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Introduction: Hamilton’s equations from
mechanics

We consider the motion of a ponctual mass m at the position q(t) ∈ R3 at time t when the force
is given by a potential U(q). Newton’s law gives q̈ = −(1/m)∇U , where ∇U = ( ∂U∂q1 , . . . ,

∂U
∂q3

). We
define the total energy as E(t) = 1

2m||q̇||
2 + U(q(t)). It is classical and easy to check that E is

constant along any trajectory q(t) satisfying the above equation.
It is usual to turn the above second order equation into a a first order one by adding variables

p and setting p(t) = mq̇(t). We obtain the system in R6 with coordinates (p1, p2, p3, q1, q2, q3):
ṗi = −∂U

∂qi

q̇i =
pi
m
.

Setting H(p, q) =
∑ p2i

2m + U(q), this is rewritten

S(H)


ṗi = −∂H

∂qi

q̇i =
∂H

∂pi
.

We could consider a point on a line instead of R3, or several points and work in R3n. The
same formalism applies. We will thus work in dimension n. We choose coordinates (p, q) =
(p1, . . . , pn, q1, . . . , qn) ∈ R2n. For a given function H(p, q, t) (maybe depending on time) defined
on R2n+1 the above system of equations S(H) is called the Hamiltonian system associated with
H. It is called autonomous if H does not depend on t. The function H is called the Hamiltonian
function of the system. We also introduce the Hamiltonian vector field of H

XH(p, q, t) =
∑
i

−∂H
∂qi

∂

∂pi
+
∂H

∂pi

∂

∂qi
.

Hence the trajectories which are solutions of S(H) are the same things as the flow lines of XH .

Lemma 0.1. Let (p(t), q(t)) be a solution of S(H). We set H1(t) = H(p(t), q(t), t). Then

dH1

dt
=
∂H

∂t
.
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In particular, if H is autonomous, then H is constant along the trajectories (the total energy is
conserved).

Proof.
dH1

dt
=
∂H

∂t
+
∑
i

ṗi
∂H

∂pi
+ q̇i

∂H

∂qi
=
∂H

∂t
+
∑
i

−∂H
∂qi

∂H

∂pi
+
∂H

∂pi

∂H

∂qi
=
∂H

∂t

We denote t 7→ ϕH(p, q, t) the maximal solution of S(H) which is equal to (p, q) at t = 0.
We often also denote ϕtH(p, q) = ϕH(p, q, t) and Xt

H(p, q) = XH(p, q, t). Recall from differential
equations that that the set of (p, q, t) for which ϕH(p, q, t) is defined is an open set containing
R2n × {0} and ϕ is a smooth map. Beware that ϕt+s(p, q) 6= ϕt(ϕs(p, q)) in general if H is not
autonomous.

Definition 0.2. A Hamiltonian diffeomorphism of R2n is a diffeomorphism which is of the form
ϕTH for some Hamiltonian H and some time T .

Lemma 0.3. Hamiltonian diffeomorphisms of R2n form a subgroup of all diffeomorphisms.

Proof. For H : R2n+1 → R, let UH be the open set where ϕH is defined. If ϕTH is defined for
some T > 0, then UH must contain R2n × [0, T ]. For any ρ : R → R, setting Hρ(p, q, t) =

ρ′(t)H(p, q, ρ(t)), we have Xt
Hρ

= ρ′(t)X
ρ(t)
H and, if (p, q, ρ(t)) ∈ UH ,

(d/dt)(ϕ
ρ(t)
H (p, q)) = ρ′(t)X

ρ(t)
H (ϕ

ρ(t)
H (p, q)) = Xt

Hρ(ϕ
ρ(t)
H (p, q)).

Hence, if ρ(0) = 0, then ϕ
ρ(t)
H = ϕtHρ since they satisfy the same differential equation. Using a

smooth function ρ : R → [0, T ] which vanishes for t ≤ 0 and equal to T for t ≥ T , we obtain Hρ

for which ϕHρ is defined everywhere, ϕtHρ = id for t ≤ 0 and ϕtHρ = ϕTH for t ≥ T .
Next consider two Hamiltonian diffeomorphisms ϕT1H1

and ϕT2H2
. Assume H1 and H2 have been

already modified as above. Let H ′2(p, q, t) = H2(p, q, t − T1) so that ϕtH′2 = ϕt−T1H2
. Now the

function H(p, q, t) = H1(p, q, t) for t ≤ T1 and H(p, q, t) = H ′2(p, q, t) for t ≥ T1 is smooth and
ϕT1+T2
H = ϕT2H2

◦ ϕT1H1
.

For a Hamiltonian diffeomorphism ϕTH withH prepared as before, considerH ′(p, q, t) = −H(p, q, T−
t). Then ϕtH′ ◦ ϕTH = ϕT−tH and in particular (ϕTH)−1 = ϕTH′ is hamiltonian.

Hamiltonian diffeomorphisms are not arbitrary diffeomorphisms, a first restriction is the follow-
ing.

Proposition 0.4 (Liouville-Gibbs). A Hamiltonian diffeomorphism of R2n is volume (and orien-
tation) preserving.

Proof. Recall that the flow ϕt of a vector field Xt =
∑

iX
i
t
∂
∂xi

on Rn preserves the volume (i.e., its

jacobian det(dxϕt) equals 1 for each x, t) if and only if the divergence divXt = tr(dXt) =
∑

i
∂Xi

t
∂xi

vanishes. Indeed det(dxϕ0) = det(id) = 1 and

d

dt
det(dxϕt) = det(dxϕt)tr((

d

dt
dxϕt)dxϕ

−1
t ) = det(dxϕt)tr(dx(Xt◦ϕt)dxϕ−1

t ) = det(dxϕt)div(Xt)◦ϕt.
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Now, for a Hamiltonian vector fieldXH =
∑

i(−
∂H
∂qi

∂
∂pi

+∂H
∂pi

∂
∂qi

), we compute divXH =
∑

i(−
∂2H
∂pi∂qi

+
∂2H
∂qi∂pi

) = 0.

It turns out that Hamiltonian diffeomorphisms preserve a finer invariant than the volume and
that conversely Hamiltonian diffeomorphisms are (locally) characterized by this property. Let ω
be the skew-symmetric bilinear form on R2n given by ω =

∑
i dpi ∧ dqi.

Proposition 0.5. (i) Any Hamiltonian diffeomorphism ϕ of R2n preserves ω, that is, ϕ∗ω = ω.
(ii) Let (ϕt)t∈[0,1] be an isotopy of diffeomorphisms of R2n which preserve ω. Then it is a

Hamiltonian isotopy: there exists a smooth function H : R2n × [0, 1]→ R such that ϕt = ϕtH .

Proof. (i) Write ϕt(pi, qi) = (pti, q
t
i) so that ϕ∗tω =

∑
dpti ∧ dqti . Then

d

dt

∑
i

dpti ∧ dqti =
∑
i

dṗti ∧ dq
t
i + dpti ∧ dq̇ti

=
∑
i

−d∂H
∂qi
∧ dqti + dpti ∧ d

∂H

∂pi

=
∑
i,j

− ∂2H

∂qj∂qi
dqtj ∧ dqti −

∂2H

∂pj∂qi
dptj ∧ dqti +

∂2H

∂qj∂pi
dpti ∧ dqtj +

∂2H

∂pj∂pi
dpti ∧ dptj

= 0

(ii) Since d(
∑

i pidqi) =
∑

i dpi∧dqi, the 1-form
∑

i p
t
idq

t
i−
∑

i pidqi is closed. Hence
∑

i ṗ
t
idq

t
i+p

t
i

˙dqti
is closed, and so is αt =

∑
i ṗ
t
idq

t
i − q̇tidpti since it differs by the exact form d(ptiq̇

t
i). By Poincaré

lemma, we may find a smooth functionKt : R2n → R such that αt = dKt and writingHt = Kt◦ϕ−1
t

(i.e., Ht(pt, qt) = Kt(p, q)), we get ṗti = ∂Ht
∂qi

and q̇ti = −∂Ht
∂pi

.

The 2-form ω is called the standard symplectic form on R2n. It is non-degenerate, which
means that at any point x ∈ R2n, the “kernel” of ωx, that is, {v ∈ TxR

2n; ωx(v, w) = 0 for all
w ∈ TxR2n} is {0}. This is equivalent to the condition that ωn is a volume form. Here we have∧n ω = n!dp1 ∧ . . .∧ dpn ∧ dq1 ∧ . . .∧ dqn. Hence Proposition 0.4 actually follows from Proposition
0.5 since ϕ∗tω = ω implies ϕ∗tωn = ωn. Another feature of ω is that it is closed: dω = 0. On more
general manifolds, this is the definition of a symplectic form: a closed non-degenerate 2-form.

Thus, defining Hamiltonian diffeomorphisms as the diffeomorphisms of the “phase space” R2n

induced by the motion of a particle following mechanic’s laws, we can characteristize these trans-
forms by the property of preserving the standard symplectic form. Diffeomorphisms which preserve
the symplectic form are called symplectomorphisms. Proposition 0.5 states that an isotopy of sym-
plectomorphisms is locally Hamiltonian.

Though it is easy to find a diffeomorphism of R2n which preserves the volume but not the
symplectic form, it was unclear how much global constraint is added by this property. The following
ground-breaking theorem of Gromov from 1985 is among the main and earliest results of symplectic
topology.

Theorem 0.6 (Gromov, 1985). Let 0 < r < R. There exists no Hamiltonian diffeomorphisms of
R2n which maps the ball B2n(R) into the cylinder B2(r)×R2n−2.
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This can be compared with Heisenberg’s uncertainty principle in quantum mechanics: it is
impossible to know precisely both the position and the speed of a particle (i.e., the coordinates
(q1, p1)).

Our main goal for this course is to explain a proof of this result via the technique of generating
functions. This proof was given by Viterbo in 1992 and is essentially different from the original
proof by Gromov which is based on holomorphic curves.



Chapter 1

Differential manifolds

1.1 Differential calculus in Rn

Exterior algebra Let E be a real vector space of dimension n. For k ∈ N, we denote
∧k E∗ the

vector space of all alternate multilinear forms Ek → R. By convention
∧0E∗ = R. For k > n,∧k E∗ = {0}. We also consider

∧
E∗ = ⊕k≥0

∧k E∗ which carries a natural algebra structure: for
α ∈

∧k E∗, β ∈
∧lE∗ and (v1, . . . , vk+l) ∈ Ek+l, we define

α ∧ β(v1, . . . , vk+l) =
∑

σ∈Sk+l
σ(1)<···<σ(k)

σ(k+1)<···<σ(k+l)

ε(σ)α(vσ(1), . . . , vσ(k))β(vσ(k+1), . . . , vσ(k+l))

The exterior product ∧ is then extended to
∧
E∗ by bilinearity. One then checks that it is associative

and graded commutative (i.e. α ∧ β = (−1)klβ ∧ α). For α1, . . . , αk ∈
∧1E∗ and v1, . . . , vk ∈ E,

α1 ∧ · · · ∧ αk(v1, . . . , vk) = det((αi(vj))1≤i,j≤k).

Given a basis (e1, . . . , en) of E, and the dual basis (e∗1, . . . , e
∗
n), a basis of

∧k E∗ is given by
(ei1 ∧ · · · ∧ eik) where i1 < · · · < ik. Hence

∧k E∗ has dimension
(
n
k

)
.

A linear map a : E → F induces a “pull-back” map a∗ :
∧
F ∗ →

∧
E∗ defined by a∗α(v1, . . . , vk) =

α(a(v1), . . . , a(vk)) for α ∈
∧k F ∗ and v1, . . . , vk ∈ E. This map preserves the graded algebra struc-

ture: a∗(α ∧ β) = (a∗α) ∧ (a∗β).
Given v ∈ E and α ∈

∧k E∗, we define the interior product by ιvα ∈
∧k−1E∗ (sometimes also

denoted vyα)) by ιvα(v1, . . . , vk−1) = α(v, v1, . . . , vk−1) for all v1, . . . , vk−1 ∈ E. The operator ιv
is a graded derivation:

ιv(α ∧ β) = ιvα ∧ β + (−1)degαα ∧ ιvβ.

Also with respect to pull-back, we have:

ιv(a
∗α) = a∗(ιa(v)α).

9
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Differential forms A differential k-form on an open set U of Rn is a smooth map α : U →∧k(Rn)∗. For p ∈ U , we usually write αp instead of α(p). It can be uniquely written α =∑
i1<···<ik αi1,...,ikdxi1 ∧ · · · ∧ dxik for some smooth functions αi1,...,ik : U → R. The differential df

of a function f : U → R is a differential 1-form. The exterior derivative dα of α is a differential
(k + 1)-form defined by

dα =
∑

i1<···<ik

dαi1,...,ik ∧ dxi1 ∧ · · · ∧ dxik .

This formula is forced by the properties:

• d(α ∧ β) = dα ∧ β + (−1)degαα ∧ dβ,

• d(α+ β) = dα+ dβ,

• d2 = 0.

Alternatively, one can give a direct definition

(dα)p(v0, . . . , vk) = lim
t→0

1

t

∑
i

(−1)i(αp+tvi(v0, . . . , v̂i, . . . , vk)− αp(v0, . . . , v̂i, . . . , vk)),

and check the properties above to show that the definitions agree. The reason for d2 = 0 is Schwarz’s
symmetry theorem for second derivatives.

Given open sets U ⊂ Rn and V ⊂ Rm, and a smooth map ϕ : U → V , the pullback operator
ϕ∗ is defined on functions by ϕ∗f = f ◦ ϕ and extended to k-forms uniquely provided we have:

• ϕ∗(α ∧ β) = ϕ∗α ∧ ϕ∗β,

• ϕ∗(α+ β) = ϕ∗(α+ β),

• ϕ∗d = dϕ∗.

The operator ϕ∗ can also be defined directly by

(ϕ∗α)p(v1, . . . , vk) = αϕ(p)(dϕp(v1), . . . , dϕp(vk)).

The reason for ϕ∗d = dϕ∗ is the chain rule.

Vector fields A vector field on an open set U of Rn is a smooth map X : U → Rn. Given a
diffeomorphism ϕ : U → V , we define the push-forward vector field ϕ∗X : V → Rn by the formula
ϕ∗X(x) = dϕϕ−1(x)X(ϕ−1(x)). Beware that ϕ∗ is not defined for arbitrary smooth maps. The
pull-back ϕ∗ is defined as (ϕ−1)∗.

The vector field X is determined by the operator LX acting on functions by LX(f) = df(X)
(sometimes also denoted X.f). The operator LX can then be uniquely extended to differential
forms by the properties:

• LX(α ∧ β) = LXα ∧ β + α ∧ LXβ,

• LX(α+ β) = LXα+ LXβ,
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• LXd = dLX .

Recall from Cauchy-Lipschitz theorem that any vector field admits a local flow ϕtX , i.e. ϕ
0
X = id

and d
dtϕ

t
X = X ◦ ϕtX . A direct definition of LX can be given as:

LXα =
d

dt
|t=0(ϕtX)∗α.

One may then check the properties above. The operator LX also applies to vector fields with the
same definition:

LXY =
d

dt
|t=0(ϕtX)∗Y.

The Lie bracket of two vector fields X,Y can be defined as [X,Y ] = LXY . This vector field
measures the infinitesimal defect of commutativity of the flows ϕXt and ϕYt , namely we have:

[X,Y ](x) =
1

2

d2

dt2
|t=0ϕ

−t
Y ◦ ϕ

−t
X ◦ ϕ

t
Y ◦ ϕtX(x).

Proposition 1.1. Two vector fields X,Y locally commute, namely for all x ∈ M and sufficiently
small s, t > 0, ϕsX ◦ ϕtY = ϕtY ◦ ϕsX if and only if [X,Y ] = 0.

We have the formulas

• [ϕ∗X,ϕ∗Y ] = ϕ∗[X,Y ],

• [LX ,LY ] = L[X,Y ],

• [X,Y ] = −[Y,X],

• [X, [Y, Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0,

• [X, fY ] = LX(f)Y + f [X,Y ].

Another definition of the exterior derivative d can be given as follows: for a k-form α and
vectors v0, . . . , vk ∈ Rn and x ∈ U , extend vi to vector fields X0, . . . , Xk equal to v0, . . . , vk at x
and set

dα(v0, . . . , vk) =
∑
i

(−1)iLXi(α(X0, . . . , X̂i, . . . , Xk))+
∑
i<j

(−1)i+jα([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk)

The result is independent of the choice of X0, . . . , Xk extending v0, . . . , vk. For 1-forms this gives:

dα(v0, v1) = LX0(α(X1))− LX1(α(X0))− α([X0, X1]).
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Lie-Cartan formulas Given a k-form α, we can define the interior product ιXα pointwise:
(ιXα)p(v1, . . . , vk) = αp(X, v1, . . . , vk). We have the important Lie-Cartan formula which follows
formally from previous formulas:

LX = d ◦ ιX + ιX ◦ d.

Indeed it holds on functions and both terms are derivations and commute with d.
Another useful formula is:

d

dt
(ϕtX)∗α = (ϕtX)∗(LXα),

which follows from the direct definition of LX and the property ϕt+sX = ϕtX ◦ ϕsX . We will also use
the following elaboration on the previous formula:

Proposition 1.2. If (ϕt)t∈[0,1] is an isotopy generated by a time-dependent vector field Xt (i.e.,
ϕ0 = id and d

dtϕt = Xt ◦ ϕt) and (αt)t∈[0,1] is a smooth path of differential forms, then

d

dt
ϕ∗tαt = ϕ∗t (LXtαt +

d

dt
αt).

Proof. Assume first that the formula holds at t = 0. Set βh = αt+h, Yh = Xt+h ψh = ϕt+h ◦ ϕ−1
t ,

and observe that ψh is an isotopy generated by Yh and that

d

dt
ϕ∗tαt = ϕ∗t (

d

dh
|h=0ψ

∗
hβh) = ϕ∗t (LY0β0 +

d

dhh=0
βh) = ϕ∗t (LXtαt +

d

dt
αt).

Next we prove the formula at t = 0. We have αt = α0 + t ddt |t=0αt + o(t), ϕ∗tαt = ϕ∗tα0 +

tϕ∗t (
d
dt |t=0αt) + o(t) and hence

d

dt
|t=0(ϕ∗tαt) =

d

dt
|t=0(ϕ∗tα0) +

d

dt
|t=0αt.

It remains to prove that d
dt |t=0(ϕ∗tα0) = LX0α0. Let ψt be the flow of X0, we have ψt = ϕt + o(t)

and dψt = dϕt + o(t), hence ϕ∗tα0 = ψ∗tα0 + o(t). Finally, d
dt |t=0ψ

∗
tα0 = LX0α0 is the definition of

LX0 .

1.2 Manifolds

We consider only smooth (i.e. of class C∞) manifolds.
An atlas on a set M is a set A of couples (U,ϕ) such that

• for (U,ϕ) ∈ A, U is a subset of M and ϕ is an injective map U → Rn for some n ∈ N whose
image is open,

• M =
⋃

(U,ϕ)∈A U ,

• for (U,ϕ), (V, ψ) ∈ A, ϕ(U ∩ V ) is open and the map ψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V ) is
smooth.
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On the set of atlases for M , the relation “A ∪ B is an atlas” is an equivalence relation. An
atlas induces a unique topology by requiring each U to be open and ϕ : U → ϕ(U) to be a
homeomorphism. Equivalent atlases induce the same topology.

Definition 1.3. A manifold is a setM together with an equivalence class of atlases whose induced
topology is Hausdorff and secound countable (the topology has a countable base).

The condition that M is secound countable is equivalent to the existence of a countable atlas.
Note that the dimension of M (i.e., the integer n in the chart ϕ : U → Rn) is well-defined locally
(since Rn and Rm are linearly isomorphic only for n = m) and locally constant, hence constant
provided M is connected.

We can think of the definition of a manifold conversely as a process to build manifolds from
open sets of Rn. Namely given a set I, a collection of open sets Wi ⊂ Rn, i ∈ I, open subsets
Wij ⊂Wi for i, j ∈ I, and diffeomorphisms ϕji : Wij →Wji such that

• Wii = Wi, ϕii = id,

• for x ∈Wkj ∩Wki, ϕjk(x) ∈Wji and ϕij ◦ ϕjk(x) = ϕik(x) (Cocycle relation).

We can construct M = ∪i∈IWi/ ∼ where ∼ is the equivalence relation generated by y = ϕij(x),
the projection of Wi to M is a bijection onto its image Ui and hence its inverse is a chart (Ui, ϕi),
whose collection forms an atlas on M . Moreover M is secound countable as soon as I is countable,
and M is Hausdorff if one of the following condition holds:

1. for x, y ∈M , there exists i ∈ I such that x, y ∈ Ui.

2. for i, j ∈ I and K ⊂Wi compact, ϕij(K ∩Wj) is closed in Wi.

Given a manifold M with an atlas A one can follow the process above with the open sets ϕ(U) for
all (ϕ,U) ∈ A and the resulting manifold is canonically isomorphic to M .

The notion of smooth maps between manifolds can now be defined as maps which are smooth
when written in charts. Similarly, one can define the rank of a map at a point as the rank of
the differential in a chart, and the notions of immersion, submersion, subimmersion (i.e. locally
constant rank maps), embedding, diffeomorphism.

Let M be a manifold of dimension n. A submanifold (of dimension k) of M is a subset N such
that, for all x ∈ N , there exists a neighborhood U of x in M , a neighborhood V of 0 in Rn and a
diffeomorphism ϕ : U → V such that ϕ(U ∩M) = V ∩ (Rk × {0}).

Another important notion is the following: a smooth map between manifolds f : E → B is a
fibration if for each point x ∈ B, there exists an open neighborhood U of x, a manifold F and a
diffeomorphism U × F → f−1(U) respecting the projections to U . In particular, the fibers f−1(x)
are submanifolds and are all diffeomorphic for x ∈ U (hence also for all x ∈ B if B is connected).

Vector Bundles We consider only smooth vector bundles over manifolds.

Definition 1.4. Let M be a manifold and E a set. A vector bundle atlas for a map π : E → M
is a set A of couples (U,Φ), where U is an open subset of M , Φ : π−1(U) → Rn × U is a map
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respecting the projections to U , such that for any two charts (U,Φ), (V,Ψ) the map Ψ ◦ Φ−1 :
Rn × (U ∩ V )→ Rn × (U ∩ V ) is smooth and for each x ∈ U ∩ V , its restriction to {x} ×Rn is a
linear map.

Two vector bundle atlases are equivalent if their union is still a vector bundle atlas. Each fiber
π−1(x), for x ∈ M , inherits a vector space structure. Combined with an atlas for M , a vector
bundle atlas gives an atlas for the total space E, hence E inherits a manifold structure for which π
is smooth. The projection π is a fibration. As for manifolds, vector bundles can be constructed by
gluing the open sets U×Rn using the transition functions. A section of a vector bundle π : E →M
is a smooth map s : M → E such that π ◦ s = id. Concretely, given a vector bundle atlas A, it
is a collection of smooth maps sU : U → Rn for all (U,Φ) ∈ A subject to the appropriate gluing
condition, namely Ψ ◦ Φ−1(sU (x), x) = (sV (x), x) for all charts (U,Φ), (V,Ψ).

Any natural operation which can be performed on vector spaces can be done also on vector
bundles. For example, if E is a vector bundle we can define the dual E∗ and the exterior powers∧k E∗.

