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Abstract. We prove that the geodesic flow on the unit tangent bun-
dle to every hyperbolic 2-orbifold that is a sphere with 3 or 4 singular
points admits explicit genus one Birkhoff sections, and we determine the
associated first return maps.

In this article we investigate from a topological viewpoint a particular
family of 3-dimensional flows, namely the geodesic flows on the unit tangent
bundle to a hyperbolic 2-orbifold.

Our main subject of investigation is Birkhoff sections. A Birkhoff section
for a 3-dimensional flow Φ is a surface whose boundary is the union of finitely
many periodic orbits of Φ, and such that every other orbit of Φ intersects
the interior of the surface within a bounded time. Introduced by Poincaré
and Birkhoff [3], Birkhoff sections are useful, when they exist, because they
provide a description of the flow, minus the orbits forming the boundary of
the section, as the suspension flow constructed from the first return map on
the section.

Fried proved [8] that every transitive 3-dimensional Anosov flow admits
Birkhoff sections. (We recall that a 3-dimensional flow associated with a
vector field X on a Riemannian manifold M is said to be of Anosov type [2]
if there exists a decomposition of the tangent bundle TM as 〈X〉⊕Ess⊕Esu,
such that Ess is uniformly contracted by the flow and Esu is uniformly con-
tracted by the inverse of the flow. A flow is called transitive if it admits at
least one dense orbit.) Now Fried’s proof gives no indication about the com-
plexity of the Birkhoff sections, in particular their genus, and the following
is still open:

Question A (Fried). Does every transitive 3-dimensional Anosov flow admit
a genus one Birkhoff section?

A positive answer, that is, the existence of a genus one Birkhoff section,
gives rich information about the considered flow. Indeed, if S is a Birkhoff
section for an Anosov flow, the stable and unstable foliations induce two
transverse one-dimensional foliations on S that are preserved by the first re-
turn map. Moreover, Fried showed [8] that the first return map is a pseudo-
Anosov diffeomorphism. If S has genus one (and some condition on the
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boundary of S is satisfied), the first return map is even an Anosov diffeo-
morphism, and, therefore, it is conjugated to a linear automorphism of the
torus—hence it essentially reduces to an element of SL2(Z).

Here we consider Question A for particular 3-dimensional flows, namely
the geodesic flows associated with hyperbolic 2-dimensional objects. If Γ is a
cocompact Fuchsian group Γ, the quotient H2/Γ of the hyperbolic plane H2

is a compact hyperbolic 2-orbifold. Then the geodesic flow on T 1H2 ={
(x, v) ∈ TH2 | |v| = 1

}
projects on T 1H2/Γ. The latter is a 3-dimensional

Anosov flow, called the geodesic flow on T 1H2/Γ. If no point of H2 has a non-
trivial stabilizor, H2/Γ is a hyperbolic surface, and the answer to Question A
for the corresponding geodesic flow is positive: a construction of Birkhoff [3]
exhibits two genus one Birkhoff sections. Otherwise, H2/Γ is a 2-orbifold
with singular points, and the only known results about Birkhoff sections for
the corresponding flows concern orbifolds which are spheres with three sin-
gular points of respective order 2, 3, and 4g+2, with g ≥ 2, for which we
proved [6] that every collection of periodic orbits bounds a Birkhoff section,
but with no control of the genus of the sections. The first aim of the current
article is to establish the following general positive result:

Theorem A. For every hyperbolic 2-orbifold H2/Γ that is a sphere with 3 or
4 singular points, the geodesic flow on T 1H2/Γ admits some (explicit) genus
one Birkhoff sections.

Note that Theorem A essentially covers all spherical orbifolds with at most
four singular points. Indeed, there exist 2-orbifolds which are spheres with
zero, one or two singular points, but they are either bad orbifolds in the sense
of Thurston [13] or of spherical type. In both cases, the associated geodesic
flows do not have the Anosov property we are interested in.

As explained above, when an Anosov flow admits a Birkhoff section of
genus one, the associated first return map is particularly simple, namely
it is conjugated to an automorphism of the torus, hence it is specified by a
conjugacy class in SL2(Z). Then the question naturally arises of determining
which conjugacy classes occur in this way. For instance, writing X for ( 1 1

0 1 )
and Y for ( 1 0

1 1 ), and denoting by [A]T2 the linear automorphism of the
torus associated with a SL2(Z)-matrix A, Ghys [10], Hashiguchi [12] and
Brunella [5] showed that, in the case of a hyperbolic surface of genus g, the
first return maps associated with the above mentioned Birkhoff sections are
conjugated to the automorphisms [(X2Y g−1)2]T2 and [X2(X2Y g−1)2]T2 .

Question B (Ghys). Let A be a matrix in SL2(Z) with trace(A) > 2.
Does there exist a hyperbolic 2-orbifold H2/Γ such that the geodesic flow
on T 1H2/Γ has a genus one Birkhoff section whose associated first return
map is conjugated to [A]T2?

We recall (see for instance [7]) that every element of SL2(Z) that is not
of finite order is conjugated to a finite product of the matrices X and Y ,
and that the product is unique up to cyclically permuting the factors and
up to exchanging X and Y . Moreover, the element is hyperbolic if and only
if the product contains both X and Y . So Question B may be rephrased as
a question about which expressions in X and Y can occur. We prove:
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Theorem B. For every matrix A that can be expressed with at least one X
and one Y and at most four X or at most four Y , there exists a hyper-
bolic 2-orbifold H2/Γ and a genus one Birkhoff section for the geodesic flow
on T 1H2/Γ whose first return map is conjugated to [A]T2 .

The matrix Xt−2Y has trace t and, for t > 2, it is eligible for Theorem B.
So we immediately deduce:

Corollary. For every t larger than 2, there exists a hyperbolic 2-orbifold and
a genus one Birkhoff section for its geodesic flow such that the first return
map has trace t.

