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1 Introduction and Statement of the Main Results

Let X be a compact Kähler n-dimensional manifold, equipped with a Kähler metric,

i.e. a positive definite Hermitian .1; 1/-form ! D i
P

1?j;k?n !jk.z/ dzj ^ dzk such

that d! D 0. By definition a holomorphic line bundle L on X is said to be pseudo-

effective if there exists a singular hermitian metric h on L, given by h.z/ D e?'.z/

with respect to a local trivialization LjU ' U ? C, such that the curvature form

i?L;h WD i @@' (1)

is (semi) positive in the sense of currents, i.e. ' is locally integrable and i?L;h ? 0 :

in other words, the weight function ' is plurisubharmonic (psh) on the correspond-

ing trivializing open set U. A basic concept is the notion of multiplier ideal sheaf,

introduced in [50].

Definition 1 To any psh function ' on an open subset U of a complex manifold X,

one associates the “multiplier ideal sheaf” I .'/ ? OXjU of germs of holomorphic

functions f 2 OX;x, x 2 U, such that jf j2e?' is integrable with respect to the

Lebesgue measure in some local coordinates near x. We also define the global

multiplier ideal sheaf I .h/ ? OX of a hermitian metric h on L 2 Pic.X/ to be

equal to I .'/ on any open subset U where LjU is trivial and h D e?' . In such a
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definition, we may in fact assume i?L;h ? ?C!, i.e. locally ' D psh C C1, we

say in that case that ' is quasi-psh.

Let us observe that a multiplier ideal sheaf I .'/ is left unmodified by adding a

smooth function to ' ; for such purposes, the additional C1 terms are irrelevant

in quasi-psh functions. A crucial and well-known fact is that the ideal sheaves

I .'/ ? OXjU and I .h/ ? OX are always coherent analytic sheaves; when U ? X

is a coordinate open ball, this can be shown by observing that I .'/ coincides with

the locally stationary limit J D lim "N!C1JN of the increasing sequence of

coherent ideals JN D .gj/0?j<N associated with a Hilbert basis .gj/j2N of the

Hilbert space of holomorphic functions f 2 OX.U/ such that
R

U
jf j2e?'dV! < C1.

The proof is a consequence of Hörmander’s L2 estimates applied to weights of the

form

 .z/ D '.z/C .n C k/ log jz ? xj2:

This easily shows that I .'/x C m
k
x D Jx C m

k
x, and one then concludes that

I .'/x D Jx by the Krull lemma. When X is projective algebraic, Serre’s GAGA

theorem implies that I .h/ is in fact a coherent algebraic sheaf, in spite of the fact

that ' may have very “wild” analytic singularities – e.g. they might be everywhere

dense in X in the Euclidean topology. Therefore, in some sense, the multiplier

ideal sheaf is a powerful tool to extract algebraic (or at least analytic) data from

arbitrary singularities of psh functions. In this context, assuming strict positivity of

the curvature, one has the following well-known fundamental vanishing theorem.

Theorem 1 (Nadel Vanishing Theorem, [22, 50]) Let .X; !/ be a compact Kähler

n-dimensional manifold, and let L be a holomorphic line bundle over X equipped

with a singular Hermitian metric h. Assume that i?L;h ? "! for some " > 0 on X.

Then

Hq
?
X;O.KX ˝ L/˝ I .h/

?
D 0 for all q ? 1;

where KX D ˝
n
X D ?

nT?
X denotes the canonical line bundle.

The proof follows from an application of Hörmander’s L2 estimates with singular

weights, themselves derived from the Bochner-Kodaira identity (see [19, 21, 40]).

One should observe that the strict positivity assumption implies L to be big, hence X

must be projective, since every compact manifold that is Kähler and Moishezon

is also projective (cf. [48, 52, 53]). However, when relaxing the strict positivity

assumption, one can enter the world of general compact Kähler manifolds, and their

study is one of our main goals.
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In many cases, one has to assume that the psh functions involved have milder

singularities. We say that a psh or quasi-psh function ' has analytic singularities if

locally on the domain of definition U of ' one can write

'.z/ D c log

NX

jD1

jgjj
2
C O.1/ (2)

where the gj’s are holomorphic functions, c 2 RC and O.1/means a locally bounded

remainder term. Assumption (2) implies that the set of poles Z D '
?1
.?1/ is an

analytic set, locally defined as Z D
T

g?1
j .0/, and that ' is locally bounded on UXZ.

We also refer to this situation by saying that ' has logarithmic poles. In general, one

introduces the following comparison relations for psh or quasi-psh functions ' and

hermitian metrics h D e?' ; a more flexible comparison relation will be introduced

in Sect. 5.

Definition 2 Let '1; '2 be psh functions on an open subset U of a complex

manifold X. We say that

(a) '1 has less singularities than '2, and write '1 4 '2, if for every point x 2 U,

there exists a neighborhood V of x and a constant C ? 0 such that '1 ? '2 ?C

on V .

(b) '1 and '2 have equivalent singularities, and write '1 ? '2, if locally near any

point of U we have '1 ? C ? '2 ? '1 C C.

Similarly, given a pair of hermitian metrics h1, h2 on a line bundle L ! X,

(a’) we say that h1 is less singular than h2, and write h1 4 h2, if locally there exists

a constant C > 0 such that h1 ? Ch2.

(b’) we say that h1, h2 have equivalent singularities, and write h1 ? h2, if locally

there exists a constant C > 0 such that C?1h2 ? h1 ? Ch2.

.of course when h1 and h2 are defined on a compact manifold X, the constant C can

be taken global on X in (a’) and (b’)/.

Important features of psh singularities are the semi-continuity theorem (see [27])

and the strong openness property recently proved by Guan and Zhou [36–38]. Let

U be an open set in a complex manifold X and ' a psh function on U. Following

[27], we define the log canonical threshold of ' at a point z0 2 U by

cz0.'/ D sup
˚
c > 0 W e?2c ' is L1 on a neighborhood of z0

?
2 ?0;C1? (3)

(Here L1 integrability refers to the Lebesgue measure with respect to local coor-

dinates). It is an important invariant of the singularity of ' at z0. We refer to

[25–27, 29, 45, 50, 55, 61] for further information about properties of the log

canonical threshold. In this setting, the semi-continuity theorem can be stated as

follows.
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Theorem 2 (cf. [27]) For any given z0 2 U, the map PSH.U/ ! ?0;C1?, ' 7!

cz0.'/ is upper semi-continuous with respect to the topology of weak convergence

on the space of psh functions .the latter topology being actually the same as the

topology of L1loc convergence/.

The original proof of [27] was rather involved and depended on uniform

polynomial approximation, combined with a reduction to a semi-continuity theorem

for algebraic singularities; the Ohsawa-Takegoshi L2 extension theorem [51] was

used in a crucial way. We will give here a simpler and more powerful derivation due

to Hiep [54], still depending on the Ohsawa-Takegoshi theorem, that simultaneously

yields effective versions of Berndtsson’s result [3] on the openness conjecture, as

well as Guan and Zhou’s proof of the strong openness conjecture for multiplier

ideal sheaves.

Theorem 3 ([36–38]) Let ';  j, j 2 N, be psh functions on an open set U in a

complex manifold X. Assume that j ? ' and that j converges to ' in L1loc topology

as j ! C1. Then for every relatively compact subset U0 b U, the multiplier ideal

sheaves I . j/ coincide with I .'/ on U0 for j ? j0.U
0
/ ? 1.

Before going further, notice that the family of multiplier ideals ? 7! I .?'/

associated with a psh function ' is nonincreasing in ? 2 RC. By the Noetherian

property of ideal sheaves, they can jump only for a locally finite set of values ? in

Œ0;C1Œ, and in particular, there exists a real value ?0 > 1 such that

IC.'/ WD lim
"!0C

I ..1C "/'/ D I .?'/; 8? 2 ?1; ?0?: (4)

We will say that IC.'/ is the upper semicontinuous regularization of the multiplier

ideal sheaf. Berndtsson’s result [3] states that the equality I .'/ D OX implies

IC.'/ D OX . If we take  j D .1C 1=j/' and assume (without loss of generality)

that ' ? 0, Theorem 3 implies in fact

Corollary 1 For every psh function ', the upper semicontinuous regularization

coincides with the multiplier ideal sheaf, i.e. IC.'/ D I .'/.

Now, if L is a pseudoeffective line bundle, it was observed in [23] that there

always exists a unique equivalence class hmin of singular hermitian metrics with

minimal singularities, such that i?L;hmin
? 0 (by this we mean that hmin is unique

up to equivalence of singularities). In fact, if h1 is a smooth metric on L, one can

define the corresponding weight 'min of hmin as an upper envelope

'min.z/ D sup
˚
'.z/ I i?L;h1

C i @@' ? 0; ' ? 0 on X
?
; (5)

and put hmin D h1e?'min . In general, hmin need not have analytic singularities.
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An important fact is that one can approximate arbitrary psh functions by psh

functions with analytic singularities. The appropriate technique consists of using an

asymptotic Bergman kernel procedure (cf. [21] and Sect. 2). If ' is a holomorphic

function on a ball B ? Cn, one puts

'm.z/ D
1

2m
log

X

`2N

jgm;`.z/j
2

where .gm;`/`2N is a Hilbert basis of the space H .B;m'/ of L2 holomorphic

functions on B such that
R

B
jf j2e?2m'dV < C1. When T D ˛ C ddc

' is a closed

.1; 1/-current on X in the same cohomology class as a smooth .1; 1/-form ˛ and

' is a quasi-psh potential on X, a sequence of global approximations Tm can be

produced by taking a finite covering of X by coordinate balls .Bj/. A partition of

unity argument allows to glue the local approximations 'm;j of ' on Bj into a global

potential 'm, and one sets Tm D ˛ C ddc
'm. These currents Tm converge weakly

to T, are smooth in the complement X X Zm of an increasing family of analytic

subsets Zm ? X, and their singularities approach those of T. More precisely, the

Lelong numbers ?.Tm; z/ converge uniformly to those of T, and whenever T ? 0, it

is possible to produce a current Tm that only suffers a small loss of positivity, namely

Tm ? ?"m! where limm!C1 "m D 0. These considerations lead in a natural way to

the concept of numerical dimension of a closed positive .1; 1/-current T. We define

nd.T/ D max
˚
p D 0; 1; : : : ; n I lim sup

m!C1

Z

XXZm

.Tm C "m!/
p
^ !

n?p
> 0

?
: (6)

One can easily show (see Sect. 5) that the right hand side of (6) does not depend on

the sequence .Tm/, provided that the singularities approach those of T (we call this

an “asymptotically equisingular approximation”).

These concepts are very useful to study cohomology groups with values in

pseudoeffective line bundles .L; h/. Without assuming any strict positivity of the

curvature, one can obtain at least a hard Lefschetz theorem with coefficients in

L. The technique is based on a use of harmonic forms with respect to suitable

“equisingular approximations” 'm of the weight ' of h (in that case we demand that

I .'m/ D I .'/ for all m); the main idea is to work with complete Kähler metrics

in the open complements X X Zm where 'm is smooth, and to apply a variant of the

Bochner formula on these sets. More details can be found in Sect. 4 and in [31].

Theorem 4 ([31]) Let .L; h/ be a pseudo-effective line bundle on a compact Kähler

manifold .X; !/ of dimension n, let ?L;h ? 0 be its curvature current and I .h/ the

associated multiplier ideal sheaf. Then, the wedge multiplication operator !q ^ ?

induces a surjective morphism

˚
q

!;h W H0
.X; ˝

n?q

X ˝ L ˝ I .h// ?! Hq
.X; ˝n

X ˝ L ˝ I .h//:
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The special case when L is nef is due to Takegoshi [62]. An even more special

case is when L is semipositive, i.e. possesses a smooth metric with semipositive

curvature. In that case the multiple ideal sheaf I .h/ coincides with OX and we get

the following consequence already observed by Enoki [33] and Mourougane [49].

Corollary 2 Let .L; h/ be a semipositive line bundle on a compact Kähler manifold

.X; !/ of dimension n. Then, the wedge multiplication operator !q ^ ? induces a

surjective morphism

˚
q
!

W H0
.X; ˝

n?q

X ˝ L/ ?! Hq
.X; ˝n

X ˝ L/:

It should be observed that although all objects involved in Theorem 4 are

algebraic when X is a projective manifold, there is no known algebraic proof of

the statement; it is not even clear how to define algebraically I .h/ for the case

when h D hmin is a metric with minimal singularity. However, even in the special

circumstance when L is nef, the multiplier ideal sheaf is crucially needed.

The next statement is taken from the PhD thesis of Junyan Cao [13]. The proof is

a combination of our Bergman regularization techniques, together with an argument

of Ch. Mourougane [49] relying on a use of the Calabi-Yau theorem for Monge-

Ampère equations.

Theorem 5 ([13, 14]) Let .L; h/ be a pseudoeffective line bundle on a compact

Kähler n-dimensional manifold X. Then

Hq
.X;KX ˝ L ˝ I .h// D 0 for every q ? n ? nd.L; h/C 1;

where nd.L; h/ WD nd. i?L;h/.

Cao’s technique of proof actually yields the result for the upper semicontinuous

regularization

IC.h/ D lim
"!0

I .h1C"/ (7)

instead of I .h/, but we can apply Guan-Zhou’s Theorem 3 to see that the equality

IC.h/ D I .h/ always holds. As a final geometric application of this circle of

ideas, we present the following result which was obtained in [16].

Theorem 6 ([16]) Let X be a compact Kähler threefold that is “strongly simple” in

the sense that it has no nontrivial analytic subvariety. Then the Albanese morphism

˛ W X ! Alb.X/ is a biholomorphism, and therefore X is biholomorphic to a 3-

dimensional complex torus C3=?.

I would like to thank the referee wholeheartedly for numerous suggestions that

led to substantial improvements of the exposition.



On the Cohomology of Pseudoeffective Line Bundles 57

2 Approximation of psh Functions and of Closed

(1,1)-Currents

We first recall here the basic result on the approximation of psh functions by

psh functions with analytic singularities. The main idea is taken from [Dem92]

and relies on the Ohsawa-Takegoshi extension theorem, For other applications to

algebraic geometry, see [Dem93b] and Demailly-Kollár [DK01]. Let ' be a psh

function on an open set ˝ ? Cn. Recall that the Lelong number of ' at a point

x0 2 ˝ is defined to be

?.'; x0/ D lim inf
z!x0

'.z/

log jz ? x0j
D lim

r!0C

supB.x0;r/
'

log r
: (8)

In particular, if ' D log jf j with f 2 O.˝/, then ?.'; x0/ is equal to the vanishing

order

ordx0.f / D supfk 2 N ID˛ f .x0/ D 0; 8j˛j < kg:

Theorem 7 Let ' be a plurisubharmonic function on a bounded pseudoconvex

open set ˝ ? Cn. For every m > 0, let H˝ .m'/ be the Hilbert space of

holomorphic functions f on ˝ such that
R

˝
jf j2e?2m'dV2n < C1 and let 'm D

1

2m
log

P
jgm;`j

2 where .gm;`/ is an orthonormal basis of H˝ .m'/. Then there are

constants C1;C2 > 0 independent of m such that

(a) '.z/?
C1

m
? 'm.z/ ? sup

j??zj<r

'.?/C
1

m
log

C2

rn
for every z 2 ˝ and r < d.z; @˝/.

