F×G)

)
= F(X) ⊗̂ Hq

(
C•(V,G)

)
.
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b) The presheaf U 7→ F(U) ⊗̂ Hq(Y,G) is in fact a sheaf, because the tensor product
with the nuclear space Hq(Y,G) preserves the exactness of all sequences

0 −→ F(U) −→
∏
F(Uα) −→

∏
F(Uαβ)

associated to arbitrary coverings (Uα) of U . Property b) thus follows from a) and from
the fact that Rqπ⋆(F×G) is the sheaf associated to the presheaf U 7→ Hq(U×Y,F×G).

c) is an immediate consequence of b), since the finite dimensionality of Hq(Y,G) implies
that this space is Hausdorff. �

(5.23) Künneth formula. Let F, G be coherent sheaves over complex analytic schemes
X, Y and suppose that the cohomology spaces H•(X,F) and H•(Y,G) are Hausdorff.
Then there is an isomorphism

⊕

p+q=k

Hp(X,F) ⊗̂ Hq(Y,G)
≃−→ Hk(X × Y,F×G)

⊕
αp ⊗ βq 7−→

∑
αp ` βq .

Proof. Consider the Leray spectral sequence associated to the coherent sheaf S = F×G
and to the projection π : X × Y → X . By Cor. 5.22 b) and a use of Čech cohomology,
we find

Ep,q2 = Hp(X,Rqπ⋆F×G) = Hp(X,F) ⊗̂ Hq(Y,G).

It remains to show that the Leray spectral sequence degenerates in E2. For this, we
argue as in the proof of Th. IV-15.9. In that proof, we defined a morphism of the
double complex Cp,q = F[p](X)⊗G[q](Y ) into the double complex that defines the Leray
spectral sequence (in IV-15.9, we only considered the sheaf theoretic external tensor
product F×G, but there is an obvious morphism of that one into the analytic tensor
product). We get a morphism of spectral sequences which induces at the E2-level the
obvious morphism

Hp(X,F)⊗Hq(Y,G) −→ Hp(X,F) ⊗̂ Hq(Y,G).

It follows that the Leray spectral sequence Ep,qr is obtained for r > 2 by taking the
completion of the spectral sequence of C•,•. Since this spectral sequence degenerates in
E2 by the algebraic Künneth theorem, the Leray spectral sequence also satisfies dr = 0
for r > 2. �

(5.24) Remark. If X or Y is compact, the Künneth formula holds with ⊗ instead of
⊗̂, and the assumption that both cohomology spaces are Hausdorff is unnecessary. The
proof is exactly the same, except that we use (5.22 c) instead of (5.22 b).

§ 5.C. Modules over Nuclear Fréchet Algebras

Throughout this subsection, we work in the category of nuclear Fréchet spaces. Recall
that a topological algebra (commutative, with unit element 1) is an algebra A together
with a topological vector space structure such that the multiplication A × A → A is
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continuous. A is said to be a Fréchet (resp. nuclear) algebra if it is Fréchet (resp. nuclear)
as a topological vector space.

(5.25) Definition. A (Fréchet, resp. nuclear) A-module E is a (Fréchet, resp. nuclear)
space E with a A-module structure such that the multiplication A×E → E is continuous.
The module E is said to be nuclearly free if E is of the form A ⊗̂ V where V is a nuclear
Fréchet space.

Assume that A is nuclear and let E be a nuclear A-module. A nuclearly free resolution
L• of E is an exact sequence of A-modules and continuous A-linear morphisms

(5.26) · · · −→ Lq
dq−→ Lq−1 −→ · · · −→ L0 −→ E −→ 0

in which each Lq is a nuclearly free A-module. Such a resolution is said to be direct if
each map dq is direct, i.e. if Im dq has a topological supplementary space in Lq−1 (as a
vector space over R or C, not necessarily as a A-module).

(5.27) Proposition. Every nuclear A-module E admits a direct nuclearly free resolu-
tion.

Proof. We define the “standard resolution” of E to be

Lq = A ⊗̂ . . . ⊗̂ A ⊗̂ E

where A is repeated (q + 1) times; the A-module structure of Lq is chosen to be the one
given by the first factor and we set d0(a0 ⊗ x) = a0x,

dq(a0 ⊗ . . .⊗ aq ⊗ x) =
∑

06i<q

(−1)ia0 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ aq ⊗ x

+ (−1)qa0 ⊗ . . .⊗ aq−1 ⊗ aqx.

