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Introduction: Hamilton’s equations from
mechanics

We consider the motion of a ponctual mass m at the position ¢(t) € R? at time ¢ when the force
is given by a potential U(q). Newton’s law gives § = —(1/m)VU, where VU = (8q1 . aqs) We
define the total energy as £(t) = ml|d||* + U(q(t)). It is classical and easy to check that £ is
constant along any trajectory ¢(t) satisfying the above equation.

It is usual to turn the above second order equation into a a first order one by adding variables
p and setting p(t) = mq(t). We obtain the system in R® with coordinates (p1, p2,p3, q1, q2, g3):

, — U
pi = 4,
. _ D
qi = —.
m
Setting H(p,q) = > 5% i + U(q), this is rewritten
. 0H
pi = —
9qi
S(H) . OH
qi = o

We could consider a point on a line instead of R?, or several points and work in R3”. The
same formalism applies. We will thus work in dimension n. We choose coordinates (p,q) =
(P1,---+Pnsq1,---5qn) € R?™. For a given function H(p,q,t) (maybe depending on time) defined
on R2?"*! the above system of equations S(H) is called the Hamiltonian system associated with
H. It is called autonomous if H does not depend on t. The function H is called the Hamiltonian
function of the system. We also introduce the Hamiltonian vector field of H

Z o 9 o 9
dq; 8101 Op; 0q;

(P, q,t

Hence the trajectories which are solutions of S(H) are the same things as the flow lines of Xp.
Lemma 0.1. Let (p(t),q(t)) be a solution of S(H). We set Hi(t) = H(p(t),q(t),t). Then
dH, OH

dt ~ ot
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In particular, if H is autonomous, then H is constant along the trajectories (the total energy is
conserved,).

Proof.

dH, aH Z OH  OH _ Z OHOH  OH OH _ OH
At P e D; iy oq ¢ Opi | Opi 0q Ot

O

We denote t — ¢ (p,q,t) the maximal solution of S(H) which is equal to (p,q) at t = 0.
We often also denote ¢4 (p,q) = ¢u(p,q,t) and Xk (p,q) = Xu(p,q,t). Recall from differential
equations that that the set of (p,q,t) for which ¢ (p,q,t) is defined is an open set containing
R?" x {0} and ¢ is a smooth map. Beware that ¢'*%(p,q) # ©'(¢*(p,q)) in general if H is not
autonomous.

Definition 0.2. A Hamiltonian diffeomorphism of R?" is a diffeomorphism which is of the form
E for some Hamiltonian H and some time 7.

Lemma 0.3. Hamiltonian diffeomorphisms of R?*™ form a subgroup of all diffeomorphisms.
Proof. For H : R*"*! — R, let Uy be the open set where ¢y is defined. If gojl; is defined for

some T > 0, then Uy must contain R*" x [0,7]. For any p: R — R, setting H,(p,q,t) =
PO H (p,q, p(t)), we have XY, = p/()X5") and, if (p, g, p(t)) € Un,

(d/dt) (5" (p,q) = P OX (D0 (p,0) = Xy (0" (9,9)).

Hence, if p(0) = 0, then gop ® — gp’jqp since they satisfy the same differential equation. Using a
smooth function p : R — [0, 7] which vanishes for ¢ < 0 and equal to T for t > T', we obtain H,
for which ¢, is defined everywhere, w’}{p =id for ¢t <0 and gpﬁqp =l fort >T.

Next consider two Hamiltonian diffeomorphisms gpjf;ll and go%. Assume H; and Hs have been
already modified as above. Let Hj(p,q,t) = Ha(p,q,t — T1) so that goﬁq, = gpfj{ i Now the
function H(p,q,t) = Hi(p,q,t) for t < Ty and H(p,q,t) = H)(p,q,t) for t > T is smooth and

Tv+T> _ 15 T
YH = ¥H, °PH,"
For a Hamiltonian diffeomorphism ¢k, with H prepared as before, consider H'(p, q,t) = —H (p,q, T—
t). Then ¢ty o ph = gogft and in particular (¢1)™1 = oL, is hamiltonian. O

Hamiltonian diffeomorphisms are not arbitrary diffeomorphisms, a first restriction is the follow-
ing.
Proposition 0.4 (Liouville-Gibbs). A Hamiltonian diffeomorphism of R*" is volume (and orien-
tation) preserving.

Proof. Recall that the flow ¢ of a vector field X; = >, X/ a‘ on R"™ preserves the volume (i.e., its

jacobian det(d,;) equals 1 for each z,t) if and only if the divergence div.X; = tr(dX;) = ), %
vanishes. Indeed det(d,po) = det(id) = 1 and

d

— det(dypt) = det(dypr)tr((

d _ _ .
g —dyt)dzp; 1) = det(dyp)tr(dz(Xiopr)dy ey 1) = det(d,py)div(Xy)opy.

dt
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Now, for a Hamiltonian vector field Xp = >, (— gff 8(; —i—‘gf 8%_), we compute divXy =Y. (— 8?)2_52_ +
02H \ _
dgop) = 0- =

It turns out that Hamiltonian diffeomorphisms preserve a finer invariant than the volume and
that conversely Hamiltonian diffeomorphisms are (locally) characterized by this property. Let w
be the skew-symmetric bilinear form on R?" given by w = > dpi A dg;.

Proposition 0.5. (i) Any Hamiltonian diffeomorphism ¢ of R®" preserves w, that is, p*w = w.
(ii) Let (cpt)te[OJ] be an isotopy of diffeomorphisms of R*™ which preserve w. Then it is a
Hamiltonian isotopy: there exists a smooth function H : R* x [0,1] — R such that ¢! = ol

Proof. (i) Write ¢1(pi, ¢i) = (P!, q!) so that pjw = > dp! A dq!. Then
d ¢ t '+ t ¢ t
dtzi:dpi Ndg; = zi:dpi A dq; + dp; N\ dg;
OH OH
=Y —d— Adq! ¢
zﬁ: AL
2

0’H 0’H 0°H 0’H
= — dqt A dgt — dp'. A dqt + dpt A dqt + dpt A dp
ZZJ: 9q;0q; Op;Oq; 9q;Opi Ip;Opi ’

=0

(ii) Since d(>=; pidq;) = Y, dpiAdg;, the 1-form Y, pdqi — ", pidg; is closed. Hence Y, pquz —I—pqul
is closed, and so is ay = Y, pldg! — 1tdpl since it differs by the exact form d(pt t). By Poincaré
lemma, we may find a smooth function K, : R — R such that oy = dI; and writing H; = Kiop, 1

(ie., Hi(pr, qt) = Ki(p,q)), we get pt = Gl — o o

and qf =

The 2-form w is called the standard symplectic form on R?". It is non-degenerate, which
means that at any point z € R?", the “kernel” of w,, that is, {v € T,R?"; w,(v,w) = 0 for all
w € T,R*} is {0}. This is equivalent to the condition that w™ is a volume form. Here we have
N'w=nldpy A...Ndp, ANdg1 A ... Ndq,. Hence Proposition 0.4 actually follows from Proposition
0.5 since pjw = w implies p;w™ = w™. Another feature of w is that it is closed: dw = 0. On more
general manifolds, this is the definition of a symplectic form: a closed non-degenerate 2-form.

Thus, defining Hamiltonian diffeomorphisms as the diffeomorphisms of the “phase space” R?"
induced by the motion of a particle following mechanic’s laws, we can characteristize these trans-
forms by the property of preserving the standard symplectic form. Diffeomorphisms which preserve
the symplectic form are called symplectomorphisms. Proposition 0.5 states that an isotopy of sym-
plectomorphisms is locally Hamiltonian.

Though it is easy to find a diffeomorphism of R?" which preserves the volume but not the
symplectic form, it was unclear how much global constraint is added by this property. The following
ground-breaking theorem of Gromov from 1985 is among the main and earliest results of symplectic

topology.

Theorem 0.6 (Gromov, 1985). Let 0 < r < R. There exists no Hamiltonian diffeomorphisms of
R2" which maps the ball B**(R) into the cylinder B?(r) x R*"72.
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This can be compared with Heisenberg’s uncertainty principle in quantum mechanics: it is
impossible to know precisely both the position and the speed of a particle (i.e., the coordinates
(g1, p1)).

Our main goal for this course is to explain a proof of this result via the technique of generating
functions. This proof was given by Viterbo in 1992 and is essentially different from the original
proof by Gromov which is based on holomorphic curves.



Chapter 1

Differential manifolds

1.1 Differential calculus in R"

Exterior algebra Let E be a real vector space of dimension n. For k € N, we denote /\k E* the
vector space of all alternate multilinear forms E¥ — R. By convention /\O E* =R. For k > n,
A" E* = {0}. We also consider A\ E* = ®r>0 A" E* which carries a natural algebra structure: for
ae N"E*, Be N'E* and (vy, ..., vpp) € EFF we define

aAB(vl,...,vk+l) = Z 6(0’)0&(00(1),...,Ug(k))ﬁ(vg(k+1),...,Ug(k+l))
€64
o(1)<-<o(k)
o(k+1)<-<o(k+1)

The exterior product A is then extended to /\ E* by bilinearity. One then checks that it is associative
and graded commutative (i.e. a A = (=13 A a). For aq,...,ax € /\1 E* and vq,...,v, € F,

T AREENA Oék(’l)l, C.. ,Uk) = det((ai(vj))lg,jgk).

Given a basis (e1,...,e,) of E, and the dual basis (e*,...,e*), a basis of A\¥ E* is given by
(e, A--- Aej,) where iy < --- < iy. Hence A¥ E* has dimension (D).

A linear map a : E — F induces a “pull-back” map a* : \ F* — A E* defined by a*a(v1, ... ,vx) =
ala(vr),...,a(vg)) for a € /\k F*and vy,...,v, € E. This map preserves the graded algebra struc-
ture: a*(a A B) = (a*a) A (a*B).

Given v € F and o € /\k E*, we define the interior product by t,a € /\ki1 E* (sometimes also
denoted va)) by tya(v1,...,v5—1) = a(v,v1,...,v5_1) for all vi,... ,vx_1 € E. The operator ¢,
is a graded derivation:

w(aAB)=t,a B+ (—1)%8% A B.
Also with respect to pull-back, we have:
w(a*a) = a*(taw))-

9
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Differential forms A differential k-form on an open set U of R" is a smooth map o« : U —
AF(R™)*. For p € U, we usually write o, instead of a(p). It can be uniquely written o =
Zil<,,_<ik oy, ipdaiy A - Adxg, for some smooth functions «;, .. ;, 1 U — R. The differential df
of a function f : U — R is a differential 1-form. The exterior derivative da of « is a differential
(k + 1)-form defined by
da = Z do, .. i Ndxg N Ndx,.
11 <<

This formula is forced by the properties:
e dlaAB)=danp+(-1)¥e2a AdB,
e dla+ B3) =da+dp,
o d’>=0.
Alternatively, one can give a direct definition

1

(da)p(vo, ..., v5) = %gr(l) n (—1)i(ap+tvi (V0«3 Vs ooy V) — (U0, - -+, Viy oo, U)),
i

and check the properties above to show that the definitions agree. The reason for d?> = 0 is Schwarz’s
symmetry theorem for second derivatives.

Given open sets U C R™ and V' C R™, and a smooth map ¢ : U — V, the pullback operator
©* is defined on functions by ¢*f = f o ¢ and extended to k-forms uniquely provided we have:

e ' (aNp) = ang*p,

* ¢*(a+f) =" (a+p),

o p'd =dy*.
The operator ¢* can also be defined directly by

(P a)p(v1,...,v) = aw(p)(dgop(vl), o dep(vg)).

The reason for ¢*d = dp* is the chain rule.
Vector fields A vector field on an open set U of R" is a smooth map X : U — R". Given a
diffeomorphism ¢ : U — V', we define the push-forward vector field ¢, X : V — R" by the formula
X (z) = dcpwq(x)X(go_l(:c)). Beware that ¢, is not defined for arbitrary smooth maps. The
pull-back ¢* is defined as (¢~1)..

The vector field X is determined by the operator Lx acting on functions by Lx(f) = df(X)

(sometimes also denoted X.f). The operator Lx can then be uniquely extended to differential
forms by the properties:

° Ex(a/\ﬁ) :[,XOZ/\,B—FOé/\ﬁXﬁ)
o Lx(a+B)=Lxa+ Lxp,
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L] ,de = dﬁx.

Recall from Cauchy Lipschitz theorem that any vector field admits a local flow ¢, i.e. gog( =id
and 4 Lol = X ol A direct definition of Lx can be given as:

d .
Lxa= *\t (%) o

One may then check the properties above. The operator Lx also applies to vector fields with the
same definition:

d
Y = —|i=o(p)*Y.
LxY = - le=o(¥x)

The Lie bracket of two vector fields X,Y can be defined as [X,Y] = LxY. This vector field
measures the infinitesimal defect of commutativity of the flows ;X and ¢} , namely we have:

1 d?
(X, Y](x) = 2dt2|t 00y’ 0 ¥ 0 h 0 P ().

Proposition 1.1. Two vector fields X,Y locally commute, namely for all x € M and sufficiently
small s,t > 0, ¢% o} = ol o % if and only if [X,Y] = 0.

We have the formulas

o [0 X, 0. Y] = u[X, Y],

o [Lx,Ly]=Lixyy,

o [X,Y]=-[Y,X],

o [X,[V,Z]]+ (2, [X, Y]]+ [V, [Z,X]] =0,
o (X, fY]=Lx(N)Y +[[X,Y]

Another definition of the exterior derivative d can be given as follows: for a k-form o and

vectors vg,...,vy € R™ and x € U, extend v; to vector fields Xy, ..., X equal to vg,...,v at x

and set

do(vo, ..., ve) = Y (~1)' Ly, (a(Xo, ..., Xir- ., X))+ D (=) a([Xs, Xj), Xo, -, Xiy o, Xy, X)
% 1<j

The result is independent of the choice of Xy, ..., X extending vy, ..., vg. For 1-forms this gives:

da(vo, v1) = Lx,(a(X1)) — Lx, (a(Xo)) — a([Xo, X1]).
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Lie-Cartan formulas Given a k-form «, we can define the interior product txa pointwise:
(txa)p(vi, ..., oK) = ap(X,v1,...,v;). We have the important Lie-Cartan formula which follows
formally from previous formulas:

Lx =doix +uixod.

Indeed it holds on functions and both terms are derivations and commute with d.
Another useful formula is:

4 (e a = ()" (Lxa),

which follows from the direct definition of Lx and the property cth“ = ¢l 0 p%. We will also use

the following elaboration on the previous formula:

Proposition 1.2. If (¢t)icp,1) s an isotopy generated by a time-dependent vector field X (i.e.,
vo = id and %cpt = Xi 0p1) and (ot )se)o,1) 45 @ smooth path of differential forms, then

d . d

gPra=¢i(Lx,on+ o).
Proof. Assume first that the formula holds at t = 0. Set 8, = ayyp, Y = Xiqon Un = @i 0 qpt_l,
and observe that v, is an isotopy generated by Y}, and that

@

dh ’hzod)hﬁh) = ¥ (ﬁYoﬁo + - 5h) = ¥t (ﬁxtat + 7at)-

i * oy — *(
Peat = Pt dh h=0 d

dt

Next we prove the formula at ¢ = 0. We have oy = ap + t%’t:()at +o(t), ploy = prag +
tof (]—oa) + o(t) and hence

d N d . d
%|t=0(% Q) = %|t=0(90t ao) + £|t=004t-

It remains to prove that %\tzo(gpjao) = Lx,a0. Let ¢, be the flow of X, we have 1y = ¢ + o(t)
and diyy = dpy + o(t), hence ¢;ag = Yoo + o(t). Finally, %\t:mﬁao = Lx,ap is the definition of
Lx,. dJ

1.2 Manifolds

We consider only smooth (i.e. of class C*°) manifolds.
An atlas on a set M is a set A of couples (U, ¢) such that

e for (U,p) € A, U is a subset of M and ¢ is an injective map U — R" for some n € N whose
image is open,

o M=Uwgpeal

o for (U, p), (V1) € A, o(UNV) is open and the map o=t : o(UNV) = »p(UNV) is
smooth.
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On the set of atlases for M, the relation “A U B is an atlas” is an equivalence relation. An
atlas induces a unique topology by requiring each U to be open and ¢ : U — ¢(U) to be a
homeomorphism. Equivalent atlases induce the same topology.

Definition 1.3. A manifold is a set M together with an equivalence class of atlases whose induced
topology is Hausdorff and secound countable (the topology has a countable base).

The condition that M is secound countable is equivalent to the existence of a countable atlas.
Note that the dimension of M (i.e., the integer n in the chart ¢ : U — R") is well-defined locally
(since R™ and R™ are linearly isomorphic only for n = m) and locally constant, hence constant
provided M is connected.

We can think of the definition of a manifold conversely as a process to build manifolds from
open sets of R™. Namely given a set I, a collection of open sets W; C R", ¢ € I, open subsets
Wi; C W; for 4,5 € I, and diffeomorphisms ¢j; : W;; — Wj; such that

o Wi =W, ¢y =id,
o for x € Wi; N Wi, pjr(x) € Wy and @5 0 k() = pir(x) (Cocycle relation).

We can construct M = U;c;W;/ ~ where ~ is the equivalence relation generated by y = ¢;;(x),
the projection of W; to M is a bijection onto its image U; and hence its inverse is a chart (U;, ¢;),
whose collection forms an atlas on M. Moreover M is secound countable as soon as I is countable,
and M is Hausdorff if one of the following condition holds:

1. for z,y € M, there exists ¢ € I such that z,y € Uj;.
2. for i,j € I and K C W; compact, ¢;;(K NWj) is closed in Wj.

Given a manifold M with an atlas A one can follow the process above with the open sets ¢(U) for
all (¢,U) € A and the resulting manifold is canonically isomorphic to M.

The notion of smooth maps between manifolds can now be defined as maps which are smooth
when written in charts. Similarly, one can define the rank of a map at a point as the rank of
the differential in a chart, and the notions of immersion, submersion, subimmersion (i.e. locally
constant rank maps), embedding, diffeomorphism.

Let M be a manifold of dimension n. A submanifold (of dimension k) of M is a subset N such
that, for all x € N, there exists a neighborhood U of x in M, a neighborhood V of 0 in R™ and a
diffeomorphism ¢: U — V such that (U N M) =V N (R* x {0}).

Another important notion is the following: a smooth map between manifolds f : £ — B is a
fibration if for each point x € B, there exists an open neighborhood U of x, a manifold F' and a
diffeomorphism U x F — f~(U) respecting the projections to U. In particular, the fibers f~!(x)
are submanifolds and are all diffeomorphic for z € U (hence also for all € B if B is connected).

Vector Bundles We consider only smooth vector bundles over manifolds.

Definition 1.4. Let M be a manifold and FE a set. A wvector bundle atlas for a map 7 : E — M
is a set A of couples (U, ®), where U is an open subset of M, ® : 771(U) — R" x U is a map
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respecting the projections to U, such that for any two charts (U, ®), (V,¥) the map ¥ o ! :
R"x (UNV)—R"x (UNYV) is smooth and for each x € U NV, its restriction to {z} x R" is a
linear map.

Two vector bundle atlases are equivalent if their union is still a vector bundle atlas. Each fiber
n~1(x), for x € M, inherits a vector space structure. Combined with an atlas for M, a vector
bundle atlas gives an atlas for the total space E, hence E inherits a manifold structure for which 7
is smooth. The projection 7 is a fibration. As for manifolds, vector bundles can be constructed by
gluing the open sets U x R™ using the transition functions. A section of a vector bundle 7w : £ — M
is a smooth map s : M — F such that m o s = id. Concretely, given a vector bundle atlas A, it
is a collection of smooth maps sy : U — R” for all (U, ®) € A subject to the appropriate gluing
condition, namely ¥ o ®~!(sy (), z) = (sy(z), ) for all charts (U, ®), (V, ¥).

Any natural operation which can be performed on vector spaces can be done also on vector
bl}cndles. For example, if E is a vector bundle we can define the dual E* and the exterior powers
N° E*.

Let M be a manifold and A an atlas for M. The tangent bundle of M can be defined as
follows. Consider the open sets R™ x ¢(U) and for two charts (U, ), (V,1) the diffeomorphism
R" x p(UNV) = R" x (U NV) given by (u,z) — (d(p o p™1)(u),1p o o~ (x)). This satisfies a
cocycle relation and hence defines a vector bundle atlas on TM = (Uy,,)eaR" X p(U))/ ~ with
the projection 7 : TM — M. The tangent space T, M at a point x € M is then simply the vector
space 7~ 1(x). Unraveling the definition, we see that an element of T,,M is an equivalence class of
(u,z) € R™ x ¢(U) where (u,z) ~ (v,y) when y =1 o o~ (x) and v = d(p o ¢ 1),(u). We define
the cotangent bundle T*M as the dual bundle of TM, and /\k T*M the exterior powers.

Differential forms and vector fields on a manifold A differential k-form a on a manifold
M is a smooth section of the bundle /\k T*M. Concretely, given an atlas A on M, « is the data of
a differential k-form oy on p(U) for each chart (U, ) € A such that ay = (¥ o o~ 1)*ay for any
two charts (U, ¢), (V,1). The differential da is well-defined by dagr in each chart (U, ) thanks to
the relation d(y o o~ 1)* = (o o~ 1)*d. A vector field is a smooth section X of T M, or concretely
a vector field Xy : U — R™ for each chart (U, ) of an atlas A, such that (o 1), Xy = Xy for
any two charts (U, ¢), (V, ).

All the formulas that we have seen in R relating the operators ¢*, v., A, d, Lx, ix, |.,.] are
of local nature, and hence also hold on manifolds.

De Rham cohomology Let M be a manifold. We denote by Q¢(M) the vector space of differ-
ential i-forms on M. The differential d gives a linear map d: Q(M) — QFY(M). An i-form « is
called closed if da = 0 and ezact if there exists 8 € Q*~1(M) such that o = dj3. Since dod = 0 the

exact forms are closed. The i*" group of de Rham cohomology is
Hin(M) = ker(d: QY (M) — QY(M))/im(d: Q7Y M) — Q1(M)).
Integration Assume that ¢: V' — U is a diffeomorphism of open sets in R™ and that a: U — R

is an integrable function. Then [;adzi---dz, = [, (a o ¢)|det(de)|dy:---dy,. On the other
hand, using the formula (p*a)y(v1,...,v%) = Q) (dwp(v1), ..., dpy(vg)) we see that p*(adzy A
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- Ndzp) = (aop)(det(dy)) dyi A- - - Ady,. We say that ¢ is orientation preserving (resp. reversing)
if det(dy) > 0 (resp. < 0). Any n-form w on U is uniquely written w = adzy A - - - A dx,, for some
function a. We define [;w = [;adz;---dx,. Our discussion implies that [, ¢*w = [;w if ¢ is
orientation preserving and fV prw=— wa if ¢ is orientation reversing.