In particular, 'm converges to ' pointwise and in L1loc topology on ˝ when

m ! C1 and

(b) ?.'; z/?
n

m
? ?.'m; z/ ? ?.'; z/ for every z 2 ˝ .

Proof

(a) Note that
P

jgm;`.z/j
2 is the square of the norm of the evaluation linear form

evz W f 7! f .z/ on H˝ .m'/, since gm;`.z/ D evz.gm;`/ is the `-th coordinate of

evz in the orthonormal basis .gm;`/. In other words, we have

X

jgm;`.z/j
2 D sup

f2B.1/

jf .z/j2

where B.1/ is the unit ball of H˝ .m'/ (The sum is called the Bergman kernel

associated with H˝ .m'/). As ' is locally bounded from above, the L2 topology

is actually stronger than the topology of uniform convergence on compact



58 J.-P. Demailly

subsets of ˝ . It follows that the series
P

jgm;`j
2 converges uniformly on ˝

and that its sum is real analytic. Moreover, by what we just explained, we have

'm.z/ D sup
f2B.1/

1

2m
log jf .z/j2 D sup

f2B.1/

1

m
log jf .z/j:

For z0 2 ˝ and r < d.z0; @˝/, the mean value inequality applied to the psh

function jf j2 implies

jf .z0/j
2 ?

1

?nr2n=nŠ

Z

jz?z0j<r

jf .z/j2dV2n.z/

?
1

?nr2n=nŠ
exp

?

2m sup
jz?z0j<r

'.z/

? Z

˝

jf j2e?2m'dV2n:

If we take the supremum over all f 2 B.1/ we get

'm.z0/ ? sup
jz?z0j<r

'.z/C
1

2m
log

1

?nr2n=nŠ

and the second inequality in (a) is proved – as we see, this is an easy

consequence of the mean value inequality. Conversely, the Ohsawa-Takegoshi

extension theorem ([51]) applied to the 0-dimensional subvariety fz0g ? ˝

shows that for any a 2 C there is a holomorphic function f on ˝ such that

f .z0/ D a and

Z

˝

jf j2e?2m'dV2n ? C3jaj
2e?2m'.z0/;

where C3 only depends on n and diam˝ . We fix a such that the right hand side

is 1. Then kfk ? 1 and so we get

'm.z0/ ?
1

m
log jf .z0/j D

1

m
log jaj D '.z/ ? log

C3

m
:

The inequalities given in (a) are thus proved. Taking r D 1=m, we find that

limm!C1 supj??zj<1=m '.?/ D '.z/ by the upper semicontinuity of ', and

therefore lim 'm.z/ D '.z/, since lim 1

m
log.C2m

n
/ D 0.

(b) The above estimates imply

sup
jz?z0j<r

'.z/ ?
C1

m
? sup

jz?z0j<r

'm.z/ ? sup
jz?z0j<2r

'.z/C
1

m
log

C2

rn
:
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After dividing by log r < 0 when r ! 0, we infer

supjz?z0j<2r
'.z/C 1

m
log C2

rn

log r
?

supjz?z0j<r 'm.z/

log r
?

supjz?z0j<r '.z/ ?
C1
m

log r
;

and from this and definition (8), it follows immediately that

?.'; x/?
n

m
? ?.'m; z/ ? ?.'; z/:

ut

Theorem 7 implies in a straightforward manner the deep result of [57] on the

analyticity of the Lelong number upperlevel sets.

Corollary 3 ([57]) Let ' be a plurisubharmonic function on a complex manifold X.

Then, for every c > 0, the Lelong number upperlevel set

Ec.'/ D
˚
z 2 X I ?.'; z/ ? c

?

is an analytic subset of X.

Proof Since analyticity is a local property, it is enough to consider the case of a

psh function ' on a pseudoconvex open set ˝ ? Cn. The inequalities obtained in

Theorem 7 (b) imply that

Ec.'/ D
\

m?m0

Ec?n=m.'m/:

Now, it is clear that Ec.'m/ is the analytic set defined by the equations g
.˛/

m;`
.z/ D 0

for all multi-indices ˛ such that j˛j < mc. Thus Ec.'/ is analytic as a (countable)

intersection of analytic sets. ut

Remark 1 It has been observed by Dano Kim [44] that the functions 'm produced

by Theorem 7 do not in general satisfy 'mC1 < 'm, in other words their singularities

may not always increase monotonically to those of '. Thanks to the subbadditivity

result of [18], this is however the case for any subsequence 'mk
such that mk divides

mkC1, e.g. mk D 2
k or mk D kŠ (we will refer to such a sequence below as being

a “multiplicative sequence”). In that case, a use of the Ohsawa-Takegoshi theorem

on the diagonal of ˝ ? ˝ shows that one can obtain 'mkC1
? 'mk

(after possibly

replacing 'mk
by 'mk

C C=mk with C large enough), see [18] and [31].

Our next goal is to study the regularization process more globally, i.e. on a

compact complex manifold X. For this, we have to take care of cohomology class.

It is convenient to introduce dc D i
4?
.@ ? @/, so that ddc D i

2?
@@. Let T be a closed

.1; 1/-current on X. We assume that T is quasi-positive, i.e. that there exists a .1; 1/-

form ? with continuous coefficients such that T ? ? ; observe that a function ' is
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quasi-psh iff its complex Hessian is bounded below by a .1; 1/-form with continuous

or locally bounded coefficients, that is, if ddc
' is quasi-positive. The case of positive

currents (? D 0) is of course the most important.

Lemma 1 There exists a smooth closed .1; 1/-form ˛ representing the same @@-

cohomology class as T and an quasi-psh function ' on X such that T D ˛ C ddc
'.

Proof Select an open covering .Bj/ of X by coordinate balls such that T D ddc
'j

over Bj, and construct a global function ' D
P
?j'j by means of a partition of

unity f?jg subordinate to Bj. Now, we observe that ' ? 'k is smooth on Bk because

all differences 'j ? 'k are smooth in the intersections Bj \ Bk and we can write

' ? 'k D
P
?j.'j ? 'k/. Therefore ˛ WD T ? ddc

' is smooth. ut

Thanks to Lemma 1, the problem of approximating a quasi-positive closed .1; 1/-

current is reduced to approximating a quasi-psh function. In this way, we get

Theorem 8 Let T D ˛ C ddc
' be a quasi-positive closed .1; 1/-current on a

compact Hermitian manifold .X; !/ such that T ? ? for some continuous .1; 1/-

form ? . Then there exists a sequence of quasi-positive currents Tm D ˛ C ddc
'm

whose local potentials have the same singularities as 1=2m times a logarithm of

a sum of squares of holomorphic functions and a decreasing sequence "m > 0

converging to 0, such that

(a) Tm converges weakly to T,

(b) ?.T; x/ ?
n

m
? ?.Tm; x/ ? ?.T; x/ for every x 2 X I

(c) Tm ? ? ? "m!.

We say that our currents Tm are approximations of T with analytic singularities

.possessing logarithmic poles/. Moreover, for any multiplicative subsequence mk,

one can arrange that Tmk
D ˛ C ddc

'mk
where .'mk

/ is a non-increasing sequence

of potentials.

Proof We just briefly sketch the idea – essentially a partition of unity argument –

and refer to [21] for the details. Let us write T D ˛Cddc
' with ˛ smooth, according

to Lemma 1. After replacing T with T ?˛ and ? with ? ?˛, we can assume without

loss of generality that fTg D 0, i.e. that T D ddc
' with a quasi-psh function ' on X

such that ddc
' ? ? . Now, for " > 0 small, we select a finite covering .Bj/1?j?N."/

of X by coordinate balls on which there exists an "-approximation of ? as

X

1?`?n

?j;` i dz
j

`
^ dz

j

`
? ?jBj

?
X

1?`?n

.?j;` C "/ i dz
j

`
^ dz

j

`

in terms of holomorphic coordinates .z
j

`
/1?`?n on Bj (for this we just diagonalize

?.aj/ at the center aj of Bj, and take the radius of Bj small enough). By con-

struction  j;".z/ D '.z/ ?
P

1?`?n ?j;`jz
j

`
j2 is psh on B`, and we can thus obtain
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approximations  j;";m of  j by the Bergman kernel process applied on each ball Bj.

The idea is to define a global approximation of ' by putting

'";m.x/ D
1

m
log

?
X

1?j?N."/

?j;".x/ exp

?

m

?

 j;";m.x/C
X

1?`?n

.?j;` ? "/jz
j

`
j2
???

where .?j;"/1?j?N."/ is a partition of unity subordinate to the Bj’s. If we take

" D "m and 'm D '"m;m where "m decays very slowly, then it is not hard to check

that Tm D ddc
'm satisfies the required estimates; it is essentially enough to observe

that the derivatives of ?j;" are “killed” by the factor 1

m
when m ? 1

"
. ut

We need a variant of Theorem 8 providing more “equisingularity” in the sense

that the multiplier ideal sheaves are preserved. If one adds the requirement to obtain

a non-increasing sequence of approximations of the potential, one can do this only

at the expense of accepting “transcendental” singularities, which can no longer be

guaranteed to be logarithmic poles.

Theorem 9 Let T D ˛ C ddc
' be a closed .1; 1/-current on a compact Hermitian

manifold .X; !/, where ˛ is a smooth closed .1; 1/-form and ' a quasi-psh function.

Let ? be a continuous real .1; 1/-form such that T ? ? . Then one can write ' D

limm!C1 Q'm where

(a) Q'm is smooth in the complement X X Zm of an analytic set Zm ? X I

(b) f Q'mg is a non-increasing sequence, and Zm ? ZmC1 for all m I

(c)
R

X
.e?' ? e? Q'm/dV! is finite for every m and converges to 0 as m ! C1I

(d) .“equisingularity”/I . Q'm/ D I .'/ for all m I

(e) Tm D ˛ C ddc Q'm satisfies Tm ? ? ? "m!, where limm!C1 "m D 0.

Proof (A substantial simplification of the original proof in [31].) As in the previous

proof, we may assume that ˛ D 0 and T D ddc
', and after subtracting a constant

to ' we can also achieve that ' ? ?1 everywhere on X. For every germ f 2 OX;x,

(c) implies
R

U
jf j2.e?' ? e? Q'm/dV! < C1 on some neighborhood U of x, hence

the integrals
R

U
jf j2e?'dV! and

R

U
jf j2e? Q'mdV! are simultaneously convergent or

divergent, and (d) follows trivially. We define

Q'm.x/ D sup
k?m

.1C 2
?k
/'pk

where .pk/ is a multiplicative sequence that grows fast enough, with 'pkC1
? 'pk ? 0

for all k. Clearly Q'm is a non-increasing sequence, and

lim
m!C1

Q'm.x/ D lim
k!C1

'pk.x/ D '.x/
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at every point x 2 X. If Zm is the set of poles of 'pm , it is easy to see that

Q'm.x/ D lim
`!C1

sup
k2Œm;`?

.1C 2
?k
/'pk

converges uniformly on every compact subset of X X Zm, since any new term

.1C 2
?`
/'p` may contribute to the sup only in case

'p` ?
1C 2

?pm

1C 2?p`
'pm .? 2'pm/;

and the difference of that term with respect to the previous term .1C2?.`?1/
/'p`?1 ?

.1 C 2
?.`?1/

/'p` is less than 2?`j'p` j ? 2
1?`j'pm j. Therefore Q'm is continuous

on X X Zm, and getting it to be smooth is only a matter of applying Richberg’s

approximation technique ([24, 56]). The only serious thing to prove is property (c).

To achieve this, we observe that f' < Q'mg is contained in the union
S

k?mf' <

.1C 2
?k
/'pkg, therefore

Z

X

?
e?' ? e? Q'm

?
dV! ?

C1X

kDm

Z

X

1'<.1C2?k/'pk
e?'dV! (9)

and
Z

X

1'<.1C2?k/'pk
e?'dV! D

Z

X

1'<.1C2?k/'pk
exp

?
2
k
' ? .2k C 1/'

?
dV!

?

Z

X

1'<.1C2?k/'pk
exp

?
.2

k C 1/.'pk ? '/
?
dV!

?

Z

X

1'<.1C2?k/'pk
exp

?
2pk.'pk ? '/

?
dV! (10)

if we take pk > 2
k?1 (notice that 'pk ? ' ? 0). Now, by Lemma 2 below, our

integral (10) is finite. By Lebesgue’s monotone convergence theorem, we have for k

fixed

lim
p!C1

Z

X

1'<.1C2?k/'p
e?'dV! D 0

as a decreasing limit, and we can take pk so large that
R

'<.1C2?k/'pk
e?'dV! ? 2

?k.

This ensures that property (c) holds true by (9). ut

Lemma 2 On a compact complex manifold, for any quasi-psh potential ', the

Bergman kernel procedure leads to quasi-psh potentials 'm with analytic singu-

larities such that

Z

X

e2m.'m?'/dV! < C1:
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Proof By definition of 'm in Theorem 7, exp.2m.'m// is (up to the irrelevant

partition of unity procedure) equal to the Bergman kernel
P

`2N jgm;`j
2. By local

uniform convergence and the Noetherian property, it has the same local vanishing

behavior as a finite sum
P

`?N.m/ jgm;`j
2 with N.m/ sufficiently large. Since all terms

gm;` have L2 norm equal to 1 with respect to the weight e?2m' , our contention

follows. ut

Remark 2 A very slight variation of the proof would yield the improved condition

(c’) 8? 2 RC;

Z

X

.e??' ? e?? Q'm /dV! ? 2
?m for m ? m0.?/,

and thus an equality I .? Q'm/ D I .?'/ for m ? m0.?/. We just need to replace

estimate (9) by

Z

X

?
e?m' ? e?m Q'm

?
dV! ?

C1X

kDm

Z

X

1'<.1C2?k/'pk
e?k'dV!

and take pk so large that 2pk ? k.2k C 1/ and
R

'<.1C2?k/'pk
e?k'dV! ? 2

?k?1. ut

We also quote the following very simple consequence of Lemma 2, which will

be needed a bit later. Since 'm is less singular than ', we have of course an inclusion

I .?'/ ? I .?'m/ for all ? 2 RC. Conversely :

Corollary 4 For every pair of positive real numbers ?0
> ? > 0, we have an

inclusion of multiplier ideals

I .?
0
'm/ ? I .?'/ as soon as m ?

l
1

2

??
0

?0 ? ?

m

:

Proof If f 2 OX;x and U is a sufficiently small neighborhood of x, the Hölder ine-

quality for conjugate exponents p; q > 1 yields

Z

U

jf j2e??'dV! ?