Let M be a manifold and A an atlas for M . The tangent bundle of M can be defined as
follows. Consider the open sets Rn × ϕ(U) and for two charts (U,ϕ), (V, ψ) the diffeomorphism
Rn × ϕ(U ∩ V )→ Rn × ψ(U ∩ V ) given by (u, x) 7→ (d(ψ ◦ ϕ−1)x(u), ψ ◦ ϕ−1(x)). This satisfies a
cocycle relation and hence defines a vector bundle atlas on TM = (∪(U,ϕ)∈AR

n × ϕ(U))/ ∼ with
the projection π : TM →M . The tangent space TxM at a point x ∈M is then simply the vector
space π−1(x). Unraveling the definition, we see that an element of TxM is an equivalence class of
(u, x) ∈ Rn × ϕ(U) where (u, x) ∼ (v, y) when y = ψ ◦ ϕ−1(x) and v = d(ψ ◦ ϕ−1)x(u). We define
the cotangent bundle T ∗M as the dual bundle of TM , and

∧k T ∗M the exterior powers.

Differential forms and vector fields on a manifold A differential k-form α on a manifold
M is a smooth section of the bundle

∧k T ∗M . Concretely, given an atlas A on M , α is the data of
a differential k-form αU on ϕ(U) for each chart (U,ϕ) ∈ A such that αU = (ψ ◦ ϕ−1)∗αV for any
two charts (U,ϕ), (V, ψ). The differential dα is well-defined by dαU in each chart (U,ϕ) thanks to
the relation d(ψ ◦ ϕ−1)∗ = (ψ ◦ ϕ−1)∗d. A vector field is a smooth section X of TM , or concretely
a vector field XU : U → Rn for each chart (U,ϕ) of an atlas A, such that (ψ ◦ ϕ−1)∗XU = XV for
any two charts (U,ϕ), (V, ψ).

All the formulas that we have seen in Rn relating the operators ϕ∗, ϕ∗, ∧, d, LX , iX , [., .] are
of local nature, and hence also hold on manifolds.

De Rham cohomology Let M be a manifold. We denote by Ωi(M) the vector space of differ-
ential i-forms on M . The differential d gives a linear map d : Ωi(M) → Ωi+1(M). An i-form α is
called closed if dα = 0 and exact if there exists β ∈ Ωi−1(M) such that α = dβ. Since d ◦ d = 0 the
exact forms are closed. The ith group of de Rham cohomology is

H i
dR(M) = ker(d : Ωi(M)→ Ωi+1(M))/im(d : Ωi−1(M)→ Ωi(M)).

Integration Assume that ϕ : V → U is a diffeomorphism of open sets in Rn and that a : U → R
is an integrable function. Then

∫
U a dx1 · · · dxn =

∫
V (a ◦ ϕ)|det(dϕ)| dy1 · · · dyn. On the other

hand, using the formula (ϕ∗α)p(v1, . . . , vk) = αϕ(p)(dϕp(v1), . . . , dϕp(vk)) we see that ϕ∗(a dx1 ∧
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· · ·∧dxn) = (a◦ϕ)(det(dϕ)) dy1∧· · ·∧dyn. We say that ϕ is orientation preserving (resp. reversing)
if det(dϕ) > 0 (resp. < 0). Any n-form ω on U is uniquely written ω = a dx1 ∧ · · · ∧ dxn for some
function a. We define

∫
U ω =

∫
U a dx1 · · · dxn. Our discussion implies that

∫
V ϕ
∗ω =

∫
U ω if ϕ is

orientation preserving and
∫
V ϕ
∗ω = −

∫
U ω if ϕ is orientation reversing.

We say that a manifold M is orientable if there exists an atlas (Ui, ϕi), i ∈ I, such that the
maps ϕj ◦ϕ−1

i preserve the orientation, for all i, j ∈ I. In this case an orientation of M is a choice
of equivalence classes of such atlases (we say M is oriented if an orientation is chosen). If M is
oriented, we say that an n-form ω is positive if it is written in local coordinates ω = a dx1∧· · ·∧dxn
with a > 0. If M is oriented, the cotangent space T ∗xM at any point x has a natural orientation
given as follows: a basis (e1, . . . , en) is positive (in the sense of a positive basis of an oriented vector
space) if e1 ∧ · · · ∧ en is positive in the above sense. The tangent space TxM comes with the dual
orientation.

If M is oriented of dimension n, we define the integral of an n-form ω on M , with compact sup-
port, as follows. We choose an atlas (Ui, ϕi), i ∈ I, and a partition of unity fi, i ∈ I, subordinated
to the covering Ui (that is, supp(fi) ⊂ Ui and

∑
i fi = 1). We then set∫

M
ω =

∑
i

∫
Ui

(ϕ−1
i )∗(fiω).

We can check that
∫
M ω is independent of the choices of atlas and partition of unity. Moreover, if

ϕ : N →M is an orientation preserving diffeomorphism, then
∫
N ϕ

∗ω =
∫
M ω.

Stokes formula Let M be an oriented manifold of dimension n, U ⊂ M a relatively compact
open subset with a smooth boundary (that is, ∂U is a submanifold of M). For x ∈ ∂U we say
that v ∈ TxM is outward pointing if 〈v, dfx〉 > 0 for a function f : M → R such that dfx 6= 0
and U = {f < 0} around x. The orientation of M induces an orientation of ∂U such that a basis
(e1, . . . , en−1) of Tx∂U is positive if, for v outward pointing, (v, e1, . . . , en−1) is a positive basis of
TxM . With these orientations we have the Stokes formula: for any (n − 1)-form α defined on a
neighborhood of U , ∫

U
dα =

∫
∂U
α.

In particular, if M is compact oriented, then, for any α ∈ Ωn−1(M), we have
∫
M dα = 0. Hence∫

M : Ωn(M) → R factorizes through a natural map
∫
M : Hn

dR(M) → R. We can show that this
last map is an isomorphism when M is connected.

Homotopy groups A nice feature of fibrations is that they give rise to long exact sequences of
homotopy groups.

For a topological space A, x ∈ A, and k ∈ N, the homotopy group πk(A;x) is defined as the
set of continuous maps [0, 1]k → A which maps the boundary of the cube to x, modulo homotopy
among such maps. It has a natural group structure given by concatenating cubes. For k = 1, it is
also called the fundamental (or Poincaré) group. For k ≥ 2, πk(A;x) is abelian. Next for a pair
of topological spaces (A,B) (i.e., A is a topological space and B ⊂ A is endowed with the induced
topology) and x ∈ B, we define the relative homotopy group πk(A,B;x) as the set of homotopy
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classes of continuous maps [0, 1]k → A which maps the boundary to B and a specific point, say
(1, 0, . . . , 0), to x. There are obvious maps πk(B;x) → πk(A, x), πk(A;x) → πk(A,B;x) and also
a boundary map πk(A,B;x)→ πk−1(B;x) which form a long exact sequence:

· · · → πk+1(A,B;x)→ πk(B;x)→ πk(A, x)→ πk(A,B;x)→ πk−1(B;x)→ . . . .

Proposition 1.5. Let f : E → B be a fibration, x ∈ B and F = f−1(x). Then the map

πk(E,F ;x)→ πk(B; f(x))

induced by f is an isomorphism. In particular the long exact sequence of homotopy groups can be
written:

· · · → πk+1(B; f(x))→ πk(F ;x)→ πk(E, x)→ πk(B; f(x))→ πk−1(F ;x)→ . . . .



Chapter 2

Symplectic geometry

2.1 Symplectic linear algebra

Symplectic vector spaces

Definition 2.1. A symplectic vector space (V, ω) is a finite-dimensional real vector space V together
with a bilinear form ω which is non-degenerate (i.e., kerω = {u ∈ V ; ∀v ∈ V, ω(u, v) = 0} = {0})
and skew-symmetric (i.e., ∀u, v ∈ V, ω(u, v) = −ω(v, u)).

Definition 2.2. The ω-orthogonal complement to a subspace F of V is denoted F⊥ω = {u ∈
V,∀v ∈ F, ω(u, v) = 0}.

Lemma 2.3. dimF + dimF⊥ω = dimV .

Proof. The non-degeneracy condition says that the linear map V → V ∗ defined by v 7→ ιvω = ω(v, .)
has zero kernel and is thus an isomorphism since V is finite dimensional. Now F⊥ω is the kernel
of the surjective map V → F ∗ obtained by composing with V ∗ → F ∗, hence dimV = dimF ∗ +
dimF⊥ω .

Definition 2.4. A subspace F is called

• symplectic if F⊥ω ∩ F = {0} (or equivalently ω is non-degenerate on F ),

• isotropic if F ⊂ F⊥ω ,

• coisotropic if F⊥ω ⊂ F ,

• Lagrangian if F⊥ω = F ,

Proposition 2.5. Let (V, ω) be a symplectic vector space. Then there exists n ∈ N such that
dimV = 2n and a symplectic basis for V , namely a basis (e1, . . . , en, f1, . . . , fn) such that ω =∑n

i=1 e
∗
i ∧ f∗i .

17
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Proof. We prove it by induction. If dimV = 0, it is clear. Assume that, for some k ≥ 0, the
statement holds if dimV ≤ k and take V of dimension k + 1. Let e1 ∈ V \ {0}. Since ω is non-
degenerate there exists f ′1 ∈ V such that ω(e1, f

′
1) 6= 0. Take f1 =

f ′1
ω(e1,f ′1)

so that ω(e1, f1) = 1,
and set F = 〈e1, f1〉. Because ω is skew-symmetric, F necessarily has dimension 2 and it is a
symplectic subspace: F ⊕F⊥ω = V . By induction, F⊥ω has dimension 2n− 2 for some n ≥ 1, and
admits a symplectic basis (e2, . . . , en, f2, . . . , fn).

In particular, any symplectic vector space is isomorphic to the standard symplectic space R2n

with symplectic form ω0 represented by the matrix

Ω0 =

(
0 In
−In 0

)
.

Example 2.6. Let (e1, . . . , en, f1, . . . , fn) be a symplectic basis of a symplectic vector space (V, ω).

• F = 〈e1, . . . , ek〉 is isotropic,

• F⊥ω = 〈e1, . . . , ek, ek+1, . . . , en, fk+1, . . . , fn〉 is coisotropic,

• for k = n, F = F⊥ω is Lagrangian.

Lemma 2.7. Let (V, ω) be a symplectic vector space and F ⊂ V a subspace. If F is isotropic, then
any basis (e1, . . . , ek) of F can be extended to a symplectic basis (e1, . . . , en, f1, . . . , fn) of V .

If F is coisotropic, then there exists a symplectic basis (e1, . . . , en, f1, . . . , fn) of V such that
F = 〈e1, . . . , en, fk+1, . . . , fn〉.

Proof. (i) If k = 1, this follows from (the proof of) Proposition 2.5. We argue by induction and
assume k > 1.

We set G = 〈e2, . . . , ek〉. Then G ⊂ F ⊂ F⊥ω ⊂ G⊥ω and G⊥ω has dimension one more than
F⊥ω . We choose f1 ∈ G⊥ω \ F⊥ω . We must have ω(e1, f1) 6= 0 and, multiplying f1 by a scalar, we
can assume ω(e1, f1) = 1. We set W = 〈e1, f1〉; it is a symplectic subspace. We have G ⊂ W⊥ω

and we can apply the induction hypothesis to G. We obtain a basis (e2, . . . , en, f2, . . . , fn) of W⊥ω .
Adding (e1, f1) to this basis gives the result.

(ii) The second assertion follows from the first oen applied to F⊥ω .

Definition 2.8. The automorphisms ϕ of V which preserve ω, namely ω(ϕ(u), ϕ(v)) = ω(u, v)
for all u, v ∈ V , are called linear symplectomorphisms and form a subgroup denoted Sp(V, ω) of
GL(V ). The corresponding subgroup of GL(2n,R) consisting of matrices A such that ATΩ0A = Ω0

is denoted Sp(2n,R).

Proposition 2.9. Sp(V, ω) ⊂ SL(V ), namely detϕ = 1 for all ϕ ∈ Sp(V, ω).

Proof. Recall that, if dimV = 2n, Λ2nV ∗ is 1-dimensional and detϕ can be defined as the en-
domorphism ΛnV ∗ → ΛnV ∗ induced by ϕ. Now since ω is non-degenerate, ωn 6= 0 ∈ ΛnV ∗.
Indeed, in a symplectic basis, ωn = (e∗1 ∧ f∗1 + · · · + e∗n ∧ f∗n)n = n!e∗1 ∧ f∗1 ∧ · · · ∧ e∗n ∧ f∗n. But
ϕ∗(ωn) = (ϕ∗ω)n = ωn and thus detϕ = 1.
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We now describe the process of symplectic reduction.

Proposition 2.10. Let (V, ω) be a symplectic vector space and W a coisotropic subspace.

1. ω induces a symplectic form, say ω′, on W/W⊥ω ,

2. For a subspace F of V we set FW = (F ∩W +W⊥ω)/W⊥ω , which is a subspace of W/W⊥ω .
Then (F⊥ω)W = (FW )⊥ω′ . In particular, if F is Lagrangian, then FW is Lagrangian.

Proof. 1. For u1, u2 ∈ W and v1, v2 ∈ W⊥ω , ω(u1 + v1, u2 + v2) = ω(u1, u2), hence ω induces a
form ω′ on the quotient W/W⊥ω . If a1 ∈W/W⊥ω is in the kernel of ω′, then any lift u1 ∈W is in
W⊥ω and thus a1 = 0.

2. We have

(F ∩W +W⊥ω)⊥ω = (F ∩W )⊥ω ∩W = (F⊥ω +W⊥ω) ∩W = F⊥ω ∩W +W⊥ω ,

where the last equality follows from W⊥ω ⊂ W . Quotienting by W⊥ω and using the definition of
ω′ we obtain (F⊥ω)W = (FW )⊥ω′ .

If L is any vector space, the sum L ⊕ L∗ has a natural symplectic structure, say ωL, given by
ωL((v, v′), (w,w′)) = 〈v, w′〉 − 〈v′, w〉. The subspaces L⊕ {0} and {0} ⊕ L∗ are Lagrangian.

Proposition 2.11. Let (V, ω) be a symplectic vector space and let L1, L2 ⊂ V be two Lagrangian
subspaces. We assume that L1 + L2 = V .

1. The map u : L2 → L∗1, v 7→ (w 7→ ω(v, w)), identifies L2 with L∗1 and gives an isomorphism
(L1 ⊕ L∗1, ωL1) 7→ (V, ω), (v, v∗) 7→ v + u−1(v∗).

2. Let a : L1 → L∗1 be a symmetric linear map (that is, a∗ = a). Then La = {v + u−1(a(v));
v ∈ L1} is a Lagrangian subspace of V which is transverse to L2 (La ⊕ L2 = V ).

3. Any Lagrangian subspace of V which is transverse to L2 is of the type La for a unique
symmetric map a.

Proof. (1) follows from the non-degeneracy of ω and the definitions of u and ωL1 .
(2) Using the isomorphism in (1), it is enough to see, for any v, w ∈ L1, ωL1((v, a(v)), (w, a(w))) =

〈v, a(w)〉 − 〈w, a(v)〉 = 0 which follows from the symmetry of a.
(3) Let L ⊂ V be Lagrangian and transverse to L2. Using the isomorphism in (1) we see

L as a Lagrangian subspace of L1 ⊕ L∗1. Then it is transverse to {0} ⊕ L∗1 and we can see it
as the graph of a map a : L1 → L∗1. Then for v, w ∈ L1 we have (v, a(v)), (w, a(w)) ∈ L and
ωL1((v, a(v)), (w, a(w))) = 〈v, a(w)− a∗(w)〉. Hence L is Lagrangian if and only if a is symmetric.

Hermitian vector spaces On a complex vector space, the multiplication by i defines an endo-
morphism J such that J2 = −id. Conversely, an endomorphism J with J2 = −id on a real vector
space determines a complex structure by (a+ ib)v = av + bJv.
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Definition 2.12. Let V be a finite-dimensional vector space. A symplectic form ω and a complex
structure J are compatible if g(u, v) = ω(u, Jv) is a scalar product, namely ω(v, Jv) > 0 for all
v 6= 0 and ω(v, Jw) = ω(w, Jv).

Given compatible ω and J , we define 〈u, v〉 = ω(u, Jv)− iω(u, v) and check that this defines a
Hermitian scalar product, namely

• 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉,

• 〈λu, v〉 = λ〈u, v〉,

• 〈u, λv〉 = λ〈u, v〉,

• 〈u, v〉 = 〈v, u〉,

• 〈u, u〉 ≥ 0 with equality if and only if u = 0.

On a hermitian vector space (V, ω, J, g) we have several subgroups of GL(V ) : U(V ), Sp(V, ω),
O(V, g), GL(V, J) preserving respectively 〈, 〉, ω, g and J .

Proposition 2.13. Let (V, ω, J, g) be a hermitian vector space.

U(V ) = O(V, g) ∩ Sp(V, ω) = O(V, g) ∩GL(V, J) = Sp(V, ω) ∩GL(V, J).

Proof. Among the structures ω, g, J two out of three determine the third:

• g(u, v) = ω(u, Jv),

• ω(u, v) = −g(u, Jv),

• Given v, Jv is the inverse of g(., v) ∈ V ∗ by the map V → V ∗ induced by ω.

The result follows.

Let (V, g) be a euclidean vector space, recall that an endomorphism a ∈ End(V ) has an adjoint
a∗ ∈ End(V ) defined by g(au, v) = g(u, a∗v) for all u, v ∈ V . Then we define Sym(V, g) = {a ∈
End(V ), a∗ = a} and the subsets Sym+(V, g) (resp. Sym++(V, g)) of non-negative (resp. positive)
symmetric endomorphisms.

Lemma 2.14. The exponential map defines a diffeomorphism exp : Sym(V, g)→ Sym++(V, g), its
inverse is denoted log.

Proof. For all a ∈ End(V ), we have exp(a)∗ = exp(a∗). Hence exp(Sym(V, g)) ⊂ Sym(V, g). For
any a ∈ End(V ) and λ ∈ R, we have ker(a−λid) ⊂ ker(exp(a)−exp(λ)id). Now any a ∈ Sym(V, g)
can be diagonalized in an orthonormal basis, hence V = ⊕λ∈R ker(a−λid) = ⊕µ∈R ker(exp(a)−µid)
and thus ker(a− λid) = ker(exp(a)− exp(λ)id) for all λ ∈ R. This shows that exp(a) has positive
eigenvalues, i.e. exp(a) ∈ Sym++(V, g), and that exp(a) = exp(b) implies a = b since a and b would
then have the same eigenspaces. The inverse map log is well-defined by setting, for s ∈ Sym++(V, g),
log(s) to be the endomorphism with same eigenspaces as s and eigenvalues the logarithm of the
eigenvalues of s.
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Next we prove that it is a diffeomorphism. Since exp is defined by a normally convergent series,
it is smooth. The differential of exp at a ∈ End(V ) equals ea 1−e−ada

ada
where ada(h) = ah− ha. If a

is diagonalizable with eigenvalues λi, then so does ada with eigenvalues (λi−λj). Finally, since the
function 1−e−x

x nowhere vanishes on real numbers, we obtain that da exp is bijective. The result
now follows from the inverse function theorem.

Recall that an automorphism a of a euclidean vector space (V, g) admits a unique polar decom-
position, namely a = q ◦ s where q ∈ O(V, g) and s ∈ Sym++(V, g). Indeed, set s = exp(1

2 log(a∗a))
and q = as−1, and check q∗q = s−1a∗as−1 = s−1s2s−1 = id. This shows existence and unique-
ness of the decomposition. This defines a map P : GL(V ) → O(V, g) × Sym++(V, g) which is a
diffeomorphism.

Proposition 2.15. Let (V, ω, J, g) be a hermitian vector space.

1. the logarithm maps Sym++(V, g)∩Sp(V, ω) on the subspace W = {l ∈ Sym(V ), lJ +Jl = 0}.

2. Sp(V, ω) = P−1(U(V )× (Sym++(V, g) ∩ Sp(V, ω)).

Proof. 1. For s ∈ Sym++(V, g), s ∈ Sp(V, ω) ⇔ J−1sJ = s−1. If s = exp(l), then J−1sJ =
exp(J−1lJ) and J−1lJ = −l⇔ J−1sJ = exp(−l) = s−1.

2. s = exp(1
2 log(a∗a)) and a∗ ∈ Sp(V, ω), hence log(a∗a) ∈ W and s ∈ Sp(V, ω). Finally

q = as−1 ∈ Sp(V, ω) ∩O(V, g) = U(V ).

SinceW in the proposition above is a vector space, it follows that Sp(V, ω) deformation retracts
onto U(V ). In particular, they have the same homotopy groups.

Corollary 2.16. Sp(V, ω) is path-connected.

Proof. It is enough to prove it for U(V ) due to the previous proposition. U(V ) is path-connected
since any element of U(V ) can be diagonalized in a orthonormal basis and its eigenvalues are
complex numbers of moduli 1 which can be joined by continuous paths to 1 among such complex
numbers.

Corollary 2.17. The fundamental group of Sp(V, ω) is isomorphic to Z.

Proof. As in the previous proof, it is enough to prove it for U(V ). Consider the (complex) deter-
minant map det : U(V ) → S1. It is a smooth fibration with fiber (over 1) the subgroup SU(V ).
The long exact sequence of homotopy groups associated to this fibration writes:

π1SU(V )→ π1U(V )→ π1S
1 → π0SU(V ).

Since π1S
1 = Z it is enough to show that SU(V ) is simply-connected. Elements of SU(V ) are

diagonalizable in a unitary basis, with eigenvalues λi, i = 1, . . . , n, such that
∏
i λi = 1. One can

then connect such an element to id by choosing path in S1 joining λ2, . . . , λn to 1 and setting
λ1 = (λ2 × · · · × λn)−1. To prove that π1SU(V ) = 0, we proceed by induction. If dimC V = 1,
then SU(V ) = {1}. If dimC V ≥ 1, then consider the unit sphere S(V ), a vector u ∈ §(V ) and the
map SU(V ) → S(V ) defined by a 7→ a(u). This is also a fibration whose fiber over u is naturally
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identified with SU(u⊥) where u⊥ denotes the complex hyperplane orthogonal to u. The long exact
sequence associated with this fibration writes:

π1SU(u⊥)→ π1SU(V )→ π1S(V ).

By induction π1SU(u⊥) = 0 and since S(V ) has dimension ≥ 2 (in fact ≥ 3), π1S(V ) = 0. Hence
π1SU(V ) = 0.

Recall that on a vector space V of dimension n, the Grassmannian of k-planes is the set of
k-dimensional subspaces of V , denoted Grk(V ). It has a natural structure of manifold of dimension
k(n − k), a smooth atlas being given as follows: for each P ∈ Grn−k(V ) consider the subset
UP ⊂ Grk(V ) of all L such that L⊕P = V . Then UP is naturally an affine space over Hom(V/P, P ):
given L,L′ ∈ UP , L′ is the graph of a unique linear map u : L = V/P → P . If L ∈ UP ∩ UP ′ , the
change of coordinates Hom(L,P ) → Hom(L,P ′) is given by u 7→ ϕ ◦ u ◦ (idL + π′ ◦ u)−1 where
π′ : P → L is the projection parallel to P ′ and ϕ : P → P ′ is the (bijective) projection parallel to L.
This change of coordinates is smooth and hence gives a smooth structure to Grk(V ). Another point
of view is to fix a scalar product on V and let O(V ) act on Grk(V ). The action is transitive with
stabilizer at a point L naturally identified with O(L)×O(L⊥). This shows furthermore that Grk(V )
is compact. When V = Rn, we also write Grk(V ) = Grk,n and get Grk,n ' O(n)/O(k)×O(n− k).

Given a symplectic vector space (V, ω), we denote by Lag(V, ω) the Lagrangian Grassmannian
the set of Lagrangian subspaces of V . If dimV = 2n, then Lag(V, ω) is a subset of Grn(V ).

