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1. Introduction and result

The goal of this work is to prove an embedding theorem for compact almost complex mani-
folds into complex algebraic varieties. As usual, an almost complex manifold of dimension
n is a pair (X, J), where X is a real manifold of dimension 2n and JX a smooth section of
End(TX) such that J2

X = − Id ; we will assume here that all data are C∞.

Let Z be a complex (holomorphic) manifold of complex dimension N . Such a manifold
carries a natural integrable almost complex structure JZ (conversely, by the Newlander-
Nirenberg thorem any integrable almost complex structure can be viewed as a holomorphic
structure). Now, assume that we are given a holomorphic distribution D in TZ, namely
a holomorphic subbundle D ⊂ TZ. Every fiber Dx of the distribution is then invariant
under JZ , i.e. JZDx ⊂ Dx for every x ∈ Z. Here, the distribution D is not assumed to
be integrable. We recall that D is integrable in the sense of Frobenius (i.e. stable under
the Lie bracket operation) if and only if the fibers Dx are the tangent spaces to leaves of a
holomorphic a foliation. More precisely, D is integrable if and only if the torsion operator θ
of D, defined by

θ : O(D)×O(D) −→ O(TZ/D)
(ζ, η) 7−→ [ζ, η] mod D

vanishes identically. As is well known, θ is skew symmetric in (ζ, η) and can be viewed as a
holomorphic section of the bundle Λ2D∗ ⊗ (TZ/D).

Let M be a real submanifold of Z of class C∞ and of real dimension 2n with n < N . We
say that M is transverse to D if

∀x ∈M, TxM ⊕Dx = TxZ.

We could in fact assume more generally that the distribution D is singular, i.e. given by a
certain satured subsheaf O(D) of O(TZ) (this means that the quotient sheaf O(TZ)/O(D)
has no torsion). Then O(D) is actually a subbundle of TZ outside an analytic subset
Dsing ⊂ Z of codimension ≥ 2, and we further assume in this case that M ∩ Dsing = ∅.

When M is transverse to D, one gets a natural R-linear isomorphism

TxM ' TxZ/Dx
at every point x ∈ M . Since TZ/D carries a structure of holomorphic vector bundle (at
least over ZrDsing), the complex structure JZ induces a complex structure on the quotient,

and therefore, through the above isomorphism, an almost complex structure JZ,DM on M .

Moreover, when D is a foliation (i.e. O(D) is an integrable subsheaf), then JZ,DM is an
integrable almost complex structure on M . In that case, we may indeed realize the foliation
associated to D near any regular point x as the fibers of a certain holomorphic submersion
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Z ⊃ Ω→ Ω′ ⊂ CN−n where Ω is coordinate open set in Z containing x, which we also view
as an open subset Ω ⊂ CN . In suitable coordinates, this submersion is the first projection
Ω ' Ω′ × Ω′′ → Ω′ with respect to Ω′ ⊂ Cn, Ω′′ ⊂ CN−n, and then D, TZ/D are identified
with the trivial bundles Ω× ({0} × CN−n) and Ω× Cn. Then the composition

M ∩ Ω ⊂ Ω→ Ω′

provides M with holomorphic coordinates on M ∩ Ω, and it is clear that any other local

trivialization of the foliation on a different chart Ω̃ = Ω̃′ × Ω̃′′ would give coordinates that

are changed by local biholomorphisms Ω′ → Ω̃′ in the intersection Ω ∩ Ω̃, thanks to the
holomorphic character of D. Thus we directly see in that case that JZ,DM comes from a
holomorphic structure on M .

More generally, we say that f : X ↪→ Z is a transverse embedding of a smooth real manifold
X in (Z,D) if M = f(X) is a transverse submanifold of Z, namely if f∗TxX⊕Df(x) = Tf(x)Z
for every point x ∈ X (and f(X) does not meet Dsing in case there are singularities). One
then gets a real isomorphism TX ' f ∗(TZ/D) and therefore an almost complex structure
on X (for this it would be enough to assume that f is an immersion, but we will actually
suppose that f is an embedding here).

A very interesting problem investigated about 20 years ago by F. Bogomolov is whether
a given integrable complex structure on a compact manifold X can be realized by a trans-
verse embedding f : X ↪→ Z into a projective manifold (Z,D) equipped with an algebraic
foliation D, in such a way that f(X) ∩ DsingD = ∅, as described above. There are many
examples of non Kähler compact complex manifolds which can be embedded in that way
(the case of projective ones being of course trivial), and strong indications exist that every
compact complex manifold should in fact be embeddable as a smooth submanifold transverse
to an algebraic foliation on a complex projective variety. We prove here the corresponding
statement in the almost complex category actually holds, when dealing of course with non
integrable distributions rather than foliations.

Theorem 1.1. Let (X, J) be a smooth compact almost complex manifold. There exists a
complex affine algebraic manifold Z, a smooth embedding f : X ↪→ Z and an algebraic
distribution D transverse to f(X) such that the almost complex structures J and f ∗JZ,Df(X)

coincide on X.

Since Z and D are algebraic and Z is affine, one can always compactify Z into a complex
projective manifold Z (using Hironaka’s desingularization theorem), and extend D into a
saturated subsheaf of TZ. In general such distributions will acquire singularities at infinity;
getting D to be nonsingular on Z could possibly be achieved by removing some algebraic
hypersurface in Z, but doing so on Z seems to be out of reach (if at all possible).

