Troisième feuille d'exercises de Calcul différentiel (L3): équations différentielles Deuxième Semestre 2011-2012

Exercise 1. Si pour tout réel t, les matrices A(t) et A'(t) commutent alors $(\exp A(t))' = A'(t) \exp A(t)$.

Exercise 2. Soit A une matrice $n \times n$ et $V(t) = \exp tA$. Donner à l'aide de V(t) une solution vérifiant $Y(0) = C_0$ au système différentiel : Y' = AY

Exercise 3. Résoudre les systèmes :

$$\begin{cases} y_1' &= y_1 - y_2, \\ y_2' &= y_1 + y_2, \end{cases} et \begin{cases} y_1' &= y_1 - y_2, \\ y_2' &= y_1 + 3y_2. \end{cases}$$

Exercise 4. Soit $\tilde{A}(t)$ la transposée de la comatrice de A(t), on rappelle qu'on $a: \tilde{A}(t)A(t) = \det A(t)I_n$. Montrer qu'on $a: \det A(t)$)' = Trace $(A'(t)\tilde{A}(t))$.

Exercise 5. Résoudre $y' + 2ty = te^{-t^2}$.

Exercise 6. Montrer qu'il existe une solution à $ty' + 2y = \frac{t}{1+t^2}$ définie sur tout \mathcal{R} .

Exercise 7. Est-ce-que la fonction $f(t) = \sin^2 t$ peut être solution d'une équation linéaire du second ordre $y'' = a_2(t)y' + a_1(t)y$?

Exercise 8. Montrer que pour que f non triviale soit solution d'une équation différentielle linéaire d'ordre n, il faut et il suffit que $f, f', f'', \ldots, f^{(n-1)}$ n'aient pas un zéro commun.

Exercise 9. Soit f(t) une fonction continue. Notons y_{λ} la solution de l'équation différentielle $y'' = (1 + \lambda f(t))y$ telle que $y_{\lambda}(0) = y'_{\lambda}(0) = 1$, montrer que pour λ assez petit, y_{λ} et y'_{λ} ne s'annulent pas sur [-1, +1]. Que se passe-t-il si f est constante > 0 et λ est très négatif?

Exercise 10. Soit $A(t) = \begin{pmatrix} t & 1 \\ 0 & t \end{pmatrix}$. Calculer la résolvante V du système Y' = AY. Puis déterminer les solutions U du système U' = AU + B où $B(t) = e^{t^2/2} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Déterminer la solution U telle que $U(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Exercise 11. On note V(t) la résolvante du système Y' = AY(0). Si A(u) est antisymétrique pour tout u, on a :

- 1) ${}^{t}V(t)V(t) = I_n$ i.e. V(t) est orthogonale.
- 2) Soit Y une solution de (0), montrer que ||Y|| est bornée.

Exercise 12. Déterminer y de classe C^2 tel que pour tout $t, y(t) \neq 0$ et

$$\det\begin{pmatrix} y & y' \\ y' & y'' \end{pmatrix} = 0$$

Exercise 13. On note U(t) la résolvante du système Y' = AY.

1) On suppose que A(u) commute avec une matrice fixe B pour tout u. Montrer que B commute avec U(t). (Indication: commencer par le cas où B est inversible).

2) En déduire que si A(u) commute avec B(v) pour tous les u, v, alors si on note V(t) la résolvante du système Y' = BY, UV est la résolvante du système Y' = (A + B)Y. En déduire que U et V commutent.

Exercise 14. Soit l'équation y'' + a(x)y' + b(x)y = 0 (*). Montrer qu'il existe une fonction nulle part nulle v(x) telle que y = uv est solution de (*) ssi u est solution de u'' + q(x)u = 0.

Exercise 15. Soit l'équation différentielle linéaire du second ordre $y'' = (4t^2 + 2)y$ (*) avec $t \in \mathcal{R}$. Vérifier que $y_0 = e^{t^2}$ est solution de (*). On note z la solution de (*) telle que z(0) = 0 et z'(0) = 1.

- a) Etablir le système différentiel correspondant à (*). En déduire à partir de son Wronskien une équa. diff. linéaire du 1er ordre (avec second membre) satisfaite par z.
 - b) Déterminer z en appliquant directement la méthode de variation des constantes à (*). Retrouver l'équa diff de a).

Exercise 16. On considère une équa. diff. lin. du second ordre y'' = a(t)y' + b(t)y (*) (où a(t), b(t) sont des fonctions continues) qui possède une solution y_0 particulière ne s'annulant pas sur un intervalle I. Soit z une solution qq. de (*), montrer que z s'annule au plus une fois sur I.

Exercise 17. Montrer que pour que f et g de classe C^2 soit solutions de base d'une équa. diff. linéaire du second ordre sur un intervalle I de réels, il faut et il suffit que W(f,g) = fg' - f'g (le Wronskien de f et g) ne s'annule pas sur I.

Application: trouver l'éq. dif. lin. du second ordre ayant f(t) = t et $g(t) = t^2$ pour solutions de base sur $I =]0, +\infty[$.