We say that a manifold M is orientable if there exists an atlas (U, ;), ¢ € I, such that the
maps @; o goi_l preserve the orientation, for all ¢, j € I. In this case an orientation of M is a choice
of equivalence classes of such atlases (we say M is oriented if an orientation is chosen). If M is
oriented, we say that an n-form w is positive if it is written in local coordinates w = adxi A---Adxy,
with @ > 0. If M is oriented, the cotangent space 7)) M at any point = has a natural orientation
given as follows: a basis (e, ..., e,) is positive (in the sense of a positive basis of an oriented vector
space) if e; A --- A e, is positive in the above sense. The tangent space T, M comes with the dual
orientation.

If M is oriented of dimension n, we define the integral of an n-form w on M, with compact sup-
port, as follows. We choose an atlas (U;, ;), i € I, and a partition of unity f;, i € I, subordinated
to the covering U; (that is, supp(f;) C U; and ), f; = 1). We then set

[ w- > / (o) ().

We can check that f s w is independent of the choices of atlas and partition of unity. Moreover, if
@: N — M is an orientation preserving diffeomorphism, then f NP w= f MW

Stokes formula Let M be an oriented manifold of dimension n, U C M a relatively compact
open subset with a smooth boundary (that is, OU is a submanifold of M). For x € 90U we say
that v € T, M is outward pointing if (v,df,) > 0 for a function f: M — R such that df, # 0
and U = {f < 0} around x. The orientation of M induces an orientation of OU such that a basis
(e1,...,en—1) of T,0U is positive if, for v outward pointing, (v,e1,...,e,—1) is a positive basis of
T,M. With these orientations we have the Stokes formula: for any (n — 1)-form « defined on a

neighborhood of U,
/da:/ Q.
U U

In particular, if M is compact oriented, then, for any a € Q"~1(M), we have / y da = 0. Hence
Jap: (M) — R factorizes through a natural map [;,: Hj,(M) — R. We can show that this
last map is an isomorphism when M is connected.

Homotopy groups A nice feature of fibrations is that they give rise to long exact sequences of
homotopy groups.

For a topological space A, x € A, and k € N, the homotopy group 7(A;x) is defined as the
set of continuous maps [0, 1]* — A which maps the boundary of the cube to x, modulo homotopy
among such maps. It has a natural group structure given by concatenating cubes. For k =1, it is
also called the fundamental (or Poincaré) group. For k > 2, mi(A;z) is abelian. Next for a pair
of topological spaces (A, B) (i.e., A is a topological space and B C A is endowed with the induced
topology) and = € B, we define the relative homotopy group 7 (A, B;z) as the set of homotopy
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classes of continuous maps [0, 1}’“ — A which maps the boundary to B and a specific point, say
(1,0,...,0), to . There are obvious maps m(B;x) — 7i(A, x), mx(A;x) — mx(A, B;x) and also
a boundary map 7 (A, B;x) — mp_1(B;x) which form a long exact sequence:

coo > my1(A, Byz) = (B x) = mp(A,x) — (A, Byx) — 1 (Byx) — ...
Proposition 1.5. Let f : E — B be a fibration, x € B and F = f~1(x). Then the map
(B, F; ) = m(B; f(x))

mnduced by f is an isomorphism. In particular the long exact sequence of homotopy groups can be

written:

oo = m1(Bs f(2) = (B ) — m(Ey x) — m(B; f(z) = me—1(Fi2) — ...



Chapter 2

Symplectic geometry

2.1 Symplectic linear algebra

Symplectic vector spaces

Definition 2.1. A symplectic vector space (V,w) is a finite-dimensional real vector space V together
with a bilinear form w which is non-degenerate (i.e., kerw = {u € V; Vv € V,w(u,v) = 0} = {0})

and skew-symmetric (i.e., Vu,v € V,w(u,v) = —w(v, u)).

Definition 2.2. The w-orthogonal complement to a subspace F of V is denoted Fltv = {u €
V,Yv € F,w(u,v) = 0}.

Lemma 2.3. dim F + dim Ft« = dim V.

Proof. The non-degeneracy condition says that the linear map V' — V* defined by v — t,w = w(v,.)
has zero kernel and is thus an isomorphism since V' is finite dimensional. Now F1« is the kernel
of the surjective map V — F™ obtained by composing with V* — F* hence dimV = dim F* +
dim Fte. O

Definition 2.4. A subspace F' is called
o symplectic if F+~ N F = {0} (or equivalently w is non-degenerate on F),
e isotropic if F C Ftv,
e coisotropic if F1« C F,
e Lagrangian if F*« = F,

Proposition 2.5. Let (V,w) be a symplectic vector space. Then there exists n € N such that
dimV = 2n and a symplectic basis for V, namely a basis (e1,...,€n, f1,..., fn) such that w =

Z?:l e;'k N f:‘

17
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Proof. We prove it by induction. If dimV = 0, it is clear. Assume that, for some k > 0, the
statement holds if dim V' < k and take V' of dimension k + 1. Let e; € V' \ {0}. Since w is non-

degenerate there exists f; € V such that w(ey, f{) # 0. Take f; = ﬁ so that w(e1, f1) = 1,
1

and set F' = (e, f1). Because w is skew-symmetric, F' necessarily has dimension 2 and it is a

symplectic subspace: F @ F~ = V. By induction, F~ has dimension 2n — 2 for some n > 1, and

admits a symplectic basis (ea, ..., en, f2,. .., fn). O

In particular, any symplectic vector space is isomorphic to the standard symplectic space R?"
with symplectic form wg represented by the matrix

0 I
Q0 = (_ A g).
Example 2.6. Let (e1,...,en, f1,..., fn) be a symplectic basis of a symplectic vector space (V,w).
o "= {(ey,...,ex) is isotropic,
o Fle = (eq, ... ep, €hats sCny frgls-- fn) is coisotropic,

o for k=n, F = Fv is Lagrangian.

Lemma 2.7. Let (V,w) be a symplectic vector space and F C V a subspace. If F is isotropic, then
any basis (e1,...,er) of F' can be extended to a symplectic basis (e1,...,en, f1,..., fn) of V.

If F is coisotropic, then there exists a symplectic basis (e1,...,€n, f1,---,fn) of V such that
F = <61,...,6n,fk+1,...,fn>.

Proof. (i) If k = 1, this follows from (the proof of) Proposition 2.5. We argue by induction and
assume k > 1.

We set G = (e,...,e). Then G C F C F*» C G*+ and G* has dimension one more than
Fte. We choose f; € G+« \ F+~. We must have w(ey, f1) # 0 and, multiplying fi by a scalar, we
can assume w(er, f1) = 1. We set W = (eq, f1); it is a symplectic subspace. We have G C W«
and we can apply the induction hypothesis to G. We obtain a basis (ez, ..., en, f2,..., fn) of W,
Adding (ey, f1) to this basis gives the result.

(ii) The second assertion follows from the first oen applied to F-«. O]

Definition 2.8. The automorphisms ¢ of V' which preserve w, namely w(¢(u), ¢(v)) = w(u,v)
for all u,v € V, are called linear symplectomorphisms and form a subgroup denoted Sp(V,w) of
GL(V). The corresponding subgroup of GL(2n, R) consisting of matrices A such that ATQyA = Qg
is denoted Sp(2n,R).

Proposition 2.9. Sp(V,w) C SL(V), namely det ¢ = 1 for all ¢ € Sp(V,w).

Proof. Recall that, if dimV = 2n, A?"V* is 1-dimensional and det ¢ can be defined as the en-
domorphism A"V* — A™V* induced by ¢. Now since w is non-degenerate, w™ # 0 € A"V*.
Indeed, in a symplectic basis, w™ = (ef A ff + - +es A )" =nlel A ff A---Nei A fri. But
©*(w™) = (¢*w)™ = w" and thus det ¢ = 1. O
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We now describe the process of symplectic reduction.
Proposition 2.10. Let (V,w) be a symplectic vector space and W a coisotropic subspace.
1. w induces a symplectic form, say W', on W/WLW,

2. For a subspace F of V we set FWV = (FNW + W) /W which is a subspace of W/W e,
Then (FL\W = (FW)Lo | In particular, if F is Lagrangian, then F" is Lagrangian.

Proof. 1. For uj,us € W and v1,ve € W, w(uy + v1,us + v2) = w(uy,usz), hence w induces a
form w’ on the quotient W/W=«. If a; € W/W=« is in the kernel of w’, then any lift u; € W is in
W+ and thus a; = 0.

2. We have

(FNW +Who)te = (FAW)e nW = (Fr + W) nW = Fle n W + W,

where the last equality follows from W« C W. Quotienting by W= and using the definition of
W' we obtain (F+«)V = (FW)Lw, O

If L is any vector space, the sum L & L* has a natural symplectic structure, say wy, given by
wr,((v,0"), (w,w")) = (v,w') — (v',w). The subspaces L & {0} and {0} & L* are Lagrangian.

Proposition 2.11. Let (V,w) be a symplectic vector space and let Ly, Ly CV be two Lagrangian
subspaces. We assume that L1 + Lo = V.

1. The map u: Ly — L3, v — (w — w(v,w)), identifies Ly with L} and gives an isomorphism
(L1 ® LY, wr,) = (Viw), (v,0%) = v+ o™ (07).

2. Let a: Ly — L} be a symmetric linear map (that is, a* = a). Then L, = {v + u~(a(v));
v € L1} is a Lagrangian subspace of V' which is transverse to Ly (Lq @ Lo =V ).

3. Any Lagrangian subspace of V' which is transverse to Lo is of the type L, for a unique
symmetric map a.

Proof. (1) follows from the non-degeneracy of w and the definitions of u and wr,,.

(2) Using the isomorphism in (1), it is enough to see, for any v, w € L1, wr, ((v, a(v)), (w, a(w))) =
(v,a(w)) — (w, a(v)) = 0 which follows from the symmetry of a.

(3) Let L C V be Lagrangian and transverse to L. Using the isomorphism in (1) we see
L as a Lagrangian subspace of L; @& L7. Then it is transverse to {0} & L} and we can see it
as the graph of a map a: Ly — Lj. Then for v,w € L; we have (v,a(v)), (w,a(w)) € L and
wr, ((v,a(v)), (w,a(w))) = (v,a(w) — a*(w)). Hence L is Lagrangian if and only if a is symmetric.

O

Hermitian vector spaces On a complex vector space, the multiplication by ¢ defines an endo-
morphism J such that J? = —id. Conversely, an endomorphism J with J2 = —id on a real vector
space determines a complex structure by (a + ib)v = av + bJwv.
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Definition 2.12. Let V be a finite-dimensional vector space. A symplectic form w and a complex
structure J are compatible if g(u,v) = w(u,Jv) is a scalar product, namely w(v, Jv) > 0 for all
v # 0 and w(v, Jw) = w(w, Jv).

Given compatible w and J, we define (u,v) = w(u, Jv) —iw(u,v) and check that this defines a
Hermitian scalar product, namely

{
{
o (u,\) = Au,v),
{
{

u,u) > 0 with equality if and only if u = 0.

On a hermitian vector space (V,w, J, g) we have several subgroups of GL(V) : U(V), Sp(V,w),
O(V, g), GL(V, J) preserving respectively (,), w, g and J.

Proposition 2.13. Let (V,w, J, g) be a hermitian vector space.
U(V)=0(V,g) NSp(V,w) = O(V,g) N GL(V, J) = Sp(V,w) N GL(V, J).
Proof. Among the structures w, g, J two out of three determine the third:
o gu,v) = wlu, Jv),
o w(u,v) = —g(u, Jv),
e Given v, Jv is the inverse of g(.,v) € V* by the map V — V* induced by w.
The result follows. O

Let (V, g) be a euclidean vector space, recall that an endomorphism a € End(V') has an adjoint
a* € End(V) defined by g(au,v) = g(u,a*v) for all u,v € V. Then we define Sym(V,g) = {a €
End(V),a* = a} and the subsets Sym™(V, g) (resp. Sym™"(V, g)) of non-negative (resp. positive)
symmetric endomorphisms.

Lemma 2.14. The exponential map defines a diffeomorphism exp : Sym(V, g) — Sym™*(V, g), its
inverse 1s denoted log.

Proof. For all a € End(V'), we have exp(a)* = exp(a*). Hence exp(Sym(V,g)) C Sym(V,g). For
any a € End(V) and A € R, we have ker(a— Aid) C ker(exp(a)—exp(A)id). Now any a € Sym(V/ g)
can be diagonalized in an orthonormal basis, hence V = @ cr ker(a—Aid) = @,er ker(exp(a)—puid)
and thus ker(a — Aid) = ker(exp(a) — exp(A)id) for all A € R. This shows that exp(a) has positive
eigenvalues, i.e. exp(a) € Sym™+(V, g), and that exp(a) = exp(b) implies a = b since a and b would
then have the same eigenspaces. The inverse map log is well-defined by setting, for s € Sym™*(V, g),
log(s) to be the endomorphism with same eigenspaces as s and eigenvalues the logarithm of the
eigenvalues of s.
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Next we prove that it is a diffeomorphism. Since exp is defined ;by a normally convergent series,
it is smooth. The differential of exp at a € End(V') equals ea% where ady(h) = ah — ha. If a

ad
is diagonalizable with eigenvalues \;, then so does ad, with eigenvalues (\; — ;). Finally, since the
function 1=¢—" nowhere vanishes on real numbers, we obtain that d, exp is bijective. The result

now follows from the inverse function theorem. O

Recall that an automorphism a of a euclidean vector space (V, g) admits a unique polar decom-
position, namely a = qo s where ¢ € O(V, g) and s € Sym™*(V, g). Indeed, set s = exp(% log(a*a))
and ¢ = as~!, and check ¢*¢ = s 'a*as™' = s !s?s7! = id. This shows existence and unique-
ness of the decomposition. This defines a map P : GL(V) — O(V,g) x Sym**(V, g) which is a

diffeomorphism.

Proposition 2.15. Let (V,w, J, g) be a hermitian vector space.
1. the logarithm maps Sym™(V, g) N Sp(V,w) on the subspace W = {l € Sym(V),1J + JI = 0}.
2. Sp(V,w) = P~H(U(V) x (Sym™*(V, g) N Sp(V,w)).

Proof. 1. For s € Sym*™(V,g), s € Sp(V,w) & J 1sJ = s71. If s = exp(l), then J lsJ =
exp(J7UJ) and J~UJ = —1 < J1sJ = exp(—1) = s7L.

2. s = exp(}log(a*a)) and a* € Sp(V,w), hence log(a*a) € W and s € Sp(V,w). Finally
qg=as"!1 €Sp(V,w)NO(V,g) = U(V). O

Since W in the proposition above is a vector space, it follows that Sp(V,w) deformation retracts
onto U(V). In particular, they have the same homotopy groups.

Corollary 2.16. Sp(V,w) is path-connected.

Proof. Tt is enough to prove it for U(V') due to the previous proposition. U(V') is path-connected
since any element of U(V) can be diagonalized in a orthonormal basis and its eigenvalues are
complex numbers of moduli 1 which can be joined by continuous paths to 1 among such complex
numbers. O

Corollary 2.17. The fundamental group of Sp(V,w) is isomorphic to Z.

Proof. As in the previous proof, it is enough to prove it for U(V). Consider the (complex) deter-
minant map det : U(V) — S'. Tt is a smooth fibration with fiber (over 1) the subgroup SU(V).
The long exact sequence of homotopy groups associated to this fibration writes:

mSU(V) = mU(V) = 1.8t — moSU(V).

Since 7 S! = Z it is enough to show that SU(V) is simply-connected. Elements of SU(V) are
diagonalizable in a unitary basis, with eigenvalues \;, i = 1,...,n, such that [[, A\; = 1. One can
then connect such an element to id by choosing path in S' joining Mo,...,\, to 1 and setting
A = (A2 x - x A\p) L. To prove that m;SU(V) = 0, we proceed by induction. If dimgV = 1,
then SU(V) = {1}. If dimc V' > 1, then consider the unit sphere S(V'), a vector u € §(V') and the
map SU(V) — S(V) defined by a — a(u). This is also a fibration whose fiber over u is naturally
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identified with SU(u') where u" denotes the complex hyperplane orthogonal to u. The long exact
sequence associated with this fibration writes:

mSU(ut) = mSU(V) — mS(V).

By induction mSU(u") = 0 and since S(V') has dimension > 2 (in fact > 3), 7;.5(V) = 0. Hence
mSU(V) =0. O

Recall that on a vector space V' of dimension n, the Grassmannian of k-planes is the set of
k-dimensional subspaces of V', denoted Grg (V). It has a natural structure of manifold of dimension
k(n — k), a smooth atlas being given as follows: for each P € Gr,_;(V) consider the subset
Up C Gri(V) of all L such that L&P = V. Then Up is naturally an affine space over Hom(V/ P, P):
given L, L' € Up, L' is the graph of a unique linear map u: L =V/P — P. If L € Up N Up, the
change of coordinates Hom(L, P) — Hom(L, P') is given by u — powu o (idy + 7' o u)~! where
7' : P — L is the projection parallel to P’ and ¢ : P — P’ is the (bijective) projection parallel to L.
This change of coordinates is smooth and hence gives a smooth structure to Grg(V'). Another point
of view is to fix a scalar product on V" and let O(V') act on Grg(V'). The action is transitive with
stabilizer at a point L naturally identified with O(L) x O(L*). This shows furthermore that Gr (V)
is compact. When V' = R", we also write Gry (V) = Gryp, and get Gry, >~ O(n)/O(k) x O(n — k).

Given a symplectic vector space (V,w), we denote by Lag(V,w) the Lagrangian Grassmannian
the set of Lagrangian subspaces of V. If dim V' = 2n, then Lag(V,w) is a subset of Gr, (V).

Proposition 2.18. Let (V,w) be a symplectic vector space of dimension 2n. Lag(V,w) is a compact
submanifold of dimension w of Grp (V).

Proof. Let L € Lag(V,w) and consider the chart Uy, of Gry, (V') made of all subspaces supplementary
to L. The symplectic form w induces an isomorphism V/L — L*. Hence Uy is an affine space over
Hom(L*, L). For u € Hom(L*, L), the formal adjoint v* € Hom(L*, (L*)*) = Hom(L*, L) lands in
the same space, hence we may consider the subspace Sym(L*, L) defined by the equation u* = w.
It turns out that Uy N Lag(V,w) is an affine subspace over Sym(L*, L): if P € U N Lag(V,w),
P’ € Up, then P’ is the graph of u : P — L and P’ is Lagrangian if and only if for all (z,y) € P,
w(z + u(x),y + u(y)) = 0. Since P and L are Lagrangian, this last condition is equivalent to
w(u(x),y) +w(z,u(y)) = 0, or, under the isomorphism P ~ L* y(u(x)) = z(u(y)), namely u* = u.
Finally, since u* = u is a closed condition and Gr, (V') is compact, Lag(V,w) is also compact. [

For another description of Lag(V,w), fix a compatible complex structure J and let U(V) act
on Lag(V,w). The action is transitive and the stabilizer is precisely O(L). Hence Lag(V,w) is
U(V)/O(L). If V = R?", we also write Lag(n) and we have Lag(n) ~ U(n)/O(n). One can check

. . . . T . o n(n—1) _ n(n+1
that the dimension is right: dim U(n) — dim O(n) = n? — ( 5 ) — nl 5 ),

Proposition 2.19. Lag(V,w) is connected and 7 Lag(V,w) ~ Z.

Proof. Fix a Lagrangian subspace L € Lag(V,w) and the induced identification Lag(V,w) =~
U(V)/O(L). Since U(V) is connected, we get that Lag(V,w) is also connected. We have seen
that the (complex) determinant U(V) — S! induces an isomorphism on ;. Also, an element
of O(L) seen in U(V) (in matrix language, the natural inclusion O(n) C U(n)) has determinant
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+1. Hence the map det? : U(V)/O(L) — S! is well-defined and we have the following diagram of
fibrations:

O(L) —— U(V) —— U(V)/O(L)

ldet ldet ldetz (2.1)

{£1} St ' St

On homotopy groups, this induces a map of long exact sequences:

mO(L) —2— mU(V) — mU(V)/O(L) — mO(L) ——

0
ldet ldet ldetQ J/det l (2.2)
0

0 v/ 2 Z Z/2 —

Since m1{#+1} = 0 and det : m;U(V) — Z is an isomorphism, we get that the map m O(L) —
mU(V) is zero. Finally, since det : mpO(L) — Z/2 is an isomorphism, we obtain from the five
lemma (simple diagram chasing) that det? : 7;U(V)/O(L) — Z is an isomorphism. O

2.2 Symplectic manifolds

Definition 2.20. Let M be a manifold. A symplectic form on M is a 2-form w € Q?(M) which
is closed (dw = 0) and non-degenerate: for any x € M, the form w, on the vector space T, M is
non-degenerate.

If (M,w) is symplectic, all spaces (T, M,w,;) are symplectic by definition. In particular, as in
the linear case, the non-degeneracy condition is equivalent to “w™ is a volume form”. In particular
any symplectic manifold is oriented. It is usual to normalize w™ and call v = %w" the symplectic
volume form.

The definitions given in the case of R?" extend to the general case. A diffeomorphism ¢ from
(X,w) to (X’,w') is called symplectic (= symplectomorphism) if p*w' = w.

Since w is non-degenerate, it gives an isomorphism between T, M and Ty M at each x € M. It
induces an isomorphism between vector fields on M and 1-forms on M. More explicitly, to a vector
field X we associate the 1-form ¢x(w). Conversely, for any 1-form « there exists a unique vector
field X such that o = tx(w).

For a (maybe time-dependent) function H on (X,w) we denote by Xy (or X%) the vector field
defined by tx,w = —dH (or vyt w = —dH" if H depends on time). We denote by ¢, the flow
of X!, (if defined). They are called the Hamiltonian vector field and the Hamiltonian flow of H
(which often called a Hamiltonian function).