2. Transverse embeddings of almost complex manifolds

We consider the situation described above, where Z is a complex N -dimensional manifold
equipped with a holomorphic distribution D. More precisely, let X be a compact real
manifold of class C∞ and of real dimension 2n with n < N . We assume that there is an
embedding f : X ↪→ Z that is transversal to D, namely that

f∗TxX ⊕Df(x) = Tf(x)Z

at every point x ∈ X. Here Df(x) denotes the fiber at f(x) of the distribution D. As
explained in section 1, this induces a R-linear isomorphism f∗ : TX → f ∗(TZ/D), and from
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the complex structures of TZ and D we get an almost complex structure f ∗JZ,Df(X) on TX

which we will simply denote by Jf here.
Near a point 0 ∈ Z we can pick holomorphic coordinates z = (z1, . . . , zn) such that
D0 = Span(∂/∂zj)n+1≤j≤N and thus we have

Dz = Span

(
∂

∂zj
+
∑

1≤i≤n

aij(z)
∂

∂zi

)
n+1≤j≤N

, aij(0) = 0.

In other words Dz is the set of vectors of the form (a(z)η, η) ∈ Cn × CN−n, where a(z) =
(aij(z)) is a holomorphic map into the space of n×(N−n) matrices. A change of coordinates
z̃i = zi +

∑
j,k bijkzjzk with bijk = bikj yields

∂

∂zj
=
∑
i

∂z̃i
∂zj

∂

∂z̃i
=

∂

∂z̃j
+ 2

∑
i,k

bijkzk
∂

∂z̃i
.

If aij(z) =
∑

k aijkzk +O(z2) is the first order expansion of the coefficients aij, changing the
coordinates (zi) by the (z̃i)’s replaces aijk by ãijk = aijk + 2bijk. By taking the (z̃i) such that
bijk = −1

4
(aijk + aikj) whenever 1 ≤ i ≤ n and n + 1 ≤ j, k ≤ N and bijk = 0 otherwise, we

find ãijk = 1
2
(aijk − aikj), hence ãikj = −ãijk. After changing coordinates, we can therefore

assume without loss of generality that aijk = −aikj. A simple calculation shows that the
vector fields ζj = ∂

∂zj
+
∑

i aij(z) ∂
∂zi

have brackets equal to

[ζj, ζk] =
∑

1≤i≤n

(
∂aik
∂zj

(0)− ∂aij
∂zk

(0)

)
∂

∂zi
= −2

∑
1≤i≤n

aijk
∂

∂zi
at 0, n+ 1 ≤ j, k ≤ N,

hence

(2.1) θ(0) = −2
∑

1≤i≤n, n+1≤j,k≤N

aijk dzj ∧ dzk ⊗
∂

∂zi
.

If Z is Stein, there exists a bilohomorphism Φ : TZ → Z × Z from a neighborhood of the
section section of TZ to a neighborhood of the diagonal in Z × Z, such that Φ(z, 0) = z
and dζΦ(z, ζ)|ζ=0 = Id on TzZ. When Z is embedded in CN ′ for some N ′, such a map
can be obtained by taking Φ(z, ζ) = ρ(z + ζ), where ρ is a local holomorphic retraction
CN ′ → Z and TzZ is identified to a vector subspace of CN ′ . In general (i.e. when Z is
not necessarily Stein), one can still find a C∞ map Φ satisfying the same conditions, by
taking e.g. Φ(z, ζ) = (z, expz(ζ)), where exp is the Riemannian exponential map of a smooth
hermitian metric on Z ; actually, we will not need Φ to be holomorphic in what follows. For
any r ∈ [1,+∞], let us consider the group Diffr0(X) of diffeomorphisms of class Cr isotopic
to identity in X, and let Γr(X,Z,D) be the space of Cr embeddings of X into Z that are
transverse to D (an open condition for r ≥ 1, so this is an open subset in the space Cr(X,Z)
of all Cr maps X → Z with Cr convergence topology).

Lemma 2.1. For r < +∞, Diffr0(X) is a Banach Lie group with Lie algebra Cr(X,TX),
and Γr(X,Z,D) is a Banach manifold whose tangent space at f is Cr(X, f ∗TZ).

Proof. A use of the map Φ allows us to parametrize small deformations of the embedding

f as f̃(x) = Φ(f(x), u(x)) [or equivalently u(x) = Φ−1(f(x), f̃(x)) ], where u is a smooth

sufficiently small section of f ∗TZ. This parametrization is one-to-one, and f̃ is Cr if and
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only if u is Cr (provided f is). The argument is similar, and very well known indeed,
for Diffr0(X). �

Now, Diffr0(X) acts on Γr(X,Z,D) through the natural right action

Γr(X,Z,D)×Diffr0(X) −→ Γr(X,Z,D), (f, ψ) 7→ f ◦ ψ,

and the differential of this action at ψ = IdX consists of moving an embedding f as Φ(f, f∗v)
where v ∈ Cr(X,TX) and f∗v ∈ Cr(X, f ∗TZ). By the transversality condition, we can
uniquely decompose a section u ∈ Cr(X, f ∗TZ) as u = f∗v + w where v ∈ Cr(X,TX) and
w ∈ Cr(X, f ∗D). Therefore, modulo composition by elements of Diffr0(X) close to identity
(i.e. in the quotient space Γr(X,Z,D)/Diffr0(X)), small deformations of f are parametrized
by Φ(f, u) where u is a small section of Cr(X, f ∗D). The first variation of f depends only on
the differential of Φ along the zero section of TZ, so it is actually independent of the choice
of our map Φ. We can think of small variations of f as f + u, at least if we are working in
local coordinates (z1, . . . , zN) ∈ CN on Z, and consider that Dz ⊂ TzZ = CN ; the use of a
map Φ like those already considered is however needed to make the arguments global. Let
us summarize these observations as follows.