Then there is a homotopy operator hq : Lq → Lq+1 given by hq(t) = 1⊗ t for all q (hq,
however, is not A-linear). This implies easily that L• is a direct nuclearly free resolution.

�

If E and F are two nuclear A-modules, we define E ⊗̂A F to be

E ⊗̂A F = coker
(
E ⊗̂ A ⊗̂ F

d−→ E ⊗̂ F
)

where(5.28)

d(x⊗ a⊗ y) = ax⊗ y − x⊗ ay.

Then E ⊗̂A F is a A-module which it is not necessarily Hausdorff. If E ⊗̂A F is
Hausdorff, it is in fact a nuclear A-module by Prop. 5.14. If E is nuclearly free, say
E = A ⊗̂ V ≃ V ⊗̂ A, we have E ⊗̂A F = V ⊗̂ F (which is thus Hausdorff): indeed,
there is an exact sequence

V ⊗̂ A ⊗̂ A ⊗̂ F −→ V ⊗̂ A ⊗̂ F −→ V ⊗̂ F −→ 0,

v ⊗ a0 ⊗ a1 ⊗ x 7−→ v ⊗ a0a1 ⊗ x− v ⊗ a0 ⊗ a1x, v ⊗ a⊗ x 7−→ v ⊗ ax,
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obtained by tensoring the standard resolution of F with V ⊗̂ ; observe that the tensor
product ⊗̂ with a nuclear space preserves exact sequences thanks to Prop. 5.17. We
further define TôrAq (E, F ) to be

(5.29) TôrAq (E, F ) = Hq(E ⊗̂A L•),

where L• is the standard resolution of F . There is in fact an isomorphism

E ⊗̂A L• ≃−→ E ⊗̂ A ⊗̂ · · · ⊗̂ A ⊗̂ F
x⊗A (a0 ⊗ a1 ⊗ . . .⊗ aq ⊗ y) 7−→ a0x⊗ a1 ⊗ . . .⊗ aq ⊗ y

where A is repeated q times in the target space. In this isomorphism, the differential
becomes

dq(x⊗ a1 ⊗ . . .⊗ aq ⊗ y) = a1x⊗ a2 ⊗ . . .⊗ aq ⊗ y
+

∑

16i<q

(−1)ix⊗ a1 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ aq ⊗ y

+ (−1)qx⊗ a1 ⊗ . . .⊗ aq−1 ⊗ aqy.

In particular, we get TôrA0 (E, F ) = E ⊗̂A F . Moreover, if we exchange the roles of
E and F , we obtain a complex which is isomorphic to the above one up to the sign
of dq, hence TôrAq (E, F ) ≃ TôrAq (F,E). If E = A ⊗̂ V is nuclearly free, the complex

E ⊗̂A L• = V ⊗̂ L• is exact, thus

E or F nuclearly free =⇒ TôrAq (E, F ) = 0 for q > 1.

(5.30) Proposition. For any exact sequence 0 → E1 → E2 → E3 → 0 of nuclear
A-modules and any nuclear A-module F , there is an (algebraic) exact sequence

· · ·TôrAq (E1, F )−→ TôrAq (E2, F )−→ TôrAq (E3, F )−→ TôrAq−1(E1, F ) · · ·
−→ E1 ⊗̂A F −→ E2 ⊗̂A F −→ E3 ⊗̂A F −→ 0.

Proof. As the standard resolution L• → F is nuclearly free, Lq = A ⊗̂ Vq say, then
Ej ⊗̂A L• = Ej ⊗̂ V• for j = 1, 2, 3, so we have a short exact sequence of complexes

0 −→ E1 ⊗̂A L• −→ E2 ⊗̂A L• −→ E3 ⊗̂A L• −→ 0. �

(5.31) Corollary. For any nuclearly free (possibly non direct) resolution L• of F , there
is a canonical isomorphism

TôrAq (E, F ) ≃ Hq(E ⊗̂A L•).

Proof. Set Bq = Im(Lq+1 → Lq) for all q > 0 and B−1 = F . Then apply (5.30) to the
short exact sequences 0 → Bq → Lq → Bq−1 → 0 and the fact that Lq is nuclearly free
to get

TôrAk (E,Bq−1) ≃
{
TôrAk−1(E,Bq) for k > 1,

ker(E ⊗̂A Bq → E ⊗̂A Lq) for k = 1.
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Hence we obtain inductively

TôrAq (E, F ) = TôrAq (E,B−1) ≃ . . . ≃ TôrA1 (E,Bq−2)

