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PIERRE DEHORNOY AND ANA RECHTMAN

Abstract. Given a vector field on a 3-dimensional rational homology sphere, we give a formula for the Euler
characteristic of its transverse surfaces, in terms of boundary data only. This provides a formula for the genus
of a transverse surface, and in particular, of a Birkhoff section. As an application, we show that for a right-
handed flow with an ergodic invariant measure, the genus is an asymptotic invariant of order 2 proportional
to helicity.

1. Introduction

In this paper we study topological properties of non-singular vector fields on 3-dimensional homology
spheres. An important problem in this field is to obtain measure-preserving homeomorphism or diffeomor-
phism invariants, meaning that the value is the same for flows that are conjugated by a homeomorphism or
a diffeomorphism that preserve a given measure. We provide a step towards the possible definition of such
an invariant built from the genus of knots.

Introduced by Woltjer, Moreau and Moffatt, helicity is the main known invariant [Wol58, Mor61, Mof69].
For a divergence free vector fieldX on a closed Riemannian manifoldM , it is defined by the formula Hel(X) =∫
X · Y , where Y = curl−1(X) is an arbitrary vector-potential of X. Arnold and Vogel proved that, on

homology spheres, helicity coincides with the average asymptotic linking number [Arn73, Vog02]. More pre-
cisely, let φtX for t ∈ R be the flow of X and denote by kX(p, t) the loop starting at the point p that follows
the orbit until φtX(p) and closes by an arbitrary segment of bounded length. The average asymptotic linking

number is the double integral, with respect to an invariant measure, of limt1,t2→∞
Lk(kX(p1,t1),kX(p2,t2))

t1t2
, where

Lk is the linking number between the two loops.
In order to produce other asymptotic invariants, one is tempted to replace the linking number by an-

other link or knot invariant. In this direction, Freedman and He constructed the asymptotic crossing
number [FrH91], Gambaudo and Ghys constructed the asymptotic Ruelle invariant [GaG97] (see also Sec-
tion 4.b), while the authors of this paper constructed the trunkenness based on the trunk of a knot [DeR15].
These are three examples of invariants that are not proportional to helicity. On the other hand, Gambaudo
and Ghys considered ω-signatures of knots [GaG01], Baader considered linear saddle invariants [Baa11],
and Baader and Marché considered Vassiliev’s finite type invariants [BaM12]. All these constructions have
the drawback that they do not yield any new invariant for ergodic vector fields, the obtained limits are all
functions of the helicity. For an explanation for the ubiquity of helicity we refer to [Kud15, EPT16].

The genus of a knot k, denoted by g(k) and defined as the minimal genus of an orientable surface spanned
by k, is a fundamental invariant in knot-theory. An open problem in the context of vector fields is to prove
that the limit of 1

tn g(kX(p, t)) exists for some n. Actually n = 2 is the natural candidate as explained
in [Deh15b, Question 5.4] and as a consequence of Theorem 1.1.

In this paper we study the genus of surfaces whose boundary is composed by one or several periodic orbits
of the flow and whose interior is transverse to the vector field. We refer to such surfaces as transverse
surfaces. Considering only such surfaces is a strong restriction, since among the collection of surfaces
with fixed boundary, those of minimal genus need not be transverse to the vector field. But a specific
hypothesis on the flow will ensure that it is the case. Theorem 1.1 stands for right-handed vector fields:
these are vector fields on homology spheres all of whose invariant positive measures link positively [Ghy09].
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This hypothesis implies that any collection of periodic orbits of the flow bounds a transverse surface that
intersects all the orbits of the flow.

Theorem 1.1. Let M be a 3-manifold that is a rational homology sphere, X a non-singular right-handed vec-
tor field on M and µ a X-invariant measure. If (γn)n∈N is a sequence of periodic orbits whose lengths (tn)n∈N
tend to infinity and such that ( 1

tn
γn)n∈N tends to µ in the weak-∗ sense, then the sequence ( 1

t2n
g(γn))n∈N tends

to half the helicity of (X,µ).