Lemma 2.2. For r < +∞, the quotient space Γr(X,Z,D)/Diffr0(X) is a Banach manifold
whose tangent space at f can be identified with Cr(X, f ∗D).

Our next goal is to compute Jf and the differential dJf of f 7→ Jf on the above Banach
manifold. Fix a point z0 = f(x0) ∈ Z. We use local holomorphic coordinates (z1, . . . , zN)
on Z centered at z0, so that z0 = 0 and D0 = Span(∂/∂zj)n+1≤j≤N . Let us write f as a
graph in the coordinates z = (x, y) ∈ Cn ×CN−n and let us use x = (z1, . . . , zn) as the local
coordinates on X. We can then write

f(x) = (x, g(x))

near x0 = 0, where g is Cr differentiable and g(0) = 0. With respect to the (x, y) coordinates,
we get a R-linear isomorphism given by the differential df

df(x) : TxX −→ f∗TxX ⊂ TxZ
ζ 7−→ (ζ, dg(x).ζ) = (ζ, ∂g(x) · ζ + ∂g(x) · ζ).

Here ∂g is defined with respect to the standard structure of Cn 3 0 and has a priori no
intrinsic meaning. The almost complex structure Jf can be explicitely defined by

Jf (x) = df(x)−1 ◦ pf,x,Z,D ◦ JZ(f(x)) ◦ df(x),

where pf,x,Z,D : Tf(x)Z → f∗TxX denotes the R-linear projection to f∗TxX along Df(x), and
JZ the complex structure on Z. Since this formula depends on the first derivatives of f , we
see that Jf is of class Cr−1 on X.

Using the identifications TxX ' Cn, TzZ ' CN given by the above choice of coordinates,
we simply have JZη = iη on TZ since the (zj) are holomorphic, and we get therefore

JZ(f(x)) ◦ df(x) · ζ = idf(x) · ζ = i(ζ, dg(x) · ζ) = (iζ, ∂g(x) · iζ − ∂g(x) · iζ)
= (iζ, dg(x) · iζ)− 2(0, ∂g(x) · iζ).

The first term is already in f∗TxX and the second term satisfies

(0, ∂g(x) · iζ) = −(a(f(x))∂g(x) · iζ, 0) = (ia(f(x))∂g(x) · ζ, 0) mod Df(x).
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We find in this way

(2.2) Jf (x) · ζ = iζ − 2df(x)−1 ◦ pf,x,Z,D(ia(f(x))∂g(x) · ζ, 0).

In particular, since a(0) = 0, we have Jf (x0) · ζ = iζ.
We want to evaluate the variation of the almost complex structure Jf when the embedding

f varies. In local coordinates a nearby embedding can be expressed as f+tu for some section
of f ∗D with t ∈ C small. By replacing f with f + tu in (2.2) and taking the derivative in t,
we find

dJf (u)(x0) · ζ = −2df(x0)−1 ◦ pf,x,Z,D(ida(z0)(u(x0))∂g(x0) · ζ, 0)

since a(0) = 0. Now, if we put θ = ida(z0)(u(x0))∂g(x0) · ζ, as D0 = {0} × CN−n in our
coordinates, we immediately get

pf∗TX,f(x),Df(x)(θ, 0) = (θ, dg(0) · θ), df(x0)−1 ◦ pf,x,Z,D(θ, 0) = θ.

Therefore we obtain

dJf (u)(x0) · ζ = −2ida(0)(u(x0))∂g(x0) · ζ,
i.e. dJf (u)(x0) = −2ida(z0)(u(x0)) ◦ ∂g(x0). In fact, we compute ∂f : TX → f ∗TZ with

respect to Jf , we see almost by definition that ∂f(TX) ⊂ f ∗(D) and in particular that

∂f(x0) can be identified with ∂g(x0). Also, in our coordinates

da(0)|{0}×CN−n =
∑

1≤i≤n, n+1≤j,k≤N

aijkdzk ⊗ dzj ⊗
∂

∂zi

coincides with 1
2
θ(z0) by (2.1). We finally get the formula

dJf (u)(x0) · ζ = −iθ(f(x0))(u(x0), ∂f(x0) · ζ),

i.e.

(2.3) dJf (u) = −if ∗θ(u, ∂f)

where ∂ is computed with respect to the almost complex structures (X, Jf ) and (Z, JZ).