≃ ker(E ⊗̂A Bq−1 → E ⊗̂A Lq−1)

and a commutative diagram

E ⊗̂A Lq+1 −→ E ⊗̂A Lq −→ E ⊗̂A Bq−1 −→ 0

ց ր
E ⊗̂A Bq

in which the horizontal line is exact (thanks to the surjectivity of the left oblique arrow
and the exactness of the sequence with E ⊗̂A Bq as first term). Therefore ker(E ⊗̂A
Bq−1 → E ⊗̂A Lq−1) can be interpreted as the kernel of E ⊗̂A Lq → E ⊗̂A Lq−1
modulo the image of E ⊗̂A Lq+1 → E ⊗̂A Lq, and this is is precisely the definition of
Hq(E ⊗̂A L•). �

Now, we are ready to introduce the crucial concept of transversality.

(5.32) Definition. We say that two nuclear A-modules E, F are transverse if E ⊗̂A F
is Hausdorff and if TôrAq (E, F ) = 0 for q > 1.

For example, a nuclearly free A-module E = A ⊗̂ V is transverse to any nuclear
A-module F . Before proving further general properties, we give a fundamental example.

(5.33) Proposition. Let X, Y be Stein spaces and let U ′ ⊂ U ⊂⊂ X, V ⊂⊂ Y be
Stein open subsets. If F is a coherent sheaf over X × Y , then O(U ′) and F(U × V ) are
transverse over O(U). Moreover

O(U ′) ⊗̂
O(U) F(U × V ) = F(U ′ × V ).

Proof. Let L• → F be a free resolution of F over U × V ; such a resolution exists by
Cartan’s theorem A. Then L•(U × V ) is a resolution of F(U × V ) which is nuclearly
free over O(U), for O(U × V ) = O(U) ⊗̂ O(V ) ; in particular, we get

O(U ′) ⊗̂
O(U) O(U × V ) = O(U ′) ⊗̂ O(V ) = O(U ′ × V ),

O(U ′) ⊗̂
O(U) L•(U × V ) =L•(U

′ × V ).

But L•(U ′ × V ) is a resolution of F(U ′ × V ), so

TôrO(U)
q

(
O(U ′),F(U × V )

)
=

{
F(U ′ × V ) for q = 0,
0 for q > 1.

�

(5.34) Properties.

a) If 0→ E1 → E2 → E3 → 0 is an exact sequence of nuclear A-modules and if E2, E3

are transverse to F , then E1 is transverse to F .
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b) Let A→ A1 → A2 be homomorphisms of nuclear algebras and let E be a nuclear A-
module. if A1 and A2 are transverse to E over A, then A2 is tranverse to A1 ⊗̂A E
over A1.

c) Let E• be a complex of nuclear A-modules, bounded on the right side, and let M be a
nuclear A-module which is transverse to all En. If E• is acyclic in degrees > k, then
M ⊗̂A E• is also acyclic in degrees > k.

d) Let E•, F • be complexes of nuclear A-modules, bounded on the right side. Let f• :
E• → F • be a A-linear morphism and letM be a nuclear A-module which is transverse
to all Eq and F q. If f• induces an isomorphism Hq(f•) : Hq(E•) → Hq(F •) in
degrees q > k and an epimorphism in degree q = k − 1, then

IdM ⊗̂A f• :M ⊗̂A E• →M ⊗̂A F •

has the same property.

Proof. a) is an immediate consequence of the Tôr exact sequence.

To prove b), we need only check that if A1 is transverse to E over A, then

TôrA1
q (A2, A1 ⊗̂A E) = TôrAq (A2, E), ∀n > 0.

Indeed, if L• = A ⊗̂ V• is a nuclearly free resolution of E over A, then A1 ⊗̂A L• =
A1 ⊗̂ V• is a nuclearly free resolution of A1 ⊗̂A E over A1, since Hq(A1 ⊗̂A L•) =

TôrAq (A1, E) = 0 for q > 1. Hence

TôrA1
q (A2, A1 ⊗̂AE) = Hq

(
A2 ⊗̂A1

(A1 ⊗̂A L•)
)
= Hq

(
A2 ⊗̂A1

(A1 ⊗̂ V•)
)

= Hq(A2 ⊗̂ V•) = Hq(A2 ⊗̂A L•) = TôrAq (A2, E).

c) The short exact sequences 0→ Zq(E•) −֒→ Eq
dq−→ Zq+1(E•)→ 0 show by backward

induction on q that M is transverse to Zq(E•) for q > k − 1. Hence for q > k − 1 we
obtain an exact sequence

0 −→M ⊗̂A Zq(E•) −֒→M ⊗̂A Eq dq−→M ⊗̂A Zq+1(E•) −→ 0,

which gives in particular Zq(M ⊗̂A E•) = Bq(M ⊗̂A E•) =M ⊗̂A Zq(E•) for q > k, as
desired.

d) is obtained by applying c) to the mapping cylinder C(f•), as defined in the following
lemma (the proof is straightforward and left to the reader). �

(5.35) Lemma. If f• : E• → F • is a morphism of complexes, the mapping cylinder
C• = C(f•) is the complex defined by Cq = Eq ⊕ F q−1 with differential

(
dqE 0

−f q dq−1F

)
: Eq ⊕ F q−1 −→ Eq+1 ⊕ F q.