Theorems A and B strengthen the close connection first described by
Fried [8] and Ghys [10] between the two main known classes of Anosov flows
in dimension 3, namely the geodesic flows on negatively curved orbifolds,
and the suspension flows associated with linear automorphisms of the torus.
In particular, as they go in the direction of positive answers to Questions A
and B, a possible interest of these results is to support the idea that there
might exist only one transitive Anosov flow up to virtual almost conjugation:
two flows φ1, φ2 on two 3-manifolds M1,M2 are said to be almost conjugated
if there exist two finite collections C1, C2 of periodic orbits of φ1, φ2 such
that the manifolds M1 \ C1 and M2 \ C2 are homeomorphic and that the
induced flows are topologically conjugated, and “virtually” is added when
the property may involve a finite covering. A positive answer to Question A
would imply that every transitive Anosov flow is almost conjugated to some
suspension flow of a torus automorphism, whereas a positive answer to Ques-
tion B would imply that any two suspension flows would be virtually almost
conjugated.

At the technical level, Theorems A and B will come as direct consequences
of the following more comprehensive result.

Proposition C. For all q, r with q ≤ r and 1
2 + 1

q + 1
r < 1, the geodesic flow

on the 3-manifold T 1H2/Γ2,q,r admits an explicit Birkhoff section of genus
one; the associated first return map is conjugated to{

[Xr−6Y ]T2 for q = 3,
[Xq−4Y Xr−4Y ]T2 otherwise.

For all p, q, r larger than 2 with 1
p + 1

q + 1
r < 1, the geodesic flow on the

3-manifold T 1H2/Γp,q,r admits two explicit Birkhoff sections of genus one;
the associated first return map are conjugated to

[Xp−3Y Xq−3Y Xr−3Y ]T2 and [Xp−3Y Xr−3Y Xq−3Y ]T2 .

For all p, q, r, s larger than 1 with 1
p + 1

q + 1
r + 1

s < 2, the geodesic flow
on the 3-manifold T 1H2/Γp,q,r,s admits six explicit Birkhoff sections of genus
one; the associated first return map are conjugated to

[Xp−2Y Xq−2Y Xr−2Y Xs−2Y ]T2

and to the five other classes obtained by permuting the exponents in the latter
expression (up to cyclic permutation the 24 possible permutations give rise
to six classes).
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Proposition C involves three cases. The strategy of proof is the same in
every case, but the difficulty is increasing, so that we shall present each proof
in a separate section. Starting from the orbifold H2/Γ2,q,r (resp. H2/Γp,q,r,
resp. H2/Γp,q,r,s), the idea is to explicitly construct two (resp. three, resp.
four) Birkhoff sections for the geodesic flow, to compute their Euler charac-
teristics (thus checking that their genus is one), and to find a suitable pair of
loops on each of them that form a basis of their first homology group. In the
first case, these two Birkhoff sections correspond to an avatar of Birkhoff’s
construction [3], but, in the other two cases, the method is new. Then, the
idea is to start from one Birkhoff section, to follow the geodesic flow until
one reaches another section, and to look at how the loops on the first sec-
tion are mapped on the second one. Our particular choice of the sections
will guarantee that this application is described by a simple matrix of the
form XiY . Iterating this observation twice (resp. three, resp. four times),
one obtains the expected form for the first return map.

Let us conclude this introduction with two more remarks about particular
cases. First, the case p = 2, q = 3, r = 7 in Proposition C leads to a toric
section with first return map ( 2 1

1 1 ). This matrix is known to correspond
to the monodromy of the figure-eight knot. Therefore, after removing one
periodic orbit, the geodesic flow of the (2, 3, 7)-orbifold is conjugated to the
suspension flow on the complement of the figure-eight knot—one of the first
flows whose periodic orbits have been studied from the topological point
of view [4]. Concerning the topology of the underlying 3-manifolds, this
implies that the Seifert fibered space T 1H2/Γ2,3,7 can be obtained from S3

by a surgery on the figure-eight knot. A celebrated theorem by Thurston [13,
Theorem 5.8.2] states that, for every hyperbolic knot in S3, only finitely many
surgeries yield a non-hyperbolic 3-manifold. Our construction exhibits such
an example for the figure-eight knot.

Finally, when (p, q, r) goes down to the limit values (2, 3, 6), (2, 4, 4) or
(3, 3, 3), the corresponding orbifolds with 3 singular points are of Euclidean
type. The same situation occurs when (p, q, r, s) reaches the limit value
(2, 2, 2, 2). It turns out that the surfaces obtained by extending the con-
struction of Proposition C still are Birkhoff sections for the corresponding
geodesic flows (which are no longer of Anosov type), and that the first re-
turn maps are given by the same formulas. But, as can be expected, the
associated matrices are of parabolic type, namely they are powers of the
matrix X.
Acknowledgments: It is a pleasure to thank Étienne Ghys for many dis-
cussions on topics related to this article, and Tali Pinski for an invitation
and a collaboration which are at the origin of this work.

1. The case p = 2: symmetric boundary

Here we establish the first case in Proposition C, namely that of an orbifold
with three singular points among which one corresponds to an angle π. In the
whole section, q, r denote two positive integers satisfying 1/2+1/q+1/r < 1.
Then H2/Γ2,q,r is the unique hyperbolic orbifold with three singular points,
called P,Q,R, of respective order 2, q, r. We denote by T 1H2/Γ2,q,r its unit
tangent bundle, and by Φ2,q,r the geodesic flow on T 1H2/Γ2,q,r. Abusing
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notation, we also use PQR to refer to a fixed triangle with respective an-
gles π/2, π/q, π/r in the hyperbolic plane, and we denote by P̄ the image of P
under the symmetry around QR. The quadrangle PQP̄R is a fundamental
domain for the orbifold H2/Γ2,q,r.