Let J r(X) the space of almost complex structures of class Cr on X. For r < +∞,
this is a Banach manifold whose tangent space at a point J is the space of sections h ∈
Cr(X,EndC(TX)) satisfying J ◦ h + h ◦ J = 0 (namely conjugate C linear endomorphisms
of TX). The above discussion yields

Proposition 2.3. The map

Γr(X,Z,D) −→ J r−1(X), f 7−→ Jf

obtained by varying infinitesimally f along a tangent vector u ∈ Cr(X, f ∗D) has a differential
equal to

Cr(X, f ∗D) −→ Cr−1(X,EndC(TX)) u 7−→ dJf (u) = −if ∗θ(u, ∂f),

where the complex structure on TX is precisely given by Jf , and is also used to compute ∂f .

The following result can now be obtained as a consequence of the Implicit Function Theorem.

Proposition 2.4. Fix r > 1 where r is not an integer. Let (Z,D) be a complex manifold
equipped with a holomorphic distribution, and let f : X ↪→ Z be a transverse embedding of
class Cr with respect to D. Assume that f and the torsion tensor θ of D satisfy the following
additional conditions :
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(i) ∂f(x) ∈ EndC(TxX,Tf(x)Z) is injective at every point x ∈ X ;

(ii) For every y = f(x) ∈ f(X) and every pair of vectors ξ ∈ ∂f(TxX) ⊂ TyZ, ξ 6= 0, and
η ∈ (TX/D)y, there exists a vector λ ∈ Dy such that θ(λ, ξ) = η.

Then there is a neighborhood V of Jf in J r−1(X) and a neighborhood U of f in Cr(X,Z)
such that:

∀J ∈ V , ∃g ∈ U such that J = Jg.

Proof. Details to be completed �

Remark 2.5. (i) Choosing U sufficiently small, every g ∈ U is an embedding and Jg is well
defined.

(ii) If codim Ker Λf <∞ then Condition (ii) of Proposition 2.4 is satisfied.
(iii) If f is a holomorphic embedding meaning that Xis a complex manifold with complex

structure JX , then pf∗TX,x is holomorphic and Jf = JX .
(iv) If D is a foliation then Jf (x) = df(x)−1 ◦ JZ(f(x)) ◦ df(x).
(v) Under the conditions (iii) or (iv) we have dJf ≡ 0 and there is no variation of the

structure when f varies.

3. Embedding in a twistor space

3.1. Twistor space. For K > 0 let T2K denote the twistor space

T2K := {(x, J) ∈ R2K × End(R2K)/ J2 = −I}.
Then T2K is a trivial bundle over R2K and T2K is endowed with the almost complex structure
J 2K defined by:

∀(x, J) ∈ T2K , ∀(ζ, h) ∈ T(x,J)T2K , J 2K
(x,J)(ζ, h) := (Jζ, J ◦ h).

We denote by T C
2K := C ⊗ T2K the complexification of T2K . Then T C

2K = {(z, J) ∈ C2K ×
End(C2K)/ J2 = −I} and T C

2K inherits two structures:

• The complexification (J 2K)C of J 2K ,

• The standard complex structure JT C
8n+2

.

Denote by π : T2K → R2K the projection defined by π(x, J) = x. Then we have the
following decomposition of TT2K :

TT2K = π∗TR2K ⊕Ker(dπ)

where Ker(dπ) denotes the vertical distribution whose restriction to each fiber of π corre-
sponds to the tangent bundle of that fiber.

If N is a submanifold of R2K and JN : N → End(R2K) is a section of End(R2K) satisfying
J2
N = −I, we denote by Ψ2K,JN the embedding of N into T2K defined by

(3.1) ∀x ∈ N, Ψ2K,JN (x) = (x, JN(x)).

3.2. Smooth embedding of an almost complex manifold. Let (X, J) be a smooth
compact almost complex manifold. By this we mean that X is a compact smooth C∞ real
manifold and J is a smooth C∞ almost complex structure on X: J ∈ End(TX), J2 = −I.

Let X denote the almost complex manifold X := (X,−J) and let JX×X := J ⊕ (−J).

Then JX×X defines an almost complex structure on X ×X.
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We denote by ∆ the diagonal in X ×X:

∆ := {(x, x) ∈ X ×X}.

Lemma 3.1. ∆ is a totally real submanifold of (X ×X, JX×X).

Proof of Lemma 3.1. Let (v, v) ∈ T(x,x)∆ ∩ JT(x,x)∆. Then (v, v) = JX×X(w,w) for some
w ∈ TxX implying that v = Jw = −Jw: v = 0. �

We denote by ι the embedding of X into X ×X defined by

∀x ∈ X, ι(x) = (x, x).

Then ι(X) = ∆ and i∗(J) defines an almost complex structure on ∆. The almost complex
structure JX×X on X×X and the distribution given by Ker(dpr1) endow ∆ with an almost

complex structure. Here pr1 : X ×X → X denotes the projection defined by pr1(x, y) = x
fo every (x, y) ∈ X ×X.

Lemma 3.2. The almost complex structure on ∆ given by JX×X and by the distribution
Ker d(pr1) coincides with ι∗(J).

Proof of Lemma 3.2. For (v, v) ∈ T∆, JX×X(v, v) = (Jv,−Jv) = (Jv, Jv) + (0,−2Jv)
with (Jv, Jv) = ι∗(J)(v) ∈ T∆ and (0,−2Jv) ∈ Ker d(pr1). �

Moreover the projection pr1 is (JX×X , J) holomorphic:

d(pr1) ◦ JX×X = J ◦ d(pr1).