Note that one can replace right-handedness by left-handedness, and only change the helicity by its absolute
value. Right-, or left-, handedness is a strong restriction, but several important classes of vector fields
have this property: for example the Lorenz vector field on R3 is (in a certain sense) right-handed [Ghy09],
geodesic flows on positively curved surfaces are left-handed, as well as geodesic flows on hyperbolic triangular
orbifolds [Deh16]. On the other hand many flows are neither right- nor left-handed, as for example the Ghrist
flow which contains all types of knots as periodic orbits [Ghr97]. For such general flows, we also expect the
genus to have a quadratic asymptotic behaviour, but we expect the asymptotic value to be strictly larger
than half the absolute value of the helicity.

The proof of Theorem 1.1 mostly relies on an adaptation of results on global sections to flows to the case
of surfaces with boundary, coupled with the classical fact in knot theory that fiber surfaces for knots are
genus-minimizing. More precisely, a transverse surface is a Birkhoff section if it intersects all the orbits
of the flow. If the boundary is empty, one speaks of a global cross section. When a flow admits a global
cross section, up to changing the time-parameter (i.e. multiplying the vector field by a striclty positive
function), the dynamics of the flow is described by the dynamics of the first-return map on the global cross
section. The description of all global cross sections to a vector field is given by Schwartzman-Fuller-Sullivan-
Fried Theory, which is purely homological [Sch57, Ful65, Sul76, Fri82]. Moreover, Thurston and Fried gave
formulas for computing the genus of global cross sections [Thu86, Fri79].

Schwartzman-Fuller-Sullivan-Fried Theory may be extended to Birkhoff sections, but this has only been
partially done [Fri82, Ghy09, Hry19]. What we do here is to push a bit further Fried’s and Ghys’ ideas. We
provide, in Corollary 1.3, a formula for the genus of transverse surfaces with boundary, that depends only
on data calculated along boundary components. The corollary is deduced from the following result that
provides a formula for the Euler characteristic of these type of surfaces.

Theorem 1.2. Assume that M is a 3-dimensional rational homology sphere and that X is a non-singular
vector field on M . Let {γi}16i6m be a finite collection of periodic orbits of X and {ni}16i6m a collection of
integers. If S is a transverse surface to X with oriented boundary ∪niγi, then the Euler characteristic of S
is given by

χ(S) = −
∑

16i<j6m

(ni+nj)Lk(γi, γj)−
∑

16i6m

niSlkζX (γi),

where ζX denotes any vector field everywhere transverse to X and SlkζX the self-linking given by the fram-
ing ζX (see Definition 2.3).

We can easily deduce the formula for the genus of the surface.

Corollary 1.3. Assume that M is a 3-dimensional rational homology sphere and that X is a non-singular
vector field on M . Let {γi}16i6m be a finite collection of periodic orbits of X and {ni}16i6m a collection of
integers. If S is a transverse surface to X with oriented boundary ∪niγi, then the genus of S is given by

g(S) = 1 +
1

2

 ∑
16i<j6m

(ni+nj)Lk(γi, γj) +
∑

16i6m

niSlkζX (γi)− gcd(ni,
∑
j 6=i

nj Lk(γi, γj))

 .

It is likely that Theorem 1.2 may be adapted to an arbitrary 3-manifold M . In this case, one would have
to adapt the definition of linking number which is not anymore well-defined.

Theorem 1.2 and Corollary 1.3 also have an independent interest. Given a flow in a 3-manifold, it is
a natural question to look for Birkhoff sections of minimal genus or minimal Euler characteristics. For
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example Fried asked whether every transitive Anosov flow with orientable invariant foliations admits a
genus-one Birkhoff section [Fri83]. Similarly, Etnyre asked wether every contact structure can be defined by
a contact form whose Reeb flow admits a genus-one Birkhoff section [Etn06]. Corollary 1.3 was implemented
by the first author for the geodesic flows on some hyperbolic orbifolds, which led to answer positively Fried’s
question in these cases [Deh15a]. It was also used by Dehornoy and Shannon to numerically check that
suspensions of linear automorphisms of T2 admit infinitely many genus-one Birkhoff sections [DeS19].

The paper is organized as follows. In Section 2 we give a proof of Theorem 1.2 and Corollary 1.3. In
Section 3 we illustrate Theorem 1.2 with the example of the Hopf vector field. Theorem 1.1 is proved in
Section 4.

Acknowledgments. The authors thank Adrien Boulanger, Étienne Ghys and Christine Lescop for several
discussions around the topic of this paper, and the referee for several suggestions that hopefully improve
the readibility of the paper.

