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Résumé

On construit un billard tridimensionnel réalisant tout entrelacs fini comme collection d’orbites périodiques. Plus
généralement, étant donné un patron, c’est-à-dire une surface branchée munie d’un semi-flot, on construit un
billard dont la collection des orbites périodiques contient celle du patron. R. Ghrist a construit un tel patron
contenant tous les entrelacs. On obtient le billard souhaité en appliquant notre construction à son exemple.

Abstract

We construct a 3-dimensional billiard realising all links as collections of isotopy classes of periodic orbits. For
every branched surface supporting a semi-flow, we construct a 3d-billiard whose collections of periodic orbits
contain those of the branched surface. R. Ghrist constructed a knot-holder containing any link as collection of
periodic orbits. Applying our construction to his example provides the desired billiard.

For every compact domain of R3 with a smooth boundary, one can play billiard inside it, with the
rule that rays reflect perfectly on the boundary, see [6]. If the boundary has corners, the reflection is not
defined, and we only consider orbits avoiding them. Thus a periodic orbit with no self-intersection point
yields a knot in R3 and one can wonder about the relation between the shape of the billiard and the knots
arising in this way. In a cube, the latter correspond to the so-called Lissajous knots, see [2]. In a cylinder
the situation is more intricate, see [3]. It is asked in [4] and [5] whether there exists a billiard containing
all knots as periodic orbits. In this note, we provide a positive answer to this question.
Definition 1 A template (see figures 1, 2) is a smooth compact surface S with boundary embedded in R3

and equipped with a non-vanishing vector field V so that :
(i) V is tangent to the surface S and to its boundary,
(ii) there exist finitely many branching segments – called convergence segments – transverse to V ,

where three pages P+, P− and P o of the surface meet, with V leaving P+ and P− and entering P o,
(iii) there exist finitely many branching points – called separation points – on the boundary of S whose

neighbourhood is diffeomorphic to an open disc cut along the bottom vertical radius and equipped with the
top-bottom vector field.
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Figure 1. How does a template look like. A generic point,

a convergence segment and a separation point. Ce à quoi

ressemble un patron. Un point générique, un segment de
convergence et un point de séparation.

Figure 2. A generalised Lorenz’ template, and the
Ghrist’s template. Un patron de Lorenz généralisé et le

patron de Ghrist.

First suppose we are given a template T0 that can be immersed into the plane (for example Ghrist’s
template works, but not the generalized Lorenz’) 1 . Distort it into T1 in such a way that the projection
of T1 on the horizontal plane is obtained by gluing ribbons with slopes (±1, 0) or (0,±1) for generic
points, isosceles-rectangular triangles for changes of direction, ribbons with slope (0,−1) for convergence
segments, and parabolic church shapes.
These patterns are depicted on
figures 3 and 4. Note that they
fit well into the integer lat-
tice Z2. Now we associate a bil-
liard B1 to T1 by lifting it in R3

so that ribbons are 1 unit thick
along the vertical direction and
match with each other. Conver-
gence segments deserve a spe-
cial treatment depicted on fig-
ure 6. There could be level gaps,
but these can be settled using
vertical double bends, see fig-
ure 7.

Figure 3. Patterns for the tem-

plate T1. Pièces du patron T1.

Figure 4. Ghrist’s template distorted into

a T1-like template. Le patron de Ghrist
déformé pour être de type T1.

Our claim is the following
Theorem 2 For every template T0 embedded in R3, every finite collection of periodic orbits of T0 is
isotopic to a finite colletion of periodic orbits of the billiard B1 constructed above.

Applying this to Ghrist’s template yields
Corollary 3 There exists a domain in R3 with a piecewise smooth boundary (see figure 9) so that any
link appears as a family of periodic billiard trajectories.
Proof We only prove the theorem for knots, the case of links being similar.

Let γ0 be a periodic orbit on T0. Since the templates T0 and T1 are isotopic, there exists a periodic
orbit γ1 of T1 isotopic to γ0. Let p be an arbitrary point on γ1. One associates an infinite periodic
word wN

γ1,p on the alphabet {0, 1} so that when one follows γ1, the sequence of left/right-choices at
separation points is described by the letters of wN

γ1,p.
Let q be a point inside B1, and suppose that it projects to T1 on a point where the flow is parallel

to the y-direction. Call (xq, yq) the horizontal coordinates of q and zq the vertical one (along which the

1. For orientable templates, the so-called bell trick can do the job.
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Figure 5. How to realize a separation point using billiards: on the left side a

horizontal cut. The left two curves are confocal parabolæ, the exterior one being
homothetic to the interior one by a factor 2. In this way, vertical entering rays

go out vertically and their mutual distances are doubled. The same thing holds

on the right of the separation point. Réalisation d’un point de séparation par
un billard. Les deux courbes de gauche sont des paraboles confocales, l’externe

étant homothétique de l’interne par un facteur 2. Ainsi les trajectoires arrivant
verticalement par le haut sortent verticalement et leurs distances mutuelles sont

doublées. La même chose se produit à droite du segment de séparation.