Since X is a smooth compact manifold, it follows from the Whitney embedding Theorem
that X can be embedded into R4n+1. Hence we may embed X×X into R8n+2. Notice that the
Whitney embedding Theorem asserts that every compact real n-manifold may be embedded
in R2n+1. Hence we may in fact embed X ×X into R8n+1. However for our purpose, dealing
with almost complex structures, it is more convenient to consider spaces of even dimension.
Denote by φX the smooth C∞ embedding φX : X ↪→ R4n+1 and let φ := (φX , φX). Then
(φ(X ×X), φ∗(JX×X)) is an almost complex manifold.

Let NX denote the normal bundle of φX(X) in R4n+1. This is the subbundle of
T|φX(X)R4n+1 orthogonal to T (φX(X)) for the Euclidean metric gR4n+1 on R4n+1. Alter-
natively NX may be given by the short exact sequence:

0→ T (φX(X))→ T|φX(X)R4n+1 → NX → 0.

We have the Whitney sum decomposition:

T|φ(X×X)(R
8n+2) = T (φ(X ×X))⊕NX ⊕NX.

Consider the bundle isomorphism v ∈ NX 7→ (gR4n+1 : NX → R) from NX to its dual
bundle N∗X and the associated bundle isomorphism from NX ⊕ NX to NX ⊕ N∗X. We
may define an almost complex structure on NX ⊕ NX by considering the non-degenerate
skew symmetric form ω : ((x1, v1), (x2, v2)) ∈ (NX × N∗X)2 7→ v2(x1) − v1(x2) ∈ R. It is
sufficient then to consider an almost complex structure tamed by ω. Here the closedness of
the ω is not needed.

Alternatively, since NX ⊕N∗X is isomorphic to T ∗NX, where T ∗NX denotes the cotan-
gent bundle of NX, we obtain a bundle isomorphism ψ from NX ⊕NX to T ∗NX. If gNX
denotes the restriction of gR4n+1 to the subbbundle NX of R4n+1 then ψ∗(gNX×gNX) defines
a Riemannian metric on T ∗NX.
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Let ωT ∗NX be the canonical symplectic form on T ∗NX. We may associate to ψ∗(gNX ×
gNX) a ωT ∗NX-calibrated almost complex structure JT ∗NX defined uniquely by

∀(u, v) ∈ T ∗NX × T ∗NX, ψ∗(gNX × gNX) = ωT ∗Φ∗(X×NX(u, JT ∗NXv).

Hence we endow NX⊕NX with the almost complex structure ψ∗JT ∗NX . The Whitney sum

J8n+2,X := φ∗(JX×X)⊕ ψ∗JT ∗NX
defines an almost complex structure on T|φ(X×X)(R8n+2) that extends φ∗(JX×X):

(3.2) J8n+2,X ∈ End(T|φ(X×X)(R
8n+2)), J2

8n+2,X = −I, (J8n+2,X)|Tφ(X×X) = φ∗(JX×X).

Let Φ := φ ◦ ι : X ↪→ R8n+2 where φ and ι are defined just above. By construction the
distribution DR8n+2 := Φ∗Ker(dpr1)⊕NX⊕NX is transverse to Φ(X) in R8n+2. Moreover, it
follows from Lemma 3.2 and from (3.2) that the almost complex structure given on Φ∗(TX)
by J8n+2,X and by the distribution DR8n+2 coincides with Φ∗(J).

According to Subsection 3.2 we may consider the embedding Ψ8n+2,Φ∗(J) : Φ(X) ↪→ T8n+2

defined in (3.1):

∀x ∈ X,Ψ8n+2,Φ∗(J)(Φ(x)) = (Φ(x), J8n+2,X(x)).

Then Ψ := Ψ8n+2,Φ(X) ◦ Φ is a smooth embedding of X into T8n+2. Finally the distribution
DT8n+2 := π∗[Φ∗Ker(dpr1)⊕ (NX ⊕NX)]⊕Ker(dπ) ⊂ TT8n+2 is transverse to Ψ(X).

We denote by ιC the embedding of T8n+2 into T C
8n+2 and by f the embedding

f := ιC ◦Ψ

of X into T C
8n+2.

Finally we denote by T
(0,1)

J 8n+2T8n+2 the fiber bundle

T
(0,1)

J 8n+2T8n+2 := {ζ ∈ TT C
8n+2/ (J 8n+2)Cζ = −iζ}.

Then the distribution

DT C
8n+2

:= (ιC)∗ (DR8n+2) + T
(0,1)

J 8n+2T8n+2

is transverse to f(X) in T C
8n+2 and is of constant maximal rank.

For simplicity and if no confusion is possible, we will denote by D the distribution DT C
8n+2

.

Following the notations of Section 3, for y ∈ T C
8n+2 we will denote by Dy the fiber at y of the

distribution D.

By construction the almost complex structure induced on f(X) by JT C
8n+2

and by D coin-

cides with f∗(J). Hence we have proved the following

Lemma 3.3. The almost complex structures J and Jf coincide on X.

We recall that Jf is defined for every x ∈ X by

Jf (x) = df(x)−1 ◦ pf∗TX,f(x),Df(x) ◦ JZ(f(x)) ◦ df(x),

where pf∗TX,f(x),Df(x) : TZ,f(x) → f∗TX,x denotes the R-linear projection along Df(x).