2. The Euler characteristic of a transverse surface

The aim of this section is to give a proof of Theorem 1.2, which is done in Section 2.e. We first recall
in 2.a some classical results on global cross sections and we explain in 2.b how the genus of such a section
can be obtained. Section 2.c introduces linking and self-linking, and 2.d contains the key-lemma for the
proof of Theorem 1.2.

2.a. Schwartzman-Fuller-Sullivan-Fried Theory. We recall classical results concerning global cross
sections to flows, but we state them in the more general context of a 3-manifold M with toric boundary and
a non-singular vector field X tangent to ∂M . The original proofs extend verbatim to this case.

First we recall the definition of asymptotic cycles. The original one is in terms of almost-periodic
orbits [Sch57]: for p ∈ M and t > 0, we denote by kX(p, t) the closed curve obtained by connecting the

arc of orbit φ
[0,t]
X (p) with a segment of bounded length (recall that M is compact). Assume now that µ is

an ergodic invariant positive measure and that p is a quasi-regular point for µ. The asymptotic cycle aµ
determined by µ is the weak-∗ limit ( 1

tn
[kX(p, tn)])n∈N, with tn → ∞. It is independent of p and tn. The

set SX of all asymptotic cycles is the convex hull of those asymptotic cycles associated to ergodic invariant
positive measures. It is a convex cone in H1(M ;R).

Alternatively, for µ a X-invariant positive measure, one can consider the 1-current cµ : Ω1(M)→ R which
maps a 1-form f to

∫
M f(X(p)) dµ(p). The invariance of µ implies that cµ is closed (i.e., it vanishes on

closed forms), hence it determines a 1-cycle [cµ] ∈ H1(M ;R) in the sense of De Rham. The two notions
actually coincide: when µ is an ergodic measure, aµ and [cµ] are equal under the identification of singular
and current homologies [Sul76].

Schwartzman’s criterion [Sch57] is the following.

Theorem 2.1 (Schwartzman). A class σ ∈ H1(M ;Z) is dual to a global cross section if, and only if, for
every asymptotic cycle c ∈ SX one has c(σ) > 0.

2.b. Genus of global cross sections. In the context of the previous part, a standard argument shows that
if two global cross sections to a vector field are homologous, then they are isotopic along the flow [Thu86].
Actually it shows more: a global cross section minimises the genus in its homology class. So one may wonder
how to compute this genus. Thurston and Fried give a satisfying answer [Fri79]. Denote by X⊥ the normal
bundle to X (it is the 2-dimensional bundle TM/RX), and by e(X⊥) ∈ H2(M,∂M ;Z) its Euler class.

Theorem 2.2 (Fried-Thurston). Assume that S is a surface transverse to X. Then one has χ(S) =
e(X⊥)([S]).

The argument is short: since S is transverse to X, the restricted bundle X⊥|S is isomorphic to the tangent
bundle TS. In particular one has e(X⊥)([S]) = e(TS)([S]) = χ(S).

Said differently, if ζ is a vector field in generic position with respect to X, the set Lζ,X where ζ is tangent
to X is a 1-manifold. In order to consider its homology class, one has to orient Lζ,X and to equip it with
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multiplicities. Here is how one can do it (see Figure 1): one takes a small disc D positively transverse to X
and transverse to Lζ,X . The projection of ζ on D along X defines a vector field ζD on D with a singularity
at the center. The index of the singularity may be positive or negative (it cannot be 0 for in this case X and
ζ would not be in generic position) and thus the product of its sign with the orientation of D induces a new
orientation on D. Since D is transverse to Lζ,X , this new orientation induces an orientation of Lζ,X . The
multiplicity then comes from the absolute value of the index of the singularity. Observe that the multiplicity
is locally constant by continuity and hence constant on each connected component of Lζ,X . The point is
that these choices are independent of D. If one perturbes D by keeping it transverse to X and Lζ,X , by
continuity and discreteness, the multiplicity and orientation do not change. If one perturbes D by keeping
it transverse to X but change the relative position to respect to TLζ,X , the induced orientation on Lζ,X
changes, but the index is also changed by its opposite. Hence the product is constant.

