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ABSTRACT. We prove that in dimension 3 every nondegenerate contact
form is carried by a broken book decomposition. As an application we
obtain that on a closed 3-manifold, every nondegenerate Reeb vector
field has either two or infinitely many periodic orbits, and two periodic
orbits are possible only on the tight sphere or on a tight lens space. More-
over we get that if M is a closed oriented 3-manifold that is not a graph
manifold, for example a hyperbolic manifold, then every nondegenerate
Reeb vector field on M has positive topological entropy.

1. INTRODUCTION

On a closed 3-manifold M , the Giroux correspondence asserts that every
contact structure ξ is carried by some open book decomposition ofM : there
exists a Reeb vector field for ξ transverse to the interior of the pages and
tangent to the binding [Gir]. The dynamics of this specific Reeb vector
field is then captured by its first-return map on a page, which is a flux zero
area preserving diffeomorphism of a compact surface, a much simplified
data. When one is interested in the dynamics of a given Reeb vector field
this Giroux correspondence is quite unsatisfactory – though there are ways
to transfer some properties of an adapted Reeb vector field to every other
one through contact homology techniques [CH, ACH] – and the question
one can ask is: Is every Reeb vector field adapted to some (rational) open
book decomposition? Equivalently, does every Reeb vector field admit a
Birkhoff section?
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We give here a positive answer to these questions for the generic class
of nondegenerate Reeb vector fields and the extended class of broken book
decompositions (Definitions 2.1 and 2.4).

Theorem 1.1. Every nondegenerate Reeb vector field is carried by a broken
book decomposition.

A contact form and the corresponding Reeb vector field are nondegen-
erate if all the periodic orbits of the Reeb vector field are nondegenerate,
namely the eigenvalues of a Poincaré map are all different from one. The
nondegeneracy condition is generic for Reeb vector fields, see for example
[CH, Lemma 7.1]. In this case, periodic orbits are either elliptic or hyper-
bolic.

A Birkhoff section of a vector field R is a surface with boundary whose
interior is embedded and transverse to R, whose boundary is immersed and
composed of periodic orbits. A Birkhoff section must intersect all orbits
of R within bounded time, so that there is a well-defined return map in the
interior of the surface. The boundary will be called the binding. These
surfaces are also known as global surfaces of section. A Birkhoff section
induces a rational open book decomposition of the manifold.

Broken book decompositions are generalisations of Birkhoff sections and
rational open book decompositions, reminiscent of finite energy foliations
constructed by Hofer-Wyszocki-Zehnder for nondegenerate Reeb vector
fields on S3 [HWZ2]. In a broken book decomposition we allow the bind-
ing to have broken components, in addition to radial ones modelled on the
classical open book case. The complement of the binding is foliated by
surfaces. A radial component of the binding has a tubular neighborhood in
which the pages of the broken book induce a radial foliation. The foliation
in a tubular neighborhood of a broken component has sectors that are radi-
ally foliated and sectors that are transversely foliated by hyperbolas. For the
broken books we construct in this paper, each broken component has either
two or four sectors foliated by hyperbolas.

A broken book decomposition carries, or supports, a Reeb vector field if
the binding is composed of periodic orbits, while the other orbits are trans-
verse to the foliation given on the complement of the binding by the interior
of the pages (this foliation by relatively compact leaves is usually non triv-
ial, as opposed to the genuine open book case). In the proof of Theorem 1.1,
we construct a supporting broken book decomposition for any fixed non-
degenerate Reeb vector field on a 3-manifold M from a covering of M by
pseudo-holomorphic curves, given by the non-triviality of the U -map in em-
bedded contact homology. The projected pseudo-holomorphic curves are
then converted into surfaces with boundary whose interior is transverse to
the Reeb vector field using a construction of Fried [Fri]. These surfaces give
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a complete system of transverse surfaces to the Reeb vector field, meaning
that their union intersects every orbit.

Weinstein conjectured in 1979 that a Reeb vector field on a closed 3-
manifold always has at least one periodic orbit [Wei]. The conjecture was
proved in full generality by Taubes using Seiberg-Witten Floer homology
[Tau]. It is also a consequence of the U -map property we use here, and it
is no surprise that our result indeed implies the existence of the binding pe-
riodic orbits. Taubes’ result was then improved by Cristofaro-Gardiner and
Hutchings [C-GH], who proved that every Reeb vector field on a closed
3-manifold has at least two periodic orbits, following a work of Ginzburg,
Hein, Hryniewicz and Macarini on S3 [GHHM]. It is now moreover con-
jectured that a Reeb vector field has either two or infinitely many periodic
orbits. The existence of infinitely many periodic orbits has been estab-
lished under some hypothesis (see the survey [GG]) and it is known to be
generic [Iri]. Here we extend a recent result of Cristofaro-Gardiner, Hutch-
ings and Pomerleano, originally obtained for torsion contact structures ξ
(with c1(ξ) ∈ Tor(H2(M,Z))) [C-GHP] and prove the conjecture for non-
degenerate Reeb vector fields.

Theorem 1.2. If M is a closed oriented 3-manifold that is not the sphere or
a lens space, then every nondegenerate Reeb vector field onM has infinitely
many simple periodic orbits. In the case of the sphere or a lens space, there
are either two or infinitely many periodic orbits.

We point out that the cases where Reeb vector fields have exactly two
nondegenerate periodic orbits are well-understood: they exist only on the
sphere or on lens spaces, both periodic orbits are elliptic and are the core
circles of a genus one Heegaard splitting of the manifold [HT1]. Also the
contact structure has to be tight, since a nondegenerate Reeb vector field of
an overtwisted contact structure always has a hyperbolic periodic orbit (see
for example Theorem 8.9 in [HK]).

Beyond the number of periodic orbits, the study of the topological en-
tropy of Reeb vector fields started with the works of Macarini and Schlenk
[MS] and has been continued by Alves [ACH, Alv]. We recall that topolog-
ical entropy measures the complexity of a flow by computing the growth of
the number of “different” orbits. If this number grows exponentially then
the entropy is positive. For flows in dimension 3, if the topological entropy
is positive then the number of periodic orbits is infinite.

As an application of Theorem 1.1 we get a result on topological entropy

Theorem 1.3. If M is a closed oriented 3-manifold that is not a graph
manifold, then every nondegenerate Reeb vector field on M has positive
topological entropy.
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Theorems 1.2 and 1.3 are obtained by analysing the broken binding com-
ponents of the broken book decomposition. Indeed, a broken component of
the binding is a hyperbolic periodic orbit and we can prove that there are
heteroclinic cycles between these periodic orbits. If there are no such bro-
ken components, then we have a rational open book decomposition and the
results come from an analysis of its monodromy. In particular, we obtain

Theorem 1.4. Every strongly nondegenerate Reeb vector field without ho-
moclinic orbits is carried by a rational open book decomposition (where
we drop the compatibility of orientations condition along the binding), or
equivalently has a Birkhoff section.

A homoclinic orbit is an orbit that is contained in a stable and an unsta-
ble manifold of the same hyperbolic periodic orbit. Equivalently, it is an
orbit that is forward and backward asymptotic to the same hyperbolic pe-
riodic orbit. A vector field is strongly nondegenerate if it is nondegenerate
and the intersections of the stable and unstable manifolds of the hyperbolic
orbits are transverse. A strongly nondegenerate vector field with a homo-
clinic orbit has positive topological entropy, thus Theorem 1.4 implies that a
strongly nondegenerate Reeb vector field whose topological entropy is zero
is carried by a rational open book decomposition.

Our techniques, combined with Fried’s construction [Fri], also allow to
establish the existence of a supporting rational open book decomposition
(where we drop the orientation assumption on the binding) when there is
only one broken component in the binding. We refer to Theorem 4.4 for
the details. Supported by these constructions, we make the optimistic Con-
jecture 4.5 that broken book decompositions can be transformed into ratio-
nal open book decompositions (with no assumption on the orientation of
the binding), and thus that nondegenerate Reeb vector fields always admit
Birkhoff sections.

A broken book decomposition having broken components in the binding
has a finite number of rigid pages (these are pages of the broken book de-
composition that are not surrounded by similar pages). The union of the
rigid pages intersects every orbit of the Reeb vector field, and for the or-
bits that are not in the binding, the intersection is transversal. Thus if we
number the rigid pages, there should be some symbolic dynamical system
associated to the intersection of the orbits with the rigid pages. There is a
feature of the dynamics that one has to be careful about when developing
this analysis: the broken components of the binding are hyperbolic orbits
and hence have stable and unstable manifolds. The orbits in these mani-
folds do not behave as in a classical open book decomposition. That is,
the first-return time to the rigid pages is not bounded everywhere, and the
fact that there are orbits asymptotic to the binding means that the discrete
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dynamics on the rigid pages has to be modelled by a pseudo-group of local
diffeomorphisms. In modelling the dynamics, passing from an open book
to a broken book is analogous to pass from a diffeomorphism of a surface
to a pseudo-group acting on a disjoint union of surfaces.

