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1. Introduction and main results

The goal of this work is to prove an embedding theorem for compact almost complex mani-
folds into complex algebraic varieties. As usual, an almost complex manifold of dimension
n is a pair (X, JX), where X is a real manifold of dimension 2n and JX a smooth section of
End(TX) such that J2

X = − Id ; we will assume here that all data are C∞.

Let Z be a complex (holomorphic) manifold of complex dimension N . Such a manifold
carries a natural integrable almost complex structure JZ (conversely, by the Newlander-
Nirenberg thorem any integrable almost complex structure can be viewed as a holomorphic
structure). Now, assume that we are given a holomorphic distribution D in TZ, namely
a holomorphic subbundle D ⊂ TZ. Every fiber Dx of the distribution is then invariant
under JZ , i.e. JZDx ⊂ Dx for every x ∈ Z. Here, the distribution D is not assumed to
be integrable. We recall that D is integrable in the sense of Frobenius (i.e. stable under
the Lie bracket operation) if and only if the fibers Dx are the tangent spaces to leaves of a
holomorphic foliation. More precisely, D is integrable if and only if the torsion operator θ of
D, defined by

(1.1)
θ : O(D)×O(D) −→ O(TZ/D)

(ζ, η) 7−→ [ζ, η] mod D
vanishes identically. As is well known, θ is skew symmetric in (ζ, η) and can be viewed as a
holomorphic section of the bundle Λ2D∗ ⊗ (TZ/D).

Let M be a real submanifold of Z of class C∞ and of real dimension 2n with n < N . We
say that M is transverse to D if for every x ∈M we have

(1.2) TxM ⊕Dx = TxZ.

We could in fact assume more generally that the distribution D is singular, i.e. given by
a certain saturated subsheaf O(D) of O(TZ) (“saturated” means that the quotient sheaf
O(TZ)/O(D) has no torsion). Then O(D) is actually a subbundle of TZ outside an analytic
subset Dsing ⊂ Z of codimension ≥ 2, and we further assume in this case that M ∩Dsing = ∅.

When M is transverse to D, one gets a natural R-linear isomorphism

(1.3) TxM ' TxZ/Dx
at every point x ∈M . Since TZ/D carries a structure of holomorphic vector bundle (at least
over Z rDsing), the complex structure JZ induces a complex structure on the quotient and

therefore, through the above isomorphism (1.3), an almost complex structure JZ,DM on M .

Moreover, when D is a foliation (i.e. O(D) is an integrable subsheaf of O(TZ)), then JZ,DM

is an integrable almost complex structure on M . Indeed, such a foliation is realized near any
regular point x as the set of fibers of a certain submersion: there exists an open neighborhood
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Ω of x in Z and a holomorphic submersion σ : Ω→ Ω′ to an open subset Ω′ ⊂ Cn such that
the fibers of σ are the leaves of D in Ω. We can take Ω to be a coordinate open set in Z
centered at point x and select coordinates such that the submersion is expressed as the first
projection Ω ' Ω′ × Ω′′ → Ω′ with respect to Ω′ ⊂ Cn, Ω′′ ⊂ CN−n, and then D, TZ/D are
identified with the trivial bundles Ω× ({0} × CN−n) and Ω× Cn. The restriction

σM∩Ω : M ∩ Ω ⊂ Ω
σ−→Ω′

provides M with holomorphic coordinates on M ∩ Ω, and it is clear that any other local

trivialization of the foliation on a different chart Ω̃ = Ω̃′ × Ω̃′′ would give coordinates that

are changed by local biholomorphisms Ω′ → Ω̃′ in the intersection Ω ∩ Ω̃, thanks to the
holomorphic character of D. Thus we directly see in that case that JZ,DM comes from a
holomorphic structure on M .

More generally, we say that f : X ↪→ Z is a transverse embedding of a smooth real
manifold X in (Z,D) if f is an embedding and M = f(X) is a transverse submanifold of
Z, namely if f∗TxX ⊕Df(x) = Tf(x)Z for every point x ∈ X (and f(X) does not meet Dsing

in case there are singularities). One then gets a real isomorphism TX ' f ∗(TZ/D) and
therefore an almost complex structure on X (for this it would be enough to assume that f
is an immersion, but we will actually suppose that f is an embedding here). We denote by

Jf the almost complex structure Jf := f ∗(JZ,Df(X)).

The following very interesting question was investigated about 20 years ago by F. Bogo-
molov [Bog96].

Basic question 1.1. Given an integrable complex structure J on a compact manifold X,
can one realize J , as described above, by a transverse embedding f : X ↪→ Z into a projective
manifold (Z,D) equipped with an algebraic foliation D, in such a way that f(X)∩Dsing = ∅
and J = Jf ?

There are indeed many examples of Kähler and non Kähler compact complex manifolds
which can be embedded in that way (the case of projective ones being of course trivial): tori,
Hopf and Calabi-Eckman manifolds, and more generally all manifolds given by the LVMB
construction (see Section 2). Strong indications exist that every compact complex manifold
should be embeddable as a smooth submanifold transverse to an algebraic foliation on a
complex projective variety, see section 5 . We prove here that the corresponding statement
in the almost complex category actually holds – provided that non integrable distributions
are considered rather than foliations. In fact, there are even “universal solutions” to this
problem.

Theorem 1.2. For all integers n ≥ 1 and k ≥ 4n, there exists a complex affine algebraic
manifold Zn,k of dimension N = 2k + 2(k2 + n(k − n)) possessing a real structure (i.e. an
anti-holomorphic algebraic involution) and an algebraic distribution Dn,k ⊂ TZn,k of codi-
mension n, for which every compact n-dimensional almost complex manifold (X, J) admits
an embedding f : X ↪→ ZR

n,k transverse to Dn,k and contained in the real part of Zn,k, such
that J = Jf . Moreover, f can be chosen to depend in a simple algebraic way on the almost
complex structure J selected on X.

The choice k = 4n yields the explicit embedding dimension N = 38n2 + 8n (we will see
that a quadratic bound N = O(n2) is optimal, but the above explicit value could perhaps
be improved). Since Z = Zn,k and D = Dn,k are algebraic and Z is affine, one can further
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compactify Z into a complex projective manifold Z, and extend D into a saturated subsheaf
D of TZ. In general such distributions D will acquire singularities at infinity, and it is unclear
whether one can achieve such embeddings with D non singular on Z, if at all possible.

Next, we consider the case of a compact almost complex symplectic manifold (X, J, ω)
where the symplectic form ω is assumed to be J-compatible, i.e. J∗ω = ω and ω(ξ, Jξ) > 0.
By a theorem of Tischler [Tis77], at least under the assumption that the De Rham coho-
mology class {ω} is integral, we know that there exists a smooth embedding g : X ↪→ CPs
such that ω = g∗ωFS is the pull-back of the standard Fubini-Study metric on ωFS on CPs. A
natural problem is whether the symplectic structure can be accommodated simultaneously
with the almost complex structure by a transverse embedding. Let us introduce the following
definition.

Definition 1.3. Let (Z,D) be a complex manifold equipped with a holomorphic distribution.
We say that a closed semipositive (1, 1)-form β on Z is a transverse Kähler structure if the
kernel of β is contained in D, in other terms, if β induces a Kähler form on any germ of
complex submanifold transverse to D.

Using an effective version of Tischler’s theorem stated by Gromov [Gro86], we prove :

Theorem 1.4. For all integers n ≥ 1, b ≥ 1 and k ≥ 2n+1, there exists a complex projective
algebraic manifold Zn,b,k of dimension N = 2bk(2bk + 1) + 2n(2bk − n)), equipped with a
real structure and an algebraic distribution Dn,b,k ⊂ TZn,b,k of codimension n, for which
every compact n-dimensional almost complex symplectic manifold (X, J, ω) with second Betti
number b2 ≤ b and a J-compatible symplectic form ω admits an embedding f : X ↪→ ZR

n,b,k

transverse to Dn,b,k and contained in the real part of Zn,k, such that J = Jf and ω = f ∗β for
some transverse Kähler structure β on (Zn,b,k,Dn,b,k).

In section 5, we discuss Bogomolov’s conjecture for the integrable case. We first prove
the following weakened version, which can be seen as a form of “algebraic embedding” for
arbitrary compact complex manifolds.

Theorem 1.5. For all integers n ≥ 1 and k ≥ 4n, let (Zn,k,Dn,k) be the affine algebraic
manifold equipped with the algebraic distribution Dn,k ⊂ TZn,k introduced in Theorem 1.2.
Then, for every compact n-dimensional (integrable) complex manifold (X, J), there exists an
embedding f : X ↪→ ZR

n,k transverse to Dn,k, contained in the real part of Zn,k, such that

(i) J = Jf and ∂Jf is injective ;

(ii) Im(∂Jf) is contained in the isotropic locus IDn,k of the torsion operator θ of Dn,k, the
intrinsically defined algebraic locus in the Grassmannian bundle Gr(Dn,k, n)→ Zn,k
of complex n-dimensional subspaces in Dn,k, consisting of those subspaces S such that
θ|S×S = 0.

The inclusion condition (ii) Im(∂Jf) ⊂ IDn,k is in fact necessary and sufficient for the
integrability of Jf .

In the last section we investigate the original Bogomolov conjecture and “reduce it” to a
statement concerning approximations of holomorphic foliations. The flavor of the statement
is that holomorphic objects (functions, sections of algebraic bundles, etc) defined on a poly-
nomially convex open set of Cn can always be approximated by polynomials or algebraic
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sections. Our hope is that this might be true also for the approximation of holomorphic fo-
liations by Nash algebraic ones. Recall that a Nash algebraic map g : U → V between open
sets U, V of algebraic manifolds Y, Z is a map whose graph is a connected component of the
intersection of U×V with an algebraic subset of Y ×Z. We say that a holomorphic foliation
F of codimension n on U is Nash algebraic if the associated distribution Y ⊃ U → Gr(TY, n)
is Nash algebraic. In section 6, we show

Proposition 1.6. Assume that holomorphic foliations can be approximated by Nash algebraic
foliations uniformly on compact subsets of any polynomially convex open subset of CN . Then
every compact complex manifold can be approximated by compact complex manifolds that are
embeddable in the sense of Bogomolov in foliated projective manifolds.