Then there is a short exact sequence 0 → F •−1 → C• → E• → 0 and the associated
connecting homomorphism ∂q : Hq(E•)→ Hq(F •) is equal to Hq(f•) ; in particular, C•

is acyclic in degree q if and only if Hq(f•) is injective and Hq−1(f•) is surjective. �
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§ 5.D. A-Subnuclear Morphisms and Perturbations

We now introduce a notion of nuclearity relatively to an algebra A. This notion is
needed for example to describe the properties of the O(S)-linear restriction map O(S ×
U)→ O(S × U ′) when U ′ ⊂⊂ U .

(5.36) Definition. Let E and F be Fréchet A-modules over a Fréchet algebra A and let
f : E → F be a A-linear map. We say that

a) f is A-nuclear if there exist a scalar sequence (λj) with
∑ |λj | < +∞, an equicontin-

uous family of A-linears maps ξj : E → A and a bounded sequence yj in F such that
for all x ∈ E

f(x) =
∑

λj ξj(x)yj .

b) f is A-subnuclear if there exists a Fréchet A-module M and an epimorphism p :M →
E such that f ◦ p is A-nuclear; if E is nuclear, we also require M to be nuclear.

If f : E → F is A-nuclear and if u : S → E and v : F → T are continuous A-linear
maps then v ◦ f ◦ u is A-nuclear; the same is true for A-subnuclear maps. If V and W
are nuclear spaces and if u : V → W is C-nuclear, then IdA ⊗̂ u : A ⊗̂ V → A ⊗̂ W is
A-nuclear. From this we infer:

(5.37) Proposition. Let S, Z be Stein spaces and let U ′ ⊂⊂ U ⊂⊂ Z be Stein open
subsets. Then the restriction ρ : O(S×U)→ O(S×U ′) is O(S)-nuclear. If F is a coherent
sheaf over Y × Z with Y Stein and S ⊂⊂ Y , then the restriction map ρ : F(S × U) →
F(S × U ′) is O(S)-subnuclear.

Proof. As O(S × U) = O(S) ⊗̂ O(U) and O(U) → O(U ′) is C-nuclear, only the second
statement needs a proof. By Cartan’s theorem A, there exists a free resolution L• → F
over S × U . Then there is a commutative diagram

L0(S×U) −→ F(S×U)
ρ
y yρ

L0(S×U ′)−→ F(S×U ′)

in which the top horizontal arrow is an O(S)-epimorphism and the left vertical arrow
is an O(S)-nuclear map; its composition with the bottom horizontal arrow is thus also
O(S)-nuclear. �

Let f : E → F be a A-linear morphism of Fréchet A-modules. Suppose that f(E) ⊂
F1 where F1 is a closed A-submodule of F and let f1 : E → F1 be the map induced by
f . If f is A-nuclear, it is not true in general that f1 is A-nuclear or A-subnuclear, even
if A, E, F are nuclear. However:

(5.38) Proposition. With the above notations, suppose A, E, F nuclear. Let B be
a nuclear Fréchet algebra and let ρ : A → B be a C-nuclear homomorphism. Suppose
that B is transverse to E, F and F/F1 over A. If f : E → F is A-subnuclear, then
IdB ⊗̂A f1 : B ⊗̂A E → B ⊗̂A F1 is B-subnuclear.
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Proof. We first show that ρ ⊗̂A f1 : E = A ⊗̂A E → B ⊗̂A F1 is C-nuclear. Since a
quotient of a C-nuclear map is C-nuclear by Cor. 5.16 b), we may suppose for this that
f is A-nuclear. Write

f(x) =
∑

λj ξj(x)yj , ξj : E → A,
∑
|λj | < +∞, yj ∈ F,

ρ(t) =
∑

µk ηk(t)bk, ηk : A→ C,
∑
|µk| < +∞, bk ∈ B

as in the definition of (A-)nuclearity. Then ρ ⊗̂A f : E −→ B ⊗̂A F is C-nuclear: for
any x ∈ E, we have ρ(ξj(x)) = ξj(x)ρ(1) in the A-module structure of B, hence

ρ ⊗̂A f(x) = ρ⊗ f(1⊗ x) =
∑

λj ρ(ξj(x)) ⊗̂A yj
=

∑
λjµk (ηk ◦ ξj)(x) bk ⊗̂A yj .

