
Exercises
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1 Hamilton’s equations, differential calculus in Rn

Exercise 1. For 0 < r < R and n ≥ 2, find a volume preserving diffeomorphism of R2n which
maps B2n(R) into B2(r)×R2n−2.

Exercise 2. For a1, . . . , an > 0 consider H =
∑

j aj(p
2
j +q2

j ). Compute the associated Hamiltonian
vector field and find the periodic solutions on a given level set H−1(c).

Exercise 3. Let g be a Riemannian metric on Rn given in coordinates (q1, . . . , qn) by a symmetric
matrix (gij(q))ij . We define a Hamiltonian functionH onR2n with coordinates (p1, . . . pn, q1, . . . , qn)
by H(p, q) = ||p||2 =

∑
ij gij(q)pipj . Let (p(t), q(t)) be a flow line of XH . Prove that

q̈k = −
∑
ij

Γkij q̇iq̇j ,

where

Γkij =
1

2

n∑
l=1

gkl(
∂glj
∂qi

+
∂gil
∂qj
− ∂gij

∂ql
)

are the Christoffel symbols of the metric and (gkl(q))kl denotes the inverse of the matrix (gij(q))ij .
(This equation gives the geodesics of the metric.)

Exercise 4. We use the same notations as in Exercice 3 and define another Hamiltonian function
H1(p, q) = ‖p‖ = H(p, q)

1
2 on the open subset {p 6= 0}. We introduce the hypersurface S =

{||p|| = 1} of R2n. We let R∗ act on R2n by multiplication on the variables p, that is, λ · (p, q) =
(λp1, . . . λpn, q1, . . . , qn). Prove that ϕtH1

(λ·(p, q)) = λ·ϕtH1
(p, q), for λ > 0, and that ϕ2t

H1
|S = ϕtH |S .

Compute ϕtH(p, q) and ϕtH1
(p, q) in the case of the standard metric (||p||2 =

∑
i p

2
i ).

Exercise 5. Check that the exterior product ∧ is associative and graded commutative.

Exercise 6. Check the formulas

ιv(α ∧ β) = ιvα ∧ β + (−1)degαα ∧ ιvβ,

ιv(a
∗α) = a∗(ιa(v)α).

Exercise 7. Let E be a real vector space of dimension n. An element of
∧k E∗ is called decom-

posable if it is the exterior product of k elements of
∧1E∗ = E∗.

1. Show that all degree n or n− 1 forms are decomposable.

2. For α ∈ E∗ and ω ∈
∧k E∗, show that α∧ω = 0 if and only if ω = α∧β for some β ∈

∧k−1E∗.

3. If α, β, γ, δ ∈ E∗ are linearly independent, show that α ∧ β + γ ∧ δ is not decomposable.

Exercise 8. Using the definition of the exterior derivative of a k-form α given by the formula:

(dα)p(v0, . . . , vk) = lim
t→0

1

t

∑
i

(−1)i(αp+tvi(v0, . . . , v̂i, . . . , vk)− αp(v0, . . . , v̂i, . . . , vk)),

check the properties:

2



• d(α ∧ β) = dα ∧ β + (−1)degαα ∧ dβ,

• d(α+ β) = dα+ dβ,

• d2 = 0.

Exercise 9. For a smooth map ϕ : U → V and a k-form α on V , show that d(ϕ∗α) = ϕ∗(dα).

Exercise 10. Let M be a manifold and Ω∗(M) the algebra of differential forms.
For a vector field X and a diffeomorphism ψ : M →M , prove the following properties involving

the Lie derivative LX , the contraction ιX and the exterior derivative d:

1. LX(α ∧ β) = LXα ∧ β + α ∧ LXβ,

2. ψ∗ ◦ Lψ∗X = LX ◦ ψ∗,

3. LX ◦ d = d ◦ LX ,

4. LX = d◦ ιX + ιX ◦d (Lie-Cartan’s formula. Hint: use the unicity of an operator LX satisfying
the formulas (1), (3) and the additivity).

Exercise 11. Let U be an open subset of Rn which is starshaped about the origin and β a closed
k-form on U with k ∈ N∗. Prove that dα = β where

αx =

∫ 1

0
tk−1ιxβtxdt.

Exercise 12. Let U be an open set of Rn, α a 1-form on U and X,Y vector fields on U . Show
that

dα(X,Y ) = LX(α(Y ))− LY (α(X))− α([X,Y ]).
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2 Differential manifolds, symplectic linear algebra

Exercise 13. Show that the compatibility relation between atlases is an equivalence relation. Show
the existence and uniqueness of a topology induced by an atlas.

Exercise 14. Show that a manifold structure on M is determined by the ring of smooth functions
M → R.

Exercise 15. Give two different manifold structures on R.