? Z

U

jf j2e??0
'mdV!

?1=p?
Z

U

jf j2e
q

p
?

0
'm?q?'

dV!

?1=q
:

Therefore, if f 2 I .?
0
'm/x, we infer that f 2 I .?'/x as soon as the integral

R

X
e

q

p
?

0
'm?q?'

dV! is convergent. If we select p 2 ?1; ?
0
=??, this is implied by the

condition
R

X
eq?.'m?'/dV! < C1. If we further take q? D 2m0 to be an even

integer so large that

p D
q

q ? 1
D

2m0=?

2m0=? ? 1
?
?

0

?
; e.g. m0 D m0.?; ?

0
/ D

l
1

2

??
0

?0 ? ?

m

;

then we indeed have
R

X
e2m0.'m?'/dV! ?

R

X
e2m.'m?'/dV! < C1 for m ?

m0.?; ?
0
/, thanks to Lemma 2. ut
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Remark 3 Without the monotonicity requirement (b) for the sequence . Q'm/ in

Theorem 9, the strong openness conjecture proved in the next section would directly

provide an equisingular sequence, simply by taking

b'm D

?

1C
1

m

?

'm

where 'm is the Bergman approximation sequence. In fact allb'm have analytic have

analytic singularities and Corollary 4 applied with ? D 1 and ?0 D 1C 1=m shows

that I .b'm/ ? I .'/. Since b'm ? .1 C 1

m
/', the equality I .b'm/ D I .'/ holds

for m large by strong openness, and properties (a), (c), (d), (e) can be seen to hold.

However, the sequence .b'm/ is not monotone.

3 Semi-continuity of psh Singularities and Proof

of the Strong Openness Conjecture

In this section, we present a proof of the strong openness conjecture for multiplier

ideal sheaves. Let ˝ be a domain in Cn, f 2 O.˝/ a holomorphic function, and

' 2 PSH.˝/ a psh function on ˝ . For every holomorphic function f on ˝ , we

introduce the weighted log canonical threshold of ' with weight f at z0

cf ;z0 .'/ D sup
˚
c > 0 W jf j2e?2c ' is L1 on a neighborhood of z0

?
2 ?0;C1?:

The special case f D 1 yields the usual log canonical threshold cz0.'/ that was

defined in the introduction. The openness conjectures can be stated as follows.

Conjectures

(a) (openness conjecture, [27])

The set fc > 0 W e?2c ' is L1 on a neighborhood of z0
?
equals the open

interval?0; cz0.'/Œ:

(b) (strong openness conjecture, [23])

The set fc > 0 W jf j2e?2c' is L1 on a neighborhood of z0
?
equals the open

interval?0; cf ;z0.'/Œ:

The openness conjecture (a) was first established by Favre and Jonsson [34] in

dimension 2 (see also [42, 43]), and 8 years later by Berndtsson [3] in arbitrary

dimension. The strong form (b), which is equivalent to Corollary 1, was settled

very recently by Guan and Zhou [36]. Their proof uses a sophisticated version of

the L2-extension theorem of Ohsawa and Takegoshi in combination with the curve

selection lemma. They have also obtained related semi-continuity statements in [37]

and “effective versions” in [38]. A simplified proof along the same lines has been

given by Lempert in [47].
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Here, we follow Pham Hoang Hiep’s approach [54], which is more straightfor-

ward and avoids the curve selection lemma. It is based on the original version [51]

of the L2-extension theorem, applied to members of a standard basis for a multiplier

ideal sheaf of holomorphic functions associated with a plurisubharmonic function

'. In this way, by means of a simple induction on dimension, one can obtain the

strong openness conjecture, and give simultaneously an effective version of the

semicontinuity theorem for weighted log canonical thresholds. The main results are

contained in the following theorem.

Theorem 10 ([54]) Let f be a holomorphic function on an open set ˝ in Cn and

let ' be a psh function on ˝ .

(i) (“Semicontinuity theorem”) Assume that
R

˝0 e
?2c 'dV2n < C1 on some open

subset ˝ 0 ? ˝ and let z0 2 ˝ 0. Then there exists ı D ı.c; ';˝ 0
; z0/ > 0 such

that for every  2 PSH.˝ 0
/, k ? 'kL1.˝0/ ? ı implies cz0. / > c. Moreover,

as  converges to ' in L1.˝ 0
/, the function e?2c converges to e?2c' in L1 on

every relatively compact open subset˝ 00 b ˝
0.

(ii) (“Strong effective openness”) Assume that
R

˝0 jf j
2e?2c'dV2n < C1 on some

open subset ˝ 0 ? ˝ . When  2 PSH.˝ 0
/ converges to ' in L1.˝ 0

/ with

 ? ', the function jf j2e?2c converges to jf j2e?2c ' in L1 norm on every

relatively compact open subset ˝ 00 b ˝
0.

Corollary 5 (“Strong openness”) For any plurisubharmonic function ' on a

neighborhood of a point z0 2 Cn, the set fc > 0 W jf j2e?2c' is L1 on a neighborhood

of z0g is an open interval .0; cf ;z0.'//.

Corollary 6 (“Convergence from below”) If  ? ' converges to ' in a neigh-

borhood of z0 2 Cn, then cf ;z0. / ? cf ;z0.'/ converges to cf ;z0.'/.

In fact, after subtracting a large constant to ', we can assume ' ? 0 in both

corollaries. Then Corollary 5 is a consequence of assertion (ii) of the main theorem

when we take ˝ 0 small enough and  D .1C ı/' with ı & 0. In Corollary 6, we

have by definition cf ;z0 . / ? cf ;z0 .'/ for  ? ', but again (ii) shows that cf ;z0 . /

becomes ? c for any given value c 2 .0; cf ;z0.'//, whenever k ? 'kL1.˝0/ is

sufficiently small.

Remark 4 One cannot remove condition  ? ' in assertion (ii) of the main

theorem. Indeed, choose f .z/ D z1, '.z/ D log jz1j and 'j.z/ D log jz1 C
z2
j
j,

for j ? 1. One has 'j ! ' in L1loc.C
n
/, however cf ;0.'j/ D 1 < cf ;0.'/ D 2

for all j ? 1. On the other hand, condition (i) of Theorem 10 does not require any

given inequality between ' and  . Modulo Berndtsson’s solution of the openness

conjecture, (i) follows from the effective semicontinuity result of [27], but (like

Guan and Zhou) Hiep’s technique will reprove both by a direct and easier method.

A few preliminaries According to standard techniques in the theory of Gröbner

bases, one equips the ring OCn;0 of germs of holomorphic functions at 0 with

the homogeneous lexicographic order of monomials z˛ D z
˛1

1
: : : z˛nn , that is,

z
˛1

1
: : : z˛nn < z

ˇ1

1
: : : z

ˇn
n if and only if j˛j D ˛1 C : : : C ˛n < jˇj D ˇ1 C : : : C ˇn



66 J.-P. Demailly

or j˛j D jˇj and ˛i < ˇi for the first index i with ˛i 6D ˇi. For each f .z/ D

a˛1z
˛
1

C a˛2z
˛
2

C : : : with a˛j 6D 0, j ? 1 and z˛
1

< z˛
2

< : : : , we define

the initial coefficient, initial monomial and initial term of f to be respectively

IC.f / D a˛1 , IM.f / D z˛
1

, IT.f / D a˛1z
˛
1

, and the support of f to be SUPP.f / D

fz˛
1

; z˛
2

; : : :g. For any ideal I of OCn ;0, we define IM.I / to be the ideal generated

by fIM.f /gff2I g. First, we recall the division theorem of Hironaka and the concept

of standard basis of an ideal.

Theorem 11 (Division theorem of Hironaka, [1, 5, 6, 32, 35]) Let f ; g1; : : : ; gk 2

OCn;0. Then there exist h1; : : : ; hk; s 2 OCn ;0 such that

f D h1g1 C : : :C hkgk C s;

and SUPP.s/\hIM.g1/; : : : ; IM.gk/i D ;, where hIM.g1/; : : : ; IM.gk/i denotes the

ideal generated by the family .IM.g1/; : : : ; IM.gk//.

Standard basis of an ideal Let I be an ideal of OCn;0 and let g1; : : : ; gk 2 I be

such that IM.I / D hIM.g1/; : : : ; IM.gk/i. Take f 2 I . By the division theorem of

Hironaka, there exist h1; : : : ; hk; s 2 OCn ;0 such that

f D h1g1 C : : :C hkgk C s;

and SUPP.s/\IM.I / D ;. On the other hand, since s D f?h1g1C: : :Chkgk 2 I ,

we have IM.s/ 2 IM.I /. Therefore s D 0 and the gj’s are generators of I . By

permuting the gj’s and performing ad hoc subtractions, we can always arrange that

IM.g1/ < IM.g2/ < : : : < IM.gk/, and we then say that .g1; : : : ; gk/ is a standard

basis of I .

Theorem 10 will be proved by induction on dimension n. All statements are trivial

for n D 0. Assume that the theorem holds for dimension n ? 1. Thanks to the L2-

extension theorem of Ohsawa and Takegoshi ([51]), one obtains the following key

lemma.

Lemma 3 Let ' ? 0 be a plurisubharmonic function and f be a holomorphic

function on the polydisc ?n
R of center 0 and .poly/radius R > 0 in Cn, such that

for some c > 0

Z

?
n
R

jf .z/j2e?2c '.z/dV2n.z/ < C1:

Let  j ? 0, j ? 1, be a nequence of plurisubharmonic functions on?n
R with  j ! '

in L1loc.?
n
R/, and assume that either f D 1 identically or  j ? ' for all j ? 1. Then

for every r < R and " 2 .0;
1

2
r?, there exist a value wn 2 ?" X f0g, an index j0,

a constant Qc > c and a sequence of holomorphic functions Fj on ?
n
r , j ? j0, such
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that IM.Fj/ ? IM.f /, Fj.z/ D f .z/ C .zn ? wn/
P

aj;˛z
˛ with jwnjjaj;˛j ? r?j˛j

"

for all ˛ 2 Nn, and

Z

?n
r

jFj.z/j
2e?2Qc j.z/dV2n.z/ ?

"
2

jwnj
2
< C1; 8j ? j0:

Moreover, one can choose wn in a set of positive measure in the punctured disc

?" X f0g .the index j0 D j0.wn/ and the constant Qc D Qc.wn/ may then possibly

depend on wn/.

Proof By Fubini’s theorem we have

Z

?R

? Z

?
n?1
R

jf .z0
; zn/j

2e?2c '.z0
;zn/dV2n?2.z

0
/

?

dV2.zn/ < C1:

Since the integral extended to a small disc zn 2 ?? tends to 0 as ? ! 0, it will

become smaller than any preassigned value, say "2
0
> 0, for ? ? ?0 small enough.

Therefore we can choose a set of positive measure of values wn 2 ?? X f0g such

that

Z

?
n?1
R

jf .z0
;wn/j

2e?2c'.z0
;wn/dV2n?2.z

0
/ ?

"
2

0

??2
<

"
2

0

jwnj
2
:

Since the main theorem is assumed to hold for n ? 1, for any ? < R there exist

j0 D j0.wn/ and Qc D Qc.wn/ > c such that

Z

?n?1
?

jf .z0
;wn/j

2e?2Qc j.z
0
;wn/dV2n?2.z

0
/ <

"
2

0

jwnj
2
; 8j ? j0:

(For this, one applies part (i) in case f D 1, and part (ii) in case  j ? ', using

the fact that  D Qc
c
 j converges to ' as Qc ! c and j ! C1). Now, by the L2-

extension theorem of Ohsawa and Takegoshi (see [51]), there exists a holomorphic

function Fj on ?n?1
?

??R such that Fj.z
0
;wn/ D f .z0

;wn/ for all z0 2 ?n?1
?

, and

Z

?n?1
?

??R

jFj.z/j
2e?2Qc j.z/dV2n.z/ ? CnR

2

Z

?n?1
?

jf .z0
;wn/j

2e?2Qc j.z
0
;wn/dV2n?2.z

0
/

?
CnR

2
"
2

0

jwnj
2
;

where Cn is a constant which only depends on n (the constant is universal for

R D 1 and is rescaled by R2 otherwise). By the mean value inequality for the
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plurisubharmonic function jFjj
2, we get

jFj.z/j
2
?

1

?n.? ? jz1j/
2 : : : .? ? jznj/

2

Z

???jz1j.z1/?:::????jznj.zn/

jFjj
2dV2n

?
CnR

2
"
2

0

?n.? ? jz1j/
2 : : : .? ? jznj/

2jwnj
2
;

where ??.z/ is the disc of center z and radius ?. Hence, for any r < R, by taking

? D 1

2
.r C R/ we infer

kFjkL1.?n
r /

?
2
nC

1

2

n R"0

?
n
2 .R ? r/njwnj

: (11)

Since Fj.z
0
;wn/ ? f .z0

;wn/ D 0, 8z0 2 ?
n?1
r , we can write Fj.z/ D f .z/ C .zn ?

wn/gj.z/ for some function gj.z/ D
P

˛2Nn aj;˛z
˛ on ?n?1

r ??R. By (11), we get

kgjk?n
r
D kgjk?n?1

r ?@?r
?

1

r ? jwnj

?

kFjkL1.?n
r /

C kfkL1.?n
r /

?

?
1

r ? jwnj

?
2
nC

1

2

n R"0

?
n
2 .R ? r/njwnj

C kfkL1 .?n
r /

?

:

Thanks to the Cauchy integral formula, we find

jaj;˛j ?
kgjk?n

r

rj˛j
?

1

.r ? jwnj/r
j˛j

?
2
nC

1

2

n R"0

?
n
2 .R ? r/njwnj

C kfkL1.?n
r /

?

:

We take in any case ? ? "0 ? " ? 1

2
r. As jwnj < ? ? 1

2
r, this implies

jwnjjaj;˛j r
j˛j ?

2

r

?
2
nC

1

2

n R"0

?
n
2 .R ? r/n

C kfkL1 .?n
r /
jwnj

?

? C0
"0;

for some constant C0 depending only on n; r; R and f . This yields the estimates of

Lemma 3 for "0 WD C00
" with C00 sufficiently small. Finally, we prove that IM.Fj/ ?

IM.f /. Indeed, if IM.gj/ ? IM.f /, since jwnkaj;˛ j ? r?j˛j
", we can choose " small

enough such that IM.Fj/ D IM.f / and

ˇ
ˇ
ˇ
IC.Fj/

IC.f /

ˇ
ˇ
ˇ 2 .