By our transversality assumptions, B ⊗̂A F1 is a closed subspace of B ⊗̂A F . As
Im(ρ ⊗̂A f) ⊂ B ⊗̂A F1, the induced map ρ ⊗̂A f1 : E → B ⊗̂A F1 is C-nuclear by
Cor. 5.16 a). Finally, there is a commutative diagram

B⊗̂ E IdB⊗̂(ρ⊗̂Af1)−−−−−−−−−→ B ⊗̂ (B ⊗̂A F1)y y

B⊗̂A E
IdB⊗̂Af1−−−−−−−−−→ B⊗̂A F1

in which the vertical arrows are B-linear epimorphisms. The top horizontal arrow is
B-nuclear by the C-nuclearity of ρ ⊗̂A f1, hence IdB ⊗̂A f1 is B-subnuclear. �

Example 5.12 suggests the following definition (which is somewhat less general than
some other in current use, but sufficient for our purposes).

(5.39) Definition. We say that a Fréchet algebra A is fully nuclear if the topology of A is
defined by an increasing family (pt)t∈]0,1[ of multiplicative semi-norms

(
that is, pt(xy) 6

pt(x) pt(y)
)
, such that the Banach algebra homomorphism Âpt′ → Âpt is nuclear for all

t < t′ < 1.

If A is fully nuclear and t ∈ ]0, 1], we define At to be the completion of A equipped
with the family of semi-norms pλt, λ ∈ ]0, 1[. Then At is again a fully nuclear algebra,
and for all t < t′ < 1 the canonical map At′ → At is nuclear: indeed, for t 6 u < u′ < t′,
there is a factorization

At′ −→ Âpu′ −→ Âpu −→ At.

If E is a nuclear A-module, we say that E is fully A-transverse if E is transverse to all
At over A. Then by 5.34 b), each nuclear space

(5.40) Et = At ⊗̂A E

is a fully At-transverse At-module. If f : E → F is a morphism of fully A-transverse
nuclear modules, there is an induced map

(5.40′) ft = IdAt
⊗̂A f : Et −→ Ft, ∀t ∈ ]0, 1].
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(5.41) Example. Let X be a closed analytic subscheme of an open set Ω ⊂ CN ,
D = D(a, R) ⊂⊂ Ω a polydisk and U = D∩X . We have an epimorphism O(D)→ O(U).
Denote by p̃t the quotient semi-norm of pt(f) = supD(a,tR) |f | on O(U). Then O(U)

equipped with (p̃t)t∈]0,1[ is a fully nuclear algebra, and O(U)t = O
(
D(a, tR) ∩X

)
.

Now, let Y be a Stein space, V ⊂⊂ Y a Stein open subset and F a coherent sheaf over
X×Y . Then Prop. 5.33 shows that F(U ×V ) is a fully transverse nuclear O(U)-module.

(5.42) Subnuclear perturbation theorem. Let A be a fully nuclear algebra, let E
and F be two fully A-transverse nuclear A-modules and let f, u : E → F be A-linear
maps. Suppose that u is A-subnuclear and that f is an epimorphism. Then for every
t < 1, the cokernel of

ft − ut : Et −→ Ft

is a finitely generated At-module (as an algebraic module; we do not assert that the
cokernel is Hausdorff).

Proof. We argue in several steps. The first step is the following special case.

(5.43) Lemma. Let B be a Banach algebra, S a Fréchet B-module and v : S → S a
B-nuclear morphism. Then Coker(IdS −v) is a finitely generated B-module.

Proof. Let v(x) =
∑
λj ξj(x)yj be a B-nuclear decomposition of v. We have a factoriza-

tion

v = β ◦ α : S
α−→ ℓ1(B)

β−→ S

where α(x) =
(
λjξj(x)

)
and β(tj) =

∑
tjyj . Set w = α ◦ β : ℓ1(B) → ℓ1(B). As α is

B-nuclear, so is w, and α, β induce isomorphisms

Coker(IdS −v)
α̃
−−→←−−
β̃

Coker
(
Idℓ1(B)−w

)
.

