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Abstract The goal of this survey is to present various results concerning the coho-
mology of pseudoeffective line bundles on compact Kähler manifolds, and related
properties of their multiplier ideal sheaves. In case the curvature is strictly positive,
the prototype is the well known Nadel vanishing theorem, which is itself a general-
ized analytic version of the fundamental Kawamata-Viehweg vanishing theorem of
algebraic geometry. We are interested here in the case where the curvature is merely
semipositive in the sense of currents, and the base manifold is not necessarily pro-
jective. In this situation, one can still obtain interesting information on cohomology,
e.g. a Hard Lefschetz theorem with pseudoeffective coefficients, in the form of a
surjectivity statement for the Lefschetz map. More recently, Junyan Cao, in his PhD
thesis defended in Grenoble, obtained a general Kähler vanishing theorem that de-
pends on the concept of numerical dimension of a given pseudoeffective line bundle.
The proof of these results depends in a crucial way on a general approximation result
for closed (1,1)-currents, based on the use of Bergman kernels, and the related in-
tersection theory of currents. As an application, we discuss a structure theorem for
compact Kähler threefolds without nontrivial subvarieties, following a joint work
with F. Campana and M. Verbitsky. We hope that these notes will serve as a useful
guide to the more detailed and more technical papers in the literature; in some cases,
we provide here substantially simplified proofs and unifying viewpoints. Some parts
– especially Subsections 4.1 and 4.2 – raise new open questions.
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1 Introduction and statement of the main results

Let X be a compact Kähler n-dimensional manifold, equipped with a Kähler metric,
i.e. a positive definite Hermitian (1,1)-form ω = i ∑1≤ j,k≤n ω jk(z)dz j ∧ dzk such
that dω = 0. By definition a holomorphic line bundle L on X is said to be pseudo-
effective if there exists a singular hermitian metric h on L, given by h(z) = e−ϕ(z)

with respect to a local trivialization L|U 'U×C, such that the curvature form

iΘL,h := i∂∂ϕ (1)

is (semi)positive in the sense of currents, i.e. ϕ is locally integrable and iΘL,h ≥ 0:
in other words, the weight function ϕ is plurisubharmonic (psh) on the correspond-
ing trivializing open set U . A basic concept is the notion of multiplier ideal sheaf,
introduced in [Nad90].

Definition 1. To any psh function ϕ on an open subset U of a complex manifold X,
one associates the “multiplier ideal sheaf” I (ϕ) ⊂ OX |U of germs of holomor-
phic functions f ∈ OX ,x, x ∈U, such that | f |2e−ϕ is integrable with respect to the
Lebesgue measure in some local coordinates near x. We also define the global mul-
tiplier ideal sheaf I (h)⊂ OX of a hermitian metric h on L ∈ Pic(X) to be equal to
I (ϕ) on any open subset U where L|U is trivial and h = e−ϕ . In such a definition,
we may in fact assume iΘL,h ≥−Cω , i.e. locally ϕ = psh+C∞, we say in that case
that ϕ is quasi-psh.

Let us observe that a multiplier ideal sheaf I (ϕ) is left unmodified by adding
a smooth function to ϕ , so, for such purposes, the additional C∞ terms are irrele-
vant in quasi-psh functions. A crucial and well-known fact is that the ideal sheaves
I (ϕ)⊂ OX |U and I (h)⊂ OX are always coherent analytic sheaves; when U ⊂ X
is a coordinate open ball, this can be shown by observing that I (ϕ) coincides with
the locally stationary limit J = lim↑N→+∞JN of the increasing sequence of co-
herent ideals JN = (g j)0≤ j<N associated with a Hilbert basis (g j) j∈N of the Hilbert
space of holomorphic functions f ∈ OX (U) such that

∫
U | f |2e−ϕ dVω < +∞. The

proof is a consequence of Hörmander’s L2 estimates applied to weights of the form

ψ(z) = ϕ(z)+(n+ k) log |z− x|2.

This easily shows that I (ϕ)x +mk
x = Jx +mk

x, and one then concludes that
I (ϕ)x = Jx by the Krull lemma. When X is projective algebraic, Serre’s GAGA
theorem implies that I (h) is in fact a coherent algebraic sheaf, in spite of the fact
that ϕ may have very “wild” analytic singularities – they might e.g. be everywhere
dense in X in the Euclidean topology. Therefore, in some sense, the multiplier ideal
sheaf is a powerful tool to extract algebraic (or at least analytic) data from arbi-
trary singularities of psh functions. In this context, assuming strict positivity of the
curvature, one has the following well-known fundamental vanishing theorem.

Theorem 1. (Nadel Vanishing Theorem, [Nad90], [Dem93]) Let (X ,ω) be a com-
pact Kähler n-dimensional manifold, and let L be a holomorphic line bundle over
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X equipped with a singular Hermitian metric h. Assume that iΘL,h ≥ εω for some
ε > 0 on X. Then

Hq(X ,O(KX ⊗L)⊗I (h)
)
= 0 for all q≥ 1,

where KX = Ω n
X = Λ nT ∗X denotes the canonical line bundle.

The proof follows from an application of Hörmander’s L2 estimates with sin-
gular weights, themselves derived from the Bochner-Kodaira identity (see [Hör66],
[Dem82], [Dem92]). One should observe that the strict positivity assumption im-
plies L to be big, hence X must be projective, since every compact manifold that is
Kähler and Moishezon is also projective (cf. [Moı̆66], [Pet86], [Pet98]). However,
when relaxing the strict positivity assumption, one can enter the world of general
compact Kähler manifolds, and their study is one of our main goals.

In many cases, one has to assume that the psh functions involved have milder
singularities. We say that a psh or quasi-psh function ϕ has analytic singularities if
locally on the domain of definition U of ϕ one can write

ϕ(z) = c log
N

∑
j=1
|g j|2 +O(1) (2)

where the g j’s are holomorphic functions, c∈R+ and O(1) means a locally bounded
remainder term. Assumption (2) implies that the set of poles Z = ϕ−1(−∞) is an
analytic set, locally defined as Z =

⋂
g−1

j (0), and that ϕ is locally bounded on UrZ.
We also refer to this situation by saying that ϕ has logarithmic poles. In general, one
introduces the following comparison relations for psh or quasi-psh functions ϕ and
hermitian metrics h = e−ϕ ; a more flexible comparison relation will be introduced
in Section 4.

Definition 2. Let ϕ1, ϕ2 be psh functions on an open subset U of a complex mani-
fold X. We say that

(a) ϕ1 has less singularities than ϕ2, and write ϕ1 4 ϕ2, if for every point x ∈U,
there exists a neighborhood V of x and a constant C ≥ 0 such that ϕ1 ≥ ϕ2−C
on V .

(b) ϕ1 and ϕ2 have equivalent singularities, and write ϕ1 ∼ ϕ2, if locally near any
point of U we have ϕ1−C ≤ ϕ2 ≤ ϕ1 +C.

Similarly, given a pair of hermitian metrics h1, h2 on a line bundle L→ X,

(a’) we say that h1 is less singular than h2, and write h1 4 h2, if locally there exists
a constant C > 0 such that h1 ≤Ch2.

(b’) we say that h1, h2 have equivalent singularities, and write h1 ∼ h2, if locally
there exists a constant C > 0 such that C−1h2 ≤ h1 ≤Ch2.

(of course when h1 and h2 are defined on a compact manifold X, the constant C can
be taken global on X in (a’) and (b’)).
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Now, if L is a pseudoeffective line bundle, it was observed in [Dem01] that there
always exists a unique equivalence class hmin of singular hermitian metrics with
minimal singularities, such that iΘL,hmin ≥ 0 (by this we mean that hmin is unique
up to equivalence of singularities). In fact, if h∞ is a smooth metric on L, one can
define the corresponding weight ϕmin of hmin as an upper envelope

ϕmin(z) = sup
{

ϕ(z) ; iΘL,h∞
+ i∂∂ϕ ≥ 0, ϕ ≤ 0 on X

}
, (3)

and put hmin = h∞e−ϕmin . In general, hmin need not have analytic singularities.
An important fact is that one can approximate arbitrary psh functions by psh

functions with analytic singularities. The appropriate technique consists of using
an asymptotic Bergman kernel procedure (cf. [Dem92] and Section 2). If ϕ is a
holomorphic function on a ball B⊂ Cn, one puts

ϕm(z) =
1

2m
log ∑

`∈N
|gm,`(z)|2

where (gm,`)`∈N is a Hilbert basis of the space H (B,mϕ) of L2 holomorphic func-
tions on B such that

∫
B | f |2e−2mϕ dV <+∞. When T = α +ddcϕ is a closed (1,1)-

current on X in the same cohomology class as a smooth (1,1)-form α and ϕ is
a quasi-psh potential on X , a sequence of global approximations Tm can be pro-
duced by taking a finite covering of X by coordinate balls (B j). A partition of unity
argument allows to glue the local approximations ϕm, j of ϕ on B j into a global po-
tential ϕm, and one sets Tm = α +ddcϕm. These currents Tm converge weakly to T ,
are smooth in the complement X rZm of an increasing family of analytic subsets
Zm ⊂ X , and their singularities approach those of T . More precisely, the Lelong
numbers ν(Tm,z) converge uniformly to those of T , and whenever T ≥ 0, it is pos-
sible to produce a current Tm that only suffers a small loss of positivity, namely
Tm ≥ −εmω where limm→+∞ εm = 0. These considerations lead in a natural way to
the concept of numerical dimension of a closed positive (1,1)-current T . We define

nd(T ) = max
{

p = 0,1, . . . ,n ; limsup
m→+∞

∫
XrZm

(Tm + εmω)p∧ω
n−p > 0

}
. (4)

One can easily show (see Section 4) that the right hand side of (4) does not depend
on the sequence (Tm), provided that the singularities approach those of T (we call
this an “asymptotically equisingular approximation”).

These concepts are very useful to study cohomology groups with values in pseu-
doeffective line bundles (L,h). Without assuming any strict positivity of the cur-
vature, one can obtain at least a hard Lefschetz theorem with coefficients in L.
The technique is based on a use of harmonic forms with respect to suitable “equi-
singular approximations” ϕm of the weight ϕ of h (in that case we demand that
I (ϕm) = I (ϕ) for all m); the main idea is to work with complete Kähler metrics
in the open complements X r Zm where ϕm is smooth, and to apply a variant of
the Bochner formula on these sets. More details can be found in Section 3 and in
[DPS01].
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Theorem 2. ([DPS01]) Let (L,h) be a pseudo-effective line bundle on a compact
Kähler manifold (X ,ω) of dimension n, let ΘL,h ≥ 0 be its curvature current and
I (h) the associated multiplier ideal sheaf. Then, the wedge multiplication operator
ωq∧ • induces a surjective morphism

Φ
q
ω,h : H0(X ,Ω n−q

X ⊗L⊗I (h))−→ Hq(X ,Ω n
X ⊗L⊗I (h)).

The special case when L is nef is due to Takegoshi [Tak97]. An even more special
case is when L is semipositive, i.e. possesses a smooth metric with semipositive
curvature. In that case the multiple ideal sheaf I (h) coincides with OX and we get
the following consequence already observed by Enoki [Eno93] and Mourougane
[Mou95].

Corollary 1. Let (L,h) be a semipositive line bundle on a compact Kähler manifold
(X ,ω) of dimension n. Then, the wedge multiplication operator ωq ∧ • induces a
surjective morphism

Φ
q
ω : H0(X ,Ω n−q

X ⊗L)−→ Hq(X ,Ω n
X ⊗L).

It should be observed that although all objects involved in Th. 2 are algebraic
when X is a projective manifold, there is no known algebraic proof of the statement;
it is not even clear how to define algebraically I (h) for the case when h = hmin is a
metric with minimal singularity. However, even in the special circumstance when L
is nef, the multiplier ideal sheaf is crucially needed.