1

2
; 2/. Otherwise, if IM.gj/ <

IM.f /, we have IM.Fj/ D IM.gj/ < IM.f /. ut

Proof of Theorem 10 By well-known properties of (pluri)potential theory, the L1

convergence of  to ' implies that  ! ' almost everywhere, and the assumptions

guarantee that ' and  are uniformly bounded on every relatively compact subset

of˝ 0. In particular, after shrinking˝ 0 and subtracting constants, we can assume that
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' ? 0 on ˝ . Also, since the L1 topology is metrizable, it is enough to work with

a sequence . j/j?1 converging to ' in L1.˝ 0
/. Again, we can assume that  j ? 0

and that  j ! ' almost everywhere on ˝ 0. By a trivial compactness argument, it is

enough to show (i) and (ii) for some neighborhood˝ 00 of a given point z0 2 ˝ 0. We

assume here z0 D 0 for simplicity of notation, and fix a polydisc?n
R of center 0 with

R so small that?n
R ? ˝

0. Then  j.?; zn/ ! '.?; zn/ in the topology of L1.?n?1
R / for

almost every zn 2 ?R.

Proof of statement (i) in Theorem 10 We have here
R

?
n
R
e?2c 'dV2n < C1 for

R > 0 small enough. By Lemma 3 with f D 1, for every r < R and " > 0, there exist

wn 2 ?"Xf0g, an index j0, a number Qc > c and a sequence of holomorphic functions

Fj on ?n
r , j ? j0, such that Fj.z/ D 1C .zn ? wn/

P
aj;˛z

˛ , jwnjjaj;˛j r
?j˛j ? " and

Z

?n
r

jFj.z/j
2e?2Qc j.z/dV2n.z/ ?

"
2

jwnj
2
; 8j ? j0:

For " ? 1

2
, we conclude that jFj.0/j D j1 ? wnaj;0j ? 1

2
hence c0. j/ ? Qc > c

and the first part of (i) is proved. In fact, after fixing such " and wn, we even obtain

the existence of a neighborhood˝ 00 of 0 on which jFjj ?
1

4
, and thus get a uniform

bound
R

˝00 e
?2Qc j.z/dV2n.z/ ? M < C1. The second assertion of (i) then follows

from the estimate

Z

˝00

ˇ
ˇe?2c j.z/ ? e?2c '.z/

ˇ
ˇdV2n.z/ ?

Z

˝00\fj jj?Ag

ˇ
ˇe?2c j.z/ ? e?2c '.z/

ˇ
ˇdV2n.z/

C

Z

˝00\f j<?Ag

e?2c '.z/dV2n.z/

C e?2.Qc?c/A

Z

˝00\f j<?Ag

e?2Qc j.z/dV2n.z/:

In fact the last two terms converge to 0 as A ! C1, and, for A fixed, the first

integral in the right hand side converges to 0 by Lebesgue’s bounded convergence

theorem, since  j ! ' almost everywhere on ˝ 00.

Proof of statement (ii) in Theorem 10 Take f1; : : : ; fk 2 OCn;0 such that .f1; : : : ; fk/

is a standard basis of I .c '/0 with IM.f1/ < : : : < IM.fk/, and ?n
R a polydisc so

small that

Z

?
n
R

jfl.z/j
2e?2c '.z/dV2n.z/ < C1; l D 1; : : : ; k:

Since the germ of f at 0 belongs to the ideal .f1; : : : ; fk/, we can essentially argue

with the fl’s instead of f . By Lemma 3, for every r < R and "l > 0, there exist

wn;l 2 ?"l
Xf0g, an index j0 D j0.wn;l/, a number Qc D Qc.wn;l/ > c and a sequence of

holomorphic functions Fj;l on?n
r , j ? j0, such that Fj;l.z/ D 1C.zn?wn;l/

P
aj;l;˛z

˛ ,
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jwn;ljjaj;l;˛j r
?j˛j ? "l and

Z

?n
r

jFj;l.z/j
2e?2Qc j.z/dV2n.z/ ?

"
2

l

jwn;lj
2
; 8l D 1; : : : ; k; 8j ? j0: (12)

Since  j ? ' and Qc > c, we get Fj;l 2 I .Qc j/0 ? I .c '/0. The next step of the

proof consists in modifying .Fj;l/1?l?k in order to obtain a standard basis of I .c '/0.

For this, we proceed by selecting successively "1 ? "2 ? : : : ? "k (and suitable

wn;l 2 ?"l
X f0g). We have IM.Fj;1/; : : : ; IM.Fj;k/ 2 IM.I .c '/0, in particular

IM.Fj;1/ is divisible by IM.fl/ for some l D 1; : : : ; k. Since IM.Fj;1/ ? IM.f1/ <

: : : < IM.fk/, we must have IM.Fj;1/ D IM.f1/ and thus IM.gj;1/ ? IM.f1/. As

jwn;1jjaj;1;˛ j ? "1, we will have

ˇ
ˇ
ˇ
IC.Fj;1/

IC.f1/

ˇ
ˇ
ˇ 2 .

1

2
; 2/ for "1 small enough. Now,

possibly after changing "2 to a smaller value, we show that there exists a polynomial

Pj;2;1 such that the degree and coefficients of Pj;2;1 are uniformly bounded, with

IM.Fj;2 ? Pj;2;1Fj;1/ D IM.f2/ and
j IC.Fj;2 ? Pj;2;1Fj;1/j

j IC.f2/j
2 . 1

2
; 2/. We consider two

cases:

Case 1: If IM.gj;2/ ? IM.f2/, since jwn;2jjaj;2;˛j ? r?j˛j
"2, we can choose "2 so

small that IM.Fj;2/ D IM.f2/ and
j IC.Fj;2/j

j IC.f2/j
2 . 1

2
; 2/. We then take Pj;2;1 D 0.

Case 2: If IM.gj;2/ < IM.f2/, we have IM.gj;2/ D IM.Fj;2/ 2 IM.I .c '/0/.

Hence IM.gj;2/ is divisible by IM.fl/ for some l D 1; : : : ; k. However, since

IM.gj;2/ < IM.f2/ < : : : < IM.fk/, the only possibility is that IM.gj;2/ be

divisible by IM.f1/. Take b 2 C and ˇ; ? 2 Nn such that IT.gj;2/ WD aj;2;? z
? D

bzˇ IT.Fj;1/. We have zˇ ? z? D IM.gj;2/ < IM.f2/ and

jwn;2jjbj D jwn;2j
j IC.gj;2/j

j IC.Fj;1/j
?
2jwn;2jjaj;2;? j

j IC.f1/j
?
2r?j? j

"2

j IC.f1/j

can be taken arbitrarily small. Set Qgj;2.z/ D gj;2.z/ ? bzˇFj;1.z/ D
P

Qaj;2;˛z
˛ and

eFj;2.z/ D f2.z/C .zn ? wn;2/Qgj;2.z/ D Fj;2.z/ ? b.zn ? wn;2/z
ˇFj;1.z/:

We have IM.Qgj;2/ > IM.gj;2/. Since jwn;2jjbj D O."2/ and jwn;2jjaj;2;˛ j D

O."2/, we get jwn;2jjQaj;2;˛ j D O."2/ as well. Now, we consider two

further cases. If IM.Qgj;2/ ? IM.f2/, we can again change "2 for a smaller

value so that IM.eFj;2/ D IM.f2/ and
j IC.eFj;2/j

j IC.f2/j
2 .

1

2
; 2/. Otherwise,

if IM.Qgj;2/ < IM.f2/, we have IM.Fj;2/ D IM.gj;2/ < IM.eFj;2/ D

IM.Qgj;2/ < IM.f2/. Notice that fz? W z? < IM.f2/g is a finite set. By

using similar arguments a finite number of times, we find "2 so small

that IM.Fj;2 ? Pj;2;1Fj;1/ D IM.f2/ and
j IC.Fj;2 ? Pj;2;1Fj;1/j

j IC.f2/j
2 .

1

2
; 2/ for

some polynomial Pj;2;1. Repeating the same arguments for Fj;3; : : : ;Fj;k, we
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select inductively "l, l D 1; : : : ; k, and construct linear combinations

F0
j;l D Fj;l ?

X

1?m?l?1

Pj;l;mF
0
j;m

with polynomials Pj;l;m, 1 ? m < l ? k, possessing uniformly bounded

coefficients and degrees, such that IM.F0
j;l/ D IM.fl/ and

j IC.F0
j;l/j

j IC.fl/j
2 .

1

2
; 2/

for all l D 1; : : : ; k and j ? j0. This implies that .F0
j;1; : : : ;F

0
j;k/ is also a standard

basis of I .c '/0. By Theorem 1.2.2 in [35], we can find ?, K > 0 so small that

there exist holomorphic functions hj;1; : : : ; hj;k on ?n
?

with ? < r, such that

f D hj;1F
0
j;1 C hj;2F

0
j;2 C : : :C hj;kF

0
j;k on ?n

?

and khj;lkL1.?n
?
/ ? KkfkL1 .?n

r /
, for all l D 1; : : : ; k (? and K only depend on

f1; : : : ; fk). By (12), this implies a uniform bound

Z

?n
?

jf .z/j2e?2Qc j.z/dV2n.z/ ? M < C1

for some Qc > c and all j ? j0. Take ˝ 00 D ?
n
?
. We obtain the L1 convergence

of jf j2e?2c j to jf j2e?2c ' almost exactly as we argued for the second assertion of

part (i), by using the estimate

Z

˝00

jf j2
ˇ
ˇe?2c j.z/ ? e?2c '.z/

ˇ
ˇdV2n.z/

?

Z

˝00\fj jj?Ag

jf j2
ˇ
ˇe?2c j.z/ ? e?2c '.z/

ˇ
ˇdV2n.z/

C

Z

˝00\f j<?Ag

jf j2e?2c '.z/dV2n.z/

C e?2.Qc?c/A

Z

˝00\f j<?Ag

jf j2e?2Qc j.z/dV2n.z/:

4 Hard Lefschetz Theorem for Pseudoeffective Line Bundles

4.1 A Variant of the Bochner Formula

We first recall a variation of the Bochner formula that is required in the proof of the

Hard Lefschetz Theorem with values in a positively curved (and therefore non flat)

line bundle .L; h/. Here the base manifold is a Kähler (non necessarily compact)

manifold .Y; !/. We denote by j j D j j!;h the pointwise Hermitian norm on
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?
p;qT?

Y ˝ L associated with ! and h, and by k k D k k!;h the global L2 norm

kuk2 D

Z

Y

juj2dV! where dV! D
!

n

nŠ

We consider the @ operator acting on .p; q/-forms with values in L, its adjoint @
?

h

with respect to h and the complex Laplace-Beltrami operator?00
h D @@

?

h C @
?

h@. Let

v be a smooth .n? q; 0/-form with compact support in Y. Then u D !
q ^ v satisfies

k@uk2 C k@
?

huk
2 D k@vk2 C

Z

Y

X

I;J

?X

j2J

?j

?

juIJj
2 (13)

where ?1 ? ? ? ? ? ?n are the curvature eigenvalues of ?L;h expressed in an

orthonormal frame .@=@z1; : : : ; @=@zn/ (at some fixed point x0 2 Y), in such a way

that

!x0 D i
X

1?j?n

dzj ^ dzj; .?L;h/x0 D ddc
'x0 D i

X

1?j?n

?jdzj ^ dzj:

Formula (13) follows from the more or less straightforward identity

.@
?

'
@C @ @

?

'
/.v ^ !

q
/ ? .@

?

'
@v/ ^ !

q
D q i @@' ^ !

q?1
^ v;

by taking the inner product with u D !
q ^v and integrating by parts in the left hand

side (we leave the easy details to the reader). Our formula is thus established when

v is smooth and compactly supported. In general, we have:

Proposition 1 Let .Y; !/ be a complete Kähler manifold and .L; h/ a smooth

Hermitian line bundle such that the curvature possesses a uniform lower bound

?L;h ? ?C!. For every measurable .n ? q; 0/-form v with L2 coefficients and

values in L such that u D !
q ^ v has differentials @u, @

?
u also in L2, we have

k@uk2 C k@
?

huk
2 D k@vk2 C

Z

Y

X

I;J

?X

j2J

?j

?

juIJj
2

.here, all differentials are computed in the sense of distributions/.

Proof Since .Y; !/ is assumed to be complete, there exists a sequence of smooth

forms v? with compact support in Y (obtained by truncating v and taking the

convolution with a regularizing kernel) such that v? ! v in L2 and such that

u? D !
q ^ v? satisfies u? ! u, @u? ! @u, @

?
u? ! @

?
u in L2. By the curvature

assumption, the final integral in the right hand side of (13) must be under control (i.e.

the integrand becomes nonnegative if we add a term Ckuk2 on both sides, C ? 0).
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We thus get the equality by passing to the limit and using Lebesgue’s monotone

convergence theorem. ut

4.2 Proof of Theorem 4

Here X denotes a compact Kähler manifold equipped with a Kähler metric !, and

.L; h/ is a pseudoeffective line bundle on X. To fix the ideas, we first indicate

the proof in the much simpler case when .L; h/ has a smooth metric h (so that

I .h/ D OX), and then treat the general case.

4.2.1 Special Case: .L; h/ is Hermitian Semipositive (with a Smooth Metric)

Let fˇg 2 Hq
.X; ˝n

X ˝ L/ be an arbitrary cohomology class. By standard L2 Hodge

theory, fˇg can be represented by a smooth harmonic .0; q/-form ˇ with values

in ˝n
X ˝ L. We can also view ˇ as a .n; q/-form with values in L. The pointwise

Lefschetz isomorphism produces a unique .n ? q; 0/-form ˛ such that ˇ D !
q ^ ˛.

Proposition 1 then yields

k@˛k
2
C

Z

Y

X

I;J

?X

j2J

?j

?

j˛IJ j
2
D k@ˇk

2
C k@

?

hˇk
2
D 0;

and the curvature eigenvalues ?j are nonnegative by our assumption. Hence @˛ D 0

and f˛g 2 H0
.X; ˝

n?q

X ˝ L/ is mapped to fˇg by ˚
q

!;h D !
q ^ ? .

4.2.2 General Case

There are several difficulties. The first difficulty is that the metric h is no longer

smooth and we cannot directly represent cohomology classes by harmonic forms.

We circumvent this problem by smoothing the metric on an (analytic) Zariski open

subset and by avoiding the remaining poles on the complement. However, some

careful estimates have to be made in order to take the error terms into account.

Fix " D "? and let h" D h"? be an approximation of h, such that h" is smooth on

XXZ" (Z" being an analytic subset of X),?L;h" ? ?"!, h" ? h and I .h"/ D I .h/.

