

L^2 extension theorems and applications to algebraic geometry

Jean-Pierre Demailly

Institut Fourier, Université Grenoble Alpes & Académie des Sciences de Paris

Complex Analysis and Geometry – XXV CIRM – ICTP virtual meeting, smr 3601 June 7–11, 2021

General plan of the lectures

(1) First lecture: a general qualitative extension theorem

- Setup and general statement
- Main ideas of the proof

(2) Second lecture: extension with optimal L^2 estimates

- Ohsawa residual measure
- Log canonical case, case of higher order jets
- Main L^2 estimate; solution of the Suita conjecture
- Approximation of quasi-psh functions and currents

(3) Third lecture: applications

- Solution of the strong openness conjecture (Guan and Zhou)
- Pham's strong semicontinuity theorem
- Generalized Nadel vanishing theorem by Junyan Cao
- Hard Lefschetz theorem with psef coefficients (and a complement by Xiaojun Wu)

First lecture

First lecture

First lecture: notation and main concepts

Let (X,ω) be a possibly noncompact n-dimensional Kähler manifold, and L a holomorphic line bundle on X, with a possibly singular hermitian metric $h=e^{-\varphi}$, $\varphi\in L^1_{\mathrm{loc}}$. The curvature current is

$$\Theta_{L,h} = i \, \partial \overline{\partial} \log h^{-1} = i \partial \overline{\partial} \varphi$$

computed in the sense of distributions.

First lecture: notation and main concepts

Let (X,ω) be a possibly noncompact n-dimensional Kähler manifold, and L a holomorphic line bundle on X, with a possibly singular hermitian metric $h=e^{-\varphi}$, $\varphi\in L^1_{\mathrm{loc}}$. The curvature current is

$$\Theta_{L,h} = i \, \partial \overline{\partial} \log h^{-1} = i \partial \overline{\partial} \varphi$$

computed in the sense of distributions.

Very often, one needs positivity assumptions for L.

Definition

- L is positive if $\exists h \in C^{\infty}$ such that $\Theta_{L,h} > 0$ ($\Leftrightarrow L$ ample);
- L is nef if $\forall \varepsilon > 0$, $\exists h_{\varepsilon} \in C^{\infty}$ such that $\Theta_{L,h_{\varepsilon}} \geq -\varepsilon \omega$;
- L is pseudoeffective (psef) if $\exists h$ singular such that $\Theta_{L,h} \geq 0$.

First lecture: notation and main concepts

Let (X,ω) be a possibly noncompact n-dimensional Kähler manifold, and L a holomorphic line bundle on X, with a possibly singular hermitian metric $h=e^{-\varphi}$, $\varphi\in L^1_{\mathrm{loc}}$. The curvature current is

$$\Theta_{L,h} = i \, \partial \overline{\partial} \log h^{-1} = i \partial \overline{\partial} \varphi$$

computed in the sense of distributions.

Very often, one needs positivity assumptions for L.

Definition

- L is positive if $\exists h \in C^{\infty}$ such that $\Theta_{L,h} > 0$ ($\Leftrightarrow L$ ample);
- L is nef if $\forall \varepsilon > 0$, $\exists h_{\varepsilon} \in C^{\infty}$ such that $\Theta_{L,h_{\varepsilon}} \geq -\varepsilon \omega$;
- *L* is pseudoeffective (psef) if $\exists h$ singular such that $\Theta_{L,h} \geq 0$.

Now, let $\mathcal{J} \subset \mathcal{O}_X$ a coherent ideal sheaf, $Y = V(\mathcal{J})$ its zero variety and $\mathcal{O}_Y = \mathcal{O}_X/\mathcal{J}$. Here Y may be non reduced, i.e. \mathcal{O}_Y may have nilpotent elements.

Consider the exact sequence

$$0 \to \mathcal{J} \to \mathcal{O}_X \to \mathcal{O}_X/\mathcal{J} \to 0.$$

Consider the exact sequence

$$0 \to \mathcal{J} \to \mathcal{O}_X \to \mathcal{O}_X/\mathcal{J} \to 0.$$

By twisting with $\mathcal{O}_X(K_X \otimes L)$, where $K_X = \Lambda^n T_X^*$, one gets the long exact sequence of cohomology groups

$$\cdots \to H^{q}(X, K_{X} \otimes L) \to H^{q}(X, \mathcal{O}_{X}(K_{X} \otimes L) \otimes \mathcal{O}_{X}/\mathcal{J})$$
$$\to H^{q+1}(X, \mathcal{O}_{X}(K_{X} \otimes L) \otimes \mathcal{J}) \cdots$$

Consider the exact sequence

$$0 \to \mathcal{J} \to \mathcal{O}_X \to \mathcal{O}_X/\mathcal{J} \to 0.$$

By twisting with $\mathcal{O}_X(K_X \otimes L)$, where $K_X = \Lambda^n T_X^*$, one gets the long exact sequence of cohomology groups

$$\cdots \to H^{q}(X, K_{X} \otimes L) \to H^{q}(X, \mathcal{O}_{X}(K_{X} \otimes L) \otimes \mathcal{O}_{X}/\mathcal{J})$$
$$\to H^{q+1}(X, \mathcal{O}_{X}(K_{X} \otimes L) \otimes \mathcal{J}) \cdots$$

Surjectivity / extension problem

Under which conditions on X, $Y = V(\mathcal{J})$ and (L, h) is

$$H^{q}(X, K_{X} \otimes L) \rightarrow H^{q}(Y, (K_{X} \otimes L)_{|Y}) = H^{q}(X, \mathcal{O}_{X}(K_{X} \otimes L) \otimes \mathcal{O}_{X}/\mathcal{J})$$

a surjective restriction morphism?

Consider the exact sequence

$$0 o \mathcal{J} o \mathcal{O}_X o \mathcal{O}_X/\mathcal{J} o 0.$$

By twisting with $\mathcal{O}_X(K_X \otimes L)$, where $K_X = \Lambda^n T_X^*$, one gets the long exact sequence of cohomology groups

$$\cdots \to H^{q}(X, K_{X} \otimes L) \to H^{q}(X, \mathcal{O}_{X}(K_{X} \otimes L) \otimes \mathcal{O}_{X}/\mathcal{J})$$
$$\to H^{q+1}(X, \mathcal{O}_{X}(K_{X} \otimes L) \otimes \mathcal{J}) \cdots$$

Surjectivity / extension problem

Under which conditions on X, $Y = V(\mathcal{J})$ and (L, h) is

$$H^q(X,K_X\otimes L)\to H^q(Y,(K_X\otimes L)_{|Y})=H^q(X,\mathcal{O}_X(K_X\otimes L)\otimes\mathcal{O}_X/\mathcal{J})$$

a surjective restriction morphism?