Our next statement is taken from the PhD thesis of Junyan Cao [Cao13]. The
proof is a combination of our Bergman regularization techniques, together with an
argument of Ch. Mourougane [Mou95] relying on a use of the Calabi-Yau theorem
for Monge-Ampère equations.

Theorem 3. ([Cao13], [Cao14]) Let (L,h) be a pseudoeffective line bundle on a
compact Kähler n-dimensional manifold X. Then

Hq(X ,KX ⊗L⊗I+(h)) = 0 for every q≥ n−nd(L,h)+1,

where nd(L,h) := nd( iΘL,h) and I+(h) is the upper semicontinuous regularization
of the multiplier ideal sheaf, i.e.

I+(h) = lim
ε→0

I (h1+ε). (5)

In general I+(h)⊂I (h) and it is clear that the equality holds when h has ana-
lytic singularities (this can be easily seen via Hironaka’s desingularization theorem
[Hir64]). The question whether it is always true that I+(h) = I (h) was possi-
bly first raised in ([Dem01], Remark 15.2.2), and then in [DP03], following the
proof of the semicontinuity theorem for psh singularities in [DK01]. Actually, the
equality is easy to show in dimension 1, and it follows from the work of Favre
and Jonsson [FJ05] in dimension 2. Bo Berndtsson [Ber13] recently showed that
I (h)x = OX ,x implies I+(h)x = I (h)x = OX ,x in arbitrary dimension. Finally,
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during the Fall 2013, Qi’an Guan and Xiangyu Zhou showed that the equality
I+(h) = I (h) holds in all cases in the most general situation, cf. [GZ13]. There-
fore, thanks to [GZ13], the above Theorem 3 could also be stated with I (h) in
place of I+(h). As a final geometric application of this circle of ideas, we present
the following result which was recently obtained in [CDV13].

Theorem 4. ([CDV13]) Let X be a compact Kähler threefold that is “strongly sim-
ple” in the sense that it has no nontrivial analytic subvariety. Then the Albanese
morphism α : X → Alb(X) is a biholomorphism, and therefore X is biholomorphic
to a 3-dimensional complex torus C3/Λ .

2 Approximation of Psh Functions and of Closed (1,1)-Currents

We first recall here the basic result on the approximation of psh functions by psh
functions with analytic singularities. The main idea is taken from [Dem92] and re-
lies on the Ohsawa-Takegoshi extension theorem, For other applications to algebraic
geometry, see [Dem93b] and Demailly-Kollár [DK01]. Let ϕ be a psh function on
an open set Ω ⊂Cn. Recall that the Lelong number of ϕ at a point x0 ∈Ω is defined
to be

ν(ϕ,x0) = liminf
z→x0

ϕ(z)
log |z− x0|

= lim
r→0+

supB(x0,r) ϕ

logr
. (6)

In particular, if ϕ = log | f | with f ∈ O(Ω), then ν(ϕ,x0) is equal to the vanishing
order

ordx0( f ) = sup{k ∈ N ;Dα f (x0) = 0, ∀|α|< k}.

Theorem 5. Let ϕ be a plurisubharmonic function on a bounded pseudoconvex
open set Ω ⊂ Cn. For every m > 0, let HΩ (mϕ) be the Hilbert space of holomor-
phic functions f on Ω such that

∫
Ω
| f |2e−2mϕ dλ <+∞ and let ϕm = 1

2m log∑ |gm,`|2
where (gm,`) is an orthonormal basis of HΩ (mϕ). Then there are constants
C1,C2 > 0 independent of m such that

(a) ϕ(z)−C1

m
≤ ϕm(z)≤ sup

|ζ−z|<r
ϕ(ζ )+

1
m

log
C2

rn for every z∈Ω and r < d(z,∂Ω).

In particular, ϕm converges to ϕ pointwise and in L1
loc topology on Ω when

m→+∞ and

(b) ν(ϕ,z)− n
m
≤ ν(ϕm,z)≤ ν(ϕ,z) for every z ∈Ω .

Proof. (a) Note that ∑ |gm,`(z)|2 is the square of the norm of the evaluation linear
form evz : f 7→ f (z) on HΩ (mϕ), since gm,`(z) = evz(gm,`) is the `-th coordinate of
evz in the orthonormal basis (gm,`). In other words, we have

∑ |gm,`(z)|2 = sup
f∈B(1)

| f (z)|2
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where B(1) is the unit ball of HΩ (mϕ) (The sum is called the Bergman kernel
associated with HΩ (mϕ)). As ϕ is locally bounded from above, the L2 topology
is actually stronger than the topology of uniform convergence on compact subsets
of Ω . It follows that the series ∑ |gm,`|2 converges uniformly on Ω and that its sum
is real analytic. Moreover, by what we just explained, we have

ϕm(z) = sup
f∈B(1)

1
2m

log | f (z)|2 = sup
f∈B(1)

1
m

log | f (z)|.

For z0 ∈Ω and r < d(z0,∂Ω), the mean value inequality applied to the psh function
| f |2 implies

| f (z0)|2 ≤
1

πnr2n/n!

∫
|z−z0|<r

| f (z)|2dλ (z)

≤ 1
πnr2n/n!

exp
(

2m sup
|z−z0|<r

ϕ(z)
)∫

Ω

| f |2e−2mϕ dλ .

If we take the supremum over all f ∈ B(1) we get

ϕm(z0)≤ sup
|z−z0|<r

ϕ(z)+
1

2m
log

1
πnr2n/n!

and the second inequality in (a) is proved – as we see, this is an easy consequence
of the mean value inequality. Conversely, the Ohsawa-Takegoshi extension theorem
([OT87]) applied to the 0-dimensional subvariety {z0}⊂Ω shows that for any a∈C
there is a holomorphic function f on Ω such that f (z0) = a and∫

Ω

| f |2e−2mϕ dλ ≤C3|a|2e−2mϕ(z0),

where C3 only depends on n and diamΩ . We fix a such that the right hand side is 1.
Then ‖ f‖ ≤ 1 and so we get

ϕm(z0)≥
1
m

log | f (z0)|=
1
m

log |a|= ϕ(z)− log
C3

m
.

The inequalities given in (a) are thus proved. Taking r = 1/m, we find that
limm→+∞ sup|ζ−z|<1/m ϕ(ζ ) = ϕ(z) by the upper semicontinuity of ϕ , and therefore
limϕm(z) = ϕ(z), since lim 1

m log(C2mn) = 0.

(b) The above estimates imply

sup
|z−z0|<r

ϕ(z)− C1

m
≤ sup
|z−z0|<r

ϕm(z)≤ sup
|z−z0|<2r

ϕ(z)+
1
m

log
C2

rn .

After dividing by logr < 0 when r→ 0, we infer



8 Jean-Pierre Demailly

sup|z−z0|<2r ϕ(z)+ 1
m log C2

rn

logr
≤

sup|z−z0|<r ϕm(z)

logr
≤

sup|z−z0|<r ϕ(z)− C1
m

logr
,

and from this and definition (6), it follows immediately that

ν(ϕ,x)− n
m
≤ ν(ϕm,z)≤ ν(ϕ,z). �

Theorem 5 implies in a straightforward manner the deep result of [Siu74] on the
analyticity of the Lelong number upperlevel sets.

Corollary 2. [Siu74] Let ϕ be a plurisubharmonic function on a complex mani-
fold X. Then, for every c > 0, the Lelong number upperlevel set

Ec(ϕ) =
{

z ∈ X ; ν(ϕ,z)≥ c
}

is an analytic subset of X.

Proof. Since analyticity is a local property, it is enough to consider the case of a
psh function ϕ on a pseudoconvex open set Ω ⊂ Cn. The inequalities obtained in
Theorem 13.2 (b) imply that

Ec(ϕ) =
⋂

m≥m0

Ec−n/m(ϕm).

Now, it is clear that Ec(ϕm) is the analytic set defined by the equations g(α)
m,`(z) = 0

for all multi-indices α such that |α| < mc. Thus Ec(ϕ) is analytic as a (countable)
intersection of analytic sets. �

Remark 1. It has been observed by Dano Kim [Kim14] that the functions ϕm pro-
duced by Th. 5 do not in general satisfy ϕm+1<ϕm, in other words their singularities
may not always increase monotonically to those of ϕ . Thanks to the subbadditiv-
ity result of [DEL00], this is however the case for any subsequence ϕmk such that
mk divides mk+1, e.g. mk = 2k or mk = k! (we will refer to such a sequence below
as being a “multiplicative sequence”). In that case, a use of the Ohsawa-Takegoshi
theorem on the diagonal of Ω ×Ω shows that one can obtain ϕmk+1 ≤ ϕmk (after
possibly replacing ϕmk by ϕmk +C/mk with C large enough), see [DPS01].

Our next goal is to study the regularization process more globally, i.e. on a com-
pact complex manifold X . For this, we have to take care of cohomology class. It
is convenient to introduce dc = i

4π
(∂ − ∂ ), so that ddc = i

2π
∂∂ . Let T be a closed

(1,1)-current on X . We assume that T is quasi-positive, i.e. that there exists a (1,1)-
form γ with continuous coefficients such that T ≥ γ ; observe that a function ϕ is
quasi-psh iff its complex Hessian is bounded below by a (1,1)-form with continu-
ous or locally bounded coefficients, that is, if ddcϕ is quasi-positive. The case of
positive currents (γ = 0) is of course the most important.

Lemma 1. There exists a smooth closed (1,1)-form α representing the same ∂∂ -
cohomology class as T and an quasi-psh function ϕ on X such that T = α +ddcϕ .
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Proof. Select an open covering (B j) of X by coordinate balls such that T = ddcϕ j
over B j, and construct a global function ϕ = ∑θ jϕ j by means of a partition of
unity {θ j} subordinate to B j. Now, we observe that ϕ−ϕk is smooth on Bk because
all differences ϕ j − ϕk are smooth in the intersections B j ∩Bk and we can write
ϕ−ϕk = ∑θ j(ϕ j−ϕk). Therefore α := T −ddcϕ is smooth. �

Thanks to Lemma 1, the problem of approximating a quasi-positive closed (1,1)-
current is reduced to approximating a quasi-psh function. In this way, we get

Theorem 6. Let T = α +ddcϕ be a quasi-positive closed (1,1)-current on a com-
pact Hermitian manifold (X ,ω) such that T ≥ γ for some continuous (1,1)-form γ .
Then there exists a sequence of quasi-positive currents Tm =α +ddcϕm whose local
potentials have the same singularities as 1/2m times a logarithm of a sum of squares
of holomorphic functions and a decreasing sequence εm > 0 converging to 0, such
that

(a) Tm converges weakly to T ,

(b) ν(T,x)− n
m
≤ ν(Tm,x)≤ ν(T,x) for every x ∈ X ;

(c) Tm ≥ γ− εmω .

We say that our currents Tm are approximations of T with analytic singularities
(possessing logarithmic poles). Moreover, for any multiplicative subsequence mk,
one can arrange that Tmk = α +ddcϕmk where (ϕmk) is a non-increasing sequence
of potentials.