Figure 1. Orientation of the dual Lζ,X of the Euler class e(X⊥). On this picture the vector field
X is locally vertical. A vector field ζ in general position with respect to X is shown. It is tangent to
X (i.e., vertical) on a dimension 1-submanifold Lζ,X := {X ‖ ζ}, in red. We consider an arbitrary
disc D transverse to both X and Lζ,X . Projecting ζ on D along X we get a vector field ζD with one
singularity at the center. The index of this vector field gives a multiplicity to the disc, and together
with the orientation of D an orientation and a multiplicity to Lζ,X . One checks that changing D may
change the index by its opposite (bottom), but also the orientation, so that their product is unchanged.

The class [Lζ,X ] ∈ H1(M ;Z) is then Poincaré dual to e(X⊥), see [BoT82, Prop. 12.8]. Given a surface S
transverse to X, projecting ζ on S along X yields a vector field ζS on S, which vanishes exactly when S
intersects Lζ,X . The Euler characteristic of S can be computed with the Poincaré-Hopf formula for ζS . The
crucial point [Thu86, Fri79] is that, thanks to the orientation and multiplicity of Lζ,X , each intersection
point contributes with the right sign to the sum.

2.c. Linking and self-linking on homology spheres. We now assume that M is a rational homology
sphere. Given two links L1, L2, their linking number Lk(L1, L2) is defined as 〈L1, S2〉, where S2 is a
rational 2-chain bounded by L2. The existence of S2 is guaranteed by the vanishing of [L2], whereas the
vanishing of [L1] implies that the linking number is independent of the choice of S2. Linking number is
symmetric, although this is not obvious from the definition we just gave.

A framing f of a link L is a section of its unit normal bundle. It induces an isotopy class Lf in M \ L
obtained by pushing L off itself in the direction of f .
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Definition 2.3. Given a link L and a framing f , the self-linking Slkf (L) is defined as the linking number
of L and Lf .

When M is an integral homology sphere, every individual curve (that is, the curve with multiplicity one)
has a preferred framing corresponding to a self-linking number zero. By definition, this zero-framing is
induced by any surface bounded by the considered curve. Therefore one can see the self-linking number with
respect to a framing f as the algebraic intersection number between the framing f and a surface bounded
by the considered curve.

When M is a rational non-integral homology sphere, there is not always a preferred framing in the above
sense. One then has to consider rational framings which are multi-sections of the unit normal bundle.
More precisely, the unit normal bundle to a curve γ is a torus γ×S1. A rational framing is a homotopy class
of a closed curve on that torus. Given such a rational framing f of a link L, we can extend the definition of
self-linking to this context. Assume that f winds kf times in the longitudinal direction along L, we define Lf

as the link obtained by pushing the link L traveled kf times off itself in the direction of f . Then Slkf (L) is

defined as 1
kf

Lk(L,Lf ). With this extended definition, there is always one (rational) zero-framing.

2.d. Boundary slope. We continue with the assumption that M is a rational homology sphere. Fix a link
L = K1∪ · · ·∪Km in M . The boundary operator ∂ realises an isomorphism H2(M,L;R) ' H1(L;R), as can
be seen by writing the long exact sequence. Therefore a class in H2(M,L;R) is determined by its boundary
class. For σ in H2(M,L;R), denote by ni(σ) its longitudinal boundary coordinates, that is, the real
numbers such that ∂σ =

∑
ni(σ)[Ki].

In this context, we denote by ML the normal compactification of M \L: the manifold obtained from M
by replacing every point of L by the circle of those half-planes bounded by TL. The boundary ∂ML is then
isomorphic to L × S1: it is a disjoint union of tori. The manifold ML is actually isomorphic to M \ ν(L),
where ν(L) is an open tubular neighbourhood of L.

By the excision theorem, there is an isomorphism H2(M,L;R) ' H2(ML, ∂ML;R), so that we can also
see the class σ as an element of H2(ML, ∂ML;R). There, its boundary is an element of H1(∂ML;R), whose
dimension is higher than the dimension of H1(L;R). For distinction we then write ∂• : H2(M,L;R) →
H1(L;R) and ∂◦ : H2(ML, ∂ML;R)→ H1(∂ML;R) for the two operators (see Figure 2). As we said the first
one is an isomorphism, while the second one is only injective.