Proposition 2.18. Let (V, ω) be a symplectic vector space of dimension 2n. Lag(V, ω) is a compact
submanifold of dimension n(n+1)

2 of Grn(V ).

Proof. Let L ∈ Lag(V, ω) and consider the chart UL of Grn(V ) made of all subspaces supplementary
to L. The symplectic form ω induces an isomorphism V/L 7→ L∗. Hence UL is an affine space over
Hom(L∗, L). For u ∈ Hom(L∗, L), the formal adjoint u∗ ∈ Hom(L∗, (L∗)∗) = Hom(L∗, L) lands in
the same space, hence we may consider the subspace Sym(L∗, L) defined by the equation u∗ = u.
It turns out that UL ∩ Lag(V, ω) is an affine subspace over Sym(L∗, L): if P ∈ UL ∩ Lag(V, ω),
P ′ ∈ UL, then P ′ is the graph of u : P → L and P ′ is Lagrangian if and only if for all (x, y) ∈ P ,
ω(x + u(x), y + u(y)) = 0. Since P and L are Lagrangian, this last condition is equivalent to
ω(u(x), y) +ω(x, u(y)) = 0, or, under the isomorphism P ' L∗, y(u(x)) = x(u(y)), namely u∗ = u.
Finally, since u∗ = u is a closed condition and Grn(V ) is compact, Lag(V, ω) is also compact.

For another description of Lag(V, ω), fix a compatible complex structure J and let U(V ) act
on Lag(V, ω). The action is transitive and the stabilizer is precisely O(L). Hence Lag(V, ω) is
U(V )/O(L). If V = R2n, we also write Lag(n) and we have Lag(n) ' U(n)/O(n). One can check
that the dimension is right: dim U(n)− dim O(n) = n2 − n(n−1)

2 = n(n+1)
2 .

Proposition 2.19. Lag(V, ω) is connected and π1Lag(V, ω) ' Z.

Proof. Fix a Lagrangian subspace L ∈ Lag(V, ω) and the induced identification Lag(V, ω) '
U(V )/O(L). Since U(V ) is connected, we get that Lag(V, ω) is also connected. We have seen
that the (complex) determinant U(V ) → S1 induces an isomorphism on π1. Also, an element
of O(L) seen in U(V ) (in matrix language, the natural inclusion O(n) ⊂ U(n)) has determinant
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±1. Hence the map det2 : U(V )/O(L) → S1 is well-defined and we have the following diagram of
fibrations:

O(L) U(V ) U(V )/O(L)

{±1} S1 S1

det det det2

.2

(2.1)

On homotopy groups, this induces a map of long exact sequences:

π1O(L) π1U(V ) π1U(V )/O(L) π0O(L) 0

0 Z Z Z/2 0

0

det det

δ

det2 det

2

(2.2)

Since π1{±1} = 0 and det : π1U(V ) → Z is an isomorphism, we get that the map π1O(L) →
π1U(V ) is zero. Finally, since det : π0O(L) → Z/2 is an isomorphism, we obtain from the five
lemma (simple diagram chasing) that det2 : π1U(V )/O(L)→ Z is an isomorphism.

2.2 Symplectic manifolds

Definition 2.20. Let M be a manifold. A symplectic form on M is a 2-form ω ∈ Ω2(M) which
is closed (dω = 0) and non-degenerate: for any x ∈ M , the form ωx on the vector space TxM is
non-degenerate.

If (M,ω) is symplectic, all spaces (TxM,ωx) are symplectic by definition. In particular, as in
the linear case, the non-degeneracy condition is equivalent to “ωn is a volume form”. In particular
any symplectic manifold is oriented. It is usual to normalize ωn and call ν = 1

n!ω
n the symplectic

volume form.
The definitions given in the case of R2n extend to the general case. A diffeomorphism ϕ from

(X,ω) to (X ′, ω′) is called symplectic (= symplectomorphism) if ϕ∗ω′ = ω.
Since ω is non-degenerate, it gives an isomorphism between TxM and T ∗xM at each x ∈M . It

induces an isomorphism between vector fields onM and 1-forms onM . More explicitly, to a vector
field X we associate the 1-form ιX(ω). Conversely, for any 1-form α there exists a unique vector
field X such that α = ιX(ω).

For a (maybe time-dependent) function H on (X,ω) we denote by XH (or Xt
H) the vector field

defined by ιXHω = −dH (or ιXt
H
ω = −dHt if H depends on time). We denote by ϕtH the flow

of Xt
H (if defined). They are called the Hamiltonian vector field and the Hamiltonian flow of H

(which often called a Hamiltonian function).

Lemma 2.21. Let X be a vector field on (M,ω) with a well-defined flow ϕt. Then (ϕt)∗ω = ω if
and only if ιXt(ω) is closed (we say X is a symplectic vector field). Moreover X is the Hamiltonian
vector field of some function if and only if ιXt(ω) is exact (we say X is a Hamiltonian vector field).
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Proof. Since ϕ∗0ω = ω, we have ϕ∗tω = ω for all t if and only if d
dtϕ
∗
tω = 0 for all t. Then from the

formula
d

dt
ϕ∗tω = ϕ∗t (LXtω) = ϕ∗t (ιXtdω + d(ιXtω)) = ϕ∗t (d(ιXtω)),

this is equivalent to ιXtω being closed. Finally, ιXtω is exact: ιXtω = −dHt, by definition when ϕt
is a Hamiltonian isotopy.

Proposition 2.22. The symplectomorphisms of (M,ω) which are of the form ϕTH for some time-
dependent Hamiltonian H : M × [0, 1] → R form a normal subgroup, denoted Ham(M,ω) of the
group Diff(M,ω) of all symplectomorphisms.

Proof. The proof that Ham(M,ω) is a subgroup is the same as in the case M = R2n. If ψ ∈
Diff(M,ω) and ϕt is a Hamiltonian isotopy with Hamiltonian Ht, then ψ ◦ ϕt ◦ ψ−1 is an isotopy
generated by the vector field ψ∗(XHt). But (ψ∗XHt)yω = ψ∗(XHtyψ

∗ω) = ψ∗(XHtyω) = −d(Ht ◦
ψ), and hence ψ ◦ ϕt ◦ ψ is also a Hamiltonian isotopy generated by Ht ◦ ψt. This shows that
Ham(M,ω) is a normal subgroup.

Definition 2.23. If W is a submanifold of a symplectic manifold (M,ω) we say W is isotropic
(resp. coisotropic, Lagrangian) if the same holds for TxW ⊂ TxM , for all x ∈W .

Examples of symplectic manifolds and Lagrangian submanifolds The basic examples are
in dimension 2. A symplectic structure on a surface is nothing but the datum of a volume form ω.
Hence any orientable surface admits a symplectic structure. If two surfaces (S, ω) and (S′, ω′) are
symplectomorphic, then they are in particular diffeomorphic and have the same volume. We will
see soon using Moser’s Lemma that the converse holds.

In a symplectic vector space of dimension 2, the Lagrangian subspaces are the lines. Hence the
Lagrangian submanifolds of a surface (S, ω) are the curves.

Cotangent bundles

For any manifoldM its cotangent bundle T ∗M has a canonical symplectic form, ωM . More precisely
it even has a canonical 1-form λM called the Liouville form such that ωM = dλM is symplectic.

When we take local coordinates on M , say on a local chart U , we often denote them by
q = (q1, . . . , qn). For such a choice of local chart, T ∗U has natural coordinates associated with
(q1, . . . , qn), usually denoted (p1, . . . , pn, q1, . . . , qn), such that (p1, . . . , pn, q1, . . . , qn) are the coor-
dinates of the point

∑n
i=1 pidqi(x) of T ∗xU where x ∈ U has coordinates (q1, . . . , qn).

In these local coordinates the Liouville form is defined by

λM =

n∑
i=1

pidqi.

We could check that λM is indeed invariant by a change of coordinates in T ∗M which is induced
by a change of coordinates of M . But we can also give a coordinate-free definition of λM as
follows. Let πM : T ∗M → M be the projection to the base (denoted π when there is no risk of
confusion). Its differential gives Dπ : TT ∗M → TM . In particular, for q ∈ M and p ∈ T ∗qM
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defining x = (p, q) ∈ T ∗M , we have Dπx : TxT
∗M → TqM . We define (λM )x ∈ T ∗xT ∗M , that is,

(λM )x : TxT
∗M → R by

(λM )x(v) = 〈Dπx(v), p〉 for all v ∈ TxT ∗M .

As said above we define ωM by ωM = dλM . It is exact by definition, hence closed. Using a local
chart we obtain

ωM =
n∑
i=1

dpi ∧ dqi

which is the same formula as the symplectic form of R2n already studied. In particular it is
non-degenerate.

Proposition 2.24. For θ ∈ Ω1(M), we write sθ : M → T ∗M the corresponding section. There is
a unique 1-form λ on T ∗M such that for all θ ∈ Ω1(M), s∗θλ = θ.

Proof. In local coordinates (p1, . . . , pn, q1, . . . , qn) a 1-form θ writes θ =
∑

i fidqi and the corre-
sponding section writes sθ(q1, . . . , qn) = (f1, . . . , fn, q1, . . . , qn). Hence s∗θλM =

∑
i fidqi = θ. This

shows existence. For uniqueness, pick a vector v ∈ Tx(T ∗M) and a section sθ whichis tangent to
v at x, then λ(v) = λ(dsθ ◦ dπ(v)) = (s∗θλ)(dπ(v)) = θ(dπ(v)). Hence λ is determined by this
property.

The graph of a 1-form θ on M is Lagrangian if and only if s∗θ(dλ) = 0 if and only if dθ = 0.
This gives a first family of Lagrangian submanifolds of T ∗M : the graphs of closed 1-forms. The
zero-section is a particular case, and in fact all Lagrangian submanifolds sufficiently C1-close to
the zero-section are of this type. A second family is given by conormal bundles of submanifolds
of M . Let N ⊂ M be a submanifold. Then TN is a submanifold of TM and T ∗NM = {(p, q);
q ∈ N , p ∈ (TqN)⊥} is a submanifold of T ∗M . We see that dimT ∗NM = dimM , for any N . By
the definition (λM )(p,q)(v) = 〈Dπx(v), p〉 we see that λM |T ∗NM = 0. In particular ωM |T ∗NM = 0 and
T ∗NM is Lagrangian.

We remark that T ∗NM is also conic in the sense that (p, q) ∈ T ∗NM implies (ap, q) ∈ T ∗NM ,
for all a > 0. Any conic Lagrangian submanifold is locally of this type. More generally let us set
Ṫ ∗M = T ∗M \ 0M , where 0M = {(0, q); q ∈} is the zero section of T ∗M . Let L ⊂ Ṫ ∗M be a conic
Lagrangian submanifold. Let U ⊂ L be the open subset where the πM |L : L → M has maximal
rank: r = max{rankD(πM |L)x; x ∈ L} and U = {x ∈ L; rankD(πM |L)x = r}. Then N = πM (U)
is an immersed submanifold of M and L = T ∗NM in a neighborhood of U . We remark that r is at
most dimM − 1; in this case N is some hypersurface and L is locally half of T ∗NM .

If M is also endowed with a Riemannian metric, the metric gives a Hamiltonian function
on T ∗M by H(p, q) = ||p||2. In the case of a Euclidean metric in normal coordinates we have
H(p, q) =

∑
i p

2
i and XH =

∑
i 2pi

∂
∂qi

. In general we can identify TM and T ∗M through the
metric. Then the sphere bundle of TM becomes the level set H−1(1). This is preserved by the
flow ϕH of XH and ϕH gets identified with the geodesic flow on the sphere bundle.

On Ṫ ∗M we can also consider the Hamiltonian function H(p, q) = ||p||. Then ϕH sends a conic
Lagrangian submanifold to a conic Lagrangian submanifold. For a compact submanifold N of M
and for t > 0 small, Nt = {x ∈M ; d(x,N) < t} is an open subset with a smooth boundary. Then
ϕt(T ∗NM) is half of T ∗∂NtM .
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Complex projective space

We define CPn as the set of complex lines in Cn+1. If we let C∗ act by multiplication on Cn+1, we
have CPn = (Cn+1 \ {0})/C∗. Let S1 ⊂ C∗ be the unit circle and S2n+1 ⊂ Cn+1 the unit sphere.
We also have CPn = S2n+1/S1. The image of a point (z0, . . . , zn) is denoted [z0 : · · · : zn]. We
have a natural structure of (complex) manifold on CPn given by the n + 1 charts Uj = {zj 6= 0}
and fj : Uj ∼−→ Cn, [z0 : · · · : zn] 7→ ( z0zj , . . . , (̂

zj
zj

), . . . , znzj ).
We identify Cn+1 and R2n+2 via zj = xj+iyj and define the symplectic form ω0 =

∑
j dxj∧dyj .

Then ω0 is invariant by the action of S1.

Lemma 2.25. Let j : S2n+1 → Cn+1 be the inclusion and π : S2n+1 → CPn the projection. Then
there exists a unique 2-form ωFS on CPn such that j∗ω0 = π∗ωFS. Moreover ωFS is a symplectic
form and, for any x ∈ S2n+1, the tangent space (Tπ(x)CPn, ωFS,π(x)) is the symplectic reduction of
(TxC

n+1, ω0,x).

The form ωFS is called the Fubini-Study form.

Proof. (i) The existence of ωFS comes from the general fact that j∗ω0 is S1-invariant and its kernel
contains the vertical vectors, that is, if v ∈ TxS

2n+1 satisfies Dπx(v) = 0, then ωFS(v, w) = 0
for all w ∈ TxS2n+1 (indeed, the vector field X =

∑
yj

∂
∂xj
− xj ∂

∂yj
is tangent to S2n+1 satisfies

Xyj∗ω0 =
∑
xjdxj + yjdyj = 0).

Indeed, for y ∈ CPn and v, w ∈ TyCPn we choose x ∈ S2n+1 and v′, w′ ∈ TxS2n+1 such that
π(x) = y and dπx(v′) = v, dπx(w′) = w. By the condition on the kernel the scalar ωtmpx (v, w) :=
ω0(v′, w′) is independent of v′, w′. If x′ is another point with π(x′) = y, we can find s ∈ S1 such
that s · x = x′. Let us denote ms : S2n+1 → S2n+1 the multiplication by s. The invariance of ω0

says (ω0)x′(Dms(v
′), Dms(w

′)) = (ω0)x(v′, w′). This proves ωtmpx (v, w) = ωtmpx′ (v, w). Hence we
can define (ωFS)y(v, w) := ωtmpx (v, w). It is clear on this definition that j∗ω0 = π∗ωFS .

(ii) Since π is a submersion (Dπx : TxS
2n+1 → Tπ(x)CPn is surjective), the condition π∗(dωFS) =

dπ∗ωFS = dj∗ω0 = 0 implies dωFS = 0. The uniqueness of ωFS follows from the same argument.
(iii) At any x ∈ S2n+1, the kernel of ω0|TxS2n+1 is in fact exactly the set of vertical vectors. It

follows that the kernel of (ωFS)π(x) is {0}. This proves that (Tπ(x)CPn, ωFS,π(x)) is the symplectic
reduction of (TxC

n+1, ω0,x). Hence ωFS is non-degenerate.

There are two well-known Lagrangian submanifolds of (CPn, ωFS), the real projective space
and the Clifford torus, defined by

RPn = {[z0 : · · · : zn] ∈ CPn; z0, . . . , zn ∈ R},
Tn = {[z0 : · · · : zn] ∈ CPn; |z0| = · · · = |zn|}.

To prove this we use that (Tπ(x)CPn, ωFS,π(x)) is the symplectic reduction of (TxC
n+1, ω0,x), for

any x ∈ S2n+1. To see that RPn is Lagrangian, we write RPn = π(Rn+1 ∩ S2n+1). Then, for
x ∈ S2n+1, Tπ(x)RPn is the symplectic reduction of TxRn+1, which is Lagrangian. For Tn, we
write Tn = π(Cn+1), where C ⊂ C is the circle of radius 1/

√
n+ 1. Since C is Lagrangian in C,

Cn+1 is Lagrangian in Cn+1 and we conclude as in the case of RPn.
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2.3 Almost complex structures

Our manifold M = CPn is actually a complex manifold in the sense that we can find an atlas
(Ui, ϕi), i ∈ I, where ϕi maps Ui to an open subset of Cn and the maps ϕj ◦ϕ−1

i are holomorphic.
The tangent spaces TxM then have a complex structure. In this situation the linear operator
“multiplication by i” is denoted by J : TM → TM .

In general an almost complex structure on a (real) manifold M is an automorphism J : TM →
TM of the tangent bundle such that J2 = −idTM . (An almost complex structure does not nec-
essarily come from a structure of complex manifold on M ; if this is the case the almost complex
structure is called integrable.)

When a manifold M has both a symplectic structure ω and an almost complex structure J we
say that J and ω are compatible if

ω(Jv, Jw) = ω(v, w) for all q ∈M and v, w ∈ TqM ,
ω(v, Jv) > 0 for all q ∈M and v 6= 0 ∈ TqM .

If J and ω are compatible, we obtain a Riemannian metric g onM by g(v, w) = ω(v, Jw). This met-
ric is compatible with J in the sense that g(Jv, Jw) = g(v, w). We have ω(v, w) = g(Jv,w). This
gives a 1 : 1 correspondence between non-degenerate 2-forms compatible with J and Riemannian
metrics compatible with J .

An easy case is M = Cn with the above symplectic form ω0 =
∑

j dxj ∧ dyj and J the natural
complex structure. Then the associated metric is the usual Euclidean metric. We deduce the case
of M = CPn.

Lemma 2.26. The complex structure J of CPn is compatible with the Fubini-Study form ωFS.

Proof. For the atlas (Uj , fj) given above, the maps fj ◦ f−1
i are holomorphic. Then the operator

JCPn on TCPn is obtained from JCn on Cn by pull-back through the fi’s. It can also be recovered
as follows. Let x ∈ S2n+1 be given and set y = π(x) ∈ CPn. The space TxS2n+1 ⊂ TxCn+1 contains
a maximal complex subspace, namely Vx = TxS

2n+1 ∩ (i · TxS2n+1) and dπx : TxS
2n+1 → TyCPn

identifies Vx and TyCPn as complex vector spaces, that is, dπx(JCn+1v) = JCPn(dπx(v)).
Recall that, for v w ∈ Vx, we have (ωFS)y(dπx(v), dπx(w)) = ω0(v, w). Since the symplectic

structure ω0 and the complex structure of Cn+1 are compatible, it follows that ωFS and JCPn are
also compatible.

There are many complex submanifolds of CPn; they are given by smooth algebraic subvarieties.
For example we can consider “complete intersections”: choose k ≤ n homogeneous polynomials
P1,. . . ,Pk in n + 1 variables and define VP1,...,Pk = {[z0 : · · · : zn]; Pi(z0, . . . , zn) = 0, for all
i = 1, . . . , k}. For a generic choice of Pi’s VP1,...,Pk is a complex submanifold of CPn of codimension
k.

Now let i : Z ↪→ CPn be a complex submanifold. Then i∗ωFS is a symplectic structure on Z.
Indeed i∗ωFS is closed since ωFS is. The only non trivial fact is the non-degeneracy but in our
situation it follows from the fact that ωFS and JCPn are compatible. Indeed, since TZ is stable by
JCPn , it is enough to check that the symmetric form i∗ωFS(·, J ·) is non-degenerate and this follows
from its positivity.
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More generally a Kähler manifold is a complex manifoldM , with complex structure J , endowed
with a symplectic form ω such that ω and J are compatible. As in the case of CPn we see that any
complex submanifold of a Kähler manifold is also a symplectic submanifold (and in fact a Kähler
manifold).

Examples of Kähler manifolds are complex tori TL = Cn/L where L is a lattice of Cn, that
is, a free abelian subgroup of rank 2n, L ' Z2n. An element z ∈ L acts on Cn by the translation
tz : x 7→ x+ z. Let π : Cn → TL be the quotient map. Since tz preserves the standard form ω0 and
dπx : TxC

n ∼−→ Tπ(x)TL for any x ∈ Cn, we deduce that ω0 induces a unique 2-form ωTL such that
ω0 = π∗(ωTL). Then ωTL is symplectic and compatible with the complex structure because the
isomorphism dπx above identifies both the complex and symplectic structures of the tangent spaces
TxC

n and Tπ(x)TL. Thus TL is a Kähler manifold. However TL is not a complex submanifold of
some CPN in general (the proof of this fact relies on the Kodaira embedding theorem – see for
example [Griffiths-Harris, Principles of algebraic geometry, Chap. 2.6]).

All complex manifolds are not Kähler. An easy example is the Hopf surface defined by M =
(C2 \ {0})/Z, where 1 ∈ Z acts on C2 \ {0} by multiplication by 2. As in the case of TL, this
multiplication respects the complex structure and induces a complex structure on M . However M
is diffeomorphic to S3 × S1 (the map (z1, z2) 7→ ( (z1,z2)

‖(z1,z2)‖ ,
log(‖(z1,z2)‖)

log 2 ) induces a diffeomorphism
M → S3 ×R/Z). We deduce that H2(M ;R) ' 0. Hence M has no symplectic structure.

All symplectic manifolds are not Kähler. Here is an example by Kodaira and Thurston (see
[McDuff-Salamon, Introduction to symplectic topology, Ex. 3.1.17]). Let Γ be Z2×Z2 endowed with

the following multiplication: for j = (j, j1) ∈ Z2 we set Aj =

(
1 j1
0 1

)
and we define (j′, k′)◦(j, k) =

(j′ + j, k′ + Aj′k). Then Γ is a group and it acts on R4 by (j, k) · (x, y) = (j + x, k + Ajy). This
action is free and preserves the form ω = dx1 ∧ dx2 + dy1 ∧ dy2. Hence the quotient M = R4/Γ
is a symplectic manifold. We can see that M is compact (one fundamental domain of the action
is contained in [0, 1]4). Its fundamental group is Γ and it follows that H1(M ;Z) ' Γ/[Γ,Γ], where
[Γ,Γ] is the subgroup of Γ generated by the commutators. We find [Γ,Γ] ' 0 ⊕ 0 ⊕ Z ⊕ 0, hence
H1(M ;Z) ' Z3. By Hodge theory, for a Kähler manifold N , the odd Betti numbers dimHi(N ;R)
(i odd) are even. Hence our M cannot be Kähler.

2.4 Moser’s lemma

We usually denote a path of k-forms α on a manifold M by (αt)t∈[0,1] and we set α̇t = dαt
dt .

Proposition 2.27 (Moser’s Lemma for symplectic forms). Let M be a manifold. Let (ωt)t∈[0,1]

be a smooth path of symplectic forms on M . We assume to be given a smooth path of 1-forms
(αt)t∈[0,1] such that ω̇t = dαt and αt vanishes outside some compact set K. Then there exists an
isotopy ϕt of M with support in K such that ϕ0 = id and ϕ∗tωt = ω0.

Proof. We are looking for a vector field Xt which vanishes outside K such that its flow ϕtX satisfies
(ϕtX)∗ωt = ω0. By Proposition 1.2 we have 0 = d

dt((ϕ
t
X)∗ωt) = (ϕtX)∗(LXtωt + d

dtωt). Since
ωt is closed, we deduce, by the Lie-Cartan formula, d(iXtωt) = −ω̇t = −dαt. It is enough to



2.4. MOSER’S LEMMA 29

solve the equation iXtωt = −αt, which has a unique solution by the non-degeneracy of ωt. Since
supp(αt) ⊂ K, we also have supp(Xt) ⊂ K and the flow of Xt (which is well-defined because K
is compact) also has its support in K. By construction (ϕtX)∗ωt is constant, hence equal to ω0, as
required.