Equivalent injectivity problem

When is $H^{q+1}(X, K_X \otimes L \otimes \mathcal{J}) \to H^{q+1}(X, K_X \otimes L)$ injective ?

Given a hermitian metric $h=e^{-\varphi}$ with φ quasi-psh (i.e. such that $\varphi={\rm psh}+{\it C}^{\infty}$), one defines the associated multiplier ideal sheaf ${\mathcal I}(h)={\mathcal I}(e^{-\varphi})\subset {\mathcal O}_X$ by

$$\mathcal{I}(e^{-\varphi})_{x_0} = \left\{ f \in \mathcal{O}_{X,x_0} \, ; \, \exists U \ni x_0 \, , \, \int_U |f|^2 e^{-\varphi} d\lambda < +\infty \right\}$$

Given a hermitian metric $h=e^{-\varphi}$ with φ quasi-psh (i.e. such that $\varphi={\rm psh}+{\it C}^{\infty}$), one defines the associated multiplier ideal sheaf ${\cal I}(h)={\cal I}(e^{-\varphi})\subset {\cal O}_X$ by

$$\mathcal{I}(e^{-\varphi})_{x_0} = \left\{ f \in \mathcal{O}_{X,x_0}; \ \exists U \ni x_0, \ \int_U |f|^2 e^{-\varphi} d\lambda < +\infty \right\}$$

Theorem (Nadel)

 $\mathcal{I}(e^{-\varphi})$ is a coherent ideal sheaf.

Given a hermitian metric $h=e^{-\varphi}$ with φ quasi-psh (i.e. such that $\varphi={\rm psh}+{\color{red}C^{\infty}}$), one defines the associated multiplier ideal sheaf $\mathcal{I}(h)=\mathcal{I}(e^{-\varphi})\subset\mathcal{O}_X$ by

$$\mathcal{I}(e^{-\varphi})_{\mathsf{x}_0} = \left\{ f \in \mathcal{O}_{\mathsf{X},\mathsf{x}_0} \, ; \, \exists U \ni \mathsf{x}_0 \, , \, \int_U |f|^2 e^{-\varphi} d\lambda < +\infty \right\}$$

Theorem (Nadel)

 $\mathcal{I}(e^{-\varphi})$ is a coherent ideal sheaf.

Moreover, $\mathcal{I}(e^{-\varphi})$ is always integrally closed.

One says that a quasi-psh function φ has analytic singularities, i.e. locally on a neighborhood V of an arbitrary point $x_0 \in X$ we have

$$\varphi(z) = c \log \sum |g_j(z)|^2 + u(z), \quad g_j \in \mathcal{O}_X(V), \quad c > 0, \quad u \in C^{\infty}(V),$$

Given a hermitian metric $h=e^{-\varphi}$ with φ quasi-psh (i.e. such that $\varphi={\rm psh}+{\color{red}C^{\infty}}$), one defines the associated multiplier ideal sheaf $\mathcal{I}(h)=\mathcal{I}(e^{-\varphi})\subset\mathcal{O}_X$ by

$$\mathcal{I}(e^{-\varphi})_{\mathsf{x}_0} = \left\{ f \in \mathcal{O}_{\mathsf{X},\mathsf{x}_0} \, ; \, \exists U \ni \mathsf{x}_0 \, , \, \int_U |f|^2 e^{-\varphi} d\lambda < +\infty \right\}$$

Theorem (Nadel)

 $\mathcal{I}(e^{-\varphi})$ is a coherent ideal sheaf.

Moreover, $\mathcal{I}(e^{-\varphi})$ is always integrally closed.

One says that a quasi-psh function φ has analytic singularities, i.e. locally on a neighborhood V of an arbitrary point $x_0 \in X$ we have

$$\varphi(z) = c \log \sum |g_j(z)|^2 + u(z), \quad g_j \in \mathcal{O}_X(V), \quad c > 0, \quad u \in C^{\infty}(V),$$

Given a hermitian metric $h=e^{-\varphi}$ with φ quasi-psh (i.e. such that $\varphi={\rm psh}+{\color{red}C^{\infty}}$), one defines the associated multiplier ideal sheaf $\mathcal{I}(h)=\mathcal{I}(e^{-\varphi})\subset\mathcal{O}_X$ by

$$\mathcal{I}(e^{-\varphi})_{\mathsf{x}_0} = \left\{ f \in \mathcal{O}_{\mathsf{X},\mathsf{x}_0} \, ; \, \exists U \ni \mathsf{x}_0 \, , \, \int_U |f|^2 e^{-\varphi} d\lambda < +\infty \right\}$$

Theorem (Nadel)

 $\mathcal{I}(e^{-\varphi})$ is a coherent ideal sheaf.

Moreover, $\mathcal{I}(e^{-\varphi})$ is always integrally closed.

One says that a quasi-psh function φ has analytic singularities, i.e. locally on a neighborhood V of an arbitrary point $x_0 \in X$ we have

$$\varphi(z) = c \log \sum |g_j(z)|^2 + u(z), \quad g_j \in \mathcal{O}_X(V), \quad c > 0, \quad u \in C^{\infty}(V),$$

Example:
$$\varphi(z) = c \log |s(z)|_{h_E}^2$$
, $c > 0$, $s \in H^0(X, E)$, $h_E \in C^{\infty}$.

Theorem (Nadel vanishing theorem)

Let (X, ω) be a Kähler manifold that is weakly pseudoconvex, i.e. X admits a smooth psh exhaustion γ .

Theorem (Nadel vanishing theorem)

Let (X,ω) be a Kähler manifold that is weakly pseudoconvex, i.e. X admits a smooth psh exhaustion γ . Let $L \to X$ be a holomorphic line bundle equipped with a singular hermitian metric h such that

$$\Theta_{L,h} \ge \alpha \omega$$
, α continuous > 0 function.

Then $H^q(X, K_X \otimes L \otimes \mathcal{I}(h)) = 0$ for $q \geq 1$.