2. Transverse embeddings to foliations

We consider the situation described above, where Z is a complex N -dimensional manifold
equipped with a holomorphic distribution D. More precisely, let X be a compact real
manifold of class C∞ and of real dimension 2n with n < N . We assume that there is an
embedding f : X ↪→ Z that is transverse to D, namely that f(X) ∩ Dsing = ∅ and

(2.1) f∗TxX ⊕Df(x) = Tf(x)Z

at every point x ∈ X. Here Df(x) denotes the fiber at f(x) of the distribution D. As
explained in section 1, this induces a R-linear isomorphism f∗ : TX → f ∗(TZ/D), and from

the complex structures of TZ and D we get an almost complex structure f ∗JZ,Df(X) on TX

which we will simply denote by Jf here. Next, we briefly investigate the effect of isotopies.

Definition 2.1. An isotopy of smooth transverse embeddings of X into (Z,D) is by definition
a family ft : X → Z of embeddings for t ∈ [0, 1], such that the map F (x, t) = ft(x) is smooth
on X × [0, 1] and ft is transverse to D for every t ∈ [0, 1].

We then get a smooth variation Jft of almost complex structures on X. When D is
integrable (i.e. a holomorphic foliation), these structures are integrable and we have the
following simple but remarkable fact.

Proposition 2.2. Let Z be a compact complex manifold equipped with a holomorphic folia-
tion D and let ft : X → Z, t ∈ [0, 1], be an isotopy of transverse embeddings of a compact
smooth real manifold. Then all complex structures (X, Jft) are biholomorphic to (X, Jf0)
through a smooth variation of diffeomorphisms in Diff0(X), the identity component of the
group Diff(X) of diffeomorphisms of X.

Proof. By an easy connectedness argument, it is enough to produce a smooth variation of
biholomorphisms ψt,t0 : (X, Jft0 ) to (X, Jft) when t is close to t0, and then extend these to
all t, t0 ∈ [0, 1] by the chain rule. Let x ∈ X. Thanks to the local triviality of the foliation at
z0 = ft0(x) ∈ Z rDsing, D is locally near x the family of fibers of a holomorphic submersion
σ : Z ⊃ Ω → Ω′ ⊂ Cn defined on a neighborhood Ω of z0. Then σ ◦ ft : X ⊃ f−1

t (Ω) → Ω′

is by definition a local biholomorphism from (X, Jft) to Ω′ (endowed with the standard
complex structure of Cn). Now, ψt,t0 = (σ ◦ ft)−1 ◦ (σ ◦ ft0) defines a local biholomorphism
from (X, Jft0 ) to (X, Jft) on a small neighborhood of x, and these local biholomorphisms glue
together into a global one when x and Ω vary (this biholomorphism consists of “following
the leaf of D” from the position ft0(X) to the position ft(X) of the embedding). Clearly
ψt,t0 depends smoothly on t and satisfies the chain rule ψt,t0 ◦ ψt0,t1 = ψt,t1 . �
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Therefore when D is a foliation, to any triple (Z,D, α) where α is an isotopy class of trans-
verse embeddings X → Z, one can attach a point in the Teichmüller space J int(X)/Diff0(X)
of integrable almost complex structures modulo biholomorphisms diffeotopic to identity. The
question raised by Bogomolov can then be stated more precisely :

Question 2.3. For any compact complex manifold (X, J), does there exist a triple (Z,D, α)
formed by a smooth complex projective variety Z, an algebraic foliation D on Z and an
isotopy class α of transverse embeddings X → Z, such that J = Jf for some f ∈ α ?

The isotopy class of embeddings X → Z in a triple (Z,D, α) provides some sort of “alge-
braicization” of a compact complex manifold, in the sense that there is an atlas of X such
that the transition functions are solutions of algebraic linear equations (rather than plain
algebraic functions, as would be the case for usual algebraic varieties). In this setting, it
should be observed that the isotopy classes α are just “topological classes” belonging to a
discrete countable set – this set can be infinite as one already sees for real linear embeddings
of a real even dimensional torus X = (R/Z)2n into a complex torus Z = CN/Λ equipped
with a linear foliation D. To see this, we first cover Z r Dsing by a countable family of
coordinate open sets Ων ' Ω′ν ×Ω′′ν such that the first projections σν : Ων → Ω′ν ⊂ Cn define
the foliation. We assume here Ω′ν and Ω′′ν to be balls of sufficiently small radius, so that all
fibers z′×Ω′′ν are geodesically convex with respect to a given hermitian metric on the ambient
manifold Z, and the geodesic segment joining any two points in those fibers is unique (of
course, we mean here geodesics relative to the fibers – standard results of differential geom-
etry guarantee that sufficiently small coordinate balls will satisfy this property). Then any
nonempty intersection

⋂
z′j ×Ω′′νj of the fibers from various coordinate sets is still connected

and geodesically convex. We further enlarge the family with all smaller balls whose centers
have coordinates in Q[i] and radii in Q+, so that arbitrarily fine coverings can be extracted
from the family. A transverse embedding f : X → Z is characterized by its image M = f(X)
up to right composition with an element ψ ∈ Diff(X), and thus, modulo isotopy, up to an
element in the countable mapping class group Diff(X)/Diff0(X). The image M = f(X)
is itself given by a finite collection of graphs of maps gν : Ω′ν → Ω′′ν that glue together,
for a certain finite subfamily of coordinate sets (Ων)ν∈I extracted from the initial countable
family. However, any two such transverse submanifolds (Mk)k=0,1 and associated collections
of graphs (gk,ν) defined on the same finite subset I are isotopic : to see this, assume e.g.

I = {1, 2, . . . , s} and fix even smaller products of balls Ω̃ν ' Ω̃′ν × Ω̃′′ν b Ων still covering

M0 and M1, and a cut-off function θν(z
′) equal to 1 on Ω̃′ν and with support in Ω′ν . Then

we construct isotopies (Ft,k)t∈[0,1] : M0 → Mt,k step by step, for k = 1, 2, . . . , s, by taking
inductively graphs of maps (Gt,k,ν)t∈[0,1], k=1,...,s, ν∈I such that

Mt,1 given by

{
Gt,1,1(z′) = γ

(
tθ1(z′) ; g0,1(z′), g1,1(z′)

)
on Ω′1,

Gt,1,ν(z
′) = g0,ν(z

′) on σν
(
Ων r (Supp(θ1)× Ω̃′′1)

)
, ν 6= 1,

Mt,k given by

{
Gt,k,k(z

′) = γ
(
tθk(z

′) ; Gt,k−1,k(z
′), Gt,k−1,k(z

′)
)

on Ω′k,

Gt,k,ν(z
′) = Gt,k−1,ν(z

′) on σν
(
Ων r (Supp(θk)× Ω̃′′k)

)
, ν 6= k,

where γ(t ; a′′, b′′) denotes the geodesic segment between a′′ and b′′ in each fiber z′ × Ω′′ν .
By construction, we have M0,k = M0 and M1,k ∩ Uk = M1 ∩ Uk on Uk = Ω̃1 ∪ . . . ∪ Ω̃k, thus
ft := Ft,s : M0 → Mt is a transverse isotopy between M0 and M1. Therefore, we have at
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most as many isotopy classes as the cardinal of the mapping class group, times the cardinal
of the set of finite subsets of a countable set, which is still countable. �

Of course, when D is non integrable, the almost complex structure Jft will in general vary
under isotopies. One of the goals of the next sections is to investigate this phenomenon, but
in this section we study further some integrable examples.

Example 2.4 (Complex tori). Let X = R2n/Z2n be an even dimensional real torus and
Z = CN/Λ a complex torus where Λ ' Z2N is a lattice of CN , N > n. Any complex vector
subspace D ⊂ CN of codimension n defines a linear foliation on Z (which may or may not
have closed leaves, but for D generic, the leaves are everywhere dense). Let f : X → Z
be a linear embedding transverse to D. Here, there are countably many distinct isotopy
classes of such linear embeddings, in fact up to a translation, f is induced by a R-linear
map u : R2n → CN that sends the standard basis (e1, . . . , e2n) of Z2n to a unimodular
system of 2n Z-linearly independent vectors (ε1, . . . , ε2n) of Λ. Such (ε1, . . . , ε2n) can be
chosen to generate any 2n-dimensional Q-vector subspace Vε of Λ ⊗ Q ' Q2N , thus the
permitted directions for Vε are dense, and for most of them f is indeed transverse to D. For
a transverse linear embedding, we get a R-linear isomorphism ũ : R2n → CN/D, and the
complex structure Jf on X is precisely the one induced by that isomorphism by pulling-back
the standard complex structure on the quotient. For N ≥ 2n, we claim that all possible
translation invariant complex structures on X are obtained. In fact, we can then choose the
lattice vector images ε1, . . . , ε2n to be C-linearly independent, so that the map u : Z2n → Λ,
ej 7→ εj extends into an injection v : C2n → CN . Once this is done, the isotopy class of
embedding is determined, and a translation invariant complex structure J on X is given by
a direct sum decomposition C2n = S ⊕ S with dimC S = n (and S the complex congugate
of S). What we need is that the composition ṽ : C2n → CN → CN/D defines a C-linear
isomorphism of S onto ṽ(S) ⊂ CN/D and ṽ(S) = {0}, i.e. D ⊃ v(S) and D ∩ v(S) = {0}.
The solutions are obtained by taking D = v(S)⊕H, where H is any supplementary subspace
of v(S ⊕ S) in CN (thus the choice of D is unique if N = 2n, and parametrized by an affine
chart of a Grassmannian G(N −n,N − 2n) if N > 2n). Of course, we can take here Z to be
an Abelian variety – even a simple Abelian variety if we wish.