Proposition 2.28 (Darboux’s theorem for symplectic structures). Let (M,ω) be a symplectic
manifold of dimension 2n. Then, for any point x0 ∈ M , there exists a chart containing x0 with
coordinates (p1, . . . , pn, q1, . . . , qn) such that ω =

∑n
i=1 dpi ∧ dqi. (Such a chart is called a Darboux

chart.)

Proof. Since the statement is local we can assume M = R2n and x0 = 0. By a linear change of
coordinates we can assume that ω(0) = (

∑n
i=1 dpi ∧ dqi)(0). We let ω0 be the standard symplectic

form of R2n in these coordinates. By the Poincaré lemma there exists a 1-form α such that
ω − ω0 = dα. We can assume that α vanishes at 0 to order 1. Hence there exists C > 0 such that
||α(x)|| ≤ Cx2 and ||dα(x)|| ≤ Cx for ||x|| ≤ 1.

We choose a bump function ρ : R2n → [0, 1] such that ρ(x) = 1 for ||x|| ≤ 1 and ρ(x) = 0 for
||x|| ≥ 2. For ε ∈ (0, 1] and t ∈ [0, 1] we set

ωε,t = ω0 + td(ρεα), where ρε(x) = ρ(ε−1x).

We remark that supp(ρεα) is contained in the ball B2ε of radius 2ε. Hence ωε,t(x) = ω0(x) for
||x|| ≥ 2ε . For ||x|| ≤ 2ε we have

(ωε,t − ω0)(x) ≤ ||dρε||∞||α(x)||+ ||dα(x)||
≤ Cε−1||dρ||∞||x||2 + C||x||
≤ (4C||dρ||∞ + 2C)ε.

Since ω0(x) is non-degenerate, we deduce that, for ε small enough, ωε,t(x) is also non-degenerate.
Hence the hypothesis of Moser’s Lemma are satisfied and there exists an isotopy ϕt with support

in B2ε such that ϕ∗t (ωε,t) = ωε,0 = ω0. By definition ωε,1 = ω inside Bε and we obtain ϕ∗1(ω) = ω0

inside Bε. Hence (Bε, ϕ1) is a Darboux chart.

The classification of symplectic forms up to isomorphism is difficult in general. But for closed
surfaces we have the following corollary of Moser’s lemma.

Proposition 2.29. Let Σ be a connected closed oriented surface. Two symplectic forms ω, ω′ are
conjugate by an orientation-preserving diffeomorphism of Σ if and only if

∫
Σ ω =

∫
Σ ω
′.

Proof. If there exists an orientation-preserving diffeomorphism ϕ with ϕ∗ω = ω′, then
∫

Σ ω
′ =∫

Σ ϕ
∗ω =

∫
Σ ω. Conversely, if

∫
Σ ω =

∫
Σ ω
′, then there exists a 1-form α on Σ such that ω = ω′+dα

(since the integration morphism H2
dR(M)→ R is an isomorphism). Set ωt = ω′+ tdα for t ∈ [0, 1],

it is a smooth path of closed forms. Moreover ωt is non-degenerate: since
∫

Σ ω =
∫

Σ ω
′ and Σ

is connected, ω and ω′ induce the same orientation on Σ, namely for all basis of tangent vectors
(u, v), we have ω(u, v)ω′(u, v) > 0, and hence ωt(u, v) 6= 0. According to Proposition 2.27, there
exists an isotopy ϕt such that ϕ∗tωt = ω0. Hence ϕ1 is an orientation-preserving diffeomorphism
with ϕ∗1ω = ω′.
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Note that any closed orientable surface admits an orientation-reversing diffeomorphism (this
follows from the classification of closed orientable surfaces, it is generally false for higher dimensional
manifolds), and hence a symplectic form ω and its opposite −ω are also conjugate by an orientation-
reversing diffeomorphism.

Another application of Moser’s lemma is the following tubular neighborhood theorem for La-
grangian submanifolds originally due to Weinstein.

Proposition 2.30 (Weinstein neighborhood theorem). Let (M,ω) be a symplectic manifold and
i : L → M a Lagrangian embedding. There exists a neighborhood U of the zero-section L of T ∗L
and an embedding j : U →M such that j = i on L and j∗ω = ωL.

To prove this we need to recall two results. The first is the classical tubular neighborhood
theorem.

Proposition 2.31 (Tubular neighborhood theorem). Let M be a manifold, i : L→M an embed-
ding, νL = (i∗TM)/TL → L the normal bundle of i and π : TM |L → νL the projection. Given
any bundle morphism Φ : νL→ TM |L covering i such that π ◦ Φ = id, there exist a neighborhood
U of the zero-section in νL and an embedding ϕ : U → M such that ϕ = i on L and dϕ = di⊕ Φ
along L (with respect to the decomposition T (νL) = TL⊕ νL along L).

Sketch of proof. Pick a Riemannian metric on M such that the decomposition Φ(νL)⊕ di(TL) =
TM along L is orthogonal. Let ψt : TM → TM be the geodesic flow with respect to this Rie-
mannian metric. Then for x ∈ L and v ∈ νLx, set ϕ(x, v) = (π ◦ ψ1)(i(x),Φx(v)). We check that
ϕ = i and dϕ = di⊕Φ along L, and hence ϕ embeds a neighborhood of the zero-section of νL into
M .

Note that the morphism Φ in the above proposition is determined by the subbundle Φ(νL)
which is supplementary to TL in TM |L. For each x ∈ L, the space of such Φx : νLx → TMx is an
affine space, hence it is always possible to find a global morphism Φ using a partition of unity.

Lemma 2.32 (Relative Poincaré lemma). Let M be a manifold, i : L→ M an embedding, and α
a closed k-form with k ≥ 1 such that i∗α = 0. Then there exists a (k − 1)-form β defined on an
open neighborhood of i(L) such that β vanishes to order 1 along i(L) and α = dβ.

Proof. When L is a point, we can pick a chart to reduce to the case M is a vector space and L
is the origin, which is the usual Poincaré Lemma. Recall a simple proof in this case : consider
the radial vector field X(x) = x, its flow ϕt(x) = etx and set β =

∫ 0
−∞ ϕ

∗
t (ιXα)dt so that dβ =∫ 0

−∞ ϕ
∗
t (dιXα)dt =

∫ 0
−∞ ϕ

∗
t (LXα)dt =

∫ 0
−∞

d
dt(ϕ

∗
tα)dt = α and β = O(|x|2) (since α = O(|x|) and

X = O(|x|)).
In the general case, the proof is similar but involves Proposition 2.31. Consider the fiberwise

radial vector field Y on νL, namely Y is tangent to each fiber νLx and coincides with the radial
vector field on νLx. Pick a tubular neighborhood of L, namely a star-shaped open neighborhood
U of the zero-section of νL and an embedding ϕ : U → M such that ϕ = i on L. Consider
X = ϕ∗Y and its flow ϕt, and set β =

∫ 0
−∞ ϕ

∗
t (ιXα)dt. This is well-defined on ϕ(U) and the same

computation as above shows that dβ = α− limt→−∞ ϕ
∗
tα. But using the assumption i∗α = 0 and

the fact that dϕt converges to the projection to L when t→ −∞, we obtain dβ = α. Finally in a
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coordinates chart (x, v) where {v = 0} = L, we have α = O(|v|), X = O(|v|) and hence β = O(|v|2)
and β vanishes to order 1 along L.

Proof of Proposition 2.30. Since L is Lagrangian there is an isomorphism νL → T ∗L defined by
v 7→ ivω. Recall that in a symplectic vector space the space of Lagrangian subspaces transverse
to a given one is an affine space. Hence, using a partition of unity, we can construct a field L′

of Lagrangian subspaces transverse to TL along L. Next consider the unique bundle morphism
Φ : νL → TM with image L′ and with π ◦ Φ = id where π : TM |L → νL is the projection. Then
the bundle morphism di⊕ dϕ : TL⊕ T ∗L→ TM |L is symplectic provided TL⊕ T ∗L = T (T ∗L)|L
is equipped with the standard symplectic structure. Proposition 2.31 applied with Φ provides a
neighborhood U of the zero-section in T ∗L and an embedding ϕ : U → M such that ϕ∗ω = ωL
along L. From Lemma 2.32, we get a 1-form α defined near L in T ∗L such that ϕ∗ω = ωL + d α
and α vanishes to order 1 along L. The end of the proof is similar to the proof of Proposition 2.28:
use a cutoff function and apply Moser’s lemma. When L is non-compact, it is a bit more difficult
since one needs ε to be a function on L.

Corollary 2.33. Let (M,ω) be a closed symplectic manifold. Then a neighborhood of idM in
Diff(M,ω) can be identified with a neighborhood of 0 in the vector space of closed 1-forms on M .

Proof. We equipp M ×M with the form ω2 = ω ⊕ (−ω). Then the diagonal ∆ is a Lagrangian
submanifold of M ×M . By Proposition 2.30 there exists a neighborhood U of the zero-section of
T ∗∆ and an embedding j : U →M such that j∗ω2 = ω∆.

If ψ ∈ Diff(M,ω), then its graph Γψ is also Lagrangian. If ψ is sufficiently C1-close to idM ,
then Γψ is a subset of j(U) and L := j−1(Γψ) is C1-close to the zero-section. Hence L can be
written as the graph of 1-form: L = {(α(q), q); q ∈ ∆} for α ∈ Ω1(L). Since L is Lagrangian, α is
closed.

We can argue in the reverse direction and associated an element of Diff(M,ω) with any closed
1-form close enough to 0.

Corollary 2.34. Let (M,ω) be a closed symplectic manifold and let ψ ∈ Ham(M,ω). If ψ is
C1-close enough to idM , then ψ has at least two fixed points.

Proof. We use the notations in the proof of the previous corollary. We assume ψ = ψ1 for an
isotopy ψt. Then Γψ is the image of ∆ by the isotopy idM × ψt of M2. Hence L is the image of
the zero-section by a Hamiltonian isotopy. This implies that the form α is exact. Hence α = df
for some function f . The maximum and minimum of f give two intersection points of L with the
zero-section. They correspond to fixed points of ψ.
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Chapter 3

Contact geometry

3.1 Integrability of planes fields

Definition 3.1. LetM be an n-dimensional manifold. A plane field of codimension k is a (smooth)
subbundle ξ of rank (n− k) of the tangent bundle TM .

Such a plane field can be described locally as ξ = ∩ki=1 kerαi for some linearly independent
1-forms αi, or alternatively as ξ = 〈X1, . . . , Xn−k〉 for some linearly independent vector fields Xj .

For k = n− 1, it is a line field, and is locally spanned by a non-vanishing vector field: ξ = 〈X〉.
The Cauchy-Lipschitz theorem about ordinary differential equations says that, at any point, there
are smooth curves everywhere tangent to X.

This is no longer true for k = n − 2: on R3 consider the plane field ξ = ker(dz − ydx) and
assume that some surface S is everywhere tangent to ξ, then S is a graph z = f(x, y) with df = ydx
which is a impossible since d2f = 0 and d(ydx) = dy ∧ dx.

Theorem 3.2 (Frobenius). Let ξ be a codimension-k plane field on a manifold M of dimension n.
The following conditions are equivalent:

1. for each point p ∈M , there exists a codimension k submanifold everywhere tangent to ξ and
containing p,

2. for each p ∈M and for any local sections X,Y of ξ near p, we have [X,Y ] ∈ ξ,

3. for each point p ∈M and any local vector fields Xi near p such that 〈X1, . . . , Xn−k〉 = ξ there
exists functions clij for 1 ≤ i, j, l ≤ n− k such that [Xi, Xj ] =

∑
l c
l
ijXl.

4. near each point p ∈M , if α is a 1-form with ξ ⊂ kerα, then dα vanishes on ξ,

5. near each point p ∈M , if αi, i = 1, . . . k are 1-forms such that ξ = ∩i kerαi then there exists
1-forms βij, 1 ≤ i, j ≤ k, such that dαi =

∑
j βij ∧ αj.

Proof. (1) ⇒ (2): let N be a codimension k submanifold tangent to ξ and containing p. Then X
and Y are tangent to N , and hence [X,Y ] ∈ TN = ξ.

33
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(2) ⇒ (1) : The statement is local, we may take M = Rn = Rk ×Rn−k, p = (0, 0), ξ(0,0) =

{0} ×Rn−k. Consider the projection π : Rn → Rn−k. The vector fields ∂
∂xk+1

, . . . , ∂
∂xn

of Rn−k

uniquely lift to vector fields Xk+1, . . . , Xn under the projection π near (0, 0). On the one hand,
[Xi, Xj ] ∈ ξ by hypothesis and on the other hand dπ([Xi, Xj ]) = 0 since [ ∂

∂xi
, ∂
∂xj

] = 0. Hence

[Xi, Xj ] = 0 and the flows ϕtj of Xj , k + 1 ≤ j ≤ n, commute. This allows to define a map
f : Rn−k → Rn in a neighborhood of 0 by f(xk+1, . . . , xn) = ϕ

xk+1

k+1 ◦ · · · ◦ ϕ
xn
n (0). We have

∂f
∂xk+1

= Xk+1 ◦f and, using the commutativity of the flows, also ∂f
∂xj

= Xj ◦f for all k+1 ≤ j ≤ n.
In particular, f is an immersion near 0 and it is everywhere tangent to ξ.

(2)⇔ (3): obvious.
(2)⇔ (4): it follows from the formula

dα(X,Y ) = LX(α(Y ))− LY (α(X))− α([X,Y ]).

Indeed, assuming (2) if ξ ⊂ kerα and X,Y ∈ ξ, extend X,Y to local sections of ξ. Hence α(X)
and α(Y ) vanish identically and we have dα(X,Y ) = α([X,Y ]) since [X,Y ] ∈ ξ ⊂ kerα. Assuming
(3), consider local 1-forms α1, . . . , αk with ξ = ∩i kerαi. If X,Y are local sections of ξ, then
αi[X,Y ] = dαi(X,Y ) = 0 for all i and hence [X,Y ] ∈ ξ.

(5) ⇒ (4) is obvious. For (4) ⇒ (5), pick local 1-forms αk+1, . . . , αn in order to form a local
basis of T ∗M , and a dual basis (e1, . . . , en) of TM , i.e. αi(ej) = δij . Then (ek+1, . . . , en) form a
basis of ξ = ∩1≤i≤k kerαi. Write d αl =

∑
1≤i<j≤n c

l
i,j αi∧αj and since, for l ≤ k, and i, j ≥ k+ 1,

dαl(ei, ej) = cli,j = 0, we get the required formula.

Definition 3.3. A hyperplane field satisfying one of the equivalent conditions of Theorem 3.2 is
called integrable.

A small variation on the proof of theorem 3.2 shows that, an integrable plane field can be locally
mapped to the horizontal plane field in a chart Rk × Rn−k. Also the submanifolds everywhere
tangent to ξ are uniquely determined by the plane field. Hence the manifold M is decomposed as
a disjoint union of submanifolds which locally look like the product Rn ×Rn−k. Such a structure
is also called a foliation of codimension k.

When ξ is a hyperplane field (i.e. in the case k = 1), the condition dα vanishes on ξ for some
local form α with ξ = kerα is equivalent to α ∧ dα = 0 and also to the existence of β such that
dα = β ∧ α.

3.2 Contact manifolds

Definition 3.4. A contact form on a manifold M is a 1-form α such that dα is non-degenerate
on kerα. A contact structure is a hyperplane field which is locally the kernel of a contact form. A
contact manifold (M, ξ) is a manifold M endowed with a contact structure ξ.

The condition that dα is non-degenerate on kerα implies that kerα has even dimension 2n, and
thusM has dimension 2n+1 ≥ 1. Also the non-degeneracy condition is equivalent to α∧(dα)n 6= 0
everywhere. If ξ is a hyperplane field and α, β are local 1-forms with ξ = kerα = kerβ, then there
exists a non-vanishing function f with β = fα and thus dβ = df ∧α+fdα implies dβ coincide with
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dα on ξ up to a non-zero factor. Hence the condition that ξ is a contact structure is independent
on the choice of defining 1-form, and thus any such 1-form is a contact form. In fact, the contact
condition can be written without reference to a contact form as follows. Let ξ be a hyperplane field
and consider the skew-symmetric bilinear form κξ : ξ × ξ → TM/ξ defined by (X,Y ) 7→ −[X,Y ]
mod ξ where the tangent vectors X and Y are extended arbitrarily to local sections of ξ. One
checks that the expression [X,Y ] mod ξ is C∞-linear in X,Y and hence independent of the choice
of local extensions. If ξ = kerα for some local 1-form α and X,Y are local sections of ξ, then
dα(X,Y ) = LX(α(Y ))−LY (α(X))−α([X,Y ]) = κ(X,Y ) under the isomorphism α : TM/ξ → R.
Hence ξ is a contact structure if and only if κξ is non-degenerate.

The standard contact structure onR2n+1 with coordinates (p1, . . . , pn, q1, . . . , qn, z) is ξ = kerα,
where α = dz −

∑
i pidqi.

Let M be a manifold and J1M = R× T ∗M the 1-jet space of M . Let z be the coordinate on
R and λM the Liouville 1-form on T ∗M . Then the 1-form αM = dz − λM on J1M is a contact
form. A smooth function f : M → R defines a section s = J1f of the fiber bundle J1M → M
by J1f(x) = (f(x), df(x)). This section is tangent to kerαM (in other words (J1f)∗(αM ) = 0).
Conversely let s : M → J1M , s(x) = (f(x), β(x)), be a section of J1M ; if s is tangent to kerαM ,
then s = J1f .

Let M = S2n+1 be the unit sphere in R2n+2 = Cn+1. At each point x ∈ M , the complex part
ξx = TxM∩JTxM of its tangent space has codimension 1. Then ξ is a contact structure onM which
is called the standard contact structure on S2n+1. A contact form is λ0 = 1

2

∑n
j=0 yjdxj − xjdyj .

Proposition 3.5. Let (M, ξ) be a contact manifold of dimension 2n + 1. If L is a submanifold
everywhere tangent to ξ, then dimL ≤ n.

Proof. If i : L→M is the inclusion and α is a contact form for ξ, then i∗α = 0, and thus i∗dα = 0.
Hence di(TL) is an isotropic subspace of the symplectic vector space (ξ, dα), we find dimL ≤ n.

Definition 3.6. A submanifold of a contact manifold which is everywhere tangent to the con-
tact structure is called isotropic. An isotropic submanifold of maximal dimension is also called
Legendrian.

Let (M, ξ) be a contact manifold and let α be a choice of contact form (the existence of α
implies that ξ is co-oriented). There exists a unique vector field Y = Yα on M such that α(Y ) = 1
and ιY dα = 0. Indeed the second condition says that Y is in ker dα which is a line since dα is of
rank (dimM − 1) and the first condition normalizes Y . This Yα is called the Reeb vector field of
α. We have LYα(α) = 0 and the flow of Yα preserves α, hence ξ.

Let (M, ξ) be a contact manifold such that ξ is co-orientable. We choose a co-orientation. A
contactomorphism of (M, ξ) is a diffeomorphism ψ of M which preserves ξ and its co-orientation.
If α is a contact form for ξ, this is equivalent to ψ∗(α) = ehα, where h is some function on M .

A contact isotopy is a smooth family of contactomorphisms ψt such that ψ∗t (α) = ehtα, for some
family of functions ht, and ψ0 = idM . When ψt is the flow of a vector field Xt, we obtain

ψ∗tLXt(α) =
d

dt
ψ∗t (α) =

d

dt
(ehtα) =

dht
dt
ehtα = ψ∗t (gtα),
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where gt = dht
dt ◦ ψ

−1
t . Hence LXt(α) = gtα. Conversely, if LXt satisfies such a condition, it

generates a contact isotopy. Hence we say that a vector field X is a contact field if LXα = gα for
some contact form α and some function g.

Lemma 3.7. Let (M, ξ) be a contact manifold and α a contact form. Let Yα be the Reeb vector
field of α.

(i) A vector field X is a contact vector field if and only if there exists a function H : M → R
such that

ιXα = H, ιXdα = (Yα(H))α− dH. (3.1)

(ii) For any function H on M there exists a unique (contact) vector field X satisfying (3.1).

Proof. (i) If (3.1) holds, then LX(α) = d(ιXα) + ιXdα = (Yα(H))α. Hence LXα = gα with
g = Yα(H). Conversely, if LXα = gα, we set H = ιXα and we have

ιXdα = LXα− d(ιXα) = gα− dH.

Contracting with Yα and using the definition of Yα, we find g = Yα(H).
(ii) For any x ∈ M we have TxM = 〈Yα〉 + ξ. Let us write a vector field X as X = fYα + Z,

with Z ∈ ξ. The second condition in (3.1) determines Z, since dα|ξ is non-degenerate. The first
condition gives f (and we find f = H).

We have thus a correspondence between contact vector fields and functions on M . The Reeb
vector field corresponds to H = 1.

Remark 3.8. There is another way to phrase Lemma 3.7 which does not involve a choice of
contact form: the map which takes a contact vector field X to its corresponding section of TM/ξ
is a bijection.

3.3 Moser’s lemma

The application of Moser’s lemma gives the following stability result for contact structures, origi-
nally due to Gray.

Theorem 3.9 (stability near a compact subset for contact structures). Let M be a manifold,
K a compact subset of M and (ξt)t∈[0,1] a smooth family of contact structures on M such that
ξt = ξ0 on TM|K . Then there exists an open neighborhood U of K and an isotopy of embeddings
(ϕt)t∈[0,1] : U →M such that ϕt = id on K, ϕ0 is the inclusion and ϕ∗t ξt = ξ0.

Proof. The isotopy ϕt will be generated by a time-dependent vector field Xt. Locally ξt is the
kernel of a 1-form αt. We define Xt by the conditions

Xt ∈ ξt (3.2)
(Xtydαt + α̇t) ∧ αt = 0 (3.3)

Condition (3.3) is equivalent to Xtyd αt = −α̇t when restricted to ξt and also to the existence of
a function ft such that Xtydαt + α̇t = ftαt. Since dαt is non-degenerate on ξt, the vector field
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Xt is well-defined by (3.2) and (3.3). Moreover, the vector field Xt is independent of the choice of
contact form αt: if β = ftαt with ft 6= 0, we also have (Xtydβt + β̇t) ∧ βt = 0. So the definition
of Xt makes sense globally on M . Recall from the theory of ODE’s that the domain of definition
of the flow ϕt of Xt is an open subset of R ×M . Since Xt = 0 on K, this open subset contains
K × [0, 1], hence it contains U × [0, 1] for some open neighborhood U of K. It remains to check
that ϕ∗t ξt = ξ0:

d

dt
(ϕ∗tαt ∧ α0) = ϕ∗t (LXt(αt) + α̇t) ∧ α0

= ϕ∗t (ftαt) ∧ α0

= ft ◦ ϕt(ϕ∗tαt ∧ α0),

and ϕ∗0α0 ∧ α0 = 0, hence ϕ∗tαt ∧ α0 = 0 for all t ∈ [0, 1].

Theorem 3.10 (Gray’s theorem, closed manifold). Let M be a closed manifold and (ξt)t∈[0,1] a
smooth family of contact structures on M . Then there exists an isotopy (ϕt)t∈[0,1] of M such that
ϕ∗t ξt = ξ0.

Proof. The proof is the same (actually, simpler) as for the previous statement: the vector field Xt

defined by (3.2) and (3.3) integrates to an isotopy (ϕt)t∈[0,1] because M is closed.

As in the symplectic case, this allows to prove the following local normal form theorem.

Theorem 3.11 (Darboux’s theorem for contact structures). Let (M, ξ) be a contact manifold
of dimension 2n + 1 and p a point of M . There exists an open set U of M containing p, an
open set V of R2n+1 containing 0 and a diffeomorphism ϕ : U → V such that ϕ(p) = 0 and
ϕ∗ξ = ker(dz −

∑
yidxi).