We first describe two particular Birkhoff sections for Φ2,q,r, called SQ2,q,r
and SR2,q,r. As we shall see, these two sections turn out to be isotopic. Indeed
we will show that, starting from SQ2,q,r and following Φ2,q,r for some (non-
constant) time, we first reach SR2,q,r, and then come back to SQ2,q,r. The second
step consists in computing the corresponding homeomorphisms from SQ2,q,r
to SR2,q,r, and from SQ2,q,r to SR2,q,r. The benefit of considering two sections
instead of one is that the associated matrices are especially simple (these are
companion matrices). The first return map on each of the two sections is
then obtained by composing the homeomorphisms.

1.1. Two Birkhoff sections. The construction of the surfaces SQ2,q,r and
SR2,q,r that we propose is similar to Birkhoff’s original construction [3] of
sections for the geodesic flow (although Birkhoff only dealt with surfaces,
not with orbifolds), and to A’Campo’s construction [1] of fiber surfaces for
divide links.

P P̄

Q

R

h

We work in the fundamental do-
main PQP̄R. Since P corresponds to a
singular point of index 2, the line PP̄ is
a closed geodesic in the orbifold H2/Γp,q,r:
when we reach an end, we just change of
direction. Call h this geodesic. It is in-
variant under the involution that reverses
the direction of all tangent vectors. The
geodesic h divides the orbifolds H2/Γ2,q,r

into two parts, one containing the singular
point Q, and one containing R. We call
them the Q-part and the R-part respec-
tively.

P

Q

R

h

Definition 1.1. We call SQ2,q,r ( resp. SR2,q,r) the set, in T 1H2/Γ2,q,r, of all
unit tangent vectors to h that point into the Q-part ( resp. the R-part), plus
the whole fiber of the point P .

The surfaces SQ2,q,r and S
R
2,q,r are topological surfaces. They are both made

of one rectangle whose vertical edges are identified using a rotation at P (see
Figure 1). Actually we could smooth them and preserve all their properties
at the same time, but we do not need that. The two surfaces intersect along
the fiber of P . For v a unit tangent vector at P , we fix the convention
that, at the point (P, v), the surface SQ2,q,r is infinitesimally pushed along
the direction of v if v points into the Q-part, whereas SR2,q,r is infinitesimally
pushed along the direction of v if v points into the R-part. This convention is
used only for ordering the intersection points of the lift of a geodesic distinct
from h with the two surfaces SQ2,q,r and SR2,q,r.
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P

Figure 1. On the left, the union of four fundamental domains
for H2/Γ2,q,r, and four copies of SQ

2,q,r. On the right, the sur-
face SQ

2,q,r in a neighbourhood of P , before modding out by the
lift of the order 2 rotation around P . It is a topological surface.
Since the lift of the order 2 rotation in the unit tangent bundle
is an order 2 screw-motion with no fixed point, we still obtain a
topological surface when modding out.

Lemma 1.2. The surfaces SQ2,q,r and SR2,q,r both have one boundary compo-
nent, namely the lift h̃ of h in T 1H2/Γ2,q,r. They are genus one Birkhoff
sections for the geodesic flow Φ2,q,r. Every orbit of Φ2,q,r distinct from h
intersects both surfaces alternatively.

Proof. That both surfaces have boundary h̃ is clear from the definition.
The lifts of h in the universal cover H2 of H2/Γ2,q,r divide H2 into compact

q-gons and r-gons. Let g be any geodesic not in the Γ2,q,r-orbit of h, and
let g̃ be the corresponding orbit of Φ2,q,r. Then g crosses some copy of h
within a bounded time. When, at the intersection point, g goes from an r-
gon to a q-gon, g̃ intersects SQ2,q,r, and when g goes from a q-gon to an r-gon,
g̃ intersects SR2,q,r. Now g could also go through P directly from a q-gon to
another one, or from an r-gon to another one. This can only happen above
a copy of P , in which case g̃ intersects both surfaces at the same time. So,
in all cases, g̃ intersects both surfaces within a bounded time. Therefore
both SQ2,q,r and SR2,q,r are Birkhoff sections. Owing to the convention about
the fiber of P , the curve g̃ intersects both surfaces alternatively.

As for the genus, since both surfaces consist of one rectangle whose vertical
edges are identified using a rotation at P , they are made of one 2-cell, four
1-cells (two horizontal and two vertical) and two 0-cells (in the fiber of P ),
so their Euler characteristics is −1. Since the surfaces have one boundary
component, they are tori. �
Lemma 1.3. The loops cQ+ and cR− generate π1(SQ2,q,r), and c

R
+ and cQ− gen-

erate π1(SR2,q,r).

Proof. The loops cQ+ and cR− both lie in SQ2,q,r, and they intersect each other
exactly once, namely in the fiber of the intersection between h and QR, at
the vector that points toward Q. This is enough to ensure that these loops
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We now define cQ+ (resp. cR+) to be the family

of all tangent vectors to h that points toward Q,
and cQ− (resp. cR−) to be obtained from cQ+ (resp.
cR+) by reversing the direction of every tangent vec-
tor (or, equivalently, by applying a π-rotation in
each fiber). By definition, cQ+ and, similarly, cR+,
cQ−, and cR−, consist of elements of T 1H2/Γ2,q,r that
continuously depend on one parameter, hence they
are curves in T 1H2/Γ2,q,r, and even loops since h is
a closed curve.

Q

R

cQ+

cR−

generate the fundamental group of a once-punctured torus. The case of the
other pair is similar. �

Hereafter we shall denote by ŜQ2,q,r and ŜR2,q,r the surfaces obtained from
SQ2,q,r and S

R
2,q,r by compactifying their boundaries to a point. By Lemma 1.2,

they are compact tori. By Lemma 1.3, the classes [cQ+] and [cR−] gener-
ate H1(ŜQ2,q,r,Z), whereas [cR+] and [cQ−] generate H1(ŜR2,q,r,Z).