Theorem (Nadel vanishing theorem)

Let (X,ω) be a Kähler manifold that is weakly pseudoconvex, i.e. X admits a smooth psh exhaustion γ . Let $L \to X$ be a holomorphic line bundle equipped with a singular hermitian metric h such that

$$\Theta_{L,h} \ge \alpha \omega$$
, α continuous > 0 function.

Then $H^q(X, K_X \otimes L \otimes \mathcal{I}(h)) = 0$ for $q \geq 1$.

Corollary

Assume instead that (*) $\Theta_{L,h} + i\partial \overline{\partial}\psi \geq \alpha\omega$ for some quasi-psh function ψ on X. Then $H^q(X, K_X \otimes L \otimes \mathcal{I}(he^{-\psi})) = 0$ for $q \geq 1$, and for all $q \geq 0$, we have a surjective restriction morphism

$$H^q(X, K_X \otimes L \otimes \mathcal{I}(h)) \to H^q(X, K_X \otimes L \otimes \mathcal{I}(h)/\mathcal{I}(he^{-\psi})).$$

Theorem (Nadel vanishing theorem)

Let (X,ω) be a Kähler manifold that is weakly pseudoconvex, i.e. X admits a smooth psh exhaustion γ . Let $L \to X$ be a holomorphic line bundle equipped with a singular hermitian metric h such that

$$\Theta_{L,h} \ge \alpha \omega$$
, α continuous > 0 function.

Then $H^q(X, K_X \otimes L \otimes \mathcal{I}(h)) = 0$ for $q \geq 1$.

Corollary

Assume instead that (*) $\Theta_{L,h} + i\partial \overline{\partial}\psi \geq \alpha\omega$ for some quasi-psh function ψ on X. Then $H^q(X, K_X \otimes L \otimes \mathcal{I}(he^{-\psi})) = 0$ for $q \geq 1$, and for all $q \geq 0$, we have a surjective restriction morphism

$$H^q(X, K_X \otimes L \otimes \mathcal{I}(h)) \to H^q(X, K_X \otimes L \otimes \mathcal{I}(h)/\mathcal{I}(he^{-\psi})).$$

Proof. $0 \to \mathcal{I}(he^{-\psi}) \to \mathcal{I}(h) \to \mathcal{I}(h)/\mathcal{I}(he^{-\psi})) \to 0.$

Theorem (Nadel vanishing theorem)

Let (X,ω) be a Kähler manifold that is weakly pseudoconvex, i.e. X admits a smooth psh exhaustion γ . Let $L \to X$ be a holomorphic line bundle equipped with a singular hermitian metric h such that

$$\Theta_{L,h} \ge \alpha \omega$$
, α continuous > 0 function.

Then $H^q(X, K_X \otimes L \otimes \mathcal{I}(h)) = 0$ for $q \geq 1$.

Corollary

Assume instead that (*) $\Theta_{L,h} + i\partial \overline{\partial} \psi \geq \alpha \omega$ for some quasi-psh function ψ on X. Then $H^q(X, K_X \otimes L \otimes \mathcal{I}(he^{-\psi})) = 0$ for $q \geq 1$, and for all $q \geq 0$, we have a surjective restriction morphism

$$H^q(X, K_X \otimes L \otimes \mathcal{I}(h)) \to H^q(X, K_X \otimes L \otimes \mathcal{I}(h)/\mathcal{I}(he^{-\psi})).$$

Proof. $0 \to \mathcal{I}(he^{-\psi}) \to \mathcal{I}(h) \to \mathcal{I}(h)/\mathcal{I}(he^{-\psi})) \to 0$.

However, one would like to relax the strict positivity assumption (*).

One potential application would be to study the Minimal Model Program (MMP) for arbitrary projective – or even Kähler – varieties, whereas only the case of general type varieties is known.

One potential application would be to study the Minimal Model Program (MMP) for arbitrary projective – or even Kähler – varieties, whereas only the case of general type varieties is known.

For a line bundle L, one defines the Kodaira-Iitaka dimension $\kappa(L) = \limsup_{m \to +\infty} \log \dim H^0(X, L^{\otimes m})/\log m$ and the numerical dimension $\operatorname{nd}(L) = \operatorname{maximum}$ exponent p of non zero "positive intersections" $\langle T^p \rangle$ of a positive current $T \in c_1(L)$ when L is psef (pseudoeffective), and $\operatorname{nd}(L) = -\infty$ otherwise. They always satisfy

$$-\infty \le \kappa(L) \le \operatorname{nd}(L) \le n = \dim X.$$

One potential application would be to study the Minimal Model Program (MMP) for arbitrary projective – or even Kähler – varieties, whereas only the case of general type varieties is known.

For a line bundle L, one defines the Kodaira-Iitaka dimension $\kappa(L) = \limsup_{m \to +\infty} \log \dim H^0(X, L^{\otimes m})/\log m$ and the numerical dimension $\operatorname{nd}(L) = \operatorname{maximum}$ exponent p of non zero "positive intersections" $\langle T^p \rangle$ of a positive current $T \in c_1(L)$ when L is psef (pseudoeffective), and $\operatorname{nd}(L) = -\infty$ otherwise. They always satisfy

$$-\infty \le \kappa(L) \le \operatorname{nd}(L) \le n = \dim X.$$

Definition (abundance)

A line bundle L is said to be abundant if $\kappa(L) = \operatorname{nd}(L)$.

One potential application would be to study the Minimal Model Program (MMP) for arbitrary projective – or even Kähler – varieties, whereas only the case of general type varieties is known.

For a line bundle L, one defines the Kodaira-litaka dimension $\kappa(L) = \limsup_{m \to +\infty} \log \dim H^0(X, L^{\otimes m})/\log m$ and the numerical dimension $\operatorname{nd}(L) = \operatorname{maximum}$ exponent p of non zero "positive intersections" $\langle T^p \rangle$ of a positive current $T \in c_1(L)$ when L is psef (pseudoeffective), and $\operatorname{nd}(L) = -\infty$ otherwise. They always satisfy

$$-\infty \le \kappa(L) \le \operatorname{nd}(L) \le n = \dim X.$$

Definition (abundance)

A line bundle L is said to be abundant if $\kappa(L) = \operatorname{nd}(L)$.

The fundamental abundance conjecture can be stated: for each nonsingular klt pair (X, Δ) the \mathbb{Q} -line bundle $K_X + \Delta$ is abundant.