Proof. We just briefly sketch the idea – essentially a partition of unity argument –
and refer to [Dem92] for the details. Let us write T = α + ddcϕ with α smooth,
according to Lemma 1. After replacing T with T −α and γ with γ −α , we can
assume without loss of generality that {T}= 0, i.e. that T = ddcϕ with a quasi-psh
function ϕ on X such that ddcϕ ≥ γ . Now, for ε > 0 small, we select a finite covering
(B j)1≤ j≤N(ε) of X by coordinate balls on which there exists an ε-approximation of
γ as

∑
1≤`≤n

λ j,` idz j
` ∧dz j

` ≤ γ|B j ≤ ∑
1≤`≤n

(λ j,`+ ε) idz j
` ∧dz j

`

in terms of holomorphic coordinates (z j
`)1≤`≤n on B j (for this we just diagonalize

γ(a j) at the center a j of B j, and take the radius of B j small enough). By construction
ψ j,ε(z) = ϕ(z)−∑1≤`≤n λ j,`|z j

`|
2 is psh on B`, and we can thus obtain approxima-

tions ψ j,ε,m of ψ j by the Bergman kernel process applied on each ball B j. The idea
is to define a global approximation of ϕ by putting

ϕε,m(x) =
1
m

log
(

∑
1≤ j≤N(ε)

θ j,ε(x) exp
(

m
(

ψ j,ε,m(x)+ ∑
1≤`≤n

(λ j,`− ε)|z j
`|

2
)))

where (θ j,ε)1≤ j≤N(ε) is a partition of unity subordinate to the B j’s. If we take
ε = εm and ϕm = ϕεm,m where εm decays very slowly, then it is not hard to check
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that Tm = ddcϕm satisfies the required estimates; it is essentially enough to observe
that the derivatives of θ j,ε are “killed” by the factor 1

m when m� 1
ε

. �

We need a variant of Th. 6 providing more “equisingularity” in the sense that
the multiplier ideal sheaves are preserved. A priori, this can be done at the expense
of accepting more complicated singularities, which can no longer be guaranteed to
be logarithmic poles; a posteriori, using the deep result of [GZ13] on the strong
openness conjecture, it would be possible to do so, but we indicate here a way of
bypassing that difficult result.

Theorem 7. Let T = α +ddcϕ be a closed (1,1)-current on a compact Hermitian
manifold (X ,ω), where α is a smooth closed (1,1)-form and ϕ a quasi-psh func-
tion. Let γ be a continuous real (1,1)-form such that T ≥ γ . Then one can write
ϕ = limm→+∞ ϕ̃m where

(a) ϕ̃m is smooth in the complement X rZm of an analytic set Zm ⊂ X ;
(b) {ϕ̃m} is a non-increasing sequence, and Zm ⊂ Zm+1 for all m ;
(c)
∫

X (e
−ϕ − e−ϕ̃m)dVω is finite for every m and converges to 0 as m→+∞ ;

(d) (“equisingularity”) I (ϕ̃m) = I (ϕ) for all m ;
(e) Tm = α +ddcϕ̃m satisfies Tm ≥ γ− εmω , where limm→+∞ εm = 0.

Proof. (A substantial simplication of the original proof in [DPS01].) As in the previ-
ous proof, we may assume that α = 0 and T = ddcϕ , and after subtracting a constant
to ϕ we can also achieve that ϕ ≤ −1 everywhere on X . For every germ f ∈ OX ,x,
(c) implies

∫
U | f |2(e−ϕ − e−ϕ̃m)dVω < +∞ on some neighborhood U of x, hence

the integrals
∫

U | f |2e−ϕ dVω and
∫

U | f |2e−ϕ̃mdVω are simultaneously convergent or
divergent, and (d) follows trivially. We define

ϕ̃m(x) = sup
k≥m

(1+2−k)ϕpk

where (pk) is a multiplicative sequence that grows fast enough, with ϕpk+1 ≤ϕpk ≤ 0
for all k. Clearly ϕ̃m is a non-increasing sequence, and

lim
m→+∞

ϕ̃m(x) = lim
k→+∞

ϕpk(x) = ϕ(x)

at every point x ∈ X . If Zm is the set of poles of ϕpm , it is easy to see that

ϕ̃m(x) = lim
`→+∞

sup
k∈[m,`]

(1+2−k)ϕpk

converges uniformly on every compact subset of X r Zm, since any new term
(1+2−`)ϕp` may contribute to the sup only in case

ϕp` ≥
1+2−pm

1+2−p`
ϕpm (≥ 2ϕpm),
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and the difference of that term with respect to the previous term (1+2−(`−1))ϕp`−1 ≥
(1 + 2−(`−1))ϕp` is less than 2−`|ϕp` | ≤ 21−`|ϕpm |. Therefore ϕ̃m is continuous
on X r Zm, and getting it to be smooth is only a matter of applying Richberg’s
approximation technique ([Ric68], [Dem12]). The only serious thing to prove is
property (c). To achieve this, we observe that {ϕ < ϕ̃m} is contained in the union⋃

k≥m{ϕ < (1+2−k)ϕpk}, therefore

∫
X

(
e−ϕ − e−ϕ̃m

)
dVω ≤

+∞

∑
k=m

∫
X

1
ϕ<(1+2−k)ϕpk

e−ϕ dVω (7)

and ∫
X

1
ϕ<(1+2−k)ϕpk

e−ϕ dVω =
∫

X
1

ϕ<(1+2−k)ϕpk
exp
(
2k

ϕ− (2k +1)ϕ
)
dVω

≤
∫

X
1

ϕ<(1+2−k)ϕpk
exp
(
(2k +1)(ϕpk −ϕ)

)
dVω

≤
∫

X
1

ϕ<(1+2−k)ϕpk
exp
(
2pk(ϕpk −ϕ)

)
dVω (8)

if we take pk > 2k−1 (notice that ϕpk−ϕ ≥ 0). Now, by Lemma 2 below, our integral
(8) is finite. By Lebesgue’s monotone convergence theorem, we have for k fixed

lim
p→+∞

∫
X

1
ϕ<(1+2−k)ϕp

e−ϕ dVω = 0

as a decreasing limit, and we can take pk so large that
∫

ϕ<(1+2−k)ϕpk
e−ϕ dVω ≤ 2−k.

This ensures that property (c) holds true by (7). �

Lemma 2. On a compact complex manifold, for any quasi-psh potential ϕ , the
Bergman kernel procedure leads to quasi-psh potentials ϕm with analytic singu-
larities such that ∫

X
e2m(ϕm−ϕ)dVω <+∞.

Proof. By definition of ϕm in Th. 5, exp(2m(ϕm)) is (up to the irrelevant partition
of unity procedure) equal to the Bergman kernel ∑`∈N |gm,`|2. By local uniform con-
vergence and the Noetherian property, it has the same local vanishing behavior as a
finite sum ∑`≤N(m) |gm,`|2 with N(m) sufficiently large. Since all terms gm,` have L2

norm equal to 1 with respect to the weight e−2mϕ , our contention follows. �

Remark 2. A very slight variation of the proof would yield the improved condition

(c’) ∀λ ∈ R+,
∫

X
(e−λϕ − e−λϕ̃m)dVω ≤ 2−m for m≥ m0(λ ),

and thus an equality I (λϕ̃m) = I (λϕ) for m ≥ m0(λ ). We just need to replace
estimate (7) by∫

X

(
e−mϕ − e−mϕ̃m

)
dVω ≤

+∞

∑
k=m

∫
X

1
ϕ<(1+2−k)ϕpk

e−kϕ dVω
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and take pk so large that 2pk ≥ k(2k +1) and
∫

ϕ<(1+2−k)ϕpk
e−kϕ dVω ≤ 2−k−1. �

We also quote the following very simple consequence of Lemma 2, which will be
needed a bit later. Since ϕm is less singular than ϕ , we have of course an inclusion
I (λϕ)⊂I (λϕm) for all λ ∈ R+. Conversely :

Corollary 3. For every pair of positive real numbers λ ′ > λ > 0, we have an inclu-
sion of multiplier ideals

I (λ ′ϕm)⊂I (λϕ) as soon as m≥
⌈1

2
λλ ′

λ ′−λ

⌉
.

Proof. If f ∈ OX ,x and U is a sufficiently small neighborhood of x, the Hölder ine-
quality for conjugate exponents p,q > 1 yields∫

U
| f |2e−λϕ dVω ≤

(∫
U
| f |2e−λ ′ϕmdVω

)1/p(∫
U
| f |2e

q
p λ ′ϕm−qλϕ dVω

)1/q
.

Therefore, if f ∈ I (λ ′ϕm)x, we infer that f ∈ I (λϕ)x as soon as the integral∫
X e

q
p λ ′ϕm−qλϕ dVω is convergent. If we select p ∈ ]1,λ ′/λ ], this is implied by the

condition
∫

X eqλ (ϕm−ϕ)dVω <+∞. If we further take qλ = 2m0 to be an even integer
so large that

p =
q

q−1
=

2m0/λ

2m0/λ −1
≤ λ ′

λ
, e.g. m0 = m0(λ ,λ

′) =
⌈1

2
λλ ′

λ ′−λ

⌉
,

then we indeed have
∫

X e2m0(ϕm−ϕ)dVω ≤
∫

X e2m(ϕm−ϕ)dVω <+∞ for m≥m0(λ ,λ
′),

thanks to Lemma 2. �

3 Hard Lefschetz Theorem for Pseudoeffective Line Bundles

3.1 A Variant of the Bochner Formula

We first recall a variation of the Bochner formula that is required in the proof of
the Hard Lefschetz Theorem with values in a positively curved (and therefore non
flat) line bundle (L,h). Here the base manifold is a Kähler (non necessarily com-
pact) manifold (Y,ω). We denote by | | = | |ω,h the pointwise Hermitian norm on
Λ p,qT ∗Y ⊗L associated with ω and h, and by ‖ ‖= ‖ ‖ω,h the global L2 norm

‖u‖2 =
∫

Y
|u|2dVω where dVω =

ωn

n!

We consider the ∂ operator acting on (p,q)-forms with values in L, its adjoint ∂
∗
h

with respect to h and the complex Laplace-Beltrami operator ∆ ′′h = ∂∂
∗
h +∂

∗
h∂ . Let

v be a smooth (n−q,0)-form with compact support in Y . Then u = ωq∧ v satisfies
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‖∂u‖2 +‖∂ ∗hu‖2 = ‖∂v‖2 +
∫

Y
∑
I,J

(
∑
j∈J

λ j

)
|uIJ |2 (9)

where λ1 ≤ ·· · ≤ λn are the curvature eigenvalues of ΘL,h expressed in an orthonor-
mal frame (∂/∂ z1, . . . ,∂/∂ zn) (at some fixed point x0 ∈ Y ), in such a way that

ωx0 = i ∑
1≤ j≤n

dz j ∧dz j, (ΘL,h)x0 = ddc
ϕx0 = i ∑

1≤ j≤n
λ jdz j ∧dz j.

Formula (9) follows from the more or less straightforward identity

(∂
∗
ϕ ∂ +∂ ∂

∗
ϕ)(v∧ω

q)− (∂
∗
ϕ ∂v)∧ω

q = q i∂∂ϕ ∧ω
q−1∧ v,

by taking the inner product with u = ωq∧v and integrating by parts in the left hand
side (we leave the easy details to the reader). Our formula is thus established when
v is smooth and compactly supported. In general, we have:

Proposition 1. Let (Y,ω) be a complete Kähler manifold and (L,h) a smooth
Hermitian line bundle such that the curvature possesses a uniform lower bound
ΘL,h ≥ −Cω . For every measurable (n− q,0)-form v with L2 coefficients and val-
ues in L such that u = ωq∧ v has differentials ∂u, ∂

∗
u also in L2, we have

‖∂u‖2 +‖∂ ∗hu‖2 = ‖∂v‖2 +
∫

Y
∑
I,J

(
∑
j∈J

λ j

)
|uIJ |2

(here, all differentials are computed in the sense of distributions).