Figure 2. On the left, a link L (red) in a 3-manifold M and a surface S (purple) representing
a class σ with ∂•σ = L. On the right, the corresponding manifold ML with boundary L ×
S1 and the corresponding surface S whose boundary ∂◦S sits in L × S1. The additional
information given by the meridian coordinate of ∂◦S tells how many times S wraps around L.
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Let S be a surface representing the class σ above. In order to understand the image of ∂◦, we have to
understand the framing induced by S along every boundary component (that is, the slope of S ∩ (Ki × S1)
for every component Ki of L).

Lemma 2.4. If M is a rational homology sphere and S is a surface with ∂•S =
∑

i niKi, then the coordinates

of ∂◦S along Ki in the (meridian, 0-longitude)-basis are

(
−
∑
j 6=i

nj Lk(Ki,Kj), ni

)
.

Proof. Since M is a homology sphere, all oriented surfaces with the same boundary induce the same framing
on the boundary. An oriented surface realizing [S] is obtained by desingularising the union ∪ini(σ)Si where
Si is an oriented surface in M with boundary Ki. Observe that the intersection of Si and Sj , for i 6= j, can
be made either empty or transverse, and when non-empty it can be made of segments with one endpoint in
Ki and the other in Kj .

If the intersection is non-empty, at each connected component of the intersection we have two choices
of desingularisation, but only one that respects orientations. The desingularisation near the endpoints of
each segment in the intersection is obtained by removing one meridian to Ki everytime Sj intersects Ki.
This number is equal to Lk(Ki,Kj) and hence the total meridian contribution of all surfaces on Ki

is −
∑

j 6=i njLk(Ki,Kj). On the other hand the longitudinal coordinate is unchanged in this desingu-
larisation process, thus it is ni. The conclusion follows immediately. �

2.e. The Euler class of X⊥Γ . Assume that M is a rational homology sphere with empty boundary. We
are given a non-singular vector field X on M , a finite collection Γ = γ1 ∪ · · · ∪ γm of periodic orbits of X
and multiplicities n1, . . . , nm which are integers. In this context the existence of a Birkhoff section for X
bounded by ∪mi=1niγi is the same as the existence of a cross section (S, ∂S) for the extension of X to the
manifold MΓ such that the longitudinal coordinates of ∂◦S are (n1, . . . , nm).

Denote by XΓ the extension of X to MΓ. In order to understand the topology of the cross section, one
wonders whether the class e(X⊥Γ ) may be easily represented.

Since the Euler class of X⊥ vanishes, there exists non-singular vector fields on M everywhere transverse
to X. Since M is a homology sphere, two such vector fields are homotopic through vector fields that are
everywhere transverse to X. Indeed the first vector field gives an origin to the normal sphere bundle, so
that the second vector field yields a function on the circle. Since M is a homology sphere, this function is
homotopic to a constant function.

Denote by ζX a vector field transverse to X. We use ζX to realise the Euler class e(X⊥Γ ). As in Fried and
Thurston theorem (see Theorem 2.2), the Euler class of a vector bundle is represented by the intersection
with a generic section (see [BoT82, Prop. 12.8]). Here one has to take into account the fact that MΓ has
boundary.

Proof. [Proof of Theorem 1.2] The vector field ζX is everywhere transverse to X on M but not tangent
to ∂MΓ. In order to make it tangent to the boundary of the manifold, we have to “rotate” ζX towards X
around each component γi. This can be achieved by combining, near γi, the two vector fields ζX and XΓ

(see Figure 3).
We obtain a vector field ζX,Γ which is transverse to XΓ on MΓ, except at the boundary components, where

it is tangent to XΓ along two curves that correspond to the framings given by ζX and −ζX . In particular
the set LζX ,Γ := {p ∈ MΓ |XΓ(p) ‖ ζX,Γ(p)} is a collection of two longitudes γin

i , γ
out
i for every boundary

component γi × S1 of ∂MΓ.
Orienting LζX ,Γ so that its class is dual to e(X⊥Γ ) can be done as in Section 2.b. Considering a component γi

of Γ, one has to take a small disc D in M transverse to γi. The corresponding annulus DΓ in MΓ is
automatically transverse to LζX ,Γ. The projection of ζX,Γ on DΓ exhibits two singularities of index −1

2 (see

the right-hand disc in Figure 3). Therefore, if γin
i and γout

i are oriented in the direction opposite to X, they
both have multiplicty 1

2 .
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Figure 3. On the left, the vector field ζX (green) on M . Since it is transverse to X, is it
transverse to the link Γ (red) made of periodic orbits of X. Seen from above, Γ is a point
and ζX is a non-vanishing vector field. On the right, the modification of ζX into ζX,Γ. Seen
from above, one has to slow down ζX so that it has (transversal) speed 0 on Γ. The set LζX ,Γ
(pink) then consists of two longitudes per component of Γ.