Generalized base point free theorem ?

One can try to investigate the abundance of $L = K_X + \Delta$ by induction on the dimension $n = \dim X$, by extending sections of $K_X + L_m$, $L_m = (m-1)K_X + m\Delta$ from subvarieties (noticing that $K_X + \Delta$ psef implies L_m psef, and even $L_m - \Delta$ psef).

Generalized base point free theorem ?

One can try to investigate the abundance of $L = K_X + \Delta$ by induction on the dimension $n = \dim X$, by extending sections of $K_X + L_m$, $L_m = (m-1)K_X + m\Delta$ from subvarieties (noticing that $K_X + \Delta$ psef implies L_m psef, and even $L_m - \Delta$ psef). Cf. BCHM and recent work of D-Hacon-Păun, Fujino, Gongyo, Takayama.

Standard base point free theorem

Let (X, Δ) be a projective klt pair, and L be a nef line bundle such that $L - (K_X + \Delta)$ is nef and big. Then L is semiample, i.e. |mL| is base point free for some m > 0.

Generalized base point free theorem ?

One can try to investigate the abundance of $L = K_X + \Delta$ by induction on the dimension $n = \dim X$, by extending sections of $K_X + L_m$, $L_m = (m-1)K_X + m\Delta$ from subvarieties (noticing that $K_X + \Delta$ psef implies L_m psef, and even $L_m - \Delta$ psef). Cf. BCHM and recent work of D-Hacon-Păun, Fujino, Gongyo, Takayama.

Standard base point free theorem

Let (X, Δ) be a projective klt pair, and L be a nef line bundle such that $L - (K_X + \Delta)$ is nef and big. Then L is semiample, i.e. |mL| is base point free for some m > 0.

Question (weak positivity variant of the BPF property ?)

Assume that X is not uniruled, i.e. that K_X is pseudoeffective, and let L be a line bundle such that $L - \varepsilon K_X$ is pseudoeffective for some $0 < \varepsilon \ll 1$. Does there exist $G \in \operatorname{Pic}^0(X)$ such that L + G is abundant ?

The following very general statement was recently obtained by X. Zhou-L. Zhu as the culmination of many previous works: Ohsawa-Takegoshi, Ohsawa, ..., D, Cao-D-Matsumura (2017).

The following very general statement was recently obtained by X. Zhou-L. Zhu as the culmination of many previous works: Ohsawa-Takegoshi, Ohsawa, ..., D, Cao-D-Matsumura (2017).

General qualitative extension theorem

Let (X, ω) be Kähler holomorphically convex, L a holomorphic line bundle with a hermitian metric $h = h_0 e^{-\varphi}$, $h_0 \in C^{\infty}$, φ quasi-psh on X, and $\psi \in L^1_{loc}(X)$.

The following very general statement was recently obtained by X. Zhou-L. Zhu as the culmination of many previous works: Ohsawa-Takegoshi, Ohsawa, ..., D, Cao-D-Matsumura (2017).

General qualitative extension theorem

Let (X,ω) be Kähler holomorphically convex, L a holomorphic line bundle with a hermitian metric $h=h_0e^{-\varphi}$, $h_0\in C^\infty$, φ quasi-psh on X, and $\psi\in L^1_{\mathrm{loc}}(X)$. Assume $\exists \alpha>0$ continuous such that

$$\Theta_{L,h} + (1 + \nu \alpha)i\partial \overline{\partial} \psi \ge 0 \quad \text{on } X, \quad \nu = 0, 1.$$

Then, for all $q \ge 0$, the following restriction map is surjective:

$$H^q(X, K_X \otimes L \otimes \mathcal{I}(h)) \rightarrow H^q(X, K_X \otimes L \otimes \mathcal{I}(h)/\mathcal{I}(he^{-\psi})).$$

The following very general statement was recently obtained by X. Zhou-L. Zhu as the culmination of many previous works: Ohsawa-Takegoshi, Ohsawa, ..., D, Cao-D-Matsumura (2017).

General qualitative extension theorem

Let (X,ω) be Kähler holomorphically convex, L a holomorphic line bundle with a hermitian metric $h=h_0e^{-\varphi}$, $h_0\in C^\infty$, φ quasi-psh on X, and $\psi\in L^1_{\mathrm{loc}}(X)$. Assume $\exists \alpha>0$ continuous such that

$$\Theta_{L,h} + (1 + \nu \alpha)i\partial \overline{\partial} \psi \ge 0 \quad \text{on } X, \quad \nu = 0, 1.$$

Then, for all $q \ge 0$, the following restriction map is surjective:

$$H^q(X, K_X \otimes L \otimes \mathcal{I}(h)) \to H^q(X, K_X \otimes L \otimes \mathcal{I}(h)/\mathcal{I}(he^{-\psi})).$$

Remark. Here $\mathcal{I}(h)/\mathcal{I}(he^{-\psi})$ is supported on the subvariety (Y, \mathcal{O}_Y) where $\mathcal{O}_Y = \mathcal{O}_X/\mathcal{J}_Y$ and \mathcal{J}_Y is the conductor ideal:

Assume that X is projective (or \exists projective morphism $X \to S$ over S affine algebraic). Let $Y = \sum m_j Y_j$ be a simple normal crossing divisor, and $\mathcal{O}_Y = \mathcal{O}_X/\mathcal{O}_X(-Y)$.

Assume that X is projective (or \exists projective morphism $X \to S$ over S affine algebraic). Let $Y = \sum m_j Y_j$ be a simple normal crossing divisor, and $\mathcal{O}_Y = \mathcal{O}_X/\mathcal{O}_X(-Y)$. Then $\mathcal{O}_X(-Y) = \mathcal{I}(\psi)$ with

$$\psi(z) = \sum c_j \log |\sigma_{Y_j}|_{h_j}^2, \quad c_j > 0 \text{ such that } \lfloor c_j \rfloor = m_j,$$

for any choice of smooth hermitian metrics h_j on $\mathcal{O}_X(Y_j)$. We have $i\partial \overline{\partial} \psi = \sum c_j (2\pi [Y_j] - \Theta_{\mathcal{O}(Y_i),h_j})$.