Exercise 16. Let M be a manifold. We say that a subset N ⊂ M is a (embedded) submanifold
if, for any x ∈ N , we can find a chart U of M around x and coordinates (x1, . . . , xn) such that
N ∩ U = {x1 = · · · = xk = 0}.

Prove that a submanifold has a unique manifold structure such that the inclusion i : N → M
is a morphism of manifolds.

Conversely, let i : N → M be a morphism of manifolds such that i is an immersion and an
embedding of topological spaces (the topology of N is induced by that of M). Prove that i(N) is
a submanifold of M .

Exercise 17. Let f : Rn → R be a smooth function. We set Z = f−1(0). Assume that df(x) 6= 0
for all x ∈ Z. Prove that Z is a submanifold of Rn.

More generally, if f : M → N is a morphism between manifolds and df(x) is a surjective for all
x ∈ f−1(0), then f−1(0) is a submanifold.

Exercise 18. Let f : R → R be a local diffeomorphism. Prove that the image of f is an open
interval, I, and that f is a diffeomorphism from R to I.

Give a local diffeomorphism f : R2 → R2 which is not a diffeomorphism onto its image.

Exercise 19. Let O(n) ⊂ Matn×n ' Rn2 be the group of orthogonal matrices and Sym(n) ⊂
Matn×n the space of symmetric matrices. We have Sym(n) ' Rn(n−1)/2 and O(n) = f−1(0), where
f : Matn×n → Sym(n), A 7→ AAt. Prove that dfA(B) = BAt + ABt and deduce that O(n) is a
submanifold of Matn×n.

Exercise 20. Let M be a manifold and let U, V be two open subsets such that M = U ∪ V . We
define the Mayer-Vietoris sequence

0→ Ωk(M)
(rUrV )
−−−→ Ωk(U)⊕ Ωk(V )

(sU ,−sV )−−−−−−→ Ωk(U ∩ V )→ 0,

where rU , rV , sU , sV are the obvious restriction maps. Prove that this is an exact sequence (that
is, for any two consecutive maps f , g we have g ◦ f = 0 and ker(g) = im(f)).

We recall the snake lemma: for a commutative diagram with two horizontal exact sequences

A A′ A′′ 0

0 B B′ B′′

u u′ u′′
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we have an exact sequence ker(u)→ ker(u′)→ ker(u′′)→ coker(u)→ coker(u′)→ coker(u′′).
Deduce the Mayer-Vietoris exact sequence in cohomology

· · · → Hk(M)→ Hk(U)⊕Hk(V )→ Hk(U ∩ V )→ Hk+1(M)→ · · · .

Exercise 21. We can deduce from the Poincaré lemma that Hk(M × Ri) ' Hk(M) for any
manifold M and integers k, i. Using this and the previous exercice, prove by induction on n that
Hk
dR(Tn) ' R(nk), where Tn = (S1)n is the n-dimensional torus.

Exercise 22. Let Tn = (S1)n be the n-dimensional torus. Let 0 ∈ S1 be a given point. For
I ⊂ {1, . . . , n} let TI ⊂ Tn be the subtorus of dimension n − |I|: TI = {(θ1, . . . , θn); θi = 0 if
i 6∈ I}. We define ak : Ωk(Tn)→ R(nk), α 7→

∏
|I|=k

∫
TI

(α|TI ).

Check that ak induces a map bk : Hk
dR(Tn) → R(nk). Prove that bk is surjective, hence an

isomorphism by the previous exercice.

Exercise 23. Let (V, ω) be a symplectic vector space and L ⊂ V a Lagrangian subspace.

1. Show that there exists a symplectic basis (e1, . . . , en, f1, . . . , fn) such that e1, . . . , en ∈ L.

2. Show that the group Sp(V, ω) acts transitively on the set of Lagrangian subspaces.

Exercise 24. Show that a hyperplane is coisotropic.

Exercise 25. Show that Sp(4,R) 6= SL(4,R).

Exercise 26. Let (V, ω) be a symplectic vector space and ϕ an endomorphism of V . Show that ϕ
is symplectic if and only if its graph Γϕ = {(v, ϕ(v)), v ∈ V } is Lagrangian in (V × V, ω ⊕ (−ω)).

Exercise 27. We say that two vector subspaces E,F of a vector space V are transverse if E+F =
V . Let (V, ω) be a symplectic vector space, W a coisotropic subspace and L1, L2 two Lagrangian
subspaces. We assume that L1 is transverse toW and L2 ⊂W . Show that L1 and L2 are transverse
if and only if their reductions with respect to W are transverse (in W/W⊥ω).

Exercise 28. Let (V, ω) be a symplectic vector space and q : V → R a positive definite quadratic
form. Prove that there exist real numbers 0 < a1 ≤ · · · ≤ an and a symplectic basis (e1, . . . , en, f1,
. . . , fn) such that

q =

n∑
i=1

ai((e
∗
i )

2 + (f∗i )2).