The paper is organised as follows. In Section 2 we define broken book de-
compositions and how they support a contact form or its Reeb vector field.
The existence of broken book decompositions is established in Section 3, in
particular we give a proof of Theorem 1.1. The applications of this theorem
are discussed in Section 4.
Acknowledgements: We thank Oliver Edtmair, Michael Hutchings and
Rohil Prasad for useful exchanges.

2. BROKEN BOOK DECOMPOSITIONS

Recall that a rational open book decomposition of a closed 3-manifoldM
is a pair (K,F) where K is an oriented link called the binding of the open
book and M \ K fibers over S1, and near every component k of K the
foliation is as in Figure 1. The fibers define the foliation F of M \K and a
page of the open book is the closure of a leaf of F which is obtained by its
union with K. The adjective rational is dropped when moreover each page
is embedded. So in an open book decomposition each page appears exactly
once along each component of the binding. In both cases we say that k is
radial with respect to F .

FIGURE 1. On the left, a transversal section of a radial com-
ponent in a rational open book with a page drawn in green.
On the right, the intersection of a page with the boundary of
a tubular neighborhood of a component of K.

We generalise this definition by allowing another behaviour in the bind-
ing, namely broken components. It coincides with the transverse foliations
proposed by Hryniewicz and Salamão in [HS].
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Definition 2.1. A degenerate broken book decomposition of a closed 3-
manifold M is a pair (K,F) such that:

• K is a link (with finitely many components).
• F is a cooriented foliation of M \K such that each leaf L of F is

properly embedded in M \ K and admits an immersed compacti-
fication L in M which is a compact surface, called a page, whose
boundary is contained in K .
• there is a disjoint decomposition K = Kr tKb into the radial and

broken components respectively; a component kr of K is radial if
F foliates a neighborhood of kr by annuli all having exactly one
boundary on kr. The other components of K are called broken.

FIGURE 2. Transversal sections of broken components. On
the left the broken component is degenerate, while on the
right it is not. A rigid page is in purple, a regular page in
green (the two or three segments of each color belong to the
same page: in general it visits several times a neighborhood
of a given broken component of the binding). An adapted
Reeb vector field is also pictured. The leaves are positively
transverse to it.

The set Kr is never empty, and if Kb is empty a degenerate broken book
decomposition is a rational open book decomposition. When Kb is non-
empty, we can distinguish different types of leaves or pages. A leaf/page
which belongs to the interior of a 1-parameter family of leaves/pages that
are all diffeomorphic is regular. On the other hand, a leaf/page that is not in
the interior of a 1-parameter family is rigid. A rigid page must have at least
one boundary component in Kb. The complement of the rigid pages fibers
over R. Hence, when there are rigid pages, each connected component of
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the complement of the rigid pages can be thought of as a product of a leaf
in it and R.

Definition 2.2. A contact form λ is carried by a degenerate broken book
decomposition (K,F) if its Reeb vector field Rλ is tangent to K and posi-
tively transverse to the leaves of F .

Here we do not require the binding to be positively oriented byRλ for the
orientation coming from the cooriented pages, as it is in the classical open
book case.

The periodic orbits of a nondegenerate Reeb vector field Rλ split into el-
liptic, positive hyperbolic and negative hyperbolic ones, when the linearized
first-return map is respectively conjugated to a rotation, has positive eigen-
values, or negative eigenvalues.

Remark 2.3. We point out that a radial component of K of a broken book
supporting a contact form λ can be an elliptic or hyperbolic periodic orbit
of Rλ; while a broken component of K is necessarily a hyperbolic periodic
orbit of Rλ.

In a neighborhood of a broken component of the binding the foliation has
locally 4 sectors transversally foliated by hyperbolas, separated by 4 sectors
radially foliated (as in the right hand illustration of Figure 2). In this situa-
tion, there are only finitely many rigid pages since every rigid page must be
somewhere in a boundary of one of the sectors foliated by the hyperbolas.
Since a broken component of the binding is a hyperbolic periodic orbit, it
can be positive or negative. If positive, the monodromy along this orbit is
the identity; and if negative the monodromy is a π-rotation, implying that
the 4 local sectors correspond to 2 global sectors.

Definition 2.4. A broken book decomposition is a degenerate broken book
whose broken components of the binding locally transversally have 4 sec-
tors transversally foliated by hyperbolas (and globally 2 or 4), separated by
4 sectors radially foliated.

An immersed oriented compact surface whose boundary is made of peri-
odic orbits and whose interior is embedded and positively transverse to the
Reeb vector fieldRλ will be called anRλ-section. Pages of supporting open
book decompositions are examples of Rλ-sections, but an Rλ-section does
not need to intersect all the orbits of the vector field. Given an Rλ-section S
(or a collection of Rλ-sections), an orbit γ of Rλ is asymptotically linking S
if for all T > 0 (resp. T < 0) the flow for time t > T (resp. t < −T )
intersects S.

Also if γ is an orbit in the boundary of an Rλ-section S, its asymp-
totic self-linking with S is the average intersection number of γ pushed
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along DRλ with S. More precisely, one can blow-up γ so that it is replaced
with its unit normal bundle ν1γ, which is a 2-dimensional torus. The vector
field Rλ then extends to ν1γ. The boundary ∂S induces a curve on ν1γ.
The asymptotic self-linking with S is defined as the rotation number of the
extension of Rλ to ν1γ, with respect to the 0-slope given by ∂S.

3. CONSTRUCTION OF SURFACES OF SECTION FROM EMBEDDED
CONTACT HOMOLOGY THEORY

For an introduction to embedded contact homology, we refer to [Hu]
and [C-GHP]. From now on we fix a contact form λ whose Reeb vector
field Rλ is nondegenerate. The periodic orbits of Rλ split into elliptic, pos-
itive hyperbolic and negative hyperbolic ones. The ECH chain complex
ECC(M,λ) is generated over Z2 (or Z) by finite sets of simple periodic or-
bits together with multiplicities. Whenever a periodic orbit of an orbit set is
hyperbolic, its multiplicity is taken to be 1. This last condition is consistent
with the way the ECH index 1 or 2 pseudo-holomorphic curves involved
in the definition of the differential or in the U -map break, see [Hu, Section
5.4]. Recall that when considering an ECH holomorphic curve between or-
bit sets Γ and Γ′, the multiplicity of an orbit γ in Γ or Γ′ is the number of
times the curve asymptotically covers γ at its positive or negative end, or
alternatively the degree of the map from the positive or negative part of the
boundary (going to±∞ in the symplectization) of the compactified curve to
the orbit. If a breaking involves a hyperbolic periodic orbit with multiplicity
strictly larger than 1, then there is an even number of ways to glue and these
contributions algebraically cancel [Hu, Section 5.4]. The way the ECH in-
dex 1 and 2 curves approach their limit orbits is governed by the partition
conditions [Hu, Section 3.9]. It is associated with usual SFT exponential
convergence to multisections of the normal bundle of the orbit, see [HWZ1,
Theorem 1.4] as well as to the asymptotic properties of [HWZ1, Theorem
2.8], [Sie1], [Sie2, Theorem 2.2], [HT2, Proposition 3.2], [We, Theorem
3.11]: the order 1 expansion of the planar coordinate z(s, t) (transverse to
the orbit in M ) says that near its ends, an ECH curve is tangent (at the first
order) to an annular half helix. In particular, near an elliptic periodic orbit,
there is a well-defined germ of the bounded time first return map of the Reeb
flow on the (projection to M of the) corresponding cylindrical end. Near a
hyperbolic limit periodic orbit, every orbit in its stable/unstable manifold
has 0 asymptotic linking number at, respectively, +∞/−∞ with respect to
each of the corresponding cylindrical ends. Said differently, the asymptotic
self-linking number of a hyperbolic limit periodic orbit with respect to the
projection of the holomorphic curve is 0.
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Now, there exists a class [Γ] in ECH(M,λ) such that U([Γ]) 6= 0, where
the map U : ECC(M,λ) → ECC(M,λ) is a degree −2 map counting
pseudoholomorphic curves passing through a point (0, z) of the symplec-
tization R × M of M , where z does not sit on a periodic orbit of Rλ.
This is established via the naturality of the isomorphism between Heegaard
Floer homology and embedded contact homology with respect to the U -
map [CGH0, CGH1, CGH2, CGH3] and the non-triviality of the U -map in
Heegaard Floer homology [OS, Section 10], or via the isomorphism with
Seiberg-Witten Floer homology, as explained in [C-GHP].

The class [Γ] is the class of a finite sum of orbit sets Γ = Σk
i=1Γi. By the

nondegeneracy assumption, there are only finitely many periodic orbits of
action less than the actionA(Γ) of Γ. Recall that the action of an orbit (or a
portion of orbit) γ of Rλ is the integral

∫
γ
λ. If Γ is a collection of orbits, its

action is the sum of the actions of its elements, counted with multiplicities.
We let P be the finite set of periodic orbits of the Reeb vector field Rλ of
action less than A(Γ).