Assume that X is projective (or \exists projective morphism $X \to S$ over S affine algebraic). Let $Y = \sum m_j Y_j$ be a simple normal crossing divisor, and $\mathcal{O}_Y = \mathcal{O}_X/\mathcal{O}_X(-Y)$. Then $\mathcal{O}_X(-Y) = \mathcal{I}(\psi)$ with

$$\psi(z) = \sum c_j \log |\sigma_{Y_j}|_{h_j}^2, \quad c_j > 0 \text{ such that } \lfloor c_j \rfloor = m_j,$$

for any choice of smooth hermitian metrics h_j on $\mathcal{O}_X(Y_j)$. We have $i\partial \overline{\partial} \psi = \sum c_i (2\pi [Y_i] - \Theta_{\mathcal{O}(Y_i),h_i})$.

Corollary

Assume $\exists (G_{\nu})_{\nu=0,1}$ semiample \mathbb{Q} -divisors such that

(**)
$$L-(1+\nu\alpha)\sum c_jY_j\equiv G_{\nu} \mod \operatorname{Pic}^0(X), \quad c_j>0, \; \alpha>0.$$

Then, for $Y = \sum m_j Y_j$, $m_j = \lfloor c_j \rfloor$, there is a surjective morphism $H^q(X, K_X \otimes L) \twoheadrightarrow H^q(Y, (K_X \otimes L)_{|Y})$.

Assume that X is projective (or \exists projective morphism $X \to S$ over S affine algebraic). Let $Y = \sum m_j Y_j$ be a simple normal crossing divisor, and $\mathcal{O}_Y = \mathcal{O}_X/\mathcal{O}_X(-Y)$. Then $\mathcal{O}_X(-Y) = \mathcal{I}(\psi)$ with

$$\psi(z) = \sum c_j \log |\sigma_{Y_j}|_{h_j}^2, \quad c_j > 0 \text{ such that } \lfloor c_j \rfloor = m_j,$$

for any choice of smooth hermitian metrics h_j on $\mathcal{O}_X(Y_j)$. We have $i\partial \overline{\partial} \psi = \sum c_j (2\pi [Y_j] - \Theta_{\mathcal{O}(Y_j),h_j})$.

Corollary

Assume $\exists (G_{\nu})_{\nu=0,1}$ semiample \mathbb{Q} -divisors such that

(**)
$$L-(1+\nu\alpha)\sum c_jY_j\equiv G_{\nu} \mod \operatorname{Pic}^0(X), \quad c_j>0, \; \alpha>0.$$

Then, for $Y = \sum m_j Y_j$, $m_j = \lfloor c_j \rfloor$, there is a surjective morphism $H^q(X, K_X \otimes L) \twoheadrightarrow H^q(Y, (K_X \otimes L)_{|Y})$.

The case where ψ has analytic singularities can in fact always be reduced to the divisorial case by blowing up.

(1) Qualitatively, approximate solutions suffice

Assume X to be holomorphically convex. By the Cartan-Remmert theorem, this is the case iff X admits a proper holomorphic map $p: X \to S$ only a Stein complex space S.

Assume X to be holomorphically convex. By the Cartan-Remmert theorem, this is the case iff X admits a proper holomorphic map $p: X \to S$ only a Stein complex space S.

Observation: cohomology is then always Hausdorff

Let X be a holomorphically convex complex space and \mathcal{F} a coherent analytic sheaf over X. Then all cohomology groups $H^q(X,\mathcal{F})$ are Hausdorff with respect to their natural topology (local uniform convergence of holomorphic Čech cochains)

Assume X to be holomorphically convex. By the Cartan-Remmert theorem, this is the case iff X admits a proper holomorphic map $p: X \to S$ only a Stein complex space S.

Observation: cohomology is then always Hausdorff

Let X be a holomorphically convex complex space and \mathcal{F} a coherent analytic sheaf over X. Then all cohomology groups $H^q(X,\mathcal{F})$ are Hausdorff with respect to their natural topology (local uniform convergence of holomorphic Čech cochains)

Proof. $H^q(X, \mathcal{F}) \simeq H^0(S, R^q p_* \mathcal{F})$ is a Fréchet space.

Assume X to be holomorphically convex. By the Cartan-Remmert theorem, this is the case iff X admits a proper holomorphic map $p: X \to S$ only a Stein complex space S.

Observation: cohomology is then always Hausdorff

Let X be a holomorphically convex complex space and \mathcal{F} a coherent analytic sheaf over X. Then all cohomology groups $H^q(X,\mathcal{F})$ are Hausdorff with respect to their natural topology (local uniform convergence of holomorphic Čech cochains)

Proof. $H^q(X, \mathcal{F}) \simeq H^0(S, R^q p_* \mathcal{F})$ is a Fréchet space. **Consequence.** Coboundary spaces are closed in cocycle spaces.

Assume X to be holomorphically convex. By the Cartan-Remmert theorem, this is the case iff X admits a proper holomorphic map $p: X \to S$ only a Stein complex space S.

Observation: cohomology is then always Hausdorff

Let X be a holomorphically convex complex space and \mathcal{F} a coherent analytic sheaf over X. Then all cohomology groups $H^q(X,\mathcal{F})$ are Hausdorff with respect to their natural topology (local uniform convergence of holomorphic Čech cochains)

Proof. $H^q(X, \mathcal{F}) \simeq H^0(S, R^q p_* \mathcal{F})$ is a Fréchet space. **Consequence.** Coboundary spaces are closed in cocycle spaces.

Corollary

To solve an equation $\overline{\partial} u = v$ on a holomorphically convex manifold X, it is enough to solve it approximately:

$$\overline{\partial} u_{\varepsilon} = v + w_{\varepsilon}, \qquad w_{\varepsilon} \to 0 \text{ as } \varepsilon \to 0.$$

(2) Twisted Bochner-Kodaira-Nakano inequality (Ohsawa-Takegoshi)

Let (X, ω) be a Kähler manifold and let η , $\lambda > 0$ be smooth functions on X.

(2) Twisted Bochner-Kodaira-Nakano inequality (Ohsawa-Takegoshi)

Let (X, ω) be a Kähler manifold and let η , $\lambda > 0$ be smooth functions on X.