Prove that a tuple (a1, . . . , an) with the above property is unique (i.e. depends only on q).

Exercise 29. Let ω0 = e∗1 ∧ f∗1 + e∗2 ∧ f∗2 be the standard symplectic form in R4.
(a) Prove that a non-zero alternate 2-form α on R4 is of rank 2 if and only if α ∧ α = 0.
(b) Deduce that the set of alternate 2-forms of rank 2, up to multiplication, is a quadric in the

projective space P(
∧2 R4∗) ' P5 (that is, it is the vanishing locus of a homogeneous polynomial

of degree 2).
(c) Let α be an alternate 2-form of rank 2 on R4. Prove that kerα is Lagrangian if and only if

α ∧ ω0 = 0.
(d) Prove that the Grassmannian Lagrangian of R4 is a quadric in P(V ) ' P4, where V =

{α ∈
∧2 R4∗; α ∧ ω0 = 0}.
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3 Symplectic linear algebra, symplectic manifolds

Exercise 30. Let (V, ω, g, J) be a Hermitian vector space. Show that a subspace L is Lagrangian
if and only if JL is the g-orthogonal complement of L.

Exercise 31. Let (V, ω) be a symplectic vector space and J (V, ω) the set of compatible complex
structures on V .

1. Show that the group Sp(V, ω) acts transitively on J (V, ω) and that the stabilizer of J is
U(V, ω, J). Deduce from the polar decomposition that J (V, ω) is diffeomorphic to a vector
space.

2. Let J0 ∈ J (V, ω), W the space of anti-complex (i.e. w ∈ End(V ), J0 ◦ w + w ◦ J0 = 0)
symmetric endomorphisms and B(W ) the open unit ball in W for the operator norm ‖w‖ =

supx 6=0
‖w(x)‖
‖x‖ .

Show that the map Φ(w) = (id+w)◦J0◦(id+w)−1 defines a bijection from B(W ) to J (V, ω).

Exercise 32. Let (V, ω) be a symplectic vector space and u ∈ Sp(V, ω).

1. Prove that im(u−1 − λid)⊥ω = ker(u− λid).

2. Deduce that if λ is an eigenvalue of u, then so is 1
λ with the same multiplicity.

3. Show that 1 and −1 have even multiplicities as eigenvalues (possibly zero).

Exercise 33. Let (V, ω, g, J) be a Hermitian vector space, A ∈ Sp(V, ω) and A∗ its adjoint with
respect to g.

1. Show that A∗ is symplectic and the relation g(A∗v, JA∗Jv) = −g(v, v) for v ∈ V .

2. Deduce that for ‖v‖ = 1, either ‖A∗v‖ ≥ 1 or ‖A∗Jv‖ ≥ 1.

3. Prove the linear non-squeezing theorem: when V = Cn if A(B2n(R)) ⊂ B2(r)×R2n−2 then
R ≤ r.

Exercise 34. In Cn consider the loop of Lagrangian subspaces Lt = At(R
n) for t ∈ R/Z where

At =

(
e2iπkt 0

0 iIn−1

)
.

1. Compute the corresponding integer in π1(Lag(n)) ' Z.

2. Let Σ ⊂ Lag(n) be the hypersurface consisting of Lagrangians L such that dim(L∩Rn) = 1.
Show that the loop Lt is transverse to Σ. How many times does it intersect Σ ?
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Exercise 35. Let (M1, ω1), (M2, ω2) be symplectic manifolds and p1,2 : M1 × M2 → M1,2 the
projections.

1. Check that ω = p∗1ω1 − p∗2ω2 is a symplectic form on M1 ×M2.

2. Show that a map ϕ : M1 → M2 is symplectic, i.e. ϕ∗ω2 = ω1 if and only if its graph is
isotropic in (M1 ×M2, ω).

Exercise 36. LetM be a manifold. Prove that the canonical 1-form λM locally defined by
∑
pidqi

is invariant by coordinate changes induced from coordinate changes on M .

Exercise 37. 1. Let M be a Riemannian manifold. Compute the pull-back of the canonical
1-form λM under the isomorphism TM → T ∗M induced by the inner product.

2. Let j : M → N be an isometric embedding. Prove that (dj)∗λN = λM where dj : TM → TN
is the differential of j.

Exercise 38. Is (T ∗S1, dp ∧ dq) symplectomorphic to (C∗, ω0) ?

Exercise 39. Consider T ∗S1 with its standard symplectic structure.

1. Find a symplectic diffeomorphism of T ∗S1 which separates the zero section 0S1 from itself.

2. Prove that if ϕ is a Hamiltonian diffeomorphism of T ∗S1, then 0S1 ∩ϕ(0S1) contains at least
two points.

Exercise 40. A subset A of a symplectic manifold is displaceable if there exists a hamiltonian
diffeomorphism ϕ such that ϕ(A) ∩A = ∅.