Proof. Since (Y,ω) is assumed to be complete, there exists a sequence of smooth
forms vν with compact support in Y (obtained by truncating v and taking the convo-
lution with a regularizing kernel) such that vν → v in L2 and such that uν = ωq∧vν

satisfies uν → u, ∂uν → ∂u, ∂
∗
uν → ∂

∗
u in L2. By the curvature assumption, the

final integral in the right hand side of (9) must be under control (i.e. the integrand
becomes nonnegative if we add a term C‖u‖2 on both sides, C� 0). We thus get
the equality by passing to the limit and using Lebesgue’s monotone convergence
theorem. �

3.2 Proof of Theorem 2

Here X denotes a compact Kähler manifold equipped with a Kähler metric ω ,
and (L,h) is a pseudoeffective line bundle on X . To fix the ideas, we first indi-
cate the proof in the much simpler case when (L,h) has a smooth metric h (so that
I (h) = OX ), and then treat the general case.
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3.2.1 Special Case: (L,h) is Hermitian semipositive (with a smooth metric).

Let {β} ∈Hq(X ,Ω n
X ⊗L) be an arbitrary cohomology class. By standard L2 Hodge

theory, {β} can be represented by a smooth harmonic (0,q)-form β with values
in Ω n

X ⊗ L. We can also view β as a (n,q)-form with values in L. The pointwise
Lefschetz isomorphism produces a unique (n−q,0)-form α such that β = ωq∧α .
Proposition 1 then yields

‖∂α‖2 +
∫

Y
∑
I,J

(
∑
j∈J

λ j

)
|αIJ |2 = ‖∂β‖2 +‖∂ ∗hβ‖2 = 0,

and the curvature eigenvalues λ j are nonnegative by our assumption. Hence ∂α = 0
and {α} ∈ H0(X ,Ω n−q

X ⊗L) is mapped to {β} by Φ
q
ω,h = ωq∧ • .

3.2.2 General Case.

There are several difficulties. The first difficulty is that the metric h is no longer
smooth and we cannot directly represent cohomology classes by harmonic forms.
We circumvent this problem by smoothing the metric on an (analytic) Zariski open
subset and by avoiding the remaining poles on the complement. However, some
careful estimates have to be made in order to take the error terms into account.

Fix ε = εν and let hε = hεν
be an approximation of h, such that hε is smooth on

X rZε (Zε being an analytic subset of X), ΘL,hε
≥−εω , hε ≤ h and I (hε) =I (h).

This is possible by Th. 7. Now, we can find a family

ωε,δ = ω +δ ( i∂∂ψε +ω), δ > 0

of complete Kähler metrics on X rZε , where ψε is a quasi-psh function on X with
ψε = −∞ on Zε , ψε smooth on X r Zε and i∂∂ψε +ω ≥ 0 (see e.g. [Dem82],
Théorème 1.5). By construction, ωε,δ ≥ ω and limδ→0 ωε,δ = ω . We look at the L2

Dolbeault complex K•
ε,δ of (n,•)-forms on X rZε , where the L2 norms are induced

by ωε,δ on differential forms and by hε on elements in L. Specifically

Kq
ε,δ =

{
u:X rZε→Λ

n,qT ∗X ⊗L;
∫

XrZε

(|u|2Λ n,qωε,δ⊗hε
+ |∂u|2

Λ n,q+1ωε,δ⊗hε
)dVωε,δ

< ∞

}
.

Let K q
ε,δ be the corresponding sheaf of germs of locally L2 sections on X (the local

L2 condition should hold on X , not only on X rZε !). Then, for all ε > 0 and δ ≥ 0,
(K q

ε,δ ,∂ ) is a resolution of the sheaf Ω n
X ⊗L⊗I (hε) = Ω n

X ⊗L⊗I (h). This is
because L2 estimates hold locally on small Stein open sets, and the L2 condition on
X rZε forces holomorphic sections to extend across Zε ([Dem82], Lemma 6.9).

Let {β} ∈ Hq(X ,Ω n
X ⊗ L⊗I (h)) be a cohomology class represented by a

smooth form with values in Ω n
X ⊗L⊗I (h) (one can use a Čech cocycle and con-

vert it to an element in the C ∞ Dolbeault complex by means of a partition of unity,
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thanks to the usual De Rham-Weil isomorphism, see also the final proof in Section 5
for more details). Then

‖β‖2
ε,δ ≤ ‖β‖

2 =
∫

X
|β |2Λ n,qω⊗hdVω <+∞.

The reason is that |β |2
Λ n,qω⊗hdVω decreases as ω increases. This is just an easy

calculation, shown by comparing two metrics ω , ω ′ which are expressed in diagonal
form in suitable coordinates; the norm |β |2

Λ n,qω⊗h turns out to decrease faster than
the volume dVω increases; see e.g. [Dem82], Lemma 3.2; a special case is q = 0,
then |β |2

Λ n,qω⊗hdVω = in
2
β ∧β with the identification L⊗L'C given by the metric

h, hence the integrand is even independent of ω in that case.
By the proof of the De Rham-Weil isomorphism, the map α 7→ {α} from

the cocycle space Zq(K •
ε,δ ) equipped with its L2 topology, into Hq(X ,Ω n

X ⊗ L⊗
I (h)) equipped with its finite vector space topology, is continuous. Also, Banach’s
open mapping theorem implies that the coboundary space Bq(K •

ε,δ ) is closed in
Zq(K •

ε,δ ). This is true for all δ ≥ 0 (the limit case δ = 0 yields the strongest L2

topology in bidegree (n,q)). Now, β is a ∂ -closed form in the Hilbert space defined
by ωε,δ on X rZε , so there is a ωε,δ -harmonic form uε,δ in the same cohomology
class as β , such that

‖uε,δ‖ε,δ ≤ ‖β‖ε,δ . (10)

Let vε,δ be the unique (n−q,0)-form such that uε,δ = vε,δ ∧ω
q
ε,δ (vε,δ exists by the

pointwise Lefschetz isomorphism). Then

‖vε,δ‖ε,δ = ‖uε,δ‖ε,δ ≤ ‖β‖ε,δ ≤ ‖β‖.

As ∑ j∈J λ j ≥−qε by the assumption on ΘL,hε
, the Bochner formula yields

‖∂vε,δ‖2
ε,δ ≤ qε‖uε,δ‖2

ε,δ ≤ qε‖β‖2.

These uniform bounds imply that there are subsequences uε,δν
and vε,δν

with
δν → 0, possessing weak-L2 limits uε = limν→+∞ uε,δν

and vε = limν→+∞ vε,δν
.

The limit vε = limν→+∞ vε,δν
is with respect to L2(ω) = L2(ωε,0). To check this,

notice that in bidegree (n− q,0), the space L2(ω) has the weakest topology of all
spaces L2(ωε,δ ); indeed, an easy calculation made in ([Dem82], Lemma 3.2) yields

| f |2
Λ n−q,0ω⊗hdVω ≤ | f |2Λ n−q,0ωε,δ⊗hdVωε,δ

if f is of type (n−q,0).

On the other hand, the limit uε = limν→+∞ uε,δν
takes place in all spaces L2(ωε,δ ),

δ > 0, since the topology gets stronger and stronger as δ ↓ 0 [possibly not in L2(ω),
though, because in bidegree (n,q) the topology of L2(ω) might be strictly stronger
than that of all spaces L2(ωε,δ ) ]. The above estimates yield

‖vε‖2
ε,0 =

∫
X
|vε |2Λ n−q,0ω⊗hε

dVω ≤ ‖β‖2,
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‖∂vε‖2
ε,0 ≤ qε‖β‖2

ε,0,

uε = ω
q∧ vε ≡ β in Hq(X ,Ω n

X ⊗L⊗I (hε)).

Again, by arguing in a given Hilbert space L2(hε0), we find L2 convergent subse-
quences uε → u, vε → v as ε → 0, and in this way get ∂v = 0 and

‖v‖2 ≤ ‖β‖2,

u = ω
q∧ v≡ β in Hq(X ,Ω n

X ⊗L⊗I (h)).

Theorem 2 is proved. Notice that the equisingularity property I (hε) =I (h) is cru-
cial in the above proof, otherwise we could not infer that u ≡ β from the fact that
uε ≡ β . This is true only because all cohomology classes {uε} lie in the same fixed
cohomology group Hq(X ,Ω n

X⊗L⊗I (h)), whose topology is induced by the topol-
ogy of L2(ω) on ∂ -closed forms (e.g. through the De Rham-Weil isomorphism). �

Remark 3. In (10), the existence of a harmonic representative holds true only for ωε,δ ,
δ > 0, because we need to have a complete Kähler metric on X rZε . The trick of
employing ωε,δ instead of a fixed metric ω , however, is not needed when Zε is (or
can be taken to be) empty. This is the case if (L,h) is such that I (h) = OX and L is
nef. Indeed, by definition, L is nef iff there exists a sequence of smooth metrics hν

such that iΘL,hν
≥−εν ω , so we can take the ϕν ’s to be everywhere smooth in Th. 7.

However, multiplier ideal sheaves are needed in the surjectivity statement even in
case L is nef, as it may happen that I (hmin) 6=OX even then, and h := limhν is any-
way always more singular than hmin. Let us recall a standard example (see [DPS94],
[DPS01]). Let B be an elliptic curve and let V be the rank 2 vector bundle over B
which is defined as the (unique) non split extension

0→ OB→V → OB→ 0.

In particular, the bundle V is numerically flat, i.e. c1(V ) = 0, c2(V ) = 0. We consider
the ruled surface X =P(V ). On that surface there is a unique section C =P(OB)⊂X
with C2 = 0 and

OX (C) = OP(V )(1)

is a nef line bundle. One can check that L = OP(V )(3) leads to a zero Lefschetz map

ω ∧ • : H0(X ,Ω 1
X ⊗L)−→ H1(X ,KX ⊗L)' C,

so this is a counterexample to Cor. 1 in the nef case. Incidentally, this also shows (in
a somewhat sophisticated way) that OP(V )(1) is nef but not semipositive, a fact that
was first observed in [DPS94].
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4 Numerical Dimension of Currents

A large part of this section borrows ideas from S. Boucksom’s [Bou02], [Bou04]
and Junyan Cao’s [Cao14] PhD theses. We try however to give here a slightly more
formal exposition. The main difference with S. Boucksom’s approach is that we
insist on keeping track of singularities of currents and leaving them unchanged,
instead of trying to minimize them in each cohomology class.

4.1 Monotone Asymptotically Equisingular Approximations

Let X be a compact complex n-dimensional manifold. We consider the closed con-
vex cone of pseudoeffective classes, namely the set E (X) of cohomology classes
{α} ∈ H1,1(X ,R) containing a closed positive (1,1)-current T = α + ddcϕ (in
the non Kähler case one should use Bott-Chern cohomology groups here, but we
will be mostly concerned with the Kähler case in the sequel). We also introduce
the set S (X) of singularity equivalence classes of closed positive (1,1)-currents
T = α +ddcϕ (i.e., α being fixed, up to equivalence of singularities of the poten-
tials ϕ , cf. Def. 2). Clearly, there is a fibration

π : S (X)→ E (X), T 7→ {α} ∈ E (X)⊂ H1,1(X ,R). (11)

We will denote by Sα(X) the fiber π−1({α}) of S (X) over a given cohomology
class {α} ∈ E (X). Observe that the base E (X) is a closed convex cone in a fi-
nite dimensional vector space, but in general the fiber Sα(X) must be viewed as a
very complicated infinite dimensional space : if we take e.g. {α1} ∈ H1,1(Pn,R) to
be the unit class c1(O(1)), then any current T = 1

d [H] where Hd is an irreducible
hypersurface of degree d defines a point in Sα1(Pn), and these points are all dis-
tinct. The set S (X) is nevertheless equipped in a natural way with an addition
law S (X)×S (X)→S (X) that maps Sα(X)+Sβ (X) into Sα+β (X), a scalar
multiplication R+ ×S (X) → S (X) that takes λ ·Sα(X) to the fiber Sλα(X).
In this way, S (X) should be viewed as some sort of infinite dimensional convex
cone. The fibers Sα(X) also possess a partial ordering 4 (cf. Def. 2) such that
∀ j, S j 4 Tj⇒ ∑S j 4 ∑Tj, and a fiberwise “min” operation

min : Sα(X)×Sα(X)−→Sα(X),

(T1,T2) = (α +ddc
ϕ1,α +ddc

ϕ2) 7−→ T = α +ddc max(ϕ1,ϕ2), (12)

with respect to which the addition is distributive, i.e.

min(T1 +S,T2 +S) = min(T1,T2)+S.