Lemma 2.21. Let X be a vector field on (M,w) with a well-defined flow ¢t. Then (p!)*w = w if
and only if txt(w) is closed (we say X is a symplectic vector field). Moreover X is the Hamiltonian
vector field of some function if and only if 1xt(w) is exact (we say X is a Hamiltonian vector field).
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Proof. Since pjw = w, we have pjw = w for all ¢ if and only if %cp;“ w = 0 for all ¢. Then from the
formula

d * * * *
— prw = i (Lx,w) = 0 (Lx,dw + d(tx,w)) = @3 (d(tx,w)),

dt
this is equivalent to tx,w being closed. Finally, tx,w is exact: tx,w = —dHy, by definition when ¢
is a Hamiltonian isotopy. O

Proposition 2.22. The symplectomorphisms of (M,w) which are of the form gpg for some time-
dependent Hamiltonian H : M x [0,1] — R form a normal subgroup, denoted Ham(M,w) of the
group Diff (M, w) of all symplectomorphisms.

Proof. The proof that Ham(M,w) is a subgroup is the same as in the case M = R*". If ¢ €
Diff (M, w) and ¢; is a Hamiltonian isotopy with Hamiltonian Hy, then 1 o ¢y 0 1b~! is an isotopy
generated by the vector field . (Xg,). But (¢ Xp,) w = " (Xg, Wp*w) = *( Xy, w) = —d(H; o
1), and hence ¥ o ¢y 0 1) is also a Hamiltonian isotopy generated by Hy o 1. This shows that
Ham(M,w) is a normal subgroup. O

Definition 2.23. If W is a submanifold of a symplectic manifold (M,w) we say W is isotropic
(resp. coisotropic, Lagrangian) if the same holds for T, W C T, M, for all x € W.

Examples of symplectic manifolds and Lagrangian submanifolds The basic examples are
in dimension 2. A symplectic structure on a surface is nothing but the datum of a volume form w.
Hence any orientable surface admits a symplectic structure. If two surfaces (S,w) and (S’,w’) are
symplectomorphic, then they are in particular diffeomorphic and have the same volume. We will
see soon using Moser’s Lemma that the converse holds.

In a symplectic vector space of dimension 2, the Lagrangian subspaces are the lines. Hence the
Lagrangian submanifolds of a surface (S,w) are the curves.

Cotangent bundles

For any manifold M its cotangent bundle T* M has a canonical symplectic form, wp;. More precisely
it even has a canonical 1-form Ay called the Liouville form such that wys = dAys is symplectic.
When we take local coordinates on M, say on a local chart U, we often denote them by
q = (q1,---,qn). For such a choice of local chart, T*U has natural coordinates associated with
(q1,--.,qn), usually denoted (pi1,...,Pn,q1,---,Gqn), such that (p1,...,pn,q1,...,qn) are the coor-
dinates of the point Y 7 | pidg;(x) of T;U where x € U has coordinates (qi,. .., qn).
In these local coordinates the Liouville form is defined by

A=Y pid;.
=1

We could check that A\js is indeed invariant by a change of coordinates in T*M which is induced
by a change of coordinates of M. But we can also give a coordinate-free definition of s as
follows. Let mpr: T*M — M be the projection to the base (denoted 7 when there is no risk of
confusion). Its differential gives Dm: TT*M — TM. In particular, for ¢ € M and p € ;M
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defining = = (p,q) € T*M, we have Dm,: T, T*M — T,M. We define (A\ys), € T;T*M, that is,
(Ayp)z: T, T*M — R by

(M) z(v) = (Dmg(v), p) for all v € T,T*M.

As said above we define wys by war = dAyr. It is exact by definition, hence closed. Using a local
chart we obtain

n
WM = Z dpi A dgi
=1
which is the same formula as the symplectic form of R?" already studied. In particular it is
non-degenerate.

Proposition 2.24. For 6 € QY (M), we write sg : M — T*M the corresponding section. There is
a unique 1-form X on T*M such that for all § € QY (M), siA = 0.

Proof. In local coordinates (p1,...,Pn,q1,...,q,) a 1-form 6 writes § = >, fidg; and the corre-
sponding section writes sg(q1,...,qn) = (fi,---, fu,q1,---,qn). Hence sjAyr = >, fidg; = 0. This
shows existence. For uniqueness, pick a vector v € T, (T*M) and a section sy whichis tangent to
v at z, then A(v) = A(dsg o dm(v)) = (spA)(dm(v)) = §(dm(v)). Hence X is determined by this
property. O

The graph of a 1-form 6 on M is Lagrangian if and only if sj;(d\) = 0 if and only if df = 0.
This gives a first family of Lagrangian submanifolds of T*M: the graphs of closed 1-forms. The
zero-section is a particular case, and in fact all Lagrangian submanifolds sufficiently C'-close to
the zero-section are of this type. A second family is given by conormal bundles of submanifolds
of M. Let N C M be a submanifold. Then T'N is a submanifold of TM and TxM = {(p,q);
q € N, pe (T,;N)*} is a submanifold of T*M. We see that dim T M = dim M, for any N. By
the definition (Ans)(p,q)(v) = (Dmz(v),p) we see that Ayf|rya = 0. In particular was|r; = 0 and
TyM is Lagrangian.

We remark that T3 M is also conic in the sense that (p,q) € TxM implies (ap,q) € TxM,
for all @ > 0. Any conic Lagrangian submanifold is locally of this type. More generally let us set
T*M = T*M \ 0y, where 057 = {(0,q); ¢ €} is the zero section of T*M. Let L C T*M be a conic
Lagrangian submanifold. Let U C L be the open subset where the my/|z: L — M has maximal
rank: r = max{rank D(mas|1)z; * € L} and U = {x € L; rank D(mas|1)z = r}. Then N = mp(U)
is an immersed submanifold of M and L = T3 M in a neighborhood of U. We remark that r is at
most dim M — 1; in this case IV is some hypersurface and L is locally half of T, M.

If M is also endowed with a Riemannian metric, the metric gives a Hamiltonian function
on T*M by H(p,q) = ||p||*>. In the case of a Euclidean metric in normal coordinates we have
H(p,q) = >;p? and Xy = Y, 2pia%i. In general we can identify TM and T*M through the
metric. Then the sphere bundle of TM becomes the level set H~1(1). This is preserved by the
flow ¢ of X and ¢pr gets identified with the geodesic flow on the sphere bundle.

On T*M we can also consider the Hamiltonian function H(p,q) = ||p||. Then g sends a conic
Lagrangian submanifold to a conic Lagrangian submanifold. For a compact submanifold N of M
and for ¢t > 0 small, Ny = {x € M; d(x, N) < t} is an open subset with a smooth boundary. Then
@' (T M) is half of Tjy M.
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Complex projective space

We define CP™ as the set of complex lines in C"*1. If we let C* act by multiplication on C"*1, we
have CP™ = (C"*1\ {0})/C*. Let S' C C* be the unit circle and S?**! ¢ C"*! the unit sphere.

We also have CP" = §?"*1/G1 The image of a point (20, ...,2,) is denoted [zg : -+ : 2,]. We
have a natural structure of (complex) manifold on CP" given by the n + 1 charts U; = {z; # 0}
and fj: U; =5 C", [zt 2y (z—?,,(%),,z—j)

We identify C"*1 and R*"*? via z; = z;+iy; and define the symplectic form wp = ; dziNdy;.
Then wy is invariant by the action of S*.

Lemma 2.25. Let j: S?"*1 — C*HL be the inclusion and m: S*"*t1 — CP™ the projection. Then
there exists a unique 2-form wpg on CP™ such that j*wy = m*wrg. Moreover wpg is a symplectic
form and, for any x € S*" 1, the tangent space (Tﬂ(x)CP”,ngﬂr(x)) is the symplectic reduction of
(T$C”+1,w07x).

The form wpgg is called the Fubini-Study form.

Proof. (i) The existence of wpg comes from the general fact that j*wg is S'-invariant and its kernel
contains the vertical vectors, that is, if v € T,S?"*! satisfies D7, (v) = 0, then wpg(v,w) = 0
for all w € T, $*"*! (indeed, the vector field X = Zy]% — Ijaiyj is tangent to S%"*! satisfies
X_nj*wo = ijdxj + yjdyj = 0)

Indeed, for y € CP™ and v,w € T,CP" we choose z € S*"*1 and v/, w’ € T,;5?" ! such that
7(z) =y and drp(v') = v, dmy(w') = w. By the condition on the kernel the scalar wi™ (v, w) :=
wo(v',w') is independent of v/, w’. If 2’ is another point with 7(2’) = y, we can find s € S! such
that s - o = 2/. Let us denote my: S?"T! — §2"+1 the multiplication by s. The invariance of wy

says (wo)w (Dms(v'), Dmg(w')) = (wo)e(v/,w'). This proves wi™ (v, w) = wfc",np(v,w). Hence we

can define (wrg), (v, w) = wi™ (v, w). Tt is clear on this definition that j*wy = T*wrs.
(ii) Since  is a submersion (D, : T, 5*" ! — Ty (,) CP™ is surjective), the condition m* (dwpg) =
dr*wps = dj*wg = 0 implies dwrpg = 0. The uniqueness of wrg follows from the same argument.
(iii) At any z € S?"*1 the kernel of wp|p, g2n+1 is in fact exactly the set of vertical vectors. It
follows that the kernel of (wpg)x(z) is {0}. This proves that (T (,)CP", wrg r(s)) is the symplectic

reduction of (TxC”H,wo,x). Hence wgg is non-degenerate. O

There are two well-known Lagrangian submanifolds of (CP",wgg), the real projective space
and the Clifford torus, defined by

RP" = {[20:---:2,) € CP"; 2y,...,2, € R},
T" ={[z0: - :2n) € CP"; |20| =+ = |znl}.

To prove this we use that (T (;)CP",wpg x(y)) is the symplectic reduction of (T,C™" wp ), for
any x € S?"*1. To see that RP™ is Lagrangian, we write RP" = 7(R"*! N §?"*1). Then, for
r € S+l Tr(z)RP™ is the symplectic reduction of T,R™1 which is Lagrangian. For T", we
write T" = 7(C™*1), where C' C C is the circle of radius 1/y/n + 1. Since C is Lagrangian in C,
C™*! is Lagrangian in C"*! and we conclude as in the case of RP™.
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2.3 Almost complex structures

Our manifold M = CP" is actually a complex manifold in the sense that we can find an atlas
(Ui, ¢i), i € I, where ¢; maps U; to an open subset of C* and the maps ¢; o ¢; ! are holomorphic.
The tangent spaces T, M then have a complex structure. In this situation the linear operator
“multiplication by ¢” is denoted by J: TM — T M.

In general an almost complex structure on a (real) manifold M is an automorphism J: TM —
TM of the tangent bundle such that J? = —idyy;. (An almost complex structure does not nec-
essarily come from a structure of complex manifold on M; if this is the case the almost complex
structure is called integrable.)

When a manifold M has both a symplectic structure w and an almost complex structure J we
say that J and w are compatible if

w(Jv, Jw) = w(v,w) for all ¢ € M and v, w € T, M,
w(v, Jv) >0 for all g € M and v # 0 € T, M.

If J and w are compatible, we obtain a Riemannian metric g on M by g(v,w) = w(v, Jw). This met-
ric is compatible with J in the sense that g(Jv, Jw) = g(v,w). We have w(v,w) = g(Jv,w). This
gives a 1 : 1 correspondence between non-degenerate 2-forms compatible with J and Riemannian
metrics compatible with J.

An easy case is M = C" with the above symplectic form wg = Zj dz; N\ dy; and J the natural
complex structure. Then the associated metric is the usual Euclidean metric. We deduce the case

of M = CP".
Lemma 2.26. The complex structure J of CP" is compatible with the Fubini-Study form wrg.

Proof. For the atlas (Uj, f;) given above, the maps f; o f; ! are holomorphic. Then the operator
Jopr on TCP" is obtained from Jon on C™ by pull-back through the f;’s. It can also be recovered
as follows. Let 2 € $?"*! be given and set y = 7(z) € CP™. The space T,,5?"*! C T,,C"*! contains
a maximal complex subspace, namely V, = T,,5%"*' N (i - T,,5?"*!) and dn,: T,S*" — T,CP"
identifies V, and T,,CP" as complex vector spaces, that is, dm,(Jon+1v) = Jopr (dme(v)).

Recall that, for v w € V;, we have (wpg)y(dmg(v), dry(w)) = wo(v,w). Since the symplectic
structure wy and the complex structure of C"*! are compatible, it follows that wrg and Jopn are
also compatible. ]

There are many complex submanifolds of CP"; they are given by smooth algebraic subvarieties.
For example we can consider “complete intersections™ choose £ < n homogeneous polynomials

Py,...,P; in n + 1 variables and define Vp,  p. = {[z0 : --- : zn]; Pi(20,...,2n) = 0, for all
i=1,...,k}. For a generic choice of P;’s Vp, _ p, is a complex submanifold of CP" of codimension
k.

Now let i: Z < CP" be a complex submanifold. Then i*wgg is a symplectic structure on Z.
Indeed i*wrg is closed since wpg is. The only non trivial fact is the non-degeneracy but in our
situation it follows from the fact that wpg and Jop» are compatible. Indeed, since T'Z is stable by
Jcopr, it is enough to check that the symmetric form i*wpg(+, J+) is non-degenerate and this follows
from its positivity.
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More generally a Kdhler manifold is a complex manifold M, with complex structure J, endowed
with a symplectic form w such that w and J are compatible. As in the case of CP" we see that any
complex submanifold of a Kahler manifold is also a symplectic submanifold (and in fact a K&hler
manifold).

Examples of Kéhler manifolds are complex tori Ty, = C"/L where L is a lattice of C", that
is, a free abelian subgroup of rank 2n, L ~ Z?". An element z € L acts on C" by the translation
t,: x — x4+ z. Let m: C™ — T, be the quotient map. Since t, preserves the standard form wg and
drg: T,C" = T,r(m)T 1 for any x € C", we deduce that wp induces a unique 2-form w, such that
wo = ™ (wr,). Then wr, is symplectic and compatible with the complex structure because the
isomorphism dr, above identifies both the complex and symplectic structures of the tangent spaces
T, C" and Ty (,Tr. Thus Ty is a Kihler manifold. However T, is not a complex submanifold of
some CPY in general (the proof of this fact relies on the Kodaira embedding theorem — see for
example [Griffiths-Harris, Principles of algebraic geometry, Chap. 2.6]).

All complex manifolds are not Kahler. An easy example is the Hopf surface defined by M =
(C2\ {0})/Z, where 1 € Z acts on C? \ {0} by multiplication by 2. As in the case of T, this
multiplication respects the complex structure and induces a complex structure on M. However M
is diffeomorphic to S3 x S! (the map (z1,22) + (”Ezizzgu, 10g(\|1(027222)||)) induces a diffeomorphism

M — S3 x R/Z). We deduce that H?(M;R) ~ 0. Hence M has no symplectic structure.

All symplectic manifolds are not Kéahler. Here is an example by Kodaira and Thurston (see
[McDuff-Salamon, Introduction to symplectic topology, Ex. 3.1.17]). Let T’ be Z2 x Z? endowed with
(1) ‘]11) and we define (j', k" )o(j, k) =
(j' + 4,k + Ayk). Then I is a group and it acts on R* by (j,k) - (z,y) = (j + @,k + Ajy). This
action is free and preserves the form w = dxy A dzo + dy; A dyz. Hence the quotient M = R*/T
is a symplectic manifold. We can see that M is compact (one fundamental domain of the action
is contained in [0, 1]*). Its fundamental group is I' and it follows that Hy(M;Z) ~ T'/[T,T], where
[[',T'] is the subgroup of I' generated by the commutators. We find [I',T] ~0&® 0@ Z @ 0, hence
Hy(M:;Z) ~ Z3. By Hodge theory, for a Kihler manifold N, the odd Betti numbers dim H;(N;R)
(i odd) are even. Hence our M cannot be Kéhler.

the following multiplication: for j = (j,j1) € Z* we set A; = (

2.4 Moser’s lemma

We usually denote a path of k-forms a on a manifold M by (a).c(o,1] and we set ¢ = %.

Proposition 2.27 (Moser’s Lemma for symplectic forms). Let M be a manifold. Let (wt)ejo)
be a smooth path of symplectic forms on M. We assume to be given a smooth path of 1-forms
(Oét)te[o,l] such that w; = day and ap vanishes outside some compact set K. Then there exists an
isotopy ¢ of M with support in K such that o = id and pjws = wp.

Proof. We are looking for a vector field X; which vanishes outside K such that its flow o', satisfies
(¢%)*wy = wo. By Proposition 1.2 we have 0 = £((ph ) wy) = ()" (Lx,wr + Swy). Since
wy is closed, we deduce, by the Lie-Cartan formula, d(ix,w;) = —wy = —day. It is enough to
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solve the equation ix,w: = —ay, which has a unique solution by the non-degeneracy of w;. Since
supp(ay) C K, we also have supp(X;) C K and the flow of X; (which is well-defined because K
is compact) also has its support in K. By construction (gp&)*wt is constant, hence equal to wy, as
required. O

Proposition 2.28 (Darboux’s theorem for symplectic structures). Let (M,w) be a symplectic
manifold of dimension 2n. Then, for any point xo € M, there exists a chart containing o with
coordinates (p1,...,Pn,q1,- -, qn) Such that w =" | dp; Ndg;. (Such a chart is called a Darboux
chart.)

Proof. Since the statement is local we can assume M = R?" and zg = 0. By a linear change of
coordinates we can assume that w(0) = (3°7" ; dp; A dg;)(0). We let wy be the standard symplectic
form of R?" in these coordinates. By the Poincaré lemma there exists a 1-form a such that
w — wp = dae. We can assume that o vanishes at 0 to order 1. Hence there exists C' > 0 such that
lla(x)|| < C2? and ||da(z)|| < Cx for ||z|] < 1.

We choose a bump function p: R?® — [0, 1] such that p(z) = 1 for ||z|| < 1 and p(z) = 0 for
||z|| > 2. For € € (0,1] and ¢ € [0, 1] we set

1

Wet = wo + td(pa),  where p:(z) = p(e " x).

We remark that supp(p-«) is contained in the ball By, of radius 2e. Hence we () = wo(z) for
||z|| > 2¢ . For ||z|| < 2e we have

(we,t — wo) (x) < [|dpe|lsollax(z)]] + [|de(z)]]
< Ce™Hldpllsoll2]|* + O]
< (4C|ldplloo + 2C)e.

Since wo(z) is non-degenerate, we deduce that, for € small enough, w. () is also non-degenerate.

Hence the hypothesis of Moser’s Lemma are satisfied and there exists an isotopy (; with support
in By, such that ¢} (we ) = we o = wp. By definition w, 1 = w inside B, and we obtain ¢} (w) = wp
inside B.. Hence (Be, 1) is a Darboux chart. O

The classification of symplectic forms up to isomorphism is difficult in general. But for closed
surfaces we have the following corollary of Moser’s lemma.

Proposition 2.29. Let X be a connected closed oriented surface. Two symplectic forms w, W' are
conjugate by an orientation-preserving diffeomorphism of ¥ if and only if fzw = fz w'.

Proof. If there exists an orientation-preserving diffeomorphism ¢ with ¢*w = ', then [(w' =
Js ¢*w = [qw. Conversely, if [, w = [ ', then there exists a 1-form a on ¥ such that w = w'+da
(since the integration morphism H3,(M) — R is an isomorphism). Set w; = w’ + tda for ¢ € [0, 1],
it is a smooth path of closed forms. Moreover w; is non-degenerate: since fzw = fE w' and X
is connected, w and w’ induce the same orientation on ¥, namely for all basis of tangent vectors
(u,v), we have w(u,v)w'(u,v) > 0, and hence w;(u,v) # 0. According to Proposition 2.27, there
exists an isotopy ¢ such that ¢fw; = wg. Hence ¢; is an orientation-preserving diffeomorphism
with pfw = W' O
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Note that any closed orientable surface admits an orientation-reversing diffeomorphism (this
follows from the classification of closed orientable surfaces, it is generally false for higher dimensional
manifolds), and hence a symplectic form w and its opposite —w are also conjugate by an orientation-
reversing diffeomorphism.

Another application of Moser’s lemma is the following tubular neighborhood theorem for La-
grangian submanifolds originally due to Weinstein.

Proposition 2.30 (Weinstein neighborhood theorem). Let (M,w) be a symplectic manifold and
i1: L — M a Lagrangian embedding. There exists a neighborhood U of the zero-section L of T*L
and an embedding j : U — M such that j =1 on L and j*w = wg.

To prove this we need to recall two results. The first is the classical tubular neighborhood
theorem.

Proposition 2.31 (Tubular neighborhood theorem). Let M be a manifold, i : L — M an embed-
ding, vL = (i*TM)/TL — L the normal bundle of i and 7 : TM|L — vL the projection. Given
any bundle morphism ® : vL — TM|L covering i such that m o ® = id, there exist a neighborhood
U of the zero-section in vL and an embedding ¢ : U — M such that ¢ =i on L and dp = di & ®
along L (with respect to the decomposition T(vL) =TL @ vL along L).

Sketch of proof. Pick a Riemannian metric on M such that the decomposition ®(vL) & di(TL) =
TM along L is orthogonal. Let ¢y : TM — TM be the geodesic flow with respect to this Rie-
mannian metric. Then for x € L and v € vL,, set o(x,v) = (7 o ¢1)(i(x), Pz(v)). We check that

p =1 and dp = di ® P along L, and hence ¢ embeds a neighborhood of the zero-section of vL into
M. O]

Note that the morphism @ in the above proposition is determined by the subbundle ®(vL)
which is supplementary to T'L in TM|L. For each z € L, the space of such ®, : vL, — TM, is an
affine space, hence it is always possible to find a global morphism ® using a partition of unity.

Lemma 2.32 (Relative Poincaré lemma). Let M be a manifold, i : L — M an embedding, and a
a closed k-form with k > 1 such that i*a = 0. Then there exists a (k — 1)-form [ defined on an
open neighborhood of i(L) such that B vanishes to order 1 along i(L) and o = df.

Proof. When L is a point, we can pick a chart to reduce to the case M is a vector space and L
is the origin, which is the usual Poincaré Lemma. Recall a simple proof in this case : consider
the radial vector field X (z) = =, its flow ¢(z) = elz and set 3 = ff)oo o (txa)dt so that df =
fi)oo of (dixa)dt = fi)oo o (Lxa)dt = fBoo %(gp,fa)dt = a and 8 = O(|z|?) (since a = O(|z|) and
X Z 0(lal)).