Proof. Set α = dz −
∑
yidxi and ζ = kerα. There is a chart ψ : U → V such that ψ(p) = 0,

(ψ∗ξ)0 = ζ0. Then ψ induces a isomorphism TMp/ξp → R2n+1/ζ0 = R. By the classification
of linear symplectic forms, we may modify ψ by postcomposition with a linear map of R2n+1 of

the form
(
A 0
0 1

)
so that dψp conjugates the forms (κξ)p and (κζ)0. This means that if α is any

contact form for ξ near p, then (ψ∗dβ)0 is a non-zero multiple of dα0 when restricted to ζ0. Up
to composing ψ with (xi, yi, z) 7→ (xi, yi,−z) we can assume that this multiple is positive. Then
consider αt = (1 − t)α + tψ∗β and ζt = kerαt, and observe that dαt is non-degenerate on ζt at 0
and thus in a neigborhood of 0.

Theorem 3.12 (Darboux’s theorem for contact forms). Let M be a manifold of dimension 2n+ 1,
α a contact form on M and p a point of M . There exists an open set U of M containing p,
an open set V of R2n+1 containing 0 and a diffeomorphism ϕ : U → V such that ϕ(p) = 0 and
α = ϕ∗(dz −

∑
yidxi).

Proof. Using Darboux’s theorem for contact structures, it is enough to prove that two contact
forms α and β in a neighborhood of 0 in R2n+1 for the same contact structure are conjugate. We
may assume that kerα = {z = 0} at 0. We set αt = (1 − t)α + tβ. We look for an isotopy ϕt
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generated by Xt = Yt +HtRt where Rt is the Reeb vector field of αt and αt(Yt) = 0. Deriving the
equation ϕ∗tαt = α0 with respect to t gives the equations:

α̇t(Rt) = −dHt(Rt) (3.4)
(Ytydαt + α̇t + dHt) ∧ αt = 0 (3.5)

We setHt = 0 onR2n×{0} and thenHt is uniquely determined by (3.4) in a neighborhood of 0 since
Rt is transverse to R2n×{0}: explicitly, if ψt is the flow of Rt, then Ht(ψt(x)) = −

∫ t
0 α̇s(Rs◦ψs)ds.

Then the vector field Yt is uniquely determined by (3.5) and we observe that Yt = 0 on V ×{0}×[0, 1]
(since α̇t ∧ αt = 0). Hence the flow ϕt of Xt is well-defined for t ∈ [0, 1] on some neighborhood of
0 and we have ϕ∗tαt = α0.

There is also a neighborhood theorem for Legendrian submanifolds analogous to the one for
Lagrangian submanifolds in symplectic geometry.

Theorem 3.13 (Weinstein’s theorem for Legendrian submanifolds). Let (M, ξ) be a contact mani-
fold and L a closed Legendrian submanifold of M . There exists a neighborhood U of the zero-section
in J1L and a contact embedding U →M which is the identity on L.

Proof. Let ξL = ker(αL) be the contact structure on J1L. In the (conformal) symplectic bundle
ξ → L, there exists a Lagrangian subbundle which is supplementary to TL. This allows to define
a bundle isomorphism T ∗L⊕R ' νLJ1L→ νLM which sends ξL to ξ and also the curvature form
κξL to κξ. The tubular neighborhood theorem allows to find a neighborhood of the zero-section
U and an embeding ϕ : U → M which induces the above bundle isomorphism along L. Then we
proceed as in the proof of Darboux’s theorem: pick a contact form α for ξ and a linear path joining
ϕ∗αL and α. This gives a path of contact structures in a neighborhood of L and we can apply
Theorem 3.9.



Chapter 4

Morse cohomology

4.1 Morse functions and gradient vector fields

Let V be a manifold of dimension n. Morse theory provides links between the topology of V and
real valued fonctions on V .

Definition 4.1. A function f : V → R is called a Morse function if all its critical points are
non-degenerate.

The Hessian of f at a critical point of p is well-defined as a quadratic form on TqV . Its index
(i.e., maximal dimension of a negative definite subspace) is denote ind(p). Observe that a function
f : V → R is Morse if and only if the section df : V → T ∗V is transverse to the zero-section. In
particular the critical points of a Morse function are isolated.

For example the function (x, y, z) 7→ z is a Morse function on S2 = {x2 + y2 + z2 = 1}. It has
two critical points (0, 0,−1) and (0, 0, 1) of respective indices 0 and 2. They are non-degenerate
since, in the local coordinates (x, y), we have f = ±

√
1− x2 − y2 = 1− 1

2(x2 +y2)+o(|x, y|2). The
function f : R → R defined by f(x) = x3 is not Morse: 0 is a degenerate critical point. However
f(x) = x3 − εx for ε > 0 is Morse.

Lemma 4.2. If p ∈ V is a critical point of a function f : V → R, then there exists (so-called
Morse) coordinates (x1, . . . , xn) where f = f(p)− x2

1 − · · · − x2
k + x2

k+1 + · · ·+ x2
n.

Proof. According to the classification of quadratic forms on a real vector space, it is enough to prove
that a Morse function f : Rn → R such that f(0) = 0 and df(0) = 0 is conjugate to its Hessian
Q at 0 near 0. The functions yi = ∂ft

∂xi
are coordinates near the origin, hence Hadamard’s lemma

gives that each function g which vanishes at 0 can be written g =
∑

i yigi(y1, . . . , yn), and hence
g =

∑
i
∂ft
∂xi
g′i(x1, . . . , xn) where g′i(x) = gi(y). We set ft = (1− t)f + tQ and look for an isotopy ϕt

generated by a vector field Xt such that ϕ∗t ft = f0. Deriving with respect to t gives dft(Xt)+ ḟt = 0.
As explained above, there exists functions Xi

t such that ḟt = −
∑

iX
i
t
∂ft
∂xi

= −dft(Xt) where
Xt =

∑
Xi
t∂xi . Moreover Xt(0) = 0 since ḟt = Q − f = o(|x|2). We obtain Q = f ◦ ϕ1 as

desired.

39
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Any manifold admits a Morse function and in fact a generic function is Morse. To prove this,
we start with some basic things about transversality.

Definition 4.3. LetM,N be manifolds and P a submanifold of N . We say that a map f : M → N
is transverse to P if for each x ∈M such that f(x) ∈ P , we have df(TxM) + Tf(x)P = Tf(x)N .

An equivalent way to write the transversality condition is : the map df : TxM → Tf(x)N/Tf(x)P
is surjective. When dimM+dimP < dimN , then f is transverse to P is equivalent to f(M)∩P = ∅.
When P is reduced to a point y, f is transverse to P is equivalent to y is a regular value of f .

Proposition 4.4. Let f : M → N be a smooth map transverse to a submanifold P of N . Then
f−1(P ) is a submanifold of M .

Proof. Let x ∈ f−1(P ), there is an open set U containing f(x) and a submersion u : U → Rk

such that P ∩ U = u−1(0). Then (u ◦ f)−1(0) = f−1(P ) ∩ f−1(U) and f ◦ u : f−1(U) → Rk is a
submersion. Indeed, df(x) : TxM → Tf(x)N/Tf(x)P is surjective and du : Tf(x)N/Tf(x)P → Rk is
an isomorphism and dx(u ◦ f) is the composition of these maps.

The following result says that regular values are plentiful.

Theorem 4.5 (Sard). Let M,N be manifolds and f : M → N a smooth map. The set of critical
values of f is of Lebesgue measure zero.

There is no canonical measure on a manifold. However the notion of subset of Lebesgue measure
zero (or negligible subset) makes sense: it means the image by any chart is of Lebesgue measure
zero in Rn. Since diffeomorphisms between open subsets of Rn map negligible subsets to negligible
subsets, and since a manifold admits a countable atlas, the notion is well-defined. Using another
terminology, Sard’s theorem says that almost all values are regular (be careful that, for y ∈ N , if
y 6∈ f(M), y is also called a regular value (sic)).

We would like an analogous result for the more general concept of transversality. This will be
achieved via the following lemma.

Lemma 4.6. Let M,T,N be manifolds and P a submanifold of N . Let F : M × T → N be a
smooth map which is transverse to P , Σ = F−1(P ). Let π : Σ → T be the projection. For t ∈ T ,
we denote by ft : M → N the restriction of F to M × {t}. Then ft is transverse to P if and only
if t is a regular value of π.

Proof. Let (x, t) ∈ Σ. The equivalence is proved by inspecting the following diagram, where the
vertical and horizontal lines are exact sequences.
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0

TxM

0 T(x,t)Σ T(x,t)(M × T ) Tf(x,t)N/Tf(x,t)P 0

TtT

0

dft

dπ

dF

Theorem 4.7 (Transversality theorem). Let M,T,N be manifolds, P a submanifold of N and
F : M × T → N a smooth map which is transverse to P . The restriction ft : M → N of F to
M × {t} is transverse to P for almost all t.

Proof. This follows directly from Theorem 4.5 and Lemma 4.6.

Theorem 4.8. For any manifold V there exist Morse functions on V .

Proof. Recall that a function g is Morse if dg : V → T ∗V is transverse to the zero-section 0V ⊂ T ∗V .

(i) We first prove that, for any relatively compact open subset W ⊂ V , there exists f : V → R
such that f |W is Morse. We cover W by charts Ui, i = 1 . . . , N , and find U ′i ⊂ Ui compact, such
that W ⊂

⋃N
i=1 U

′
i . We choose ϕi : V → R with support in Ui such that ϕi = 1 on U ′i . We

have coordinates (xi1, . . . , x
i
n) on Ui. We set k = nN and define f1, . . . , fk : V → R by and set

f(n−1)i+j = ϕi · xij . Then the differentials df1(x), . . . , dfk(x) generate T ∗xV , for each x ∈W .

(ii) For a = (a1, . . . , ak) we set ga =
∑

i aifi. We also define H : W ×Rk → T ∗W , by H(x, a) =∑
i aidfi(x), ha = H|W×{a}. Hence dga = ha. We claim that H is transverse to 0W ⊂ T ∗W .

Indeed, for any x ∈W , we have T(0,x)T
∗W ' T0(T ∗xW )⊕Tx0W ' T ∗xW ⊕Tx0W . It is then enough

to check that im((dHx)a) = T ∗xW , for (x, a) such that H(x, a) ∈ 0W , where Hx is the restriction
Hx : {x} × Rk → T ∗xW . We clearly have (dHx)a(b) =

∑
bidfi(x) and these sums generate T ∗xW

by hypothesis. Hence H is transverse to 0W ⊂ T ∗W . By the transversality theorem there exists a
such that dga = ha is transverse to 0W . Hence ga is Morse.

(iii) In general we can find an increasing family Wn, n ∈ N, of compact subsets such that
V =

⋃
nWn and Wn is contained in the interior of Wn+1. We can find fn : V → R which is

Morse on some neighborhood of Wn \Wn−1. We can assume that suppfn ⊂ Wn+1 \Wn−2. Hence
g0 =

∑
n f2n and g1 =

∑
n f2n+1 are well-defined. As in (ii) we can see that a generic combination

a0g0 + a1g1 is Morse.
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Definition 4.9. A vector field X is called an adapted gradient vector field for a Morse function
f : V → R if df(X) > 0 away from the critical points of f and near each critical point, there exist
Morse coordinates (x1, . . . , xn) where X = −x1∂x1 − · · ·−xk∂xk +xk+1∂xk+1

+ · · ·+xn∂xn . In this
situation we call (f,X) a Morse pair.

Proposition 4.10. Any Morse function f : V → R admits an adapted gradient vector field.

Proof. Near a point p which is not critical, a vector field which is not tangent to the level sets of f
is an adapted gradient. Near a critical point, an adapted gradient can be constructed according to
Lemma 4.2. Hence we can pick an open cover Ui consisting of one open set for each critical point
and other open sets disjoint from the critical points, and adapted gradient vector field Xi on Ui.
Pick a partition of unity ρi subordinated to the cover Ui and set X =

∑
ρiXi, it is an adapted

gradient vector field.

The above proposition can also be proved as follows: pick a Riemannian metric g on V which
coincides with 1

2

∑
dx2

i in some Morse charts near the critical points (g can be similarly constructed
using a partition of unity) and consider X = ∇gf . Observe however that if g is chosen arbitrarily
then ∇g(f) is not an adapted gradient since we may not find appropriate coordinates near the
critical points (for instance the eigenvalues of ∇g(f) at critical points could be different from ±1).
It is technically simpler to work with adapted gradient vector fields though it is not essential.

Lemma 4.11. Let (f,X) be a Morse pair on a closed manifold V and p a critical point of f of index
k. The subset W s(p) = {q ∈ V ;ϕtX(q) −→

t→+∞
p} is a submanifold diffeomorphic to Rk. Similarly

W u(p) = {q ∈ V ;ϕtX(q) −→
t→−∞

p} is diffeomorphic to Rn−k.

Proof. Near p we have coordinates (x1, . . . , xn) where X = −
∑

i≤k xi ∂xi +
∑

i>k xi∂xi . For a
sufficiently small neighborhood U of 0, we have W s(p)∩U = (Rk×{0})∩U . Indeed, for any other
point q, f ◦ ϕt(q) will get bigger than f(p) and thus ϕt(q) cannot converge to p. Hence W s(p) is a
submanifold near p. Since ϕt preserves W s(p) and for any q, ϕt(q) ∈ U for sufficiently large t, we
get that W s(p) is a submanifold. Denote by i : Rk → W s(p) the identification above defined in a
neighborhood of 0 and extend it by the formula i(x) = ϕt(i(e

−tx)) with t so large that e−tx enters
the domain of definition of i. This is the required diffeomorphism. The result for W u(p) follows
from the above applied to the vector field −X which is an adapted gradient for −f .

Proposition 4.12. Let (f,X) be a Morse pair on a closed manifold V . Then V is the disjoint
union of all W s(p) for p critical point of f .

Proof. Let q ∈ V , by compactness of V there is an increasing sequence tn converging to +∞ such
that ϕtnX (q) converges to some point p ∈ V . If p were not critical point, then for all points r
sufficiently close to p, we would have f ◦ϕtX(r) > f(p) for some t > 0. Hence for some large enough
n we have t such that f(ϕt+tnX (q)) > f(p) which contradicts the fact that ϕtnX (q) converges to p.
Hence p is a critical point, and for large enough n, ϕtnX (q) enters a Morse chart where X has a
standard form and we get that ϕtX(q) converges to p when t→ +∞.

According to the above proposition, the manifold V is covered by disjoint open sets each dif-
feomorphic to some Rk. This decomposition of V was first observed R. Thom.

Here is an example of how a Morse function can help us understand the topology of a manifold.
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Proposition 4.13. Let V be a compact manifold with boundary and f : V → R a Morse function,
we assume that ∂V = f−1(−1) ∪ f−1(1) and that −1 and 1 are regular values of f , df is positive
(resp. negative) on inward pointing vectors along f−1(−1) (resp along f−1(1)). If f has no critical
points, then V is diffeomorphic to f−1(−1)× [−1, 1].

Proof. Pick a gradient vector field X and set Y = X
df(X) . Then the map f−1(−1) × [−1, 1] → V

defined by (q, t) 7→ ϕtY (q) is a diffeomorphism. Indeed arguing similarly as in Proposition 4.12 we
see that, since M is compact and f has no critical points, any trajectory of Y goes from f−1(−1)
to f−1(1).

Since V × [−1, 1] is diffeomorphic to V × [−1,−1 + ε] for any ε > 0 through a diffeomorphism
which is id near V × {−1} we can reformulate the proposition as follows: for any a < b ∈ R such
that [a, b] contains no critical values, the sublevel sets {f ≤ b} and {f ≤ a} are diffeomorphic.

Corollary 4.14 (Reeb). Let V be a closed manifold. If V admits a Morse function with only two
critical points then V is homeomorphic to a sphere.

Proof. (i) The critical points are necessarily a minimum and a maximum. After removing small
open disks around each critical point in Morse coordinates, we obtain a manifold M subject to
Proposition 4.13, hence M is diffeomorphic to Sn−1 × [−1, 1] with n = dimV . But V is obtained
by gluing two disks Dn along Sn−1 × {±1}. This implies that V is homeomorphic to Sn, as we
see now.

(ii) Let ϕ : Sn−1 ∼−→ Sn−1 be an homeomorphism and Xϕ = DntϕDn := (DntDn)/ ∼, where
x ∼ ϕ(x), for x ∈ Sn−1. We remark that there exists ψ : Dn → Dn such that ψ|∂Dn = ϕ. Indeed
we can define ψ by ψ(r, θ) = rϕ(θ) in polar coordinates. Then the map Dn t Dn ∼−→ Dn t Dn

which is id on the first Dn and ψ on the second Dn induces Xϕ
∼−→ Xid = Sn.

Let us remark that the stronger conclusion that V is diffeomorphic to a sphere is false: Milnor
discovered in 1956 closed smooth manifolds of dimension 7 which admit Morse functions with two
critical points but are nonetheless not diffeomorphic to S7 (they are called exotic spheres).

Definition 4.15. A Morse pair (f,X) satisfies the Morse-Smale condition if for any critical points
p, q, the submanifolds W u(p) and W s(q) intersect transversally. In this case we call (f,X) a
Morse-Smale pair.

Theorem 4.16 (Smale). Let (f,X) be a Morse pair. There exists an adapted gradient vector
field X ′ which coincides with X near the critical points and satisfies the Morse-Smale condition.
Moreover X ′ can be chosen C1-close to X.

We admit this statement which can be proved by induction on the number of critical points.
The induction step is essentially the following lemma.

Lemma 4.17. Let V be a manifold and X = (∂/∂s,Xs) be a vector field on [0, 1] × V projecting
to ∂/∂s. Let V s

i , i ∈ I, V u
j , j ∈ J , be finite families of submanifolds of {0} × V and {1} × V

respectively. Then we can find a C1-small deformation X ′ = (∂/∂s,X ′s) of X near {1
2} × V such

that Φ1
X′′(V

s
i ) is transverse to V u

j (inside {1} × V ), for all i, j.
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4.2 The Morse complex

Definition 4.18. Let (f,X) be a Morse pair. For p, q critical points of f , we set M(p, q) =
W u(p) ∩W s(q) = {x ∈ V ;ϕtX(x) −→

t→+∞
q and ϕtX(x) −→

t→−∞
p}.

Lemma 4.19. If p 6= q, R acts freely on M(p, q) via the flow of X (that is, ϕtX(x) = x implies
t = 0), and the quotient space is Hausdorff. More precisely, for any regular value a ∈ ]f(p), f(q)[,
the intersectionM(p, q)∩f−1(a) is transverse (in particular a submanifold ofM(p, q) and f−1(a))
and the map ua : M(p, q) ∩ f−1(a) →M(p, q)/R is a homeomorphism. For another regular value
b ∈ ]f(p), f(q)[, the composition ub ◦ u−1

a is a diffeomorphism.

Proof. (i) We remark that ϕtX(x) = x and x ∈ W u(p) already implies x = p. Since p 6∈ W s(q), it
follows thatM(p, q) has no fixed point under the flow action.

(ii) By the definition of a Morse pair, at any regular point x of f , the vector Xx and Tx(f−1f(x))
generate TxV . For x ∈M(p, q) we have Xx ∈ TxM(p, q) and the transversality follows.

Let us set La =M(p, q) ∩ f−1(a) and define ψ : La ×R →M(p, q), (x, t) 7→ ϕtX(x). We have
dψ(x,0)(Y, 1) = Y +Xx; hence dψ(x,0) is an isomorphism. Since ψ(x, t) = ϕtXψ(x, 0) it follows that
dψ is a local diffeomorphism.

The function f is strictly increasing along any flow line. Hence any flow line inM(p, q) meets
f−1(a) exactly once. This proves that ψ is also a bijection, hence a diffeomorphism. We obtain
La ×R 'M(p, q) (with compatible R-actions) andM(p, q)/R ' (La ×R)/R ' La. This proves
thatM(p, q)/R is Hausdorff.

(iii) The composition ua ◦ u−1
b : Lb → La coincides with p ◦ ψ−1|Lb where p : La ×R → La is

the projection. This proves that ua ◦ u−1
b is a C∞ map. For the same reason its inverse is also a

C∞ map and they are diffeomorphisms.

Definition 4.20. Let (f,X) be a Morse pair. We set L(p, q) = M(p, q)/R. By the previous
lemma this set has a natural structure of manifold.

For a sequence En, n ∈ N, of subsets of V we set limnEn =
⋂∞
k=0

⋃
n≥k En.

Lemma 4.21. Let (f,X) be a Morse-Smale pair, p, q critical points. We assume that there exists
a Morse chart U around p and a sequence of points (pn)n∈N in U ∩W s(q) converging to a point
p∞ ∈ (W u(p) \ {p}). We let ln be the flow line through pn. Then we have either (1) or (2):

(1) p∞ ∈M(p, q) and limn ln contains the flow line through p∞; in particular ind(p) < ind(q),

(2) there exists a critical point r with ind(p) < ind(r) < ind(q) such that limn ln contains a flow
line ofM(p, r) and, up to taking a subsequence, there exist a Morse chart V around r, points
rn ∈ V ∩ ln ⊂ V ∩W s(q) converging to a point r∞ ∈ (W u(r) \ {r}).

Proof. We set a = f(p), b = f(q). We choose a regular value b′ < b such that [b′, b[ only contains
regular values and S = W s(q)∩f−1(b′) is a sphere of dimension ind(q)−1 contained in a Morse chart
around q. For each n, the flow line ln intersects S at one point qn and we can write qn = ϕtnX (pn).



4.2. THE MORSE COMPLEX 45

(i-a) If the sequence tn is bounded, we can take a subsequence and assume that tn converges
to some value T . Then ϕT (p∞) ∈ S and we obtain p∞ ∈ M(p, q). Since ϕtX(pn) converges to
ϕtX(p∞), for each t ∈ R, the assertion on limn ln follows.

(i-b) If the sequence tn is unbounded, up to taking a subsequence we can assume tn ≥ n. Since
f is increasing along the flow lines we have, for n ≥ n0, b′ = f(ϕtnX (pn)) ≥ f(ϕn0

X (pn)). Hence
b′ ≥ f(ϕn0

X (p∞)). Since this holds for all n0 ∈ N, Proposition 4.12 implies that ϕtX(p∞) converges
to a critical point r with f(r) ∈ ]a, b′[. Then p∞ ∈ M(p, r) and this gives ind(p) < ind(r) by the
Morse-Smale property. The assertion on limn ln holds as in (i-a).

(ii) We consider a Morse chart V around r. We choose two values c′, c′′ ∈ f(V ) with c′ < f(r) <
c′′ such that S′ = W s(r) ∩ f−1(c′) and S′′ = W u(r) ∩ f−1(c′′) are spheres. For n big enough, the
flow line ln meets V ∩ f−1(c′) at a point p′n and V ∩ f−1(c′′) at a point rn. The flow line through
p∞ also meets V ∩ f−1(c′) at a point p′∞ and we have p′∞ = limn p

′
n.

Since ϕtX(p∞) converges to r, we have in fact p′∞ ∈ S′. This implies that the points rn remain
in some compact neighborhood of S′′. Taking a subsequence we assume that rn converges to
some point r∞. Then r∞ ∈ S′′: indeed, if r∞ 6∈ S′′, the flow induces a diffeomorphism between a
neighborhood of r∞ in f−1(c′′)\S′′ and a neighborhood of some point p′0 = ϕ−sX (r∞) in f−1(c′)\S′.
But then p′n converges to p′0; hence p′0 = p′∞ 6∈ S′.