Notice that when T1 =
1
d [H1], T2 =

1
d [H2] are effective Q-divisors, all these opera-

tions +, · , min(•) and the ordering 4 coincide with the usual ones known for di-
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visors. Following Junyan Cao [Cao14] (with slightly more restrictive requirements
that do not produce much change in practice), we introduce

Definition 3. Let T = α +ddcϕ be a closed positive (1,1)-current on X, where α

is a smooth closed (1,1)-form and ϕ is a quasi-psh function on X. We say that the
sequence of currents Tk = α + ddcψk, k ∈ N, is a “monotone asymptotically equi-
singular approximation of T by currents with analytic singularities” if the sequence
of potentials (ψk) satisfies the following properties:

(a) (monotonicity) The sequence (ψk) is non-increasing and converges to ϕ at every
point of X.

(b) The functions ψk have analytic singularities (and ψk 4 ψk+1 by (a)).
(c) (lower bound of positivity)

α +ddc
ψk ≥−εk ·ω with lim

k→+∞
εk = 0

for any given smooth positive hermitian (1,1)-form ω on X.
(d) (asymptotic equisingularity) For every pair of positive numbers λ ′ > λ > 0,

there exists an integer k0(λ ,λ
′) ∈ N such that

I (λ ′ψk)⊂I (λϕ) for k ≥ k0(λ ,λ
′).

Remark 4. Without loss of generality, one can always assume that the quasi-psh po-
tentials ϕk = ck log |gk|2 +O(1) have rational coefficients ck ∈Q+ ; here again, gk is
a tuple of locally defined holomorphic functions. In fact, after subtracting constants,
one can achieve that ϕ ≤ 0 and ψk ≤ 0 for all k. If the ck are arbitrary nonnega-
tive real numbers, one can always replace ψk by ψ ′k = (1−δk)ψk with a decreasing
sequence δk ∈ ]0,1[ such that limδk = 0 and (1−δk)ck ∈Q+. Then (a), (b), (d)
are still valid, and (c) holds with ε ′k = (1− δk)εk +Cδk and C a constant such that
α ≥−Cω . �

The fundamental observation is:

Theorem 8. If ψk := ϕmk is the sequence of potentials obtained by the Bergman
kernel approximation of T = α + ddcϕ given in the proof of Theorem 6 and (mk)
is a multiplicative sequence, then the ψk can be arranged to satisfy the positivity,
monotonicity and asymptotic equisingularity properties of Definition 3. Moreover,
if we start with currents T 4 T ′ in the same cohomology class {α}, we obtain
corresponding approximations that satisfy ψk 4 ψ ′k.

Proof. By Cor. 3, the asymptotic equisingularity property (d) in Def. 3 is satisfied
for mk ≥ d 1

2
λλ ′

λ ′−λ
e. The other properties are already known or obvious, especially

the coefficients ck =
1

mk
are just inverses of integers in that case. �

The following proposition provides a precise comparison of analytic singularities
of potentials when their multiplier ideal sheaves satisfy inclusion relations.
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Proposition 2. Let ϕ , ψ be quasi-psh functions with analytic singularities, let c > 0
be the constant such that ϕ can be expressed as c log∑ |g j|2 +O(1) with holomor-
phic functions g j, and let λ ∈ R+. Denoting t+ :=max(t,0), we have the implication

I (ψ)⊂I (λϕ) ⇒
∫

eψ−λϕ dV <+∞ and ψ < 1
c

(
bλcc−n

)
+

ϕ (locally).

Proof. Since everything is local, we may assume that ϕ , ψ are psh functions on
a small ball B ⊂ Cn, and ϕ(z) = c log |g|2 = c log∑1≤ j≤N |g j(z)|2. If ( f`)`∈N is a
Hilbert basis of the space of L2 holomorphic functions f with

∫
B | f |2e−ψ dV <+∞,

the proof of Th. 5 yields ψ ≤C+ log∑ | f`|2 (and locally the singularity is achieved
by a finite sum of f`’s by the Noetherian property). After possibly shrinking B, the
condition I (ψ)⊂I (λϕ) implies∫

B
| f`|2e−λϕ dV =

∫
B
| f`|2|g|−2λcdV <+∞.

This already shows that
∫

eψ−λϕ dV < +∞ locally. By openness of convergence
exponents (one can use e.g. a log resolution of the ideal sheaf ( f`,g j) to see this),
one gets ∫

B
| f`|2|g|−2(bλcc+ε)dV <+∞

for ε > 0 small enough. Now, if bλcc ≥ n, Skoda’s division theorem [Sko72a] im-
plies that each f` can be written f` = ∑h`, jg j where h`, j satisfies a similar estimate
where the exponent of |g|−2 is decreased by 1. An iteration of the Skoda division
theorem for the h`, j yields f` ∈ (g j)

k where k = (bλcc−n)+. Hence

ψ ≤C+ log∑ | f`|2 ≤C′+ k log |g|2 ≤C′+
k
c

ϕ,

and our singularity comparison relation follows. �

Corollary 4. If T = α + ddcϕ is a closed positive (1,1)-current and (ψk), (ψ ′k)
are two monotone asymptotically equisingular approximations of ϕ with analytic
singularities, then for every k and every ε > 0, there exists ` such that (1−ε)ψk4ψ ′`
(and vice versa by exchanging the roles of (ψk) and (ψ ′k)).

Proof. Let c > 0 be the constant occurring in the logarithmic poles of ψk (k being
fixed). By condition (d) in Def. 3, for λ ′ > λ � 1 we have I (λ ′ψ ′`) ⊂I (λϕ) ⊂
I (λψk) for ` ≥ `0(λ ,λ

′) large enough. Proposition 2 implies the singularity es-
timate ψ ′` <

1
cλ ′ (bcλc]− n)+ψk, and the final constant in front of ψk can be taken

arbitrary close to 1. �

Our next observation is that the min(•) procedure defined above for currents is
well behaved in terms of asymptotic equisingular approximations.

Proposition 3. Let T = α + ddcϕ and T ′ = α + ddcϕ ′ be closed positive (1,1)-
currents in the same cohomology class {α}. Let (ψk) and (ψ ′k) be respective mono-
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tone asymptotically equisingular approximations with analytic singularities and ra-
tional coefficients. Then max(ψk,ψ

′
k) provides a monotone asymptotically equisin-

gular approximation of min(T,T ′) = α +ddc max(ϕ,ϕ ′) with analytic singularities
and rational coefficients.

Proof. If ψk = ck log |gk|2 + O(1) and ψ ′k = c′k log |g′k|2 + O(1), we can write
ck = pk/qk, c′k = p′k/q′k and

max(ψk,ψ
′
k) =

1
qkq′k

log
(
|gk|2pk + |g′k|2p′k

)
+O(1),

hence max(ψk,ψ
′
k) also has analytic singularities with rational coefficients (this

would not be true with our definitions when the ratio c′k/ck is irrational, but of course
we could just extend a little bit the definition of what we call analytic singularities,
e.g. by allowing arbitrary positive real exponents, in order to avoid this extremely
minor annoyance). It is well known that

α +ddc
ψk ≥−εkω, α +ddc

ψ
′
k ≥−ε

′
kω

⇒ α +ddc max(ψk,ψ
′
k)≥−max(εk,ε

′
k)ω.

Finally, if ψB,k (resp. ψ ′B,k and ψ̃B,k)) comes from the Bergman approximation of ϕ

(resp. of ϕ ′ and ϕ̃ := max(ϕ,ϕ ′)), we have

ϕ̃ ≥ ϕ ⇒ ψ̃B,k ≥ ψB,k, ϕ̃ ≥ ϕ
′ ⇒ ψ̃B,k ≥ ψ

′
B,k

hence ψ̃B,k ≥ max(ψB,k,ψ
′
B,k) and so ψ̃B,k 4 max(ψB,k,ψ

′
B,k). However, for every

ε > 0, one has (1−ε)ψBk 4ψ` and (1−ε)ψ ′Bk
4ψ ′` for `≥ `0(k,ε) large, therefore

(1− ε)ψ̃B,k 4 max(ψ`,ψ
′
`). This shows that max(ψ`,ψ

′
`) has enough singularities

(the “opposite” inequality max(ψ`,ψ
′
`) ≥ ϕ̃ = max(ϕ,ϕ ′), i.e. max(ψ`,ψ

′
`) 4 ϕ̃ ,

holds trivially). �

When we deal with sums of positive currents T = α +ddcϕ and T ′ = β +ddcϕ ′

in cohomology classes {α}, {β} ∈ E (X), the sum α +β +ddc(ψB,k +ψ ′B,k) of the
Bergman approximations is less singular than what comes from the Bergman ap-
proximation of ϕ +ϕ ′. This is a consequence of the fundamental “subadditivity”
result I (ϕ +ϕ ′)⊂I (ϕ)I (ϕ ′) observed in [DEL00], itself a consequence of the
Ohsawa-Takegoshi theorem. We do not know whether α + β + ddc(ψB,k +ψ ′B,k)
might be asymptotically strictly less singular than the Bergman approximations
of ϕ +ϕ ′; this does not happen when ϕ or ϕ ′ have analytic singularities (or are
sums of quasi-psh functions with analytic singularities and of functions with zero
Lelong numbers), as one can show easily, but there might be a more subtle issue of
a transcendental nature in general. This motivates the following formal definition.

Definition 4. For each class {α} ∈ E (X), we define Ŝα(X) as a set of equivalence
classes of sequences of quasi-positive currents Tk = α +ddcψk such that

(a) Tk = α +ddcψk ≥−εk ·ω with limk→+∞ εk = 0,
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(b) the functions ψk have analytic singularities and ψk 4 ψk+1 for all k.

We say that (Tk) is weakly less singular than (T ′k ) in Ŝα(X), and write (Tk)4W (T ′k ),
if for every ε > 0 and k, there exists ` such that (1− ε)Tk 4 T ′` . Finally, we write
(Tk) ∼W (T ′k ) when we have (Tk) 4W (T ′k ) and (T ′k ) 4W (Tk), and define Ŝα(X) to
be the quotient space by this equivalence relation.

The set
Ŝ (X) =

⋃
{α}∈E (X)

Ŝα(X) (13)

is by construction a fiber space π̂ : Ŝ (X)→ E (X), and, by fixing a multiplicative
sequence such as mk = 2k, we find a natural “Bergman approximation map”

B : S (X)→ Ŝ (X), T = α +ddc
ϕ 7−→ (TB,k), Tk = α +ddc

ψB,k. (14)

The set Ŝ (X) is equipped with a natural addition (Tk)+ (T ′k ) = (Tk +T ′k ), with a
scalar multiplication λ · (Tk) = (λTk) for λ ∈ R+, as well as with the min(•) opera-
tion min((Tk),(T ′k )) = (min(Tk,T ′k )) obtained by taking max(ψk,ψ

′
k) of the corres-

ponding potentials. As explained earlier, B is a morphism for the min(•) operation,
but it is unclear to us whether B is actually a morphism for addition (B is at least
additive when all currents involved except one have analytic singularities, and these
are dense in some sense, so things would be much nicer if there were no exception!)