1. What are the closed Lagrangian submanifolds of S2 ?

2. Which ones are displaceable ?

Exercise 41. Consider a square A of side 1 in R2 with the standard symplectic form ω0 = dx∧dy.
Show that for any ε > 0, there exists a compactly supported hamiltonian H : R2× [0, 1]→ R such
that ϕ1

H(A) ∩A = ∅ and for all t, supHt − inf Ht < 1 + ε.

Exercise 42. Prove that a symplectomorphism of R2n is isotopic through symplectomorphisms to
a linear symplectomorphism. Are all symplectomorphisms of R2n Hamiltonian ?

Exercise 43. Let (M,ω) be a symplectic manifold such that ω is exact, i.e. ω = dλ.

1. For ϕ ∈ Ham(M,ω) show that there exists a unique compactly supported function f such
that ϕ∗λ− λ = dfϕ.

2. Show that the formula C(ϕ) =
∫
M fϕω

n defines a group homomorphism Ham(M,ω)→ R.

3. Deduce that Ham(M,ω) is not a simple group when ω is exact. (A famous result of A.
Banyaga says that Ham(M,ω) is simple when M is closed and connected).
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4 Complex structures, Moser’s lemma

Exercise 44. On the cylinder R × R/Z give two symplectic forms of infinite volume which are
not conjugate by a diffeomorphism.

Exercise 45. The natural action of U(n+ 1) on Cn+1 induces an action on CPn. Show that the
Fubini-Study form ωFS on CPn is invariant by this action (that is, if we denote by mg : CPn →
CPn the action of an element g ∈ U(n+ 1), then m∗g(ωFS) = ωFS).

Prove that a 2-form on CPn which is invariant under the action of U(n+ 1) is a scalar multiple
of ωFS .

Exercise 46. We take homogeneous coordinates [z0 : · · · : zn] on CPn and consider the chart
U0 = {z0 6= 0} and ϕ : Cn ∼−→ U0, (z1, . . . , zn) 7→ [1 : z1 : · · · : zn]. Compute ωFS in this chart.
Answer: we write zj = xj + iyj , dzj = dxj + idyj , dz̄j = dxj − idyj . Then dxj ∧ dyj = i

2dzj ∧ dz̄j
and we find

ωFS =
i

2

(∑n
j=1 dzj ∧ dz̄j

1 +
∑n

j=1 zj z̄j
−

(
∑n

j=1 z̄jdzj) ∧ (
∑n

j=1 zjdz̄j)

(1 +
∑n

j=1 zj z̄j)
2

)
.

For n = 1, ωFS = i
2

dz∧dz̄
(1+|z|2)2

= dx∧dy
(1+x2+y2)2

.

Exercise 47. Let V be a vector space endowed with a symplectic form ω and a positive definite
bilinear form q. Define A ∈ GL(V ) by the identity ω(v, w) = q(Av,w), for all v, w ∈ V . Prove
that there exists a unique self-adjoint and positive definite (with respect to q) Q ∈ GL(V ) such
that Q2 = −A2. Prove that Q commutes with A and that J = Q−1A is a complex structure on V
which is compatible with ω.

Deduce that any symplectic manifold (M,ω) has an almost complex structure which is com-
patible with ω.

Exercise 48. Let (V, ω) be a symplectic vector space. Let J be the set of ω-compatible linear
complex structures on V . Prove that J is a submanifold of GL(V ) whose tangent space at J ∈ J
is TJJ = {A ∈ End(V ); AJ + JA = 0, ω(A·, ·) + ω(·, A·) = 0}.

We define an almost complex structure I on J by IJ(A) = −JA, for J ∈ J and A ∈ TJJ .
Check that the 2-form Ω on J defined by ΩJ(A,B) = 1

2tr(AJB), for J ∈ J and A,B ∈ TJJ , is a
symplectic structure which is compatible with I.

Exercise 49. Let M be a manifold and S ⊂M a smooth compact connected orientable hypersur-
face. We let i : S → M be the embedding of S. Let ω0, ω1 be two symplectic forms on M . We
assume that i∗(ω0) = i∗(ω1). Prove that there exist a neighborhood U of S and ϕ : U → M such
that ϕ|S = i and ϕ∗(ω1) = ω0.

Hint: Let L ⊂ TS be the line bundle defined by Lx = (TxS)⊥ω0 = (TxS)⊥ω1 . Let ν : S → νS
be a section of the normal bundle and ξ : S → L a section of L. We can choose ν, ξ nowhere
vanishing (why?). Let ε = ±1 be the sign of ω0(ν(x), ξ(x)) · ω1(ν(x), ξ(x)) and choose ψ : U → U
such that ψ|S = i and dψx(ν(x)) = εν(x). Prove that α := ψ∗ω1 − ω0 is exact near S and that
ωt := ω0 + tα is non-degenerate near S, for t ∈ [0, 1].
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Exercise 50. Let (M,ω) be a symplectic manifold and let Q be a coisotropic submanifold. We
define the complementary distribution TQ⊥ω ⊂ TQ fiberwise (that is, for each x ∈ Q, (TQ⊥ω)x =

(TQ)
⊥ωx
x ). Show that TQ⊥ω is integrable and the leaves are isotropic.