We are thus reduced to the case when S is a Banach module. Then we write v = v′+ v′′

with
v′(x) =

∑

16j6N

λj ξj(x)yj, v′′(x) =
∑

j>N

λj ξj(x)yj .

For N large enough, we have ||v′′|| < 1, hence IdS −v′′ is an automorphism and
Coker(IdS −v′ − v′′) is generated by the classes of y1, . . . , yN . �

Proof of Theorem 5.42. a) We may suppose that E is nuclearly free and that u is

A-nuclear, otherwise we replace f , u by their composition with A ⊗̂M −→M
p−→ E,

where M is nuclear and p :M → E is an epimorphism such that u ◦ p is A-nuclear.

b) As in (5.9), there is a A-nuclear decomposition u(x) =
∑
λj ξj(x)yj where (yj) con-

verges to 0 in F . Since f is an epimorphism, we can find a sequence (xj) converging
to 0 in E such that f(xj) = yj . Hence we have u = f ◦ v where v(x) =

∑
λj ξj(x)xj

is a A-nuclear endomorphism of E, and the cokernel of f − u is the image by f of the
cokernel of IdE −v.

c) By a), b) we may suppose that F = E = A ⊗̂M , f = IdE and that u is A-nuclear. Let

B be the Banach algebra B = Âpt . Then B ⊗̂A E = B ⊗̂M is a Fréchet B-module and
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IdB ⊗̂A u is B-nuclear. By Lemma 5.42, IdB ⊗̂A IdE − IdB ⊗̂A u has a finitely generated
cokernel over B. Now, there is an obvious morphism B → At, hence by taking the tensor
product with At ⊗̂B • we get

At ⊗̂B (B ⊗̂A E) = At ⊗̂B (B ⊗̂M) = At ⊗̂M = At ⊗̂A E = Et

and we see that
IdEt

−ut = IdAt
⊗̂A IdE − IdAt

⊗̂A u
has a finitely generated cokernel over At. �

§ 5.E. Proof of the Direct Image Theorem

We first prove a functional analytic version of the result, which appears as a relative
version of the Cartan-Serre/Schwartz theorem (Th. 1.9).

(5.44) Theorem. Let A be a fully nuclear algebra, E• and F • complexes of fully A-
transverse nuclear A-modules. Let f• : E• → F • be a morphism of complexes such that
each f q is A-subnuclear. Suppose that E• and F • are bounded on the right and that
Hq(f•) is an isomorphism for each q. Then for every t < 1, there is a complex L• of
finitely generated free At-modules and a complex morphism h• : L• → E•t which induces
an isomorphism on cohomology.

Proof. a) We first show the following statement:

Suppose that E•t and F •t are acyclic in degrees > q. Then for every t′ < t, the
cohomology space Hq(E•t′) ≃ Hq(F •t′) is a finitely generated At′-module.

Indeed, the exact sequences 0→ Zk(E•t )→ Ekt → Zk+1(E•t )→ 0 show by backward
induction on k that Zk(E•t ) is fully At-transverse for k > q. The same is true for Zk(F •t ).
Then f qt is a At-subnuclear map from Zq(E•t ) into F

q
t , and its image is contained in the

closed subspace Zq(F •t ). By Prop. 5.38, for all t′′ < t, the map f qt′′ = IdAt′′
⊗̂At

f qt is a
At′′ -subnuclear map Zq(E•t′′) → Zq(F •t′′). By Prop. 5.34 d), H•(f•t′′) is an isomorphism
in all degrees, hence

dqt′′ ⊕ f
q
t′′ : F

q−1
t′′ ⊕ Zq(E•t′′) −→ Zq(F •t′′)

is surjective. By the subnuclear perturbation theorem, the map

dqt′ ⊕ 0 = IdAt′
⊗̂At′′

(
(dqt′′ ⊕ f

q
t′′)− (0⊕ f qt′′)

)

has a finitely generated At′-cokernel for t
′ < t′′ < t, as desired.

b) Let N be an index such that Ek = F k = 0 for k > N . Fix a sequence t < . . . < tq <
tq+1 < . . . < tN < 1. To prove the theorem, we construct by backward induction on q a

finitely generated free module Lq over Atq and morphisms dq : Lq → Lq+1
tq , hq : Lq → Eqtq

such that

i) L•
>q, tq : 0→ Lq → Lq+1

tq → · · · → LNtq → 0 is a complex and
h•

>q, tq
: L•

>q, tq
→ E•tq is a complex morphism.