The main input from ECH-holomorphic curve theory is the following.

Lemma 3.1. For every z in M \ P , there exists an embedded pseudo-
holomorphic curve u : F → R ×M asymptotic to periodic orbits of Rλ

in P and whose projection to M contains z in its interior. If z belongs
to P , it is either in the interior of the projection of a curve or in a boundary
component of its closure.

Proof. By definition of the U -map, for every generic z ∈ M , there is an
ECH-index 2 embedded curve in R×M from Γ and passing through (0, z).
Now, if z is fixed, it is the limit of a sequence of generic points (zn)n∈N.
Through (0, zn) passes a pseudo-holomorphic curve un with Γ as a positive
end. By compactness for pseudo-holomorphic curves in the ECH context,
including taking care of possibly unbounded genus and relative homology
class, see [Hu, Sections 3.8 and 5.3], there is a subsequence of (un)n∈N
converging to a pseudo-holomorphic building, a component of which is an
embedded pseudo-holomorphic curve through (0, z). All the asymptotics
of the limit curves are in P , since they all have action less than A(Γ). In
particular, when z is in M \P it is contained in the interior of the projection
of the curve to M . If z is contained in one of the orbits of P , it might be
in a limit end of the curve and thus in the boundary of the closure of the
projection of the curve to M .

�

Corollary 3.2. For every z inM there exists anRλ-section S with boundary
in P passing through z. Moreover if z is in M \ P then z is contained in
the interior of S. Every positive hyperbolic orbit k in ∂S with asymptotic
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self-linking number 0 has local multiplicity 1: every component of ∂S maps
to k with degree 1. Similarily, every negative hyperbolic orbit k in ∂S with
asymptotic self-linking number 0 has local multiplicity 2: every component
of ∂S maps to k with degree 2.

Proof. The pseudo-holomorphic curve from Lemma 3.1 passing through
(0, z) is embedded in R×M .

Hence for each z we have a projected pseudo-holomorphic curve con-
taining z. Given a point z, the pseudo-holomorphic curve through z has
a finite number of points where it is tangent to the holomorphic 〈∂s, Rλ〉-
plane, where s is the extra R-coordinate. Indeed, close enough to its limit
end orbits in P , the pseudo-holomorphic curve is not tangent to this plane
field by the asymptotic behaviour given by [Sie2, Theorem 2.2] and, by the
isolated zero property for holomorphic maps, all these tangency points are
isolated. These correspond exactly to the points where the projection of the
curve to M is not an immersion. We call these points the singular points of
the projected curve. Everywhere else, the projection of the curve to M is
positively transverse to the Reeb vector field Rλ.

We now modify a projected pseudo-holomorphic curve S away from its
singular points. First we put it in general position by a generic perturbation.
Then, we surround each singular point xi, i = 1, . . . , p, of the projected
curve S in M by a small ball Bi of the form of a flow box D2 × [−1, 1],
where the [−1, 1]-direction is tangent to Rλ, so that the singular point xi
is at the center and the boundary discs D2 × {±1} are disjoint from S.
Then S only intersects ∂Bi along its vertical boundary (∂D2) × [−1, 1].
On M \ (∪pi=1Bi), the surface S \ (∪pi=1Bi) is immersed. It has a transver-
sal given by Rλ so that we can resolve its self-intersections coherently to
get an embedded surface S ′ in M \ (∪pi=1Bi), positively transversal to Rλ.
In this operation, triple points of intersection, coming generically from the
transverse intersections of two branches of double points, are not an issue,
since we can locally resolve one branch after another in any order and ex-
tend this resolution away, see Figure 3. Also, the self-intersections along
a line of double points ending in a boundary component is pictured in the
two rightmost drawings of Figure 7: before and after the resolution of the
self-intersections. We can also deal with self-intersections along a line of
double points of two sheets all ending in the same periodic orbit: we delete
a small solid torus around the orbit and resolve the intersections outside. We
then extend the obtained surface in the solid torus either by annuli with a
boundary on the orbit, or by meridian disks in case the slope of the obtained
surface on the boundary torus is meridional.

The surface S ′ is hence embedded in M \ (∪pi=1Bi) and intersects every
sphere ∂Bi along an embedded collection of circles contained in the vertical
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FIGURE 3. How to resolve a triple point of self-
intersections. One other way to picture what happens is to
first resolve the intersection of the union of two surfaces and
then to add and resolve the intersections with

the third one.

part (∂D2)× [−1, 1] and transverse to the Rλ, i.e. the [−1, 1], direction. We
can extend S ′ inside the spheres Bi by an embedded collection of disks
transverse to Rλ. We get a surface S which is an Rλ-section. It is easy to
perform these surgery operations to keep the constraint of passing through
the point z.

Every positive or negative hyperbolic periodic orbit of ∂S having asymp-
totic self-linking number 0 with S has local degree 1 or 2: this is the only
slope possible for an approaching embedded surface of vanishing asymp-
totic self-linking number. �

Observe that the surface S might have several connected components,
but each connected component is an Rλ-section with boundary (because a
closed surface cannot be transverse to a Reeb vector field).

Lemma 3.3. There exists a finite number of Rλ-sections with disjoint in-
teriors, intersecting all orbits of Rλ, and such that if an orbit of Rλ is not
asymptotically linking this collection of sections, it has to converge to one of
their boundary components, which is a hyperbolic periodic orbit of the flow
with local multiplicity 1 or 2 (every boundary component of an Rλ-section
mapping to this orbit is degree 1 or 2).

In this case, each one of the sectors transversally delimited by the stable
and unstable manifolds of the hyperbolic periodic orbit is intersected by at
least one Rλ-section having the orbit as a boundary component.

Proof. The finite number of curves comes from a standard compactness
argument and Corollary 3.2. Start with a finite covering of the complement
of an open neighborhood of P by flow-boxes. Through every point in a
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flow-box, Corollary 3.2 provides an embedded surface with boundary in the
orbits of P . Since the closure of every flow-box is compact, there is a finite
collection of surfaces intersecting every portion of orbit in the flow-box.
Now again, we can make this collection of sections embedded by resolving
intersections using the common transverse direction Rλ. The local degree 1
or 2 property for hyperbolic periodic orbits having asymptotic self-linking 0
with a section (from Corollary 3.2) remains true because they cannot be
touched by the desingularization for otherwise the self-linking value would
change.

We now analyze what happens near a hyperbolic periodic orbit k in P
with asymptotic self-linking with S equal to zero. The stable and unsta-
ble manifolds of the periodic orbit k transversally delimit four sectors in a
neighborhood of a point in the orbit. For each sector, we take a sequence
of generic points contained in the sector that all limit to some point in k,
together with a sequence of ECH index 2 embedded holomorphic curves
through these generic points. In the limit pseudo-holomorphic building,
there is a pseudo-holomorphic curve whose projection to M either:

• cuts k transversally;
• is asymptotic to k and intersects positively with orbits in the in-

variant manifolds of k (this is in fact prohibited by the partition
condition but we do not need this extra remark here);
• is asymptotic to k and approaching from the fixed sector containing

the sequence of generic points.

In the last case, the curve does not intersect the stable/unstable manifolds
of k and the limit curve approaches from the sector containing the sequence
of generic points zn by compactness. In this case indeed the limit curves
satisfy the asymptotic conditions of [HWZ1, Theorem 2.8], [Sie1] [Sie2,
Theorem 2.2], [HT2, Proposition 3.2], [We, Theorem 3.11]: the order 1
expansion of the planar coordinate z(s, t) (transverse to k in M ) says that
along the boundary a limit curve is tangent (at the first order) to an annular
half helix. The second argument is the transversality to the Reeb vector
field that implies that the half helix has to stay in one sector. Indeed if it
changes sector it can only change in the trigonometrical order. So in order
to come back in the original sector after following k for one longitude, it
has to wrap around k: in this case the asymptotic linking number would be
positive, a contradiction.

Now, there are two cases depending on wether k is at an intermediate
level of the limit building with non trivial incoming and outgoing ends, or
if there is only a non trivial ingoing or outgoing end (possibly followed by
connectors).
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In the first case, for the limit building, the incoming and the outgoing
ends at k both have to follow a half-helix contained in a sector of k. If
none of these sectors is the one containing the sequence zn, then close to
the breaking curve the curve has to enter and exit the sector containing zn.
We then look at its intersection with the stable and unstable manifolds de-
limiting the sector. This is a collection of circles that have to be positively
transversal to the Reeb vector field foliating the stable/unstable manifolds.
In particular, none of the circles are contractible in the stable/unstable man-
ifolds. The non-contractible circles have a fixed co-orientation given by the
Reeb vector field: when the curve enters a sector along a stable/unstable
manifold, it cannot exit along the same stable/unstable manifold nor along
the other unstable/stable manifold.