Figure 6. How to realize a con-
vergence segment by billiards: a

vertical cut. The shape is the
same as for separation points,

but the flow is reversed, and

the shape turned 90◦ along
the y-direction. Réalisation d’un

segment de convergence. On

prend la même pièce que pour
les points de séparation, en la

tournant verticalement. Le flot

est également renversé.

projection is performed). Playing billiard in B1 along the y-direction does not change (xq, zq), unless one
crosses corners, churches or convergence boxes. In the first case, the restrictions we imposed on possible
shapes force a second corner to follow the first one, and the x, z-coordinates mod 1 are not affected by two
consecutive changes of direction. When crossing a church, the x-coordinate is doubled mod 1. Similarly,
crossing a convergence box backwards doubles the z-coordinate. In other words, if we play billiard along
the y-direction, the future is encoded in the x-coordinate, while the past is encoded in the z-coordinate. In
particular, if q lies on a periodic orbit in the y-direction, the dyadic expansions of xq mod 1 and zq mod 1
are both periodic and the associated patterns are mirrors one of the other.

It is therefore natural to compare the orbit γ1 on T1 passing through p and the orbit γ̃′1 on B1 passing
through (0.wN

γ1,p, 0, 0.w̄
N
γ1,p) and going along the y-direction. Since γ̃′1 is horizontal except in convergence

boxes, it is the lift of a periodic orbit γ′1 in the planar template T1 considered as a planar billiard. Therefore
a knot-diagram of γ̃′1 is obtained from γ′1 by removing the ambiguities at crossings.

A crossing of γ′1 may arise in three situations only. Either it arises in a corner with two strands in
the same box, in which case the previous-or-next corner provides another crossing for the same pair
of strands, so that the pair will disappear with a Reidemeister-II-move, see figure 7. Or it arises when
different ribbons cross, in which case the same ribbons cross in T1. Or it arises at a corner when two
ribbons become parallel just before a convergence box, in which case the crossing already exists in γ1

when the two ribbons of T1 overlap. Therefore, the horizontal projection of γ̃′1 can be distorted to γ1

using Reidemeister-II-moves only, and so the two knots are isotopic.
We still have to address the case of a half-twist on a non-orientable template. This can be fixed with

the billiard of figure 8. So the proof is complete.
Note that our construction can be smoothed so that the boundary of the billiard become a smooth

surface. On the other hand the parabolæ are crucial in order to double the coordinates, preventing us to
construct a billiard with piecewise-linear boundary. We are left with these two questions :

(i) Is it possible to construct a polygonal billiard containing all links as periodic orbits?
(ii) Is it possible to construct a convex billiard containing all links as periodic orbits?
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Figure 7. A horizontal double-bend. At each corner some
crossings which were not on the template T0 may appear.
Nevertheless, since corners come in pairs, these extra-cross-
ings disappear with a Reidemeister-II-move. Level gaps are
solved with this pattern turned vertically. Une chicane hor-

izontale. À chaque coin apparaissent des croisements qui

n’existaient pas sur le patron T0. Néanmoins, comme
les coins viennent toujours par paires, ces croisements

supplémentaires aussi, et un mouvement de Reidemeis-

ter les supprime.

Figure 8. How to realize a half-twist. Note on the left picture
that the projections of any two strands cross exactly once,
and that horizontal strands go above vertical ones. Since
a braid in which any two strands cross exactly once and
positively is half-turn ∆n, this billiard realizes a half-twist.
Réalisation d’un demi-tour. Comme indiqué sur la partie
gauche, les projections horizontales de deux trajectoires

se coupent exactement une fois, avec le brin O-E par

au-dessus du brin N-S. Or une tresse dont deux brins
quelconques se coupent exactement une fois et positive-

ment est isotope au demi-tour ∆n.

Figure 9. The billiard associated to Ghrist’s template.
Le billard associé au patron de Ghrist.
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