(iii) We have proved the lemma except the bound ind(r) < ind(q) in case (2). We can apply the
lemma with p1 = r instead of p and with the sequence rn instead of pn. We have either ind(p1) <
ind(q) (case (1)) or we find another critical point p2 (case (2)) to which we can apply the lemma. As
long as we are in case (2) we can apply the lemma and find a sequence of critical points p1, p2,. . . in
f−1(]a, b[) with ind(p) < ind(p1) < ind(p2) < . . . . This sequence must stop and the application of
the lemma to the last point pk must yields case (1). Hence ind(r) ≤ ind(pk) < ind(q).

Lemma 4.22. Let (f,X) be a Morse-Smale pair, p, q critical points with ind(p)+1 = ind(q). Then
L(p, q) is finite.

Proof. We assume that M(p, q) contains infinitely many flow lines ln, n ∈ N. Let us consider a
Morse chart U around p. We choose a > f(p) such that Sup = U ∩W u(p) ∩ f−1(a) is a sphere.
We let pn be the intersection point of ln with Sup . Up to taking a subsequence we can assume that
pn converges to a point p∞ ∈ Sup . We apply Lemma 4.21. We cannot be in case (2) of the lemma
because ind(p) + 1 = ind(q). Hence we are in case (1) and obtain p∞ ∈M(p, q).

ButM(p, q) is a submanifold of dimension 1, hence we have a neighborhood Ω of p∞ in V such
that Ω ∩M(p, q) is a segment of line. In particular Ω ∩M(p, q) only contains points in the flow
line of p∞ which contradicts the convergence pn → p∞.

Definition 4.23. Let (f,X) be a Morse-Smale pair. Let Ck(f,X) be the Z2-vector space generated
by the critical points of f and dk : Ck(f,X) → Ck+1(f,X) the linear map defined by dp =∑

q #L(p, q) q where # denotes the cardinal modulo 2.

A “manifold with boundary” X is a closed subset of a manifold X̃ such that there exists an
open subset U ⊂ X̃ with U = X and, near any point of ∂U , we can find coordinates (x1, . . . , xn)
such that U = {xn > 0}. The compact manifolds with boundary of dimension 1 are the circle and
the closed interval.
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Lemma 4.24. Let (f,X) be a Morse-Smale pair, p, q critical points with ind(p) + 2 = ind(q).
Then there is a compact manifold with boundary denoted L̄(p, q) whose interior is diffeomorphic to
L(p, q) and boundary diffeomorphic ∪r,ind(r)=ind(p)+1L(p, r)× L(r, q).

We recall that for a regular value a ∈ ]f(p), f(q)[, La = f−1(a)∩M(p, q) is diffeomorphic with
L(p, q). Then La is a submanifold of dimension 1 with finitely many connected components which
are diffeomorphic to R or the circle. We can consider the closure La in V but it may be different
from L̄(p, q). In particular it can happen that La is C \ {x} where C is a circle in f−1(a) and
x ∈ C. Then La = C but L̄(p, q) is a segment.

Proof. (i) We choose a regular value a ∈ ]f(p), f(q)[. The statement is equivalent to the following:

(a) Let i : [0, 1] → V be a continuous map such that i(]0, 1]) ⊂ La and i(0) 6∈ La. We let
Mi ⊂M(p, q) be the union of the flow lines through the points of i(]0, 1]). Then there exists
another critical point r with ind(r) = ind(p)+1 and two flow lines l′ ⊂M(p, r), l′′ ⊂M(r, q)
such that M i \ {p, q, r} = Mi ∪ l′ ∪ l′′,

(b) for any critical point r with ind(r) = ind(p) + 1 and any two flow lines l′ ⊂ M(p, r), l′′ ⊂
M(r, q), there exists a continuous map i : [0, 1] → V as in (a) such that M i \ {p, q, r} =
Mi ∪ l′ ∪ l′′. Moreover, if i′ is another such map, then we can find a neighborhood U of i(0)
such that U ∩ im(i) = U ∩ im(i′).

(ii) The assertion (a) follows from Lemma 4.21.

(iii) To prove (b) we first describe Morse charts. Let r be a critical point of index k. By definition
there exist Morse coordinates (x1, . . . , xn) whereX = −x1∂x1−· · ·−xk∂xk+xk+1∂xk+1

+· · ·+xn∂xn .
We denote x = (x−, x+), where x− = (x1, . . . , xk). We choose ε, η > 0 small enough and set

U = {x; |f(x)− f(r)| < ε, ||x−||2 · ||x+||2 < η(η + ε)},
∂±U = {x; f(x)− f(r) = ±ε, ||x∓||2 ≤ η},
∂0U = {x; |f(x)− f(r)| ≤ ε, ||x−||2 · ||x+||2 = η(η + ε)}.

By construction ∂±U is contained in the regular level set of f(r)±ε. Hence the flow lines meet ∂±U
transversally. Moreover U ∩W s(r) = {(x−, 0); ||x−||2 ≤ ε}, U ∩W u(r) = {(0, x+); ||x+||2 ≤ ε}.
The corresponding stable and unstable spheres are Ss(r) = {(x−, 0); ||x−||2 = ε}, Su(r) = {(0, x+);
||x+||2 = ε}. Finally U \ (W s(r) ∩W u(r)) is the union of the flow lines meeting ∂−U \ Ss(r) (or
∂+U \Su(r)); they enter U through ∂−U and exit through ∂+U . The flow induces a diffeomorphism

Φ: ∂−U \ Ss(r)→ ∂+U \ Su(r), (x−, x+) 7→ (
||x+||
||x−||

x−,
||x−||
||x+||

x+).

(iv) Now we assume to be given r and flow lines l′ ⊂ M(p, r), l′′ ⊂ M(r, q), as in (b). We set
k = ind(r). We let y′ ∈ Ss(r), y′′ ∈ Su(r) be the intersections of l′, l′′ with Ss(r) and Su(r).

We also set T = W u(p) ∩ ∂−U . The intersection is transverse. Since ind(p) = k − 1, T is
a submanifold of ∂−U of dimension n − (k − 1) − 1 = n − k. By the Morse-Smale property T
intersects Ss(r) transversally in a finite number of points. The point y′ is one of them. We choose
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a neighborhood Ω of y′ such that Ω ∩ T ∩ Ss(r) = {y′}. Using the coordinates we consider the
Morse chart U as embedded in Rn and we let p′′ : U → Rn−k be the second projection. Since
T intersects Ss(r) transversally, d(p′′|T )y′ is an isomorphism from Ty′T to T0R

n−k. By the local
inversion theorem, up to shrinking Ω we can write Ω ∩ T = {j(x+); x+ ∈ Bn−k(r)}, where
j(x+) = (f(x+), x+) for some function f : Rn−k → Rk defined in some ball Bn−k(ρ) of radius ρ
and center 0. We have f(0) = y′ and we can assume that f is nonvanishing.

Let Sn−k−1 be the unit sphere in Rn−k. We write in polar coordinates x+ = (θ, r) ∈ Sn−k−1 ×

]0,∞[. We set Ψ(θ, r) = Φ(j(θ, r)). We have Ψ(θ, r) = (
rf(rθ)

||f(rθ)||
, ||f(rθ)|| θ). This expression for

Ψ(θ, r) actually makes sense for r ∈ ]−ρ, ρ[ and gives a C∞ map Ψ: Sn−k−1 × ]−ρ, ρ[→ ∂U+ (we
use that f is nonvanishing and that (θ, r) 7→ rθ is C∞). We can chek that Ψ is an embedding
of Sn−k−1 × ]−ρ, ρ[ in Su(r). Let T ′ be the image of this embedding; this is a submanifold of
dimension n− k.

We remark that Ψ(θ, 0) = (0, ε θ). Hence Ψ(Sn−k−1 × {0}) = Su(r) is of codimension 1 in T ′.
We set T ′+ = Ψ(Sn−k−1 × ]0, ρ[). Then T ′+ is a submanifold with boundary Su(r) in ∂+U and Φ
identifies T with T ′+.

(v) We thus have three submanifolds of ∂+U , namely Su(r), T ′ and W s(q) ∩ ∂+U , such that:
W s(q) ∩ ∂+U meets Su(r) transversally at y′′ by the Morse-Smale property,
Su(r) is a submanifold of T ′ of codimension 1.

Hence W s(q)∩∂+U also meets T ′ transversally at y′′. Near y′′ the intersection is a segment of line,
say l0, in T ′ intersecting Su(r) transversally at y′′. Hence l0 meets both sides, in particular T ′+,
near y′′. We set l+0 = l0 ∩ T ′+. Since T ′+ ⊂W u(p) we get l+0 ⊂M(p, q).

We set a = f(r) + ε so that ∂U− ⊂ f−1(a). We set La = f−1(a) ∩M(p, q) as in (a). We can
choose i : [0, 1]→ V with i(]0, 1]) ⊂ l+0 and i(0) = y′′. Then i satisfies the conditions in (b).

Conversely, if i′ is another map satisfying the conditions in (b), i′(]0, 1[) contains y′′ and thus
im(i′) ⊂ l0. But the closure of Φ−1(i′(]0, 1[)) must also meet l′ and we deduce i′(]0, 1[) ⊂ l+0 , which
concludes the proof.

Theorem 4.25. d2 = 0

Proof. We have

〈d2p, r〉 = 〈d
∑
q

#L(p, q)q, r〉 =
∑
q

#L(p, q)#L(q, r) = #(
⋃
q

L(p, q)× L(q, r)) = 0,

since, by lemma 4.24, ∪qL(p, q) × L(q, r) is the boundary of a one-dimensional compact manifold
and thus consists in an even number of points.

Definition 4.26. The vector spaces Hk(f,X) = ker dk/imdk−1 are called the Morse cohomology
groups (with Z/2-coefficients).

The Morse cohomology groups a priori depend on the Morse-Smale pair (f,X). Observe first
that the Morse complex depends only on the gradient field, namely if X serves as an adapted
gradient for two Morse functions f and g, then C(f,X) = C(g,X). This is the case for instance
when g is equal to f up to a constant. In general, C(f,X) 6= C(g, Y ) but we have the following
result.
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Theorem 4.27. Up to canonical isomorphism, the Morse cohomology groups are independent of
the choice of the Morse-Smale pair (f,X). More precisely, there exist isomorphisms

ϕ01 : H∗(f1, X1) ∼−→ H∗(f0, X0),

such that ϕ00 = id and ϕ01 ◦ ϕ12 = ϕ02.

Proof. Preliminaries Let us fix a Morse function g : R → R which has precisely two critical
points: a maximum at 0 and a minimum et 1. Pick also a complete adapted gradient Y for g.
Finally pick a non-increasing function ρ : R → R equal to 1 near (−∞, 0] and equal to 0 near
[1,+∞).

Step 1 : Construction of a chain map ϕ01.
For (s, x) ∈ R × V , set fs01(x) = ρ(s)f0(x) + (1 − ρ(s))f1(x), Xs

01(x) = ρ(s)X0(x) + (1 −
ρ(s))X1(x) and Z01(s, x) = (Y (s), Xs

01(x)). The zeroes of Z01 are the points (0, p0) and (1, p1)
for p0, p1 critical points of f0, f1 respectively. We have W s(0, p0) = R ×W s(p0) and W u(0, p0) =
{0} ×W u(p0) near {0} × V . Similarly, W s(1, p1) = {0} ×W s(p1) and W u(1, p1) = R ×W s(p1)
near {1} × V . Since X0 and X1 are Morse-Smale vector fields, we deduce that W u(0, p0) is
transverse to W s(0, q0), that W u(1, p1) is transverse to W s(1, q1), and that W u(0, p0) is disjoint
(hence transverse) from W s(1, p1) for all critical points p0, q0 of f0 and p1, q1 of f1. We claim that
after a suitable perturbation of X01 supported in (0, 1) × V , we can also make the submanifolds
W s(0, p0) and W u(1, p1) transverse to each other. This is proved similarly as Theorem 4.16 (see
Lemma 4.17). We assume this perturbation has been done and keep the notation X01. Next we set
h01(s, x) = f s01(x) + g(s) +Cρ(s) and claim that, for C > 0 sufficiently large, h01 is Morse and Z01

is an adapted gradient for h01. Indeed Z01(h01) = (ρ′(s)(C + f0 − f1) + g′(s))Y (s) + Xs
01(fs01) is

positive in (0, 1)×V for sufficiently large C, near {s ≤ 0} we have (h01, Z01) = (f0 +g+C,X0 +Y )
and near {s ≥ 1} we have (h01, X01) = (f1 + g,X1 + Y ). The critical points of h01 then coincide
with the zeroes of Z01 and are non-degenerate. Though R× V is not compact, the Morse complex
of (h01, Z01) is well-defined. Indeed all trajectories between critical points are contained in [0, 1]×V
so the proofs of Lemma 4.22 and Lemma 4.24 work verbatim. Since 0 is a maximum for g and 1 is
a minimum, we have Ck(h01, Z01) = Ck−1(f0, X0)⊕Ck(f1, X1), and, since there are no trajectories

from (0, p0) to (1, p1), the differential has the form d =

(
d0 ϕ01

0 d1

)
. The equation d2 = 0 gives

d0ϕ01 + ϕ01d1 = 0 and hence ϕ01 : C(f1, X1)→ C(f0, X0) is a chain map.
In the case where X0 = X1, observe that Z01 = (Y,X0) is Morse-Smale and an adapted gradient

for h01(s, x) = fs01(x) + g(s), and that ϕ01 = id under the obvious identification C(f0, X0) =
C(f1, X1).

Step 2: Checking ϕ01 ◦ ϕ12 = ϕ02 on cohomology groups
Set Xt

02 = ρ(t)X0 + (1− ρ(t))X2, Xt
12 = ρ(t)X1 + (1− ρ(t))X2, X

s,t
012 = ρ(s)Xt

02 + (1− ρ(s))Xt
12

and Zs,t012 = (Y (s), Y (t), Xs,t
012). Let us assume that Xs

02, Xs
01 and Xs

12 have been perturbed slightly
as above in (0, 1)× V so that their sums with Y (s) are Morse-Smale vector fields on R× V . This
modifies the family Xs,t

012 in the regions {s ≤ 0, t ∈ (0, 1)}, {s ∈ (0, 1), t ≤ 0} and {s ≥ 1, t ∈ (0, 1)}
accordingly. The zeroes of Z012 are (0, 0, p0), (1, 0, p1), (0, 1, p2) or (1, 1, p2) for critical points
p0, p1, p2 of f0, f1, f2 respectively. All stable manifolds and unstable manifolds of Z012 are transverse
to each other except possibly W s(0, 0, p0) and W u(1, 1, p2). As before we claim that this can be
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ensured by a perturbation of Xs,t
012 supported in (0, 1)× (0, 1)× V (see Theorem 4.16 and Lemma

4.17). Set f s,t012 = ρ(s)f t02 + (1− ρ(s))f t12 and h012(s, t, x) = f s,t012(x) + g(s) + g(t) + C(ρ(s) + ρ(t)).
As in the previous step, we claim that for C > 0 sufficiently large, (h012, Z012) is a Morse-Smale
pair on R2×V , and, due to the special form of Z012, its Morse complex is well-defined and we have

Ck(f012, Z012) = Ck−2(f0)⊕ Ck−1(f1)⊕ Ck−1(f2)⊕ Ck(f2),

and the differential has the form

d =


d0 ϕ01 ϕ02 ψ
0 d1 0 ϕ12

0 0 d2 id
0 0 0 d2

 .

Then d2 = 0 gives d0◦ψ+ϕ01◦ϕ12+ϕ02+ψ◦d2 = 0. Hence (with coefficients Z/2Z), ϕ02−ϕ01◦ϕ12 =
d0 ◦ψ+ψ ◦ d2 and it follows that ϕ02−ϕ01 ◦ϕ12 induces the zero map in cohomology, as required.

Step 3: Conclusion
In the case where (f2, X2) = (f1, X1), if we choose different interpolations Xs

01 and X
s
01

(i.e., different perturbations ensuring the Morse-Smale condition), we obtain two chain maps
ϕ01, ϕ01 : C(f1, X1) → C(f0, X0), but by the previous step, ϕ01 = ϕ01 in cohomology. Hence
the morphism ϕ01 induced in cohomology is independent of any choice (the choice of the constant
C does not affect the chain map ϕ01), and it is legitimate to write it ϕ01.

In the case where (f2, X2) = (f0, X0), we obtain ϕ01 ◦ ϕ10 = id in cohomology and hence ϕ01

induces an isomorphism H(f1, X1)→ H(f0, X0).
For the constant interpolation Xs

00 = X0, we have seen that ϕ00 = id at the chain level. Since
ϕ00 is independent of any choice at the cohomology level, we obtain ϕ00 = id on cohomology.

We have thus constructed the required isomorphisms.

Definition 4.28. We define Hk(V ) =
⊔

(f,X)H
k(f,X)/ ∼ where (f,X) runs over the Morse-

Smale pairs and, for c0 ∈ Hk(f0, X0), c1 ∈ Hk(f1, X1) we set c0 ∼ c1 if c0 = ϕ01(c1). Then Hk(V )
is a vector space and, for a given Morse-Smale pair (f,X), the map Hk(f,X) → Hk(V ) is an
isomorphism. We call H(V ) the Morse cohomology of V . The numbers bk(V ) = dimHk(V ) are
called the Betti numbers of V .

Proposition 4.29. The number of critical points of a Morse function f on V is bounded below by∑
k bk(V ).

Proof. Pick an adapted Morse-Smale gradient X. The number of critical points of index k of f is
equal to dimCk(f,X) and we have

dimCk(f,X) ≥ dim ker(d : Ck(f,X)→ Ck+1(f,X)) ≥ dimHk(f,X) = bk(V ).

The result follows by summing over all k.

The groupsH(V ) satisfy the following functoriality property. If ϕ : V →W is a difffeomorphism
then it induces a map ϕ∗ : H(W )→ H(V ). Indeed, pick a Morse-Smale pair (f,X) on W and pull
it back to V to get an isomorphism H(V ) ' H(ϕ∗f, ϕ∗X) = H(f,X) ' H(V ). In particular the
group of diffeomorphims of V naturally acts on H(V ).
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Lemma 4.30. Let V be a closed manifold and ϕ : V → V a diffeomorphism isotopic to the identity
then the map H(V )→ H(V ) induced by ϕ is the identity.

Proof. Let ϕt, t ∈ [0, 1], be an isotopy with ϕ0 = id and ϕ1 = ϕ, and (f,X) a Morse-Smale pair
on V . The path (ϕ∗t f, ϕ

∗
tX) joins f and ϕ∗f and we have isomorphisms H(ϕ∗t f, ϕ

∗
tX) ' H(f,X)

since the Morse complex is independent of t. The isomorphism H(f,X) → H(ϕ∗f, ϕ∗X) from
Theorem 4.27 is then the identity (as it follows from its proof). Hence the induced isomorphism
ϕ∗ : H(V )→ H(V ) is the identity.

4.3 Computations

If V is a closed manifold of dimension n, it is clear that Hk(V ) = 0 if k < 0 or k > n.
The cohomology groups of a manifold satisfy an important symmetry property called the

Poincaré duality.

Proposition 4.31. Let V be a closed manifold of dimension n. Then for all k ∈ Z, Hn−k(V ) is
isomorphic to Hk(V ).

Proof. Let (f,X) be a Morse-Smale pair on V and consider the Morse-Smale pair (−f,−X). A
critical point of index k for f is of index n − k for −f , and hence Ck(f,X) = Cn−k(−f,−X).
Using the basis of Cn−k(−f,−X) given by the critical points, we identify Cn−k(−f,−X) with its
dual and the adjoint of the differential d is a differential ∂ : Cn−k(−f,−X) → Cn−k−1(−f,−X)
(which is of degree −1). Moreover the homology groups of (Cn−k(−f,−X), ∂) are isomorphic to the
duals of the cohomology groups of (Cn−k(−f,−X), d). Now observe that, under the identification
Cn−k(−f,−X) = Ck(f,X), the differential ∂ corresponds to d. The result follows since a finite
dimensional vector space is isomorphic to its dual.

The case k = 0 and k = n are computed as follows.

Proposition 4.32. Let V be a closed connected manifold of dimension n. We have Hn(V ) = Z/2Z
and H0(V ) = Z/2/Z.

Proof. Due to Proposition 4.31 it is enough to prove it for H0(V ).

The cohomology groups of a product of manifolds can be computed with the following so-called
Künneth formula.

Proposition 4.33. Let V,W be closed manifolds, we have

Hk(V ×W ) =
⊕
i+j=k

H i(V )⊗Hj(W ).
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4.4 Filtered Morse complex

Let V be a closed manifold and (f,X) a Morse-Smale pair on V . Let a, b ∈ [−∞,+∞] be regular
values of f with a < b. We define a complex C(a,b)(f,X) (simply written C(a,b) when the choice of
(f,X) is unambiguous) generated by the critical points of f with critical values between a and b,
and with differential counting gradient trajectories of X between them as in Definition 4.23. The
proof of d2 = 0 (see Theorem 4.25) works verbatim for this situation. Note that C(−∞,+∞) = C.

If a, b, c ∈ [−∞,+∞] are regular values of f with a < b < c, then we have a short exact sequence
of complexes:

0→ C(b,c) → C(a,c) → C(a,b) → 0

which induces a long exact sequence of cohomology groups

· · · → Hk−1
(a,b) → Hk

(b,c) → Hk
(a,c) → Hk

(a,b) → Hk+1
(b,c) → . . . (4.1)

If a, b, c, d ∈ [−∞,+∞] are regular values of f with a < b < c < d then we have four short exact
sequences and their associated long exact sequences of cohomology groups as (4.1) involving the
triples (a, b, c), (a, b, d), (a, c, d), (b, c, d). Due to some commutativity relations such as the following

C(a, c)

C(a, d) C(a, b),

the four long exact sequences can be nicely arranged into the following commutative diagram
(sometimes called an exact braid):

. . . Hk−1
(a,b) Hk

(b,c) Hk+1
(c,d) . . .

Hk−1
(a,c) Hk

(b,d) Hk
(a,c) Hk+1

(b,d)

. . . Hk
(c,d) Hk

(a,d) Hk
(a,b) . . .

(4.2)

The following theorem is a refinement of Theorem 4.27, we leave its proof to the reader.

Theorem 4.34. Let V be a closed manifold, (f0, X0) and (f1, X1) Morse-Smale pairs on V , a0

and b0 regular values of f0 with a0 < b0 and a1, b1 regular values of f1 with a1 < b1. If {f0 < a0} =
{f1 < a1} and {f0 < b0} = {f1 < b1} then there exists an isomorphism ϕ01 : H(a1,b1)(f1, X1) →
H(a0,b0)(f0, X0). Moreover these isomorphisms are compatible in the sense that ϕ00 = id, ϕ02 =
ϕ01 ◦ ϕ12 with obvious notations, and commute with all maps in (4.2).

Definition 4.35. Let (f,X) be a Morse-Smale pair on a closed manifold V and a, b regular values
of f with a < b. Set Va = {f < a} and Vb = {f < b}. Mimicking definition 4.28 we define
Hk(Vb, Va) to be the vector space canonically isomorphic to Hk

(a,b)(f,X). We call H(Vb, Va) the
relative Morse cohomology of the pair (Vb, Va).
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When a = −∞, we have Va = ∅ and we write H(Vb) = H(Vb, Va). When b = +∞, we have
Vb = V , and H(Vb, Va) = H(V, Va).

If [a, b] is an interval of regular values, thenH(Vb, Va) = 0 and the restriction morphismH(Vb)→
H(Va) is an isomorphism.

4.5 Spectral invariants

Definition 4.36. Let V be a closed manifold, f a Morse function on V and α ∈ H(V ) we define

c(f, α) = sup{c ∈ R \ vcrit(f); rc,f (α) = 0},

where rc,f : H(V )→ H(Vc) is the natural restriction morphism from (4.1) (associated to the triple
(−∞, c,+∞)). The number c(f, α) is called the spectral invariant of f with respect to α.