In the second case, the limit building has only one non trivial end to k
(though there can be connectors) defining a half-helix. The sequence of
pseudo-holomorphic curves un is converging to this half helix and k must
be an end of the un’s. Now we have by the same argument than in the first
case that zn has to be either on the same sector than the half helix of un
or in the same sector than the one for the limit curve, otherwise we have a
subsurface near the end of un for n large enough that is crossing a sector.

Again, we add these new curves to our previous collection ofRλ-sections
and then resolve the intersections of this new family by an application of
Corollary 3.2. �

Finally we have an Rλ-section S (possibly disconnected), so that every
orbit ofRλ is either a boundary component or intersects S strictly positively.
We let K = ∂S be the union of the boundary orbits of S. If every orbit
is asymptotically linking S, we get a rational open book. However, we
can have here boundary components where the orbits of Rλ accumulate
without intersecting the corresponding surface. That is, there are orbits of
Rλ that have asymptotically self-linking number with S equal to 0. These
boundary components are necessarily hyperbolic periodic orbits and they all
have local multiplicity one or two. In such a case, we obtain the existence
of a broken book decomposition, as stated in Theorem 1.1.

Proof of Theorem 1.1. At this point, we have an Rλ-section S intersecting
every orbit of the flow, and we want to turn it into a broken book decomposi-
tion. Said differently, the Rλ-section S forms a trivial lamination of M \K,
and we have to extend S into a foliation of M \K.

For convenience, we first double all the components of S who have at
least one boundary component on a hyperbolic periodic orbit and are not
asymptotically linking the orbits in their stable/unstable manifolds. The
two copies are separated in their interior by pushing along the flow of Rλ.
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We keep the notation S for this new Rλ-section. We then cut M along S
and delete standard Morse type neighborhoods of ∂S as in Figure 4.

We claim that the resulting manifold is a sutured manifold, foliated by
compact Rλ-intervals: it is an I-bundle with oriented fibers, thus a product
and the conclusion follows. Observe that whenRλ is asymptotically linking
S near an orbit k of ∂S, the flow of Rλ near k has a well-defined first-
return map on S. These orbits are then decomposed by S into compact
segments. When we are near a positive hyperbolic periodic orbit kb where
the flow is not asymptotically linking with S, then S intersects a Morse type
tubular neighborhood of kb in at least 8 annuli, two in each sector (because
of the doubling operation). Between two annuli in the same sector, the
orbits of Rλ are locally going from one annulus to the other, thus an orbit
is decomposed into compact intervals. If two consecutive annuli belong to
different adjacent sectors, then they are cooriented in the same way by Rλ

and can be pushed in the direction of the invariant manifold of kb separating
them and glued to form an annulus transverse to Rλ and again every local
orbit of Rλ ends or starts in finite time on some (possibly glued) annulus.

To finish the proof, we just have to glue back the Morse-type neighbour-
hood of the ∂S, that we foliate with the local model of a broken book, as on
the bottom of Figure 4. The construction near negative hyperbolic periodic
orbits is similar. �

Remark 3.4. If Rλ is supported by some open book decomposition, then
every embedded holomorphic curve, not asymptotic to the binding, gives
rise to a new rational open book decomposition for Rλ by the constructions
above. In particular, the abundance of embedded holomorphic curves given
by the non triviality of the U -map in embedded contact homology, or the
differential, typically furnishes many open books for the same Reeb vector
field.

4. APPLICATIONS

We first analyse the broken components of the binding of a supporting
broken book using the Reeb property. Recall that the periodic orbits in Kb

are hyperbolic, the possible intersections of the stable and unstable mani-
folds of the periodic orbits in Kb, will play an important role. We will talk
of heteroclinic orbit or intersection, even if it might be a homoclinic orbit
or intersection, and reserve the use of homoclinic for when we can ensure it
is a homoclinic orbit. We recall that a heteroclinic orbit is an orbit that lies
in the intersection of a stable manifold of a hyperbolic periodic orbit and an
unstable manifold of another hyperbolic periodic orbit.
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FIGURE 4. A broken component kb of the binding. For
building the foliation of M \ K, one reconnects the part of
an Rλ-section in the neighborhood of kb, removes a smaller
neighborhood (green), and cuts the resulting manifold along
the (modified) Rλ-section. The result is a trivial I-bundle
(top right). From the foliation of the trivial I-bundle (bottom
left), one adds the neighbourhood of kb back, and foliated
with the local model of a broken binding orbit (bottom right).

Lemma 4.1. Let Rλ be a Reeb vector field for a contact form λ carried by
a broken book decomposition (K,F) and let k0 be a broken component of
the bindingK. Then every unstable/stable manifold of k0 contains a hetero-
clinic intersection with a broken component of Kb, i.e. each unstable/stable
manifold of k0 intersects the stable/unstable of some component of Kb.

Proof. A component k0 ⊂ Kb has one or two unstable manifolds, each
made of an S1-family of orbits of Rλ, asymptotic to k0 at −∞. Each S1-
family of orbits is a cylinder in M with a boundary component in k0, that is
injectively immersed in M since its portion near k0 for time t < −T for T
large enough is embedded.

We now argue by contradiction. We consider the finite collection of all
the rigid pages R = {R0, ..., Rk} of the broken book decomposition. If no
orbit in the S1-family limits to a broken component of K at +∞, then this
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S1-family has a return map onRwhich is well-defined and intersects one of
the pages of R, say R0, an infinite number of times. Since the S1-family is
injectively immersed, the intersection with R0 forms an infinite embedded
collection C0 of curves in R0.

Observe that dλ is an area form onR. We claim that only a finite number
of the curves in C0 can be contractible in R0. Two contractible components
of C0 bound disks D and D′ in R0, these disks have the same dλ-area.
Indeed D and D′ can be completed by an annular piece A tangent to Rλ to
form a sphere, applying Stokes’ theorem:

(1) 0 =

∫
D∪A∪D′

dλ =

∫
D

dλ+

∫
A

dλ−
∫
D′
dλ =

∫
D

dλ−
∫
D′
dλ,

because dλ vanishes along A. Note that equation (1) implies also that D
is disjoint from D′, since ∂D is disjoint from ∂D′ and D and D′ have the
same area. Since the total area of R0 is bounded, there are only finitely
many contractible curves in C0, as we wanted to prove.

Thus infinitely many components of C0 are not contractible in R0, so at
least two have to cobound an annulusA′ inR0. The annulusA′ is transverse
toRλ and its boundary components cobound by construction an annulusA′′

tangent to the flow of Rλ. We now apply Stokes’ theorem to this torus

0 =

∫
A′∪A′′

dλ =

∫
A′
dλ > 0,

a contradiction.
Hence each unstable/stable manifold of k0 contains an orbit that is for-

ward/backward asymptotic to a component of Kb. �

For two components k0 and k1 of Kb, a heteroclinic orbit from k0 to k1 is
an orbit contained in the unstable manifold of k0 and in the stable manifold
of k1.

Lemma 4.2. There exists k0 ∈ Kb having two cyclic sequences of broken
components

A = {k0, k1, ..., kn−1, kn = k0}
B = {k0, k′1, ..., k′l−1, k′l = k0}

based at some k0 so that there is a heteroclinic orbit Oi of Rλ from ki
to ki+1, 0 ≤ i ≤ n − 1 and a heteroclinic orbit O′i of Rλ from k′i to k′i+1,
0 ≤ i ≤ l− 1. If k0 is positive, then O0 and O′0 are contained in each of the
two unstable manifolds of k0. If k0 is negative, the two cycles can coincide.

If n > 1 the sequence A is a heteroclinic cycle, while if n = 1 we say
that A is a homoclinic intersection. To simplify the discussion, we call
in both cases A a heteroclinic cycle. The lemma then says that there is a
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component of Kb with two heteroclinic cycles starting in the two possible
unstable directions.

Proof. We know by Lemma 4.1 that if k is a broken component of the bind-
ing, in each of its unstable manifolds, there is a heteroclinic orbit to some
broken component ofK. We argue by contradiction, assume that there is no
such double heteroclinic cycle based at any k0, starting from the unstable
manifold if k0 is a negative hyperbolic periodic orbit and in the two possible
unstable direction if k0 is a positive hyperbolic periodic orbit. We first as-
sume that k0 is a positive hyperbolic periodic orbit. Then from Lemma 4.1
we can build from a component k0 ∈ Kb two heteroclinic sequences A0 and
B0, and at least one of them does not comes back to k0.