In the general case, the proof is similar but involves Proposition 2.31. Consider the fiberwise
radial vector field Y on v, namely Y is tangent to each fiber vL, and coincides with the radial
vector field on vL,. Pick a tubular neighborhood of L, namely a star-shaped open neighborhood
U of the zero-section of vL and an embedding ¢ : U — M such that ¢ = ¢ on L. Consider
X = .Y and its flow ¢4, and set § = ono i (txa)dt. This is well-defined on ¢(U) and the same
computation as above shows that df = a — lim;,_ ¢fc. But using the assumption ¢*o = 0 and
the fact that dy; converges to the projection to L when ¢ — —oo, we obtain d8 = a. Finally in a
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coordinates chart (z,v) where {v = 0} = L, we have o = O(|v|), X = O(|v|) and hence 8 = O(|v|?)
and (3 vanishes to order 1 along L. O

Proof of Proposition 2.30. Since L is Lagrangian there is an isomorphism vL — T*L defined by
v — i,w. Recall that in a symplectic vector space the space of Lagrangian subspaces transverse
to a given one is an affine space. Hence, using a partition of unity, we can construct a field L’
of Lagrangian subspaces transverse to T'L along L. Next consider the unique bundle morphism
® : vL — TM with image L' and with 7 o ® = id where 7 : TM|L — vL is the projection. Then
the bundle morphism di ® dy : TL & T*L — TM|L is symplectic provided TL & T*L = T(T*L)|L
is equipped with the standard symplectic structure. Proposition 2.31 applied with ® provides a
neighborhood U of the zero-section in T*L and an embedding ¢ : U — M such that p*w = wy,
along L. From Lemma 2.32, we get a 1-form « defined near L in T*L such that p*w = wp +d «
and « vanishes to order 1 along L. The end of the proof is similar to the proof of Proposition 2.28:
use a cutoff function and apply Moser’s lemma. When L is non-compact, it is a bit more difficult
since one needs € to be a function on L. O

Corollary 2.33. Let (M,w) be a closed symplectic manifold. Then a neighborhood of idys in
Diff (M, w) can be identified with a neighborhood of 0 in the vector space of closed 1-forms on M.

Proof. We equipp M x M with the form wy = w @ (—w). Then the diagonal A is a Lagrangian
submanifold of M x M. By Proposition 2.30 there exists a neighborhood U of the zero-section of
T*A and an embedding j : U — M such that j*ws = wa.

If ¢ € Diff(M,w), then its graph I'y is also Lagrangian. If ¢ is sufficiently C'-close to iday,
then I'y is a subset of j(U) and L := j~1(I'y) is C'-close to the zero-section. Hence L can be
written as the graph of 1-form: L = {(a(q),q); ¢ € A} for a € Q!(L). Since L is Lagrangian, « is
closed.

We can argue in the reverse direction and associated an element of Diff (M, w) with any closed
1-form close enough to 0. 0

Corollary 2.34. Let (M,w) be a closed symplectic manifold and let ¢ € Ham(M,w). If ¢ is
Cl-close enough to idys, then 1 has at least two fized points.

Proof. We use the notations in the proof of the previous corollary. We assume 1 = ! for an
isotopy '. Then I'y is the image of A by the isotopy idas x ¢! of M?. Hence L is the image of
the zero-section by a Hamiltonian isotopy. This implies that the form « is exact. Hence a = df
for some function f. The maximum and minimum of f give two intersection points of L with the
zero-section. They correspond to fixed points of . O
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Chapter 3

Contact geometry

3.1 Integrability of planes fields

Definition 3.1. Let M be an n-dimensional manifold. A plane field of codimension k is a (smooth)
subbundle ¢ of rank (n — k) of the tangent bundle T'M.

Such a plane field can be described locally as £ = ﬁi?:l ker a; for some linearly independent
1-forms «y, or alternatively as & = (X1, ..., X, ) for some linearly independent vector fields Xj.

For k =n —1, it is a line field, and is locally spanned by a non-vanishing vector field: £ = (X).
The Cauchy-Lipschitz theorem about ordinary differential equations says that, at any point, there
are smooth curves everywhere tangent to X.

This is no longer true for £ = n — 2: on R? consider the plane field ¢ = ker(dz — ydr) and
assume that some surface S is everywhere tangent to &, then S is a graph z = f(z,y) with df = ydz
which is a impossible since d?f = 0 and d(ydz) = dy A dx.

Theorem 3.2 (Frobenius). Let £ be a codimension-k plane field on a manifold M of dimension n.
The following conditions are equivalent:

1. for each point p € M, there exists a codimension k submanifold everywhere tangent to & and
containing p,

2. for each p € M and for any local sections X,Y of £ near p, we have [X,Y] € &,

3. for each point p € M and any local vector fields X; near p such that (X1,..., X,_x) = £ there
exists functions céj for 1 <i,j,l <n—k such that [ X;, X;] =), céle.

4. near each point p € M, if a is a 1-form with £ C ker «, then da vanishes on &,

5. near each point p € M, if a;, i = 1,...k are 1-forms such that & = N; ker «; then there exists
1-forms ,Bij, 1<1,7 <k, such that doy; = Zj Bij N aj.

Proof. (1) = (2): let N be a codimension k submanifold tangent to £ and containing p. Then X
and Y are tangent to N, and hence [X,Y] € TN =¢.

33
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(2) = (1) : The statement is local, we may take M = R" = R* x R"™%, p = (0,0), {,0) =
{0} x R"*. Consider the projection 7 : R® — R"*. The vector fields %ﬂ, o, 52 of RVF

’ Oz,
uniquely lift to vector fields Xy1,..., X, under the projection 7 near (0,0). On the one hand,

[Xi, X;] € & by hypothesis and on the other hand dm([X;, X;]) = 0 since bi’ %] = 0. Hence
T, T

[Xi,X;] = 0 and the flows goz of Xj, k+1 < j < n, commute. This allows to define a map
: B in a neighborhood o YV f(Thits--oyTn) = @ o---0 ¢ (0). We have
R"* — R” in a neighborhood of 0 by f(x: ey z(0). We h
of

0T 41
In particular, f is an immersion near 0 and it is everywhere tangent to &.

(2) & (3): obvious.
(2) < (4): it follows from the formula

= X1 0 f and, using the commutativity of the flows, also aBTfj = Xjofforallk+1<j < n.

do(X,Y) = Lx(a(Y)) = Ly (a(X)) — a([X, Y]).

Indeed, assuming (2) if £ C kera and X,Y € &, extend X, Y to local sections of {. Hence a(X)
and «(Y') vanish identically and we have da(X,Y) = a([X,Y]) since [X,Y] € £ C ker a. Assuming

(3), consider local 1-forms aq,...,ar with § = N;keray. If X, Y are local sections of &, then
;[ X, Y] =da;(X,Y) =0 for all ¢ and hence [X,Y] € &.
(5) = (4) is obvious. For (4) = (5), pick local 1-forms aj41,. ..,y in order to form a local

basis of T*M, and a dual basis (e1,...,e,) of TM, ie. a;(e;) = 0;;. Then (eg41,...,e,) form a
basis of § = Ni<i<j ker a;. Write d o = Zl<i<j<n céj a; Aaj and since, for [ <k, and i, > k+1,
doy(e;, e5) = Cé,j =0, we get the required formula. O

Definition 3.3. A hyperplane field satisfying one of the equivalent conditions of Theorem 3.2 is
called integrable.

A small variation on the proof of theorem 3.2 shows that, an integrable plane field can be locally
mapped to the horizontal plane field in a chart RF x R™*. Also the submanifolds everywhere
tangent to £ are uniquely determined by the plane field. Hence the manifold M is decomposed as
a disjoint union of submanifolds which locally look like the product R™ x R"*. Such a structure
is also called a foliation of codimension k.

When ¢ is a hyperplane field (i.e. in the case k = 1), the condition da vanishes on & for some
local form o with £ = ker « is equivalent to a A dao = 0 and also to the existence of 8 such that
da=ppANa.

3.2 Contact manifolds

Definition 3.4. A contact form on a manifold M is a 1-form « such that da is non-degenerate
on ker . A contact structure is a hyperplane field which is locally the kernel of a contact form. A
contact manifold (M,§) is a manifold M endowed with a contact structure &.

The condition that da is non-degenerate on ker o implies that ker  has even dimension 2n, and
thus M has dimension 2n+1 > 1. Also the non-degeneracy condition is equivalent to aA (da)™ # 0
everywhere. If £ is a hyperplane field and «, [ are local 1-forms with & = ker a = ker 5, then there
exists a non-vanishing function f with § = fa and thus df = df Aa+ fda implies df coincide with
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da on £ up to a non-zero factor. Hence the condition that £ is a contact structure is independent
on the choice of defining 1-form, and thus any such 1-form is a contact form. In fact, the contact
condition can be written without reference to a contact form as follows. Let £ be a hyperplane field
and consider the skew-symmetric bilinear form ¢ : £ x § = T'M /¢ defined by (X,Y) — —[X,Y]
mod & where the tangent vectors X and Y are extended arbitrarily to local sections of £. One
checks that the expression [X,Y] mod & is C*°-linear in X, Y and hence independent of the choice
of local extensions. If & = ker « for some local 1-form a and X,Y are local sections of &, then
do(X,Y)=Lx(a(Y))—Ly(a(X))—a([X,Y]) = k(X,Y) under the isomorphism o : TM/¢ — R.
Hence ¢ is a contact structure if and only if k¢ is non-degenerate.

The standard contact structure on R?*! with coordinates (p1, . .., Pn, q1, - - -, n, 2) is € = ker a,
where oo = dz — ), pidg;.

Let M be a manifold and J'M = R x T*M the 1-jet space of M. Let z be the coordinate on
R and )\ the Liouville 1-form on T*M. Then the 1-form oy = dz — Ay on J'M is a contact
form. A smooth function f: M — R defines a section s = J'f of the fiber bundle J'M — M
by JUf(z) = (f(x),df(z)). This section is tangent to ker aps (in other words (J!f)*(ans) = 0).
Conversely let s: M — J'M, s(z) = (f(x), B(x)), be a section of J!M; if s is tangent to ker ay,
then s = J1f.

Let M = S?"*! be the unit sphere in R?"*2 = C"*1. At each point € M, the complex part
& =T, MNJT, M of its tangent space has codimension 1. Then £ is a contact structure on M which
is called the standard contact structure on S***1. A contact form is \g = % Z?:o yjdx; — x;dy;.

Proposition 3.5. Let (M,&) be a contact manifold of dimension 2n + 1. If L is a submanifold
everywhere tangent to &, then dim L < n.

Proof. If i : L — M is the inclusion and « is a contact form for £, then i*a = 0, and thus i*da = 0.
Hence di(T'L) is an isotropic subspace of the symplectic vector space (§, da), we find dim L <n. O

Definition 3.6. A submanifold of a contact manifold which is everywhere tangent to the con-
tact structure is called isotropic. An isotropic submanifold of maximal dimension is also called
Legendrian.

Let (M,€) be a contact manifold and let a be a choice of contact form (the existence of «
implies that £ is co-oriented). There exists a unique vector field Y =Y, on M such that a(Y) =1
and tyda = 0. Indeed the second condition says that Y is in ker da which is a line since da is of
rank (dim M — 1) and the first condition normalizes Y. This Y, is called the Reeb vector field of
a. We have Ly, (a) = 0 and the flow of Y,, preserves «, hence &.

Let (M, &) be a contact manifold such that £ is co-orientable. We choose a co-orientation. A
contactomorphism of (M,§) is a diffeomorphism v of M which preserves £ and its co-orientation.
If o is a contact form for &, this is equivalent to 1/*(a) = e, where h is some function on M.

A contact isotopy is a smooth family of contactomorphisms 1; such that 1} (a) = e’*a, for some
family of functions h;, and ¥g = idy;. When vy is the flow of a vector field X;, we obtain

* _i * _i ht _% ht o — ¥
Ui Lx(0) = i) = £(eMa) = ot = yj (g,
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where ¢y = % o9t Hence Lx,(a) = gi. Conversely, if Ly, satisfies such a condition, it

generates a contact isotopy. Hence we say that a vector field X is a contact field if Lxa = ga for
some contact form « and some function g.

Lemma 3.7. Let (M,§) be a contact manifold and « a contact form. Let Y, be the Reeb vector
field of a.
(i) A wvector field X is a contact vector field if and only if there exists a function H: M — R
such that
txo = H, txda = (Yo(H))o — dH. (3.1)

(ii) For any function H on M there exists a unique (contact) vector field X satisfying (3.1).

Proof. (i) If (3.1) holds, then Lx(a) = d(ixa) + txda = (Yo(H))a. Hence Lxa = ga with
g =Y, (H). Conversely, if Lxa = ga, we set H = txa and we have

txda = Lxa—d(xa) =ga —dH.

Contracting with Y, and using the definition of Y, we find g = Y, (H).

(ii) For any € M we have T, M = (Y,) + £. Let us write a vector field X as X = fY, + Z,
with Z € . The second condition in (3.1) determines Z, since da¢ is non-degenerate. The first
condition gives f (and we find f = H). O

We have thus a correspondence between contact vector fields and functions on M. The Reeb
vector field corresponds to H = 1.

Remark 3.8. There is another way to phrase Lemma 3.7 which does not involve a choice of
contact form: the map which takes a contact vector field X to its corresponding section of TM /£
is a bijection.

3.3 Moser’s lemma

The application of Moser’s lemma gives the following stability result for contact structures, origi-
nally due to Gray.

Theorem 3.9 (stability near a compact subset for contact structures). Let M be a manifold,
K a compact subset of M and (&t)iecpo,1) @ smooth family of contact structures on M such that
§& = & on T'M|i. Then there exists an open neighborhood U of K and an isotopy of embeddings
(¢t)iejoa) 1 U = M such that o1 = id on K, o is the inclusion and p;& = &o.

Proof. The isotopy ¢; will be generated by a time-dependent vector field X;. Locally & is the
kernel of a 1-form «y. We define X; by the conditions

X; € §t (32)
(Xt_ld(lt + Oét) Aoy = 0 (33)
Condition (3.3) is equivalent to X;.d ay = —ay when restricted to & and also to the existence of

a function f; such that X;.idoy + oy = fray. Since doy is non-degenerate on &, the vector field
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X; is well-defined by (3.2) and (3.3). Moreover, the vector field X; is independent of the choice of
contact form oy: if 8 = fray with f; # 0, we also have (X;1dSB; + ﬁt) A By = 0. So the definition
of X; makes sense globally on M. Recall from the theory of ODE’s that the domain of definition
of the flow ¢, of X} is an open subset of R x M. Since X; = 0 on K, this open subset contains
K x [0,1], hence it contains U x [0, 1] for some open neighborhood U of K. It remains to check

that ¢j& = o

d * * .
—(pras N ag) = @i (Lx, (o) + ) Aag

dt
= i (frar) Nag
= fropi(pron A ap),
and pjap A ag = 0, hence oy A ag = 0 for all ¢ € [0, 1]. d

Theorem 3.10 (Gray’s theorem, closed manifold). Let M be a closed manifold and (&t)iejo,1) @
smooth family of contact structures on M. Then there exists an isotopy (%)te[o,l] of M such that

0; & = &o-

Proof. The proof is the same (actually, simpler) as for the previous statement: the vector field X;
defined by (3.2) and (3.3) integrates to an isotopy (¢t).e[o,1] because M is closed. O

As in the symplectic case, this allows to prove the following local normal form theorem.

Theorem 3.11 (Darboux’s theorem for contact structures). Let (M,§) be a contact manifold
of dimension 2n + 1 and p a point of M. There exists an open set U of M containing p, an
open set V of R**! containing 0 and a diffeomorphism ¢ : U — V such that p(p) = 0 and

pul = ker(dz — 3 yidi).

Proof. Set a« = dz — ) y;dx; and ( = kera. There is a chart ¢» : U — V such that ¢(p) = 0,
(14€)o = Co. Then v induces a isomorphism TM, /¢, — R?"*1/(; = R. By the classification
of linear symplectic forms, we may modify ¢ by postcomposition with a linear map of R***! of

the form (13 ?) so that di), conjugates the forms (k¢), and (k¢)o. This means that if o is any

contact form for £ near p, then (¢.df)o is a non-zero multiple of dagy when restricted to (p. Up
to composing ¥ with (z;,y;, 2) — (z;,y;, —z) we can assume that this multiple is positive. Then
consider oy = (1 — t)a + th 8 and (; = ker ay, and observe that doy is non-degenerate on (; at 0
and thus in a neigborhood of 0. O

Theorem 3.12 (Darboux’s theorem for contact forms). Let M be a manifold of dimension 2n+1,
a a contact form on M and p a point of M. There exists an open set U of M containing p,
an open set V of R*"*L containing 0 and a diffeomorphism ¢ : U — V such that o(p) = 0 and

a = @*(dz = > yidx;).

Proof. Using Darboux’s theorem for contact structures, it is enough to prove that two contact
forms v and 3 in a neighborhood of 0 in R?**! for the same contact structure are conjugate. We
may assume that kera = {z = 0} at 0. We set oy = (1 — t)a + t8. We look for an isotopy ¢;
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generated by Xy =Y; + H R, where R, is the Reeb vector field of oy and a4(Y;) = 0. Deriving the
equation ¢joy = g with respect to ¢ gives the equations:

Gr(Ri) = —dH(Ry) (3.4)
(Y%_ldat + o + dHt) Nop =10 (3.5)

We set H; = 0 on R?"x {0} and then H; is uniquely determined by (3.4) in a neighborhood of 0 since
Ry is transverse to R?™ x {0}: explicitly, if 1/; is the flow of Ry, then Hy(¢y(z)) = — fot as(Rsots)ds.
Then the vector field Y; is uniquely determined by (3.5) and we observe that Y; = 0 on V' x {0} x[0, 1]
(since ay A oy = 0). Hence the flow ¢, of X; is well-defined for ¢ € [0, 1] on some neighborhood of
0 and we have ¢y = . O

There is also a neighborhood theorem for Legendrian submanifolds analogous to the one for
Lagrangian submanifolds in symplectic geometry.

Theorem 3.13 (Weinstein’s theorem for Legendrian submanifolds). Let (M, &) be a contact mani-
fold and L a closed Legendrian submanifold of M. There exists a neighborhood U of the zero-section
in J'L and a contact embedding U — M which is the identity on L.

Proof. Let &1, = ker(ay) be the contact structure on J'L. In the (conformal) symplectic bundle
& — L, there exists a Lagrangian subbundle which is supplementary to T'L. This allows to define
a bundle isomorphism T*L @ R ~ v, J'L — v; M which sends &7, to € and also the curvature form
ke, to ke The tubular neighborhood theorem allows to find a neighborhood of the zero-section
U and an embeding ¢ : U — M which induces the above bundle isomorphism along L. Then we
proceed as in the proof of Darboux’s theorem: pick a contact form « for € and a linear path joining
wxar and «. This gives a path of contact structures in a neighborhood of L and we can apply
Theorem 3.9. O



Chapter 4

Morse cohomology

4.1 Morse functions and gradient vector fields

Let V be a manifold of dimension n. Morse theory provides links between the topology of V' and
real valued fonctions on V.

Definition 4.1. A function f : V — R is called a Morse function if all its critical points are
non-degenerate.

The Hessian of f at a critical point of p is well-defined as a quadratic form on T,V. Its index
(i.e., maximal dimension of a negative definite subspace) is denote ind(p). Observe that a function
f:V — R is Morse if and only if the section df : V' — T*V is transverse to the zero-section. In
particular the critical points of a Morse function are isolated.

For example the function (z,y, z) + 2 is a Morse function on S? = {2% + 32 + 22 = 1}. It has
two critical points (0,0,—1) and (0,0, 1) of respective indices 0 and 2. They are non-degenerate
since, in the local coordinates (z,y), we have f = /1 — 22 — y2 = 1— (22 +y?) +o(|z, y|?). The
function f : R — R defined by f(z) = 2% is not Morse: 0 is a degenerate critical point. However
f(x) = 23 — ex for € > 0 is Morse.

Lemma 4.2. If p € V is a critical point of a function f : V — R, then there exists (so-called
Morse) coordinates (1, ...,x,) where f = f(p) —a? — - —xf +af,  + - + 22,

Proof. According to the classification of quadratic forms on a real vector space, it is enough to prove
that a Morse function f : R™ — R such that f(0) = 0 and df(0) = 0 is conjugate to its Hessian
Q@ at 0 near 0. The functions y; = g—mz are coordinates near the origin, hence Hadamard’s lemma

gives that each function g which vanishes at 0 can be written g = >, vigi(y1, - -.,¥n), and hence
g=> gg’;gg(xl, ..., xp) where gi(x) = ¢i(y). We set fy = (1—1t)f +tQ and look for an isotopy ¢;
generated by a vector field X; such that ¢f f; = fo. Deriving with respect to ¢ gives df(Xy)+ fi=0.

As explained above, there exists functions X/ such that f, = —3, X}% = —dfy(X;) where
X; = Y. X[d,,. Moreover X;(0) = 0 since f; = Q — f = o(|z|?). We obtain Q = f o ¢ as
desired. O

39
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Any manifold admits a Morse function and in fact a generic function is Morse. To prove this,
we start with some basic things about transversality.

Definition 4.3. Let M, N be manifolds and P a submanifold of N. We say that amap f: M — N
is transverse to P if for each x € M such that f(z) € P, we have df (T, M) + Tp(5)P = Tj(z)N.

An equivalent way to write the transversality condition is : the map df : T, M — Ty N/Ty(y) P
is surjective. When dim M+dim P < dim N, then f is transverse to P is equivalent to f(M)NP = (.
When P is reduced to a point y, f is transverse to P is equivalent to y is a regular value of f.

Proposition 4.4. Let f : M — N be a smooth map transverse to a submanifold P of N. Then
f7Y(P) is a submanifold of M.

Proof. Let x € f~!(P), there is an open set U containing f(z) and a submersion u: U — RF
such that PN U = u~(0). Then (uo f)~1(0) = f~H(P)N f~YU) and fou: f~H(U) - RFisa
submersion. Indeed, df(y : TuM — Ty N/ Ty P is surjective and du : Ty N/Tp(z) P — RF is
an isomorphism and d,(u o f) is the composition of these maps. O

The following result says that regular values are plentiful.

Theorem 4.5 (Sard). Let M, N be manifolds and f : M — N a smooth map. The set of critical
values of f is of Lebesque measure zero.