Given two almost complex manifolds (X1, J1) and (X2, J2) and a smooth map g : X1 → X2

we denote by

∂J1,J2g :=
1

2
(dg + J2(g) ◦ dg ◦ J1)
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the d-bar operator with respect to the structures J1 and J2.
In particular ∂Jf ,JT C

8n+2

denotes the d-bar operator with respect to the almost complex

structure Jf on X and to the complex structure JT C
8n+2

on T C
8n+2. Then by definition of Jf

(3.3) ∀x ∈ X, ∂Jf ,JT C
8n+2

f(x) = (pf∗TX,f(x) − I) ◦ JT C
8n+2

(f(x)) ◦ df(x).

We have:

Lemma 3.4. (i) ∂Jf ,JT C
8n+2

f ∈ Λ(0,1)T ∗X ⊗D and ∂Jf ,JT C
8n+2

f is injective,

(ii) Im(∂Jf ,(J8n+2)Cf) ⊂ D and ∂Jf ,J8n+2Ψ is injective.

Proof of Lemma 3.4. The first statement of Point (i) is direct from (3.3) since pf∗TX,f(x) is
the projection on f∗TX along D. For the second statement we assume to get a contradiction
that there is vX ∈ TX, vX 6= 0, such that df(vX) = −JT C

8n+2
(df(JvX)). Since f = ιC ◦Ψ then

(3.4) JT C
8n+2

((ιC)∗(dΨ(vX))) = (ιC)∗(dΨ(Jv)).

But (ιC)∗(dΨ(vX)) ∈ (ιC)∗(TT8n+2) and JT C
8n+2

((ιC)∗(dΨ(vX))) ∈ (ιC)∗(TT8n+2) according to

(3.4). This is contradiction since by definition ιC(T8n+2) is a totally real submanifold of
(T C

8n+2, JT C
8n+2

).

The first statement of Point (ii) comes from the inclusion T
(0,1)

J 8n+2(T8n+2) ⊂ D. For the

second statement we use the fact that by construction Ψ(X) is totally real in (T8n+2,J 8n+2).
In particular ∂J,J 8n+2Ψ is injective. Moreover since (J 8n+2)C is the complexification of J 8n+2

then ιC satisfies d(ιC) ◦ J 8n+2 = (J 8n+2)C ◦ d(ιC). Hence ∂J,(J 8n+2)Cf = d(ιC) ◦ ∂J,J 8n+2Ψ.

This proves the injectivity of ∂J,(J 8n+2)Cf . �

4. Surjectivity of the horizontal torsion operator

The aim of this section is to prove the following

Proposition 4.1. There is a positive integer a, a smooth embedding Φa of X into R8n+2+2a,
an almost complex structure JR8n+2+2a,X on TR8n+2+2a and a smooth distribution DR8n+2+2a

transverse to Φa(X) such that

(i) The almost complex structure induced by JR8n+2+2a,X and by DR8n+2+2a on T (Φa(X))
coincides with (Φa)∗(J),

(ii) For every v ∈ Im
(
∂J,J8n+2+2aΦa

)
the operator

(τa)
H
v : DR8n+2+2a → TR8n+2+2a/DR8n+2+2a

w 7→ [v, w]mod DR8n+2+2a

is surjective.

We point out that the different objects given by Proposition 4.1 for a = 0 are the ones
constructed in Section 3. In particular, we may consider the operator (τ0)Hv for every v ∈
TR8n+2. However it is not clear whether (τ0)Hv is surjective for every v ∈ Im(∂J,J8n+2Φ). The
aim of Proposition 4.1 is just to increase the dimension of the Euclidean space in which we
embed X in order to get the surjectivity of the operator (τa)

H
v defined in Proposition 4.1.

For simplicity we write κ := 8n+ 2 + 2a.

We first start with the following
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Lemma 4.2. For every p ∈ Φ(X) there is a neighborhhod Up of p such that the operator

(τ0)Hv is surjective for every v ∈ Im(∂J,J8n+2,X
Φ)|Up.

Proof of Lemma 4.2. Since by assumption D is a smooth distribution there is a neighbor-
hood U of p in Φ(X) and a diffeomorphism λUp from U to λp(U) ⊂ R8n+2 such that λU(p) = 0,

D0 = Span
(

∂
∂x2n+1

, . . . , ∂
∂x8n+2

)
and Dx = Span

(
∂
∂xj

+
∑

1≤i≤2n αij(x) ∂
∂xi

)
2n+1≤j≤8n+2

for

every x ∈ λU(U).
Since T0R8n+2/D0 ' T0Φ(X) = Span(∂/∂x1, . . . , ∂/∂x2n) we have to prove:

∀ 2n+ 1 ≤ j ≤ 8n+ 2, ∀ 1 ≤ k ≤ 2n, ∃ (bl)2n+1≤l≤8n+2/ [v, w]0 =
∂

∂xk
mod D0

where v = ∂
∂xj

+
∑

1≤i≤2n αij
∂
∂xi

and w =
∑8n+2

l=2n+1 bl

(
∂
∂xl

+
∑

1≤p≤2n αpl
∂
∂xp

)
.