Assume first thatA0 is a heteroclinic cycle, so it comes back to k0 at some
point. Consider the sequence B0 starting at the other unstable manifold of
k0, that is not cyclic by assumption. Since Kb is finite, there is a k1 ∈ B0

so that from k1 the sequence B0 is a heteroclinic cycle that comes back
to k1. This cyclic subsequence of B0 cannot intersect A0, because if it
does, then k0 admits two heteroclinic cycles starting in its two unstable
directions. Hence k1 admits one heteroclinic cycle starting in one of its
unstable directions. If k1 is a negative hyperbolic periodic orbit we are
done, hence assume that k1 is a positive hyperbolic periodic orbit. If in the
other direction there is a cyclic sequence, we have a component as in the
statement. If it is not cyclic, we can again consider this non cyclic sequence
B1 and find k2 ∈ B1 with a heteroclinic cycleB2 ⊂ B1 based at k2. Observe
that by assumption, B2 is disjoint of A0 ∪B0 and we can again assume that
k2 is a positive hyperbolic periodic orbit. Since Kb is finite, this process
stops, implying that there is either a positive hyperbolic periodic orbit of
Kb with two different heteroclinic cycles or a negative hyperbolic periodic
orbit of Kb with a heteroclinic cycle.

Now assume that both sequences A0 and B0 starting in the two unstable
directions of k0 are not cyclic. We start following the direction B0, since
it is not cyclic there is a k1 ∈ B0 so that from k1 the sequence B0 is a
heteroclinic cycle that comes back to k1. We can repeat the argument above
starting at k1 to obtain either a positive hyperbolic periodic orbit of Kb with
two different heteroclinic cycles or a negative hyperbolic periodic orbit of
Kb with a heteroclinic cycle.

Observe that the arguments above imply also the result if we start with
k0 a negative hyperbolic periodic orbit in Kb. �

Remark 4.3. The interest of Lemma 4.2 is that one could try to apply the
local construction of Fried [Fri] in the neighborhood of (∪iki) ∪ (∪iOi) ∪
(∪ik′i) ∪ (∪iO′i) to get a surface of section S0 that intersects transversally
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k0 in its interior, and thereby, changing the broken book along S0, to de-
crease and finally get rid of all the broken components of its binding. This
would construct a supporting (up to orientations of the binding) rational
open book. Unfortunately, Lemma 4.2 does not seem sufficient to make
sure that S0 intersects k0, since the two heteroclinic cycles might join two
adjacent quadrants of k0, like NW and SW, instead of opposite ones like
NE and SW (see Figure 5). However this works if there is only one broken
component in the binding.

FIGURE 5. Two hyperbolic orbits and their stable/unstable
manifolds at which one cannot directly apply Fried’s con-
struction.

Consider a nondegenerate Reeb vector field, if the invariant manifolds of
the hyperbolic periodic orbits intersect transversally, we say that the vector
field is strongly nondegenerate. Observe that this is a weaker hypothesis
than being Kupka-Smale, since a Kupka-Smale vector field has in addition
all its periodic orbits hyperbolic. The strongly nondegenerate condition is
generic for vector fields due to [Kup, Sma] and also for Reeb vector fields,
the proof of the genericity of the Kupka-Smale condition in [Pei] extends to
give the strong nondegeneracy condition in the Reeb case.

Theorem 4.4. Let Rλ be a strongly nondegenerate Reeb vector field for a
contact form λ carried by a broken book decomposition (K,F). Assume
that K contains at most one broken component. Then Rλ has a Birkhoff
section.

Proof. Denote by k0 the broken component in the binding K and assume
first that it is a positive hyperbolic periodic orbit. Thanks to Lemma 4.2,
each of the two unstable manifolds of k0 intersect at least one stable mani-
fold of k0, and each of the two stable manifolds intersect at least one unsta-
ble manifold. Therefore, up to a symmetry, there are two orbits γa and γb
such that γa belongs to both the east unstable manifold and the north stable
manifold of k0, and γb belongs to both the west unstable manifold and the
south stable manifold of k0 (see Figure 6).
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Consider a small local transverse section D to Rλ around k0 and the in-
duced first-return map f . By taking small transverse rectangles around k0
and considering their images by f , one can find two periodic points pa in
the NE-quadrant and pb in the SW -quadrant. Denote by ka, kb the corre-
sponding periodic orbits ot Rλ. For every word w in the alphabet {a, b},
one can find a periodic point pw of f that follows ka, and kb in the order
given by w. In particular one can consider the periodic orbit kab through pab
and pba.

FIGURE 6. A transverse view of the orbit k0 and its sta-
ble/unstable manifolds. Two small transverse rectangles rW ,
rE in the W- and E-parts are shown in purple, together with
their images by suitable iterates of the first-return map f , in
green. In rW ∩ fkW (rW ) lies a periodic point pa of f of pe-
riod kW . Similarly in rE ∩ fkE(rE) lies a periodic point pb
of f of period kE . Moreover, in rW ∩fkE(rE) lies a periodic
point pab such that pba := fkW (pab) lies in fkW (rW )∩rE and
fkE(pba) = pab, i.e., pab has period kW + kE . The rectangle
papabpbpba is then transverse to k0.

Now consider an arc connecting pa to pab. When pushed by the flow, it
describes a certain rectangle R1 and comes back to an arc connecting pa
to pba. Likewise an arc connecting pb to pba describes a rectangle R2 whose
opposite side is an arc connecting pb to pab (see Figure 7 left). Together
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these four arcs form a parallelogram P in D which contains D ∩ k0 in
its interior. The union of P and the two rectangles R1 and R2, forms an
immersed topological pair of pants, which can be smoothed into a surface S
transverse to Rλ. The main properties of S is that it is bounded by ka, kb
and kab, and it is transverse to k0.

Now consider a page F0 of the foliation F , take the union F0 ∪ S, and
use the flow direction Rλ to desingularize the arcs and circles of intersec-
tion (see Figure 7 right and Figure 3). The obtained surface intersects any
tubular neighborhood of k0 along one (or several) meridian. Therefore k0 is
not anymore in the broken part of the binding, but is part of the boundary of
the new surface. Also the surface F0 intersects ka, kb, and kab, so that these
periodic orbits link positively the union F0 ∪ S. The resulting surface is a
then a genuine (rational) Birkhoff section for the Reeb vector field. We can
thus obtain an open book decomposition from it adapted to the Reeb vector
field. Observe that the orbits k0, ka, kb, and kab are boundary components
of radial type with respect to the new foliation.

The case where k0 is a negative hyperbolic periodic orbit is treated in the
same manner. The difference is that now one needs to consider the second
iterate of the return map to a local transversal to the periodic orbit in order
to have Figure 6. �

Conjecture 4.5. Every nondegenerate Reeb vector field has a Birkhoff sec-
tion.

It follows from the previous considerations that if a strongly nondegen-
erate Reeb vector field has no heteroclinic or homoclinic orbit, then any of
its supporting broken book decomposition is in fact a rational open book,
providing a proof of Theorem 1.4. Moreover, if a strongly nondegenerate
Reeb vector field has at most one periodic orbit having a heteroclinic cy-
cle then, by Lemma 4.1, it has a supporting broken book with at most one
broken binding component, and by Theorem 4.4, a Birkhoff section.

Remark 4.6. Theorem 1.4 can be applied to the broken book decomposition
(or system of transversal sections) constructed by de Paulo and Salomão in
[dPS] to obtain an open book decomposition.

We now give a proof of Theorem 1.2 and postpone the proof of Theo-
rem 1.3 to the end of the section. We first discuss what happens for strongly
nondegenerate Reeb vector fields and then remove the strongly hypothesis.

In the strongly nondegenerate case, the theorem follows from the fact that
if the broken book has broken components in its binding then Lemma 4.2
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FIGURE 7. On the left the union of the rectangles R1 and
R2 with the rectangle papabpbpba yields a pair of pants. It
can be smoothed into a surface transverse to the Reeb flow.
On the center a page F0 which contains k0 (dark blue) and
the rectangle papabpbpba (orange), in a neighborhood of k0.
On the right the desingularization of their union (following
Fried) yields a surface transverse to the flow, so that the local
first-return time is now bounded by the period of k0.

implies that there are heteroclinic cycles. The strongly nondegenerate hy-
pothesis then gives a transverse homoclinic intersection, that implies the ex-
istence of infinitely many periodic orbits. If there are no broken components
in the binding, the broken book is a rational open book. Then, whenever M
is not S3 or a lens space, the page S is not a disk nor an annulus. The case
when S is a disk or an annulus was treated by Cristofaro-Gardiner, Hutch-
ings and Pomerleano [C-GHP] and there are either 2 or infinitely many
periodic orbits.

In the rest of the cases, the first-return map is a flux zero area preserv-
ing diffeomorphism of S and we claim that it has infinitely many periodic
points. To get this conclusion, we apply the following generalisation of a
theorem of Franks and Handel [FH] originally stated for periodic points of
Hamiltonian diffeomorphisms of surfaces.

While writing this paper, we learned about a more direct and general
proof (for homeomorphisms, possibly degenerate) by Le Calvez and Sam-
barino [LS].

Theorem 4.7. Let S be a compact surface with boundary different from the
disk or the annulus, and ω = dβ an ideal Liouville form for S. If h : S → S
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is a nondegenerate area-preserving diffeomorphism with zero-flux then h
has infinitely many different periodic points.