Example 2.5 (LVMB manifolds). We refer to López de Medrano-Verjovsky [LoV97], Meersse-
man [[Mer00] and Bosio [Bos01] for the original constructions, and sketch here the more
general definition given in [Bos01] (or rather an equivalent one, with very minor changes of
notation). Let m ≥ 1 and N ≥ 2m be integers, and let E = Em,N+1 be a non empty set of
subsets of {0, 1, . . . , N} of cardinal 2m+ 1. For J ∈ E , define UJ to be the open set of points
[z0 : . . . : zN ] ∈ CPN such that zj 6= 0 for j ∈ J and UE =

⋃
J∈E UJ . Then, consider the

action of Cm on UE given by

w · [z0 : . . . : zN ] =
[
e`0(w)z0 : . . . : e`N (w)zN

]
where `j ∈ (Cm)∗ are complex linear forms Cm → C, 0 ≤ j ≤ N . Then Bosio proves ([Bos01],
Théorème 1.4), that the space of orbits X = UE/Cm is a compact complex manifold if and
only if the following two combinatorial conditions are met:

(i) for any two sets J1, J2 ∈ E , the convex envelopes in (Cm)∗ of {`j}j∈J1 and {`j}j∈J2
overlap on some open set.

(ii) for all J ∈ E and k ∈ {0, . . . , N}, there exists k′ ∈ J such that (J r {k′}) ∪ {k} ∈ E .
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The above action can be described in terms of m pairwise commuting Killing vector fields
of the action of PGL(N + 1,C) on CPN , given by

ζj =
N∑
k=0

λjkzk
∂

∂zk
, λjk =

∂`k
∂wj

, 1 ≤ j ≤ m.

These vector fields generate a foliation F of dimension m on CPN that is non singular over UE .
Under the more restrictive condition defining LVM manifolds, it follows from [[Mer00] that
X can be embedded as a smooth compact real analytic submanifold in UE that is transverse
to F ; such a submanifold is realized as the transverse intersection of hermitian quadrics∑

0≤k≤N λj,k|zk|2 = 0, 1 ≤ j ≤ m (this actually yields 2m real conditions by taking real
and imaginary parts). In the more general case of LVMB manifolds, Bosio has observed
that X can be also embedded smoothly in UE ⊂ CPN (see [Bos01], Prop. 2.3 and discussion
thereafter; and also [BoM06], Part III, section 12).

3. Deformation of transverse embeddings

Let f : X → (Z,D) be a transverse embedding. Then Jf := f ∗(JZ,Df(X)) defines an almost

complex structure on X. We give in this section sufficient conditions on the embedding f
that ensure that small deformations of Jf , in a suitable space of almost complex structures

on X, are given as Jf̃ where f̃ are small deformations of f in a suitable space of transverse
embeddings of X into (Z,D). Since the implicit function theorem will be needed, we have
to introduce various spaces of Cr mappings. For any r ∈ [1,∞], we consider the group
Diffr(X) of diffeomorphisms of X of class Cr, and Diffr0(X) ⊂ Diffr(X) the subgroup of
diffeomorphisms diffeotopic to identity (when r = s + γ is not an integer, s = brc, we
mean that all derivatives up to order s are γ-Hölder continuous). Similarly, we consider the
space Cr(X,Z) of Cr mappings X → Z equipped with Cr convergence topology (of course,
in Diffr(X), the topology also requires convergence of sequences f−1

ν ). If Z is Stein, there
exists a biholomorphism Φ : TZ → Z × Z from a neighborhood of the zero section of TZ
to a neighborhood of the diagonal in Z × Z, such that Φ(z, 0) = z and dζΦ(z, ζ)|ζ=0 = Id

on TzZ. When Z is embedded in CN ′ for some N ′, such a map can be obtained by taking
Φ(z, ζ) = ρ(z + ζ), where ρ is a local holomorphic retraction CN ′ → Z and TzZ is identified
to a vector subspace of CN ′ . In general (i.e. when Z is not necessarily Stein), one can still
find a C∞ map Φ satisfying the same conditions, by taking e.g. Φ(z, ζ) = (z, expz(ζ)), where
exp is the Riemannian exponential map of a smooth hermitian metric on Z ; actually, we
will not need Φ to be holomorphic in what follows.

Lemma 3.1. For r ∈ [1,∞[ , Diffr0(X) is a Banach Lie group with Lie algebra Cr(X,TX),
and Cr(X,Z) is a Banach manifold whose tangent space at f : X → Z is Cr(X, f ∗TZ).

Proof. A use of the map Φ allows us to parametrize small deformations of the embedding

f as f̃(x) = Φ(f(x), u(x)) [or equivalently u(x) = Φ−1(f(x), f̃(x)) ], where u is a smooth

sufficiently small section of f ∗TZ. This parametrization is one-to-one, and f̃ is Cr if and
only if u is Cr (provided f is). The argument is similar, and very well known indeed,
for Diffr0(X). �

Now, let J r(X) denote the space of almost complex structures of class Cr on X. For
r < +∞, this is a Banach manifold whose tangent space at a point J is the space of sections
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h ∈ Cr(X,EndC(TX)) satisfying J ◦h+h◦J = 0 (namely conjugate C linear endomorphisms
of TX). There is a natural right action of Diffr0(X) on J r−1(X) defined by

(J, ψ) 7→ ψ∗J, ψ∗J(x) = dψ(x)−1 ◦ J(ψ(x)) ◦ dψ(x).

As is well-known and as a standard calculation shows, the differential of ψ 7→ ψ∗J is precisely
the ∂J operator

∂J : Cr(X,TX) −→ Cr−1(X,Λ0,1TX∗ ⊗ TX1,0) = Cr−1(X,EndC(TX)).

Let Γr(X,Z,D) be the space of Cr embeddings of X into Z that are transverse to D.
Transversality is an open condition, so Γr(X,Z,D) is an open subset in Cr(X,Z). Now,
Diffr0(X) acts on Γr(X,Z,D) through the natural right action

Γr(X,Z,D)×Diffr0(X) −→ Γr(X,Z,D), (f, ψ) 7→ f ◦ ψ.
With respect to the tangent space isomorphisms of Lemma 3.1, the differential of this action
at point (f, ψ), ψ = IdX , is just the addition law in the bundle f ∗TZ:

Cr(X, f ∗TZ)× Cr(X,TX)→ Cr(X, f ∗TZ), (u, v) 7→ u+ f∗v.

If we restrict u to be in Cr(X, f ∗D), we actually get an isomorphism of Banach spaces

(3.1) Cr(X, f ∗D)× Cr(X,TX)→ Cr(X, f ∗TZ), (u, v) 7→ u+ f∗v

by the transversality condition. In fact, we can (non canonically) define on Γr(X,Z,D) a
“lifting”

Φ(f, •) : Cr(X, f ∗D)→ Γr(X,Z,D), u 7→ Φ(f, u)

on a small neighborhood of the zero section, and the differential of Φ(f, •) at 0 is given by
the inclusion Cr(X, f ∗D) ↪→ Cr(X, f ∗TZ). Modulo composition by elements of Diffr0(X)
close to identity (i.e. in the quotient space Γr(X,Z,D)/Diffr0(X)), small deformations of f
are parametrized by Φ(f, u) where u is a small section of Cr(X, f ∗D). The first variation
of f depends only on the differential of Φ along the zero section of TZ, so it is actually
independent of the choice of our map Φ. We can think of small variations of f as f + u,
at least if we are working in local coordinates (z1, . . . , zN) ∈ CN on Z, and consider that
Dz ⊂ TzZ = CN ; the use of a map Φ like those already considered is however needed to
make the arguments global. Let us summarize these observations as follows.

Lemma 3.2. For r < +∞, the quotient space Γr(X,Z,D)/Diffr0(X) is a Banach mani-
fold whose tangent space at f can be identified with Cr(X, f ∗D) via the differential of the
composition

Cr(X, f ∗D)
Φ(f,•)−→ Γr(X,Z,D) −→ Γr(X,Z,D)/Diffr0(X)

at 0, where the first arrow is given by u 7→ Φ(f, u) and the second arrow is the natural map
to the quotient. �

Our next goal is to compute Jf and the differential dJf of f 7→ Jf when f varies in
the above Banach manifold Γr(X,Z,D). Near a point z0 ∈ Z we can pick holomorphic
coordinates z = (z1, . . . , zN) centered at z0, such that Dz0 = Span(∂/∂zj)n+1≤j≤N . Then we
have

(3.2) Dz = Span

(
∂

∂zj
+
∑

1≤i≤n

aij(z)
∂

∂zi

)
n+1≤j≤N

, aij(z0) = 0.
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In other words Dz is the set of vectors of the form (a(z)η, η) ∈ Cn × CN−n, where a(z) =
(aij(z)) is a holomorphic map into the space L(CN−n,Cn) of n× (N −n) matrices. A trivial
calculation shows that the vector fields ej(z) = ∂

∂zj
+
∑

i aij(z) ∂
∂zi

have brackets equal to

[ej, ek] =
∑

1≤i≤n

(
∂aik
∂zj

(z0)− ∂aij
∂zk

(z0)

)
∂

∂zi
at z0, n+ 1 ≤ j, k ≤ N,

in other words the torsion tensor θ is given by

(3.3) θ(z0) =
∑

1≤i≤n, n+1≤j,k≤N

θijk(z0) dzj∧dzk⊗
∂

∂zi
, θijk(z0) =

1

2

(
∂aik
∂zj

(z0)− ∂aij
∂zk

(z0)

)
.