For closed positive currents themselses, one could define weak equivalence of
singularities by

T 4W T ′ ⇐⇒def (TB,k)4W (T ′B,k), (15)

T ∼W T ′ ⇐⇒ T 4W T ′ and T ′ 4W T, (16)

but it is unclear at this point whether addition is compatible with 4W and ∼W
on S (X), so the quotient space S (X)/ ∼W might be a little bit problematic. By
the well-known result of Skoda [Sko72b], we have I (ϕ) = OX as soon as the Le-
long numbers ν(ϕ,x) are less than 2 at every point x∈X , hence a quasi-psh function
with zero Lelong numbers satisfies I (λϕ) = OX for every λ > 0. Such potentials
are negligible (and indistinguishable from smooth potentials) in the above definition
of ∼W .

Remark 5. When X is projective algebraic and {α} belongs to the Neron-Severi
space

NSR(X) = (H1,1(X ,C)∩H2(X ,Z)/torsion)⊗ZR,

the fiber Ŝα(X) is essentially an algebraic object. In fact, we could define Ŝα(X) as
the set of suitable equivalence classes of “formal limits” limc1(D)→{α} limk→+∞

1
kak

associated with sequences of graded ideals ak ⊂ H0(X ,OX (kD) satisfying the sub-
additive property ak+` ⊂ aka`, where D are big Q-divisors whose first Chern classes
c1(D) approximate {α} ∈ NSR(X). Many related questions are discussed in the al-
gebraic setting in Lazarfeld’s book [Laz04]. It is nevertheless an interesting point,
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even in the projective case, that one can “extrapolate” these concepts to all trans-
cendental classes, and get in this way a global space Ŝ (X) which looks well be-
haved, e.g. semicontinuous, under variation of the complex structure of X .

4.2 Intersection Theory on S (X) and Ŝ (X)

Let X be a compact Kähler n-dimensional manifold equipped with a Kähler met-
ric ω . We consider closed positive (1,1)-currents Tj = α j + ddcϕ j, 1 ≤ j ≤ p. Let
us first assume that the functions ϕ j have analytic singularities, and let Z ⊂ X be an
analytic set such that the ϕ j’s are locally bounded on X rZ. The (p, p)-current

Θ = 1XrZT1∧ . . .∧Tk

is well defined on X rZ, thanks to Bedford and Taylor [BT76], and it is a closed
positive current there. By [BT76] such a current does not carry mass on any analytic
set, so we can enlarge Z without changing the total mass of Θ . In fact, Θ extends as
a closed positive current on the whole of X . To see this, let us take a simultaneous
log resolution of the Tj’s, i.e. a modification

µ : X̂ → X

such that if ϕ j = c j log∑` |g j,`|2 +O(1), then the pull-back of the ideals (g j,`)`,
namely µ∗(g j,`)` = (g j,` ◦µ)` is a purely divisorial ideal sheaf OX̂ (−D j) on X̂ . Let
u j = 0 be a local holomorphic equation of the divisor D j on X̂ . Since
log∑` |g j,`|2 = log |u j|2 + log∑` |g j,`/u j|2 = log |u j|2 + v j, where v j ∈ C∞ and
ddc log |u j|2 = [D j] by the Lelong-Poincaré equation, we find

µ
∗Tj = µ

∗
α j +ddc(ϕ j ◦µ) = c j[D j]+ T̂j, where T̂j = µ

∗
α j +ddc

ϕ̂ j (17)

and ϕ̂ j is a locally bounded potential on X̂ such that T̂j ≥ 0. Now, if E = µ−1(Z),
we get

1XrZT1∧ . . .∧Tp = µ∗(1X̂rE T̂1∧ . . .∧ T̂p) = µ∗(T̂1∧ . . .∧ T̂p). (18)

Hence the right-hand side defines the desired extension of 1XrZT1 ∧ . . .∧ Tp to X
as the direct image of a closed positive current on X̂ carrying no mass on E. An
essential point is the following monotonicity lemma.

Lemma 3. Assume that we have closed positive (1,1)-currents with analytic singu-
larities Tj, T ′j ∈ {α j} with Tj 4 T ′j , 1 ≤ j ≤ p, and let γ ≥ 0 be a closed positive
smooth (n− p,n− p)-form on X. If Z is an analytic set containing the poles of all
Tj and T ′j , we have
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X

1XrZT1∧ . . .∧Tp∧ γ ≥
∫

X
1XrZT ′1 ∧ . . .∧T ′p∧ γ.

Proof. We take a log-resolution µ : X̂ → X that works for all Tj and T ′j simulta-
neously. By (17) and (18), we have µ∗Tj = c j[D j]+ T̂j where T̂j ≥ 0 has a locally
bounded potential on X̂ , and∫

X
1XrZT1∧ . . .∧Tp∧ γ =

∫
X̂

T̂1∧ . . .∧ T̂p∧µ
∗
γ.

There are of course similar formulas µ∗T ′j = c j[D′j] + T̂ ′j for the T ′j ’s, and our as-
sumption Tj 4 T ′j means that the corresponding divisors satisfy c jD j ≤ c′jD

′
j, hence

∆ j := c′jD
′
j− c jD j ≥ 0. In terms of cohomology, we have

µ
∗{α j}= {µ∗Tj}= {T̂j}+{c jD j}= {µ∗T ′j}= {T̂ ′j}+{c′jD′j},

hence {T̂j}= {T̂ ′j}+{∆ j} in H2(X̂ ,R). By Stokes’ theorem, we conclude that∫
X̂

T̂1∧ T̂2∧ . . .∧ T̂p∧µ
∗
γ =

∫
X̂
(T̂ ′1 +{∆1})∧ T̂2∧ . . .∧ T̂p∧µ

∗
γ

≥
∫

X̂
T̂ ′1 ∧ T̂2∧ . . .∧ T̂p∧µ

∗
γ

thanks to the positivity of our currents T̂j, T̂ ′j and the fact that the product of such
currents with bounded potentials by the current of integration [∆ j] is well defined
and positive ([BT76]). By replacing successively all terms {T̂j} by {T̂ ′j}+{∆ j} we
infer ∫

X̂
T̂1∧ . . .∧ T̂p∧µ

∗
γ ≥

∫
X̂

T̂ ′1 ∧ . . .∧ T̂ ′p∧µ
∗
γ. �

Now, assume that we have arbitrary closed positive (1,1)-currents T1, . . . , Tp. For
each of them, we take a sequence Tj,k = α j + i∂∂ψ j,k of monotone asymptotically
equisingular approximations by currents with analytic singularities, Tj,k ≥ −ε j,kω ,
limk→+∞ ε j,k = 0. We have Tj,k 4 Tj,k+1, and we may also assume without loss of
generality that ε j,k ≥ ε j,k+1 > 0 for all j,k. Let Zk be an analytic containing all
poles of the Tj,k, 1 ≤ j ≤ p. It follows immediately from the above discussion and
especially from Lemma 3 that the integrals∫

X
1XrZk(T1,k + ε1,kω)∧ . . .∧ (Tp,k + εp,kω)∧ γ ≥ 0

are well defined and nonincreasing in k (the fact that ε j,k is non increasing even
helps here). From this, we conclude

Theorem 9. For every p = 1, 2, . . . , n, there is a well defined p-fold intersection
product

Ŝ (X)×·· ·× Ŝ (X)−→ H p,p
+ (X ,R)
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which assigns to any p-tuple of equivalence classes of monotone sequences (Tj,k) in
Ŝ (X), 1≤ j ≤ p, the limit cohomology class

lim
k→+∞

{
1XrZk(T1,k + ε1,kω)∧ . . .∧ (Tp,k + εp,kω)

}
∈ H p,p

+ (X ,R)

where H p,p
+ (X ,R) ⊂ H p,p(X ,R) denotes the cone of cohomology classes of closed

positive (p, p)-currents. This product is additive and homogeneous in each argu-
ment in the space Ŝ (X).

Corollary 5. By combining the above formal intersection product with the Bergman
approximation operator B : S (X)→ Ŝ (X), we get an intersection product

S (X)×·· ·×S (X)−→ H p,p
+ (X ,R) denoted (T1, . . . ,Tp) 7−→ 〈T1, . . . ,Tp〉+,

which is homogeneous in each argument (and additive as long as B is). It always
satisfies at least the subadditivity property

〈T ′1 +T ′′1 ,T2, . . . ,Tp〉+ ≤ 〈T ′1 ,T2, . . . ,Tp〉++ 〈T ′′1 ,T2, . . . ,Tp〉+.

Proof. The existence of a limit in cohomology is seen by fixing a dual basis ({γ j})
of Hn−p,n−p(X), using the Serre duality pairing

H p,p(X ,R)×Hn−p,n−p(X)→ R, (β ,γ) 7→
∫

X
β ∧ γ.

Since X is Kähler, we can take γ1 =ωn−p and replace if necessary γ j by γ j+Cωn−p,
C� 1, to get γ j ≥ 0 for all j ≥ 2. Then the integrals∫

X
1XrZk(T1,k + ε1,kω)∧ . . .∧ (Tp,k + εp,kω)∧ γ j ≥ 0

are nonincreasing in k, and the limit must therefore exist by monotonicity. The
subadditivity property on S (X) comes from Lemma 3 applied to the inequality
B(T ′+T ′′) <W B(T ′)+B(T ′′) (itself a consequence of the multiplier ideal sheaf
inclusion I (ϕ ′+ϕ ′′)⊂I (ϕ ′)I (ϕ ′′)). �

4.3 Kähler Definition of the Numerical Dimension

Using the intersection product defined in Th. 9, we can give a precise definition of
the numerical dimension.

Definition 5. Let (X ,ω) be a compact Kähler n-dimensional manifold. We define
the numerical dimension nd(T ) of a closed positive (1,1)-current T on X to be the
largest integer p = 0,1, . . . ,n such that 〈T p〉+ 6= 0, i.e.

∫
X 〈T p〉+∧ωn−p > 0.

Accordingly, if (L,h) be a pseudoeffective line bundle on X , we define its nume-
rical dimension to be
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nd(L,h) = nd( iΘL,h). (19)

By the results of the preceding subsection, nd(L,h) depends only on the weak equi-
valence class of singularities of the metric h.

Remark 6. H. Tsuji [Tsu07] has defined a notion of numerical dimension by a more
algebraic method:

Definition 6. Let X be a projective variety and (L,h) a pseudo-effective line bundle.
When V runs over all irreducible algebraic suvarieties of X , one defines

νnum(L,h) = sup
{

p = dimV ; limsup
m→∞

h0
(
Ṽ ,µ∗(L⊗m)⊗I (µ∗hm)

)
mp > 0

}
where µ : Ṽ →V ⊂ X is an embedded desingularization of V in X .

Junyan Cao [Cao14] has shown that νnum(L,h) coincides with nd(L,h) as defined
in (19). The idea is to make a reduction to the “big” case nd(L,h) = dimX and to
use holomorphic Morse inequalities [Dem85] in combination with a regularization
procedure. We omit the rather technical details here.

Remark 7. If L is pseudo-effective there is also a natural concept of numerical di-
mension nd(L) that does not depend on the choice of a metric h on L. One can set
e.g.

nd(L) = max
{

p ∈ [0,n] ; ∃c > 0, ∀ε > 0, ∃hε , ΘL,hε
≥−εω, such that∫

XrZε

( iΘL,hε
+ εω)p∧ω

n−p ≥ c
}
,

where hε runs over all metrics with analytic singularities on L. It may happen in
general that nd(L,hmin)< nd(L), even when L is nef; in that case the hε can be taken
to be smooth in the definition of nd(L), and therefore nd(L) is the largest integer p
such that c1(L)p 6= 0. In fact, for the line bundle L already mentioned in Remark 3,
it is shown in [DPS94] that there is unique positive current T ∈ c1(L), namely the
current of integration T = [C] on the negative curve C ⊂ X , hence nd(L,hmin) =
nd([C]) = 0, although we have nd(L) = 1 here.