Here the flux condition holds on the kernel of the map

h∗ − I : H1(S,Z)→ H1(S,Z)

and h is not assumed to be isotopic to the identity (nor Hamiltonian). It
means that for every curve γ whose homology class is in ker(h∗−I), then γ
and h(γ) cobound a dβ-area zero 2-chain.

Proof. The zero flux condition tells that h can be realised by the first-return
map of the flow of a Reeb vector field on a page of the mapping torus of
(S, h) [CHL]. If, in its Nielsen-Thurston decomposition, h has a pseudo-
Anosov component, then the conclusion of the theorem classically holds by
Nielsen-Thurston theory even without any conservative hypothesis. Other-
wise, all the pieces of h in the decomposition are periodic. Up to taking a
power of h, which does not change the problem, we can assume that, up
to isotopy, h is the identity on every piece. This means that h is isotopic
to a composition of Dehn twists on disjoint curves. If h is isotopic to the
identity, the conclusion is given by a theorem of Franks and Handel [FH],
extended by Cristofaro-Gardiner, Hutchings and Pomerleano to fit exactly
our case with boundary [C-GHP].

Otherwise, we can use the Nielsen-Thurston representative h0 of h given
by a product of Dehn twists along disjoint annuli, one of them being non
boundary parallel. We once again realise it as the first-return map of a
Reeb flow R0 on a fiber in the mapping torus of (S, h). This Reeb flow
has no contractible periodic orbits and thus can be used to compute cylin-
drical contact homology. In the mapping torus of a non-boundary parallel
annulus where h0 is the power of a Dehn twist, we have S1-families of pe-
riodic Reeb orbits realising infinitely many slopes in the suspended thick-
ened torus. These all give generators in cylindrical contact homology, since
the other orbits (corresponding to periodic points of h0) belong to different
Nielsen classes. The invariance of cylindrical contact homology suffices to
conclude that the Reeb orbits given by the mapping torus of h (that are also
all non contractible in the mapping torus of h) are at least the number given
by the rank of the cylindrical contact homology computed with R0, i.e. in
infinite number.

Note here that the first-return map on the page S is well-defined on the
interior of S. It might not extend smoothly to ∂S. In that case, we filter the
cylindrical contact homology complex by the intersection number of orbits
with the page, i.e. the period of the corresponding periodic points. We
can then modify the monodromy h near ∂S to a zero-flux area preserving
diffeomorphism hk so that (1) the modified monodromy hk extends to ∂S,
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(2) the orbits of period less or equal to k in the Nielsen classes not parallel
to the boundary are not affected and (3) hk is isotopic to h and so has the
same Nielsen-Thurston representative h0. The arguments developed in the
proof of Theorem 4.7 then apply to show the existence of periodic points
of hk with period bounded above by k, these are also periodic points of h
with period bounded by k. �

Note that the proof of Theorem 4.7 gives, if h is nondegenerate, the exis-
tence of positive (= even) hyperbolic periodic orbits, which are odd degree
generators of cylindrical homology coming from the positive hyperbolic
generators in the Morse-Bott families.

Thus we are able to answer positively to Question 1.8 of [C-GHP]:

Corollary 4.8. If M is not S3 nor a lens space and if Rλ is a strongly
nondegenerate Reeb vector field on M , then it has a positive hyperbolic
periodic orbit.

Indeed, if there were none, Rλ would have vanishing topological en-
tropy and would admit a supporting rational open book decomposition.
Then Theorem 4.7 would give at least one positive hyperbolic periodic orbit
(amongst infinitely many other ones) in case every piece of h is periodic. In
case there is a pseudo-Anosov piece, the existence of a Nielsen class with
negative total Lefschetz index gives the same result, and leads to a contra-
diction.

We now prove Theorem 1.2 in the case where we drop the hypothesis
strongly to obtain the result for nondegenerate Reeb vector fields.

Consider two hyperbolic periodic orbits (not necessarily different) with
an heteroclinic orbit connecting them. We say that there is a homoclinic or
heteroclinic connection if the corresponding stable and unstable manifolds
coincide, otherwise it is a homoclinic or heteroclinic intersection. A homo-
clinic or heteroclinic intersection or orbit is said to be one-sided if the stable
and unstable manifolds intersect and do not cross, where crossing is in the
topological sense [BW]. In case they cross, we have a crossing intersection.
Note that these definitions include the case where the stable and unstable
manifolds intersect along an interval transverse to the flow and either cross
or stay on one side at the boundary components.

We treat differently heteroclinic connections and one-sided intersections
because in the Reeb context, a heteroclinic connection cannot be eliminated
by a local perturbation of the Reeb vector field: one cannot displace a trans-
verse circle form itself with a zero flux map close to the identity, whereas it
is possible for a transverse interval, thus for eliminating a one-sided inter-
section (this is used in the proof of Proposition 4.10).

We start with the case when there are only complete connections.
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Lemma 4.9. Let (K,F) be a broken book decomposition supporting a non-
degenerate Reeb vector field Rλ. Assume that every broken component
of the binding has its stable/unstable manifolds that coincide with unsta-
ble/stable manifolds of another broken component of the binding, i.e. all
the homoclinic or heteroclinic intersections are connections. Then, if M
is different from the sphere or a lens space, the Reeb vector field Rλ has
infinitely many different simple periodic orbits.

Proof. The idea is to cut M along the stable/unstable manifolds of the bro-
ken components of the binding, to obtain a, possibly not connected, man-
ifold with torus boundary. As a preparatory operation, we blow up every
negative hyperbolic periodic orbit in Kb to a 2-torus. That is, we replace
each one of these periodic orbits by its normal transverse bundle producing
a torus for each and changing M by a manifold Mb with a finite number of
tori in its boundary. In Mb we obtain a vector field tangent to the boundary
and on each boundary torus, the vector field has two periodic orbits: one
corresponding to the stable manifold and one to the unstable manifolds;
that wrap twice in the longitudinal direction. These two periodic orbits are
linked and the other orbits are forward and backward asymptotic to the pe-
riodic orbits. After this operation, we get a manifold Mb with boundary,
where all the hyperbolic orbits in Kb ∩Mb are positive.

NowM ′ is obtained as a metric completion ofMb minus the stable/unstable
manifolds of the broken components of the binding (including those that
end in the boundary components of Mb). Hence M ′ is a 3-manifold with
boundary.

The boundary of M ′ is made of copies of the stable and unstable mani-
folds of orbits in Kb and annuli in the boundary components of Mb. It has
corners along the copies of orbits of Kb, including here the periodic orbits
produced by the blow-up operation. The Reeb vector field is tangent to the
boundary and the foliation F is now transverse to the boundary and singu-
lar only along the radial components in Kr. This means that M ′ \Kr fibers
over S1 and that the Reeb vector field has a first-return map defined on the
interior of each page.

Whenever a page of the fibration is not a disk or an annulus, we have the
conclusion by Theorem 4.7. Otherwise, since Kr is not empty, there is a
componentN ofM ′ where all pages are annuli, all having a boundary com-
ponent on a radial component kr of Kr in the interior of N and the other
on the boundary of N . Note that this implies that N is a solid torus. The
boundary of N is decomposed into the annuli given by the homoclinic or
heteroclinic connections, each annulus being bounded by two (not neces-
sarily different) components of Kb. Observe that no annulus is foliated by
Reeb components of Rλ, since Rλ is geodesible ([Sul]): simply here, in the
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case of a Reeb component dλ would be zero on the annulus, while the inte-
gral of λ would be nonzero on the boundary, in contradiction with Stokes’
theorem. Moreover, the periodic orbits in Kb ∩ ∂N are attracting on one
side and repelling on the other side, since we are alternately passing from a
stable manifold to an unstable manifold. Observe that this is also the case
along the annuli of ∂Mb.

We now claim that we can change the fibration of N \ kr by another fi-
bration by annuli, close to the previous one (in terms of their tangent plane
fields), so that it is still transverse toRλ in the interior, but also at the bound-
ary. Indeed, outside of a neighborhood of ∂N , the Reeb vector field is away
from the tangent plane field of the fibration by a fixed factor, in particu-
lar near kr where the infinitesimal first-return map is a non trivial rotation.
Near ∂N , the Reeb vector field gets close to the tangent field of the fibration
and is tangent to it along Kb ∩ ∂N , but with a fixed direction: we can tilt
the fibration in the other direction to make it everywhere transverse. This
operation changes the slope by which the fibration approaches kr and the
boundary ∂N . If the slope was, say, (1, 0) in some basis, it is now of the
form (P,±1) for some P � 1.

Since the fibers are now everywhere transverse to Rλ, there is a well de-
fined first-return map that extends to the boundary to give a diffeomorphism
of a closed annulus. Observe that this annulus is not necessarily embedded
along kr, but the map is well defined. The boundary of any such annulus
page intersects at least one component of Kb, so that the first-return map
to this annulus has at least one periodic point in the boundary. A theorem
of Franks implies that there are infinitely many periodic points (see Theo-
rem 3.5 of [Fra]). �

We now prove that an unstable manifold of an orbit in Kb that does not
coincide with the stable manifold of some orbit of Kb must have a crossing
intersection with some unstable manifold of an orbit in Kb.