1.2. First return maps. For every tangent vector v that lies in the sur-
face SQ2,q,r and not in the fiber of P , we define φQ(v) to be the first intersection
between the orbit of Φ2,q,r starting from v and the surface SR2,q,r. For v a
tangent vector at P that points into the R-part, we define φQ(v) as v it-
self (seen as an element of SR2,q,r). In this way, we obtain a map φQ from
the whole surface SQ2,q,r into SR2,q,r. Then φQ extends to a map from ŜQ2,q,r
to ŜR2,q,r, denoted by φ̂Q.

Lemma 1.4. The map φ̂Q is a homeomorphism from ŜQ2,q,r to ŜR2,q,r of
Anosov type. It is conjugated to the linear homeomorphism whose matrix
with respect to the two bases (cQ+, c

R
−) and (cR+, c

Q
−) is

(
0 −1
1 q−2

)
.

Proof. The continuity of φQ is clear. Since φQ is obtained by following the
orbits of Φ2,q,r, the injectivity is also clear. Therefore φQ is a homeomor-
phism, and so is φ̂Q. The weak stable and unstable foliations of the geodesic
flow in T 1H2/Γ2,q,r induce on S

Q
2,q,r two foliations which are respectively con-

tracting and expanding. Therefore, by Fried’s argument [8], φ̂Q is of Anosov
type.

For determining the images of cQ+ and cR−, we unfold H2/Γ2,q,r around
the point Q (see Figure 2) by gluing q copies of the quadrangles PQP̄R.
We thus obtain a q-gon, denoted by R1 . . . Rq (with R1 = R). We denote
by P0, . . . , Pq−1 the middle of the edges (with P0 = P and P1 = P̄ ), and for
i = 1 . . . , g, we call Mi the intersection of QRi with Pi−1Pi.

The curve cQ+ is made of those vectors above P0P1 that point toward Q.
Therefore, under the geodesic flow, cQ+ enters the q-gon P0 . . . Pq−1. It reaches
first the fiber of Q, and then continues until it reaches (the fibers of the points
of) the side(s) opposite to P0P1 in P0 . . . Pq−1. At that moment, it points
into the R-part, and therefore belongs to SR2,q,r: this is φQ(cQ+). Depending
on the parity of q, this curve lies in the fibers of the segment Pq/2P(q+2)/2 or
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R1

R2Rq

M2Mq

P0 P1

P2Pq−1

Q

M(q+1)/2M(q+3)/2

P(q+1)/2

Figure 2.

in the fibers ofM(q−1)/2P(q+1)/2 and P(q+1)/2M(q+3)/2 (see Figure 2). In both
cases, it projects, after modding out by the rotation at Q, to the curve cQ−,
yielding φQ(cQ+) = cQ−.

For φQ(cR−), we see that the vector of cR− lying above P (which points
to R) is fixed by φQ, by definition. When φQ is applied, that is, when
we follow the flow Φ2,q,r, the rest of cR− goes through the q-gon P0 . . . Pq−1.
Therefore φQ(cR−) is made of all the vectors in the fibers of P0 . . . Pq−1 that
do not lie above P0P1 and whose opposite points toward R1 (see Figure 2
bottom left). Since we are only interested in the class of φQ(cR−) in the
first homology group, we can apply any convenient isotopy to φQ(cR−) in-
side SR2,q,r. We thus rotate all vectors (without changing the fibers in which
they lie) in the following way: the vectors in the fibers of the segment P0Mg

are rotated so that they point toward Rg (note that the vector at P0 does
not change), similarly the vectors in the fibers of P1M2 are rotated so that
they point toward R2, and all other vectors (corresponding to vectors in
the fibers of M2P2, or P2P3, or . . . , or Pg−2Pg−1, or Pg−1Mg) are rotated
so that their opposite points toward Q. The obtained curve (see Figure 2
bottom right) is equal, in the orbifold H2/Γ2,q,r, to the concatenation of
the opposite of cR+ and q−2 times cQ−. Indeed the parts above P1M2 and
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P1M2, with the given orientation, add up to the opposite of cR+, and the
parts above M2P2P3 . . . Pg−2Pg1Mg add up to q−2 times cQ−. �

Arguing similarly, we define a map φR from SR2,q,r to SQ2,q,r in a way that
is exactly symmetric to what we did for φQ.

Proof of Proposition C (first case). Consider the two Birkhoff sections SQ2,q,r
and SR2,q,r given by Definition 1.1 and Lemma 1.2. By Lemma 1.2, start-
ing from any point of SQ2,q,r and following Φ2,q,r for some time (which is
bounded, but not the same for all points), we reach the surface SR2,q,r, and
then reach SQ2,q,r again. Therefore the first return map on SQ2,q,r is ob-
tained by applying φQ first and then φR. When compactifying, we obtain
a Anosov diffeomorphism which is the product of φ̂Q and φ̂R. Since an
Anosov diffeomorphism of the torus is always conjugated to its action on
homology, by Lemma 1.4, the first return map is conjugated to the prod-
uct

(
0 −1
1 r−2

) (
0 −1
1 q−2

)
.

Since every matrix of the form
(

0 −1
1 t

)
is equal to X−1Y Xt−1, the pre-

vious product is equal to X−1Y Xr−3X−1Y Xq−3, which is conjugated to
Xq−4Y Xr−4Y . For q = 3, the exponent q − 4 is negative, and therefore the
formula can be simplified. An easy computation leads then to Xr−6Y . �

2. The case p ≥ 3: non-symmetric boundary

We now turn to the second case in Proposition C, namely that of an orb-
ifold with three singular points of index larger than 2. In the whole section,
p, q, r denote three integers larger than 2 and satisfying 1/p+ 1/q+ 1/r < 1.
Then H2/Γp,q,r is the unique hyperbolic orbifold with three singular points,
called P,Q,R, of respective order p, q, r. We denote by T 1H2/Γp,q,r its unit
tangent bundle, and by Φp,q,r the geodesic flow on T 1H2/Γp,q,r. As in Sec-
tion 1, we fix a triangle PQR in the hyperbolic plane with respective an-
gles π/p, π/q, π/r, and we denote by P̄ the image of P under the symmetry
around QR. The quadrangle PQP̄R is a fundamental domain for the orb-
ifold H2/Γp,q,r.