There is no canonical measure on a manifold. However the notion of subset of Lebesque measure
zero (or negligible subset) makes sense: it means the image by any chart is of Lebesgue measure
zero in R™. Since diffeomorphisms between open subsets of R map negligible subsets to negligible
subsets, and since a manifold admits a countable atlas, the notion is well-defined. Using another
terminology, Sard’s theorem says that almost all values are regular (be careful that, for y € N, if
y & f(M), y is also called a regular value (sic)).

We would like an analogous result for the more general concept of transversality. This will be
achieved via the following lemma.

Lemma 4.6. Let M, T, N be manifolds and P a submanifold of N. Let F : M xT — N be a
smooth map which is transverse to P, ¥, = F~1(P). Let m : ¥ — T be the projection. Fort € T,
we denote by fi : M — N the restriction of F' to M x {t}. Then f; is transverse to P if and only
if t 1s a regular value of .

Proof. Let (z,t) € 3. The equivalence is proved by inspecting the following diagram, where the
vertical and horizontal lines are exact sequences.
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.M
dft

' dF
0—— T(N)E e T(th)(M X T) E— Tf(x,t)N/Tf(J:,t)P — 0

R

;T

O]

Theorem 4.7 (Transversality theorem). Let M,T, N be manifolds, P a submanifold of N and
F: MxT — N a smooth map which is transverse to P. The restriction fy : M — N of F to
M x {t} is transverse to P for almost all t.

Proof. This follows directly from Theorem 4.5 and Lemma 4.6. O

Theorem 4.8. For any manifold V' there exist Morse functions on V.

Proof. Recall that a function g is Morse if dg: V' — T*V is transverse to the zero-section Oy C T*V.

(i) We first prove that, for any relatively compact open subset W C V', there exists f: V — R
such that f|y is Morse. We cover W by charts U;, i = 1..., N, and find U! C U; compact, such
that W C Uf\il U]. We choose ¢;: V. — R with support in U; such that ¢; = 1 on U;. We
have coordinates (z%,...,2%) on U;. We set k = nN and define fi,...,fr: V — R by and set
Jin—1)i+j = ¥i - xé Then the differentials df;(z), ..., dfx(x) generate TV, for each x € W.

(ii) For a = (a1, ..., ax) we set go = >, a; fi. We also define H: W x R¥ — T*W, by H(z,a) =
> i aidfi(x), ha = Hl|wx{a)- Hence dgs = hy. We claim that H is transverse to Oy C T™W.
Indeed, for any x € W, we have T(g ,)T"W =~ To(TiW) & T,.0w ~ TW & T, 0. It is then enough
to check that im((dHy),) = ThW, for (z,a) such that H(z,a) € Ow, where H, is the restriction
H,: {x} x R¥ — T:W. We clearly have (dH,)4(b) = > b;dfi(z) and these sums generate T W
by hypothesis. Hence H is transverse to Oy C T*W. By the transversality theorem there exists a
such that dg, = h, is transverse to Oy,. Hence g, is Morse.

(iii) In general we can find an increasing family W,,, n € N, of compact subsets such that
V = U, W, and W, is contained in the interior of W,;1. We can find f,: V' — R which is
Morse on some neighborhood of W, \ W,,_;. We can assume that suppf, C W41 \ Wy—2. Hence
9o = >, fon and g1 =), font1 are well-defined. As in (ii) we can see that a generic combination
apgo + a1g:1 is Morse. O
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Definition 4.9. A vector field X is called an adapted gradient vector field for a Morse function
f:V = Rifdf(X) > 0 away from the critical points of f and near each critical point, there exist
Morse coordinates (z1,...,z,) where X = —x10;, — - — 20z, + T 110z, +- -+ +2n0s,. In this
situation we call (f, X) a Morse pair.

Proposition 4.10. Any Morse function f:V — R admits an adapted gradient vector field.

Proof. Near a point p which is not critical, a vector field which is not tangent to the level sets of f
is an adapted gradient. Near a critical point, an adapted gradient can be constructed according to
Lemma 4.2. Hence we can pick an open cover U; consisting of one open set for each critical point
and other open sets disjoint from the critical points, and adapted gradient vector field X; on U;.
Pick a partition of unity p; subordinated to the cover U; and set X = > p; X;, it is an adapted
gradient vector field. O

The above proposition can also be proved as follows: pick a Riemannian metric g on V' which
coincides with % > d:l?? in some Morse charts near the critical points (g can be similarly constructed
using a partition of unity) and consider X = V,f. Observe however that if g is chosen arbitrarily
then V4(f) is not an adapted gradient since we may not find appropriate coordinates near the
critical points (for instance the eigenvalues of V4 (f) at critical points could be different from +1).
It is technically simpler to work with adapted gradient vector fields though it is not essential.

Lemma 4.11. Let (f, X) be a Morse pair on a closed manifold V' and p a critical point of f of index
k. The subset W*(p) = {q € V; % (q) M p} is a submanifold diffeomorphic to R¥. Similarly

W (p) = {q € Vi (q) e p} is diffeomorphic to R"*.

Proof. Near p we have coordinates (z1,...,2,) where X = —3> . 2; Oz, + > ;o %0z, For a
sufficiently small neighborhood U of 0, we have W*(p)NU = (R¥ x {0})NU. Indeed, for any other
point g, f o p(q) will get bigger than f(p) and thus ¢;(q) cannot converge to p. Hence W#(p) is a
submanifold near p. Since ¢; preserves W?*(p) and for any q, ¢:(q) € U for sufficiently large ¢, we
get that TW*(p) is a submanifold. Denote by i : R¥ — W#(p) the identification above defined in a
neighborhood of 0 and extend it by the formula i(x) = p:(i(e 'z)) with ¢ so large that e 'z enters
the domain of definition of i. This is the required diffeomorphism. The result for W*(p) follows
from the above applied to the vector field —X which is an adapted gradient for — f. O

Proposition 4.12. Let (f,X) be a Morse pair on a closed manifold V. Then V is the disjoint
union of all W*3(p) for p critical point of f.

Proof. Let q € V, by compactness of V' there is an increasing sequence t,, converging to +oo such
that got)’g (q) converges to some point p € V. If p were not critical point, then for all points r
sufficiently close to p, we would have f o’ (r) > f(p) for some ¢ > 0. Hence for some large enough

n we have ¢ such that f(¢%{""(¢)) > f(p) which contradicts the fact that ¢ (q) converges to p.

Hence p is a critical point, and for large enough n, (pé?(q) enters a Morse chart where X has a

standard form and we get that ¢’ (q) converges to p when t — +oo0. O

According to the above proposition, the manifold V' is covered by disjoint open sets each dif-
feomorphic to some R¥. This decomposition of V was first observed R. Thom.
Here is an example of how a Morse function can help us understand the topology of a manifold.



4.1. MORSE FUNCTIONS AND GRADIENT VECTOR FIELDS 43

Proposition 4.13. Let V' be a compact manifold with boundary and f:V — R a Morse function,
we assume that OV = f~1(—=1)U f~Y(1) and that —1 and 1 are regular values of f, df is positive
(resp. negative) on inward pointing vectors along f~(—1) (resp along f~*(1)). If f has no critical
points, then V is diffeomorphic to f~'(—1) x [~1,1].

Proof. Pick a gradient vector field X and set Y = ﬁ Then the map f~'(—1) x [-1,1] =V

defined by (q,t) — ¢} (q) is a diffeomorphism. Indeed arguing similarly as in Proposition 4.12 we
see that, since M is compact and f has no critical points, any trajectory of Y goes from f~1(—1)

to f=1(1). O

Since V' x [—1,1] is diffeomorphic to V' x [—=1, —1 + ¢] for any £ > 0 through a diffeomorphism
which is id near V' x {—1} we can reformulate the proposition as follows: for any a < b € R such
that [a, b] contains no critical values, the sublevel sets {f < b} and {f < a} are diffeomorphic.

Corollary 4.14 (Reeb). Let V be a closed manifold. If V' admits a Morse function with only two
critical points then V' is homeomorphic to a sphere.

Proof. (i) The critical points are necessarily a minimum and a maximum. After removing small
open disks around each critical point in Morse coordinates, we obtain a manifold M subject to
Proposition 4.13, hence M is diffeomorphic to S"~! x [~1,1] with n = dim V. But V is obtained
by gluing two disks D™ along S"~! x {#1}. This implies that V is homeomorphic to S”, as we
see now.

(ii) Let : S"~1 =% S"~1 be an homeomorphism and X, = D" L, D" := (D"UD")/ ~, where
x ~ ¢(x), for x € S"1. We remark that there exists 1): D™ — D" such that ¥|sp» = ¢. Indeed
we can define 1 by 9(r,0) = rp(f) in polar coordinates. Then the map D™ L D™ =~ D" U D"
which is id on the first D™ and ¢ on the second D" induces X, =% Xjq = S". O

Let us remark that the stronger conclusion that V is diffeomorphic to a sphere is false: Milnor
discovered in 1956 closed smooth manifolds of dimension 7 which admit Morse functions with two
critical points but are nonetheless not diffeomorphic to S” (they are called ezotic spheres).

Definition 4.15. A Morse pair (f, X) satisfies the Morse-Smale condition if for any critical points
p,q, the submanifolds W*(p) and W*#(q) intersect transversally. In this case we call (f,X) a
Morse-Smale pair.

Theorem 4.16 (Smale). Let (f,X) be a Morse pair. There exists an adapted gradient vector
field X" which coincides with X near the critical points and satisfies the Morse-Smale condition.
Moreover X' can be chosen C'-close to X .

We admit this statement which can be proved by induction on the number of critical points.
The induction step is essentially the following lemma.

Lemma 4.17. Let V' be a manifold and X = (0/0s, Xs) be a vector field on [0,1] x V' projecting
to 0/0s. Let Vi, i € I, V', j € J, be finite families of submanifolds of {0} x V and {1} x V'
respectively. Then we can find a Ct-small deformation X' = (0/9s, X%) of X near {%} x V' such
that ®%.,(V#) is transverse to Vit (inside {1} x V), for all i, j.
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4.2 The Morse complex

Definition 4.18. Let (f, X) be a Morse pair. For p,q critical points of f, we set M(p,q) =
Wu(p) N W3(q) = {z € V; ¢l (z) 4 and % (z) — p}.
——+o00 t——o0

Lemma 4.19. If p # q, R acts freely on M(p, q) via the flow of X (that is, @' (x) = x implies
t =0), and the quotient space is Hausdorff. More precisely, for any regular value a € |f(p), f(q)],
the intersection M(p,q) N f~1(a) is transverse (in particular a submanifold of M(p,q) and f~1(a))
and the map ug: M(p,q) N f~(a) = M(p,q)/R is a homeomorphism. For another regqular value
bef(p), f(q), the composition uy o u;' is a diffeomorphism.

Proof. (i) We remark that ¢ (z) = z and z € W¥(p) already implies z = p. Since p & W*(q), it
follows that M(p, ¢) has no fixed point under the flow action.

(ii) By the definition of a Morse pair, at any regular point z of f, the vector X, and T,(f~! f(z))
generate T,,V. For x € M(p,q) we have X, € T, M(p,q) and the transversality follows.

Let us set L, = M(p,q) N f~1(a) and define ¢: Ly, x R — M(p,q), (x,t) — ¢’ (x). We have
d(z,0)(Y,1) =Y + X;; hence dij, o) is an isomorphism. Since ¥(x,t) = oh1p(x,0) it follows that
dy is a local diffeomorphism.

The function f is strictly increasing along any flow line. Hence any flow line in M (p, ¢) meets
f~(a) exactly once. This proves that 1) is also a bijection, hence a diffeomorphism. We obtain
Ly x R~ M(p,q) (with compatible R-actions) and M(p,q)/R ~ (L, x R)/R ~ L,. This proves
that M(p, q¢)/R is Hausdorff.

(iii) The composition u, o ub_lz Ly — L, coincides with p o ¢_1|Lb where p: Ly x R — L, is
the projection. This proves that u, o ub_l is a C°° map. For the same reason its inverse is also a
C* map and they are diffeomorphisms. O

Definition 4.20. Let (f, X) be a Morse pair. We set L(p,q) = M(p,q)/R. By the previous
lemma this set has a natural structure of manifold.

For a sequence F,, n € N, of subsets of V we set lim,, F,, = Nieo Up>k En

Lemma 4.21. Let (f, X) be a Morse-Smale pair, p,q critical points. We assume that there exists
a Morse chart U around p and a sequence of points (pp)nen tn U N W?#(q) converging to a point
e (W (p)\ {p}). We letl, be the flow line through p,. Then we have either (1) or (2):

(1) poo € M(p,q) and lim,, I, contains the flow line through ps; in particular ind(p) < ind(q),

(2) there exists a critical point r with ind(p) < ind(r) < ind(q) such that lim, l,, contains a flow
line of M(p,r) and, up to taking a subsequence, there exist a Morse chart V' around r, points
r € VNI, CVNW?3(q) converging to a point roo € (W*(r)\ {r}).

Proof. We set a = f(p), b= f(q). We choose a regular value b’ < b such that [b',b[ only contains
regular values and S = W#(¢q)Nf~1(b') is a sphere of dimension ind(g)—1 contained in a Morse chart
around ¢. For each n, the flow line [,, intersects S at one point ¢,, and we can write ¢, = <p§’g (pn)-
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(i-a) If the sequence ¢, is bounded, we can take a subsequence and assume that t, converges
to some value 7. Then ¢’ (ps) € S and we obtain poc € M(p,q). Since o' (pn) converges to
¢! (P ), for each t € R, the assertion on lim, I, follows.

(i-b) If the sequence t, is unbounded, up to taking a subsequence we can assume t,, > n. Since
f is increasing along the flow lines we have, for n > ng, b = f('2(pn)) > F(©3(ps)). Hence
V > (¢ (pso)). Since this holds for all ng € N, Proposition 4.12 implies that ¢’ (po) converges
to a critical point r with f(r) € Ja,b'[. Then ps € M(p,r) and this gives ind(p) < ind(r) by the
Morse-Smale property. The assertion on lim,, I, holds as in (i-a).

(il) We consider a Morse chart V' around . We choose two values ¢, ¢’ € f(V) with ¢ < f(r) <
¢’ such that §" = W(r) N f~1(/) and S” = W¥(r) N f~1(c") are spheres. For n big enough, the
flow line 1,, meets V N f~1(c’) at a point p/, and V N f~1(¢") at a point 7,. The flow line through
Poo also meets V N f71(c)) at a point p., and we have p’_ = lim,, p/,.

Since <th (poo) converges to 7, we have in fact p., € S’. This implies that the points r,, remain
in some compact neighborhood of S”. Taking a subsequence we assume that r, converges to
some point 7. Then ro € S”: indeed, if roo € S”, the flow induces a diffeomorphism between a
neighborhood of 7+ in f~1(¢”)\S” and a neighborhood of some point pjy = ¢3* (1) in f7H(c)\ 9.
But then p/, converges to p(; hence p{, = pl, & 5’

(iii) We have proved the lemma except the bound ind(r) < ind(q) in case (2). We can apply the
lemma with p! = r instead of p and with the sequence 7, instead of p,. We have either ind(p!) <
ind(q) (case (1)) or we find another critical point p? (case (2)) to which we can apply the lemma. As
long as we are in case (2) we can apply the lemma and find a sequence of critical points p!, p?,...in
f~t(a,b]) with ind(p) < ind(p1) < ind(ps2) < .... This sequence must stop and the application of
the lemma to the last point py must yields case (1). Hence ind(r) < ind(pg) < ind(q). O

Lemma 4.22. Let (f, X) be a Morse-Smale pair, p,q critical points with ind(p)+1 = ind(q). Then
L(p,q) is finite.

Proof. We assume that M(p, q) contains infinitely many flow lines [,,, n € N. Let us consider a
Morse chart U around p. We choose a > f(p) such that Sy = U N W*(p) N f~%(a) is a sphere.
We let p;, be the intersection point of I, with Sj;. Up to taking a subsequence we can assume that
Pn converges to a point po, € S,. We apply Lemma 4.21. We cannot be in case (2) of the lemma
because ind(p) + 1 = ind(gq). Hence we are in case (1) and obtain p, € M(p, q).

But M(p, q) is a submanifold of dimension 1, hence we have a neighborhood €2 of p, in V' such
that QN M(p,q) is a segment of line. In particular N M(p,q) only contains points in the flow
line of po which contradicts the convergence p,, — Poo- ]

Definition 4.23. Let (f, X) be a Morse-Smale pair. Let C*(f, X) be the Zs-vector space generated
by the critical points of f and d* : C*(f,X) — C*1(f, X) the linear map defined by dp =
Eq #L(p,q) g where # denotes the cardinal modulo 2.

A “manifold with boundary” X is a closed subset of a manifold X such that there exists an
open subset U € X with U = X and, near any point of U, we can find coordinates (X1, 2n)
such that U = {z,, > 0}. The compact manifolds with boundary of dimension 1 are the circle and
the closed interval.
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Lemma 4.24. Let (f,X) be a Morse-Smale pair, p,q critical points with ind(p) + 2 = ind(q).
Then there is a compact manifold with boundary denoted L(p,q) whose interior is diffeomorphic to
L(p,q) and boundary diffeomorphic Uy jnd(r)=ind(p)+1£(P, ) X L(7,q).

We recall that for a regular value a € ]f(p), f(¢)[, La = f~1(a) N M(p, q) is diffeomorphic with
L(p,q). Then L, is a submanifold of dimension 1 with finitely many connected components which
are diffeomorphic to R or the circle. We can consider the closure L, in V but it may be different
from L(p,q). In particular it can happen that L, is C' \ {#} where C is a circle in f~!(a) and
x € C. Then L, = C but L(p, q) is a segment.

Proof. (i) We choose a regular value a € |f(p), f(¢)[. The statement is equivalent to the following:

(a) Let : [0,1] — V be a continuous map such that i(]0,1]) € L, and i(0) ¢ L,. We let
M; C M(p, q) be the union of the flow lines through the points of i(]0, 1]). Then there exists
another critical point r with ind(r) = ind(p) +1 and two flow lines I’ C M(p,r), 1" C M(r,q)
such that M; \ {p,q,r} = M; Ul' Ul",

(b) for any critical point 7 with ind(r) = ind(p) + 1 and any two flow lines I’ C M(p,r), I" C
M(r,q), there exists a continuous map i: [0,1] — V as in (a) such that M; \ {p,q,r} =
M; Ul Ul”. Moreover, if i’ is another such map, then we can find a neighborhood U of i(0)
such that U Nim(i) = U Nim(i’).

(ii) The assertion (a) follows from Lemma 4.21.

(iii) To prove (b) we first describe Morse charts. Let r be a critical point of index k. By definition
there exist Morse coordinates (1, ...,2,) where X = —210;; — - =20, + 24100, + - -+ 200y, -
We denote z = (z_,z, ), where x_ = (1,...,2). We choose &, > 0 small enough and set

U={z; |f@)—fr)l<e, |lz—|*llzx]]* <nln+e)},
0+U ={z; flz)— f(r)=+e, |la%|]> <n},
U ={z; |f(@)—fr)<e  z—|?-|lz4]> =n(n+e)}.

By construction 0. U is contained in the regular level set of f(r)+e. Hence the flow lines meet 0.+ U
transversally. Moreover U N W*(r) = {(z_,0); ||z_||> < e}, UNnW(r) = {(0,z,); ||z4|* < }.
The corresponding stable and unstable spheres are S%(r) = {(z_,0); |[z_||* = €}, S*(r) = {(0,z_);
l|z4||? = €}. Finally U \ (W$(r) N W¥(r)) is the union of the flow lines meeting 9_U \ S*(r) (or
0,U\ S“(r)); they enter U through _U and exit through 9, U. The flow induces a diffeomorphism

53
53

+l

4l \
z
z || ==

:0_U\S*(r) — ;U\ S“r),  (z_,z,) > (

i)

53

(iv) Now we assume to be given r and flow lines I’ C M(p,r), I € M(r,q), as in (b). We set
k =1ind(r). We let 3/ € S%(r), v € S*(r) be the intersections of I’, I with S*(r) and S*(r).

We also set T = W*"(p) N 0_U. The intersection is transverse. Since ind(p) = k — 1, T is
a submanifold of 0_U of dimension n — (k — 1) — 1 = n — k. By the Morse-Smale property T
intersects S*(r) transversally in a finite number of points. The point 3’ is one of them. We choose



4.2. THE MORSE COMPLEX 47

a neighborhood € of y’ such that QNT N S*(r) = {y'}. Using the coordinates we consider the
Morse chart U as embedded in R™ and we let p”: U — R™ ¥ be the second projection. Since
T intersects S*(r) transversally, d(p”|r), is an isomorphism from T,/T to T)R" *. By the local
inversion theorem, up to shrinking Q we can write Q N T = {j(z,); ., € B" *(r)}, where
j(zy) = (f(z,),z,) for some function f: R"* — R¥ defined in some ball B" *(p) of radius p
and center 0. We have f(0) =y’ and we can assume that f is nonvanishing.

Let 8" %=1 be the unit sphere in R *. We write in polar coordinates z, =(0,r) € Sn—k—1

0
10, 00[. We set ¥(0,r) = ®(j(0,7)). We have ¥(0,r) = (|r}f(S“T9))||’ [|f(r0)|| #). This expression for

U (0, r) actually makes sense for r € |—p, p[ and gives a C> map ¥: S"* =1 x ]—p, p[ — U, (we
use that f is nonvanishing and that (6,r) — 76 is C*°). We can chek that ¥ is an embedding
of S"7F=1 x ]—p,p[ in S%(r). Let T’ be the image of this embedding; this is a submanifold of
dimension n — k.

We remark that ¥(6,0) = (0,e6). Hence ¥(S"*~! x {0}) = S%(r) is of codimension 1 in 7".
We set 7%, = W(S"*=1 x 0, p[). Then T, is a submanifold with boundary S*(r) in 9+U and ®
identifies T with T", .