ii) The mapping cylinder M•q = C(h•
>q, tq

) defined by

Mk
q =

⊕
k∈Z

(
Lk

>q, tq
⊕ Ek−1tq

)
is acyclic in degrees k > q.
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Suppose that Lk has been constructed for k > q. Consider the mapping cylinder N•q =
C(f•tq ◦ h•>q, tq ) and the complex morphism

M•q −→ N•q , Lk
>q, tq ⊕E

k−1
tq −→ Lk

>q, tq ⊕ F
k−1
tq

given by Id⊕fk−1tq
. This morphism is Atq -subnuclear in each degree and induces an

isomorphism in cohomology (compare the cohomology of the short exact sequences asso-
ciated to each mapping cylinder, with the obvious morphism between them). Moreover,
M•q and N•q are acyclic in degrees k > q. By step a), the cohomology space Hq(M•q, tq−1

)
is a finitely generated Atq−1

-module. Therefore, we can find a finitely generated free
Atq−1

-module Lq−1 and a morphism

dq−1 ⊕ hq−1 : Lq−1 →M q
q, tq−1

= Lqtq−1
⊕ Eq−1tq−1

such that the image is contained in Zq(M•q, tq−1
) and generates the cohomology space

Hq(M•q, tq−1
). As M q−1

q, tq−1
= Eq−2tq−1

, this means that M•q−1 is also acyclic in degree q.

Thus Lq−1, together with the maps (dq−1, hq−1) satisfies the induction hypotheses for
q − 1, and L•t together with the induced map h•t : L

•
t → E•t is the required morphism of

complexes. �

Proof of Theorem 5.1. Let X , Y be complex analytic schemes, let F : X → Y be a
proper analytic morphism and let S be a coherent sheaf over X . Fix a point y0 ∈ Y , a
neighborhood of y0 which is isomorphic to a closed analytic subscheme of a Stein open set

W ⊂ Cn and a polydisk D0 = D(y0, R0) ⊂⊂ W . The compact set K = F−1(D
0∩Y ) can

be covered by finitely many open subsets U0
α ⊂⊂ X which possess embeddings as closed

analytic subschemes of Stein open sets Ω0
α ⊂ CNα . Let Ω′α ⊂⊂ Ωα ⊂⊂ Ω0

α be Stein open
subsets such that Uα = U0

α ∩Ωα and U ′α = U0
α ∩Ω′α still cover K. Let iα : U0

α → Ω0
α and

j : Y ∩D0 → D0 be the embeddings and Sα =
(
iα × (j ◦F )

)
⋆
S the image sheaf of S on

Ω0
α×D0. Let D ⊂⊂ D0 be a concentric polydisk. Then S

(
Uα ∩F−1(D)

)
= Sα(Ωα×D)

is a fully transverse O(D)-module by Ex. 5.41, and so is S
(
U ′α∩F−1(D)

)
= Sα(Ω

′
α×D).

Moreover, the restriction map

S

(
Uα ∩ F−1(D)

)
−→ S

(
U ′α ∩ F−1(D)

)

is O(D)-subnuclear by Prop. 5.37 applied to F = Sα. For every Stein open set V ⊂ D,
Prop. 5.33 shows that

O(V ) ⊗̂
O(D) S

(
Uα ∩ F−1(D)

)
= S

(
Uα ∩ F−1(V )

)
.

Denote by U∩F−1(D) the collection
(
Uα ∩F−1(D)

)
and use a similar notation with

U

′ = (U ′α). As U ∩ F−1(D), U′ ∩ F−1(D) are Stein coverings of F−1(D), the Leray
theorem applied to the alternate Čech complex of S over U∩F−1(D) and U′ ∩F−1(D)
gives an isomorphism

H•
(
AC•(U ∩ F−1(D),S)

)
= H•

(
AC•(U′ ∩ F−1(D),S)

)
= H•

(
F−1(D),S

)
.

By the above discussion, AC•(U ∩ F−1(D),S) and AC•(U′ ∩ F−1(D),S) are finite
complexes of fully transverse nuclear O(D)-modules, the restriction map

AC•(U ∩ F−1(D),S) −→ AC•(U′ ∩ F−1(D),S)
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is O(D)-subnuclear and induces an isomorphism on cohomology groups. SetD = D(y0, R)
and Dt = D(y0, tR). Theorem 5.44 shows that for every t < 1 there is a complex of
finitely generated free O-modules L• and a O(Dt)-linear morphism of complexes

L

•(Dt)→ AC•(U ∩ F−1(Dt),S)

which induces an isomorphism on cohomology. Let V ⊂ Dt be an arbitrary Stein open
set. By Prop. 5.34 d) applied with M = O(V ), we conclude that L•(V ) → AC•(U ∩
F−1(V ),S) induces an isomorphism on cohomology. If we take the direct limit as V runs
over all Stein neighborhoods of a point y ∈ Y ∩Dt, we see that Hq(L•) ≃ RqF⋆S over
Y ∩Dt, hence RqF⋆S is OY -coherent near y0. �
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naire P. Lelong - P. Dolbeault - H. Skoda (Analyse) 1983/84, Lecture Notes in Math. no 1198,
Springer-Verlag (1985) 88–97.