By definition

[v, w]0 =
∑
i,l

bl

(
∂αij
∂xl

(0)− ∂αil
∂xj

(0)

)
∂

∂xi
.

If we choose (αkij)ij such that

(4.1)
∂αkij
∂xl

(0)− ∂αkil
∂xj

(0) 6= 0

then we obtain the surjectivity at point 0. Then since αkij is smooth and satisfies αkij(0) = 0

for every i, j, k it follows from (4.1) that τHv is surjective on U , shrinking U if necessary. �

Proof of Proposition 4.1. Since X is compact we may cover Φ(X) with open sets
V1, . . . ,Va for some sufficiently large a. We choose a and V1, . . . ,Va such that Lemma 4.2 is
satisfied on every Vk for k = 1, . . . , a. Let µ1, . . . , µa be a partition of unity associated with
V1, . . . ,Va. We denote by (x1, . . . , xκ) the coordinates in Rκ. Then the map

Φa := (φX , µ1, . . . , µa, φX , µ1, . . . , µa)

is a smooth embedding of X into Rκ.
Moreover if we denote by Φa,X the smooth embedding Φa,X = (φX , µ1, . . . , µa) from X into

R4n+1+a and by N(X) the distribution orthogonal to Φa,X(X) in R4n+1+a with respect to the
Euclidean norm in R4n+1+a then the distribution N(X) ⊕ N(X) is transverse to Φa(X) in
Rκ. Hence we may define the almost complex structure Jκ,X on (TRκ)|Φa(X) the same way
we defined J8n+2,X on (TR8n+2)|Φ(X).

Then the distribution DRκ := (Φa)∗Ker(d pr1)⊕N(X)⊕N(X) is transverse to Φa(X) in
Rκ. After a change of coordinates on Uk this is given on (TRκ)|Uk , for each 1 ≤ k ≤ a, by

DRκ := Span

(
∂

∂xj
+
∑

1≤i≤2n

αkij
∂

∂xi

)
2n+1≤j≤κ

.

It follows now from Lemma 4.2 that the operator (τa)
H
v is surjective for every v ∈

Im(∂J,JκΦa). �
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5. Surjectivity on the complex twistor space

Following the construction of Section 3 we define:

• The embedding Ψa of X into the twistor space Tκ, the almost complex structure J κ on
(TTκ)|Ψa(X), the distribution DTκ ⊂ TTκ,
• The embedding fa of X into T C

κ , the almost complex structure (J κ)C on (TT C
κ )|fa(X),

the distribution DT C
κ
⊂ T (T C

κ ) and the complex structure JT C
κ

on T C
κ .

For simplicity and if no possible confusion we still write D instead of DT C
κ

.

Consider the following operators:

• For v ∈ TT C
κ the operator

τCv : D → TT C
κ /D

w 7→ [v, w]mod D,
• For every v ∈ TTκ the operator

τv : DTκ → TT C
κ /D

w 7→ [v, w]mod DTκ .
The aim of this section is to prove the following

Proposition 5.1. For every v ∈ Im(∂J,JT C
κ
fa) the operator τCv is surjective.

We start with the following

Lemma 5.2. If for every v ∈ Im(∂J,JκΦa) the operator (τa)
H
v is surjective then for every

v ∈ Im(∂J,(J κ)Ψa) the operator τv is surjective.

Since Ψa = (Φa, Jκ(Φa)) then

dΨa = (dΦa, dJκ(Φa) ◦ dΦa).

We recall that by construction

J κ(Ψa(x))(h, k) = (Jκ(Ψa(x)) · k, Jκ(Ψa(x)) ◦ k)

for every x ∈ X and every (h, k) ∈ TΨa(x)Tκ. This implies

∂J,J κΨa := (dΨa + J κ ◦ dΨa ◦ J)

= (∂J,JκΦa, dJκ(Φa) ◦ dΦa

+ Jκ(Φa) ◦ dJκ(Φa) ◦ dΦa ◦ J).

Since J2
κ = −I then Jκ(Φa) ◦ dJκ(Φa) ◦ dΦa = −dJκ(Φa)(Jκ ◦ dΦa). We obtain

J κ ◦ dΨa ◦ J = dJκ(Φa)(dΦa − Jκ ◦ dΦa ◦ J)

= dJκ(Φa)(∂J,JκΦa)

where ∂J,Jκ = d− ∂J,Jκ . We finally have:

(5.1) ∂J,J κΨa = (∂J,JκΦa, dJκ(Φa) ◦ ∂J,JκΦa).
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Let V ∈ Im(∂J,J κΨa), V 6= 0. According to (5.1) there is vX ∈ TX, vX 6= 0, such that

V = (∂J,JκΦa(vX), dJκ(Φa) ◦ ∂J,JκΦa(vX)).

We recall that Tκ
π−→ Rκ is a trivial bundle. By definition DTκ := π∗[Φ∗Ker(dpr1)⊕(NX⊕

NX)]⊕Ker(dπ). Hence we have

U ∈ TTκ/DTκ ⇔ ∃ u ∈ TRκ/DRκ / U = (u, 0).

Take U = (u, 0) ∈ TTκ/DTκ . By assumption the operator (τa)
H
∂J,JκΦa(v)

is surjective. So there

is w ∈ DRκ such that

[∂J,JκΦa(vX), w] = umodDRκ .