The idea is to mimic the two steps of the case p = 2, using three surfaces
instead of two. The surfaces we use here cannot be described using Birkhoff’s
construction: when we start from a collection of closed geodesics and try to
apply the latter, the obtained surface has genus at least two. On the other
hand, the second step is similar to that of Section 1, with three maps instead
of two.

We now adapt Birkhoff’s construction and describe a surface whose bound-
ary in T 1H2/Γp,q,r is the lift b̃ of b. First we observe that b divides the orb-
ifold H2/Γp,q,r into five regions: three regions that contain one of the singular
points, hereafter called the P -, the Q-, and the R-parts, and two triangles
delimited by b, hereafter called the orthic triangles. Abusing notation, we
use the same names when working in the universal cover of H2/Γp,q,r.
Definition 2.1. The surface SAp,q,r is the closure of the set of all unit vectors
positively tangent to the family (αs)s∈(0,1), that is, the set

{ dαs(t)/dt
‖dαs(t)/dt‖ | s, t ∈

(0, 1)
}
.
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2.1. Three Birkhoff sections. Since the trian-
gle PQR is acute (that is, all angles are smaller
than π/2), there exists in PQR a closed billiard
trajectory of period 3, which bounces every edge
once. Call A,B,C the bouncing points with the seg-
ments QR,RP, PQ respectively, and call B̄ and C̄
the images of B and C under the symmetry around
QR. Then there is a closed geodesic, that we denote
by b (for billiard), travelling from B to C, then from
C̄ to B, from B̄ to C̄, and finally from C to B̄. There
is another one travelling in the other direction, but
we do not consider it now.

P P̄

Q

R

A

B

C

B̄

C̄

In the fundamental domain PQP̄R, the geodesic b has
the shape of a butterfly centered at A. We now consider a
one-parameter family of curves (αs(t))s,t∈(0,1) whose union
foliates the two orthic triangles, so that every curve αs is
a smooth butterfly centered at A, and that the butterflies
are convex inside each of the orthic triangles.

Taking the closure of SAp,q,r is equivalent to adding to SAp,q,r the tangent
vectors to b, the vectors at B that point into the P -part, the vectors at C
that point into the Q-part, and the vectors at A that point into the Q-part
or into the orthic triangles.

Next, choosing two other foliations βs and γs of the orthic triangles by
convex butterflies centered at B and C respectively, we similarly define sur-
faces SBp,q,r and SCp,q,r as the closures of the set of all unit vectors positively
tangent to βs and γs.

Now, we introduce cQ+ to be the set of all vectors of SAp,q,r that point
directly toward the point Q and cR− to be the set of all vectors SAp,q,r whose
opposite point directly toward R. Then, as in Section 1, cQ+ and cR− are loops
in T 1H2/Γp,q,r. The loops cP+ and cR+ in SBp,q,r and cP− and cQ− in SCp,q,r are
defined similarly (see Figure 3).

Lemma 2.2. The surfaces SAp,q,r, SBp,q,r and SCp,q,r have one boundary compo-
nent, namely the lift b̃ of b. All three surfaces are genus one Birkhoff sections
for Φp,q,r. The two curves (cQ+, c

R
−) ( resp. (cR+, c

P
−), resp. (cP+, c

Q
−)) form a

basis of H1(SAp,q,r,Z) ( resp. H1(SBp,q,r,Z), resp. H1(SCp,q,r,Z)).

Proof. Let γ be a geodesic in H2 that is not in the Γp,q,r-orbit of b. Define the
code c(γ) of γ to be the bi-infinite word in the alphaber {P,Q,R} describing
the different types of the regions crossed by γ: we write P , Q or R when γ
goes through the interior of a P -part, a Q-part, or a R-part, and do not
write anything when γ goes through any of the two types of orthic triangle
(this coding is neither injective nor surjective, but this is of no importance).
Since γ is not in the orbit of b, it cannot cross more than two consecutive
orthic triangles. Therefore, the code is indeed bi-infinite. Now, for every
factor RP,RQ,PQ,PP,QQ or RR, there exists exactly one point where γ
is tangent to the family αs and contributes that factor to c(γ). Since every bi-
infinite word contains infinitely many such factors, the lift of γ in T 1H2/Γp,q,r
intersects SAp,q,r infinitely many times.
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SAp,q,r SBp,q,r SCp,q,r

cQ+

cR− cR+

cP−

cQ−

cP+

Figure 3.

For the genus, we observe that SAp,q,r is made of the closures of two discs,
corresponding to the lifts of the two orthic triangles. With the considered
decomposition, there are six edges corresponding to the different segments
of b, plus three edges in the fibers of A,B and C. There are also six vertices,
two in each of the fibers of A,B and C. Adding the contributions, we obtain
−1 for the Euler characteristics of SAp,q,r, and therefore one for its genus.
For the basis of H1(SAp,q,r), as in Lemma 1.2, we observe that the considered
loops intersect each other once.

The proof for the other two surfaces is similar. �

2.2. First return maps. We now mimic the construction in Section 1 of
the maps φQ and φR, with one difference: the maps φA, φB and φC to be
defined all have fixed points (but none in common), which correspond to the
intersection points between the surfaces SAp,q,r, SBp,q,r and SCp,q,r. For every
tangent vector v that lies in the surface SAp,q,r and not in the fiber of B, we
define φA(v) to be the first intersection between the orbit of the geodesic
flow starting from v and the surface SCp,q,r. For v a tangent vector at B that
points into the P -part, we define φA(v) as v itself.

Lemma 2.3. The map φA is a homeomorphism from the torus SAp,q,r to the
torus SCp,q,r. It is conjugated to the linear homeomorphism whose matrix with
respect to the bases (cQ+, c

R
−) and (cP+, c

Q
−) is

(
0 −1
1 q−1

)
.