We now take a point x0 ∈ X and apply this to z0 = f(x0) ∈M = f(X) ⊂ Z. With respect to
coordinates z = (z1, . . . , zN) chosen as above, we have Tz0M ⊕ Span(∂/∂zj)n+1≤j≤N = Tz0Z,
thus we can represent M in the coordinates z = (z′, z′′) ∈ Cn × CN−n locally as a graph
z′′ = g(z′) in a small polydisc Ω′ × Ω′′ centered at z0, and use z′ = (z1, . . . , zn) ∈ Ω′ as
local (non holomorphic !) coordinates on M . Here g : Ω′ → Ω′′ is Cr differentiable and
g(z′0) = z′′0 . The embedding f : X → Z is itself obtained as the composition with a certain
local diffeomorphism ϕ : X ⊃ V → Ω′ ⊂ Cn, i.e.

f = F ◦ ϕ on V, ϕ : V 3 x 7→ z′ = ϕ(x) ∈ Ω′ ⊂ Cn, F : Ω′ 3 z′ 7→ (z′, g(z′)) ∈ Z.

With respect to the (z′, z′′) coordinates, we get a R-linear isomorphism

dF (z′) : Cn −→ TF (z′)M ⊂ TF (z′)Z ' Cn × CN−n

ζ 7−→ (ζ, dg(z′) · ζ) = (ζ, ∂g(z′) · ζ + ∂g(z′) · ζ).

Here ∂g is defined with respect to the standard complex structure of Cn 3 z′ and has a priori
no intrinsic meaning. The almost complex structure Jf can be explicitly defined by

(3.4) Jf (x) = dϕ(x)−1 ◦ JF (ϕ(x)) ◦ dϕ(x),

where JF is the almost complex structure on M defined by the embedding F : M ⊂ Z,
expressed in coordinates as z′ 7→ (z′, g(z′)). We get by construction

(3.5) JF (z′) = dF (z′)−1 ◦ πZ,D,M(F (z′)) ◦ JZ(F (z′)) ◦ dF (z′)

where JZ is the complex structure on Z and πZ,D,M(z) : TzZ → TzM is the R-linear projec-
tion to TzM along Dz at a point z ∈M . Since these formulas depend on the first derivatives
of F , we see that Jf is of class Cr−1 on X and JF is of class Cr−1 on M . Using the identifi-
cations TF (z′)M ' Cn, TzZ ' CN given by the above choice of coordinates, we simply have
JZη = iη on TZ since the (zj) are holomorphic, and we get therefore

JZ(F (z′)) ◦ dF (z′) · ζ = idF (z′) · ζ = i(ζ, dg(z′) · ζ) = (iζ, ∂g(z′) · iζ − ∂g(z′) · iζ)
= (iζ, dg(z′) · iζ)− 2(0, ∂g(z′) · iζ).

By definition of z 7→ a(z), we have (a(z)η, η) ∈ Dz for every η ∈ CN−n, and so

πZ,D,M(z)(0, η) = πZ,D,M(z)
(
(0, η)− (a(z)η, η)

)
= −πZ,D,M(z)(a(z)η, 0).

We take here η = ∂g(z′) · iζ. As (iζ, dg(z′) · iζ) ∈ TF (z′)M already, we find

πZ,D,M(F (z′))◦JZ(F (z′))◦dF (z′) ·ζ = (iζ, dg(z′) · iζ)+2πZ,D,M(F (z′))
(
a(F (z′))∂g(z′) · iζ, 0

)
.
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From (3.5), we get in this way

(3.6) JF (z′) · ζ = iζ − 2dF (z′)−1 ◦ πZ,D,M(F (z′))
(
ia(F (z′))∂g(z′) · ζ, 0

)
.

In particular, since a(z0) = 0, we simply have JF (z′0) · ζ = iζ.

We want to evaluate the variation of the almost complex structure Jf when the embedding
ft = Ft ◦ ϕt varies with respect to some parameter t ∈ [0, 1]. Let w ∈ Cr(X, f ∗TZ) be a
given infinitesimal variation of ft and w = u+f∗v, u ∈ Cr(X, f ∗D), v ∈ Cr(X,TX) its direct
sum decomposition. With respect to the trivialization of D given by our local holomorphic
frame (ej(z)), we can write in local coordinates

u(ϕ−1(z′)) =
(
a(F (z′)) · η(z′), η(z′)

)
∈ DF (z′)

for some section z′ 7→ η(z′) ∈ CN−n. Therefore

u(ϕ−1(z′)) =
(
0, η(z′)− dg(z′) · a(F (z′)) · η(z′)

)
+ F∗

(
a(F (z′)) · η(z′)

)
where the first term is “vertical” and the second one belongs to TF (z′)M . We then get a
slightly different decomposition w̃ := w ◦ ϕ−1 = ũ+ F∗ṽ ∈ Cr(Ω′, F ∗TZ) where

ũ(z′) =
(
0, η(z′)− dg(z′) · a(F (z′)) · η(z′)

)
∈ {0} × CN−n,

ṽ(z′) = ϕ∗v(z′) + a(F (z′)) · η(z′) ∈ Cn.

This allows us to perturb f = F ◦ ϕ as ft = Ft ◦ ϕt with

(3.7)


X 3 x 7−→ z′ = ϕt(x) = ϕ(x) + tṽ(ϕ(x)) ∈ Cn,

Cn 3 z′ 7−→ Ft(z
′) = (z′, gt(z

′)) ∈ Z,
gt(z

′) = g(z′) + tũ(z′) = g(z′) + t
(
η(z′)− dg(z′) · a(F (z′)) · η(z′)

)
,

in such a way that ḟt = d
dt

(ft)|t=0 = w ; in the sequel, all derivatives d
dt |t=0

will be indicated
by a dot. We replace f, g, F, M by ft, gt, Ft, Mt in (3.6) and compute the derivative for
t = 0 and z′ = z′0. Since a(z0) = 0, the only non zero term is the one involving the derivative
of the map t 7→ a(Ft(z

′)). We have Ḟt(z
′
0) = (0, η(z′0)) = u(x0) where η(z′0) ∈ CN−n, thus J̇Ft

can be expressed at z′0 as

J̇Ft(z
′
0) · ζ :=

d

dt

(
JFt(z

′
0) · ζ

)
|t=0

= −2dF (z′0)−1 ◦ πZ,D,M(z′0)
(
ida(z0)(u(x0)) · ∂g(z′0) · ζ, 0

)
.

Now, if we put λ = ida(z0)(u(x0))∂g(z′0) · ζ, as Dz0 = {0} × CN−n in our coordinates, we
immediately get

πZ,D,M(z′0)(λ, 0) = (λ, dg(z′0) · λ) = dF (z′0) · λ =⇒ dF (z′0)−1 ◦ πZ,D,M(z′0)(λ, 0) = λ.

Therefore, we obtain the very simple expression

(3.8) J̇Ft(z
′
0) = −2i da(z0)(u(x0)) · ∂g(z′0) ∈ EndC(Cn)

where da(z0)(ξ) ∈ L(CN−n,Cn) is the derivative of the matrix function z 7→ a(z) at point
z = z0 in the direction ξ ∈ CN , and ∂g(z′0) is viewed as an element of LC(Cn,CN−n). What
we want is the derivative of Jft = dϕ−1

t ◦ JFt(ϕt) ◦ dϕt at x0 for t = 0. Writing ϕ∗ as an
abbreviation for dϕ, we find for t = 0

(3.9)
J̇ft = −ϕ−1

∗ ◦ dϕ̇t ◦ ϕ−1
∗ ◦ JF (ϕ) ◦ ϕ∗ + ϕ−1

∗ ◦ JF (ϕ) ◦ dϕ̇t + ϕ−1
∗ ◦ J̇Ft(ϕ) ◦ ϕ∗

= 2Jf ∂Jf (ϕ
−1
∗ ϕ̇t) + ϕ−1

∗ ◦ J̇Ft(ϕ) ◦ ϕ∗,



ALGEBRAIC EMBEDDINGS OF SMOOTH ALMOST COMPLEX STRUCTURES 11

where the first term in the right hand side comes from the identity−ds◦Jf+Jf◦ds = 2Jf ∂Jf s
with s = ϕ−1

∗ ϕ̇t ∈ Cr(X,TX) and ds = ϕ−1
∗ dϕ̇t. Our choices ṽ = ϕ∗v + a ◦ F · η and

ϕt = ϕ+ tṽ ◦ ϕ yield

ϕ̇t = ṽ ◦ ϕ = ϕ∗v + a ◦ f · η ◦ ϕ =⇒ ϕ−1
∗ ϕ̇t = v + ϕ−1

∗ (a ◦ f · η ◦ ϕ).

If we recall that a(z0) = 0 and η(ϕ(x0)) = η(z′0) = pr2 u(x0), we get at x = x0

(3.10) ∂Jf (ϕ
−1
∗ ϕ̇t)(x0) = ∂Jfv(x0) + ϕ−1

∗
(
da(z0)(∂Jff(x0)) · pr2 u(x0)

)
.

By construction, ϕ∗ = dϕ is compatible with the respective almost complex structures
(X, Jf ) and (Cn, JF ). A combination of (3.8), (3.9) and (3.10) yields

J̇ft(x0) = 2Jf ∂Jfv(x0) +ϕ−1
∗

(
2i da(z0)(∂Jff(x0)) · pr2 u(x0)− 2i da(z0)(u(x0)) · ∂g(z′0) ◦ϕ∗

)
.