Hence if we consider W := (w, 0) then W ∈ DTκ and we have:

[V,W ] = U mod DTκ .
This proves Lemma 5.2. �

Lemma 5.3. If for every v ∈ Im(∂J,J κΨa) the operator τv is surjective then for every

v ∈ Im(∂J,(J κ)Cfa) the operator τCv is surjective.

Proof of Lemma 5.3. Since (J 8n+2)C ◦ d(ιC) = d(ιC) ◦ J 8n+2 we have

(5.2) ∀X, Y, Z ∈ TTκ, [X, Y ] = Z ⇒ [(ιC)∗X, (ιC)∗Y ] = (ιC)∗Z.

Let now V ∈ Im(∂J,(J κ)C)fa. Then there is vX ∈ X such that

V =
(
dfa + (J κ)C ◦ dfa ◦ J

)
(vX)

= (d(ιC) ◦ dΨa + (J κ)C ◦ d(ιC) ◦ dΨa ◦ J)(vX)

= d(ιC) ◦ (dΨa + J κ ◦ dΨa ◦ J) (vX)

since (J κ)C is the complexification of J κ. Hence V = d(ιC)
(
∂J,J κΨa(vX)

)
.

Let U ∈ TT C
κ /D. Then there is u ∈ TTκ/DTκ such that U = d(ιC)(u). Moreover by

assumption there is w ∈ DTκ such that [∂J,J κΨa(vX), w] = u. It follows now from (5.2) that

[d(ιC)
(
∂J,J κΨa(vX)

)
, d(ιC)w] = d(ιC)u with d(ιC)w ∈ D. This proves lemma 5.3. �

To conclude the proof of Proposition 5.1 it remains to prove the following

Lemma 5.4. If for every v ∈ Im(∂J,(J κ)C)fa) the operator τCv is surjective then for every

v ∈ Im(∂J,JT C
κ
fa) the operator τCv is surjective.

Proof of Lemma 5.4. To be completed

6. Algebraic approximation and proof of Theorem 1.1

We first point out that by definition T
(0,1)

J 8n+2T C
8n+2 is an algebraic distribution. Moreover

π∗[(Φ ◦ ι)∗Ker(dpr1) ⊕ (NX ⊕ NX)] ⊕Ker(dπ) is a smooth distribution contained in the
totally real submanifold T8n+2 of the complex manifold (T C

8n+2, JT C
8n+2

).

We have the following generalization of the Weierstrass Approximation theorem [2]:
Theorem A: Let 1 ≤ k ≤ ∞ and let M be a Ck submanifold totally real in a complex

manifold X; then there exists a Stein open neighborhood U of M in X such that the set of
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restrictions to M of all holomorphic functions on U is dense in the Fréchet space of all Ck
functions on M .

It follows from Theorem A that there is a neighborhood U of ιC◦Φ◦ι(X) in T C
8n+2 and there

is a family (Hν) of holomorphic distributions defined on a neighborhood of U and converging
(in the C∞ topology on U) to ιC∗(π

∗[(Φ ◦ ι)∗Ker(dpr1) ⊕ (NX ⊕ NX)]). Moreover there
is a neighborhood V of ιC ◦ Φ ◦ ι(X) in T C

8n+2, V ⊂⊂ U , and a family (Aν) of algebraic

distributions, with possible singularities outside V approximating (Hν). In particular, we
have

Lemma 6.1. The family (Aν) converges, in the C∞ topology on V , to ιC∗(π
∗[(Φ ◦

ι)∗Ker(dpr1)⊕ (NX ⊕NX)]).

Consider now the holomorphic algebraic distributionDν := Aν⊕T (0,1)

J 8n+2T C
8n+2. The complex

structure JT C
8n+2

and the distribution Dν define an almost complex structure Jν on ιC ◦
Φι(X) ⊂ T C

8n+2. Moreover it follows from Lemma 6.1 that for every non negative integer l:

lim
ν→∞

sup
x∈ιC◦Φ◦ι(X)

‖DlJν(x)−Dl(ιC ◦ Φ ◦ ι)∗(Jf )(x)‖ = 0

where ‖ · ‖ denotes any norm on the space of (2n × 2n) matrices and Dl denotes the l-th
derivative.

Hence we have proved the following:

Proposition 6.2. There is a family (Dν)ν of compact algebraic distributions on T C
8n+2 sat-

isfying the following properties:
(i) For every ν, Dν is transverse to ιC ◦ Φ ◦ ι(X),
(ii) If Jν denotes the almost complex structure induced on ιC ◦ Φι(X) by the complex

structure JT C
8n+2

and by the distribution Dν then limν→∞ supx∈ιC◦Φ◦ι(X) ‖DlJν(x)−Dl(ιC ◦Φ◦
ι)∗(Jf )(x)‖ = 0.

It follows from Proposition 6.2 that if Jf,ν is the almost complex structure defined on X
by

Jf,ν(x) := df(x)−1 ◦ pf∗TX,f(x),Dνf(x) ◦ JZ(f(x)) ◦ df(x),

then for every integer l

lim
ν→∞

sup
x∈X
‖DlJf,ν(x)−Dl(Jf )(x)‖ = 0.

We can now prove Theorem 1.1.

To be continued
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