5 Proof of Junyan Cao’s Vanishing Theorem

This section is a brief account and a simplified exposition of Junyan Cao’s proof,
as detailed in his PhD thesis [Cao13]. The key curvature and singularity estimates
are contained in the following technical statement, which depends in a crucial way
on Bergman regularization and on Yau’s theorem [Yau78] for solutions of Monge-
Ampère equations.
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Proposition 4. Let (L,h) be a pseudoeffective line bundle on a compact Kähler
manifold (X ,ω). Let us write T = i

2π
ΘL,h = α +ddcϕ where α is smooth and ϕ is a

quasi-psh potential. Let p = nd(L,h) be the numerical dimension of (L,h). Then, for
every γ ∈ ]0,1] and δ ∈ ]0,1], there exists a quasi-psh potential Φγ,δ on X satisfying
the following properties :

(a) Φγ,δ is smooth in the complement X rZδ of an analytic set Zδ ⊂ X.

(b) α +δω +ddcΦγ,δ ≥ δ

2 (1− γ)ω on X.
(c) (α +δω +ddcΦγ,δ )

n ≥ aγnδ n−pωn on X rZδ .
(d) Φγ,δ ≤ (1+bδ )ψB,k +Cγ,δ where ψB,k ≥ ϕ is a Bergman approximation of ϕ of

sufficiently high index k = k0(δ ).
(e) supX Φ1,δ = 0, and for all γ ∈ ]0,1] there are estimates Φγ,δ ≤ A and

exp
(
−Φγ,δ

)
≤ e−(1+bδ )ϕ exp

(
A− γΦ1,δ

)
(f) For γ0, δ0 > 0 small, γ ∈ ]0,γ0], δ ∈ ]0,δ0] and k = k0(δ ) large enough, we have

I (Φγ,δ ) = I+(ϕ).

Here a, b, A, γ0, δ0,Cγ,δ > 0 are suitable constants (Cγ,δ being the only one that
depends on γ , δ ).

Before starting the proof, notice that the family of multiplier ideals λ 7→I (λϕ)
is nonincreasing in λ . By the Noetherian property of ideal sheaves, they can jump
only for a locally finite set of values λ in [0,+∞[, and in particular, there exists a
real value λ0 > 1 such that

I+(ϕ) := lim
λ→1+0

I (λϕ) = I (λϕ), ∀λ ∈ ]1,λ0]. (20)

Proof. Denote by ψB,k the nonincreasing sequence of Bergman approximations of ϕ

(obtained with denominators mk = 2k, say). We have ψB,k ≥ ϕ for all k, the ψB,k

have analytic singularities and α + ddcψB,k ≥ −εkω with εk ↓ 0. Then εk ≤ δ

4 for
k ≥ k0(δ ) large enough, and so

α +δω +ddc((1+bδ )ψB,k
)
≥ α +δω− (1+bδ )(α + εkω)

≥ δω− (1+bδ )εkω−bδα ≥ δ

2 ω

for b > 0 small enough (independent of δ and k). Let µ : X̂ → X be a log-resolution
of ψB,k, so that

µ
∗(

α +δω +ddc((1+bδ )ψB,k)
)
= ck[Dk]+βk

where βk ≥ δ

2 µ∗ω ≥ 0 is a smooth closed (1,1)-form on X̂ that is > 0 in the com-
plement X̂ rE of the exceptional divisor, ck =

1+bδ

mk
> 0, and Dk is a divisor that

includes all components E` of E. The map µ can be obtained by Hironaka [Hir64]
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as a composition of a sequence of blow-ups with smooth centers, and we can even
achieve that Dk and E are normal crossing divisors. In this circumstance, it is well
known that there exist arbitrary small numbers η` > 0 such that βk −∑η`[E`] is
a Kähler class on X̂ . Hence we can find a quasi-psh potential θ̂k on X̂ such that
β̂k := βk −∑η`[E`] + ddcθ̂k is a Kähler metric on X̂ , and by taking the η` small
enough, we may assume that

∫
X̂ (β̂k)

n ≥ 1
2
∫

X̂ β n
k . Now, we write

α +δω +ddc((1+bδ )ψB,k
)
≥ α + εkω +ddc

ψB,k +(δ − εk)ω−bδ (α + εkω)

≥ (α + εkω +ddc
ψB,k)+

δ

2 ω

for k ≥ k0(δ ) and b > 0 small (independent of δ and k). The assumption on the
numerical dimension of i

2π
ΘL,h = α + ddcϕ implies the existence of a constant

c > 0 such that, with Z = µ(E)⊂ X , we have∫
X̂

β
n
k =

∫
X

1XrZ
(
α +δω +ddc((1+bδ )ψB,k)

)n

≥
(

n
p

)(
δ

2

)n−p ∫
XrZ

(
α + εkω +ddc

ψB,k
)p∧ω

n−p ≥ cδ
n−p

∫
X

ω
n

for all k ≥ k0(δ ). Therefore, we may assume∫
X̂
(β̂k)

n ≥ c
2

δ
n−p

∫
X

ω
n.

By Yau’s theorem [Yau78], there exists a quasi-psh potential τ̂k on X̂ such that
β̂k +ddcτ̂k is a Kähler metric on X̂ with a prescribed volume form f̂ > 0 such that∫

X̂ f =
∫

X̂ β̂ n
k . By the above discussion, we can take here f̂ > c

3 δ n−pµ∗ωn every-
where on X̂ .

Now, we consider θk = µ∗θ̂k and τk = µ∗τ̂k ∈ L1
loc(X). Since θ̂k was defined in

such a way that ddcθ̂k = β̂k−βk +∑` η`[E`], we get

µ
∗(

α +δω +ddc((1 + bδ )ψB,k + γ(θk + τk))
)

= ck[Dk]+ (1− γ)βk + γ

(
∑
`

η`[E`]+ β̂k +ddc
τ̂k

)
≥ 0.

This implies in particular that Φγ,δ := (1+bδ )ψB,k + γ(θk + τk) is a quasi-psh po-
tential on X and that

µ
∗(

α +δω +ddc
Φγ,δ

)
≥ (1− γ)βk ≥

δ

2
(1− γ)µ

∗
ω,

thus condition (b) is satisfied. Putting Zδ = µ(|Dk|)⊃ µ(E) = Z, we also have

µ
∗1XrZδ

(
α +δω +ddc

Φγ,δ

)n ≥ γ
n

β̂
n
k ≥

c
3

γ
n
δ

n−p
µ
∗
ω

n,
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therefore condition (c) is satisfied as well with a = c/3. Property (a) is clear, and (d)
holds since the quasi-psh function θ̂k + τ̂k must be bounded from above on X̂ . We
will actually adjust constants in θ̂k + τ̂k (as we may), so that supX Φ1,δ = 0. Since
ϕ ≤ ψB,k ≤ ψB,0 ≤ A0 := supX ψB,0 and

Φγ,δ = (1+bδ )ψB,k + γ
(
Φ1,δ −ψB,k

)
= (1− γ +bδ )ψB,k + γΦ1,δ ,

we have
(1+bδ )ϕ− γ(A0−ψB,k)≤Φγ,δ ≤ (1− γ +bδ )A0

and the estimates in (e) follow with A = (1+ b)A0. The only remaining property
to be proved is (f). Condition (d) actually implies I (Φγ,δ ) ⊂ I ((1+ bδ )ψB,k),
and Cor. 3 also gives I ((1+ bδ )ψB,k) ⊂ I ((1+ bδ/2)ϕ) if we take k ≥ k0(δ )
large enough, hence I (Φγ,δ ) ⊂ I+(ϕ) for δ ≤ δ0 small. In the opposite direc-
tion, we observe that Φ1,γ satisfies α +ω +ddcΦ1,δ ≥ 0 and supX Φ1,δ = 0, hence
Φ1,δ belongs to a compact family of quasi-psh functions. A standard result of po-
tential theory then shows the existence of a uniform small constant c0 > 0 such that∫

X exp(−c0Φ1,δ )dVω <+∞ for all δ ∈ ]0,1]. If f ∈ OX ,x is a germ of holomorphic
function and U a small neighborhood of x, the Hölder inequality combined with
estimate (e) implies∫

U
| f |2 exp(−Φγ,δ )dVω ≤ eA

(∫
U
| f |2e−p(1+bδ )ϕ dVω

) 1
p
(∫

U
| f |2e−qγΦ1,δ dVω

) 1
q
.

We fix λ0 > 1 so that I (λ0ϕ) = I+(ϕ), p ∈ ]1,λ0[ (say p = 1+λ0)/2), and take

γ ≤ γ0 :=
c0

q
= c0

λ0−1
λ0 +1

and δ ≤ δ0 ∈ ]0,1] so small that p(1+bδ0)≤ λ0.

Then clearly f ∈I (λ0ϕ) implies f ∈I (Φγ,δ ), and (f) is proved. �

The rest of the arguments proceeds along the lines of [Dem82], [Mou95] and
[DP03]. Let (L,h) be a pseuffective line bundle and p = nd(L,h) = nd( iΘL,h). We
equip L be the hermitian metric hδ defined by the quasi-psh weight Φδ = Φγ0,δ

obtained in Prop. 4, with δ ∈ ]0,δ0]. Since Φδ is smooth on X rZδ , the well-known
Bochner-Kodaira identity shows that for every smooth (n,q)-form u with values in
KX ⊗L that is compactly supported on X rZδ , one has

‖∂u‖2
δ
+‖∂ ∗u‖2

δ
≥ 2π

∫
X
(λ1,δ + . . .+λq,δ −qδ )|u|2e−Φδ dVω ,

where ‖u‖2
δ

:=
∫

X |u|2ω,hδ
dVω =

∫
X |u|2e−Φδ dVω and

0 < λ1,δ (x)≤ . . .≤ λn,δ (x)

are, at each point x∈ X , the eigenvalues of α +δω +ddcΦδ with respect to the base
Kähler metric ω . Notice that the λ j,δ (x)−δ are the actual eigenvalues of i

2π
ΘL,hδ

=

α + ddcΦδ with respect to ω and that the inequality λ j,δ (x) ≥ δ

2 (1− γ) > 0 is
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guaranted by Prop. 4 (b). After dividing by 2πq (and neglecting that constant in the
left hand side), we get

‖∂u‖2
δ
+‖∂ ∗u‖2

δ
+δ‖u‖2

δ
≥
∫

X
(λ1,δ + . . .+λq,δ )|u|2e−Φδ dVω . (21)

A standard Hahn-Banach argument in the L2-theory of the ∂ -operator then yields
the following conclusion.

Proposition 5. For every L2 section of Λ n,qT ∗X ⊗L such that ‖ f‖δ <+∞ and ∂ f = 0
in the sense of distributions, there exists a L2 section v = vδ of Λ n,q−1T ∗X ⊗L and a
L2 section w = wδ of Λ n,qT ∗X ⊗L such that f = ∂v+w with

‖v‖2
δ
+

1
δ
‖w‖2

δ
≤
∫

X

1
λ1,δ + . . .+λq,δ

| f |2e−Φδ dVω .

Because of the singularities of the weight on Zδ , one should in fact argue first on
X rZδ and approximate the base Kähler metric ω by a metric ω̂δ ,ε = ω + εω̂δ

that is complete on X rZδ , exactly as explained in [Dem82]; we omit the (by now
standard) details here. A consequence of Prop. 5 is that the “error term” w satisfies
the L2 bound ∫

X
|w|2e−Φδ dVω ≤

∫
X

δ

λ1,δ + . . .+λq,δ
| f |2e−Φδ dVω . (22)

The idea for the next estimate is taken from Mourougane’s PhD thesis [Mou95].