As ∂Jff(x0) = (∂JFF )(z′0) ◦ dϕ(x0) = (0, ∂g(z′0)) ◦ ϕ∗ and f∗ = F∗ ◦ ϕ∗, we get

J̇ft(x0) = f−1
∗ F∗

(
2i da(z0)(∂Jff(x0))·pr2 u(x0)−2i da(z0)(u(x0))·pr2 ∂Jff(x0)

)
+2Jf ∂Jfv(x0).

By (3.3), the torsion tensor θ(z0) : Dz0 ×Dz0 → Tz0Z/Dz0 ' F∗Tz0M = f∗Tx0X is given by

θ(η, λ) =
∑

1≤i≤n, n+1≤j,k≤N

(
∂aik
∂zj

(z0)− ∂aij
∂zk

(z0)

)
ηjλk

∂

∂zi
= da(z0)(η) · λ− da(z0)(λ) · η.

Since our point x0 ∈ X was arbitrary and J̇ft(x0) is the value of the differential dJf (w) at x0,
we finally get the global formula

dJf (w) = 2Jf
(
f−1
∗ θ(∂Jff, u) + ∂Jfv

)
(observe that ∂Jff ∈ LC(TX, f ∗TZ) actually takes values in f ∗D, so taking a projection to
f ∗D is not needed). We conclude :

Proposition 3.3. The differential of the natural map

Γr(X,Z,D)→ J r−1(X), f 7→ Jf

along every infinitesimal variation w = u+ f∗v : X → f ∗TZ = f ∗D⊕ f∗TX of f is given by

dJf (w) = 2Jf
(
f−1
∗ θ(∂Jff, u) + ∂Jfv

)
where θ : D × D → TZ/D is the torsion tensor of the holomorphic distribution D, and
∂f = ∂Jff , ∂v = ∂Jfv are computed with respect to the almost complex structure (X, Jf ).

A difficulty occurring here is the loss of regularity from Cr to Cr−1 coming from the differen-
tiations of f and v. To overcome this difficulty, we have to introduce a slightly smaller space
of transverse embeddings that will make possible to apply the implicit function theorem
without trouble.

Definition 3.4. We consider the space

Γ̃r(X,Z,D) ⊂ Γr(X,Z,D) ⊂ Cr(X,Z)

of transverse embeddings f : X → Z such that f is of class Cr as well as all “transverse”
derivatives h · df , where h runs over conormal holomorphic 1-form with values in (TZ/D)∗.
When r =∞ or r = ω (real analytic case), we put Γ̃r(X,Z,D) = Γr(X,Z,D).
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Proposition 3.5. For r < ∞, the space Γ̃r(X,Z,D) is a Banach manifold whose tangent
space at a point f : X → Z is

Cr(X, f ∗D)⊕ Cr+1(X,TX).

Moreover :

(i) The group Diffr+1
0 (X) acts on the right on Γ̃r(X,Z,D) ;

(ii) The natural map f 7→ Jf sends Γ̃r(X,Z,D) in J r(X) ;

(iii) The differential dJf of f 7→ Jf on Γ̃r(X,Z,D) is a continuous morphism

Cr(X, f ∗D)⊕ Cr+1(X,TX) −→ Cr(X,EndC(TX)), (u, v) 7−→ 2i
(
θ(∂f, u) + ∂v

)
.

Proof. Parts (i), (ii) are clear, as it can be easily seen that ∂f depends only on the transversal
part of df by the very definition of Jf and of ∂f = 1

2
(df + JZ ◦ df ◦ Jf ). Now, to check the

Banach manifold statement, pick f ∈ Γ̃r(X,Z,D), u ∈ Cr(X, f ∗D) and v ∈ Cr+1(X,TX).
The flow of v yields a family of diffeomorphisms ψt ∈ Diffr+1

0 (X) with ψ0 = IdX and

ψ̇t|t=0 = v. Now, fix ũ ∈ Cr(Z,D) such that u = ũ ◦ f , by extending the Cr vector field f∗u
from f(X) to Z. The extension mapping u 7→ ũ can be chosen to be a continuous linear map
of Banach spaces, using e.g. a retraction from a tubular neighborhood of the Cr submanifold
f(X) ⊂ Z. Let ft be the flow of ũ starting at f0 = f i.e. such that d

dt
ft = ũ(ft). Let

(ej)1≤j≤N be a local holomorphic frame of TZ such that (ej)n+1≤j≤N is a holomorphic frame
of D, (e∗j) its dual frame and ∇ the unique local holomorphic connection of TZ such that
∇ej = 0. For j = 1, . . . , n, we find

d

dt
(e∗j ◦ dft) = e∗j(ft) ◦ ∇

dft
dt

= e∗j(ft) ◦ ∇(ũ(ft)) = e∗j(ft) ◦ (∇ũ)(ft) · dft.

However, if we write ũ =
∑

n+1≤k≤N ũkek we see that the composition vanishes since e∗jek = 0.

Therefore d
dt

(e∗j ◦dft) = 0 and e∗j ◦dft = e∗j(f)◦df ∈ Cr(X). This shows that ft ∈ Γ̃r(X,Z,D)

for all t, and by definition we have ḟt = ũ ◦ f = u. Now, if we define gt = ft ◦ ψt, we find
gt ∈ Γ̃r(X,Z,D) by (i), and ġt = u+f∗v since ψ̇t = v. The mapping (u, v) 7→ g1 = (ft◦ψt)|t=1

defines a local “linearization” of Γ̃r(X,Z,D) near f , and our statement follows, since (iii) is
a trivial consequence of the general variation formula. �

Our goal, now, is to understand under which conditions f 7→ Jf can be a local submersion
from Γ̃r(X,Z,D) to J r(X). If we do not take into account the quotient by the action of
Diffr+1

0 on J r(X), we obtain a more demanding condition. For that stronger requirement,
we see that a sufficient condition is that the continuous linear map

(3.11) Cr(X, f ∗D) −→ Cr(X,EndC(TX)), u 7−→ 2i θ(∂f, u)

be surjective.

Theorem 3.6. Fix r ∈ [1,∞] ∪ {ω} (again, ω means real analyticity here). Let (Z,D) be
a complex manifold equipped with a holomorphic distribution, and let f ∈ Γ̃r(X,Z,D) be a
transverse embedding with respect to D. Assume that f and the torsion tensor θ of D satisfy
the following additional conditions :

(i) f is a totally real embedding, i.e. ∂f(x) ∈ EndC(TxX,Tf(x)Z) is injective at every point
x ∈ X ;
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(ii) for every x ∈ X and every η ∈ EndC(TX), there exists a vector λ ∈ Df(x) such that

θ(∂f(x) · ξ, λ) = η(ξ) for all ξ ∈ TX.

Then there is a neighborhood U of f in Γ̃r(X,Z,D) and a neighborhood V of Jf in J r(X)
such that U → V, f 7→ Jf is a submersion.

Proof. This is an immediate consequence of the implicit function theorem in the Banach
space situation r < +∞. In fact the differential u 7→ dJf (u) in (3.11) is simply given by
u 7→ L(u) where L ∈ Cr(X,Hom(f ∗D,EndC(TX))) is a surjective morphism of bundles of
finite rank. Such a morphism always has a smooth splitting η 7→ σ(η) (also of class Cr),
which induces a splitting of our differential on the level of Banach spaces of Cr sections. In
the cases r = ∞ or r = ω where we have a projective (resp. inductive) limit of Banach
spaces, the argument is similar. �

Remark 3.7. (a) When D is a foliation, i.e. θ ≡ 0 identically, or when f is holomorphic or
pseudo-holomorphic, i.e. ∂f = 0, we have dJf ≡ 0 up to the action of Diffr+1

0 (X). Therefore,
when n > 1, one can never attain the submersion property by means of a foliation D or
when starting from a (pseudo-)holomorphic map f .

(b) Condition (ii) of Theorem. 3.6 is easily seen to be equivalent to (3.11). When one of these
is satisfied, condition (i) on the injectivity of ∂f is in fact automatically implied: otherwise
a vector ξ ∈ Ker ∂f(x) could never be mapped to a nonzero element η(ξ) assigned by η.

(c) For condition (ii) or (3.11) to be satisfied, a necessary condition is that the rank N − n
of D be such that

N − n ≥ rank(EndC(TX)) = n2,

i.e. N ≥ n2 + n, so the dimension of Z must be rather large compared to n = dimCX.

We will see in the next section that it is indeed possible to find a quasi-projective algebraic
variety Z whose dimension is quadratic in n, for which any n-dimensional almost complex
manifold (X, J) admits a transverse embedding f : X ↪→ Z satisfying (i), (ii) and J = Jf .
The present remark shows that one cannot improve the quadratic character N = O(n2) of
the embedding dimension under condition (ii).

4. Universal embedding spaces

We prove here the existence of the universal embedding spaces (Zn,k,Dn,k) claimed in
Theorem 1.2. They will be constructed as some sort of combination of Grassmannians and
twistor bundles. For k > n, we let W ⊂ R2k ×GR(2k, 2n)× EndR(R2k) be the set of triples
(w, S, J) where w ∈ R2k, S lies in the real Grassmannian of 2n-codimensional subspaces of
R2k, J ∈ EndR(R2k) satisfies J2 = −I and J(S) ⊂ S. Clearly, W is a quasi-projective real
algebraic variety, and it has a complexification WC which can be described as a component
of the set of triples

(z, S, J) ∈ C2k ×GC(2k, 2n)× EndC(C2k)

such that J2 = −I and J(S) ⊂ S. Such an endomorphism J actually induces almost complex
structures on C2k and on S, and thus yields direct sum decompositions C2k = Σ′ + Σ′′ and
S = S ′ ⊕ S ′′ where S ′ ⊂ Σ′, S ′′ ⊂ Σ′′ correspond respectively to the +i and −i eigenspaces.
If J is the complexification of some JR ∈ EndR(R2k) and S is the complexification of some
SR ⊂ R2k, we have
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(4.1) dimS ′ = dimS ′′ =
1

2
dimS = k − n and dim Σ′ = dim Σ′′ =

1

2
dimC2k = k.