This is possible by Theorem 9. Now, we can find a family

!";ı D ! C ı. i @@ " C !/; ı > 0

of complete Kähler metrics on X X Z", where  " is a quasi-psh function on X with

 " D ?1 on Z",  " smooth on X X Z" and i @@ " C ! ? 0 (see e.g. [19],

Théorème 1.5). By construction, !";ı ? ! and limı!0 !";ı D !. We look at the L2
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Dolbeault complex K?
";ı

of .n; ?/-forms on X X Z", where the L2 norms are induced

by !";ı on differential forms and by h" on elements in L. Specifically

K
q

";ı
D

n

uWX X Z"!?
n;qT?

X ˝ LI

Z

XXZ"

.juj2
?n;q!";ı˝h"

C j@uj2
?n;qC1!";ı˝h"

/dV!";ı < 1

o

:

Let K
q

";ı
be the corresponding sheaf of germs of locally L2 sections on X (the local

L2 condition should hold on X, not only on X X Z" !). Then, for all " > 0 and ı ? 0,

.K
q

";ı
; @/ is a resolution of the sheaf ˝n

X ˝ L ˝ I .h"/ D ˝
n
X ˝ L ˝ I .h/. This is

because L2 estimates hold locally on small Stein open sets, and the L2 condition on

X X Z" forces holomorphic sections to extend across Z" ([19], Lemma 6.9).

Let fˇg 2 Hq
.X; ˝n

X˝L˝I .h// be a cohomology class represented by a smooth

form with values in ˝n
X ˝ L ˝ I .h/ (one can use a Čech cocycle and convert it to

an element in the C
1 Dolbeault complex by means of a partition of unity, thanks

to the usual De Rham-Weil isomorphism, see also the final proof in Sect. 6 for more

details). Then

kˇk
2

";ı
? kˇk

2
D

Z

X

jˇj
2

?n;q!˝hdV! < C1:

The reason is that jˇj2
?n;q!˝hdV! decreases as ! increases. This is just an easy

calculation, shown by comparing two metrics !, !0 which are expressed in diagonal

form in suitable coordinates; the norm jˇj2
?n;q!˝h turns out to decrease faster than

the volume dV! increases; see e.g. [19], Lemma 3.2; a special case is q D 0, then

jˇj2
?n;q!˝hdV! D in

2

ˇ ^ ˇ with the identification L ˝ L ' C given by the metric h,

hence the integrand is even independent of ! in that case.

By the proof of the De Rham-Weil isomorphism, the map ˛ 7! f˛g from the

cocycle space Zq
.K

?
";ı
/ equipped with its L2 topology, into Hq

.X; ˝n
X ˝ L ˝ I .h//

equipped with its finite vector space topology, is continuous. Also, Banach’s open

mapping theorem implies that the coboundary space Bq
.K

?
";ı
/ is closed in Zq

.K
?
";ı
/.

This is true for all ı ? 0 (the limit case ı D 0 yields the strongest L2 topology in

bidegree .n; q/). Now, ˇ is a @-closed form in the Hilbert space defined by !";ı on

X X Z", so there is a !";ı-harmonic form u";ı in the same cohomology class as ˇ,

such that

ku";ık";ı ? kˇk";ı : (14)

Let v";ı be the unique .n ? q; 0/-form such that u";ı D v";ı ^ !
q

";ı
(v";ı exists by the

pointwise Lefschetz isomorphism). Then

kv";ık";ı D ku";ık";ı ? kˇk";ı ? kˇk:
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As
P

j2J ?j ? ?q" by the assumption on ?L;h" , the Bochner formula yields

k@v";ık
2

";ı
? q"ku";ık

2

";ı
? q"kˇk2:

These uniform bounds imply that there are subsequences u";ı? and v";ı? with ı? ! 0,

possessing weak-L2 limits u" D lim?!C1 u";ı? and v" D lim?!C1 v";ı? . The

limit v" D lim?!C1 v";ı? is with respect to L2.!/ D L2.!";0/. To check this,

notice that in bidegree .n ? q; 0/, the space L2.!/ has the weakest topology of all

spaces L2.!";ı/; indeed, an easy calculation made in ([19], Lemma 3.2) yields

jf j2
?n?q;0!˝h

dV! ? jf j2
?n?q;0!";ı˝h

dV!";ı if f is of type .n ? q; 0/:

On the other hand, the limit u" D lim?!C1 u";ı? takes place in all spaces L2.!";ı/,

ı > 0, since the topology gets stronger and stronger as ı # 0 [ possibly not in L2.!/,

though, because in bidegree .n; q/ the topology of L2.!/ might be strictly stronger

than that of all spaces L2.!";ı/ ]. The above estimates yield

kv"k
2

";0
D

Z

X

jv"j
2

?n?q;0!˝h"
dV! ? kˇk2;

k@v"k
2

";0
? q"kˇk2

";0
;

u" D !
q ^ v" ? ˇ in Hq

.X; ˝n
X ˝ L ˝ I .h"//:

Again, by arguing in a given Hilbert space L2.h"0/, we find L2 convergent subse-

quences u" ! u, v" ! v as " ! 0, and in this way get @v D 0 and

kvk
2
? kˇk

2
;

u D !
q
^ v ? ˇ in Hq

.X; ˝n
X ˝ L ˝ I .h//:

Theorem 4 is proved. Notice that the equisingularity property I .h"/ D I .h/ is

crucial in the above proof, otherwise we could not infer that u ? ˇ from the

fact that u" ? ˇ. This is true only because all cohomology classes fu"g lie in

the same fixed cohomology group Hq
.X; ˝n

X ˝ L ˝ I .h//, whose topology is

induced by the topology of L2.!/ on @-closed forms (e.g. through the De Rham-Weil

isomorphism). ut

Remark 5 In (14), the existence of a harmonic representative holds true only

for !";ı , ı > 0, because we need to have a complete Kähler metric on X X Z".

The trick of employing !";ı instead of a fixed metric !, however, is not needed

when Z" is (or can be taken to be) empty. This is the case if .L; h/ is such that

I .h/ D OX and L is nef. Indeed, by definition, L is nef iff there exists a sequence

of smooth metrics h? such that i?L;h? ? ?"?!, so we can take the '?’s to be

everywhere smooth in Theorem 9. However, multiplier ideal sheaves are needed in

the surjectivity statement even in case L is nef, as it may happen that I .hmin/ ¤ OX
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even then, and h WD lim h? is anyway always more singular than hmin. Let us recall

a standard example (see [30, 31]). Let B be an elliptic curve and let V be the rank 2

vector bundle over B which is defined as the (unique) non split extension

0 ! OB ! V ! OB ! 0:

In particular, the bundle V is numerically flat, i.e. c1.V/ D 0, c2.V/ D 0. We

consider the ruled surface X D P.V/. On that surface there is a unique section

C D P.OB/ ? X with C2 D 0 and

OX.C/ D OP.V/.1/

is a nef line bundle. One can check that L D OP.V/.3/ leads to a zero Lefschetz map

! ^ ? W H0
.X; ˝1

X ˝ L/ ?! H1
.X;KX ˝ L/ ' C;

so this is a counterexample to Corollary 2 in the nef case. Incidentally, this also

shows (in a somewhat sophisticated way) that OP.V/.1/ is nef but not semipositive,

a fact that was first observed in [30].

5 Numerical Dimension of Currents

A large part of this section borrows ideas from S. Boucksom’s [7, 8] and Junyan

Cao’s [14] PhD theses. We try however to give here a slightly more formal

exposition. The main difference with S. Boucksom’s approach is that we insist on

keeping track of singularities of currents and leaving them unchanged, instead of

trying to minimize them in each cohomology class.

5.1 Monotone Asymptotically Equisingular Approximations

Let X be a compact complex n-dimensional manifold. We consider the closed

convex cone of pseudoeffective classes, namely the set E .X/ of cohomology classes

f˛g 2 H1;1
.X;R/ containing a closed positive .1; 1/-current T D ˛ C ddc

' (in

the non Kähler case one should use Bott-Chern cohomology groups here, but we

will be mostly concerned with the Kähler case in the sequel). We also introduce

the set S .X/ of singularity equivalence classes of closed positive .1; 1/-currents

T D ˛ C ddc
' (i.e., ˛ being fixed, up to equivalence of singularities of the

potentials ', cf. Definition 2). Clearly, there is a fibration

? W S .X/! E .X/; T 7! f˛g 2 E .X/ ? H1;1
.X;R/: (15)
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We will denote by S˛.X/ the fiber ??1
.f˛g/ of S .X/ over a given cohomology

class f˛g 2 E .X/. Observe that the base E .X/ is a closed convex cone in a finite

dimensional vector space, but in general the fiber S˛.X/ must be viewed as a very

complicated infinite dimensional space : if we take e.g. f˛1g 2 H1;1
.Pn
;R/ to be

the unit class c1.O.1//, then any current T D 1

d
ŒH? where Hd is an irreducible

hypersurface of degree d defines a point in S˛1
.Pn
/, and these points are all distinct.

The set S .X/ is nevertheless equipped in a natural way with an addition law

S .X/ ? S .X/ ! S .X/ that maps S˛.X/ C Sˇ.X/ into S˛Cˇ.X/, a scalar

multiplication RC ? S .X/ ! S .X/ that takes ? ? S˛.X/ to the fiber S?˛.X/.

In this way, S .X/ should be viewed as some sort of infinite dimensional convex

cone. The fibers S˛.X/ also possess a partial ordering 4 (cf. Definition 2) such that

8j; Sj 4 Tj )
P

Sj 4
P

Tj, and a fiberwise “min” operation

min W S˛.X/ ? S˛.X/ ?! S˛.X/;

.T1; T2/ D .˛ C ddc
'1; ˛ C ddc

'2/ 7?! T D ˛ C ddc max.'1; '2/; (16)

with respect to which the addition is distributive, i.e.

min.T1 C S; T2 C S/ D min.T1; T2/C S:

Notice that when T1 D 1

d
ŒH1?, T2 D 1

d
ŒH2? are effective Q-divisors, all these

operations C, ? , min.?/ and the ordering 4 coincide with the usual ones known

for divisors. Following Junyan Cao [14] (with slightly more restrictive requirements

that do not produce much change in practice), we introduce

Definition 3 Let T D ˛ C ddc
' be a closed positive .1; 1/-current on X, where

˛ is a smooth closed .1; 1/-form and ' is a quasi-psh function on X. We say that

the sequence of currents Tk D ˛ C ddc
 k , k 2 N, is a “monotone asymptotically

equisingular approximation of T by currents with analytic singularities” if the

sequence of potentials . k/ satisfies the following propertiesW

(a) (monotonicity) The sequence . k/ is non-increasing and converges to ' at every

point of X.

(b) The functions  k have analytic singularities .and  k 4  kC1 by (a)/.

(c) (lower bound of positivity)

˛ C ddc
 k ? ?"k ? ! with lim

k!C1
"k D 0

for any given smooth positive hermitian .1; 1/-form ! on X.

(d) (asymptotic equisingularity) For every pair of positive numbers ?0
> ? > 0,

there exists an integer k0.?; ?
0
/ 2 N such that

I .?
0
 k/ ? I .?'/ for k ? k0.?; ?

0
/:
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Remark 6 Without loss of generality, one can always assume that the quasi-psh

potentials 'k D ck log jgkj
2 C O.1/ have rational coefficients ck 2 QC ; here again,

gk is a tuple of locally defined holomorphic functions. In fact, after subtracting

constants, one can achieve that ' ? 0 and  k ? 0 for all k. If the ck are arbitrary

nonnegative real numbers, one can always replace  k by  0
k D .1 ? ık/ k with a

decreasing sequence ık 2 ?0; 1Œ such that lim ık D 0 and .1? ık/ck 2 QC. Then (a),

(b), (d) are still valid, and (c) holds with "0
k D .1 ? ık/"k C Cık and C a constant

such that ˛ ? ?C!. ut

The fundamental observation is:

Theorem 12 If  k WD 'mk
is the sequence of potentials obtained by the Bergman

kernel approximation of T D ˛ C ddc
' given in the proof of Theorem 8 and .mk/

is a multiplicative sequence, then the  k can be arranged to satisfy the positivity,

monotonicity and asymptotic equisingularity properties of Definition 3. Moreover,

if we start with currents T 4 T 0 in the same cohomology class f˛g, we obtain

corresponding approximations that satisfy  k 4  
0
k.

Proof By Corollary 4, the asymptotic equisingularity property (d) in Definition 3

is satisfied for mk ? d 1
2

??
0

?0??
e. The other properties are already known or obvious,

especially the coefficients ck D 1

mk
are just inverses of integers in that case. ut

The following proposition provides a precise comparison of analytic singularities

of potentials when their multiplier ideal sheaves satisfy inclusion relations.

Proposition 2 Let ',  be quasi-psh functions with analytic singularities, let

c > 0 be the constant such that ' can be expressed as c log
P

jgjj
2 C O.1/ with

holomorphic functions gj, and let ? 2 RC. Denoting tC WD max.t; 0/, we have the

implications

(a) 8f 2 OX;x;

Z

Bx3x

jf j2e??'dV < C1 ) log jf j2 < 1

c

?
?c ? n

?

C
';

(b) I . / ? I .?'/ )

Z

e ??'dV < C1 and  < 1

c

?
?c? n

?

C
' .locally/:

Proof Since everything is local, we may assume that ',  are psh functions on a

small ball B ? Cn, and '.z/ D c log jgj2 D c log
P

1?j?N jgj.z/j
2.

(a) The convergence of the integral on a small ball Bx of center x implies

Z

Bx

jf j2jgj?2?cdV ? Const

Z

Bx

jf j2e??'dV < C1

By the openness of convergence exponents, one gets

Z

Bx

jf j2jgj?2?C"dV < C1
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for " > 0 small enough (this can be seen e.g. by using a log resolution of the

ideal sheaf .f ; gj/). Now, if ?c ? n, Skoda’s division theorem [60] implies that

each f can be written f D
P

hjgj where hj satisfies a similar estimate where the

exponent of jgj?2 is decreased by 1. An iteration of the Skoda division theorem

for the hj yields f 2 .gj/
k where k D .b?cc ? .n ? 1//C ? .?c ? n/C. Hence

log jf j2 ? k log jgj2 C C ?
k

c
' C C0

and (a) is proved.

(b) If .f`/`2N is a Hilbert basis of the space of L2 holomorphic functions f with
R

B
jf j2e? dV < C1, the proof of Theorem 7 yields  ? C C log

P
jf`j

2

(and locally the singularity is achieved by a finite sum of f`’s by the Noetherian

property). After possibly shrinking B, the relations f` 2 I . / ? I .?'/ imply

Z

B

jf`j
2e??'dV < C1;

hence
R
e ??'dV < C1 locally by taking the sum over `. The inequality

proved in (a) for each f D f` also yields

 ? log
X

jf`j
2 C C ?

1

c

?
?c ? n

?

C
' C C0

;

and our singularity comparison relation follows.

ut

Corollary 7 If T D ˛ C ddc
' is a closed positive .1; 1/-current and . k/, . 