For every compacted supported section $u \in \mathcal{C}_c^{\infty}(X, \Lambda^{p,q} T_X^* \otimes L)$ with values in a hermitian line bundle (L, h), one has

$$\|(\eta + \lambda)^{\frac{1}{2}}\overline{\partial}^{*}u\|^{2} + \|\eta^{\frac{1}{2}}\overline{\partial}u\|^{2} + \|\lambda^{\frac{1}{2}}\partial u\|^{2} + 2\|\lambda^{-\frac{1}{2}}\partial\eta \wedge u\|^{2}$$

$$\geq \int_{X} \langle B_{L,h,\omega,\eta,\lambda}^{p,q}u,u\rangle dV_{X,\omega}$$

where $dV_{X,\omega} = \frac{1}{n!}\omega^n$ is the Kähler volume element and $B_{L,h,\omega,\eta,\lambda}^{p,q}$ is the Hermitian operator on $\Lambda^{p,q}T_X^*\otimes L$ such that

$$B_{L,h,\omega,\eta,\lambda}^{p,q} = [\eta i\Theta_L - i \partial \overline{\partial} \eta - i\lambda^{-1} \partial \eta \wedge \overline{\partial} \eta , \Lambda_{\omega}].$$

(2) Twisted Bochner-Kodaira-Nakano inequality (Ohsawa-Takegoshi)

Let (X, ω) be a Kähler manifold and let η , $\lambda > 0$ be smooth functions on X.

For every compacted supported section $u \in \mathcal{C}_c^{\infty}(X, \Lambda^{p,q} T_X^* \otimes L)$ with values in a hermitian line bundle (L, h), one has

$$\|(\eta + \lambda)^{\frac{1}{2}}\overline{\partial}^{*}u\|^{2} + \|\eta^{\frac{1}{2}}\overline{\partial}u\|^{2} + \|\lambda^{\frac{1}{2}}\partial u\|^{2} + 2\|\lambda^{-\frac{1}{2}}\partial\eta \wedge u\|^{2}$$

$$\geq \int_{X} \langle B_{L,h,\omega,\eta,\lambda}^{p,q}u,u\rangle dV_{X,\omega}$$

where $dV_{X,\omega} = \frac{1}{n!}\omega^n$ is the Kähler volume element and $B_{L,h,\omega,\eta,\lambda}^{p,q}$ is the Hermitian operator on $\Lambda^{p,q}T_X^*\otimes L$ such that

$$B^{p,q}_{L,h,\omega,\eta,\lambda} = [\eta \, i\Theta_L - i \, \partial \overline{\partial} \eta - i\lambda^{-1} \partial \eta \wedge \overline{\partial} \eta \,\,,\,\, \Lambda_\omega].$$

In the sequel, we will apply this to the case of (n, q)-forms (p = n), and choose $\eta, \lambda > 0$ so that $B_{L,h,\omega,\eta,\lambda}^{p,q}$ is ≥ 0 (or close).

L^2 existence theorem "with error term"

Let (X, ω) be a Kähler manifold possessing a complete Kähler metric let (E, h_E) be a Hermitian vector bundle over X. Assume that $B = B_{E,h,\omega,\eta,\lambda}^{n,q}$ satisfies $B + \varepsilon \operatorname{Id} > 0$ for some $\varepsilon > 0$ (so that B can be just semi-positive or slightly negative, e.g. $B \ge -\frac{\varepsilon}{2} \operatorname{Id}$).

L^2 existence theorem "with error term"

Let (X,ω) be a Kähler manifold possessing a complete Kähler metric let (E,h_E) be a Hermitian vector bundle over X. Assume that $B=B^{n,q}_{E,h,\omega,\eta,\lambda}$ satisfies $B+\varepsilon\operatorname{Id}>0$ for some $\varepsilon>0$ (so that B can be just semi-positive or slightly negative, e.g. $B\geq -\frac{\varepsilon}{2}\operatorname{Id}$). Take a section $v\in L^2(X,\Lambda^{n,q}T^*_V\otimes E)$ such that $\overline{\partial}v=0$ and

$$M(\varepsilon) := \int_{X} \langle (B + \varepsilon \operatorname{Id})^{-1} v, v \rangle dV_{X,\omega} < +\infty.$$

L^2 existence theorem "with error term"

Let (X,ω) be a Kähler manifold possessing a complete Kähler metric let (E,h_E) be a Hermitian vector bundle over X. Assume that $B=B^{n,q}_{E,h,\omega,\eta,\lambda}$ satisfies $B+\varepsilon\operatorname{Id}>0$ for some $\varepsilon>0$ (so that B can be just semi-positive or slightly negative, e.g. $B\geq -\frac{\varepsilon}{2}\operatorname{Id}$). Take a section $v\in L^2(X,\Lambda^{n,q}T^*_V\otimes E)$ such that $\overline{\partial}v=0$ and

$$M(\varepsilon) := \int_X \langle (B + \varepsilon \operatorname{Id})^{-1} v, v \rangle dV_{X,\omega} < +\infty.$$

Then there exists an approximate solution $u_{\varepsilon} \in L^2(X, \Lambda^{n,q-1}T_X^* \otimes E)$ and a correction term $w_{\varepsilon} \in L^2(X, \Lambda^{n,q}T_X^* \otimes E)$ such that

$$\partial u_{\varepsilon} = v + w_{\varepsilon}$$
 and
$$\int_{X} (\eta + \lambda)^{-1} |u_{\varepsilon}|^{2} dV_{X,\omega} + \frac{1}{\varepsilon} \int_{X} |w_{\varepsilon}|^{2} dV_{X,\omega} \le M(\varepsilon).$$

L^2 existence theorem "with error term"

Let (X,ω) be a Kähler manifold possessing a complete Kähler metric let (E,h_E) be a Hermitian vector bundle over X. Assume that $B=B^{n,q}_{E,h,\omega,\eta,\lambda}$ satisfies $B+\varepsilon\operatorname{Id}>0$ for some $\varepsilon>0$ (so that B can be just semi-positive or slightly negative, e.g. $B\geq -\frac{\varepsilon}{2}\operatorname{Id}$). Take a section $v\in L^2(X,\Lambda^{n,q}T^*_V\otimes E)$ such that $\overline{\partial}v=0$ and

$$M(\varepsilon) := \int_X \langle (B + \varepsilon \operatorname{Id})^{-1} v, v \rangle dV_{X,\omega} < +\infty.$$

Then there exists an approximate solution $u_{\varepsilon} \in L^2(X, \Lambda^{n,q-1}T_X^* \otimes E)$ and a correction term $w_{\varepsilon} \in L^2(X, \Lambda^{n,q}T_X^* \otimes E)$ such that

$$\partial u_{\varepsilon} = v + w_{\varepsilon}$$
 and
$$\int_{X} (\eta + \lambda)^{-1} |u_{\varepsilon}|^{2} dV_{X,\omega} + \frac{1}{\varepsilon} \int_{X} |w_{\varepsilon}|^{2} dV_{X,\omega} \le M(\varepsilon).$$

Moreover, notice that $\varepsilon M(\varepsilon)$ involves $\varepsilon (B + \varepsilon \operatorname{Id})^{-1} \le 2 \operatorname{Id}$.