Let S be the surface transverse to X in the statement of Theorem 1.2 and σ ∈ H2(MΓ, ∂MΓ;Z) be its
class, then χ(S) = e(X⊥Γ )(σ) = 〈LζX ,Γ, σ〉. This intersection equals

m∑
i=1

〈γin
i + γout

i , (∂◦σ)i〉,

where (∂◦σ)i denotes the part of ∂◦σ on the component γi × S1 of ∂MΓ.
Now the algebraic intersection of two curves on a 2-torus is the determinant of their coordinates in

homology. Since γin
i and γout

i both have coordinates (−SlkζX (γi),−1) in the (meridian, 0-longitude)-basis
of γi × S1, and since every intersection point contributes to 1

2 to the intersection, thanks to Lemma 2.4, we
have

〈γin
i + γout

i , (∂◦σ)i〉 = −niSlkζX (γi)−
∑
j 6=i

nj Lk(Ki,Kj).

Summing over all boundary components, we get the desired formula. �

Proof. [Proof of Corollary 1.3] From the surface S bounded by ∪niγi described above, we only have to cap
all boundary components with discs for obtaining a closed surface. However counting how many discs we
need is a bit subtle: along each orbit γi, the surface winds ni times longitudinally and, thanks to Lemma 2.4,
−
∑

j 6=i nj Lk(γi, γj) meridionally. Therefore the number of boundary components along γi of the abstract
surface S is the gcd of these numbers. We get

g(S) = 1−
χ(S) +

∑
i gcd(ni,

∑
j 6=i nj Lk(γi, γj))

2

= 1 +
1

2

 ∑
16i<j6m

(ni+nj)Lk(γi, γj) +
∑

16i6m

niSlkζX (γi)− gcd(ni,
∑
j 6=i

nj Lk(γi, γj))

 .

�
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3. Examples: Birkhoff sections for the Hopf vector field

Let XHopf denote the Hopf vector field on S3 and φHopf denote the associated flow. Every orbit γ of φHopf

is periodic and bounds a disc Dγ transverse to XHopf . Since any two orbits have linking number +1, the
disc Dγ is a Birkhoff section for φHopf . More generally, if ∪niγi and ∪n′iγ′i are two collections of disjoint
periodic orbits with multiplicities, their linking number is given by (

∑
ni)(

∑
n′i).

On the other hand, a vector field transverse to XHopf can be easily found by taking another Hopf fibration

ζHopf orthogonal to XHopf . One checks that for every periodic orbit γ of φHopf , one has SlkζHopf (γ) = −1.
For a Birkhoff section that is a disc Dγ with one boundary component γ, Theorem 1.2 then yields

χ(Dγ) = −(−1) = +1,

as expected.
Consider now a collection γ1, . . . , γm of m periodic orbits. The link Γ :=

∑
i γi links positively with

any positive invariant measure. Hence it bounds a Birkhoff section, denoted by SΓ. This section can be
obtained from the union Dγ1 ∪· · ·∪Dγm by desingularising along the segments where two discs intersect. As
discussed in the proof of Lemma 2.4, for each segment there are two possible ways to resolve the intersection
an obtain a (non-orientable) surface with the same boundary. But since here we want the resulting surface
to be transverse to the vector field XHopf , there is only one way to desingularise.

The Euler characteristic of the resulting surface can be computed by hand, but Theorem 1.2 directly
yields

χ(SΓ) = −m(m− 1)− (−m) = −m(m− 2).

Since SΓ has m boundary components, we obtain

g(SΓ) = 1− χ(SΓ) +m

2
= 1 +

m(m− 3)

2
which is the genus of a Hopf link with m components. One can generalise a bit more by considering a
collection ∪iniγi, where the ni are integers. The condition for bounding a Birkhoff section then becomes∑

i ni > 0, since the linking number of ∪iniγi with any other orbit of the flow has to be positive. Denoting
by S∪iniγi such a Birkhoff section, Theorem 1.2 yields

χ(S∪iniγi) = −
∑

16i<j6m

(ni + nj) +
∑

16i6m

ni =
∑

16i6m

(1−m)ni +
∑

16i6m

ni = (2−m)
∑

16i6m

ni.