(v) We thus have three submanifolds of 0, U, namely S*(r), T and W*(q) N 0+.U, such that:
W#(q) N 9+U meets S*(r) transversally at y” by the Morse-Smale property,
S*(r) is a submanifold of 7" of codimension 1.
Hence W*(q) N 04U also meets T” transversally at y”. Near 3" the intersection is a segment of line,
say lg, in T intersecting S"(r) transversally at y”. Hence [y meets both sides, in particular 7%,
near y”. We set I[§ = loNTY. Since T, C W¥(p) we get I§ C M(p,q).
We set a = f(r) + ¢ so that OU_ C f~(a). We set L, = f~'(a) N M(p,q) as in (a). We can
choose i: [0,1] — V with 4(]0,1]) C I and i(0) = y”. Then i satisfies the conditions in (b).
Conversely, if ¢’ is another map satisfying the conditions in (b), i/(]0, 1[) contains y” and thus
im(i') C ly. But the closure of ®~1(i’(]0, 1[)) must also meet I’ and we deduce i’(]0, 1) C I, which
concludes the proof. O

Theorem 4.25. d?> =0
Proof. We have

(d®p,r) = (d Y #L(p.q)g,7) = D #L(p, ) #L(q,7) = #(JL(p,q) x L(g,7)) =0,

q

since, by lemma 4.24, U L(p, q) x L(g,r) is the boundary of a one-dimensional compact manifold
and thus consists in an even number of points. O

Definition 4.26. The vector spaces H*(f, X) = ker d*/imd*~! are called the Morse cohomology
groups (with Z/2-coefficients).

The Morse cohomology groups a priori depend on the Morse-Smale pair (f, X). Observe first
that the Morse complex depends only on the gradient field, namely if X serves as an adapted
gradient for two Morse functions f and g, then C(f, X) = C(g,X). This is the case for instance
when ¢ is equal to f up to a constant. In general, C(f, X) # C(g,Y) but we have the following
result.
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Theorem 4.27. Up to canonical isomorphism, the Morse cohomology groups are independent of
the choice of the Morse-Smale pair (f, X). More precisely, there exist isomorphisms

wor: H*(f1,X1) == H*(fo, Xo),
such that @oo = id and pp1 © Y12 = Pp2.

Proof. Preliminaries Let us fix a Morse function g : R — R which has precisely two critical
points: a maximum at 0 and a minimum et 1. Pick also a complete adapted gradient Y for g.
Finally pick a non-increasing function p : R — R equal to 1 near (—o0,0] and equal to 0 near
[1,+00).

Step 1 : Construction of a chain map ;.

For (s,2) € R x V, set f§i(z) = p(s)fo(@) + (1 — p(s)) fu(2), Xgu(x) = pl(s)Xo(x) + (1 —
p(s))X1(z) and Zpi(s,x) = (Y(s), X§;(x)). The zeroes of Zy; are the points (0,po) and (1,p1)
for pg, p1 critical points of fy, fi respectively. We have W*(0,py) = R x W*(py) and W*(0,pg) =
{0} x W"(pgy) near {0} x V. Similarly, W5(1,p1) = {0} x W*(p1) and W*(1,p;) = R x W?*(p1)
near {1} x V. Since Xy and X; are Morse-Smale vector fields, we deduce that W*(0,pp) is
transverse to W*(0, qo), that W*(1,p1) is transverse to W*(1,¢1), and that W*"(0,pg) is disjoint
(hence transverse) from W#(1,pp) for all critical points pg, go of fo and p1,q of fi. We claim that
after a suitable perturbation of X(; supported in (0,1) x V', we can also make the submanifolds
W#(0,po) and W¥(1,p;1) transverse to each other. This is proved similarly as Theorem 4.16 (see
Lemma 4.17). We assume this perturbation has been done and keep the notation Xy;. Next we set
ho1(s,z) = f5(x) + g(s) + Cp(s) and claim that, for C' > 0 sufficiently large, ho; is Morse and Zp;
is an adapted gradient for ho1. Indeed Zpi(ho1) = (p/(s)(C + fo — f1) + ¢'(s))Y (s) + X5 (f§1) is
positive in (0,1) x V for sufficiently large C, near {s < 0} we have (ho1, Zo1) = (fo+g+C, Xo+Y)
and near {s > 1} we have (ho1, Xo1) = (f1 + 9, X1 +Y). The critical points of hy; then coincide
with the zeroes of Zy; and are non-degenerate. Though R x V' is not compact, the Morse complex
of (ho1, Zo1) is well-defined. Indeed all trajectories between critical points are contained in [0, 1] x V'
so the proofs of Lemma 4.22 and Lemma 4.24 work verbatim. Since 0 is a maximum for g and 1 is
a minimum, we have C*(ho1, Zo1) = C*~(fo, Xo) ®C*(f1, X1), and, since there are no trajectories
do  #o1
0 d
dowor + @o1di = 0 and hence po1: C(f1,X1) = C(fo, Xo) is a chain map.

In the case where Xy = X7, observe that Zy; = (Y, X() is Morse-Smale and an adapted gradient
for hoi(s,z) = f§(x) + g(s), and that ¢g; = id under the obvious identification C(fy, Xo) =
C(f1,X0).

Step 2: Checking ¢g1 0 12 = g2 on cohomology groups

Set Xy = plt) Xo + (1 — p()) Xa, Xly = p(t)X: + (1— p(t)) Xa, X3y = p(s) Xy + (1 p(s)) X1
and Z3, = (Y (s), Y (1), Xgi). Let us assume that X§,, X§, and X3, have been perturbed slightly
as above in (0,1) x V so that their sums with Y'(s) are Morse-Smale vector fields on R x V. This
modifies the family X}, in the regions {s < 0,¢ € (0,1)}, {s € (0,1),# <0} and {s > 1,¢ € (0,1)}
accordingly. The zeroes of Zpio are (0,0,po), (1,0,p1), (0,1,p2) or (1,1,pa) for critical points
o, 1, P2 of fo, f1, fo respectively. All stable manifolds and unstable manifolds of Zy12 are transverse
to each other except possibly W#(0,0,pg) and W*(1,1,p2). As before we claim that this can be

from (0,pg) to (1,p1), the differential has the form d = ( ) The equation d?> = 0 gives
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ensured by a perturbation of X{j, supported in (0,1) x (0,1) x V (see Theorem 4.16 and Lemma

4.17). Set fiy = p(s) [z + (1= p(s)) fly and hoa(s, t,2) = fois(2) + g(s) + g(t) + C(p(s) + p(1)).
As in the previous step, we claim that for C' > 0 sufficiently large, (ho12, Zo12) is a Morse-Smale
pair on R? x V, and, due to the special form of Zyio, its Morse complex is well-defined and we have

C*(for2, Zor2) = C*2(fo) @ C* 1 (f1) ® C*7'(f2) @ C*(fa),
and the differential has the form

do o1 o2 Y

d— 0 di 0 12
0 0 do id
0 0 0 do

Then d? = 0 gives dyoy)+@g10012+po2+1pody = 0. Hence (with coefficients Z /27Z), ©o2—po10012 =
do o+ ody and it follows that g — @1 © w12 induces the zero map in cohomology, as required.

Step 3: Conclusion

In the case where (f2, X2) = (f1,X1), if we choose different interpolations X§, and X,
(i.e., different perturbations ensuring the Morse-Smale condition), we obtain two chain maps
o1, P01: C(f1,X1) — C(fo,Xo), but by the previous step, wp1 = @y; in cohomology. Hence
the morphism ¢g; induced in cohomology is independent of any choice (the choice of the constant
C' does not affect the chain map ¢p1), and it is legitimate to write it ¢q;.

In the case where (f2, X2) = (fo, Xo), we obtain ¢g; o 9190 = id in cohomology and hence g1
induces an isomorphism H(f1, X1) = H(fo, Xo).

For the constant interpolation X, = X, we have seen that ¢g9 = id at the chain level. Since
oo is independent of any choice at the cohomology level, we obtain gy = id on cohomology.

We have thus constructed the required isomorphisms. O

Definition 4.28. We define H¥(V) = L) HY(f, X)) ~ where (f, X) runs over the Morse-
Smale pairs and, for ¢g € H*(fo, Xo), c1 € H*(f1, X1) we set co ~ ¢1 if co = ¢o1(c1). Then H¥(V)
is a vector space and, for a given Morse-Smale pair (f, X), the map H*(f, X) — HF(V) is an
isomorphism. We call H(V') the Morse cohomology of V. The numbers by(V) = dim H*(V) are
called the Betti numbers of V.

Proposition 4.29. The number of critical points of a Morse function f on V is bounded below by
2k be(V).

Proof. Pick an adapted Morse-Smale gradient X. The number of critical points of index k of f is
equal to dim C*(f, X) and we have

dim C*(f, X) > dimker(d : C*(f, X) — C*T1(f, X)) > dim H*(f, X) = bp (V).
The result follows by summing over all k. O

The groups H (V') satisfy the following functoriality property. If ¢ : V' — W is a difffeomorphism
then it induces a map ¢* : H(W) — H(V'). Indeed, pick a Morse-Smale pair (f, X) on W and pull
it back to V' to get an isomorphism H(V) ~ H(¢*f,p*X) = H(f,X) ~ H(V). In particular the
group of diffeomorphims of V' naturally acts on H(V).
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Lemma 4.30. Let V be a closed manifold and ¢ : V' — V' a diffeomorphism isotopic to the identity
then the map H(V') — H(V) induced by ¢ is the identity.

Proof. Let ¢4, t € [0,1], be an isotopy with ¢¢ = id and ¢ = ¢, and (f, X) a Morse-Smale pair
on V. The path (¢} f, ¢; X) joins f and ¢*f and we have isomorphisms H (] f, i X) ~ H(f, X)
since the Morse complex is independent of ¢. The isomorphism H(f, X) — H(p*f,¢*X) from
Theorem 4.27 is then the identity (as it follows from its proof). Hence the induced isomorphism
©*: H(V) — H(V) is the identity. O

4.3 Computations

If V is a closed manifold of dimension n, it is clear that H*(V) = 0if k < 0 or k > n.
The cohomology groups of a manifold satisfy an important symmetry property called the
Poincaré duality.

Proposition 4.31. Let V be a closed manifold of dimension n. Then for all k € Z, H* *(V) is
isomorphic to H*(V).

Proof. Let (f,X) be a Morse-Smale pair on V' and consider the Morse-Smale pair (—f,—X). A
critical point of index k for f is of index n — k for —f, and hence C*(f, X) = C"*(—f, —X).
Using the basis of C"~*(—f, —X) given by the critical points, we identify C"~*(—f, —X) with its
dual and the adjoint of the differential d is a differential 9 : C"*(—f, —X) — C"F=1(—f - X)
(which is of degree —1). Moreover the homology groups of (C"*(—f, —X), 9) are isomorphic to the
duals of the cohomology groups of (C"~*(—f,—X),d). Now observe that, under the identification
Cnk(—f,—X) = C*(f, X), the differential 0 corresponds to d. The result follows since a finite
dimensional vector space is isomorphic to its dual. ]

The case k = 0 and k = n are computed as follows.

Proposition 4.32. Let V' be a closed connected manifold of dimension n. We have H"(V) = Z/2Z
and HO(V) = Z/2/Z.

Proof. Due to Proposition 4.31 it is enough to prove it for H(V). O

The cohomology groups of a product of manifolds can be computed with the following so-called
Kiinneth formula.

Proposition 4.33. Let V,W be closed manifolds, we have

"VxW)= @ H(V)e H (W).
i+j=k
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4.4 Filtered Morse complex

Let V' be a closed manifold and (f, X) a Morse-Smale pair on V. Let a,b € [—o0, +00] be regular
values of f with a < b. We define a complex C,)(f, X) (simply written C, ) when the choice of
(f,X) is unambiguous) generated by the critical points of f with critical values between a and b,
and with differential counting gradient trajectories of X between them as in Definition 4.23. The
proof of d?> = 0 (see Theorem 4.25) works verbatim for this situation. Note that Cl—so,400) = C.

If a, b, c € [—00, +00] are regular values of f with a < b < ¢, then we have a short exact sequence
of complexes:

0— C(b7c) — C(a,c) — C(a,b) — 0

which induces a long exact sequence of cohomology groups

e H(’“ajbl) — Hy = HE, o = Hi, gy — HEF (4.1)

If a,b,c,d € [—o00,+0o0] are regular values of f with a < b < ¢ < d then we have four short exact
sequences and their associated long exact sequences of cohomology groups as (4.1) involving the
triples (a, b, ¢), (a,b,d), (a,c,d), (b, c,d). Due to some commutativity relations such as the following

C(a,c)
/
a,d)

C(a,

» C(a,b),

the four long exact sequences can be nicely arranged into the following commutative diagram
(sometimes called an ezxact braid):

Hk:—l Hk
(@b) (b.o) (c.d)
N A ~ A ~ A ~ e
k—1 k k k+1
(ar) . H, g) P Hi o) Hy'a) (4.2)
~ ~ ~

The following theorem is a refinement of Theorem 4.27, we leave its proof to the reader.

Theorem 4.34. Let V be a closed manifold, (fo, Xo) and (f1,X1) Morse-Smale pairs on V', ag
and by regular values of fo with ay < by and a1, by regular values of fi with ay < by. If {fo < ap} =
{fi <ar} and {fo < bo} = {f1 < b1} then there exists an isomorphism wo1 : Hq, p,)(f1, X1) —
H(ao,bo)(f(]vXO)- Moreover these isomorphisms are compatible in the sense that poo = id, g2 =
©o1 © Y12 with obvious notations, and commute with all maps in (4.2).

Definition 4.35. Let (f, X') be a Morse-Smale pair on a closed manifold V' and a, b regular values
of f witha < b Set V, = {f < a} and V,, = {f < b}. Mimicking definition 4.28 we define
H*(V},,V,) to be the vector space canonically isomorphic to H(]C b)(f,X). We call H(V;,V,) the

a,

relative Morse cohomology of the pair (Vp, V,).
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When a = —oo, we have V, = 0 and we write H(V;) = H(V3,V,). When b = 400, we have
Vo=V, and H(Vj,Va) = H(V, V).

If [a, b] is an interval of regular values, then H(V}, V,) = 0 and the restriction morphism H(V;) —
H(V,) is an isomorphism.

4.5 Spectral invariants

Definition 4.36. Let V be a closed manifold, f a Morse function on V and o € H(V') we define

c(f, ) = sup{c € R\ verit(f); 7 r(a) =0},

where 7. r: H(V) — H(V,) is the natural restriction morphism from (4.1) (associated to the triple
(=00, ¢, +00)). The number ¢(f, ) is called the spectral invariant of f with respect to a.

Lemma 4.37. If ¢ : V — V is a diffeomorphism of V., f a Morse function on V and o € H(V),
then c(o™ f,p*a) = c(f, ).

Proof. Let (f, X) be a Morse-Smale pair, ¢ a regular value of f and consider the long exact sequence
(4.1) associated to the triple (—oo, ¢, 400). We have the following commutative diagram involving
the isomorphisms ¢*:

H(f,X) —F5—— H(¢"f,¢"X)

Jres [res

H(foo,c) <f7 X) L> H(foo,c) ((P*fa (P*X)
We deduce that 7. ¢(a) = 0 if and only if r. o« r(¢*a) = 0, and the result. O

The numbers c(f,«) are therefore invariants in the following sense: if there exists a € H(V)
such that ¢(f,a) # c¢(g,«) then f and g are not conjugate by a diffeomorphism isotopic to the
identity (see Lemma 4.30).

Lemma 4.38. ¢(f,«) is a critical value of f.

Proof. If a is a regular value, then for small enough € > 0, f has no critical values in [a — €, a + €.
Hence H(Vy4e, Va—e) = 0 and from the exact sequence (4.1) associated to the triple (—oo, a—¢, a+¢)
we deduce that the restriction map ¢ : H(f < a+¢) — H(f < a — €) is an isomorphism.

If further a = ¢(f, ), then rqqcf(a) # 0 and 74— r(a) = 0 which contradicts ¢ o 7q4¢f =
Ta—e,f- ]

For similar reasons, we also have

c(f,a) =inf{c € R\ verit(f); r (o) # 0}.

Definition 4.39. Let V be a closed connected manifold, 1 be the generator of H°(V) and u the
generator of H™(V'). We define c_(f) = ¢(f,1) and c4(f) = e(f, ). If V is reduced to a point,
then 1 = p and we write ¢(f) = c+(f) = c—(f).
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Proposition 4.40. Let V be a closed connected manifold and f a Morse function on V. We have
c_(f) =min f and c4(f) = max f.

Proof. Let (f, X) be a Morse-Smale pair. As we saw in the proof of Proposition 4.32 the class 1 is
represented in H(f, X) by the sum of all minima of f. If a is a regular value with @ > min f and
(min f,a) contains no critical value, then the sum of all minima of f in V, is a cocycle in C(V},)
(since there are no critical points in {min f < f < a}) and is non-zero since there is at least one
minimum in {f = min f}. Thus 7, (1) # 0 and ¢(f,1) < min f. If @ < min f, then H(V,) =0
and hence ¢(f,1) > min f.

The equality ¢(f, u) = max f follows from the previous one by Poincaré duality, see Proposition
4.31. O

Lemma 4.41. For o € H(V), the map f +— c(f,a) is 1-Lipschitz for the C°-norm , namely

le(f, @) = e(g, )| < Sup [f (@) = g()|.
Proof. Let M = sup,cy |f(z)—g(z)|. For any ¢ € R and € > 0, we have {g < c—M —¢e} C {f <c}
and we can find a function h such that {h < c¢} ={f <cland {h<c} ={g< M —c—¢€}. If
further c is a regular value of f and c— M —e¢ is a regular value of g we can ensure the same property
for h and from the diagram (4.2) associated to h and the quadruple (—oo,c — M — €, ¢, +00), we
extract the diagram
HV)—>H{f<c})) > H{g<c— M —¢€}).

If ¢ < ¢(f,a), then « is sent to zero by the first map, hence also by the composition, and thus
c(g,a) > ¢ — M — e. Hence (using Sard’s lemma) ¢(f, ) — ¢(f,«) < M. The other inequality is
proved similarly. O

4.6 Functions quadratic at infinity

Up to now we have considered the Morse complex only on closed manifolds. One should be careful
when trying to extend it to open manifolds or manifolds with boundary. There are several issues.
The first one is that the number of gradient trajectories between points of consecutive indices may
not be finite, in which case one cannot even define the differential d. It could also be that d is
well-defined but we do not have d> = 0. Finally it could be that d is defined and d? = 0 but the
resulting cohomology group depends on choices, i.e. theorem 4.27 is wrong. On R, the function
f(z) = x has no critical points, an hence H(f,d,) = 0, while for g(z) = 22, H%(g,20,) = Z/2Z.
One way to fix all these issues is to restrict ourselves to a class of functions and vector fields with
prescribed behaviour at infinity. We will use the following setup.

Definition 4.42. A function f : R* x V — R is called quadratic at infinity, if there exists a
quadratic form @ : R¥ — R and a function g : V — R such that f(v,z) = Q(v) + g(x) outside of
some compact set.

A non-degenerate quadratic form on RF always admits an adapted linear gradient vector field.
Simply take coordinates (z1,...,7;) such that Q@ = —2% — -+ — 22 + 1‘12+1 + -+ 4+ 22 and set
X = —wlaxl — e = a:zaxl + $i+1ami+l + .-+ wk&vk
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Definition 4.43. A Morse pair (f, X) is quadratic at infinity if there exists a quadratic form
Q : R¥ — R, a linear vector field Y on R¥, a function ¢ : V' — R and an adapted gradient field at
infinity and X is linear at infinity.

Given a Morse-Smale pair ( f, X) quadratic at infinity on R¥x V', we can define its morse complex
C(f, X) (we still have finiteness of gradient trajectories between critical points of consecutive indices
and d? = 0). A version of Theorems 4.27 and 4.34 holds in this context (with fixed quadratic form
Q) so we can give the following definition.

Definition 4.44. Let V be a closed manifold and ) a non-degenerate quadratic form on R”. We
define H, ég(Rl’C x V) to be the vector space canonically isomorphic to H¥(f, X) for any Morse-Smale
pair (f, X) quadratic at infinity (with quadratic form Q). Similarly we define the filtered version
Hy ap)(f, X) = Ho({f < b},{f < a}) for a,b regular values of f, and the spectral invariants

c(f,a) for « € Ho(RF x V).

Proposition 4.45. If Q is a non-degenerate quadratic form of index i on R™ then Hé? (R¥) =Z/2Z
if j =i and HY(R*) =0 if j # i.

Proof. Let Y be a linear adapted gradient for Q). Then the Morse complex of (Q,Y) is very simple:
CHQ,Y) = 0if j #iand CY(Q,Y) = Z/2Z, and d = 0. The result follows since Hg(R¥) can
be computed with any Morse function equal to @ outside of a compact set, in particular with ¢
itself. O

Let V be a closed manifold and @ a non-degenerate quadratic form of index ¢. In view of the
previous proposition, the Kiinneth morphism H*(V) = H*(V) ® Hb(Rk) — Hg”(Rk x V) is an
isomorphism, we denote it ig. If o« € H(V'), we abusively write c¢(f, «) = ¢(f,ig(a)). In particular,
c—(f) =c(f,ig(1)) and cy(f) = c(f, 1). Note that Proposition 4.40 no longer holds for functions
quadratic at infinity since these are typically unbounded.

Proposition 4.46. Let V be a closed connected manifold, f a function quadratic at infinity on
R* x V and xg € V. The function f.,(v) = f(v,w0) is quadratic at infinity on R* and we have

c—(f) < el fao) < e (f).

Proof. We only prove the second inequality. The first one is proved by similar arguments. Let @)
be the quadratic form on R* associated to f and i the index of Q. Let n be the dimension of V.

(i) We claim that we can assume fz, is Morse. Indeed, one can find another function g with
this additional property and arbitrarily C%-close to f. From Lemma 4.41, we get

C(fxo) < c(gl‘o) +e< c+(g) te< C+(f) + 2

where € = sup |f — g|.

(ii) Let @ € R and € > 0 be given. We claim that there exists a function g: V' — R such that
g(xp) = 0 is the maximum of g and {f < a—e} C {fz, +9 < a}. Indeed the inclusion is implied by
the relation f(xg,p)+g(z) < f(z,p)+e, for all (x,p) € VxR™. By hypothesis there exists a function
h:V — R such that f(z,p) — f(xo,p) = h(z) outside a compact set. Since V is compact, the
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quantity f(z,p)— f(xo,p) is bounded on V' x R™. In particular z — inf,crn{f(z, p) — f(z0,p) +¢}
is also bounded (and equal € at zg). Hence we can find a smooth function g with a maximum at
xo equal to 0 and satisfying the required relation.

(iii) Let X, Y be gradient like vector fields for f;, and g. Using Proposition 4.45 and Proposition
4.33, we obtain an isomorphism

H*(V)~ H*(g,Y) = H*(9,Y) ® H'(fuy, X) = H ' (fuoo + 9, X +Y) =~ H5(RF x V).