Proposition 4.10. Let (K,F) be a broken book decomposition supporting
a nondegenerate Reeb vector field Rλ. If an unstable manifold V u(k) of
some orbit k ∈ Kb does not coincide with a stable manifold of an orbit
in Kb, then it contains a crossing intersection.

Proof. The proof of this result is not straightforward and will involve prov-
ing intermediate Lemmas 4.11 to 4.14. We know by Lemma 4.1 that V u(k)
must intersect stable manifolds of other broken components ofK. We argue
by contradiction and assume that V u(k) has no crossing intersection. Then
V u(k) must contain only one-sided intersections. We follow V u(k) from
k. Consider the set R of rigid pages of the broken book decomposition.
Then M \R is formed of product-type components. The unstable manifold
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V u(k) enters successively these components until it enters the first one P
that contains in its boundary an orbit k′ ∈ Kb such that V u(k) and V s(k′)
intersect. Before arriving near k′, the intersections of V u(k) with the regu-
lar pages of (K,F) are along circles. We pick a regular page S of (K,F)
in P . Then we have two components of V u(k)∩S and of V s(k′)∩S which
are circles C(k) and C(k′). The circles C(k) and C(k′) intersect into a
nonempty compact set ∆, containing only one-sided intersections. Indeed
every point of ∆ is located on an heteroclinic intersection from k to k′, all
of those being one-sided. The one-sided intersections can be on one side of
C(k) or the other, thus we further decompose ∆ as the disjoint union of two
compact sets ∆+ and ∆−, depending on the side of tangency.

The idea of the rest of the proof is to destroy, inductively, the one-sided
intersections of V u(k), starting from those passing through ∆ and to find a
new Reeb vector field supported by the same broken book decomposition
but such that V u(k) does not intersect any stable manifold up to a certain
length. This will lead to a contradiction, by Lemma 4.1.

To follow this plan, we first need to define the length of a segment of
orbit γ. It will be given by the number of components delimited in γ by
its intersections with the rigid pages. The length of a chain of heteroclinic
connections will be the sum of the length of its components. Observe that
the length of an orbit of K is zero, while the length of a full orbit in a
heteroclinic or homoclinic intersection is bounded.

We also want to consider convergence of sequences of orbits. For that
we consider a small neighborhood N(Kb) of Kb, made of the disjoint union
of neighborhoods N(k′) of each k′ ∈ Kb. These neighborhoods are taken
to be a standard Morse type neighborhood. Hence any orbit that enters and
exits N(k′) has to intersect a rigid page inside N(k′).

We have the following lemma whose first part is a tautology from the
definition of length and the second part follows by compactness.

Lemma 4.11. For every L > 0, there exists N > 0 such that every orbit γ
of length greater or equal to L intersects R at least L − 1 times and the
total action of γ \N(Kb) is less than N .

Next observe:

Lemma 4.12. Given L > 0, the set of heteroclinic intersections of length
less than L admits a natural compactification by chains of heteroclinic in-
tersections of length less than L.

Proof. Let (γn) be a sequence of heteroclinic intersections of length bounded
by L. Every orbit γn passes through less than L components of N(Kb) and
we can extract a subsequence such that the orbits in the subsequence have
the same pattern of crossings withN(Kb). Then the portions of orbits in the
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complement of N(Kb) are segments of bounded action by Lemma 4.11 that
are, up to extracting subsequences, converging to a collection of segments
of orbits. Inside a component N(k1) of N(Kb), they either converge to an
orbit segment or to a sequence of one orbit in V s(k1) followed by k1 and
then by an orbit in V u(k1). This shows that a subsequence of (γn) converges
to a chain of heteroclinic intersections. It is then immediate that the chain
has length less than L and Lemma 4.12 follows. �

Since each N(k′) is taken to be a standard Morse type neighborhood, the
intersection V s(k′) ∩ N(k′) has one connected component that contains k′

and which intersects ∂N(k′) along a circle Cs(k′).
We now explain how to eliminate the intersections from ∆+. They sit

on one side of V s(k′), so they determine locally transverselly a quadrant
Q delimited by the component of V s(k′) containing ∆+ and an unstable
component V u(k′) of k′.

Lemma 4.13. If the component V u(k′) is not a complete connection, i.e.
it does not coincide with the stable manifold of an orbit k′′ ∈ Kb, then we
can slightly modifyRλ to eliminate ∆+, without creating extra intersections
of V u(k) of length less or equal to L.

Proof. We first apply the following lemma:

Lemma 4.14. If V u(k′) is not a complete connection, then there is a point p
in V u(k′) that is not on an heteroclinic intersection of length less than or
equal to L.

Proof. Assume by contradiction that every orbit is an intersection from k′

to some other orbit in Kb of length less or equal to L. Then the set of
intersections from k′, i.e. its entire unstable manifold V u(k′), has a natural
compactification by chains of intersections of length less than or equal to L
by Lemma 4.12.

To arrive to a contradiction to our assumption, as we did for k, we fol-
low V u(k′) in the product components of M \ R. The heteroclinic inter-
sections of V u(k′) can be (partially) orderer by length, with respect to the
integer valued length defined above. Let C be the shortest length of an in-
tersection and consider one intersection of length C, that goes to an orbit
k′′ ∈ Kb. Then one component V u(k′′) of the unstable manifold of k′′ is
entirely contained in the closure of V u(k′), as it can be seen locally in a
neighborhood of k′′. The compactness of the set implies then that every
point of V u(k′′) is itself contained in a intersection of length less or equal
to L − C. If V u(k′′) is not a complete connection to some other orbit, we
replace V u(k′) with V u(k′′) and repeat the previous argument. If V u(k′′) is
a complete connection to some k′′′ , we have that every orbit in a component
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of V u(k′′′) is also contained in limits of length less or equal to L hetero-
clinic intersections from k and we can continue with V u(k′′′) until we find
an unstable manifold that is entirely made of heteroclinic intersections that
are limits of those from k and is not a complete connection (the process
stops because at each step the length in N is strictly decreasing and we end
with an unstable manifold that is not a complete connection because the or-
bit of Kb in the sequence we end with has intersections from k in its stable
manifold). Up to reindexing, we call it V u(k′′). We can apply the same
argument we applied to V u(k′) to V u(k′′) and continue until we arrive at
the nth step at an unstable manifold V u(k(n)) of some k(n) in Kb which is
only made of heteroclinic intersections to orbits in Kb, all having the same
length which is also the minimal length. This means that V u(k(n)) is in fact
a complete connection and no orbit could have come from V u(k′′) to k(n),
a contradiction. �

Let γ be the orbit of Rλ through p given by Lemma 4.14. We then claim
that there exists a small neighborhood N(p) of p in M that does not meet
any intersection orbit from k to some k′′ ∈ Kb of length less or equal to L.

Indeed, if every neighborhood of p was having such an intersection, then
we would have a sequence of orbits γn from k to some kn ∈ Kb, where a
point pn ∈ γn limits to p and the length of γn is bounded above by L. Using
Lemma 4.12, we get that p is on a heteroclinic intersection that is part of a
chain to which a subsequence of (γn) converges and the claimed is proved.

Next, we take a small arc δ in N(p), starting at p and going straight
inside the quadrant Q of k′ associated with ∆+. We push δ by the backward
flow of Rλ and look at the intersection generated by this half infinite strip
δ × (−∞, 0] with the surface S. We recall that S is the regular page of the
broken book that was used to define the sets ∆±.

Since δ is anchored in V u(k′), we get on S a half infinite line l spiralling
to the circle C(k′) from the side containing C(k) near ∆+, i.e. the side
of the quadrant Q. This line l crosses C(k) near ∆+. The goal is now to
eliminate ∆+ by replacing portions of C(k) by portions of l. This will be
done in a product neighborhood of S by modifying the direction of Rλ so
that the circle C(k) entering the neighborhood of S will be mapped to the
modified circle when exiting. The modification is performed in a neighbor-
hood of ∆+ that does not meet a neighborhood of ∆− (remember that ∆−
and ∆+ are disjoint compact sets in S).

Concretely, by a generic choice of δ, we first make sure that l is transverse
to C(k). Then between any two consecutive intersections of C(k) with l,
there is a segment of l and a segment of C(k). If the segment of C(k)
contains an intersection point of ∆+, we replace this segment of C(k) with
the segment of l. This procedure ends thanks to the compactness of ∆+.
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Here there are two issues to address. First, we want our deformation
of C(k) to be smooth. We can perform the smoothing in the image of the
neighborhood of N(p) by the flow, which gives a neighborhood of l in S.