0
k/

are two monotone asymptotically equisingular approximations of ' with analytic

singularities, then for every k and every " > 0, there exists ` such that .1 ? "/ k 4

 
0
`
.and vice versa by exchanging the roles of . k/ and . 

0
k//.

Proof Let c > 0 be the constant occurring in the logarithmic poles of  k (k being

fixed). By condition (d) in Definition 3, for ?0
> ? ? 1 we have I .?

0
 

0
`
/ ?

I .?'/ ? I .? k/ for ` ? `0.?; ?
0
/ large enough. Proposition 2 (b) implies the

singularity estimate  0
`

< 1

c?0 .c? ? n/C k, and the final constant in front of  k can

be taken arbitrary close to 1. ut

Our next observation is that the min.?/ procedure defined above for currents is

well behaved in terms of asymptotic equisingular approximations.

Proposition 3 Let T D ˛ C ddc
' and T 0 D ˛ C ddc

'
0 be closed positive

.1; 1/-currents in the same cohomology class f˛g. Let . k/ and . 
0
k/ be respective

monotone asymptotically equisingular approximations with analytic singularities

and rational coefficients. Then max. k;  
0
k/ provides a monotone asymptotically

equisingular approximation of min.T; T 0
/ D ˛ C ddc max.'; ' 0

/ with analytic

singularities and rational coefficients.



80 J.-P. Demailly

Proof If  k D ck log jgkj
2 C O.1/ and  0

k D c0
k log jg0

kj
2 C O.1/, we can write

ck D pk=qk, c
0
k D p0

k=q
0
k and

max. k;  
0
k/ D

1

qkq
0
k

log
?
jgkj

2pk C jg0
kj
2p0

k

?
C O.1/;

hence max. k;  
0
k/ also has analytic singularities with rational coefficients (this

would not be true with our definitions when the ratio c0
k=ck is irrational, but of course

we could just extend a little bit the definition of what we call analytic singularities,

e.g. by allowing arbitrary positive real exponents, in order to avoid this extremely

minor annoyance). It is well known that

˛ C ddc
 k ? ?"k!; ˛ C ddc

 
0
k ? ?"0

k!

) ˛ C ddc max. k;  
0
k/ ? ? max."k; "

0
k/!:

Finally, if  B;k .resp.  0
B;k and Q B;k// comes from the Bergman approximation of '

.resp. of ' 0 and Q' WD max.'; ' 0
//, we have

Q' ? ' ) Q B;k ?  B;k; Q' ? '
0 ) Q B;k ?  

0
B;k

hence Q B;k ? max. B;k;  
0
B;k/ and so Q B;k 4 max. B;k;  

0
B;k/. However, for every

" > 0, one has .1?"/ Bk
4  ` and .1?"/ 0

Bk
4  

0
`

for ` ? `0.k; "/ large, therefore

.1 ? "/ Q B;k 4 max. `;  
0
`
/. This shows that max. `;  

0
`
/ has enough singularities

(the “opposite” inequality max. `;  
0
`
/ ? Q' D max.'; ' 0

/, i.e. max. `;  
0
`
/ 4 Q',

holds trivially). ut

Following Junyan Cao [15], we now investigate the additivity properties of the

Bergman approximation procedure.

Theorem 13 Let T D ˛ C ddc
' and T 0 D ˇ C ddc

'
0 be closed .1; 1/-currents

in cohomology classes f˛g, fˇg 2 E .X/. Then for every multiplicative sequence

.mk/, the sum 'mk
C '

0
mk

of the Bergman approximations of ', ' 0 gives a monotone

asymptotically equisingular approximation of ' C '
0 and T C T 0.

Proof Let Q'm be the Bergman kernel approximations of Q' D ' C '
0. By the

subadditivity property of ideal sheaves I .m' C m' 0
/ ? I .m'/I .m' 0

/ ([18,

Th. 2.6]), hence we have 'm C '
0
m 4 Q'm. By Definition 3 (d), Theorem 12 and

Corollary 7, to prove Theorem 13, it is sufficient to prove that for every m 2 N

fixed, there exists a positive sequence lim
p!C1

"p D 0 such that

.1 ? "p/ Q'm 4 'p C '
0
p for every p ? 1: (17)
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For every m 2 N fixed, there exists a bimeromorphic map ? W eX ! X, such that

Q'm ı ? D
X

i

ci ln jsij C C1 for some ci > 0; (18)

and the effective divisor
P

i Div.si/ is normal crossing. By the construction of Q'm,

we have Q'm 4 ' C '
0. Therefore

Q'm ı ? 4 .' C '
0
/ ı ?: (19)

By Siu’s decomposition formula for closed positive currents applied to ddc
.' ı ?/,

ddc
.'

0ı?/ respectively, the divisorial parts add up to produce a divisor that is at least

equal to the divisorial part in ddc
. Q'm ı ?/, thus (19) and (18) imply the existence of

numbers ai; bi ? 0 satisfying

(i) ai C bi D ci for every i,

(ii)
X

i

ai ln jsij 4 ' ı ? and
X

i

bi ln jsij 4 '
0 ı ? .

Let p 2 N be an integer, J be the Jacobian of ? , f 2 I .p'/x and g 2 I .p' 0
/x for

some x 2 X. The inequalities in (ii) and a change of variables w D ?.z/ in the L2

integrals yield

Z

??1.Ux/

jf ı ?j2jJj2
Q

i

jsij
2pai

< C1 and

Z

??1.Ux/

jg ı ?j2jJj2
Q

i

jsij
2pbi

< C1 (20)

for some small open neighborhood Ux of x. Since
P

i

Div.si/ is normal cross-

ing, (20) implies that

X

i

.pai?1/ ln jsij 4 ln.jf ı?j/C ln jJj and
X

i

.pbi?1/ ln jsij 4 ln.jgı?j/C ln jJj:

Combining this with (i), we get

X

i

.pci ? 2/ ln jsij 4 ln.j.f ? g/ ı ?j/C 2 ln jJj: (21)

Note that J is independent of p, and ci > 0. (21) implies thus that, when p ! C1,

we can find a sequence "p ! 0
C, such that

X

i

pci.1 ? "p/ ln jsij 4 ln j.f ? g/ ı ?j: (22)
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Since f (respectively g) is an arbitrary element in I .p'/ (respectively I .p' 0
/), by

the construction of 'p and ' 0
p, (22) implies that

X

i

ci.1 ? "p/ ln jsij 4 .'p C '
0
p/ ı ?:

Combining this with the fact that .1 ? "p/ Q'm ı ? ?
P

i

ci.1 ? "p/ ln jsij, we get

.1 ? "p/ Q'm ı ? 4 .'p C '
0
p/ ı ?:

Therefore .1 ? "p/ Q'm 4 'p C '
0
p and (17) is proved. ut

This motivates the following formal definition.

Definition 4 For each class f˛g 2 E .X/, we define bS ˛.X/ as a set of equivalence

classes of sequences of quasi-positive currents Tk D ˛ C ddc
 k such that

(a) Tk D ˛ C ddc
 k ? ?"k ? ! with limk!C1 "k D 0,

(b) the functions  k have analytic singularities and  k 4  kC1 for all k.

We say that .Tk/ is weakly less singular than .T 0
k/ in bS ˛.X/, and write .Tk/ 4W .T 0

k/,

if for every " > 0 and k, there exists ` such that .1 ? "/Tk 4 T 0
`
. Finally, we write

.Tk/ ?W .T 0
k/ when we have .Tk/ 4W .T 0

k/ and .T 0
k/ 4W .Tk/, and define bS ˛.X/ to

be the quotient space by this equivalence relation.

The set

bS .X/ D
[

f˛g2E .X/

bS ˛.X/ (23)

is by construction a fiber space O? W bS .X/ ! E .X/, and, by fixing a multiplicative

sequence such as mk D 2
k, we find a natural “Bergman approximation functional”

B W S .X/! bS .X/; T D ˛ C ddc
' 7?! .TB;k/; Tk D ˛ C ddc

 B;k (24)

where  B;k WD 'mk
is the corresponding subsequence of the sequence of Bergman

approximations .'m/.

The set bS .X/ is equipped with a natural addition .Tk/ C .T 0
k/ D .Tk C T 0

k/,

with a scalar multiplication ? ? .Tk/ D .?Tk/ for ? 2 RC, as well as with the

min.?/ operation min..Tk/; .T
0
k// D .min.Tk; T

0
k// obtained by taking max. k;  

0
k/

of the corresponding potentials. By Proposition 3, B is a morphism for the min.?/

operation, and by Theorem 13, B is also a morphism for addition. Accordingly, it is

natural to define a weak equivalence of singularities for closed positive currents by

T 4W T 0 ”def .TB;k/ 4W .T 0
B;k/; (25)

T ?W T 0 ” T 4W T 0 and T 0 4W T: (26)
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Related ideas are discussed in [4] (especially § 5), using the theory of valuations.

One can summarize the above results in the following statement.

Theorem 14 The Bergman approximation functional

B W S .X/! bS .X/; T D ˛ C ddc
' 7?! .TB;k/

is a morphism for addition and for the min.?/ operation on currents. Moreover

B induces an injection S .X/=?W ! bS .X/.

Remark 7 It is easy to see that the induced map S .X/=?W ! bS .X/ is an

isomorphism when dimX D 1. However, this map is not always surjective when

dimX ? 2. In fact, [30, Example 1.7] exhibits a ruled surface over an elliptic curve

? and a nef line bundle L over X, such that ˛ D c1.L/ contains a unique closed

positive current T D ŒC?, for some curve C ? X that is a section of X ! ? . Then the

Bergman approximation is (up to equivalence of singularities) the constant sequence

TB;k D T, while bS ˛.X/ also contains a sequence of smooth currents Tk ? ?"k!.

This implies that S .X/ ! bS .X/ is not surjective in this situation. The following

proposition shows however that the “formal elements” .Tk/ from bS .X/ do not carry

larger singularities than the closed positive current classes in S .X/ (the latter being

constrained by the singularities of the “limiting currents” T representing the class).

Proposition 4 Let Tk D ˛ C ddc
 k be a sequence of closed .1; 1/-currents

representing an element in bS ˛.X/. Then there exists a closed positive current T 2 ˛

such that .Tk/ 4W .TB;k/.

Proof We have Tk ? ?"k! and  k 4  kC1 for some decreasing sequence "k # 0.

We replace  k by setting

Q k.x/ D sup
˚
?.x/ I sup

X

? ? 0; ˛ C ddc
? ? ?"k!; and 9C > 0; ? ?  k C C

?
:

Then . Q k/ is a decreasing sequence for the usual order relation ? and Q k ?  k

(the argument to prove the equivalence of singularities is similar to the one already

used in the proof of Theorem 13, clearly Q k ?  k ? Mk where Mk D supX  k ,

and the converse inequality Q k ?  k C Ck is seen by using a blow-up to make the

singularities of  k divisorial). We take

' D lim
k!C1

Q k and T D ˛ C ddc
':

Since ˛ C ddc Q k ? ?"k!, we get in the limit T D ˛ C ddc
' ? 0. Let .'m/ be the

Bergman approximation sequence of '. Since ' ? Q ` ?  ` CC`, Proposition 2 (a)

applied with ? D 2m shows that 'm < 1

2mc`
.2mc` ? n/C ` where c` > 0 is the

coefficient of the log singularity of  `. Therefore, if we take TB;k D ˛C ddc
'mk

, we

get in the limit .TB;k/ <W .T`/. ut
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Remark 8 When X is projective algebraic and f˛g belongs to the Neron-Severi

space

NSR.X/ D .H1;1
.X;C/\ H2

.X;Z/=torsion/˝Z R;

the fiber bS ˛.X/ is essentially an algebraic object. In fact, we could define bS ˛.X/ as

the set of suitable equivalence classes of “formal limits” limc1.D/!f˛g limk!C1
1

k
ak

associated with sequences of graded ideals ak ? H0
.X;OX.kD/

subadditive property akC` ? aka`, where D are big Q-divisors whose first Chern

classes c1.D/ approximate f˛g 2 NSR.X/. Many related questions are discussed

in the algebraic setting in Lazarfeld’s book [46]. It is nevertheless an interesting

point, even in the projective case, that one can “extrapolate” these concepts to all

transcendental classes, and get in this way a global space bS .X/ which looks well

behaved, e.g. semicontinuous, under variation of the complex structure of X.

5.2 Intersection Theory onS .X/ and OS .X/

Let X be a compact Kähler n-dimensional manifold equipped with a Kähler

metric !. We consider closed positive .1; 1/-currents Tj D ˛j C ddc
'j, 1 ? j ? p.

Let us first assume that the functions 'j have analytic singularities, and let Z ? X

be an analytic set such that the 'j’s are locally bounded on XXZ. The .p; p/-current

? D 1XXZT1 ^ : : : ^ Tk

is well defined on X X Z, thanks to Bedford and Taylor [10], and it is a closed

positive current there. By [10] such a current does not carry mass on any analytic

set, so we can enlarge Z without changing the total mass of?. In fact,? extends as

a closed positive current on the whole of X. To see this, let us take a simultaneous

log resolution of the Tj’s, i.e. a modification

? W bX ! X

such that if 'j D cj log
P

`
jgj;`j

2 C O.1/, then the pull-back of the ideals .gj;`/`,

namely ??
.gj;`/` D .gj;` ı ?/` is a purely divisorial ideal sheaf O

bX
.?Dj/ on bX.

Let uj D 0 be a local holomorphic equation of the divisor Dj on bX. Since

log
P

`
jgj;`j

2 D log jujj
2 C log

P

`
jgj;`=ujj

2 D log jujj
2 C vj, where vj 2 C1 and

ddc log jujj
2 D ŒDj? by the Lelong-Poincaré equation, we find

?
?Tj D ?

?
˛j C ddc

.'j ı ?/ D cjŒDj?CbT j; where bT j D ?
?
˛j C ddc

b'j (27)

) satisfying the
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and b'j is a locally bounded potential on bX such that bT j ? 0. Now, if E D ?
?1
.Z/,

we get

1XXZT1 ^ : : : ^ Tp D ??.1bXXE
bT1 ^ : : : ^bTp/ D ??.bT1 ^ : : : ^bTp/: (28)

Hence the right-hand side defines the desired extension of 1XXZT1 ^ : : : ^ Tp to X

as the direct image of a closed positive current on bX carrying no mass on E. An

essential point is the following monotonicity lemma – the reader will find a more

general version for non-pluripolar products in [2, Theorem 1.16].

Lemma 4 Assume that we have closed positive .1; 1/-currents with analytic singu-

larities Tj, T
0
j 2 f˛jg with Tj 4 T 0

j , 1 ? j ? p, and let ? ? 0 be a closed positive

smooth .n ? p; n ? p/-form on X. If Z is an analytic set containing the poles of all

Tj and T 0
j , we have

Z

X

1XXZT1 ^ : : : ^ Tp ^ ? ?