4. Genus and the Ruelle invariant

In this section we prove Theorem 1.1. As discussed above, when M is a homology sphere and X a non-
singular vector field on M , for every periodic orbit γ of X, we have presented two preferred framings, namely
the zero-framing determined by a spanning surface, and the framing given by a vector field ζX everywhere
transverse to X. By definition, the difference of these two framings along γ is ±SlkζX (γ).

If γ is the unique boundary component of a Birkhoff section, Corollary 1.3 says that the genus of this
Birkhoff section is 1 + (SlkζX (γ) − 1)/2. One wonders whether this quantity has an asymptotic behaviour
when γ tends to fill M . Two related quantities are known to have one, and we present them now. Both rely
on a third framing on γ, given by the differential of the flow.

4.a. Three framings on γ × S1. Recall that Mγ is the 3-manifold with boundary obtained from M by
replacing every point of γ by its sphere normal bundle S(TM/RX) which is topologically a circle. If X is
at least C1, we can then extend X to γ × S1 using the differential of the flow, and obtain a non-singular
vector field Xγ on Mγ . Now we have three framings on γ × S1, two integral ones (the zero-framing and the
one induced by ζX) and one real (induced by DX).

The restriction of Xγ to ∂Mγ is a vector field on a torus whose first coordinate (in the X-direction) can
be made constant. Hence it has a well-defined translation number: the Ruelle invariant RX(γ) is defined as
the translation number of Xγ |γ×S1 with respect to the framing ζX [Rue85, GaG97]. On the other hand the

rotation number of Xγ |γ×S1 with respect to the zero-framing is given by SlkDX(γ). Both these numbers are
real (and not necessarily integers).
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Since the quantities RX(γ),SlkζX (γ) and SlkDX(γ) denote the respective difference between the three
possible pairs of framings, we have

(1) SlkζX (γ) = SlkDX(γ)−RX(γ),

where only the term SlkζX (γ) is always an integer.
The Ruelle invariant may be extended to any X-invariant measure using long arcs of orbits, but we do

not need this here (see [GaG97]).

4.b. Asymptotic genus for right-handed vector fields. Assume that X is now a right-handed vector
field on a rational homology sphere M , meaning that all X-invariant positive measures have positive linking
number [Ghy09]. In this context Ghys proved that every periodic orbit bounds a Birkhoff section. It is also
known that such a section is genus-minimizing (this is a folklore result among 3-dimensional topologists, a
possible reference is [Thu86] although the statement is older). Therefore the genus of a periodic orbit γ is

given by 1 + (SlkζX (γ)− 1)/2.

Proof. [Proof of Theorem 1.1] Arnold and Vogel proved that if (γn) is a sequence a periodic orbits that tend
to an invariant volume µ in the weak-∗ sense, then writing tn for the period of γn, the sequence 1

t2n
SlkDX(γn)

tends to the helicity Hel(X,µ) [Arn73, Vog02]. Similarly, Gambaudo and Ghys proved that the sequence 1
tn
RX(γn)

tends to the Ruelle invariant RX(µ) [GaG97].
Since one term grows quadratically and the other one linearly on tn, in the right-hand side of Equation (1),

the term 1
t2n
RX(γn) is negligible, and the asymptotic is dictated by SlkDX(γn). In particular we have

1

t2n
χmin(γn) = − 1

t2n
SlkζX (γn)→ −Hel(X,µ).

Then

lim
tn→∞

1

t2n
g(γn) = lim

tn→∞

1

t2n

(
1 +

SlkζX (γn)− 1

2

)
= lim

tn→∞

SlkζX (γn)

2t2n
=

1

2
Hel(X,µ).

�

In other words, the genus is an asymptotic invariant of order 2 for right-handed volume-preserving vector
fields, and its asymptotic is half the helicity.

Remark that Baader proved that the slice genus (for arbitrary vector fields, not only right-handed) is an
asymptotic invariant of order 2, and that it is also equal to half the helicity [Baa11]. So for right-handed
vector fields, the long periodic orbits tend to have genus and slice genus of the same order.
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