(4) Represent cohomology classes as Čech cocycles

Every cohomology class in

$$H^q(X, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h)/\mathcal{I}(he^{-\psi}))$$

is represented by a holomorphic Čech q-cocycle with respect to a Stein covering $\mathcal{U}=(U_i)$, say $(c_{i_0...i_q})$,

$$c_{i_0...i_q} \in H^0(U_{i_0} \cap \ldots \cap U_{i_q}, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h)/\mathcal{I}(he^{-\psi})).$$

(4) Represent cohomology classes as Čech cocycles

Every cohomology class in

$$H^q(X, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h)/\mathcal{I}(he^{-\psi}))$$

is represented by a holomorphic Čech q-cocycle with respect to a Stein covering $\mathcal{U}=(U_i)$, say $(c_{i_0...i_q})$,

$$c_{i_0...i_q} \in H^0(U_{i_0} \cap \ldots \cap U_{i_q}, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h)/\mathcal{I}(he^{-\psi})).$$

By the standard sheaf theoretic isomorphism with Dolbeault cohomology, this class is represented by a smooth (n, q)-form

$$f = \sum_{i_0, \dots, i_q} c_{i_0 \dots i_q} \, \xi_{i_0} \overline{\partial} \xi_{i_1} \wedge \dots \overline{\partial} \xi_{i_q}$$

by means of a partition of unity (ξ_i) subordinate to (U_i) . This form is to be interpreted as a form on the (non necessarily reduced) analytic subvariety Y associated with the conductor ideal sheaf $\mathcal{J}_Y = \mathcal{I}(he^{-\psi}) : \mathcal{I}(h)$.

(5) Smooth lifting and associated $\overline{\partial}$ equation

We get an extension of f as a smooth (no longer $\overline{\partial}$ -closed) (n,q)-form \widetilde{f} on X by taking a lifting via $\mathcal{I}(h) \to \mathcal{I}(h)/\mathcal{I}(he^{-\psi})$

$$\widetilde{f} = \sum_{i_0, \dots, i_q} \widetilde{c}_{i_0 \dots i_q} \xi_{i_0} \overline{\partial} \xi_{i_1} \wedge \dots \overline{\partial} \xi_{i_q},$$

where $\widetilde{c}_{i_0...i_q} \in H^0(U_{i_0} \cap ... \cap U_{i_q}, K_X \otimes L \otimes \mathcal{I}(h)).$

(5) Smooth lifting and associated $\overline{\partial}$ equation

We get an extension of f as a smooth (no longer $\overline{\partial}$ -closed) (n,q)-form \widetilde{f} on X by taking a lifting via $\mathcal{I}(h) \to \mathcal{I}(h)/\mathcal{I}(he^{-\psi})$

$$\widetilde{f} = \sum_{i_0, \dots, i_q} \widetilde{c}_{i_0 \dots i_q} \xi_{i_0} \overline{\partial} \xi_{i_1} \wedge \dots \overline{\partial} \xi_{i_q},$$

where $\widetilde{c}_{i_0...i_q} \in H^0(U_{i_0} \cap ... \cap U_{i_q}, K_X \otimes L \otimes \mathcal{I}(h)).$

(5) Smooth lifting and associated $\overline{\partial}$ equation

We get an extension of f as a smooth (no longer $\overline{\partial}$ -closed) (n,q)-form \widetilde{f} on X by taking a lifting via $\mathcal{I}(h) \to \mathcal{I}(h)/\mathcal{I}(he^{-\psi})$

$$\widetilde{f} = \sum_{i_0, \dots, i_q} \widetilde{c}_{i_0 \dots i_q} \xi_{i_0} \overline{\partial} \xi_{i_1} \wedge \dots \overline{\partial} \xi_{i_q},$$

where $\widetilde{c}_{i_0...i_q} \in H^0(U_{i_0} \cap ... \cap U_{i_q}, K_X \otimes L \otimes \mathcal{I}(h))$.

Now, truncate \widetilde{f} as $\theta(\psi - t)\cdot \widetilde{f}$ on the green hollow tubular neighborhood, and solve an approximate $\overline{\partial}$ -equation

$$(*) \qquad \overline{\partial} u_{t,\varepsilon} = \overline{\partial} (\theta(\psi - t) \cdot \widetilde{f}) + w_{t,\varepsilon}, \quad 0 \leq \theta \leq 1, \quad |\theta'| \leq 1 + \varepsilon.$$

Here we have

$$\overline{\partial}(\theta(\psi - t) \cdot \widetilde{f}) = \theta(\psi - t) \cdot \overline{\partial}\widetilde{f} + \theta'(\psi - t)\overline{\partial}\psi \wedge \widetilde{f}$$

where the second term vanishes near Y.

Here we have

$$\overline{\partial}(\theta(\psi-t)\cdot\widetilde{f})=\theta(\psi-t)\cdot\overline{\partial}\widetilde{f}+\theta'(\psi-t)\overline{\partial}\psi\wedge\widetilde{f}$$

where the second term vanishes near Y.

Moreover the image of $\overline{\partial}\widetilde{f}$ in $\mathcal{I}(h)/\mathcal{I}(he^{-\psi})$ is $\overline{\partial}f=0$, thus $\overline{\partial}\widetilde{f}$ has coefficients in $\mathcal{I}(he^{-\psi})$. Hence $\overline{\partial}\widetilde{f}\in L^2_{\mathrm{loc}}(he^{-\psi})=L^2_{\mathrm{loc}}(h_0e^{-\varphi-\psi})$.

Here we have

$$\overline{\partial}(\theta(\psi-t)\cdot\widetilde{f})=\theta(\psi-t)\cdot\overline{\partial}\widetilde{f}+\theta'(\psi-t)\overline{\partial}\psi\wedge\widetilde{f}$$

where the second term vanishes near Y.