Through this isomorphism the class ig(u) is represented by z ® zg, where 2 is a cycle in C?( fy,, X)
representing the canonical class of H'(fy,, X) (recall also that x( is the maximum of g, so that

d$0 = 0).

(iv) Observe that x is a generator of H™(V'). Indeed we have dzg = 0 and the morphism
e : C" — Z/2 which maps each generator to 1 satisfies d o e = 0 because each critical point of
index n — 1 has precisely two trajectories to critical points of index n. Hence the map p — (p, xo)
induces an isomorphism H*(fy,, X) — H""*(fz, + g). Since g(zo) = 0, we deduce the following
commutative diagram, for € > 0 such that a — e ¢ verit(f),

Hi(fxo) +> Hn—’_i(fa:o +g) L) H?’L-H(f < a—E)

l’”a ls” /

Hi(f$0 < a) — Hn+i(fa:o +g< a)

where the existence of the right hand triangle follows from the inclusion {f < a—e} C {fz,+9 < a}
given in (i). The arrow u is an isomorphism and H'(f,,) ~ Z/2Z. By definition of ¢(f,), the
morphism 7, is zero as soon as a < ¢(fy,). It follows that s,, and then v,, are also zero.

Through the canonical isomorphism H""(f,, + g) ~ HéH(Rk x V') the morphism v, corre-
sponds to 74 5. We deduce that ¢(fz,) — e < cq(f), for all € > 0, and the result follows. O
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Chapter 5

(GGenerating functions

5.1 Basics

Let V be a manifold, T7*V the cotangent bundle of V, J'V = J!(V,R) the bundle of 1-jets of
functions on V. Recall T*V has a canonical 1-form Ay whose differential wy is a symplectic form.
Recall also that J'V naturally splits as R xT*V and is endowed with the contact form ay = dz—\y
where z is the coordinate on the R factor. The projection of a Legendrian submanifold of J'V to
T*V is an exact Lagrangian immersion. Given a function f : V' — R, the image of j1f : V — J'V
is a Legendrian submanifold of V: (j'f)*ay = f*dz — (df)*ay = df — df = 0. The projection of
this Legendrian submanifold under J'V — J°V = R x V is the graph of the function f in the
(almost) usual sense {(f(z),z);z € V}. A Legendrian submanifold of J'V which is transverse to
the fibers of J'V — V is necessarily of this type: given by the 1-jet of some function on V. We
will present a tool to study more general Legendrian submanifolds of J!V.

Lemma 5.1. Letp: E — V be a surjective submersion and consider the subset H of T*E consisting
of covectors 8 which vanish onkerdp C TE. Then H is a coisotropic submanifold and the projection
p induces a symplectomorphism from the symplectic reduction of H to T*V .

Proof. Near a point of E, the submersion lemma provides a neighborhood of the form U x F' where p
is the first projection. In this neighborhood, T* F splits as T*U x T* F' with the product symplectic
form and H corresponds to T*U x Op which is a coisotropic submanifold. The characteristic
foliation F of H (given by the symplectic orthogonal to TH at each point) is given by {0} x Op,
and hence the reduction H/F is identified with 7*U under the projection p. [

Definition 5.2. Let V be a manifold. A generating function over V is a couple (¢, f) where
¢ : E — V is a submersion and f : E — R a function such that df : E — T*F is transverse to the
submanifold H of covectors vanishing on ker dy.

A generating function over V induces an immersed Legendrian submanifold of J'V in the
following way. Consider first the Lagrangian submanifold which is the image of df : E — J'E, it
is transverse to H, and hence its reduction gives an exact Lagrangian submanifold of T*V in view
of Proposition 2.10 and Lemma 5.1. Together with the value of the function f, this is lifted to an
immersed Legendrian submanifold.

o7
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Concretely, near a point e € E we pick local coordinates (v, q) such that ¢(v,q) = ¢q. Then
df (v,q) € H if and only if g—v = 0. The transversality assumption implies that ¥ = df ~}(H) is a
submanifold of E. The Legendrian immersion associated with f is the map iy : ¥ — J 1V defined

locally by (v, q) — (f(v,q), g—f;(v, q),q). We can check locally that if is isotropic:

0 0
iray =df — a“gdq = a—idv =0
since % vanishes on Y. Moreover, the transversality condition means that the matrix (% ggy)
of
Y
has maximal rank at each point of ¥. The differential of i; writes % gT{ I (0v,05) ker dig,
0 1
9? 92 6)27]20
then §, = 0, ﬁév = 0 and 8—1};5@ = 0, but the matrix %%f is injective and thus J, = 0.
0qov

Hence iy is an immersion. If we think of f as a family of functions parametrized by V, then X
can be viewed as the set of fiberwise critical points. Moreover a point (v,q) € ¥ corresponds to a
non-degenerate critical point if and only if dp : TS — TV is an isomorphism at (v, q).

The function f : R x R — R defined by f(v,q) = v> — (1 — ¢%)v is a generating function.
The function g : R x R? — R defined by f(v,q1,q2) = v* + q1v? 4+ gov = 0. The corresponding
Legendrian surface has a cusp edge along the curve 8¢3 + 27¢3 = 0.

Not every Legendrian submanifold of J'V can be described by a generating function. However
the obstructions to this are necessarily global due to the following result.

Proposition 5.3. Let V be a manifold, = : J'V — V the natural projection, L C J'V a Legendrian
submanifold and x € L. There is a generating function for L near x.

Proof. Let n be the dimension of V' and k the dimension of the intersection of T,L with the
tangent space to the fibers of J'V — JV = R x V. Consider local functions ¢i,...,q; on V
defined near 7(z) such that ¢;(z) = 0 for all ¢ and (dqi(x),...,dgr(x)) span a basis of the above
intersection. Then pick local functions gx41,. .., ¢, vanishing at 7(p) in such a way that ¢i,..., ¢,
form a coordinate system on V' centered at 7(z). These coordinates induce a local trivialization
J'WV = R x R" x R" and we denote p1,...,p, the dual coordinates to (qi,...,q,) and z the
coordinate in R. We claim that (p1,..., Pk, @k+1,- - -, ¢n) form a coordinate system on L near p, due
to the Legendrian condition. Indeed, let v € T, L. At x, for i < k, we have dg;(v) = w(9p,,v) =0
since 0, € T;;L and L is Legendrian. Now if we have Zle Aidp; + Z?:kﬂ widg; = 0 on T, L, then
plugging 0y, for i =1...,k, gives A\; = 0 and then y; = 0 since the projection T L. — Ty(,)V has
rank n—k by assumption. Consider ¢ : R¥ x R"* — L be the corresponding local diffeomorphism

w(pla co s Py Qk+1,5 - - - aqn)v @ Rk X RTL — RTL the SmeerSion given by go(pla c s PEsq1, - - 7Qn) =
(q1,...,qn) and f: R¥ x R® — R the function defined by

k
=200+ pilgi—qow).
=1
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We claim that (f,¢) is a generating function for L near z. Indeed,

k

k
df = v*dz+ ) pildg; — *dg) + > (g — i 0 ¥)dp;

i=1 i=1

n k k
= ¢ (pidgs) + Y pi(dg — b dgi) + > (g; — g5 0 ¥)dp;
=1 =1 =1
k
= Zpﬂl) dg; + Z Y pidg; + sz dgi — " dg;) + > (gi — gi 0 ) dp;
=1 1= k+1 =1 =1

= Z wpquZJerquﬁrZ i — q; 0 )dp;

i=k+1

Hence ¥ = af =0,i=1,....,k} ={g =qov,i=1,... ., k}and if(X) = {(z00, p1, ..., Pk, Pkt1°
wa-"vpnow) 107/)7'-‘7%O@Z%Qk—i-ly-'-,Qn)}:L- O

Definition 5.4. A generating function over V is called quadratic at infinity if it is of the form
E=RFxV,p=pryand f: E— R is quadratic at infinity.

5.2 Chekanov-Sikorav’s theorem

Theorem 5.5. Let V be a manifold and L a Legendrian submanifold of J'V admitting a generating

function f: RF xV — R. Let ;: J'V — JW, t €[0,1], be a compactly supported contact isotopy

of J'V. Then 1(L) also admits a generating function g: RY x V. — R for some integer I.
Moreover if f is quadratic at infinity, then we can choose g quadratic at infinity as well.

Remark 5.6. It is not essential that L is a Legendrian submanifold in the above statement. In
fact we could even remove the transversality assumption in the definition of a generating function.
The proof given below would work verbatim.

On J'V we have a contact form ay = dz — > ; pidg;. The Reeb vector field is Y = 8— Recall
that a function h: J'V — R induces a contact vector field X}, given by X} = h 52 + X}, where
X} € & = keray is defined by X} sday = —dhle,. We find

Xp = ( sz@pz) ZZ:(SZ 82)8;01 Zgliaa%

Corollary 5.7 (A conjecture of Arnol’d). Let V' be a closed manifold and let o : T*V — T*V,
t € [0,1] be a compactly supported Hamiltonian isotopy. Let Oy C T*V be the zero section. Let

to € [0, 1] be such that v, (0v) intersects Oy transversally. Then the intersection consists of at least
>, dim HY(V) points.
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Proof. Let hi(p,q) be the Hamiltonian function of ¢;. Then h}(z,p,q) = hi(p,q) defines a contact
isotopy 1/; such that 7oy = ¢y o, where m: J'V — T*V is the projection. We set L = {0} x Oy
and S = Ute[o,l] ¥¢(L). Multiplying h; by a bump function which is 1 on S, we obtain another
isotopy ] with compact support and such that ¢;(L) = ¢¢(L) for all ¢ € [0, 1].

The Legendrian L has a generating function quadratic at infinity (the zero function) and, by
the previous theorem, the same holds for ¢(L). Let f; be a generating function for (L) which
is quadratic at infinity. Then ¢:(0y) N Oy is in bijection with ¢(L) N (R x 0y ), which is also in
bijection with the critical points of f;. If the intersection is transverse, then f; is Morse and the
number of critical points must be greater than the sum of Betti numbers. O

Idea of the proof of Theorem 5.5. A generating function f(v,q) on R¥ x V can be seen as
a family of functions f(—,q) on R¥ parametrized by V which are generically Morse. It can also be
seen in the other way as a family of functions f, = f(v, —) on V parametrized by RF. In this case
¢t moves J(f,) C J'V and, for a given v and small ¢ (say t < to(v)), @¢(J*(f,)) remains the 1-jet
of some function, say g{. We can set ft(v,q) = ¢! (q) and it gives a generating function for ¢;(L).
The problem is that we cannot bound ¢y(v) from below in general.

The solution given here gives such a bound for the particular case of affine functions f, on
V = R" Then we reduce to this case by embedding V into some R"™ and adding auxiliary
variables.

Lemma 5.8. Let ®: J'V — JV be a contact diffeomorphism and let F(v,q): RFxV =V,
t = 0,1 be generating functions for Lo, L1 C JY (V). We set F'(q) = F'(v,q) and we assume that
O(JYF?)) = JYEL) for allv. Then ®(Lo) = L.

Proof. We take coordinates (z,p,q) on J' (V) and (z,w,p,v,q) on J'(RF x V). We define M C
JYRF x V) as M = {w = 0}. The Legendrian Lg is obtained from J'(FY) c J'(R* x V) by
Lo = py(M N J(F)), where py is the projection to J(V).

Since ® is contact there exists a function p on J(V) such that ®*(a) = pa. Now @ induces a
contact diffeomorphism ¥ on J(R* x V) such that ®opy = pyoW. Writing (¢, 9, ¢) = ®(2,p, q),
it is given by ¥(z,w, p,v,q) = (¢, w',p’,v,¢") with w, = p(p, ¢, t)w; for all i. In particular ¥ (M) =
M.

We have J1(F9) = {(F°(v, q), 88—120, aa—lzo,v, q)}. Our hypothesis is that ¥ (J'(F?)) = {(F!(v,¢),
h(v,q'), %—?,v,q’)} for some function h = (h1,...,hs). Writing that W(J!(F?)) is Legendrian we
find h; = %—I;:. Hence ¥(J(F?)) = JY(F') and the lemma follows. O

Proof of Theorem 5.5. (i) Embedding into R"

By Whitney’s theorem we can find an embedding j : V — R" for some n. In the sequel we
consider j as an inclusion map and omit to write it. The function f : R x V — R is extended to
R* x R" arbitrarily.

(ii) Fragmentation

For N €¢ N* and j € 1,...,N, we set p; Ny = 2 ocp;% and get 1 = NN O -0 QI N.

Since V is embedded in R™ we can measure the C'-distance concretely as follows : for maps

.0 2 JIV = JUV define di (¢, ¥) = sup,ey ll(z) — ()| + sup,ey [ldip(x) — dip(x)|| for some
norm ||.|| on the vector space R = JIR™ and the induced operator norm. We claim then
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that max; di(¢; n,id) converges to 0 when N goes to +o00. This follows from the fact that ¢; has
compact support.

(iii) Action on affine jets

For a € R", b € R, consider the function 2z, : V' — R defined by z,4(q) = (a,q) + b and its
l-jet extension Jlz,p : V — JV given by J'z,5(q) = ({a,q) + b,a,q). Consider the projection
7 J'WV — V and the map Qup : V — V given by Qup = mo po Jlz,p. Set K = w(supp(p)).
Outside of K, we have Q5(q) = ¢. Thanks to the previous step, we can assume that ¢ is C L_close to
the identity, and thus @), 4 is uniformly C' L_close to q as a function of a, b and ¢. In particular, we may
assume that @, is a diffeomorphism of V for all a,b. Then we set Z, 5(q) = 7’ oo J zyp oQ;};(q)
where 7’ is the projection J'V — R. These definitions are made so that graph in J'V of the 1-jet
of z, is mapped by ¢ to that of Z, .

(iv) Linearization

We define a new function f; : R® x R” x R¥ x V' — R by the formula

fl(:anaan) = f(va) + <$7q_y>

We check easily that Ly = L;. Moreover with the notations above we have fi(z,y,v,q) =

20, (v:y)— () ()-
Next we define fo : R" x R" x RF x V — R by

fz(ﬂf, Yy, v, Q) = Zx,f(v,y)—(ﬂc,w (q)

Lemma 5.8 ensures that Ly, = ¢(Ly, ). This proves our result: g = fo is the required generating
function for ¢(Ly).

(v) Interpolation at infinity

It remains to prove that if f is quadratic at infinity we can ensure the same property for g. By
quadratic at infinity we mean the following: for (g, v) outside of some compact set of R* x V, we
have f(gq,v) = Q(v) for some non-degenerate quadratic form Q.

In the first step above, we may assume that the embedding j is proper (this is automatic if V'
is compact). Also when extending f to R¥ x R™ we ensure that: f(q,v) = Q(v) outside of some
compact set of R* x R™.

Then we define f3: R® x R” x R¥ x R — R by the formula

fg(JI,Y,’U,q) = f2($7q - Ya”vQ)

and check easily that Ly, = Ly, (f3 is obtained from fy by composing with a fibered diffeomor-
phism).
Next, we pick a compactly supported function y : R x R" x R¥ — [0, 1] and set

f4(9c,Y,v,q) = X(:Ca)/av)fZS(anvan) + (1 - X(LE,Y,’U))(Q(’U) + <x7Y>)

For (z,Y,v) large enough and ¢ € V', we have fi(x,Y,v,q) = Q(v)+(z,Y’) which is a non-degenerate
quadratic form on R” x R™ x R*. For ¢ outside of K, we have fo(z,y,v,q) = fi(x,y,v,q) and
thus

fa(z,Y,v,q9) = x(z,Y,0) f(v,qg = Y) + (1 — x(z,Y,0)Q(v) + (x,Y).
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If (x,Y,v) is bounded and ¢ large (here we use use the properness of V. — R"), then ¢ — Y is
large and we have f(v,q —Y) = Q(v), hence f4(z,Y,v,q) = Q(v) + (z,Y). We conclude that the
function fy is quadratic at infinity. However we have to choose x suitably to ensure Ly, = Ly,.

We first argue that for (x,Y,v) large enough say, |(z,Y,v)| > C > 0, and ¢ € V the function f3
has no fiberwise critical point. This follows from the proof of Lemma 5.8 or a computation (simpler
than what we do below). Hence if we choose x so that x = 1 on the |(z,y,v)| < C, then we only
have to check that f; has no fiberwise critical point in the region of interpolation (the support of
dx).

For ¢ € V'\ K, the above expression for f4 gives 8f 1 =Y % =z and %f4 = ‘?9% up to bounded
fonctions on R™ x R™ x R¥ x (V'\ K). Hence for (z, Y v) large enough, there is no fiberwise critical
point for f4. For ¢ € K, we need to compute a little more. With the notations above and a = =,
b= f(v,q—Y)+ (z,Y) — (x,q), we have:

fr=xZap + (1= x)zap + (1 = x)(Q(v) = fv, ¢ = Y)),

and the fiber derivatives write:

% — 87X _ 8Za,b _ 82(1,{; aZa,b B 82a,b N al B B
P —Y‘i‘ax(Za,b Za,b) + X( 9a 94 )+ x( b % (Y —q) 8:1:(Q(U) f(v,q—Y)),
ofy  Of dx 0Zap 0zap,, Of o Ox B B
Y =x— 94 (v, q=Y)+ 3Y( —Za,b)+X( ab 2 )(z 3q (v,q=Y)) ay(Q(v) f(v,q=Y)),
af4 — g aix - aZa,b _ 8za,b g B (97)( B B
B0 = By T By Zab — zap) T X5 = 5 ) 50— g, (@) = flv,g = Y).
BZab azab

|, |Q(v) — f(v,q — Y)| are bounded on R*¥ x R” x R"® x V.
Let us assume that ¢ is suﬂi(nently C*-close to id so that \% _ O, —2] < 1. We conclude that

The terms |[Z,p — 24|,

the triple (%, %, %) is arbitrary large for (z,Y,v) large and uniformly for ¢ € K. Hence if the
region y = 1 is chosen large enough and say ||dx|| < 1, then f; has no fiberwise critical points in
the interpolation region. This finishes the proof. O

We can deduce from this theorem the following 1-parametric version.

Theorem 5.9. Let V be a manifold, f : R¥ x V. — R a generating function quadratic at infinity,
(@t)te[o,l] a compactly supported contact isotopy of J'V. Then there exists a generating function

quadratic at infinity G : R x V x [0,1] = R over V x [0,1] such that Gq is equivalent to f and
La, = ¢i(Ly) for allt € [0,1].

Proof. The contact isotopy ¢y lifts to a contact isotopy of JY(V x [0,1]) = J'V x T*[0,1] as
follows. We have pjay = ki for some positive functions k¢, and av(di ¢) = hy o . We set
(bs(zap7 q,T, t) (Spst(zvpu Q)v kStT + Shst o Qost(Z,p, Q)) ) and we ha've
d
O (ay — 7dt) = kssay + a(ﬁ st )dt — ksgTdt — shgt 0 pgrdt = kg(y — 7dt).

Also we may extend ®, to a compactly suppoted contact isotopy of J'(V x R).
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Set F': RF x V x R — R defined by F(v,q,t) = f(v,q), it is a generating function for
Ly x{r =0} Cc JYV x R). We apply Theorem 5.5 to F' and ®4 and obtain a generating function
quadratic at infinity G for ®1(Lr). By construction, for all t € [0,1], ®1(LF,) = ¢i(Ls) and thus
La, = th(Lf)

It remains to show that Gg is equivalent to f. A look at the proof of Theorem 5.5 shows that
when ¢ is the identity the process transforms a generating function f(v,q) into f'(x,Y,v,q) =
f(v,q—Y)+ (x,Y). Moser’s method can be used to prove that f differs from f(v,q)+ (z,Y ) by
a fibered diffeomorphism. The result follows. O

5.3 Viterbo’s uniqueness theorem

Our goal here is to prove the following result.

Theorem 5.10. Let V be a closed connected manifold and f; : R¥ xV — R, i = 1,2, be
generating functions quadratic at infinity for a Legendrian submanifold which is contact isotopic
to the zero-section. Then there exist fiberwise quadratic forms Q) : R¥ xV = R,i=12,
and a diffeomorphism ¢ : Rkitki vV — Rhetha x ¢ preserving the projection to V' such that

fi+Q1=(f2+Q3) 0.
We collect first a few lemmas to be used in the proof of this theorem.

Lemma 5.11. Let M be a closed manifold of dimension m and N a manifold of dimension n.
Assume 2(m + 1) < n. If two embeddings f,g: M — N are homotopic then they are isotopic.

Proof. Let F': M x[0,1] — N be a homotopy with Fy = f, F} = g. After a small perturbation of F’
supported in M x (0, 1), we can assume that F' is an immersion with double points if 2(m+1) = n
or an embedding if 2(m + 1) < n. In the first case, by another small perturbation we can assume
that the double points are of the type f(x,t) = f(a/,¢) with ¢t # ¢ hence in both cases F} is an
embedding for all t. O

Lemma 5.12. Two maps S* — S* are homotopic if and only of they have the same degree, i.e.
induce the same map Hy(S*) — Hy(S*).

Lemma 5.13. Let V' be a manifold, and (ft)te[0,1]3 RF x V a family of generating functions
quadratic at infinity which transversally generate the same Legendrian immersion L. Then there
exists a family of fibered diffeomorphisms (‘Pt)te[o,l]3 R* x V = R* x V such that f; o oy = fo and
Yo = id.

Proof. Moser’s method. O

Proof of Theorem 5.10. We first prove the result for the case of the zero-section and then show
how to reduce to this case.

Proof for the zero-section

Let f : RF x V — R be a generating function for the zero-section. For ¢ € V, we write
fq : V — R the corresponding function on V =V x {q}.
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(1) By assumption, for each ¢ € V, f; has a unique critical point vy(g). Up to replacing f by
f o where ¢(v,q) = (v+ vo(q), q), we may assume that vy(q) = 0.

(2) Let Q4 be the Hessian of f; at 0, it is a non-degenerate quadratic form. A parametric version
of Morse’s lemma provides a smooth family of compactly supported diffeomorphisms ¢, : RF — RF
such that f, o ¢, = Q4 near 0. We may thus assume that f, = @, near 0 for all g. Since V is
connected, the index of () is independent of ¢, we denote it 1.