Hint: Suppose that Q has codimension k, and choose functions h1,. . . ,hk near x ∈ Q which
locally define Q (Q is the zero-locus of the hi’s and the dhi’s are independent). Show that the
vector fields Xhi , i = 1, . . . , k, span the complementary distribution.

For two functions f , g we set {f, g} = ω(Xf , Xg). Check that {f, g} = Xf (g) = −Xg(f) and
X{f,g} = [Xf , Xg].

Prove that {hi, hj} vanishes on Q for all i, j and conclude.
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5 Contact geometry, Morse theory

Exercise 51. Let M be a manifold and ξ a hyperplane field on M .
If dimM = 3, show that ξ is a contact structure if and only if, for any x ∈ M and v ∈ TxM ,

there exist vector fields X,Y around x which are tangent to ξ and satisfy [X,Y ]x = v.
Is it true if dimM > 3 ?

Exercise 52. On R3 with coordinates (x, y, z) (or polar coordinates (r, θ, z)) we define α0 =
−xdy + dz, α1 = r2dθ + dz and β = (1 + r2 + z2)−2α1.

Prove that α0 and α1 are diffeomorphic (there exists a diffeomorphism ψ such that ψ∗α1 = α0).
Hint: Use (x, y, z) 7→ (ax, by, z + f(x, y)).

Prove that α1 and β are not diffeomorphic. Hint: The Reeb vector field of β has a periodic
orbit (given by r = 1, z = 0).

Exercise 53. Let (M, ξ) be a contact manifold.
(i) Show that X is the Reeb field of some contact form which defines ξ if and only if X is a

contact vector field transverse to ξ, i.e. α(X) 6= 0, for any defining form α. In particular, not every
contact vector field is the Reeb field of some contact form.

(ii) Let α be a contact form and Y the corresponding Reeb field. If β is any 1-form such that
β(Y ) = 0, prove that there is a unique vector field X which is tangent to kerα and such that
β = ιXdα.

Exercise 54. Let ξ be the standard contact structure on S2n+1. We prove that, for any point
p ∈ S2n+1, the contact manifold (S2n+1 \ {p}, ξ) is contactomorphic with R2n+1 endowed with the
standard structure.

(i) Define f : Cn+1\(Cn×{−1})→ Cn+1\(Cn×{−i}) by f(z, w) = ( z
w+1 ,−i

w−1
w+1), for z ∈ Cn,

w ∈ C. Show that f gives a biholomorphism from B = {(z, w); ||(z, w)|| < 1} to D = {(z, w);
Im(w) > |z|2}.

(ii) Set Q = ∂D ' R2n+1. At each point x ∈ Q, the complex part ξx = TxQ ∩ JTxQ of its
tangent space has codimension 1. Prove that (Q, ξ) is contactomorphic with the standard contact
structure on R2n+1.

(iii) Conclude.

Exercise 55. Let M be a manifold, λM the Liouville 1-form on T ∗M . We put a Riemannian
metric on M and set h(p, q) = ||p||2. Let S = h−1(1) ⊂ T ∗M be the unit sphere subbundle.

1. Show that α = λM |S is a contact form on S. Show that the Reeb vector field Yα is proportional
to Xh|S .

2. Show that if L is a conic Lagrangian submanifold of T ∗M which is transverse to S and tangent
to the vector field p∂p then S ∩ L is a Legendrian submanifold of S.

Exercise 56. Let M be a manifold, ξ a cooriented hyperplane field on M and π : T ∗M →M the
projection. Consider Sξ = {β ∈ T ∗M | kerβ = ξπ(β) as cooriented hyperplanes of Tπ(β)M}. Prove
that ξ is a contact structure if and only if Sξ is a symplectic submanifold of T ∗M .
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Exercise 57. Check that the Hessian at a critical point p of a function f : V → R is well-defined
as a quadratic form TpV → R.

Exercise 58. Check that a critical point p of a function f : V → R is non-degenerate if the section
df : V → T ∗V is transverse to the zero-section at p.

Exercise 59. Let f(x, y, z) = y2 + 2z2 considered as a function on S2 = {x2 + y2 + z2 = 1}. Find
its critical points and show that it is a Morse function. Show that it induces a Morse function on
RP 2 = S2/ ∼ where (x, y, z) ∼ (−x,−y,−z).

Exercise 60 (Another proof of Morse’s lemma). Let f : Rn → R be a Morse function with a
critical point at 0 and f(0) = 0.