More importantly, we need the dλ-area between C(k) and its modifica-
tion to be zero for being able to realise it with a modification of the Reeb
vector field which gives a change of holonomy having zero flux, see [CHL].
When we replace a portion of C(k) with a portion of l we have a contribu-
tion to the flux which is the area between the two. Since l spirals to C(k′),
this can be taken to be small at will and with aC1-small perturbation by tak-
ing the segments of l close enough to C(k′). This total ε change of area can
be compensated by another C1-small perturbation near a fixed intersection
of C(k) with the image of the neighborhood of N(p) by the flow, where we
have a fixed area coming from N(p) available. Note that we to perform this
pertubation in a flow box based at a subdomain of S whose length along the
Reeb direction can be taken long at will, since the Reeb orbits from N(p)
to S are getting longer as N(p) is getting smaller. We have has much room
as needed to perturb the Reeb flow and apply [CHL].

Doing so, we see that we can eliminate ∆+ and since the modifica-
tion of V u(k) is contained in the orbits through N(p), we do not cre-
ate heteroclinic intersections of length less or equal to L. This proves
Lemma 4.13. �

Under the similar hypothesis, we can also eliminate ∆−.
We are left with the case in which the unstable component V u(k′) is

a complete connection to an orbit k′′. We can repeat our argument of
Lemma 4.13: either the corresponding unstable manifold of k′′ is a com-
plete connection, or we can eliminate ∆+, by using a segment δ anchored
in V u(k′′), whose image by the flow in S is similar to the one of the previ-
ous case, i.e. spiralling to C(k′). Since by hypothesis not all the elements
of Kb have complete connections, this process stops and we can always
eliminate ∆±. Arguing by induction, we eliminate successively all inter-
sections from k of length less or equal to L (without creating new ones) and
obtain a contradiction with Lemma 4.11 for the unstable manifold V u(k).
This terminates the proof of Proposition 4.10. �

We can now prove Theorems 1.2 and 1.3. In view of Lemma 4.9 and
Proposition 4.10, to prove Theorem 1.2 we need to consider the case when
there is at least one crossing intersection between the components of Kb.

Lemma 4.15. Let (K,F) be a broken book decomposition supporting a
nondegenerate Reeb vector field Rλ. Assume that there is at least one het-
eroclinic intersection between broken components of the binding Kb, with
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a crossing of stable and unstable manifolds. Then there is at least one ho-
moclinic intersection with a crossing of stable and unstable manifolds, and
thus positive topological entropy and infinitely many periodic orbits.

Proof. We consider the set C of complete connections between components
of Kb that belong to a cycle of such complete connections. We then as
before cut M along C to get a manifold M ′ with boundary and corners. We
let K ′b be the collection of periodic orbits of Kb, when viewed in M ′. The
set K ′b may contain several copies of the same orbit of Kb.

By hypothesis there is at least one heteroclinic orbit in M ′ between el-
ements of K ′b along which there is a crossing intersection. Hence it is not
in ∂M ′. Note that for every component T of ∂M ′, the number of stable and
unstable manifolds of orbits kb ∈ ∂T ⊂ M ′ that are not themselves con-
tained in ∂T is even, since there are as many stable than unstable manifolds
in ∂T (every heteroclinic or homoclinic connection in ∂T involves a stable
and an unstable manifold).

Consider the connected component T of M ′ that contains a crossing in-
tersection, and let k ∈ Kb be the orbit whose unstable manifold V u(k)
is involved in this intersection. Following the heteroclinic intersections
from V u(k), as in Lemma 4.2, we get a sequence of heteroclinic intersec-
tions. We claim that this sequence stays inside T . Indeed, if it arrives to a
periodic orbit in Kb∩∂T along a stable manifold, then the two components
of the unstable manifold of this periodic orbit are in T . We can thus con-
struct a sequence such that all the stable and unstable manifolds involved
are in the interior of T . To see this, one can blow down every component
of ∂T to a generalized hyperbolic orbit with 2n stable/unstable manifolds.
We now have a closed manifold together with a Reeb vector field without
connections. Lemma 4.1 and Proposition 4.10 imply that there is a cycle
with only crossing intersections.

Near this cycle, we obtain a crossing homoclinic intersection, which
is also a homoclinic intersection in M . Positivity of topological entropy
comes from [BW]. �

We now prove Theorem 1.3 stating that on a 3-manifold that is not graphed,
every nondegenerate Reeb vector field has positive topological entropy.

Proof of Theorem 1.3. A nondegenerate Reeb vector field is carried by some
broken book decomposition. If there is no broken component in the bind-
ing, then the broken book is in fact a rational open book. If M is not a
graph manifold, then the monodromy of this rational open book must con-
tain a pseudo-Anosov component in its Nielsen-Thurston decomposition.
The first-return map of the Reeb vector field on a page is homotopic to the
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Nielsen-Thurston monodromy, so its topological entropy is bounded from
below by the latter one, that is positive.

If the binding of the broken book has broken components then all ele-
ments ofKb that are not complete connections contain, by Proposition 4.10,
a crossing intersection. This proves the positivity of the entropy in this case.

If all stable and unstable manifolds of elements of Kb are complete con-
nections, then as in Lemma 4.9, they decompose M into partial open books
and if M is not graphed, then one of them must have some pseudo-Anosov
monodromy piece in its Nielsen-Thurston decomposition and we obtain
positive topological entropy. �

5. IMPROVING THE STATEMENTS

In this last section, we discuss the nondegeneracy hypothesis and observe
that our Theorems 1.2, 1.3 and 1.4 hold for an open set of contact forms
containing nondegenerate ones.

Indeed, once we have a supporting broken book decomposition, the ar-
guments only use the fact that the periodic orbits in the binding are non-
degenerate and do not care about nondegeneracy of “long” periodic orbits.
The binding orbits are a subset of the set of orbits P for a nondegenerate
contact form λ that shows up in Lemma 3.1. The set P contains all periodic
orbits of Rλ whose actions are less than A(Γ), where Γ is a representative
of a homology class whose image by the U -map does not vanish. As we
will see below, the action of an orbit set realizing a class which is not in the
kernel of U can be a priori bounded in a neighborhood of λ, a manifestation
of the continuity of the spectral invariants.

Precisely, there exists a C2-neighborhood N(λ) of λ such that for every
nondegenerate contact form λ′ in N(λ), there is a representative Γ′ for λ′ of
a nonzero class in ECH(M,λ′) whose image under the U -map is nonzero
and whose total action is a priori bounded by some L > 0, depending
only on N(λ). This is a consequence of the existence of the cobordism
maps in ECH (defined through Seiberg-Witten homology) given in [Hu2,
Theorem 2.3]. We now shrink N(λ) so that moreover for every form λ′ in
N(λ), the periodic Reeb orbits of λ′ of action less than L, forming a set
P ′, are all nondegenerate – note this is an open condition. Now, if λ′ is a
contact form in N(λ), possibly degenerate, first its periodic Reeb orbits of
action less thanL are nondegenerate and second it can be approximated by a
sequence of nondegenerate contact forms λ′n in N(λ) whose periodic orbits
of actions less than L coincide with those of λ′. Since λ′n is nondegenerate,
the conclusion of Lemma 3.1 holds for λ′n and P ′: through every point
z in M , one can find a projected holomorphic curve through z and with
asymptotics in P ′. By compactness for pseudo-holomorphic curves in the
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ECH context [Hu, Sections 3.8 and 5.3], this property also holds for λ′ and
P ′. This is all we need to find a supporting broken book for λ′, with binding
in the nondegenerate set P ′. The rest of the arguments to prove Theorems
1.2, 1.3 and 1.4 then carry over to λ′.
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(1996), 337–379.

[HWZ2] H. Hofer, K. Wysocki, E. Zehnder, Finite energy foliations of tight three-spheres
and Hamiltonian dynamics, Ann. of Math. (2) 157 (2003), no. 1, 125–255.

[HS] U. Hryniewicz, P. Salamão, Global surfaces of section for Reeb flows in dimension
three and beyond, arXiv:1712.01925.

[Hry] U. Hryniewicz, A note on Schwartzman-Fried-Sullivan Theory, with an applica-
tion, https://arxiv.org/abs/1904.12416

[HT1] M. Hutchings and C. H. Taubes, The Weinstein conjecture for stable Hamiltonian
structures, Geom. Topol. 13 (2009), 901–941.

[HT2] M. Hutchings and C. H. Taubes, Gluing pseudoholomorphic curves along
branched covered cylinders II, J. Symplectic Geom. 7 (2009), 29–133.

[Hu2] M. Hutchings, Quantitative embedded contact homology, Jour. Diff. Geom 88 (2)
(2011), 231–266.

[Hu] M. Hutchings, Lecture notes on embedded contact homology, Contact and sym-
plectic topology, Bolyai Soc. Math. Stud. 26 (2014), 389–484.

[Iri] K. Irie, Dense existence of periodic Reeb orbits and ECH spectral invariants, J.
Mod. Dyn. 9 (20125), 357–363.

[Kat] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms,
Inst. Hautes Études Sci. Publ. Math. 51 (1980), 137–173.
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