Z

X

1XXZT
0
1
^ : : : ^ T 0

p ^ ?:

Proof We take a log-resolution ? W bX ! X that works for all Tj and T 0
j

simultaneously. By (27) and (28), we have ??Tj D cjŒDj? CbT j wherebT j ? 0 has a

locally bounded potential onbX, and

Z

X

1XXZT1 ^ : : : ^ Tp ^ ? D

Z

bX

bT1 ^ : : : ^bTp ^ ?
?
?:

There are of course similar formulas ??T 0
j D cjŒD

0
j? C

bT 0
j for the T 0

j ’s, and our

assumption Tj 4 T 0
j means that the corresponding divisors satisfy cjDj ? c0

jD
0
j,

hence?j WD c0
jD

0
j ? cjDj ? 0. In terms of cohomology, we have

?
?
f˛jg D f?

?Tjg D fbT jg C fcjDjg D f?
?T 0

j g D fbT 0
jg C fc0

jD
0
jg;

hence fbT jg D fbT 0
jg C f?jg in H2

.bX;R/. By Stokes’ theorem, we conclude that

Z

bX

bT1 ^bT2 ^ : : : ^bTp ^ ??
? D

Z

bX
.bT 0

1
C f?1g/ ^bT2 ^ : : : ^bTp ^ ??

?

?

Z

bX

bT 0
1
^bT2 ^ : : : ^bTp ^ ??

?

thanks to the positivity of our currents bT j, bT
0
j and the fact that the product of such

currents with bounded potentials by the current of integration Œ?j? is well defined
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and positive ([10]). By replacing successively all terms fbT jg by fbT 0
jgCf?jg we infer

Z

bX

bT1 ^ : : : ^bTp ^ ??
? ?

Z

bX

bT 0
1
^ : : : ^bT 0

p ^ ??
?: ?

Now, assume that we have arbitrary closed positive .1; 1/-currents T1, : : : , Tp.

For each of them, we take a sequence Tj;k D ˛jCi@@ j;k of monotone asymptotically

equisingular approximations by currents with analytic singularities, Tj;k ? ?"j;k!,

limk!C1 "j;k D 0. We have Tj;k 4 Tj;kC1, and we may also assume without loss

of generality that "j;k ? "j;kC1 > 0 for all j; k. Let Zk be an analytic containing all

poles of the Tj;k, 1 ? j ? p. It follows immediately from the above discussion and

especially from Lemma 4 that the integrals

Z

X

1XXZk
.T1;k C "1;k!/ ^ : : : ^ .Tp;k C "p;k!/ ^ ? ? 0

are well defined and nonincreasing in k (the fact that "j;k is non increasing even helps

here). From this, we conclude

Theorem 15 For every p D 1; 2; : : : ; n, there is a well defined p-fold intersection

product

bS .X/ ? ? ? ? ? bS .X/ ?! H
p;p

C .X;R/

which assigns to any p-tuple of equivalence classes of monotone sequences .Tj;k/ in

bS .X/, 1 ? j ? p, the limit cohomology class

lim
k!C1

˚
1XXZk

.T1;k C "1;k!/ ^ : : : ^ .Tp;k C "p;k!/
?
2 H

p;p

C .X;R/

where H
p;p

C .X;R/ ? Hp;p
.X;R/ denotes the cone of cohomology classes of closed

positive .p; p/-currents. This product is additive and homogeneous in each argument

in the space bS .X/.

Corollary 8 By combining the above formal intersection product with the Bergman

approximation operator B W S .X/! bS .X/, we get an intersection product

S .X/ ? ? ? ? ? S .X/ ?! H
p;p

C .X;R/ denoted .T1; : : : ; Tp/ 7?! hT1; : : : ; Tpi
C
;

which is homogeneous and additive in each argument.

Proof (of Theorem 15) The existence of a limit in cohomology is seen by fixing a

dual basis .f?jg/ of Hn?p;n?p
.X/, using the Serre duality pairing

Hp;p
.X;R/ ? Hn?p;n?p

.X/! R; .ˇ; ?/ 7!

Z

X

ˇ ^ ?:
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Since X is Kähler, we can take ?1 D !
n?p and replace if necessary ?j by ?jCC!n?p ,

C ? 1, to get ?j ? 0 for all j ? 2. Then the integrals

Z

X

1XXZk
.T1;k C "1;k!/ ^ : : : ^ .Tp;k C "p;k!/ ^ ?j ? 0

are nonincreasing in k, and the limit must therefore exist by monotonicity. ut

Remark 9 It is natural to ask how the above intersection product compares with the

(cohomology class of the) “non-pluripolar product” hT1; : : : ; Tpi defined in [2, § 1].

In fact, the above product only neglects analytic parts of the currents involved. The

simple example of a probability measure T without atoms supported on a polar set

of a compact Riemann surface X yields e.g. hTiC D 1, while the non-pluripolar part

hTi vanishes.

5.3 Kähler Definition of the Numerical Dimension

Using the intersection product defined in Theorem 15, we can give a precise

definition of the numerical dimension.

Definition 5 Let .X; !/ be a compact Kähler n-dimensional manifold. We define

the numerical dimension nd.T/ of a closed positive .1; 1/-current T on X to be the

largest integer p D 0; 1; : : : ; n such that hTpiC ¤ 0, i.e.
R

X
hTpiC ^ !n?p

> 0.

Accordingly, if .L; h/ be a pseudoeffective line bundle on X, we define its nume-

rical dimension to be

nd.L; h/ D nd. i?L;h/: (29)

By the results of the preceding subsection, nd.L; h/ depends only on the weak equi-

valence class of singularities of the metric h.

Remark 10 H. Tsuji [63] has defined a notion of numerical dimension by a more

algebraic method:

Definition 6 Let X be a projective variety and .L; h/ a pseudo-effective line bundle.

When V runs over all irreducible algebraic suvarieties of X, one defines

?num.L; h/ D sup

n

p D dimV I lim sup
m!1

h0
?
eV; ??

.L˝m
/˝ I .?

?hm
/
?

mp
> 0

o

where ? W eV ! V ? X is an embedded desingularization of V in X.

Junyan Cao [14] has shown that ?num.L; h/ coincides with nd.L; h/ as defined

in (29). The idea is to make a reduction to the “big” case nd.L; h/ D dimX and
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to use holomorphic Morse inequalities [20] in combination with a regularization

procedure. We omit the rather technical details here.

Remark 11 If L is pseudo-effective there is also a natural concept of numerical

dimension nd.L/ that does not depend on the choice of a metric h on L. One can

set e.g.

nd.L/ D max

n

p 2 Œ0; n? I 9c > 0; 8" > 0; 9h"; ?L;h" ? ?"!; such that

Z

XXZ"

. i?L;h" C "!/
p ^ !n?p ? c

o

;

where h" runs over all metrics with analytic singularities on L. It may happen in

general that nd.L; hmin/ < nd.L/, even when L is nef; in that case the h" can be

taken to be smooth in the definition of nd.L/, and therefore nd.L/ is the largest

integer p such that c1.L/
p ¤ 0. In fact, for the line bundle L already mentioned

in Remark 5, it is shown in [30] that there is unique positive current T 2 c1.L/,

namely the current of integration T D ŒC? on the negative curve C ? X, hence

nd.L; hmin/ D nd.ŒC?/ D 0, although we have nd.L/ D 1 here.

6 Proof of Junyan Cao’s Vanishing Theorem

This section is a brief account and a simplified exposition of Junyan Cao’s proof,

as detailed in his PhD thesis [13]. The key curvature and singularity estimates are

contained in the following technical statement, which depends in a crucial way on

Bergman regularization and on Yau’s theorem [64] for solutions of Monge-Ampère

equations.

Proposition 5 Let .L; h/ be a pseudoeffective line bundle on a compact Kähler

manifold .X; !/. Let us write T D i
2?
?L;h D ˛ C ddc

' where ˛ is smooth and

' is a quasi-psh potential. Let p D nd.L; h/ be the numerical dimension of .L; h/.

Then, for every ? 2 ?0; 1? and ı 2 ?0; 1?, there exists a quasi-psh potential ˚?;ı on

X satisfying the following properties W

(a) ˚?;ı is smooth in the complement X X Zı of an analytic set Zı ? X.

(b) ˛ C ı! C ddc
˚?;ı ? ı

2
.1 ? ?/! on X.

(c) .˛ C ı! C ddc
˚?;ı/

n ? a ? n
ı
n?p
!

n on X X Zı .

(d) ˚?;ı ? .1 C bı/ B;k C C?;ı where  B;k ? ' is a Bergman approximation of '

of sufficiently high index k D k0.ı/.

(e) supX ˚1;ı D 0, and for all ? 2 ?0; 1? there are estimates ˚?;ı ? A and

exp
?
? ˚?;ı

?
? e?.1Cbı/' exp

?
A ? ?˚1;ı

?
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(f) For ?0; ı0 > 0 small, ? 2 ?0; ?0?, ı 2 ?0; ı0? and k D k0.ı/ large enough, we

have

I .˚?;ı/ D IC.'/ D I .'/:

Here a; b; A; ?0; ı0; C?;ı > 0 are suitable constants .C?;ı being the only one that

depends on ? , ı/.

Proof Denote by  B;k the nonincreasing sequence of Bergman approximations of '

(obtained with denominators mk D 2
k, say). We have  B;k ? ' for all k, the  B;k

have analytic singularities and ˛ C ddc
 B;k ? ?"k! with "k # 0. Then "k ? ı

4
for

k ? k0.ı/ large enough, and so

˛ C ı! C ddc
?
.1C bı/ B;k

?
? ˛ C ı! ? .1C bı/.˛ C "k!/

? ı! ? .1C bı/"k! ? bı˛ ? ı

2
!

for b > 0 small enough (independent of ı and k). Let ? W bX ! X be a log-resolution

of  B;k, so that

?
?
?
˛ C ı! C ddc

..1C bı/ B;k/
?
D ckŒDk?C ˇk

where ˇk ? ı

2
?

?
! ? 0 is a smooth closed .1; 1/-form on bX that is > 0 in the

complementbX X E of the exceptional divisor, ck D 1Cbı

mk
> 0, and Dk is a divisor

that includes all components E` of E. The map ? can be obtained by Hironaka [39]

as a composition of a sequence of blow-ups with smooth centers, and we can even

achieve that Dk and E are normal crossing divisors. In this circumstance, it is well

known that there exist arbitrary small numbers ?` > 0 such that ˇk ?
P
?`ŒE`? is

a Kähler class on bX. Hence we can find a quasi-psh potential b? k on bX such that
b̌

k WD ˇk ?
P
?`ŒE`? C ddcb? k is a Kähler metric on bX, and by taking the ?` small

enough, we may assume that
R

bX
.b̌k/

n ? 1

2

R

bX
ˇ

n
k . Now, we write

˛ C ı! C ddc
?
.1C bı/ B;k

?
? ˛ C "k! C ddc

 B;k C .ı ? "k/! ? bı.˛ C "k!/

? .˛ C "k! C ddc
 B;k/C

ı

2
!

for k ? k0.ı/ and b > 0 small (independent of ı and k). The assumption on the

numerical dimension of i
2?
?L;h D ˛ C ddc

' implies the existence of a constant

c > 0 such that, with Z D ?.E/ ? X, we have

Z

bX
ˇ

n
k D

Z

X

1XXZ

?
˛ C ı! C ddc

..1C bı/ B;k/
?n

?

 

n

p

!
?
ı

2

?n?p
Z

XXZ

?
˛ C "k! C ddc

 B;k

?p
^ !n?p ? c ın?p

Z

X

!
n
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for all k ? k0.ı/. Therefore, we may assume

Z

bX
.b̌k/

n ?
c

2
ı
n?p

Z

X

!
n
:

By Yau’s theorem [64], there exists a quasi-psh potentialb? k on bX such that b̌k C

ddcb? k is a Kähler metric onbX with a prescribed volume form Of > 0 such that
R

bX
f D

R

bX
b̌n

k . By the above discussion, we can take here Of > c

3
ı
n?p
?

?
!

n everywhere onbX.

Now, we consider ?k D ??
b? k and ?k D ??b? k 2 L1loc.X/. Sinceb? k was defined in

such a way that ddcb? k D b̌
k ? ˇk C

P

`
?`ŒE`?, we get

?
?
?
˛ C ı! C ddc

..1 C bı/ B;k C ?.?k C ?k//
?

D ckŒDk?C .1 ? ?/ˇk C ?

?X

`

?`ŒE`?C b̌
k C ddc

b? k

?

? 0:

This implies in particular that ˚?;ı WD .1 C bı/ B;k C ?.?k C ?k/ is a quasi-psh

potential on X and that

?
?
?
˛ C ı! C ddc

˚?;ı

?
? .1 ? ?/ˇk ?

ı

2
.1 ? ?/ ??

!;

thus condition (b) is satisfied. Putting Zı D ?.jDkj/ ? ?.E/ D Z, we also have

?
?1XXZı

?
˛ C ı! C ddc

˚?;ı

?n
? ?

n b̌n
k ?

c

3
?
n
ı
n?p
?

?
!

n
;

therefore condition (c) is satisfied as well with a D c=3. Property (a) is clear, and

(d) holds since the quasi-psh functionb? k Cb? k must be bounded from above on bX.

We will actually adjust constants in b? k Cb? k (as we may), so that supX ˚1;ı D 0.

Since ' ?  B;k ?  B;0 ? A0 WD supX  B;0 and

˚?;ı D .1C bı/ B;k C ?
?
˚1;ı ?  B;k

?
D .1 ? ? C bı/ B;k C ?˚1;ı ;

we have

.1C bı/' ? ?.A0 ?  B;k/ ? ˚?;ı ? .1 ? ? C bı/A0

and the estimates in (e) follow with A D .1 C b/A0. The only remaining property

to be proved is (f). Condition (d) actually implies I .˚?;ı/ ? I ..1 C bı/ B;k/,

and Corollary 4 also gives I ..1 C bı/ B;k/ ? I ..1 C bı=2/'/ if we take k ?

k0.ı/ large enough, hence I .˚?;ı/ ? IC.'/ for ı ? ı0 small. In the opposite

direction, we observe that ˚1;? satisfies ˛ C ! C ddc
˚1;ı ? 0 and supX ˚1;ı D 0,

hence ˚1;ı belongs to a compact family of quasi-psh functions. A standard result

of potential theory then shows the existence of a uniform small constant c0 > 0
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such that
R

X
exp.?c0˚1;ı/dV! < C1 for all ı 2 ?0; 1?. If f 2 OX;x is a germ

of holomorphic function and U a small neighborhood of x, the Hölder inequality

combined with estimate (e) implies

Z

U

jf j2 exp.?˚?;ı/dV! ? eA
? Z

U

jf j2e?p.1Cbı/'dV!