We let Z be the irreducible nonsingular quasi-projective algebraic variety consisting of
triples (z, S, J) as above where J has such “balanced” eigenspaces S ′, S ′′, Σ′, Σ′′. Alterna-
tively, we could view Z as the set of 5-tuples (z, S ′, S ′′,Σ′,Σ′′) with S ′ ⊂ Σ′, S ′′ ⊂ Σ′′ and
C2k = Σ′ ⊕Σ′′, and with dimensions given as above (the decomposition C2k = Σ′ ⊕Σ′′ then
defines J uniquely). Therefore we have by (4.1)

N := dimC Z = 2k + 2(k2 + n(k − n))

since k2 is the dimension of the Grassmannian of subspaces Σ′ ⊂ C2k (or Σ′′ ⊂ C2k), and
n(k − n) the dimension of the Grassmannian of subspaces S ′ ⊂ Σ′ (or S ′′ ⊂ Σ′′). The real
part W = ZR ⊂ Z can also be seen as the set of 5-tuples p = (w, S ′, S ′′,Σ′,Σ′′) for which
w = z = z ∈ R2k, S ′′ = S ′ and Σ′′ = Σ′.

In our first interpretation, the tangent space TZ at a point p = (z, S, J) consists of triples
(ζ, u, h) where ζ ∈ C2k, u ∈ Hom(S,C2k/S) and v ∈ End(C2k) is such that v ◦ J + J ◦ v = 0
and v(S) ⊂ S. In the second interpretation, TpZ is given by 5-tuples (ζ, u′, u′′, v′, v′′)
with ζ ∈ C2k, u′ ∈ Hom(S ′,Σ′/S ′), u′′ ∈ Hom(S ′′,Σ′′/S ′′), v′ ∈ Hom(Σ′,C2k/Σ′) and
v′′ ∈ Hom(Σ′′,C2k/Σ′′). We let Dp ⊂ TpZ be the set of 5-tuples (ζ, u′, u′′, v′, v′′) for which
ζ ∈ S ′⊕Σ′′ ⊂ C2k (with no conditions on the other components (u′, u′′, v′, v′′)). Therefore we
have a canonical isomorphism TpZ/Dp ' Σ′/S ′, and we see that D is an algebraic subbundle
of corank n, i.e. rank(D) = N −n, and TZ/D is isomorphic to the tautological bundle Σ′/S ′

arising from the flag manifold structure of pairs (S ′,Σ′) with S ′ ⊂ Σ′ ⊂ C2k.

Proof of Theorem 1.2. Let (X, JX) be an arbitrary compact n-dimensional almost complex
manifold, where JX is of class Cr+1, r ∈ [0,∞] ∪ {ω} (we may always assume here that
the differential structure of X itself is Cω, by well-known results, one could even take X to
be given by a real algebraic variety). Since dimRX = 2n, the strong Whitney embedding
theorem [Whi44] shows that there exists a Cω embedding g : X → Rk where k = 2(2n) = 4n.
Let NX be the normal bundle of g(X) in Rk (with a slight abuse of notation consisting
of identifying X and g(X)). We use here the Euclidean structure of Rk to view NX as a
subbundle of the trivial tangent bundle TRk. Next, we embed X in R2k by the diagonal
embedding x 7→ G(x) = (g(x), g(x)), whose normal bundle is TX ⊕NX ⊕NX. We have

TR2k
|G(X) = TX ⊕ TX ⊕NX ⊕NX.

On NX ⊕ NX (or, for that purpose, on the double of any real vector bundle), there is a
tautological almost complex structure JNX⊕NX given by (u, v) 7→ (−v, u). For every x ∈ X,

we consider the complex structure J̃(x) on TR2k
|G(x) = R2k given by

J̃(x) := JX(x)⊕ (−JX(x))⊕ JNX⊕NX(x).

Notice that (X,−JX) is the complex conjugate almost complex manifold X. In some sense,
we have embedded X diagonally into X ×X (this embedding is totally real and has normal
bundle TX), and composed that diagonal embedding with the product embedding

g × g : X ×X → Rk × Rk = R2k

which has normal bundle pr∗1NX ⊕ pr∗2NX. Let J̃C(x) ∈ End(C2k) be the complexification

of J̃(x), and let Σ′x ⊂ C2k, Σ′′x ⊂ C2k be the +i and −i eigenspaces of J̃(x) respectively
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(both are k-dimensional). By construction, the bundle Σ′ consists of vectors of the form
(ξ1,0, η0,1, u,−iu), ξ1,0 ∈ T 1,0X, η0,1 ∈ T 0,1X, u ∈ NCX, and similarly Σ′′ consists of vectors
of the form (ξ0,1, η1,0, u, iu). We further define SR ⊂ TR2k and its fiberwise complexification
Sx = SR

x ⊗ C ⊂ C2k by

SR = {0} ⊕ TX ⊕NX ⊕NX, S = {0} ⊕ TCX ⊕NCX ⊕NCX.

Clearly SR
x is stable by J̃(x) and

S ′ := Σ′ ∩ S = {0} ⊕ T 0,1X ⊕ {(u,−iu), u ∈ NCX},
S ′′ := Σ′′ ∩ S = {0} ⊕ T 1,0X ⊕ {(u, iu), u ∈ NCX}

are the +i and −i eigenspaces of J̃C
|S, respectively. We finally get an embedding of class Cr+1

f : X ↪→ Z, x 7→
(
G(x), S ′x, S

′′
x ,Σ

′
x,Σ

′′
x

)
,

and since (TZ/D)f(x) ' Σ′x/S
′
x ' T 1,0

x X, we see that the almost complex structure Jf induced
by the natural complex structure of TZ/D coincides with JX . As this point, Z is quasi-
projective but not affine. However f(X) is contained in the real part W = ZR, especially
the corresponding subspaces S = S ′ ⊕ S ′′ lie in the real part GR(2k, 2n) ⊂ G(2k, 2n) of the
complex Grassmannian. In this situation, we can find an ample divisor ∆ of G(2k, 2n) that
is disjoint from GR(2k, 2n) and invariant by complex conjugation (to see this, we embed the
Grassmannian into a complex projective space CPs by the Plücker embedding, and observe
that the real hyperquadric Q = {

∑
0≤j≤s z

2
j = 0} is disjoint from RPs; we can thus take

∆ to be the inverse image of Q by the Plücker embedding). By restricting the situation
to the complement G(2k, 2n) r ∆, we obtain an affine algebraic open set Z ′ ⊂ Z that is
invariant by complex conjugation, so that f(X) ⊂ Z ′R. Theorem 1.2 is proved with Zn,k = Z ′

and Dn,k = D|Z′ . �

Remark 4.1. A computation in coordinates shows that conditions (i) and (ii) of Theorem 3.6
are satisfied in this construction. Actually (i) is already implied by the fact that the image
M = f(X) ⊂ ZR

n,k is totally real.

Remark 4.2. It is easy to find a non singular model for a projective compactification
Zn,k of Zn,k: just consider the set of 5-tuples p = (z, S ′, S ′′,Σ′,Σ′′) where z ∈ CP2k,
S ′ ⊂ Σ′ ⊂ TCP2k, S ′′ ⊂ Σ′′ ⊂ TCP2k, so that π : Zn,k → CP2k is a fiber bundle whose
fibers are products of flag manifolds constructed from the tangent bundle of the base. The
associated distribution Dn,k = (π∗)

−1(S ′ + Σ′′), however, does possess singularities at all
points where the sum S ′ + Σ′′ is not direct.

Symplectic case: Proof of Theorem 1.4. Let (X, J, ω) be a compact n-dimensional almost
complex symplectic manifold with second Betti number b2 ≤ b and a J-compatible symplectic
form ω. We choose b2 rational cohomology classes on X, denoted [ω1], . . . , [ωb2 ], that form a
basis of the De Rham cohomology space H2(X,R). For this, we take classes [ωj] ∈ H2(X,Q)
very close to [ω], such that [ω] lies in the interior of the simplex of vertices [0], [ω1], . . . , [ωb2 ].
The 2-form ωj can be taken to be very close to ω in uniform norm over X. This ensures
that the ωj’s are symplectic and that [ω] is a convex combination [ω] =

∑
λj[ωj] for some

λ1, . . . , λb2 > 0 with 0 <
∑
λj < 1 and

∑
λj ' 1. Since u = ω −

∑
λjωj is a very small

exact 2-form u, we can in fact achieve u = 0 after replacing one of the ωj’s by ωj + λ−1
j u.

Also, after replacing each ωj by an integer multiple, we obtain ω =
∑
λjωj where ωj is a
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system of integral symplectic forms and λj > 0,
∑
λj < 1. After replacing ωb2 by b− b2 + 1

identical copies ωj = ωb2 , we can assume that ω =
∑

1≤j≤b λjωj, λj > 0.

According to the effective version of Tischler’s theorem stated by Gromov [Gro86] (page
335), for every j = 1, . . . , b, there exists a symplectic embedding gj : (X,ωj) → (CPk, γFS)
with k = 2n + 1, where CPk denotes the complex projective space of (complex) dimension
k and γFS denotes the Fubini-Study form on CPk. Then g := (g1, . . . , gb) is a symplectic
embedding of (X,ω) into the Kähler complex projective manifold

(Y, γλ) :=

( b∏
j=1

CPk ,
b∑

j=1

λj pr∗j γFS

)
.

Here prj :
∏b

j=1 CP
k → CPk denotes the j-th projection. By construction, we have

ω =
b∑

j=1

λjωj = g∗γλ.