(3) Pick a linear adapted gradient vector field X, for @), and a complete gradient vector field
Y, for f, which coincides with X, near 0. Then after a linear change of coordinates on R*, we have
Qq = —x%—-'-—x?—i—xa_l —|—---—|—xi and Xy = —210y; — - — 20, + Ti1104,,, + - + 110z, .
For brevity we write x_ = (21,...,;) and x4y = (2;41,...,2x). The linear automorphism which
preserve (), and X, correspond to the group O(i) x O(k —4). For € > 0, the subset M, = {(—€ <
Q < e, |z_||z4| < €} is therefore well-defined by @, and X, (i.e. independent of the choice of linear
coordinates (z1,...,z,)) and in particular well-defined globally on V. We fix € > 0 small enough
so that f = @ on M..

(4) We claim that there is a fibered diffeomorphism ¢ : {f = —e} — {Q = —¢} such that
Y =id on N, = {f = —e} N M = {Q = —€} N M,. This is the main step. In fact it may not hold
directly, we further assume that the inequality 2i+1 < k holds. This can be achieved by stabilizing
f (and therefore Q) by a positive definite quadratic form (i.e. set f'(w,v,q) = |w|*> + f(v, q) where
w € RV for some sufficiently large N). Let us prove the claim. We first prove it for a fixed ¢ and
the show how to do it globally for ¢ € V.

By assumption f coincides with a quadratic form P outside of a compact set. We have
H*(f;,Yy) = Hp(R* x V) and hence P has the same index as Q. In particular for ¢ > 0, the
levet sets {P = —c} and {Q = —c} are diffeomorphic. Also, for large ¢ > 0, we have {f = —c} =
{P = —c}. Following the trajectories of Y, we find a diffeomorphism {f = —c} ~ {f = —¢}. In to-
tal we find that a diffeomorphism ¢ : {f = —e} — {Q = —¢}. However v has no reason to be equal
to the identity near N.. This N, is a tubular neighborhood S*~! x D*=% of a (i — 1)-dimensional
sphere in the manifold {Q = —e} which is diffeomorphic to S?~! x R¥~%. We claim that the in-
clusion N, — {Q = —¢} is of degree +1, i.e. is a homology isomorphism. Indeed the homology of
RF is the homology of a chain complex 0 = Z — 0 — --- — 0 — Z — Z — 0 where the Z are in
degree 0, i — 1 and 4, and the map Z — Z is the degree of the above map. Since H,(R*) = 0 if
x #= 0, we obtain that the degree is 1. From Lemma 5.11, the inequality 2¢ + 1 < k£ and Lemma
5.12, we deduce that the embedding ¢ : S~ — {Q = —¢} is isotopic to the inclusion or a reflection
o about a hyperplane. From the isotopy uniqueness of tubular neighborhoods (Alexander’s trick)
we find that the embedding ¢ : N, = S"1 x D¥= — {Q = —¢} = S"! x R*~ is isotopic to the
embedding (z,y) — (z, Az(y)) or (o(z), Ax(y)) for some map A : S*~! — O(k —1i). This isotopy of
embeddings extend to a compactly supported isotopy of {@Q = —e} and we obtain a diffeomorphism
0:{Q = —€¢} — {Q = —¢} such that 6 o¢(z,y) has one of the above form near N, = S*~1 x DF~%,
Since those formula define diffeomorphisms of S*~ x R*~% postcomposing 0 o 1) by their inverse
gives the required diffeomorphism ¢ : {f = —€} — {Q = —¢} which is the identity near N..

To find the diffeomorphism ¢ globally with ¢ € V. Consider the set of diffeomorphisms ¢ :
{f = —€¢} - {Q = —¢€} equal to the identity near N, as a bundle over V. Our problem is then
to find a global section of this bundle. We have just seen that the fibers of this bundle are not
empty. We will prove now that the fibers are in fact contractible. The existence of a global section
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then follows from general theory of bundles. The fiber corresponds to the set of diffeomorphism
@ : ST RF & S RF with ¢(z,y) = (2, %) for y in a neighorhood of D*~*. For t € (0, 1),
set pi(z,y) = %cp(x, ty) where the multiplication acts on the second coordinate. We have p; = ¢
and ¢; = id on S x %Dk_i. Hence ¢; converges to id uniformly on compact sets as when ¢t goes
to 0. This defines a deformation retraction of this space to point id.

(5) The last step is to extend the diffeomorphism ¢ to the whole R¥. We claim that there
exists a unique fibered diffeomorphism ¢ : R¥ x V' — R* x V such that f = Qo ¢, ¢,Y = X,
¢ = id on N, and ¢ coincides with a diffeomorphism obtained in the previous step on {f = —e}.
Indeed, ¢ is obtained concretely as follows: for v € R, there exists 7 € R such that ¢l (v) €
N U {f = —e}, then there exists a unique 7" € R such that Q(¢% (p(¢¥(v)))) = f(v), we set
p(v) = ©X (P(pF(v)))-

This finishes the proof in the case of the zero-section.

Reduction to the case of the zero-section

Let f,g be two generating function quadratic at infinity for ¢;(L). Theorem 5.9 provides
generating functions f; and g; for ¢;(L) such that f; is equivalent to f and g; is equivalent to
g. By the uniqueness statement for the zero-section, fy and gg are equivalent. Hence we may
assume fo = go. Consider now the path (fi-t);c(o,1] concatenated with (g¢)e[o,1], the Legendrian
immersion associated to this path is the loop ¢1_4(L) concatenated with its inverse ¢;(L). Theorem
5.9 applied to a contraction of this loop provides a family f; s of generating function for ¢;(L) with
ft,0 equivalent to f; and f; 1 equivalent to g¢. Finally since f; s generate Ly, for all s € [0, 1], Lemma
5.13 implies that f; 1 is equivalent to f;o. The result follows. O

5.4 Back to spectral invariants

We recall some results of the previous sections.

Let V be a closed manifold. A function f : R¥ x V — R is called quadratic at infinity if
there exist a non-degenerate quadratic form @ : R¥ — R and a function ¢ : V — R such that
f(v,z) = Q(v) + g(x) outside of some compact set.

There exists a notion of Morse pair (f, X) in this situation and we can define a Morse complex
C(f,X) and cohomology groups Hé(Rk x V). The basis of the spaces C*(f, X) only depend on
f and the differential depends on X. The spaces HZ?(—) are actually independent of X and f.
Moreover if the index of @ is 4, the Kiinneth morphism gives H*(V) = H*(V) ® Hé?(Rk) o
ngi(Rk x V). We also have a filtered version Hg (o)(f, X) = Ho({f < b},{f < a}) together
with a restriction map r. y: Hé(Rk X V) = Hg (—o0,)(f, X). For a € H(V) we set

c(f,a) =sup{c € R\ verit(f); re p(a) =0},

Let 1 be the generator of H°(V) and p the generator of H*(V). We define c¢_(f) = ¢(f,1) and
ci(f) = ce(f,p). If V is reduced to a point, then 1 = p and we write ¢(f) = c(f) = c—(f). We
remark that Lemma 4.38 holds in this situation (V replaced by R¥ x V') with the same proof. We
also recall Proposition 4.46.

Proposition 5.14 (Lem. 4.38 and Prop. 4.46). (i) The spectral invariant c(f,«) is a critical value
of f, for any ao € H(V).
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(i4) Let xg € V.. The function fr,(v) = f(v,x0) is quadratic at infinity on R* and we have

c(f) < el fao) < e (f).

We could in fact define H, 22(—) and the filtered version when @ is only fiberwise quadratic. We
mean that Q: R¥ x V — R satisfies Q, = Q(—, z) is non-degenerate quadratic for each x € V and
f(v,z) = Q(v, x) outside of some compact set. (Remark that the index of @, is independent of x
if V' is connected.)

For any given function we can find an arbitrarily small modification which is Morse. By the
Lipschitz property (see Lemma 4.41) we can extend the definition of ¢(f, a) to any function which
is fiberwise quadratic at infinity. Proposition 5.14 still holds in this generality.

If @: R x V — R is fiberwise non-degenerate quadratic and f is quadratic at infinity, then
f + @' is fiberwise quadratic at infinity and, up to a shift by the index of Q’, we have C*(f, X) ~
C*(f + @', X + X'), for a vector field X" adapted to Q’. We deduce c(f, 1) = c¢(f + Q, ). In the
same way we have ¢(f,u) = c(fop,u), if p: R xV — R x V is a diffeomorphism preserving the
projection to V. Hence, by the uniqueness theorem 5.10 for generating functions, it makes sense
to give the following definition.

Definition 5.15. Let V be a closed connected manifold and let L C J'(V) be a Legendrian
manifold which is contact isotopic to the zero section. Let f: R x V' — R be a generating function
for L which is quadratic at infinity (which exists by Chekanov-Sikorav’s theorem). For v € H(V')
we set

c(L,a) = c(f,a) = sup{c € R\ verit(f); rc r(a) = 0}.

It only depends on L and not on f. We also set ¢4 (L) = c+(f).

Proposition 5.16. Let V, V' be closed connected manifolds of dimension n,n’ and p, p' the
generators of H(V), H" (V'). Let f: R* xV = R, f': R¥ x V/ = R be quadratic at infinity.
By the Kiinneth isomorphism (u, i) is a generator of H"*" (V x V'). Then c¢(f + f', (u,')) <
c(f,m) +c(f', 1) with equality when f'(v',q") = Q'(v') for some quadratic function Q'.

Proof. We set M = R¥ x V and M; = {f < t}. We define M’, M] in the same way and
U = My x M', Vi, = M x M[. We choose t < ¢(f,u) and u < c(f’, /). Then {f + f' <
t4+u} € W = U; UV,. The Kiinneth isomorphism gives H"*" (U;) ~ 0 and H"*" (V,,) ~ 0. Since
U NV, = My x M, we also have H 7“L”’_I(U,g N V) ~ 0. The Mayer-Vietoris sequence

oo HYY LU0V —» HYPY (W) — HYYY(U) @ HY (V) — 0

implies H"*" (W) ~ 0 and we obtain the result. O

5.5 Viterbo invariants for Hamiltonian isotopies

We will consider the spectral invariants c4 (L) in the case where L C J'R?" is a Legendrian lift
of the graph of a Hamiltonian isotopy of R?". Since R?" is non compact we will compactify it
into S?" but the compactification of L (which could be the diagonal L = Agan of R*") should be
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isotopic to the zero section. We first make a change of variables which identifies R?>" with T*R"
and turns the diagonal into the zero section.

On R?" = R xR, we consider the Liouville form \ = %(a:dy —ydz). We will use the following
contact diffeomorphism 7: R x R*® x R?" — J!(R?") defined by

r+X y+ Y)
2 72 '

It satisfies 7*(du — p1 Adq1 — p2 Adga) = dz — A+ A and maps the diagonal {z = 0,2 = X,y =Y}

to the zero-section {u = 0,p; = 0,p2 = 0}. More precisely we quote

1
T(Za'x:vaa Y) = (u,p1,p2,Q1,qQ) = (Z + i(xY - yX)7 Y - Yy, r — Xa

(¢, 2,9, 2,9) = (¢,0,0,7,y). (5.1)

The graph of a symplectomorphism ¢ of R?” is a Lagrangian submanifold of R*". There exists
a Legendrian lift of this graph (well-defined up to a translation in the variable z):

ASO = {(k(xvy)vxvya @(xvy)); (I,y) € R2n}’

where the function k: R*® — R is defined up to a constant by p*\ — A = —dk. If ¢ has compact
support, we can (and will) normalize k by setting k& = 0 outside a compact set. We fix also a
diffeomorphism $?"\ {oc} = R?*". Then 7(A,) is naturally extended by adding the point oo of the
zero-section and we obtain a closed Legendrian submanifold of J!S?":

T, =7(A,) C JHS™

For ¢ =1id, I'y, is the zero-section.

Now we assume that ¢ is Hamiltonian isotopic to the identity. We can check that I', is
Hamiltonian isotopic to the zero-section. Hence, according to Sikorav’s theorem, I', admits a
generating function quadratic at infinity and we may define its spectral invariants.

Definition 5.17. For ¢ € Ham®(R*"), we define c4(p) = cx(I'y) and v(¢) = c1(¢) — c—(¢).

Remark 5.18. By (5.1) the fixed points of ¢ are in bijection with I', N (R x Ogzn). Moreover, if
(z,y) € R?" is fixed by ¢, the corresponding point in Iy, is (k(z,y),0,0,z,y) € JIR?".

Let f: RF x R?™ — R be a generating function for I',. If (v,z,y) is a critical point of f, then
(f(v,2,9),0,0,2,y) is a point of ', and (z,y) is fixed point of ¢. Moreover k(x,y) = f(v,z,y). In
particular the spectral invariants of I, are values of k at fixed points of ¢. We have the following
more precise result.

Lemma 5.19. Let f: R¥ xR?* — R be a generating function for I'y. The projection Rk x R?" —
R?" induces a bijection between the set, crit(f), of critical points of f and the fized point set, Fix(yp),
of . Moreover, for (v,x,y) € crit(f), we have k(x,y) = f(v,z,y) and k(Fix(p)) = verit(f) is a
subset of R of measure 0.

Proof. Recall that we defined ¥ € R¥ x R® by ¥ = {(v, q); %(v,q) =0} and i: ¥ — JYR™)

by i(v,q) = (f(v,q), g—g(v, q),q). We have seen that i is an embedding and gives a diffeomorphism
from X to I'y,. It is clear that crit(f) is contained in ¥ and, by the remark 5.18, 7 induces a bijection
between crit(f) and Fix(p). The equality k(z,y) = f(v,x,y) for (v, z,y) € crit(f) also follows from
the same remark. The last assertion follows from Sard’s theorem. O
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Lemma 5.20. We assume that p = go,ll for some function h: R®™ — R with compact support and
independent of time. We assume that 0 is a zero of dh (hence a fixed point of v). Then k(0) = h(0).

Proof. Let X}, be the Hamiltonian vector field of h. We have vx, d\ = —dh. For t € [0, 1] we define
k¢ by the condition (¢} )*A — X = —dk, and k; is zero at infinity. We deduce

8kt * * *
—d(57) = (1) (Lx,A) = (23)"(dlex, A) + 0, dA) = =d((2))" (B = 1, 2)).
Hence % = (¢h)*(h — tx,\) + ¢, for some constant ¢;. Since h has compact support and k;
vanishes at infinity, we have ¢; = 0. Since h is independent of time, it is preserved by goz, that is
(¢4 )*(h) = h. Our choice of A implies A\g = 0. Finally we have %(0) = h(0). Integrating between
t =0 and t =1 gives k1(0) = h(0), as required. O

Proposition 5.21. For ¢ € Ham¢(R?"), we have

c—(p) <0< ci(p).

Moreover ci(¢) = c_(p) if and only if ¢ = id.

Proof. Let f: RF x 8 — R be a generating function for I', which is quadratic at infinity. The
inequalities follow from Proposition 5.14-(ii) applied to the point co.

Let us assume c4(p) = c_(¢) = 0. For any ¢ € S*", ¢(f,) is a critical value of f, by Propo-
sition 5.14-(i) and we have ¢(f;) = 0 by Proposition 5.14-(ii) again. Hence the projection of T,
to J0S?" contains the graph of the zero function. Therefore I', contains the 1-graph of the zero
function which is {0} x Og2n. Since I', is a connected submanifold, it is equal to {0} X Og2n and
we obtain ¢ = id. O

5.6 Capacities

We say that a Hamiltonian isotopy ¢ = ¢! displaces a set K if o(K) N K = (. We say that
it is supported in K if the support of ¢! is contained in K for all t+ € [0,1]. We recall that

V(@) = c(p) — c-(p) > ci(p).

Definition 5.22. For an open subset U and a compact subset K of R?>" | we define
e ¢(U) to be the supremum of c; (¢) where p € Ham®(R?") is supported in U,
e (K) to be the infimum of () where ¢ € Ham¢(R?") displaces K,
e v(U) to be the supremum of «(K) where K runs over the compact subsets of U.
If U CV we have ¢(U) < ¢(V) and v(U) < (V).

Proposition 5.23. Let ¢, t € [0,1], be a Hamiltonian isotopy supported in a compact set K
such that R* \ K is connected, and let yp € Ham®(R?") be an isotopy which displaces K. Then

ci(Yopr) =cy ().
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Proof. (i) We have ¢¥*\ = X\ + dk with k = 0 at infinity. On R?"\ K, we have 1 o ¢; = % and
thus, (¢ 0 @)*A = A + dk; with dk; = dk on R?"\ K, and k; = 0 at infinity. By connectedness, we
obtain k; = k on R?"\ K. The fixed points of 1 o ¢; are outside of K and are precisely the fixed
points of .

(ii) Let f; be a family of gfqi for I'yop,. By the remark 5.18 the critical values of f; are values of
k: at fixed points of ¥ o ¢;. These are the same as the fixed points of v, they are outside of K
and k; = k outside of K. Hence k;(Fix(¢ o ;) = k(Fix(¢)) and, by Lemma 5.19, this is a set of
measure 0. Since t — ¢4 (¢ o ;) is continuous and takes values in k(Fix(¢)), it is constant. O

Proposition 5.24. Let ¢,9 € Ham®(R*). Then c+(p o pop™1) = ci(p).

Proof. Let k; be the function associated with ¢y oot . Tt is defined by dks = A — (Yoo, 1) X
and k; = 0 at infinity. Let l;, [} be associated in the same way with 1, and 1), L We have

d(p oy )l = (potdy )N — (Wropody ) A, dW; ) ko = (07 )N — (o 1) A

and d(;7 1)l = (7 1) X — X, Summing up we have k; = kg oy, + I oot — Iy oah L

We remark that Fix(1; o @ o 1b; ) = 94 (Fix(¢)) and, for z € (Fix(¢)), we have p o1, ! (2) =
Y71 (2) and thus ki (2) = ko(v; 1(2)). Hence k(Fix (¢ o poh; 1)) = ko(Fix(¢)). We conclude with
the same continuity argument as in the second part of the proof of Proposition 5.23. ]

Proposition 5.25. Let ¢, € Ham®(R*). Then cy (v o @) < ¢y () + ci ().

Sketch of proof. We define Hamiltonian isotopies a,b on R?" x R?" by a(z,2') = (p(2'),¥(z)) and
b(z,2") = (p(2),2'). Weset @ = b~'oaob. Then we have da/(z,2') = b1 (p(2'),¥(p(2))) =
(2, (p(2))). We let s: R?® x R?™ — R?" x R?" be the switch s(z,2') = (¢, 2).

We can apply 7 X 7 to the graphs of soa, soa’ and compactify R*® x R?" into S?" x §2"
instead of S%*. We obtain Legendrian submanifolds I'y, 'y of J1(S?* x S?"). Then 'y, = Iy, x T,
and Pa/ = PU)OLP X OSZn.

Let (u,p') be the generator of H4"(S?" x $?"). Since a’ is obtained from a by conjugating
with the isotopy by = s o (id X ¢), the same proof as in Proposition 5.24 gives ¢(Ty/, (i, ")) =

e(Tas (). Now we have o(Tur, (s 1)) = c4( 0 @) and e(Ta, (1, 1)) < () + 4. (), by
Proposition 5.16 and this gives the result. O

Proposition 5.26. With the same hypothesis as in Proposition 5.28 we have c4(pr) < v(¢).

Proof. First observe that ¢4 (¢~!) = —c_(¢). Indeed, if f is a generating function for I'y, then — f
is a generating function for I'y,-1. Using Poincaré duality we can prove that c, (—f) = —c_(f). By
Propositions 5.25 and 5.23 we have

cr(pr) = cr(rorpog) <ep () +ep(owy) = —c— () + e (¥) = y(1).

Corollary 5.27. For any U and ¢ € Ham®(R?*") we have c(o(U)) = c¢(U), v(¢(U)) = v(U) and
c(U) <~(U).
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We set B = {(z,y) € R*"; ||(z,y)|| < 1} and Z = {(z,y) € R*"; [|(z1,31)|| < 1}.
Lemma 5.28. We have ¢(B) > .

Proof. We define h: R?" — R by h(x,y) = f(||(x,9)||?), where f(r) is a function on [0, co[ which
is 0 for 7 > 1 and is a smoothing of r — 7(1 — r) on [0,1] with —7 < f/(r) < 0 on [0,1[. Then
f(0) = 7 — e for some £ > 0 which can be made as small as desired.

Let ¢ = go}L be the Hamiltonian flow of h. Then ¢ has a support contained in B. Since
—m < f'(r) <0, the fixed point set of ¢ is {0} U (R?™ \ supp(h)).

Defining k by dk = X\ —¢* ), the value of k on (R?" \ supp(h)) is zero. By Lemma 5.20 its value
at 0 is k(0) = h(0) = m — . Hence we only have two possible values for the spectral invariants of
@. Since ¢ # id, Proposition 5.21 implies that ¢4 (@) = m — ¢. It follows that ¢(B) > 7 —¢. O

Lemma 5.29. We have v(Z) < .

Proof. We choose r < 1 and R > 0 and we set K = B, X B}% where B, is the closed ball of radius
r in R? and B, the closed ball of radius R in R?"~2. We can find a Hamiltonian isotopy of R?
which sends B, into By = {||(z1,11)|] < v2; y1 > 0}. Its product with idgzn—2» sends K into
K, = B4 x B;. It is thus enough to find a Hamiltonian isotopy ¢ which displaces K| and satisfies
7(¢) < 7+ ¢ for € > 0 arbitrarily small.

We define hy: R? — R by hi(z,y) = f(||(x,y)||?), where f(r) is a function on [0, oo[ which is
0 for r > 3, equals §(2 —7) +e€on [0,2] and —7 < f'(r) < 0 on ]2,3[. Then f(0) = 7 + ¢ for some
€ > 0 which can be made as small as desired.

We then define h: R?*® — R by h(z,y) = hi(z1,y1)p(z,y) for some bump function p with
compact support which is 1 on B 5 X B',. Then cp,ll displaces K. We can check that c+(g0,1l) =
h(0) = 7 +e¢, as in the proof of Lemma 5.28, and c_ (¢} ) = 0. Hence v(p}) = 7+ ¢ and we deduce
the lemma. O

Proposition 5.30. We have ¢(B) =v(B) =c¢(Z) =v(Z) = .

Proof. This follows from Lemmas 5.28, 5.29 and the inequalities ¢(B) < v(B) < y(Z) and ¢(B) <
c(Z2) <~v(2). O

Theorem 5.31 (Gromov non-squeezing theorem). Let B, be the ball of radius v in R?™. If there
exists ¢ € Ham®(R?") such that p(B,) C Z, then r < 1.

Proof. We can deduce from the previous proposition that ¢(B,.) = 7r2. We deduce mr? = ¢(B,.) =
(9(By)) < o(Z) = . a