? 1

p
? Z

U

jf j2e?q?˚1;ıdV!

? 1

q

:

We fix ?0 > 1 so that I .?0'/ D IC.'/, p 2 ?1; ?0Œ (say p D 1C ?0/=2), and take

? ? ?0 WD
c0

q
D c0

?0 ? 1

?0 C 1
and ı ? ı0 2 ?0; 1? so small that p.1C bı0/ ? ?0.

Then clearly f 2 I .?0'/ implies f 2 I .˚?;ı/, and (f) is proved. ut

The rest of the arguments proceeds along the lines of [19, 49] and [28]. Let

.L; h/ be a pseuffective line bundle and p D nd.L; h/ D nd. i?L;h/. We equip L

be the hermitian metric hı defined by the quasi-psh weight ˚ı D ˚?0;ı obtained

in Proposition 5, with ı 2 ?0; ı0?. Since ˚ı is smooth on X X Zı , the well-known

Bochner-Kodaira identity shows that for every smooth .n; q/-form u with values in

KX ˝ L that is compactly supported on X X Zı , one has

k@uk2
ı
C k@

?
uk2

ı
? 2?

Z

X

.?1;ı C : : :C ?q;ı ? qı/juj2e?˚ıdV! ;

where kuk2
ı
WD

R

X
juj2

!;hı
dV! D

R

X
juj2e?˚ıdV! and

0 < ?1;ı.x/ ? : : : ? ?n;ı.x/

are, at each point x 2 X, the eigenvalues of ˛C ı!C ddc
˚ı with respect to the base

Kähler metric !. Notice that the ?j;ı.x/? ı are the actual eigenvalues of i
2?
?L;hı D

˛ C ddc
˚ı with respect to ! and that the inequality ?j;ı.x/ ? ı

2
.1 ? ?/ > 0 is

guaranteed by Proposition 5 (b). After dividing by 2?q (and neglecting that constant

in the left hand side), we get

k@uk2
ı
C k@

?
uk2

ı
C ıkuk2

ı
?

Z

X

.?1;ı C : : :C ?q;ı/juj
2e?˚ıdV! : (30)

A standard Hahn-Banach argument in the L2-theory of the @-operator then yields

the following conclusion.

Proposition 6 For every L2 section of?n;qT?
X˝L such that kfkı < C1 and @f D 0

in the sense of distributions, there exists a L2 section v D vı of ?
n;q?1T?

X ˝ L and a
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L2 section w D wı of ?
n;qT?

X ˝ L such that f D @v C w with

kvk2
ı
C
1

ı
kwk2

ı
?

Z

X

1

?1;ı C : : :C ?q;ı

jf j2e?˚ıdV! :

Because of the singularities of the weight on Zı , one should in fact argue first on

X X Zı and approximate the base Kähler metric ! by a metric b!ı;" D ! C "b!ı that

is complete on X X Zı , exactly as explained in [19]; we omit the (by now standard)

details here. A consequence of Proposition 6 is that the “error term” w satisfies the

L2 bound

Z

X

jwj2e?˚ıdV! ?

Z

X

ı

?1;ı C : : :C ?q;ı

jf j2e?˚ıdV! : (31)

The idea for the next estimate is taken from Mourougane’s PhD thesis [49].

Lemma 5 The ratio ?ı.x/ WD ı=.?1;ı.x/C : : :C?q;ı.x// is uniformly bounded on X

.independently of ı/, and, as soon as q ? n?nd.L; h/C1, there exists a subsequence

.?ı`/, ı` ! 0, that tends almost everywhere to 0 on X.

Proof By estimates (b,c) in Proposition 5, we have ?j;ı.x/ ? ı

2
.1 ? ?0/ and

?1;ı.x/ : : : ?n;ı.x/ ? a? n
0
ı
n?p where p D nd.L; h/: (32)

Therefore we already find ?ı.x/ ? 2=q.1? ?0/. Now, we have

Z

XXZı

?n;ı.x/dV! ?

Z

X

.˛ C ı! C ddc
˚ı/ ^ !

n?1 D

Z

X

.˛ C ı!/ ^ !n?1 ? Const;

therefore the “bad set” S" ? X X Zı of points x where ?n;ı.x/ > ı
?" has a volume

Vol.S"/ ? Cı" converging to 0 as ı ! 0 (with a slightly more elaborate argument

we could similarly control any elementary symmetric function in the ?j;ı’s, but this

is not needed here). Outside of S", the inequality (32) yields

?q;ı.x/
q
ı

?".n?q/ ? ?q;ı.x/
q
?n;ı.x/

n?q ? a? n
0
ı
n?p

hence

?q;ı.x/ ? cı
n?pC.n?q/"

q and ?ı.x/ ? Cı
1?

n?pC.n?q/"

q :

If we take q ? n ? p C 1 and " > 0 small enough, the exponent of ı in the final

estimate is positive, and Lemma 5 follows. ut

Proof (of Junyan Cao’s Theorem 5) Let ff g be a cohomology class in the group

Hq
.X;KX ˝L˝IC.h//, q ? n?nd.L; h/C1. Consider a finite Stein open covering

U D .U˛/˛D1;:::;N by coordinate balls U˛. There is an isomorphism between Čech
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cohomology LHq
.U ;F / with values in the sheaf F D O.KX ˝ L/ ˝ IC.h/ and

the cohomology of the complex .K?
ı
; @/ of .n; q/-forms u such that both u and

@u are L2 with respect to the weight ˚ı , i.e.
R

X
juj2 exp.?˚ı/dV! < C1 and

R

X
j@uj2 exp.?˚ı/dV! < C1. The isomorphism comes from Leray’s theorem and

from the fact that the sheafified complex .K ?
ı
; @/ is a complex of C

1-modules

that provides a resolution of the sheaf F : the main point here is that I .˚ı/ D

IC.'/ D IC.h/, as asserted by Proposition 5 (f), and that we can locally solve

@-equations by means of Hörmander’s estimates [40].

Let . ˛/ be a partition of unity subordinate to U . The explicit isomorphism

between Čech cohomology and L2 cohomology yields a smooth L2 representative

f D
P

jIjDq fI.z/dz1 ^ : : : ^ dzn ^ dzI which is a combination

f D
X

˛0

 ˛0c˛0˛1:::˛q@!˛1 ^ : : : ^ @ ˛q

of the components of the corresponding Čech cocycle

c˛0˛1:::˛q 2 ?
?
U˛0

\ U˛1
\ : : : \ U˛q

;O.F /
?
:

Estimate (e) in Proposition 5 implies the Hölder inequality

Z

X

?ı jf j
2 exp.?˚ı/dV! ? eA

? Z

X

?
p

ı
jf j2e?p.1Cbı/'dV!

?1
p
? Z

X

jf j2e?q?0˚1;ıdV!

?1
q

:

Our choice of ı ? ı0, ?0 and p; q shows that the integrals in the right hand side

are convergent, and especially
R

X
jf j2e?p.1Cbı/'dV! < C1. Lebesgue’s dominated

convergence theorem combined with Lemma 5 implies that the Lp-part goes to 0 as

ı D ı` ! 0, hence the “error term” w converges to 0 in L2 norm by estimate (31).

If we express the corresponding class fwg in Čech cohomology and use Hörmander’s

estimates on the intersections U˛ D
T

U˛j
, we see that fwg will be given by a

Čech cocycle . Qw˛/ such that
R

U˛
j Qw˛j

2e?˚ıdV! ! 0 as ı D ı` ! 0 (we may

lose here some fixed constants since ˚ı is just quasi-psh on our balls, but this

is irrelevant thanks to the uniform lower bounds for the Hessian). The inequality

˚ı ? A in Proposition 5 (e) shows that we have as well an unweighted L2 estimate
R

U˛
j Qw˛ j

2dV ! 0. However it is well-known that when one takes unweighted L2

norms on spaces of Čech cocyles (or uniform convergence on compact subsets, for

that purpose), the resulting topology on the finite dimensional space LHq
.U ;F / is

Hausdorff, so the subspace of coboundaries is closed in the space of cocycles. Hence

we conclude from the above that f is a coboundary, as desired. ut

Remark 12 In this proof, it is remarkable that one can control the error term w, but

a priori completely loses control on the element v such that @v ? f when ı ! 0 !
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7 Compact Kähler Threefolds Without Nontrivial

Subvarieties

The bimeromorphic classification of compact Kähler manifolds leads to considering

those, termed as “simple” by Campana, that have as little internal structure as

possible, and are somehow the elementary bricks needed to reconstruct all others

through meromorphic fibrations (cf. [11, 12]).

Definition 7 A compact Kähler manifold X is said to be simple if there does not

exist any irreducible analytic subvariety Z with 0 < dim Z < dimX through a very

general point x 2 X, namely a point x in the complement X X
S

Sj of a countable

union of analytic sets Sj ¨ X.

Of course, every one dimensional manifold X is simple, but in higher dimensions

n > 1, one can show that a very general torus X D Cn
=? has no nontrivial analytic

subvariety Z at all (i.e. none beyond finite sets and X itself), in any dimension n. In

even dimension, a very general Hyperkähler manifold can be shown to be simple as

well. It has been known since Kodaira that there are no other simple Kähler surfaces

(namely only very general 2-dimensional tori and K3 surfaces). Therefore, the next

dimension to be investigated is dimension 3. In this case, Campana, Höring and

Peternell have shown in [17] that X is bimeromorphically a quotient of a torus by

a finite group (see Theorem 18 at the end). Following [16], we give here a short

self-contained proof for “strongly simple” Kähler threefolds, namely threefolds that

do not possess any proper analytic subvariety.

The simplicity assumption implies that the algebraic dimension is a.X/ D 0,

in particular X cannot be projective, and cannot either be uniruled (i.e. cov-

ered by rational curves). By the Kodaira embedding theorem, we also infer that

H0
.X; ˝2

X/ ¤ 0, otherwise X would be projective. One of the most crucial

arguments is the following strong and difficult theorem of Brunella [9].

Theorem 16 ([9]) Let X be a compact Kähler manifold with a 1-dimensional

holomorphic foliation F given by a nonzero morphism of vector bundle L ! TX ,

where L is a line bundle on X, and TX is its holomorphic tangent bundle. If L?1 is

not pseudoeffective, the closures of the leaves of F are rational curves, and X is thus

uniruled.

We use this result in the form of the following corollary, which has been observed

in [41], Proposition 4.2.

Corollary 9 If X is a non uniruled n-dimensional compact Kähler manifold with

H0
.X; ˝n?1

X / ¤ 0, then KX is pseudoeffective.

Proof ˝n?1
X is canonically isomorphic to KX ˝ TX . Any nonzero section of ˝n?1

X

thus provides a nonzero map K?1
X ! TX , and an associated foliation. ut

It follows from the above that the canonical line bundle KX of our simple

threefold X must be pseudoeffective. We then use the following simple observation.
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Proposition 7 Assume that X is a strongly simple compact complex manifold. Then

every pseudoeffective line bundle .L; h/ is nef, and all multiplier sheaves I .hm
/ are

trivial, i.e. I .hm
/ D OX . Moreover, we have c1.L/

n D 0.

Proof Since there are not positive dimensional analytic subvarieties, the zero

varieties of the ideal sheaves I .hm
/ must be finite sets of points, hence, by Skoda

[60], the Lelong numbers ?. i?L;h; x/ are zero except on a countable set S ? X. By

[21], this implies that L is nef and c1.L/
n ?

P

x2S ?. i?L;h; x/
n. However, by the

Grauert-Riemenschneider conjecture solved in [58, 59] and [20], the positivity of

c1.L/
n would imply that a.X/ D n (i.e. X Moishezon, a contradiction). Therefore

c1.L/
n D 0 and S D ;. ut

Proposition 8 Let X be a compact Kähler manifold of dimension n > 1 without

any non-trivial subvariety, and with KX pseudoeffective. Then

hj
.X;K˝m

X / ? h0.X; ˝
j

X ˝ K˝m
X / ?

 

n

j

!

for every j ? 0;

and the Hilbert polynomial P.m/ WD ?.X;K˝m
X / is constant, equal to ?.X;OX/.

Proof The inequality hj
.X;K

˝m
X / ? h0.X; ˝

j

X ˝ K
˝m
X / follows from the Hard

Lefschetz Theorem 4 applied with L D KX and the corresponding trivial mul-

tiplier ideal sheaf. Also, for any holomorphic vector bundle E on X, we have

h0.X;E/ ? rank.E/, otherwise, some ratios of determinants of sections would

produce a nonconstant meromorphic function, and thus a.X/ > 0, contradiction;

here we take E D ˝
j

X ˝K
˝m
X and get rank E D

?
n

j

?
. The final claim is clear because

a polynomial function P.m/ which remains bounded as m ! C1 is necessarily

constant. ut

Corollary 10 Let X be a strongly simple Kähler threefold. Let hi;j D dimHi;j
.X;C/

be the Hodge numbers. We have

c1.X/
3 D c1.X/ ? c2.X/ D 0; ?.X;OX/ D 0 and q WD h1;0 > 0:

Proof The intersection number K3

X D ?c1.X/
3 vanishes because it is the leading

term of P.m/, up to the factor 3Š. The Riemann-Roch formula then gives

P.m/ D
.1 ? 12m/

24
c1.X/ ? c2.X/:

The boundedness of P.m/ implies ?.X;OX/ D 1

24
c1.X/ ? c2.X/ D 0. Now, we write

0 D ?.X;OX/ D 1 ? h1;0 C h2;0 ? h3;0:
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By Kodaira’s theorem, h2;0 > 0 since X is not projective, and h3;0 ? 1 since

a.X/ D 0. Thus 0 D 1 ? h1;0 C h2;0 ? h3;0 ? 1 ? q C 1 ? 1 D 1 ? q, and

q > 0. ut

Everything is now in place for the final conclusion.

Theorem 17 Let X be a strongly simple Kähler threefold. Then the Albanese map

˛ W X ! Alb.X/ is a biholomorphism of 3-dimensional tori.

Proof Since q D h1;0 > 0, the Albanese map ˛ is non constant. By simplicity,

X cannot possess any fibration with positive dimensional fibers, so we must have

dim˛.X/ D dimX D 3, and as q D h1;0 D h0.X; ˝1

X/ ? 3 (Proposition 8 with

j D 1, m D 0) the Albanese map ˛ must be surjective. The function det.d˛/ cannot

vanish, otherwise we would get a non trivial divisor, so ˛ is étale. Therefore X is a

3-dimensional torus, as a finite étale cover of the 3-dimensional torus Alb.X/, and

˛ must be an isomorphism. ut

In [17], the following stronger result is established as a consequence of the

existence of good minimal models for Kähler threefolds:

Theorem 18 Let X be smooth compact Kähler threefold. If X is simple, there exists

a bimeromorphic morphism X ! T=G where T is a torus and G a finite group

acting on T.
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