Lemma 4.37. If ϕ : V → V is a diffeomorphism of V , f a Morse function on V and α ∈ H(V ),
then c(ϕ∗f, ϕ∗α) = c(f, α).

Proof. Let (f,X) be a Morse-Smale pair, c a regular value of f and consider the long exact sequence
(4.1) associated to the triple (−∞, c,+∞). We have the following commutative diagram involving
the isomorphisms ϕ∗:

H(f,X) H(ϕ∗f, ϕ∗X)

H(−∞,c)(f,X) H(−∞,c)(ϕ
∗f, ϕ∗X).

rc,f

ϕ∗

rc,ϕ∗f

ϕ∗

We deduce that rc,f (α) = 0 if and only if rc,ϕ∗f (ϕ∗α) = 0, and the result.

The numbers c(f, α) are therefore invariants in the following sense: if there exists α ∈ H(V )
such that c(f, α) 6= c(g, α) then f and g are not conjugate by a diffeomorphism isotopic to the
identity (see Lemma 4.30).

Lemma 4.38. c(f, α) is a critical value of f .

Proof. If a is a regular value, then for small enough ε > 0, f has no critical values in [a− ε, a+ ε].
HenceH(Va+ε, Va−ε) = 0 and from the exact sequence (4.1) associated to the triple (−∞, a−ε, a+ε)
we deduce that the restriction map ϕ : H(f < a+ ε)→ H(f < a− ε) is an isomorphism.

If further a = c(f, α), then ra+ε,f (α) 6= 0 and ra−ε,f (α) = 0 which contradicts ϕ ◦ ra+ε,f =
ra−ε,f .

For similar reasons, we also have

c(f, α) = inf{c ∈ R \ vcrit(f); rc,f (α) 6= 0}.

Definition 4.39. Let V be a closed connected manifold, 1 be the generator of H0(V ) and µ the
generator of Hn(V ). We define c−(f) = c(f, 1) and c+(f) = c(f, µ). If V is reduced to a point,
then 1 = µ and we write c(f) = c+(f) = c−(f).
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Proposition 4.40. Let V be a closed connected manifold and f a Morse function on V . We have
c−(f) = min f and c+(f) = max f .

Proof. Let (f,X) be a Morse-Smale pair. As we saw in the proof of Proposition 4.32 the class 1 is
represented in H(f,X) by the sum of all minima of f . If a is a regular value with a > min f and
(min f, a) contains no critical value, then the sum of all minima of f in Va is a cocycle in C(Va)
(since there are no critical points in {min f < f < a}) and is non-zero since there is at least one
minimum in {f = min f}. Thus ra,f (1) 6= 0 and c(f, 1) ≤ min f . If a < min f , then H(Va) = 0
and hence c(f, 1) ≥ min f .

The equality c(f, µ) = max f follows from the previous one by Poincaré duality, see Proposition
4.31.

Lemma 4.41. For α ∈ H(V ), the map f 7→ c(f, α) is 1-Lipschitz for the C0-norm , namely

|c(f, α)− c(g, α)| ≤ sup
x∈V
|f(x)− g(x)|.

Proof. LetM = supx∈V |f(x)−g(x)|. For any c ∈ R and ε > 0, we have {g ≤ c−M−ε} ⊂ {f < c}
and we can find a function h such that {h < c} = {f < c} and {h < c} = {g < M − c − ε}. If
further c is a regular value of f and c−M−ε is a regular value of g we can ensure the same property
for h and from the diagram (4.2) associated to h and the quadruple (−∞, c −M − ε, c,+∞), we
extract the diagram

H(V )→ H({f < c})→ H({g < c−M − ε}).

If c < c(f, α), then α is sent to zero by the first map, hence also by the composition, and thus
c(g, α) ≥ c −M − ε. Hence (using Sard’s lemma) c(f, α) − c(f, α) ≤ M . The other inequality is
proved similarly.

4.6 Functions quadratic at infinity

Up to now we have considered the Morse complex only on closed manifolds. One should be careful
when trying to extend it to open manifolds or manifolds with boundary. There are several issues.
The first one is that the number of gradient trajectories between points of consecutive indices may
not be finite, in which case one cannot even define the differential d. It could also be that d is
well-defined but we do not have d2 = 0. Finally it could be that d is defined and d2 = 0 but the
resulting cohomology group depends on choices, i.e. theorem 4.27 is wrong. On R, the function
f(x) = x has no critical points, an hence H(f, ∂x) = 0, while for g(x) = x2, H0(g, x∂x) = Z/2Z.
One way to fix all these issues is to restrict ourselves to a class of functions and vector fields with
prescribed behaviour at infinity. We will use the following setup.

Definition 4.42. A function f : Rk × V → R is called quadratic at infinity, if there exists a
quadratic form Q : Rk → R and a function g : V → R such that f(v, x) = Q(v) + g(x) outside of
some compact set.

A non-degenerate quadratic form on Rk always admits an adapted linear gradient vector field.
Simply take coordinates (x1, . . . , xk) such that Q = −x2

1 − · · · − x2
i + x2

i+1 + · · · + x2
k and set

X = −x1∂x1 − · · · − xi∂xi + xi+1∂xi+1 + · · ·+ xk∂xk .
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Definition 4.43. A Morse pair (f,X) is quadratic at infinity if there exists a quadratic form
Q : Rk → R, a linear vector field Y on Rk, a function g : V → R and an adapted gradient field at
infinity and X is linear at infinity.

Given a Morse-Smale pair (f,X) quadratic at infinity onRk×V , we can define its morse complex
C(f,X) (we still have finiteness of gradient trajectories between critical points of consecutive indices
and d2 = 0). A version of Theorems 4.27 and 4.34 holds in this context (with fixed quadratic form
Q) so we can give the following definition.

Definition 4.44. Let V be a closed manifold and Q a non-degenerate quadratic form on Rn. We
define Hk

Q(Rk×V ) to be the vector space canonically isomorphic to Hk(f,X) for any Morse-Smale
pair (f,X) quadratic at infinity (with quadratic form Q). Similarly we define the filtered version
HQ,(a,b)(f,X) = HQ({f < b}, {f < a}) for a, b regular values of f , and the spectral invariants
c(f, α) for α ∈ HQ(Rk × V ).

Proposition 4.45. If Q is a non-degenerate quadratic form of index i on Rn then Hj
Q(Rk) = Z/2Z

if j = i and Hj
Q(Rk) = 0 if j 6= i.

Proof. Let Y be a linear adapted gradient for Q. Then the Morse complex of (Q,Y ) is very simple:
Cj(Q,Y ) = 0 if j 6= i and Ci(Q,Y ) = Z/2Z, and d = 0. The result follows since HQ(Rk) can
be computed with any Morse function equal to Q outside of a compact set, in particular with Q
itself.

Let V be a closed manifold and Q a non-degenerate quadratic form of index i. In view of the
previous proposition, the Künneth morphism Hk(V ) = Hk(V )⊗H i

Q(Rk) → Hk+i
Q (Rk × V ) is an

isomorphism, we denote it iQ. If α ∈ H(V ), we abusively write c(f, α) = c(f, iQ(α)). In particular,
c−(f) = c(f, iQ(1)) and c+(f) = c(f, µ). Note that Proposition 4.40 no longer holds for functions
quadratic at infinity since these are typically unbounded.

Proposition 4.46. Let V be a closed connected manifold, f a function quadratic at infinity on
Rk × V and x0 ∈ V . The function fx0(v) = f(v, x0) is quadratic at infinity on Rk and we have

c−(f) ≤ c(fx0) ≤ c+(f).

Proof. We only prove the second inequality. The first one is proved by similar arguments. Let Q
be the quadratic form on Rk associated to f and i the index of Q. Let n be the dimension of V .

(i) We claim that we can assume fx0 is Morse. Indeed, one can find another function g with
this additional property and arbitrarily C0-close to f . From Lemma 4.41, we get

c(fx0) ≤ c(gx0) + ε ≤ c+(g) + ε ≤ c+(f) + 2ε

where ε = sup |f − g|.

(ii) Let a ∈ R and ε > 0 be given. We claim that there exists a function g : V → R such that
g(x0) = 0 is the maximum of g and {f ≤ a−ε} ⊂ {fx0 +g ≤ a}. Indeed the inclusion is implied by
the relation f(x0, p)+g(x) ≤ f(x, p)+ε, for all (x, p) ∈ V×Rn. By hypothesis there exists a function
h : V → R such that f(x, p) − f(x0, p) = h(x) outside a compact set. Since V is compact, the
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quantity f(x, p)−f(x0, p) is bounded on V ×Rn. In particular x 7→ infp∈Rn{f(x, p)−f(x0, p)+ε}
is also bounded (and equal ε at x0). Hence we can find a smooth function g with a maximum at
x0 equal to 0 and satisfying the required relation.

(iii) LetX, Y be gradient like vector fields for fx0 and g. Using Proposition 4.45 and Proposition
4.33, we obtain an isomorphism

H∗(V ) ' H∗(g, Y ) = H∗(g, Y )⊗H i(fx0 , X)→ H∗+i(fx0 + g,X + Y ) ' H∗+iQ (Rk × V ).

Through this isomorphism the class iQ(µ) is represented by z⊗x0, where z is a cycle in Ci(fx0 , X)
representing the canonical class of H i(fx0 , X) (recall also that x0 is the maximum of g, so that
dx0 = 0).

(iv) Observe that x0 is a generator of Hn(V ). Indeed we have dx0 = 0 and the morphism
e : Cn → Z/2 which maps each generator to 1 satisfies d ◦ e = 0 because each critical point of
index n− 1 has precisely two trajectories to critical points of index n. Hence the map p 7→ (p, x0)
induces an isomorphism H∗(fx0 , X) → Hn+∗(fx0 + g). Since g(x0) = 0, we deduce the following
commutative diagram, for ε > 0 such that a− ε 6∈ vcrit(f),

H i(fx0) Hn+i(fx0 + g) Hn+i(f < a− ε)

H i(fx0 < a) Hn+i(fx0 + g < a)

u
∼

ra sa

va

where the existence of the right hand triangle follows from the inclusion {f < a−ε} ⊂ {fx0 +g < a}
given in (i). The arrow u is an isomorphism and H i(fx0) ' Z/2Z. By definition of c(fx0), the
morphism ra is zero as soon as a < c(fx0). It follows that sa, and then va, are also zero.

Through the canonical isomorphism Hn+i(fx0 + g) ' H∗+iQ (Rk × V ) the morphism va corre-
sponds to ra,f . We deduce that c(fx0)− ε ≤ c+(f), for all ε > 0, and the result follows.



56 CHAPTER 4. MORSE COHOMOLOGY



Chapter 5

Generating functions

5.1 Basics

Let V be a manifold, T ∗V the cotangent bundle of V , J1V = J1(V,R) the bundle of 1-jets of
functions on V . Recall T ∗V has a canonical 1-form λV whose differential ωV is a symplectic form.
Recall also that J1V naturally splits asR×T ∗V and is endowed with the contact form αV = dz−λV
where z is the coordinate on the R factor. The projection of a Legendrian submanifold of J1V to
T ∗V is an exact Lagrangian immersion. Given a function f : V → R, the image of j1f : V → J1V
is a Legendrian submanifold of V : (j1f)∗αV = f∗dz − (df)∗αV = df − df = 0. The projection of
this Legendrian submanifold under J1V → J0V = R × V is the graph of the function f in the
(almost) usual sense {(f(x), x);x ∈ V }. A Legendrian submanifold of J1V which is transverse to
the fibers of J1V → V is necessarily of this type: given by the 1-jet of some function on V . We
will present a tool to study more general Legendrian submanifolds of J1V .

Lemma 5.1. Let p : E → V be a surjective submersion and consider the subset H of T ∗E consisting
of covectors β which vanish on ker dp ⊂ TE. Then H is a coisotropic submanifold and the projection
p induces a symplectomorphism from the symplectic reduction of H to T ∗V .

Proof. Near a point of E, the submersion lemma provides a neighborhood of the form U×F where p
is the first projection. In this neighborhood, T ∗E splits as T ∗U ×T ∗F with the product symplectic
form and H corresponds to T ∗U × 0F which is a coisotropic submanifold. The characteristic
foliation F of H (given by the symplectic orthogonal to TH at each point) is given by {0} × 0F ,
and hence the reduction H/F is identified with T ∗U under the projection p.

Definition 5.2. Let V be a manifold. A generating function over V is a couple (ϕ, f) where
ϕ : E → V is a submersion and f : E → R a function such that df : E → T ∗E is transverse to the
submanifold H of covectors vanishing on ker dϕ.

A generating function over V induces an immersed Legendrian submanifold of J1V in the
following way. Consider first the Lagrangian submanifold which is the image of df : E → J1E, it
is transverse to H, and hence its reduction gives an exact Lagrangian submanifold of T ∗V in view
of Proposition 2.10 and Lemma 5.1. Together with the value of the function f , this is lifted to an
immersed Legendrian submanifold.

57
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Concretely, near a point e ∈ E we pick local coordinates (v, q) such that ϕ(v, q) = q. Then
df(v, q) ∈ H if and only if ∂f

∂v = 0. The transversality assumption implies that Σ = df−1(H) is a
submanifold of E. The Legendrian immersion associated with f is the map if : Σ→ J1V defined
locally by (v, q) 7→ (f(v, q), ∂f∂q (v, q), q). We can check locally that if is isotropic:

i∗fαV = df − ∂f

∂q
dq =

∂f

∂v
dv = 0

since ∂f
∂v vanishes on Σ. Moreover, the transversality condition means that the matrix

(
∂2f
∂v2

∂2f
∂q∂v

)
has maximal rank at each point of Σ. The differential of if writes

 0 ∂f
∂q

∂2f
∂q∂v

∂2f
∂q2

0 1

. If (δv, δx) ker dif ,

then δx = 0, ∂2f
∂x∂v δv = 0 and ∂2f

∂v2
δv = 0, but the matrix

(
∂2f
∂v2
∂2f
∂q∂v

)
is injective and thus δv = 0.

Hence if is an immersion. If we think of f as a family of functions parametrized by V , then Σ
can be viewed as the set of fiberwise critical points. Moreover a point (v, q) ∈ Σ corresponds to a
non-degenerate critical point if and only if dϕ : TΣ→ TV is an isomorphism at (v, q).

The function f : R × R → R defined by f(v, q) = v3 − (1 − q2)v is a generating function.
The function g : R ×R2 → R defined by f(v, q1, q2) = v4 + q1v

2 + q2v = 0. The corresponding
Legendrian surface has a cusp edge along the curve 8q3

1 + 27q2
2 = 0.

Not every Legendrian submanifold of J1V can be described by a generating function. However
the obstructions to this are necessarily global due to the following result.

Proposition 5.3. Let V be a manifold, π : J1V → V the natural projection, L ⊂ J1V a Legendrian
submanifold and x ∈ L. There is a generating function for L near x.

Proof. Let n be the dimension of V and k the dimension of the intersection of TxL with the
tangent space to the fibers of J1V → J0V = R × V . Consider local functions q1, . . . , qk on V
defined near π(x) such that qi(x) = 0 for all i and (dq1(x), . . . , dqk(x)) span a basis of the above
intersection. Then pick local functions qk+1, . . . , qn vanishing at π(p) in such a way that q1, . . . , qn
form a coordinate system on V centered at π(x). These coordinates induce a local trivialization
J1V = R × Rn × Rn and we denote p1, . . . , pn the dual coordinates to (q1, . . . , qn) and z the
coordinate in R. We claim that (p1, . . . , pk, qk+1, . . . , qn) form a coordinate system on L near p, due
to the Legendrian condition. Indeed, let v ∈ TxL. At x, for i ≤ k, we have dqi(v) = ω(∂pi , v) = 0

since ∂pi ∈ TxL and L is Legendrian. Now if we have
∑k

i=1 λidpi +
∑n

i=k+1 µidqi = 0 on TxL, then
plugging ∂pi for i = 1 . . . , k, gives λi = 0 and then µi = 0 since the projection TxL → Tπ(x)V has
rank n−k by assumption. Consider ψ : Rk×Rn−k → L be the corresponding local diffeomorphism
ψ(p1, . . . , pk, qk+1, . . . , qn), ϕ : Rk ×Rn → Rn the submersion given by ϕ(p1, . . . , pk, q1, . . . , qn) =
(q1, . . . , qn) and f : Rk ×Rn → R the function defined by

f = z ◦ ψ +
k∑
i=1

pi(qi − qi ◦ ψ).
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We claim that (f, ϕ) is a generating function for L near x. Indeed,

df = ψ∗dz +

k∑
i=1

pi(dqi − ψ∗dqi) +

k∑
i=1

(qi − qi ◦ ψ)dpi

=

n∑
i=1

ψ∗(pidqi) +

k∑
i=1

pi(dqi − ψ∗dqi) +

k∑
i=1

(qi − qi ◦ ψ)dpi

=
k∑
i=1

piψ
∗dqi +

n∑
i=k+1

ψ∗pidqi +
k∑
i=1

pi(dqi − ψ∗dqi) +
k∑
i=1

(qi − qi ◦ ψ)dpi

=
n∑

i=k+1

ψ∗pidqi +
k∑
i=1

pidqi +
k∑
i=1

(qi − qi ◦ ψ)dpi

Hence Σ = { ∂f∂pi = 0, i = 1, . . . , k} = {qi = qi◦ψ, i = 1, . . . , k} and if (Σ) = {(z◦ψ, p1, . . . , pk, pk+1◦
ψ, . . . , pn ◦ ψ, q1 ◦ ψ, . . . , qk ◦ ψ, qk+1, . . . , qn)} = L.

Definition 5.4. A generating function over V is called quadratic at infinity if it is of the form
E = Rk × V , ϕ = pr2 and f : E → R is quadratic at infinity.

5.2 Chekanov-Sikorav’s theorem

Theorem 5.5. Let V be a manifold and L a Legendrian submanifold of J1V admitting a generating
function f : Rk×V → R. Let ϕt : J1V → J1V , t ∈ [0, 1], be a compactly supported contact isotopy
of J1V . Then ϕ1(L) also admits a generating function g : Rl × V → R for some integer l.

Moreover if f is quadratic at infinity, then we can choose g quadratic at infinity as well.

Remark 5.6. It is not essential that L is a Legendrian submanifold in the above statement. In
fact we could even remove the transversality assumption in the definition of a generating function.
The proof given below would work verbatim.

On J1V we have a contact form αV = dz −
∑

i pidqi. The Reeb vector field is Y = ∂
∂z . Recall

that a function h : J1V → R induces a contact vector field Xh given by Xh = h ∂
∂z + X ′h where

X ′h ∈ ξV = kerαV is defined by X ′hydαV = −dh|ξV . We find

Xh =
(
h−

∑
i

pi
∂h

∂pi

) ∂
∂z

+
∑
i

( ∂h
∂qi

+ pi
∂h

∂z

) ∂

∂pi
−
∑
i

∂h

∂pi

∂

∂qi
.

Corollary 5.7 (A conjecture of Arnol’d). Let V be a closed manifold and let ϕt : T ∗V → T ∗V ,
t ∈ [0, 1] be a compactly supported Hamiltonian isotopy. Let 0V ⊂ T ∗V be the zero section. Let
t0 ∈ [0, 1] be such that ϕt0(0V ) intersects 0V transversally. Then the intersection consists of at least∑

i dimH i(V ) points.
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Proof. Let ht(p, q) be the Hamiltonian function of ϕt. Then h′t(z, p, q) = ht(p, q) defines a contact
isotopy ψt such that π ◦ψt = ϕt ◦ π, where π : J1V → T ∗V is the projection. We set L = {0}× 0V
and S =

⋃
t∈[0,1] ψt(L). Multiplying h′t by a bump function which is 1 on S, we obtain another

isotopy ψ′t with compact support and such that ψ′t(L) = ψt(L) for all t ∈ [0, 1].
The Legendrian L has a generating function quadratic at infinity (the zero function) and, by

the previous theorem, the same holds for ψt(L). Let ft be a generating function for ψt(L) which
is quadratic at infinity. Then ϕt(0V ) ∩ 0V is in bijection with ψt(L) ∩ (R × 0V ), which is also in
bijection with the critical points of ft. If the intersection is transverse, then ft is Morse and the
number of critical points must be greater than the sum of Betti numbers.

Idea of the proof of Theorem 5.5. A generating function f(v, q) on Rk × V can be seen as
a family of functions f(−, q) on Rk parametrized by V which are generically Morse. It can also be
seen in the other way as a family of functions fv = f(v,−) on V parametrized by Rk. In this case
ϕt moves J1(fv) ⊂ J1V and, for a given v and small t (say t < t0(v)), ϕt(J1(fv)) remains the 1-jet
of some function, say gtv. We can set f t(v, q) = gtv(q) and it gives a generating function for ϕt(L).
The problem is that we cannot bound t0(v) from below in general.

The solution given here gives such a bound for the particular case of affine functions fv on
V = Rn. Then we reduce to this case by embedding V into some Rn and adding auxiliary
variables.

Lemma 5.8. Let Φ: J1V → J1V be a contact diffeomorphism and let F t(v, q) : Rk × V → V ,
t = 0, 1 be generating functions for L0, L1 ⊂ J1(V ). We set F tv(q) = F t(v, q) and we assume that
Φ(J1(F 0

v )) = J1(F 1
v ) for all v. Then Φ(L0) = L1.

Proof. We take coordinates (z, p, q) on J1(V ) and (z, w, p, v, q) on J1(Rk × V ). We define M ⊂
J1(Rk × V ) as M = {w = 0}. The Legendrian L0 is obtained from J1(F 0) ⊂ J1(Rk × V ) by
L0 = pV (M ∩ J1(F 0)), where pV is the projection to J1(V ).

Since Φ is contact there exists a function µ on J1(V ) such that Φ∗(α) = µα. Now Φ induces a
contact diffeomorphism Ψ on J1(Rk×V ) such that Φ◦pV = pV ◦Ψ. Writing (z′, p′, q′) = Φ(z, p, q),
it is given by Ψ(z, w, p, v, q) = (z′, w′, p′, v, q′) with w′i = µ(p, q, t)wi for all i. In particular Ψ(M) =
M .

We have J1(F 0) = {(F 0(v, q), ∂F
0

∂v ,
∂F 0

∂q , v, q)}. Our hypothesis is that Ψ(J1(F 0)) = {(F 1(v, q′),

h(v, q′), ∂F
1

∂q′ , v, q
′)} for some function h = (h1, . . . , hk). Writing that Ψ(J1(F 0)) is Legendrian we

find hi = ∂F 1

∂vi
. Hence Ψ(J1(F 0)) = J1(F 1) and the lemma follows.

Proof of Theorem 5.5. (i) Embedding into Rn

By Whitney’s theorem we can find an embedding j : V → Rn for some n. In the sequel we
consider j as an inclusion map and omit to write it. The function f : Rk × V → R is extended to
Rk ×Rn arbitrarily.

(ii) Fragmentation
For N ∈ N∗ and j ∈ 1, . . . , N , we set ϕj,N = ϕ j

N
◦ ϕ−1

j−1
N

and get ϕ1 = ϕN,N ◦ · · · ◦ ϕ1,N .

Since V is embedded in Rn we can measure the C1-distance concretely as follows : for maps
ϕ,ψ : J1V → J1V define d1(ϕ,ψ) = supx∈V ‖ϕ(x) − ψ(x)‖ + supx∈V ‖dϕ(x) − dψ(x)‖ for some
norm ‖.‖ on the vector space R1+n+n = J1Rn and the induced operator norm. We claim then
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that maxj d1(ϕj,N , id) converges to 0 when N goes to +∞. This follows from the fact that ϕt has
compact support.