Proof. The argument is similar to the one for Lemma 1.4. The continuity
and the injectivity of φA need no new argument.

We now unfold H2/Γp,q,r around the point Q by gluing q copies of the
quadrangle PQP̄R. We obtain a 2q-gon, that we denote by P0R1P1 . . . Pq−1Rq
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Q

P0

R1

P1

A0 A1

cQ+

cQ−

cR−

cQ−

cQ−

cQ−

cP+

Figure 4. The images of cQ+ and cR− under φA in the case p = 3,
q = 4, r = 5. On the left, we see that cQ+ is mapped to cQ−. On the
right, cR− is mapped to a long curve, which is homologous to q − 1
times cQ− plus the opposite of cP+.

(with R1 = R, P0 = P and P1 = P̄ ), or simply by PolQ. We similarly denote
by Ai and Ci the corresponding images of A and C.

We now determine the first intersections of the orbits of Φp,q,r that start
on the curves cQ+ and cR− in PolQ with the surface SCp,q,r. By definition, these
curves are the images of cQ+ and cR− under φA.

The curve cQ+ is made of those unit vectors tangent to the family αs that
point toward Q. Therefore, when following the flow Φp,q,r, the points of cQ+
enter the Q-part. They first reach the fiber of Q, and then continue on the
other side of Q until they reach the orthic triangles opposed to the starting
ones in the Q-part. At that moment, the orbits intersect the surface SCp,q,r
when the geodesics they are following are tangent to the family γs. They
form then a curve that connects Cq/2 to A(q+2)/2 and then to C(q+2)/2 if q
is even and A(q+1)/2 to C(q+1)/2 to A(q+3)/2 if q is odd (see Figure 4 left).
In both cases, the curve we obtain projects, in T 1H2/Γ2,q,r, to the loop cQ−,
yielding φA(cQ+) = cQ−.

As for φA(cR−), we see that the (unique) vector of cR− lying above B (which,
by definition, points toward R) is fixed by φA. When φA is applied, that
is, when we follow the geodesic flow, the two parts of cR− that are close
to B (one delimited by B and the intersection of RC with cR− in the orthic
triangle ABC and one delimited by B̄ and the intersection of RC̄ with cR−
in AB̄C̄) stay in their respective orthic triangles and become tangent to the
family γs on two curves that join B to C and B̄ to C̄ respectively. When
the orientation is taken into account, the union of the latter two curves is
isotopic to −cP+ (see Figure 4 right).
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The rest of cR− goes through the Q-part and become tangent to γs above
2q− 2 curves that respectively connect C1 to A2, A2 to C2, . . . , Aq to C0 in
the corresponding orthic triangles. Each of these curves can be deformed by
isotopy to the corresponding image of cQ−, so that, in the quotient orbifold,
their union is isotopic to q − 1 times cQ−. �

Using an exactly similar construction, we define a map φC from SCp,q,r
to SBp,q,r and a map φB from SBp,q,r to SAp,q,r. We can now complete the
argument.

Proof of Proposition C (second case). Consider the three Birkhoff sections
SAp,q,r, SBp,q,r and SCp,q,r given by Lemma 2.2. We argue as in Section 1. Start-
ing from any point of SAp,q,r and following the geodesic flow for some bounded
time, we reach the surface SCp,q,r. When continuing, we then reach SBp,q,r,
and then SAp,q,r again. Therefore the first return map on SAp,q,r is obtained
by applying φA first, then φC , and then φB. In terms of matrices, and
in the basis (cQ+, c

R
−) of SAp,q,r, that map is then conjugated to the prod-

uct
(

0 −1
1 r−1

) (
0 −1
1 p−1

) (
0 −1
1 q−1

)
. In terms of the standard generators X and Y

of SL2(Z), the latter product is equal to X−1Y Xr−2X−1Y Xp−2X−1Y Xq−2,
which is conjugated to Xp−3Y Xq−3Y Xr−3Y , as announced.

The other genus one Birkhoff sections are obtained by reversing the direc-
tion of the geodesic b. By the same construction as above, we obtain three
other Birkhoff sections, and the same arguments lead to a first resturn map
conjugated to Xp−3Y Xr−3Y Xq−3Y . This result can also be obtained di-
rectly by observing that the new Birkhoff sections are obtained from the old
ones by rotating all tangent vectors by an angle π, and therefore by following
the flow Φp,q,r in the reverse direction, so that the new monodromy is the
inverse of the old one. �

3. The case of four singular points

We now turn to the last case in Proposition C. Let p, q, r, s denote four
integers larger than 2. The case when some of them is equal to 2 requires
some slight modifications that we will describe at the end of the section. The
proof follows the same scheme as in the case of three singular points, with
some modifications that make it more complicated. The most notable one is
that the two orthic triangles are replaced by two quadrangles and that the
boundaries of the constructed Birkhoff tori have two components.

In distinction to the case of three singular points, there exist many orb-
ifolds with spherical base and four singular points of respective orders p, q, r, s.
Indeed, Thurston [13] showed that the associated Teichmüller space has di-
mension 2. Nevertheless, the argument of Ghys for surfaces [9] still applies,
so that the associated geodesic flows all are conjugated. Therefore, it is
enough to consider here one orbifold for every choice of p, q, r, s.

From now on, we fix a Fuchsian group Γp,q,r,s such that the quotient orb-
ifold H2/Γp,q,r,s has four singular points P,Q,R, S of respective orders p, q, r, s.
We call Φp,q,r,s the geodesic flow on T 1H2/Γp,q,r,s. We also choose a funda-
mental domain for H2/Γp,q,r,s in H2, obtained by cutting the orbifold along
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the shortest geodesic connecting Q to P , P to S, and S to R. The fundamen-
tal domain is therefore an hexagon, that we denote by P1QP2S2RS1. The
total angles are 2π/q at Q and 2π/r at R, while the sum of the angles at P1

and P2 is 2π/p and the sum at S1 and S2 is 2π/s (see Figure 5 bottom).