Let NX be the normal bundle of g(X) in Y . Here, we identify the normal bundle with a
subbundle of TY|g(X) by using the symplectic structure, namely we define

NX =
{
η ∈ TY ; ∀ξ ∈ TX, γλ(g∗ξ, η) = 0

}
;

the positivity condition γλ(g∗ξ, g∗JXξ) = ω(ξ, JXξ) > 0 for ξ 6= 0 implies that we indeed
have g∗TX ∩ NX = {0}, and thus TY|g(X) = g∗TX ⊕ NX. Although we will not make
use of this, one can see that the Riemannian and symplectic normal bundles are linked
by the relation NXriem = JstNX

symp where Jst is the standard complex structure of Y ,
the latter being unrelated to JX . We embed X in Y × Y by the “diagonal” embedding
x 7→ G(x) = (g(x), g(x)) (set theoretically Y coincides with Y , but we take the conjugate
complex structure JY = −JY ). We have a decomposition of the tangent bundle given, for
x ∈ X, by

T (Y × Y )G(x) = TXx ⊕ TXx ⊕NXx ⊕NXx

where the first factor TXx consists of diagonal vectors (g∗ξ, g∗ξ) (with the slight abuse of
notation consisting in identifying X and g(X) ⊂ Y ), the second consists of “antidiagonal”
vectors (g∗ξ,−g∗ξ), and the two normal bundle copies are pr∗1NX and pr∗2NX. With respect
to this decomposition, we define a complex structure J̃(x) on T (Y × Y )G(x) by

J̃(x) = JX(x)⊕ (−JX(x))⊕ JNX⊕NX(x)

where JNX⊕NX is the tautological almost complex structure (u, v) 7→ (−v, u) on NX⊕NX.

Clearly, we have G∗J̃ = JX [in fact Y × Y is just the complexification of the underlying real
algebraic structure Y R on Y , under the anti-holomorphic involution (x, y) 7→ (y, x)]. Let us
consider the Kähler structure

γ̃ =
1

2

(
pr∗1 γλ − pr∗2 γλ

)
on Y × Y .

Notice that −γλ is in fact a Kähler structure on Y and that ω = g∗γλ = g∗(−γλ). We thus
have G∗γ̃ = g∗γλ = ω, and further claim that J̃ is compatible with γ̃. In order to check this,
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let us take two tangent vectors (ξ1, ξ2), (η1, η2) ∈ TY × TY , and write ξ = ξ′ + ξ′′ for the
decomposition of ξ ∈ TY along TX ⊕NX. We find

J̃(ξ1, ξ2) = J̃

(
1

2
(ξ′1 + ξ′2, ξ

′
1 + ξ

′
2) +

1

2
(ξ′1 − ξ′2, ξ

′
2 − ξ

′
1) + (ξ′′1 , 0) + (0, ξ

′′
2)

)
=

1

2

(
JX(ξ′1 + ξ′2),−JX(ξ′1 + ξ′2)

)
+

1

2

(
−JX(ξ′1 − ξ′2), JX(ξ′2 − ξ′1)

)
+ (−ξ′′2 , 0) + (0, ξ

′′
1)

=
(
JXξ

′
2 − ξ′′2 ,−JXξ′1 + ξ′′1

)
.

Since JX and ω are compatible and ω = g∗γλ, we have (with our abuse of notation ξ′1 ' g∗ξ
′
1)

γλ(JXξ
′
1, JXη

′
1) = ω(JXξ

′
1, JXη

′
1) = ω(ξ′1, η

′
1) = γλ(ξ

′
1, η
′
1)

and a similar formula for (ξ′2, η
′
2). We infer from this and from the γλ-orthogonality of the

decomposition TX ⊕NX that

γ̃
(
J̃(ξ1, ξ2), J̃(η1, η2)

)
=

1

2
γλ (JXξ

′
2 − ξ′′2 , JXη′2 − η′′2)− 1

2
γλ
(
−JXξ′1 + ξ′′1 , −JXη′1 + η′′1

)
=

1

2
γλ (JXξ

′
2 − ξ′′2 , JXη′2 − η′′2) +

1

2
γλ (−JXξ′1 + ξ′′1 ,−JXη′1 + η′′1)

=
1

2
γλ (ξ′2, η

′
2) +

1

2
γλ (ξ′′2 , η

′′
2) +

1

2
γλ (ξ′1, η

′
1) +

1

2
γλ (ξ′′1 , η

′′
1)

=
1

2
γλ (ξ1, η1)− 1

2
γλ
(
ξ2, η2

)
= γ̃

(
(ξ1, ξ2), (η1, η2)

)
.

This proves that J̃ is compatible with the restriction of the Kähler structure γ̃ to G(X).
We now construct Zn,b,k, following essentially the same lines as for the proof of Theo-

rem 1.2. We view Ỹ = Y × Y as a real algebraic manifold equipped with a real algebraic
symplectic form γ̃ (though Ỹ is in fact complex projective and γ̃ Kähler). We consider

W =
{

(w, S, J) ∈ Ỹ ×GR(T Ỹ , 2n)× EndR(T Ỹ ) ; J2 = −I, J∗γ̃ = γ̃, J(S) ⊂ S
}

and its complexification WC which is defined by the same algebraic equations over C. We
define Zn,b,k to be the component of WC for which J and J|S have balanced +i and −i
eigenspaces Σ′ ⊕ Σ′′ = T Ỹ C and S ′ ⊕ S ′′ = S. There is a natural projection

π = πn,b,k : Zn,b,k → Ỹ C = Y 2 × Y 2
,

and γ̃ can be complexified into a Kähler form γ̃C on Ỹ C which restricts to γ̃ on the real part.
Our construction produces a canonical lifting f : X → Zn,b,k of G : X → Ỹ = Ỹ R ⊂ Ỹ C.
Then, as above, the bundle Dn,b,k of tangent vectors ζ ∈ TZn,b,k such that π∗ζ ∈ S ′ ⊕ Σ′′ de-
fines an algebraic distribution transverse to G(X), and additionally β = π∗γ̃C is a transverse
Kähler form that induces the given symplectic structure ω on X. A calculation of dimensions
shows that dimC Ỹ

C = 4bk and dimC Z̃n,b,k = 2bk(2bk+1)+2n(2bk−n), since the symplectic
twistor space {J} in dimension 2m = 4bk has dimension m(m−1), and we have additionally
to select n-dimensional subspaces S ′, S ′′ in the given 2bk dimensional eigenspaces of J . The
above variety Zn,b,k is merely quasi-projective, but we can of course replace it with a relative
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projective compactification over Ỹ C, and extend Dn,b,k as a torsion free algebraic subsheaf
of TZn,b,k. �

Remark 4.3. In the above result, we could even take β to be a genuine Kähler metric on
Zn,b,k. In fact Zn,b,k is (quasi-)projective, so it possesses a Kähler metric γ. One can easily
conclude by a perturbation argument, after replacing β by β + εγ and letting ω vary in a
neighborhood of the original symplectic form on X.

5. A weak version of Bogomolov’s conjecture: proof of Theorem 1.5

We start with a formula computing the Nijenhuis tensor of the almost complex structure
Jf given by an embedding f : X ↪→ Z transverse to a holomorphic distribution D. Recall
that for any smooth (real) vector fields ζ, η of TX, the Nijenhuis tensor NJ of an almost
complex structure J is defined in terms of Lie brackets of ζ0,1 = 1

2
(ζ+ iJζ), η0,1 = 1

2
(η+ iJη)

as
NJ(ζ, η) = 4 Re [ζ0,1, η0,1]1,0 = [ζ, η]− [Jζ, Jη] + J [ζ, Jη] + J [Jζ, η].

Proposition 5.1. If θ denotes the torsion operator of the distribution D on Z, the Nijenhuis
tensor of the almost complex structure Jf induced by a transverse embedding f : X ↪→ Z is
given by

(5.1) ∀z ∈ X, ∀ζ, η ∈ TzX, NJf (ζ, η) = 4 θ(∂Jff(z) · ζ, ∂Jff(z) · η).

Proof. We keep the same notation as in Section 3. Especially, we put M = f(X), and
near any point x0 ∈ X, we write f = F ◦ ϕ where ϕ is a local diffeomorphism defined in
a neighborhood V of x0 and F : ϕ 3 z′ 7→ (z′, g(z′)) ∈ Z. According to (3.6), the almost
complex structure JF on ϕ(V ) ⊂M and the corresponding one Jf on V ⊂ X are given by

∀z′ ∈ ϕ(V ), ∀ζ ∈ TzM, JF (z) · ζ = iζ − 2dF (z′)−1πZ,D,M(ia(F (z′))(∂g(z′) · ζ), 0)

and Jf (x) = dϕ(x)−1 ◦ JF (ϕ(x)) ◦ dϕ(x) for every x ∈ V . Thus, by construction, we have

∂Jf = ∂JFF ◦ dϕ (i.e. dϕ is compatible with Jf and JF ), and (5.1) is equivalent to

∀z ∈M, ∀ζ, η ∈ TzM, NJF (ζ, η) = 4 θ(∂JFF (z) · ζ, ∂JFF (z) · η).

Let ζ =
∑n

j=1

(
ζj

∂
∂zj

+ ζj
∂
∂ζj

)
, η =

∑n
j=1

(
ηj

∂
∂zj

+ ηj
∂
∂ηj

)
be real vector fields in z′ 7→ Tz′M .

For the sake of clarity we denote by Jstζ the vector field iζ associated with the “standard”
almost complex structure of Cn, so that

Jstζ =
n∑
j=1

(
iζj

∂

∂zj
− iζj

∂

∂ζj

)
.