Moreover the image of $\overline{\partial} \widetilde{f}$ in $\mathcal{I}(h)/\mathcal{I}(he^{-\psi})$ is $\overline{\partial} f=0$, thus $\overline{\partial} \widetilde{f}$ has coefficients in $\mathcal{I}(he^{-\psi})$. Hence $\overline{\partial} \widetilde{f} \in L^2_{\mathrm{loc}}(he^{-\psi})=L^2_{\mathrm{loc}}(h_0e^{-\varphi-\psi})$.

Truncate $p: X \to S$ by taking $X' = p^{-1}(S')$, $S' \subseteq S$ Stein.

Here we have

$$\overline{\partial}(\theta(\psi-t)\cdot\widetilde{f})=\theta(\psi-t)\cdot\overline{\partial}\widetilde{f}+\theta'(\psi-t)\overline{\partial}\psi\wedge\widetilde{f}$$

where the second term vanishes near Y.

Moreover the image of $\overline{\partial}\widetilde{f}$ in $\mathcal{I}(h)/\mathcal{I}(he^{-\psi})$ is $\overline{\partial}f=0$, thus $\overline{\partial}\widetilde{f}$ has coefficients in $\mathcal{I}(he^{-\psi})$. Hence $\overline{\partial}\widetilde{f}\in L^2_{\mathrm{loc}}(he^{-\psi})=L^2_{\mathrm{loc}}(h_0e^{-\varphi-\psi})$.

Truncate $p: X \to S$ by taking $X' = p^{-1}(S')$, $S' \in S$ Stein. There are quasi-psh regularizations $\varphi_{\delta} \downarrow \varphi$, $\psi_{\delta} \downarrow \psi$ with analytic singularities, smooth on $X' \setminus Z_{\delta}$, Z_{δ} analytic, and a complete Kähler metric ω_{δ} on $X' \setminus Z_{\delta}$ such that

$$\int_{X' \smallsetminus Z_{\delta}} |\overline{\partial} \widetilde{f}|^2_{\omega_{\delta},h_0} e^{-\varphi_{\delta} - \psi_{\delta}} dV_{\omega_{\delta}} \leq \int_{X'} |\overline{\partial} \widetilde{f}|^2_{\omega,h_0} e^{-\varphi - \psi} dV_{\omega} < +\infty,$$

and we have an arbitrary small loss $O(\delta)$ of positivity in the curvature assumptions. Since ε errors are permitted, we take $\delta \ll \varepsilon$ and are reduced to the case where φ and ψ are smooth on X'.

(7) Bound of the error term in the $\overline{\partial}$ -equation

(7) Bound of the error term in the $\overline{\partial}$ -equation

The first integral in the right hand side tends to 0 as $t \to -\infty$.

(7) Bound of the error term in the $\overline{\partial}$ -equation

We obtain an approximate L^2 solution $u_{t,\varepsilon}$ of the $\overline{\partial}$ -equation $\overline{\partial} u_{t,\varepsilon} = v_t + w_{t,\varepsilon}, \quad v_t := \theta(\psi - t) \cdot \overline{\partial} \widetilde{f} + \theta'(\psi - t) \overline{\partial} \psi \wedge \widetilde{f}, \text{ with}$ $\int_{X'} |w_{t,\varepsilon}|^2_{\omega,h_0} e^{-\varphi - \psi} dV_{X,\omega} \le 4 \int_{X' \cap \{\psi < t+1\}} |\overline{\partial} \widetilde{f}|^2_{\omega,h_0} e^{-\varphi - \psi} dV_{\omega}$ $+ 4 \int_{X' \cap \{t < \psi < t+1\}} \varepsilon \langle (B_t + \varepsilon \operatorname{Id})^{-1} \overline{\partial} \psi \wedge \widetilde{f}, \overline{\partial} \psi \wedge \widetilde{f} \rangle_{\omega,h_0} e^{-\varphi - \psi}.$

The first integral in the right hand side tends to 0 as $t \to -\infty$.

The main point is to choose ad hoc factors $\eta = \eta_t$, $\lambda = \lambda_t$ in the twisted Bochner identity to get the last integral to converge to 0.

(7) Bound of the error term in the ∂ -equation

We obtain an approximate L^2 solution $u_{t,\varepsilon}$ of the $\overline{\partial}$ -equation $\overline{\partial} u_{t,\varepsilon} = v_t + w_{t,\varepsilon}, \quad v_t := \theta(\psi - t) \cdot \overline{\partial} \widetilde{f} + \theta'(\psi - t) \overline{\partial} \psi \wedge \widetilde{f}, \text{ with}$
$$\begin{split} \int_{X'} |w_{t,\varepsilon}|^2_{\omega,h_0} \, e^{-\varphi-\psi} dV_{X,\omega} &\leq 4 \int_{X'\cap\{\psi< t+1\}} |\overline{\partial} \widetilde{f}|^2_{\omega,h_0} \, e^{-\varphi-\psi} dV_{\omega} \\ &+ 4 \int_{X'\cap\{t<\psi< t+1\}} \varepsilon \langle \big(B_t + \varepsilon \operatorname{Id}\big)^{-1} \overline{\partial} \psi \wedge \widetilde{f}, \overline{\partial} \psi \wedge \widetilde{f} \rangle_{\omega,h_0} \, e^{-\varphi-\psi}. \end{split}$$

The first integral in the right hand side tends to 0 as $t \to -\infty$.

The main point is to choose ad hoc factors $\eta = \eta_t$, $\lambda = \lambda_t$ in the twisted Bochner identity to get the last integral to converge to 0. As $X' \subseteq X$, we can assume α constant and $\psi < 0$. For u < 0, set

$$\zeta(u) = \log \frac{\frac{1}{\alpha} + 1}{\frac{1}{\alpha} + 1 - e^u}, \ \chi(u) = \frac{\frac{1}{\alpha^2} - 1 + e^u - (\frac{1}{\alpha} + 1)u}{\frac{1}{\alpha} + 1 - e^u}, \ \beta = \frac{(\chi')^2}{\chi \zeta'' - \chi''}.$$

One checks that $\varepsilon = e^{2t}$, $\sigma_t(u) = \log(e^u + e^t)$, $\eta_t = \chi(\sigma_t(\psi))$, $\lambda_t = \beta(\sigma_t(\psi))$ and $h_0 \mapsto h_t = h_0 e^{-\zeta(\sigma_t(\psi))}$ yield an $O(e^t)$ bound.