3.1. Four Birkhoff sections. Let b1 be the oriented closed geodesic whose
projection connects the segment P1S1 to P2S2, and b2 be the oriented closed
geodesic whose projections connects P2S2 to QP2, then QP1 to RS1, then
RS2 to QP1, then QP2 to RS2, and finally RS1 to P1S1 (see Figure 5). The
geodesics b1 and b2 intersect in four points, that we denote by A,B,C,D in
such a way that both b1 and b2 go through them in this order. The union b1∪
b2 plays the role of the billiard trajectory in Section 2. It divides H2/Γp,q,r,s
into six regions: the P -part which has two edges and vertices A and B, the
Q-part with two edges and vertices C and D, the R-part with vertices B
and C, the S-part with vertices D and A, and two quadrangles, called T1

and T2 in such a way that the two geodesics go clockwise around T1, and
counter-clockwise around T2.

P

Q
R

S

A

B

C

D

P

Q

R

S

A B
C

D

P1

Q1 S

R
P2

Q2

A
B

C
D

Figure 5. Two views of an orbifold with four singular
points P,Q,R, S and a fundamental domain obtained by cutting
along RP,PQ and QS. In blue the two geodesics b1 and b2, which
intersect at four points, called A,B,C and D. The two quadran-
gles T1, T2 are coloured.

Now we choose an oriented foliation (αs(t))s,t∈(0,1) of T1∪T2 by butterflies
centered at A, so that the orientation of the curves in both quadrangles
coincides with the orientation of b1 and b2.

Definition 3.1. We call SAp,q,r,s the closure of the set of all unit tangent
vectors to the family (αs(t))s,t∈(0,1).



GENUS ONE BIRKHOFF SECTIONS FOR GEODESIC FLOWS 15

The situation is similar to that of Sections 1 and 2. In particular taking
the closure is equivalent to adding the tangent vectors to b1 and b2, the
vectors at A that point into the Q-part or into T1, T2, the vectors at B that
point into the R-part, the vectors at C that point into the S-part, and the
vectors at D that point into the P -part (in red in Figure 6).

P

Q
R

S

Figure 6. The foliation of T1 ∪ T2 by the family (αs(t))s,t∈(0,1).
The unit tangent vectors form the surface SA

p,q,r,s.

Now we define cAB to be the lift in SAp,q,r,s of a loop in H2/Γp,q,r,s that
winds counter-clockwise around the P -part (for a similarity with the case
of three singular points, one can for instance choose the loop so that cAB
is the set of all vectors of SAp,q,r,s that point directly toward the point P ).
Note that cAB goes through the points A and B. Next, define cAD to be the
lift of a loop in H2/Γp,q,r,s that winds counter-clockwise around the Q-part
(again, one can choose the loop so that cAD is the set of all vectors of SAp,q,r,s
whose opposite points toward Q). Then define cAC to be the lift of a closed
loop that goes from A to RP1, from RP2 to C and then to SQ1, and finally
from SQ2 to A in the fundamental domain. We denote by ŜAp,q,r,s the surface
obtained by compactifying both boundaries of SAp,q,r,s to a point.

P

Q
R

S

A

B

C

D

A B
C

D

Figure 7. The curves cAB , cAC and cAD on SA
p,q,r,s. The black

tangent vector is their common intersection point. The orientations
are represented on the left by thinner arrows.

Lemma 3.2. The surface SAp,q,r,s has two boundary components, namely the
lifts b̃1 and b̃2 of b1 and b2. It is a genus one Birkhoff section for Φp,q,r,s.
The loops (cAD, cAB) form a basis of H1(ŜAp,q,r,s,Z). We have the homological
relation cAC = cAB − cAD.
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Proof. The idea is the same as for Lemma 2.2. Let γ be a geodesic in H2 that
is not in the Γp,q,r,s-orbit of b1 or b2. As in Section 2, we define the code c(γ) of
γ to be the bi-infinite word, this time in the alphabet {P,Q,R, S}, that lists
the types of the regions crossed by γ, forgetting about the quadrangles. The
curve γ cannot cross more than two consecutive quadrangles, so that the code
is indeed bi-infinite. For every factor QP,QR,QS,RP,RS, SP,QQ,RR, SS
or PP , there exists exactly one point corresponding to that factor where γ
is tangent to the family αs. This can be seen on the left of Figure 6 or
in Figure 7. These factors correspond to non-increasing factors wih respect
to the order Q ≥ R ≥ S ≥ P . Therefore every bi-infinite word contains
infinitely many such factors, so that the lift of γ in T 1H2/Γp,q,r,s intersects
SAp,q,r,s infinitely many times.

For the genus, we observe that SAp,q,r,s is made of the closures of two discs,
corresponding to the lifts of the two quadrangles. With this decomposition,
there are eight edges corresponding to the different segments of b1 and b2,
plus four edges in the fibers of A,B,C and D. There are also eight vertices,
two in each of the fibers of A,B,C and D. Adding all contributions, we
obtain −1 for the Euler characteristics of SAp,q,r, whence one for its genus.
For the basis ofH1(ŜAp,q,r,Z), we observe as in Lemma 1.2 that the considered
loops intersect each other once.

The torus SAp,q,r,s is displayed in Figure 8. There the two boundary com-
ponents are small circles, and the intersection of the fibers of A,B,C,D
with SAp,q,r,s are segments connecting them. In ŜAp,q,r,s, the curve cAB is iso-
topic to the concatenation of the part of b1 between A and B, of the part
of the fiber of B in SAp,q,r,s, of the part of b2 between B and A, and, finally,
of the part of the fiber of A in SAp,q,r,s. Therefore it is isotopic to the purple
vertical loop as depicted on the figure. Similar arguments show that cAD is
isotopic to the orange horizontal loop, and that cAC is isotopic to the red
diagonal loop. Then the expected homological relation cAC = cAB − cAD
follows. �

b2

b1

A

B

B C

C

D

D

cAB
cAC

cAD

Figure 8.