Without loss of generality (and in order to simplify calculations), we assume ζ, η to have
constant coefficients ζj, ηj. At the central point z′0 ∈ ϕ(V ) we have a(F (z′0)) = 0 and
JF = Jst, hence (omitting vanishing terms such as [ζ, η]), the Nijenhuis tensor of JF at z′0 is
given by

NJF (ζ, η)|z′0 = − Jstζ ·
(
−2dF (z′)−1πZ,D,M(ia(F (z′)) · (∂g(z′) · η), 0)

)
|z′=z′0

+ Jstη ·
(
−2dF (z′)−1πZ,D,M(ia(F (z′)) · (∂g(z′) · ζ), 0)

)
|z′=z′0

+ Jst

[
ζ ·
(
−2dF (z′)−1πZ,D,M(ia(F (z′)) · (∂g(z′) · η), 0)

)]
|z′=z′0

+ Jst

[
−η ·

(
−2dF (z′)−1πZ,D,M(ia(F (z′)) · (∂g(z′) · ζ), 0)

)]
|z′=z′0

.
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We recall that by our normalization a(F (z′0)) = 0 and dF (z′0) ◦ πZ,D,M(z′0) = id. Hence for
all ζ, η ∈ Tz′0M we get at z′0

NJF (ζ, η) =
(
2ida(z′0)(dF (z′0) · Jstζ) · (∂g(z′0) · η), 0

)
+ Jst

(
−2ida(z′0)(dF (z′0) · ζ) · ∂g(z′0) · η, 0

)
−
(
2ida(z′0)(dF (z′0) · Jstη) · ∂g(z′0) · ζ, 0

)
− Jst

(
−2ida(z′0)(dF (z′0) · η) · ∂g(z′0) · ζ, 0

)
.

Since Jst ◦ da(F (z′0)) ◦ Jst = −da(F (z′0)), we infer(
da(z′0)(dF (z′0) · Jstζ) · (∂g(z′0) · η)− Jst(da(z′0)(dF (z′0) · ζ)) · ∂g(z′0) · η, 0

)
= −

(
Jst (da(F (z′0)) (dF (z′0) + Jst ◦ dF (z′0) ◦ Jst) · ζ) · (∂g(z′0) · η), 0

)
.

Finally, since dF (z′0)+Jst◦dF (z′0)◦Jst = 2∂F (z′0) = 2∂g(z′0) we obtain for every ζ, η ∈ Tz′0M

NJF (ζ, η) = − 4i
(
Jst

(
da(F (z′0))(∂JFF (z′0) · ζ) · (∂JFF (z′0) · η)

)
, 0
)

+ 4i
(
Jst

(
da(F (z′0))(∂JFF (z′0) · η) · (∂JFF (z′0) · ζ)

)
, 0
)

= − 4i Jst θ
(
∂JFF (z′0) · ζ, ∂JFF (z′0) · η

)
,

which yields the expected formula. �

Proof of Theorem 1.5. Let (X, J) be a complex manifold and let f : X ↪→ Zn,k be an
embedding into the universal space (Zn,k,Dn,k), such that Jf = J . Then Jf is an integrable

structure, hence NJf vanishes identically. It follows from (5.1) that Im(∂Jf) is contained in
the isotropic locus of θ, namely the set of n-dimensional subspaces S in the Grassmannian
bundle Gr(Dn,k, n)→ Zn,k such that θz|S×S = 0 at any point z ∈ Zn,k. �

6. Relation to Nash Algebraic approximations of holomorphic foliations

We prove in this section Proposition 1.6. Let X be a compact complex manifold. We
denote by JX the corresponding (almost) complex structure. We first embed X diagonally
into X×X. This is a totally real embedding with normal bundle TX. If we denote by ϕ the
embedding then ϕ(X) is totally real and compact in X ×X. Moreover if pr1 : X ×X → X
is the projection on the first factor then Ker(d pr1) is a holomorphic foliation of T (X ×X)
and, quite trivially, ϕ(X) is transverse to Ker(d pr1).

Since X ×X is a complexification of the real analytic manifold ϕ(X), a well known result
of Grauert [Gra58]) shows that ϕ(X) possesses a Stein tubular neighborhood U in X × X
(by Nirenberg and Wells [NiW69], every totally real submanifold of a complex manifold has
in fact a fundamental system of Stein neighborhoods, and in the compact case they can
be obtained as tubes Uε = {d(z, w) < ε} for the geodesic distance associated with any
hermitian metric on X). According to a result of E.L. Stout [Sto84], the Stein neighborhood
U can be shrunk to a Runge open subset U ′ b U that is biholomorphic to a bounded
polynomial polyhedron Ω in an affine complex algebraic manifold Z = {Pj(z) = 0} ⊂ CN ,
say Ω = {z ∈ Z ; |Qj(z)| < 1} b Z, where Pj, Qj ∈ C[z1, . . . , zN ]. Let ψ : U ′ → Ω be this
biholomorphism, let f = ψ ◦ ϕ : X ↪→ Z be the resulting real analytic embedding and let
JZ be the complex structure on Z. We denote by M = f(X) = ψ(ϕ(X)) the image of X
by f and by F = f∗(Ker(d pr1)|U ′) the direct image of Ker(d pr1) restricted to U ′. Then
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F ⊂ TZ|Ω is a holomorphic foliation of codimension n on Ω, and M is transverse to F .

By construction, the complex structure JZ,FM on M induced by (TZ/F , JZ) on M coincides
with f∗(JX). Now, we invoke the following

Proposition 6.1. There exists a Runge open subset Ω̃ ⊂ CN such that Ω = Ω̃ ∩ Z, a
holomorphic retraction ρ : Ω̃ → Ω, and a holomorphic foliation F̃ of codimension n on Ω̃
such that M ⊂ Ω is transverse to F̃ .

Proof. The normal bundle sequence

0→ TZ → TCN
|Z → NZ → 0

admits an algebraic splitting σ : NZ → TCN
|Z since H1

alg(Z,Hom(NZ, TZ)) = 0 (Z being

affine). Then h(z, ζ) = z + σ(z) · ζ, ζ ∈ NZz, defines an algebraic biholomorphism h from a
tubular neighborhood V of the zero section of NZ onto a neighborhood h(V ) of Z in CN .
Clearly, if π : NZ → Z is the natural projection, ρ = π ◦ h−1 is a Nash algebraic retraction
from Ṽ := h(V ) onto Z. We take

Ω̃ =
{
z ∈ CN ; |P (z)|2 :=

∑
|Pj(z)|2 < ε(1 + |z|2)−A, |Qj(z)|2 + C|P (z)| < 1

}
with ε � 1 and A, C � 1 chosen so large that Ω̃ b h(V ). Then ρ maps Ω̃ submersively
onto Ω, and Ω̃ is a Runge open subset in CN . We simply take F̃ = (ρ∗)

−1F ⊂ T Ω̃ to be the
inverse image of F in Ω̃. �

End of proof of Proposition 1.6. Thanks to Prop. 6.1 and our preliminary discussion, we
may assume that f : X ↪→ Z ∩ Ω̃ ⊂ Ω̃ is a real analytic embedding into a Runge open subset
Ω̃ ⊂ CN , transversally to a holomorphic foliation F̃ on Ω̃, with JX = Jf . Assume that such

foliations can be approximated by Nash algebraic foliations F̃ν on Ω̃, uniformly on compact
subsets. This means that F̃ν is given by a Nash algebraic distribution δν : Ω̃ → Gr(CN , n)
that is moreover integrable. It is worth observing that if the integrability assumption is
dropped, then the existence of the Nash algebraic approximating sequence δν is actually
granted by [DLS93] (but is seems quite difficult to enforce the integrability condition in this
context).

Now M = f(X) is still transverse to Fν for ν ≥ ν0, and in this way we would obtain a

sequence of integrable complex structures Jν = f ∗JZ,FνM on X that approximate JX = f ∗JZ,FM

in the Kuranishi space of small deformations of X. �

Remark 6.2. Instead of embedding X in an affine algebraic manifold, we could instead
embed the whole Kuranishi space X → S of X into a product Z × S, keeping S as a
parameter space (it is enough to take a small Stein neighborhood S ′ ⊂ S containing the base
point 0 of the central fiber X0 = X). For this we simply observe that X embeds diagonally
as a totally real submanifold in X ×X, hence it admits a Stein neighborhood as before, and
we can embed the latter as a Runge open set in an affine algebraic manifold. It is then not
unlikely that one could also embed the original complex structure JX (without having to
take an approximation), by using some sort of openness argument and the fact that we have
embedded the whole Kuranishi space.

Remark 6.3. It should also be observed that there is probably no topological obstruction
to the approximation problem. In fact, it is enough to consider the case where we have a real
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analytic embedding f : X ↪→ Z, transversal to a holomorphic foliation given by a trivial sub-
bundle F ⊂ TZ on some Runge open set Ω b Z of an affine algebraic manifold. Otherwise,
thanks to [DLS93], one can always assume that F is isomorphic to the restriction of an alge-
braic vector bundle F ′ on Z (possibly after shrinking Ω and replacing Z by some finite cover
Z ′ → Z). Then, since Z is affine, one can find a surjective algebraic morphism µ : O⊕pZ → F ′.
Its kernel G = Kerµ satisfies F ′ ⊕ G ' O⊕pZ , i.e. F ′ ⊕ G is algebraically trivial. We replace

Z by Z̃ = G (the total space of G), and F by the inverse image F̃ = (π∗)
−1(F) ⊂ TZ̃ via

π : Z̃ → Z. Then F̃ ' π∗(F ′ ⊕ G), hence F̃ is holomorphically trivial. We can therefore
always reduce ourselves to the case where F is holomorphically trivial. When this is the case,
F admits a global holomorphic frame (ζj), and the Lie brackets satisfy [ζj, ζk] =

∑
` ujk`ζ`

for some uniquely defined holomorphic functions ujk` on Ω. These functions can of course
be approximated by a sequence of polynomials pνjk` ∈ C[Z], ν ∈ N, but it is unclear how to
construct Nash algebraic foliations from these data . . .
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