1. Find functions aij(x) such that aij = aji and f(x) =
∑
aij(x)xixj near 0.

2. Assume a11 6= 0 and compute f after the change of coordinates (x1, . . . , xn) 7→ (x′1, x2, . . . , xn)
where

x′1 =
√
a11(x)(x1 +

∑
k>1

ak1(x)

2a11(x)
xk).

3. Prove Morse’s lemma by induction on n.

Exercise 61. Let M be a closed submanifold of Rn and, for a ∈ Rn, fa(x) = |x−xa|2. Show that
for almost all a ∈ Rn, fa : M → R is a Morse function.
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6 Morse complex

Exercise 62. Let V , W be closed manifolds. Let (f,X), (g, Y ) be Morse pairs on V and W . Set
h = f + g, Z = X + Y . Prove that (h, Z) is a Morse pair on V ×W . Prove that Ck(h, Z) '⊕

i+j=k C
i(f,X)⊗ Cj(g, Y ). Deduce Hk(V ×W ) '

⊕
i+j=kH

i(V )⊗Hj(W ).

Exercise 63. Compute H i(Sn), H i(Sn × Sm).

Exercise 64. Does there exists a Morse function on S2×S2 with exactly one minimum, one point
of index 2, one maximum, and other critical points of index 1, 3 ?

Exercise 65. Let V be a connected closed manifold.

1. Let M ⊂ V be a submanifold and let γ : [0, 1]→ V be a path with x0 = γ(0) and x1 = γ(1)
not inM . Prove that there exists an arbitrarily small C∞ deformation of γ which is transverse
to M . Hint: let X1, . . . , Xk be vector fields defined in a neighborhood U of im(γ) such that
TxU = 〈Xi(x)〉 for all x ∈ U ; define γ̃ : [0, 1] × [−ε, ε]k → V , (t, t1, . . . , tk) 7→ Φt1

X1
◦ · · · ◦

Φtk
Xk

(γ(t)) and prove that γ̃ is transverse to M .

If codimV ≥ 2, deduce that V \M is connected.

2. Let (f,X) be a Morse pair on V . We assume now that f has no critical points of index 1.
- Prove that f has only one minimum, say p0.
- Let γ : [0, 1] → V be a loop based at p0. Prove that there exists a small deformation of γ
which does not meet the unstable sets W u(p) for p 6= p0.
- Deduce that π1(V ) = 0. (Example V = CPn.)

Exercise 66. Recall that f(x, y, z) = y2 +2z2, considered as a function on S2 = {x2 +y2 +z2 = 1},
induces a Morse function on RP2 = S2/ ∼ where (x, y, z) ∼ (−x,−y,−z). Compute H∗(RP2).

Exercise 67. Let V be a closed orientable surface. Let f be a Morse function on V with exactly one
minimum and one maximum. Prove that the number c of critical points of index 1 is independent
of such an f . Compute H∗(V ) in function of c.

Exercise 68. Poincaré duality. Let V be a closed manifold of dimension n. Prove that for all
k ∈ Z, Hn−k(V ) is isomorphic to (Hk(V ))∗. Hint: Let (f,X) be a Morse-Smale pair on V and
consider the Morse-Smale pair (−f,−X). A critical point of index k for f is of index n− k for −f ,
and hence Ck(f,X) ' Cn−k(−f,−X). Using dual basis we can identify these spaces with their
duals. Check that the differential of one complex gets identified with the adjoint differential of the
other.

Exercise 69. The snake lemma: for a commutative diagram with two horizontal exact sequences

A A′ A′′ 0

0 B B′ B′′

u u′ u′′

we have an exact sequence ker(u)→ ker(u′)→ ker(u′′)→ coker(u)→ coker(u′)→ coker(u′′).
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Exercise 70. Let V be a connected closed manifold. We want to prove that H0(V ) ' Z/2Z.
Let (f,X) be a Morse pair and let Ek be the set of points of index k. We set δ =

∑
p∈E0 p and

Γ =
⋃

(p,q)∈E0×E1M(p, q). For E ⊂ E0 we set ΓE =
⋃

(p,q)∈E×E1M(p, q).

1. Prove that dδ = 0.

2. Let E ⊂ E0 be such that d(
∑

p∈E p) = 0. Prove that ΓE ∩ ΓE\E0 = ∅.

3. For a critical point q and E ⊂ E0 we set W s
E(q) =

⋃
p∈EM(p, q). For i ≥ 0 we also set

W s,i(q) =
⋃
p∈EiM(p, q) (we recall thatW s,i(q) is a submanifold of codimension i ofW s(q)).

Let E0 = E′ t E′′ be a partition of E0. Prove that W ′(q) = W s
E′(q) tW s

E′′(q) tW s,1(q) is
open in W s(q) and connected.