We define the surfaces SBp,q,r,s, SCp,q,r,s and SDp,q,r,s similarly. These are
also tori with two boundary components, and they are Birkhoff sections
for Φp,q,r,s. We also define the loops cBA, cBC and cBD in SBp,q,r,s, the
loops cCA, cCB and cCD in SCp,q,r,s, and cDA, cDB and cDC in SDp,q,r,s. Then,
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for the same reason as above, the homological equalities cBD = cBC − cBA
in ŜBp,q,r,s, cCA = cCD − cCB in ŜCp,q,r,s and cDB = cDA− cDC in ŜDp,q,r,s hold.

3.2. First return maps. For every tangent vector v that lies in the sur-
face SAp,q,r,s and not in the fiber of C or D, we define φA(v) to be the first
intersection between the orbit of the geodesic flow starting from v and the
surface SDp,q,r,s. For v a tangent vector at C that points into the S-part, or
a tangent vector at B that points into the R-part, we define φA(v) to be v
itself. In this way we have defined a map φA from SAp,q,r,s into SDp,q,r,s.

Lemma 3.3. The map φA is a homeomorphism from SAp,q,r,s to SDp,q,r,s. It
is conjugated to the homeomorphism whose matrix in the bases (cAD, cAB)
and (cDC , cDA) is

(
0 −1
1 p

)
.

Proof. The argument is similar to the one for Lemma 1.4 and 2.3. First, the
continuity and the injectivity of φA are straightforward.

Next, the same argument as in Lemma 2.3 shows that the image of cAD
under φA is isotopic to cDA. The point is then to determine the image
of cAB. The argument is displayed in Figure 9, where we see that this image
is isotopic to cDB + (p−1) cDA. Finally, by Lemma 3.2 we have cDB =
cDA − cDC , so that the latter sum is equal to −cDC + p cDA. This gives the
expected matrix. �

We define the maps φB, φC and φD similarly. We can now conclude.

Proof of Proposition C (last case). Consider the four Birkhoff sections SAp,q,r,s,
SBp,q,r,s, SCp,q,r,s and SDp,q,r,s given by Lemma 3.2. Starting from any point
of SAp,q,r,s and following the geodesic flow for some time (which is bounded,
but not the same for all points), we reach the surface SDp,q,r,s, then SCp,q,r,s,
then SBp,q,r,s, and then SAp,q,r,s again. Therefore the first return map on SAp,q,r,s
is obtained by applying φA, then φD, φC , and finally φB. In terms of ma-
trices, and in the basis (cAD, cAC), it is therefore conjugated to the prod-
uct

(
0 −1
1 q

) (
0 −1
1 r

) (
0 −1
1 s

) (
0 −1
1 r

)
. In terms of the standard generators X

and Y of SL2(Z), the latter product is equal to X−1Y Xq−1X−1Y Xr−1

X−1Y Xs−1X−1Y Xp−1, which is conjugated toXp−2Y Xq−2Y Xr−2Y Xs−2Y .
The other genus one Birkhoff sections are now obtained by changing the

choice of the geodesics b1 and b2. For every cyclic ordering of the let-
ters P,Q,R and S, we can find two geodesics whose union divides the orb-
ifold H2/Γp,q,r,s into two quadrangles and four parts containing the singular
points, so that the adjacencies between the different parts follow the cyclic
order. Applying the same strategy as above then gives the expected mon-
odromies.

In the case when some parameter equals 2, say p, the picture degenerates:
the P -part of H2/Γp,q,r,s collapses to the point P and the quadrangles T1 and
T2 collapse to triangles. Nevertheless, one easily verifies that the construction
and all subsequent observations remain valid, so that the result still holds.

�
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P

Q

S

Q

P R
P

Q

S

Q
B

A
BD

A

D A

D

A

B

C

DP

Figure 9. Transportation of the loop cAB by the geodesic flow
keeping the point that belongs to the fiber of B fixed. The image
crosses the fiber of P (here we have p = 3). After some time, it
reaches SD

p,q,r,s and is then isotopic to cDB + (p−1) cDA.

4. Further questions

Theorem B gives a positive answer to Ghys’ Question B in several partic-
ular cases, but the general case remains open. The simplest cases for which
the answer is unknown correspond to the conjugation classes described by
words containing five X and five Y .

Question 4.1. Is there a hyperbolic 2-orbifold whose geodesic flow admits a
genus one Birkhoff section with first return map conjugated to [X5Y 5]T2? or
to [(XY )5]T2?

The construction of Birkhoff-Fried-Ghys-Hashiguchi shows that the an-
swer to Question B is positive for the classes of the form (X2Y g−1)2 with
g ≥ 2, and we observe that these classes all are eligible by Theorem B. By
contrast, the construction by Brunella [5] shows that the answer is also pos-
itive for the classes of the form X2(X2Y g−1)2, but the latter are not eligible
by Theorem B, since they contain six X. This naturally leads to

Question 4.2. Is there a simple construction of genus one sections for geo-
desic flows that simultaneously includes the examples of Birkhoff, the exam-
ples of Brunella, and the examples of Proposition C?
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In a different perspective, our construction shows that the geodesic flow on
every compact hyperbolic orbifold with spherical base and three or four sin-
gular points admits Birkhoff sections of genus one. Whether such a construc-
tion exists for every orbifold is not clear. In particular, the analog of our con-
struction for spheres with k singular points gives sections of genus b(k−1)/2c,
which is larger than 1 for k ≥ 5. Our attempts to modify the construction
for a sphere with five singular points have failed so far, so that the following
particular case of Fried’s Question A is still open:

Question 4.3. Does the geodesic flow on a sphere with five singular points
admit a genus one Birkhoff section?
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