Lemma 4. The ratio ρδ (x) := δ/(λ1,δ (x)+ . . .+λq,δ (x)) is uniformly bounded on X
(independently of δ ), and, as soon as q≥ n−nd(L,h)+1, there exists a subsequence
(ρδ`), δ`→ 0, that tends almost everywhere to 0 on X.

Proof. By estimates (b,c) in Prop. 4, we have λ j,δ (x)≥ δ

2 (1− γ0) and

λ1,δ (x) . . .λn,δ (x)≥ aγ
n
0 δ

n−p where p = nd(L,h). (23)

Therefore we already find ρδ (x)≤ 2/q(1− γ0). Now, we have∫
XrZδ

λn,δ (x)dVω ≤
∫

X
(α +δω +ddc

Φδ )∧ω
n−1 =

∫
X
(α +δω)∧ω

n−1 ≤ Const,

therefore the “bad set” Sε ⊂ X rZδ of points x where λn,δ (x) > δ−ε has a volume
Vol(Sε) ≤Cδ ε converging to 0 as δ → 0 (with a slightly more elaborate argument
we could similarly control any elementary symmetric function in the λ j,δ ’s, but this
is not needed here). Outside of Sε , the inequality (23) yields

λq,δ (x)
q
δ
−ε(n−q) ≥ λq,δ (x)

q
λn,δ (x)

n−q ≥ aγ
n
0 δ

n−p

hence
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λq,δ (x)≥ cδ
n−p+(n−q)ε

q and ρδ (x)≤Cδ
1− n−p+(n−q)ε

q .

If we take q ≥ n− p+ 1 and ε > 0 small enough, the exponent of δ in the final
estimate is positive, and Lemma 4 follows. �

Proof (of Junyan Cao’s Theorem 3). Let { f} be a cohomology class in the group
Hq(X ,KX ⊗L⊗I+(h)), q ≥ n− nd(L,h)+ 1. Consider a finite Stein open cover-
ing U = (Uα)α=1,...,N by coordinate balls Uα . There is an isomorphism between
Čech cohomology Ȟq(U ,F ) with values in the sheaf F = O(KX ⊗ L)⊗I+(h)
and the cohomology of the complex (K•

δ
,∂ ) of (n,q)-forms u such that both u

and ∂u are L2 with respect to the weight Φδ , i.e.
∫

X |u|2 exp(−Φδ )dVω < +∞

and
∫

X |∂u|2 exp(−Φδ )dVω < +∞. The isomorphism comes from Leray’s theo-
rem and from the fact that the sheafified complex (K •

δ
,∂ ) is a complex of C ∞-

modules that provides a resolution of the sheaf F : the main point here is that
I (Φδ ) =I+(ϕ) =I+(h), as asserted by Prop. 4 (f), and that we can locally solve
∂ -equations by means of Hörmander’s estimates [Hör66].

Let (ψα) be a partition of unity subordinate to U . The explicit isomorphism
between Čech cohomology and L2 cohomology yields a smooth L2 representative
f = ∑|I|=q fI(z)dz1∧ ...∧dzn∧dzI which is a combination

f = ∑
α0

ψα0cα0α1...αq∂ωα1 ∧ . . .∧∂ψαq

of the components of the corresponding Čech cocycle

cα0α1...αq ∈ Γ
(
Uα0 ∩Uα1 ∩ . . .∩Uαq ,O(F )

)
.

Estimate (e) in Prop. 4 implies the Hölder inequality∫
X

ρδ | f |2 exp(−Φδ )dVω ≤ eA
(∫

X
ρ

p
δ
| f |2e−p(1+bδ )ϕ dVω

)1
p
(∫

X
| f |2e−qγ0Φ1,δ dVω

)1
q
.

Our choice of δ ≤ δ0, γ0 and p, q shows that the integrals in the right hand side
are convergent, and especially

∫
X | f |2e−p(1+bδ )ϕ dVω <+∞. Lebesgue’s dominated

convergence theorem combined with Lemma 4 implies that the Lp-part goes to 0
as δ = δ` → 0, hence the “error term” w converges to 0 in L2 norm by esti-
mate (22). If we express the corresponding class {w} in Čech cohomology and
use Hörmander’s estimates on the intersections Uα =

⋂
Uα j , we see that {w} will

be given by a Čech cocycle (w̃α) such that
∫

Uα
|w̃α |2e−Φδ dVω → 0 as δ = δ`→ 0

(we may lose here some fixed constants since Φδ is just quasi-psh on our balls, but
this is irrelevant thanks to the uniform lower bounds for the Hessian). The inequa-
lity Φδ ≤ A in Prop. 4 (e) shows that we have as well an unweighted L2 estimate∫

Uα
|w̃α |2dV → 0. However it is well-known that when one takes unweighted L2

norms on spaces of Čech cocyles (or uniform convergence on compact subsets, for
that purpose), the resulting topology on the finite dimensional space Ȟq(U ,F ) is
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Hausdorff, so the subspace of coboundaries is closed in the space of cocycles. Hence
we conclude from the above that f is a coboundary, as desired. �

Remark 8. In this proof, it is remarkable that we can control the error term w, but a
priori completely lose control on the element v such that ∂v≈ f when δ → 0!

6 Compact Kähler Threefolds without Nontrivial Subvarieties

The bimeromorphic classification of compact Kähler manifolds leads to considering
those, termed as “simple”, that have as little internal structure as possible, and are
somehow the elementary bricks needed to reconstruct all others through meromor-
phic fibrations (cf. [Cam80], [Cam85]).

Definition 7. A compact Kähler manifold X is said to be simple if there does not
exist any irreducible analytic subvariety Z with 0 < dimZ < dimX through a very
generic point x ∈ X, namely a point x in the complement X r

⋃
S j of a countable

union of analytic sets S j (X.

Of course, every one dimensional manifold X is simple, but in higher dimensions
n > 1, one can show that a very generic torus X = Cn/Λ has no nontrivial analytic
subvariety Z at all (i.e. none beyond finite sets and X itself), in any dimension n. In
even dimension, a very generic Hyperkähler manifold can be shown to be simple as
well. It has been known since Kodaira that there are no other simple Kähler surfaces
(namely only very generic 2-dimensional tori and K3 surfaces). Theefore, the next
dimension to be investigated is dimension 3. A partial answer has been recently
given for “strongly simple” Kähler threefolds in [CDV13]; we give here a short
account of these results and refer to the latter paper for further details.

The simplicity assumption implies that the algebraic dimension is a(X) = 0, in
particular X cannot be projective, and cannot either be uniruled (i.e. covered by ra-
tional curves). By the Kodaira embedding theorem, we also infer that
H0(X ,Ω 2

X ) 6= 0, otherwise X would be projective. One of the most crucial argu-
ments is the following strong and difficult theorem of Brunella [Bru10].

Theorem 10. ([Bru10]) Let X be a compact Kähler manifold with a 1-dimensional
holomorphic foliation F given by a nonzero morphism of vector bundle L→ TX ,
where L is a line bundle on X, and TX is its holomorphic tangent bundle. If L−1 is
not pseudoeffective, the closures of the leaves of F are rational curves, and X is thus
uniruled.

We use this result in the form of the following corollary, which has been observed
in [HPR11], Proposition 4.2.

Corollary 6. If X is a non uniruled n-dimensional compact Kähler manifold with
H0(X ,Ω n−1

X ) 6= 0, then KX is pseudoeffective.
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Proof. Ω
n−1
X is canonically isomorphic to KX ⊗TX . Any nonzero section of Ω

n−1
X

thus provides a nonzero map K−1
X → TX , and an associated foliation. �

It follows from the above that the canonical line bundle KX of our simple three-
fold X must be pseudoeffective. We then use the following simple observation.

Proposition 6. Assume that X is a strongly simple compact complex manifold. Then
every pseudoeffective line bundle (L,h) is nef, and all multiplier sheaves I (hm) are
trivial, i.e. I (hm) = OX . Moreover, we have c1(L)n = 0.

Proof. Since there are not positive dimensional analytic subvarieties, the zero va-
rieties of the ideal sheaves I (hm) must be finite sets of points, hence, by Skoda
[Sko72a], the Lelong numbers ν( iΘL,h,x) are zero except on a countable set S⊂ X .
By [Dem92], this implies that L is nef and c1(L)n ≥∑x∈S ν( iΘL,h,x)n. However, by
the Grauert-Riemenschneider conjecture solved in [Siu84], [Siu85] and [Dem85],
the positivity of c1(L)n would imply that a(X) = n (i.e. X Moishezon, a contradic-
tion). Therefore c1(L)n = 0 and S = /0. �

Proposition 7. Let X be a compact Kähler manifold of dimension n > 1 without any
non-trivial subvariety, and with KX pseudoeffective. Then

h j(X ,K⊗m
X )≤ h0(X ,Ω j

X ⊗K⊗m
X )≤

(
n
j

)
for every j ≥ 0,

and the Hilbert polynomial P(m) := χ(X ,K⊗m
X ) is constant, equal to χ(X ,OX ).

Proof. The inequality h j(X ,K⊗m
X ) ≤ h0(X ,Ω j

X ⊗K⊗m
X ) follows from the Hard Lef-

schetz Theorem 2 applied with L = KX and the corresponding trivial multiplier ideal
sheaf. Also, for any holomorphic vector bundle E on X , we have
h0(X ,E)≤ rank(E), otherwise, some ratios of determinants of sections would pro-
duce a nonconstant meromorphic function, and thus a(X) > 0, contradiction; here
we take E = Ω

j
X ⊗K⊗m

X and get rankE =
(n

j

)
. The final claim is clear because

a polynomial function P(m) which remains bounded as m → +∞ is necessarily
constant. �

Corollary 7. Let X be a strongly simple Kähler threefold. Let hi, j = dimH i, j(X ,C)
be the Hodge numbers. We have

c1(X)3 = c1(X) · c2(X) = 0, χ(X ,OX ) = 0 and q := h1,0 > 0.

Proof. The intersection number K3
X = −c1(X)3 vanishes because it is the leading

term of P(m), up to the factor 3!. The Riemann-Roch formula then gives

P(m) =
(1−12m)

24
c1(X) · c2(X).

The boundedness of P(m) implies χ(X ,OX ) =
1
24 c1(X) · c2(X) = 0. Now, we write
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0 = χ(X ,OX ) = 1−h1,0 +h2,0−h3,0.

By Kodaira’s theorem, h2,0 > 0 since X is not projective, and h3,0 ≤ 1 since
a(X) = 0. Thus 0 = 1−h1,0 +h2,0−h3,0 ≥ 1−q+1−1 = 1−q, and q > 0. �

Everything is now in place for the final conclusion.

Theorem 11. Let X be a strongly simple Kähler threefold. Then the Albanese map
α : X → Alb(X) is a biholomorphism of 3-dimensional tori.

Proof. Since q = h1,0 > 0, the Albanese map α is non constant. By simplicity,
X cannot possess any fibration with positive dimensional fibers, so we must have
dimα(X) = dimX = 3, and as q = h1,0 = h0(X ,Ω 1

X )≤ 3 (Prop. 7 with j = 1, m = 0)
the Albanese map α must be surjective. The function det(dα) cannot vanish, other-
wise we would get a non trivial divisor, so α is étale. Therefore X is a 3-dimensional
torus, as a finite étale cover of the 3-dimensional torus Alb(X), and α must be an
isomorphism. �
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[Bou04] Sébastien Boucksom. Divisorial Zariski decompositions on compact complex mani-
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