4. Deduce that, ifW s
E′(q) andW

s
E′′(q) are non empty, then there exist p0 ∈ E′, p1 ∈ E′′, r ∈ E1,

z ∈M(r, q) and sequences (xn), (yn) inM(p0, q) andM(p1, q) converging to z. Deduce that
M(p0, r) andM(p1, r) are non empty.

5. Now we prove that Γ is connected. We assume by contradiction that we can write E0 = E′tE′′
such that ΓE′ ∩ ΓE′′ = ∅. Let q ∈ Ek. Prove that either W s

E′′(q) = ∅ or W s
E′(q) = ∅

(do first k = 1, then the general case). Equivalently we have either W s(q) = W s
E′(q) or

W s(q) = W s
E′′(q). We say that q is respectively of type E′ or E′′.

6. Prove by induction on ind(r) that, if M(q, r) 6= ∅, then q and r are of the same type. We
define V ′ = {x ∈ V ; limt→−∞Φt

X(x) is of type E′} and V ′′ in the same way. Prove that V ′

and V ′′ are closed.

7. Conclude H0(V ) ' Z/2Z.

13



7 spectral invariants, generating functions

Exercise 71. Let V be a closed manifold, (f,X) a Morse-Smale pair on V and a < b < c regular
values of f with the following properties:

• critk(f) = critk(f) ∩ {a < f < b} = crit(f) ∩ {a < f < b},

• critk+1(f) = critk+1(f) ∩ {b < f < c} = crit(f) ∩ {b < f < c}.

Show that the operator Hk
(a,b)(f,X) → Hk+1

(b,c)(f,X) from the long exact sequence of the triple
(a, b, c) corresponds to the differential d : Ck(f,X) → Ck+1(f,X) under some natural identifica-
tions.

Exercise 72. Let V be a closed manifold, (f,X) a Morse-Smale pair on V such that there is at
most one critical point in each level set.

1. Let α ∈ Hk(V ) and p a critical point such that f(p) = c(f, α). Prove that p is of index k. Is
p necessarily a cocycle ?

2. Show that any α ∈ Hk(V ) can be represented as a sum of critical points with value ≥ c(f, α).

3. Let α1, . . . , αl ∈ Hk(V ). Show that if c(αi) are distinct, then (αi) are free.

4. Show that {c(f, α);α ∈ Hk(V )} is of cardinal bk(V ).

Exercise 73. Let V be a closed manifold and (f,X) a Morse-Smale pair quadratic at infinity on
Rk × V . For p and q critical points of f , show that the union of gradient trajectories from p to q
is contained in a compact set of Rk × V . Deduce that the Morse complex of (f,X) is well-defined.

Exercise 74. Let E → V be a vector bundle and Q : E → R a fiberwise quadratic form. Show
that there exists another vector bundle E′ → V , a fiberwise quadratic form Q′ : E′ → R, an
integer i and a vector bundle isomorphism u : Rk × V → E ⊕ E′ such that (Q ⊕ Q′) ◦ u =
−v2

1 − · · · − v2
i + v2

i+1 + · · ·+ v2
k.

Exercise 75. Let ϕ : Rk ×Rn → Rn be the second projection and f : Rk ×Rn → R a function.
Check that (ϕ, f) is a generating function if and only if the matrix(

∂2f
∂v2

(v, q) ∂2f
∂q∂v (v, q)

)
is of rank k at each point (v, q) such that ∂f

∂v (v, q) = 0.

Exercise 76. Let f : R×R2 → R be defined as f(v, q1, q2) = v4 + q1v
2 + q2v. Determine for each

(q1, q2) the number of solutions v of the equation ∂f
∂v (v, q1, q2) = 0. Show that f is a generating

function and sketch a drawing of the front of the Legendrian surface generated by f .

Exercise 77. Let ϕ : S3 → CP 1 = S2 be the hopf fibration ϕ(z1, z2) = [z1 : z2], and f : S3 → R
the function f(z1, z2) = Im(z2). Show that (ϕ, f) is a generating function and picture the front of
the corresponding Legendrian surface of J1S2.
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Exercise 78. Let Γ be an ellipse in the plane R2, U the open set bounded by Γ, f : Γ× U → R
the function defined by f(v, q) = ‖v − q‖ and ϕ : Γ× U → U the second projection.

1. In the case where Γ is a circle, show that (ϕ, f) is a generating function and draw the front
of the corresponding Legendrian surface in J1U .

2. Study what happens when Γ is close to being a circle.
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8 Generating functions 2

Exercise 79. Let f(x, q) : Rk × V → R be a generating function for a Legendrian submanifold L
of J1(V ).