Demailly, J.P. [1985a] — Mesures de Monge-Ampère et caractérisation géométrique des variétés
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Strukturen, Publ. Math. I.H.E.S. 5 (1960) 233–292.
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Grothendieck, A. [1958] — La théorie des classes de Chern, Bull. Soc. Math. France 86 (1958)
137–154.

Grothendieck, A. [1966] — On the De Rham cohomology of algebraic varieties, Publ. Math. I.H.E.S.
29 (1966) 351–359.

Grothendieck, A. [1968] — Standard conjectures on algebraic cycles, Bombay Colloquium on Alge-
braic Geometry, 1968, Oxford Univ. Press (1969).

Greene, R.E., Wu, H.H. [1975] — Embedding of open riemannian manifolds by harmonic functions,
Ann. Inst. Fourier (Grenoble) 25 (1975) 215–235.

Gunning, R.C., Rossi, H. [1965] — Analytic functions of several complex variables, Prentice-Hall,
Englewood Cliffs, N.J. (1965).

Hartshorne, R. [1966] — Ample vector bundles, Publ. Math. I.H.E.S. 29 (1966) 319–350.

Hartshorne, R. [1970] — Ample subvarieties of algebraic varieties, Lecture Notes in Math. no 156,
Springer-Verlag, Berlin (1970).

Hartshorne, R. [1977] — Algebraic geometry, Springer-Verlag, Berlin (1977).

Harvey, R. [1975] — Holomorphic chains and their boundaries, Proc. of Symposia in Pure Math.,
Several Complex Variables, held in Williamstown in 1975, vol. XXX, part I, ed. by R.O. Wells (1977)
309–382.

Hironaka, H. [1964] — Resolution of singularities of an algebraic variety over a field of characteristic
zero, Ann. of Math. 79 (1964) 109–326.



452 References

Hirzebruch, F. [1966] — Topological methods in algebraic geometry, Springer-Verlag, Berlin (1966).

Hodge, W.V.D. [1941] — The theory and applications of harmonic integrals, Cambridge University
Press (1941).
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Lelong, P. [1942] — Définition des fonctions plurisousharmoniques, C. R. Acad. Sci. Paris 215 (1942)
p. 398 and p. 454.
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P. Lelong (Analyse), année 1975/76, Lecture Notes in Math. no 538, Springer-Verlag, Berlin (1977)
314–323.

Skoda, H. [1978] — Morphismes surjectifs de fibrés vectoriels semi-positifs, Ann. Sci. École Norm.
Sup. 11 (1978) 577–611.

Skoda, H. [1982] — Prolongement des courants positifs fermés de masse finie, Invent. Math. 66
(1982) 361–376.

Sommese, A.J. [1978] — Submanifolds of abelian varieties, Math. Ann. 233 (1978) 229–256.

Spanier, E.H. [1966] — Algebraic topology, McGraw-Hill, New York (1966).

Stein, K. [1951] — Analytische Funktionen mehrerer komplexer Veränderlichen und das zweite
Cousin’sche Problem, Math. Ann. 123 (1951) 201–222.

Stoll, W. [1966] — The multiplicity of a holomorphic map, Invent. Math. 2 (1966) 15–58.

Thie, P. [1967] — The Lelong number of a point of a complex analytic set, Math. Ann. 172 (1967)
269–312.

Umemura, H. [1973] — Some results in the theory of vector bundles, Nagoya Math. J. 52 (1973)
97–128.

Viehweg, E. [1982] — Vanishing theorems, J. Reine Angew. Math. 335 (1982) 1–8.

Von Neumann, J. [1929] — Zur Algebra der Funktionaloperationen und Theorie der normalen
Operatoren, Math. Ann. 102 (1929) 370-427.



References 455

Waldschmidt, M. [1976] — Propriétés arithmétiques des fonctions de plusieurs variables II, Sémi-
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(1979).

Warner, F. [1971] — Foundations of differentiable manifolds and Lie groups, Academic Press, New
York (1971).
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