1. Prove that fx : V → R is a Morse function for almost all x.

2. We assume that L is transverse to R× 0V , where 0V is the zero section of T ∗V . Prove that
f is a Morse function.

Exercise 80. Let f : Rn → R be a function and let J0(f) = {(z, q) ∈ J0Rn; z = f(q)} be its
graph and J1(f) = {(z, p, q) ∈ J1Rn; z = f(q), p = df(q)}. We see J0(f) as the enveloppe of its
tangent planes: for x ∈ Rn we let gx(q) = g(x) + 〈q − x, df(x)〉 be the affine function giving the
tangent plane at (f(q), q). We set G(x, q) = gx(q). Is G a generating function ? What is the link
between the Legendrian set LG defined by G and J1(f) ?

Exercise 81. Let (v, q) be the coordinates on Rk ×Rn. Let F : Rk ×Rn → R be a generating
function for some immersed Legendrian submanifold LF ⊂ J1(Rn). We define G : R2n+k×Rn → R
by G(x, y, v, q) = F (v, y) + 〈x, q − y〉. Prove that G is another generating function for LF .

Exercise 82. Let Γ be a Legendrian curve in J1(R) given by γ(x) = (z(x), p(x), q(x)). We assume
that p′ never vanishes. Let π : J1 → J0 be the projection. Let F (x, q) be the function such that
q 7→ F (x, q) is the line tangent to π(Γ) at π(γ(x)). Check that F is a generating function for Γ.
Example: give a generating function for the curve Γ such that π(Γ) = {z2 = q3}.

Exercise 83. Let h = h(p) be a function on J1(R) (with coordinates (z, p, q)) only depending on
p. Its contact vector field is Xh = (h(p)− ph′(p)) ∂∂z − h

′(p) ∂∂q .

1. Let g(q) = aq+ b. Check that the image of J1(g) by ϕt = ϕtXh
is a one jet J1(gt) for an affine

function gt.

2. Let C ⊂ R2 = J0(R) (coordinates (z, q)) be a curve with no tangent lines with direction ∂
∂q .

Check that there exists a unique Legendrian curve C̃ ⊂ J1(R) with π(C̃) = C, π : J1 → J0.
Let D be another such curve tangent with C at A = (z0, q0). Let Ã ∈ C̃ ∩ D̃ be above A.
Let Φ be a contact diffeomorphism of J1(R). We assume that π(Φ(C̃)) is a smooth curve
around A′ = p(Φ(Ã)). Check that π(Φ(C̃)) is tangent to π(Φ(D̃)) at A′.

3. Let Γ and F (x, q) be as in Ex. 82. Give a generating function for ϕt(Γ).

4. Example: let Γ be such that π(Γ) is the parabola {z = ax2} and let h(p) =
√
p2 + 1 be the

Hamiltonian of the geodesic flow. Give a generating function for ϕt(Γ). What is the first
value of t such that π(ϕt(Γ)) is not smooth ?
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9 Generating functions 3

Exercise 84. Let V be a manifold,W a submanifold of V , ϕ : E → V a submersion and f : E → R
a function. Set F = ϕ−1(W ), ψ : F → W the restriction of ϕ, g : F → R the restriction of f and
CW = J1V ×V W (i.e. CW consists of all 1-jets of functions on V at a point of W ). Show that the
following conditions are equivalent:

1. (f, ϕ) is a generating function over a neighborhood of W and L(f,ϕ) is tranverse to CW ,

2. (g, ψ) is a generating function over W .

Exercise 85. Let V be a manifold, (ϕt)t∈[0,1] a contact isotopy of J1V , and L a Legendrian
submanifold of J1V . Construct a Legendrian submanifold L of J1(V × [0, 1]) whose reduction to
J1(V × {t}) is ϕt(L) for all t ∈ [0, 1].

Exercise 86. Let V be a manifold, W a submanifold of V , CW = J1V ×V W , ρ : CW → J1W
the reduction, Ht : J1V → R and ht : J1W → R such that Ht = ht ◦ ρ on CW . Prove that XHt is
tangent to CW and lifts Xht under ρ.

Exercise 87. Let V be a manifold, π : J1V → R×V the projection, and L a connected Legendrian
submanifold of J1V such that π : L→ R×V is an embedding and the projection L→ V is proper.
Prove that L is the 1-jet graph of a function f : U → R for some open set U of V .

Exercise 88. Let V be a closed submanifold of Rn. Pick a norm ‖.‖ on the vector space Rn and
endow C∞(V, V ) with the distance

d1(ϕ,ψ) = sup
x∈V
‖ϕ(x)− ψ(x)‖+ sup

x∈V
‖dxϕ− dxψ‖,

and the induced topology (called the C1-topology). Prove that the group of diffeomorphisms of V
is an open subset of C∞(V, V ).

Exercise 89. Let V be a closed manifold and (ft)t∈[0,1] : V → R a smooth family of Morse
functions such that the set critical values of ft is independent of t. Prove that there exists an
isotopy (ϕt)t∈[0,1] of V such that ft ◦ ϕt = f0.
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