(iii) Action on affine jets
For a ∈ Rn, b ∈ R, consider the function za,b : V → R defined by za,b(q) = 〈a, q〉 + b and its

1-jet extension J1za,b : V → J1V given by J1za,b(q) = (〈a, q〉 + b, a, q). Consider the projection
π : J1V → V and the map Qa,b : V → V given by Qa,b = π ◦ ϕ ◦ J1za,b. Set K = π(supp(ϕ)).
Outside ofK, we haveQa,b(q) = q. Thanks to the previous step, we can assume that ϕ is C1-close to
the identity, and thusQa,b is uniformly C1-close to q as a function of a, b and q. In particular, we may
assume that Qa,b is a diffeomorphism of V for all a, b. Then we set Za,b(q) = π′ ◦ϕ◦J1za,b ◦Q−1

a,b(q)

where π′ is the projection J1V → R. These definitions are made so that graph in J1V of the 1-jet
of za,b is mapped by ϕ to that of Za,b.

(iv) Linearization
We define a new function f1 : Rn ×Rn ×Rk × V → R by the formula

f1(x, y, v, q) = f(v, y) + 〈x, q − y〉.

We check easily that Lf1 = Lf . Moreover with the notations above we have f1(x, y, v, q) =
zx,f(v,y)−〈x,y〉(q).

Next we define f2 : Rn ×Rn ×Rk × V → R by

f2(x, y, v, q) = Zx,f(v,y)−〈x,y〉(q).

Lemma 5.8 ensures that Lf2 = ϕ(Lf1). This proves our result: g = f2 is the required generating
function for ϕ(Lf ).

(v) Interpolation at infinity
It remains to prove that if f is quadratic at infinity we can ensure the same property for g. By

quadratic at infinity we mean the following: for (q, v) outside of some compact set of Rk × V , we
have f(q, v) = Q(v) for some non-degenerate quadratic form Q.

In the first step above, we may assume that the embedding j is proper (this is automatic if V
is compact). Also when extending f to Rk ×Rn we ensure that: f(q, v) = Q(v) outside of some
compact set of Rk ×Rn.

Then we define f3 : Rn ×Rn ×Rk ×R→ R by the formula

f3(x, Y, v, q) = f2(x, q − Y, v, q)

and check easily that Lf2 = Lf3 (f3 is obtained from f2 by composing with a fibered diffeomor-
phism).

Next, we pick a compactly supported function χ : Rn ×Rn ×Rk → [0, 1] and set

f4(x, Y, v, q) = χ(x, Y, v)f3(x, Y, v, q) + (1− χ(x, Y, v))(Q(v) + 〈x, Y 〉).

For (x, Y, v) large enough and q ∈ V , we have f4(x, Y, v, q) = Q(v)+〈x, Y 〉 which is a non-degenerate
quadratic form on Rn × Rn × Rk. For q outside of K, we have f2(x, y, v, q) = f1(x, y, v, q) and
thus

f4(x, Y, v, q) = χ(x, Y, v)f(v, q − Y ) + (1− χ(x, Y, v))Q(v) + 〈x, Y 〉.
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If (x, Y, v) is bounded and q large (here we use use the properness of V → Rn), then q − Y is
large and we have f(v, q − Y ) = Q(v), hence f4(x, Y, v, q) = Q(v) + 〈x, Y 〉. We conclude that the
function f4 is quadratic at infinity. However we have to choose χ suitably to ensure Lf4 = Lf3 .

We first argue that for (x, Y, v) large enough say, |(x, Y, v)| ≥ C > 0, and q ∈ V the function f3

has no fiberwise critical point. This follows from the proof of Lemma 5.8 or a computation (simpler
than what we do below). Hence if we choose χ so that χ = 1 on the |(x, y, v)| ≤ C, then we only
have to check that f4 has no fiberwise critical point in the region of interpolation (the support of
dχ).

For q ∈ V \K, the above expression for f4 gives ∂f4
∂x = Y , ∂f4∂Y = x and ∂f4

∂v = ∂Q
∂v up to bounded

fonctions on Rn×Rn×Rk× (V \K). Hence for (x, Y, v) large enough, there is no fiberwise critical
point for f4. For q ∈ K, we need to compute a little more. With the notations above and a = x,
b = f(v, q − Y ) + 〈x, Y 〉 − 〈x, q〉, we have:

f4 = χZa,b + (1− χ)za,b + (1− χ)(Q(v)− f(v, q − Y )),

and the fiber derivatives write:

∂f4

∂x
= Y +

∂χ

∂x
(Za,b− za,b) +χ(

∂Za,b
∂a
−
∂za,b
∂a

) +χ(
∂Za,b
∂b
−
∂za,b
∂b

)(Y − q)− ∂χ
∂x

(Q(v)− f(v, q−Y )),

∂f4

∂Y
= x−∂f

∂q
(v, q−Y )+

∂χ

∂Y
(Za,b−za,b)+χ(

∂Za,b
∂b
−
∂za,b
∂b

)(x−∂f
∂q

(v, q−Y ))− ∂χ
∂Y

(Q(v)−f(v, q−Y )),

∂f4

∂v
=
∂f

∂v
+
∂χ

∂v
(Za,b − za,b) + χ(

∂Za,b
∂b
−
∂za,b
∂b

)
∂f

∂v
− ∂χ

∂v
(Q(v)− f(v, q − Y )).

The terms |Za,b − za,b|, |
∂Za,b
∂a −

∂za,b
∂a |, |Q(v) − f(v, q − Y )| are bounded on Rk ×Rn ×Rn × V .

Let us assume that ϕ is sufficiently C1-close to id so that |∂Za,b∂b −
∂za,b
∂b | < 1. We conclude that

the triple (∂f4∂x ,
∂f4
∂Y ,

∂f4
∂v ) is arbitrary large for (x, Y, v) large and uniformly for q ∈ K. Hence if the

region χ = 1 is chosen large enough and say ‖dχ‖ ≤ 1, then f4 has no fiberwise critical points in
the interpolation region. This finishes the proof.

We can deduce from this theorem the following 1-parametric version.

Theorem 5.9. Let V be a manifold, f : Rk × V → R a generating function quadratic at infinity,
(ϕt)t∈[0,1] a compactly supported contact isotopy of J1V . Then there exists a generating function
quadratic at infinity G : Rl × V × [0, 1] → R over V × [0, 1] such that G0 is equivalent to f and
LGt = ϕt(Lf ) for all t ∈ [0, 1].

Proof. The contact isotopy ϕt lifts to a contact isotopy of J1(V × [0, 1]) = J1V × T ∗[0, 1] as
follows. We have ϕ∗tαV = ktαV for some positive functions kt, and αV ( ddtϕt) = ht ◦ ϕt. We set
Φs(z, p, q, τ, t) = (ϕst(z, p, q), kstτ + shst ◦ ϕst(z, p, q), t) and we have

Φ∗s(αV − τdt) = kstαV + α(
d

dt
ϕst)dt− kstτdt− shst ◦ ϕstdt = kst(αV − τdt).

Also we may extend Φs to a compactly suppoted contact isotopy of J1(V ×R).
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Set F : Rk × V × R → R defined by F (v, q, t) = f(v, q), it is a generating function for
Lf × {τ = 0} ⊂ J1(V ×R). We apply Theorem 5.5 to F and Φs and obtain a generating function
quadratic at infinity G for Φ1(LF ). By construction, for all t ∈ [0, 1], Φ1(LFt) = ϕt(Lf ) and thus
LGt = ϕt(Lf ).

It remains to show that G0 is equivalent to f . A look at the proof of Theorem 5.5 shows that
when ϕt is the identity the process transforms a generating function f(v, q) into f ′(x, Y, v, q) =
f(v, q− Y ) + 〈x, Y 〉. Moser’s method can be used to prove that f ′ differs from f(v, q) + 〈x, Y 〉 by
a fibered diffeomorphism. The result follows.

5.3 Viterbo’s uniqueness theorem

Our goal here is to prove the following result.

Theorem 5.10. Let V be a closed connected manifold and fi : Rki × V → R, i = 1, 2, be
generating functions quadratic at infinity for a Legendrian submanifold which is contact isotopic
to the zero-section. Then there exist fiberwise quadratic forms Q′i : Rk′i × V → R, i = 1, 2,
and a diffeomorphism ϕ : Rk1+k′1 × V → Rk2+k′2 × V preserving the projection to V such that
f1 +Q′1 = (f2 +Q′2) ◦ ϕ.

We collect first a few lemmas to be used in the proof of this theorem.

Lemma 5.11. Let M be a closed manifold of dimension m and N a manifold of dimension n.
Assume 2(m+ 1) ≤ n. If two embeddings f, g : M → N are homotopic then they are isotopic.

Proof. Let F : M× [0, 1]→ N be a homotopy with F0 = f , F1 = g. After a small perturbation of F
supported in M × (0, 1), we can assume that F is an immersion with double points if 2(m+ 1) = n
or an embedding if 2(m+ 1) < n. In the first case, by another small perturbation we can assume
that the double points are of the type f(x, t) = f(x′, t′) with t 6= t′ hence in both cases Ft is an
embedding for all t.

Lemma 5.12. Two maps Sk → Sk are homotopic if and only of they have the same degree, i.e.
induce the same map Hk(S

k)→ Hk(S
k).

Lemma 5.13. Let V be a manifold, and (ft)t∈[0,1] : R
k × V a family of generating functions

quadratic at infinity which transversally generate the same Legendrian immersion L. Then there
exists a family of fibered diffeomorphisms (ϕt)t∈[0,1] : R

k × V → Rk × V such that ft ◦ ϕt = f0 and
ϕ0 = id.

Proof. Moser’s method.

Proof of Theorem 5.10. We first prove the result for the case of the zero-section and then show
how to reduce to this case.

Proof for the zero-section
Let f : Rk × V → R be a generating function for the zero-section. For q ∈ V , we write

fq : V → R the corresponding function on V = V × {q}.
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(1) By assumption, for each q ∈ V , fq has a unique critical point v0(q). Up to replacing f by
f ◦ ϕ where ϕ(v, q) = (v + v0(q), q), we may assume that v0(q) = 0.

(2) Let Qq be the Hessian of fq at 0, it is a non-degenerate quadratic form. A parametric version
of Morse’s lemma provides a smooth family of compactly supported diffeomorphisms ϕq : Rk → Rk

such that fq ◦ ϕq = Qq near 0. We may thus assume that fq = Qq near 0 for all q. Since V is
connected, the index of Qq is independent of q, we denote it i.

(3) Pick a linear adapted gradient vector field Xq for Qq and a complete gradient vector field
Yq for fq which coincides with Xq near 0. Then after a linear change of coordinates on Rk, we have
Qq = −x2

1 − · · · − x2
i + x2

i+1 + · · · + x2
k and Xq = −x1∂x1 − · · · − xi∂xi + xi+1∂xi+1 + · · · + xk∂xk .

For brevity we write x− = (x1, . . . , xi) and x+ = (xi+1, . . . , xk). The linear automorphism which
preserve Qq and Xq correspond to the group O(i)×O(k − i). For ε > 0, the subset Mε = {(−ε ≤
Q ≤ ε, |x−||x+| ≤ ε} is therefore well-defined by Qq and Xq (i.e. independent of the choice of linear
coordinates (x1, . . . , xn)) and in particular well-defined globally on V . We fix ε > 0 small enough
so that f = Q on Mε.

(4) We claim that there is a fibered diffeomorphism ϕ : {f = −ε} → {Q = −ε} such that
ψ = id on Nε = {f = −ε} ∩Mε = {Q = −ε} ∩Mε. This is the main step. In fact it may not hold
directly, we further assume that the inequality 2i+1 ≤ k holds. This can be achieved by stabilizing
f (and therefore Q) by a positive definite quadratic form (i.e. set f ′(w, v, q) = |w|2 + f(v, q) where
w ∈ RN for some sufficiently large N). Let us prove the claim. We first prove it for a fixed q and
the show how to do it globally for q ∈ V .

By assumption f coincides with a quadratic form P outside of a compact set. We have
H∗(fq, Yq) = H∗P (Rk × V ) and hence P has the same index as Q. In particular for c > 0, the
levet sets {P = −c} and {Q = −c} are diffeomorphic. Also, for large c > 0, we have {f = −c} =
{P = −c}. Following the trajectories of Y , we find a diffeomorphism {f = −c} ' {f = −ε}. In to-
tal we find that a diffeomorphism ψ : {f = −ε} → {Q = −ε}. However ψ has no reason to be equal
to the identity near Nε. This Nε is a tubular neighborhood Si−1 ×Dk−i of a (i − 1)-dimensional
sphere in the manifold {Q = −ε} which is diffeomorphic to Si−1 ×Rk−i. We claim that the in-
clusion Nε → {Q = −ε} is of degree ±1, i.e. is a homology isomorphism. Indeed the homology of
Rk is the homology of a chain complex 0 → Z → 0 → · · · → 0 → Z → Z → 0 where the Z are in
degree 0, i − 1 and i, and the map Z → Z is the degree of the above map. Since H∗(Rk) = 0 if
∗ 6= 0, we obtain that the degree is ±1. From Lemma 5.11, the inequality 2i+ 1 ≤ k and Lemma
5.12, we deduce that the embedding ϕ : Si−1 → {Q = −ε} is isotopic to the inclusion or a reflection
σ about a hyperplane. From the isotopy uniqueness of tubular neighborhoods (Alexander’s trick)
we find that the embedding ϕ : Nε = Si−1 ×Dk−i → {Q = −ε} = Si−1 ×Rk−i is isotopic to the
embedding (x, y)→ (x,Ax(y)) or (σ(x), Ax(y)) for some map A : Si−1 → O(k− i). This isotopy of
embeddings extend to a compactly supported isotopy of {Q = −ε} and we obtain a diffeomorphism
θ : {Q = −ε} → {Q = −ε} such that θ ◦ψ(x, y) has one of the above form near Nε = Si−1×Dk−i.
Since those formula define diffeomorphisms of Si−1 ×Rk−i, postcomposing θ ◦ ψ by their inverse
gives the required diffeomorphism ϕ : {f = −ε} → {Q = −ε} which is the identity near Nε.

To find the diffeomorphism ϕ globally with q ∈ V . Consider the set of diffeomorphisms ϕ :
{f = −ε} → {Q = −ε} equal to the identity near Nε as a bundle over V . Our problem is then
to find a global section of this bundle. We have just seen that the fibers of this bundle are not
empty. We will prove now that the fibers are in fact contractible. The existence of a global section
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then follows from general theory of bundles. The fiber corresponds to the set of diffeomorphism
ϕ : Si−1×Rk−i → Si−1×Rk−i with ϕ(x, y) = (x, y) for y in a neighorhood of Dk−i. For t ∈ (0, 1),
set ϕt(x, y) = 1

tϕ(x, ty) where the multiplication acts on the second coordinate. We have ϕ1 = ϕ
and ϕt = id on Si−1 × 1

tD
k−i. Hence ϕt converges to id uniformly on compact sets as when t goes

to 0. This defines a deformation retraction of this space to point id.
(5) The last step is to extend the diffeomorphism ϕ to the whole Rk. We claim that there

exists a unique fibered diffeomorphism ϕ : Rk × V → Rk × V such that f = Q ◦ ϕ, ϕ∗Y = X,
ϕ = id on Nε and ϕ coincides with a diffeomorphism obtained in the previous step on {f = −ε}.
Indeed, ϕ is obtained concretely as follows: for v ∈ Rk, there exists T ∈ R such that ϕTY (v) ∈
Nε ∪ {f = −ε}, then there exists a unique T ′ ∈ R such that Q(ϕT

′
X (ϕ(ϕTY (v)))) = f(v), we set

ϕ(v) = ϕT
′

X (ϕ(ϕTY (v))).
This finishes the proof in the case of the zero-section.
Reduction to the case of the zero-section
Let f, g be two generating function quadratic at infinity for ϕ1(L). Theorem 5.9 provides

generating functions ft and gt for ϕt(L) such that f1 is equivalent to f and g1 is equivalent to
g. By the uniqueness statement for the zero-section, f0 and g0 are equivalent. Hence we may
assume f0 = g0. Consider now the path (f1−t)t∈[0,1] concatenated with (gt)t∈[0,1], the Legendrian
immersion associated to this path is the loop ϕ1−t(L) concatenated with its inverse ϕt(L). Theorem
5.9 applied to a contraction of this loop provides a family ft,s of generating function for ϕt(L) with
ft,0 equivalent to ft and ft,1 equivalent to gt. Finally since ft,s generate Lft for all s ∈ [0, 1], Lemma
5.13 implies that ft,1 is equivalent to ft,0. The result follows.

5.4 Back to spectral invariants

We recall some results of the previous sections.
Let V be a closed manifold. A function f : Rk × V → R is called quadratic at infinity if

there exist a non-degenerate quadratic form Q : Rk → R and a function g : V → R such that
f(v, x) = Q(v) + g(x) outside of some compact set.

There exists a notion of Morse pair (f,X) in this situation and we can define a Morse complex
C(f,X) and cohomology groups H∗Q(Rk × V ). The basis of the spaces C∗(f,X) only depend on
f and the differential depends on X. The spaces H∗Q(−) are actually independent of X and f .
Moreover if the index of Q is i, the Künneth morphism gives Hk(V ) = Hk(V ) ⊗ H i

Q(Rk) ∼−→
Hk+i
Q (Rk × V ). We also have a filtered version HQ,(a,b)(f,X) = HQ({f < b}, {f < a}) together

with a restriction map rc,f : H∗Q(Rk × V )→ HQ,(−∞,c)(f,X). For α ∈ H(V ) we set

c(f, α) = sup{c ∈ R \ vcrit(f); rc,f (α) = 0},

Let 1 be the generator of H0(V ) and µ the generator of Hn(V ). We define c−(f) = c(f, 1) and
c+(f) = c(f, µ). If V is reduced to a point, then 1 = µ and we write c(f) = c+(f) = c−(f). We
remark that Lemma 4.38 holds in this situation (V replaced by Rk × V ) with the same proof. We
also recall Proposition 4.46.

Proposition 5.14 (Lem. 4.38 and Prop. 4.46). (i) The spectral invariant c(f, α) is a critical value
of f , for any α ∈ H(V ).
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(ii) Let x0 ∈ V . The function fx0(v) = f(v, x0) is quadratic at infinity on Rk and we have

c−(f) ≤ c(fx0) ≤ c+(f).

We could in fact define H∗Q(−) and the filtered version when Q is only fiberwise quadratic. We
mean that Q : Rk×V → R satisfies Qx = Q(−, x) is non-degenerate quadratic for each x ∈ V and
f(v, x) = Q(v, x) outside of some compact set. (Remark that the index of Qx is independent of x
if V is connected.)

For any given function we can find an arbitrarily small modification which is Morse. By the
Lipschitz property (see Lemma 4.41) we can extend the definition of c(f, α) to any function which
is fiberwise quadratic at infinity. Proposition 5.14 still holds in this generality.

If Q′ : Rl × V → R is fiberwise non-degenerate quadratic and f is quadratic at infinity, then
f +Q′ is fiberwise quadratic at infinity and, up to a shift by the index of Q’, we have C∗(f,X) '
C∗(f +Q′, X +X ′), for a vector field X ′ adapted to Q′. We deduce c(f, µ) = c(f +Q,µ). In the
same way we have c(f, µ) = c(f ◦ ϕ, µ), if ϕ : R× V → R× V is a diffeomorphism preserving the
projection to V . Hence, by the uniqueness theorem 5.10 for generating functions, it makes sense
to give the following definition.

Definition 5.15. Let V be a closed connected manifold and let L ⊂ J1(V ) be a Legendrian
manifold which is contact isotopic to the zero section. Let f : Rl×V → R be a generating function
for L which is quadratic at infinity (which exists by Chekanov-Sikorav’s theorem). For α ∈ H(V )
we set

c(L,α) = c(f, α) = sup{c ∈ R \ vcrit(f); rc,f (α) = 0}.

It only depends on L and not on f . We also set c±(L) = c±(f).

Proposition 5.16. Let V , V ′ be closed connected manifolds of dimension n, n′ and µ, µ′ the
generators of Hn(V ), Hn′(V ′). Let f : Rk × V → R, f ′ : Rk′ × V ′ → R be quadratic at infinity.
By the Künneth isomorphism (µ, µ′) is a generator of Hn+n′(V × V ′). Then c(f + f ′, (µ, µ′)) ≤
c(f, µ) + c(f ′, µ′) with equality when f ′(v′, q′) = Q′(v′) for some quadratic function Q′.

Proof. We set M = Rk × V and Mt = {f < t}. We define M ′, M ′t in the same way and
Ut = Mt × M ′, Vt = M × M ′t . We choose t < c(f, µ) and u < c(f ′, µ′). Then {f + f ′ <
t+ u} ⊂W = Ut ∪ Vu. The Künneth isomorphism gives Hn+n′(Ut) ' 0 and Hn+n′(Vu) ' 0. Since
Ut ∩ Vu = Mt ×M ′u we also have Hn+n′−1(Ut ∩ Vu) ' 0. The Mayer-Vietoris sequence

· · · → Hn+n′−1(Ut ∩ Vu)→ Hn+n′(W )→ Hn+n′(Ut)⊕Hn+n′(Vu)→ 0

implies Hn+n′(W ) ' 0 and we obtain the result.

5.5 Viterbo invariants for Hamiltonian isotopies

We will consider the spectral invariants c±(L) in the case where L ⊂ J1R2n is a Legendrian lift
of the graph of a Hamiltonian isotopy of R2n. Since R2n is non compact we will compactify it
into S2n but the compactification of L (which could be the diagonal L = ∆R2n of R4n) should be
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isotopic to the zero section. We first make a change of variables which identifies R2n with T ∗Rn

and turns the diagonal into the zero section.
On R2n = Rn×Rn, we consider the Liouville form λ = 1

2(xdy−ydx). We will use the following
contact diffeomorphism τ : R×R2n ×R2n → J1(R2n) defined by

τ(z, x, y,X, Y ) = (u, p1, p2, q1, q2) =
(
z +

1

2
(xY − yX), Y − y, x−X, x+X

2
,
y + Y

2

)
.

It satisfies τ∗(du− p1 ∧ dq1− p2 ∧ dq2) = dz− λ+ Λ and maps the diagonal {z = 0, x = X, y = Y }
to the zero-section {u = 0, p1 = 0, p2 = 0}. More precisely we quote

τ(c, x, y, x, y) = (c, 0, 0, x, y). (5.1)

The graph of a symplectomorphism ϕ of R2n is a Lagrangian submanifold of R4n. There exists
a Legendrian lift of this graph (well-defined up to a translation in the variable z):

Λϕ = {(k(x, y), x, y, ϕ(x, y)); (x, y) ∈ R2n},

where the function k : R2n → R is defined up to a constant by ϕ∗λ− λ = −dk. If ϕ has compact
support, we can (and will) normalize k by setting k = 0 outside a compact set. We fix also a
diffeomorphism S2n \ {∞} = R2n. Then τ(Λϕ) is naturally extended by adding the point∞ of the
zero-section and we obtain a closed Legendrian submanifold of J1S2n:

Γϕ = τ(Λϕ) ⊂ J1S2n.

For ϕ = id, Γϕ is the zero-section.
Now we assume that ϕ is Hamiltonian isotopic to the identity. We can check that Γϕ is

Hamiltonian isotopic to the zero-section. Hence, according to Sikorav’s theorem, Γϕ admits a
generating function quadratic at infinity and we may define its spectral invariants.

Definition 5.17. For ϕ ∈ Hamc(R2n), we define c±(ϕ) = c±(Γϕ) and γ(ϕ) = c+(ϕ)− c−(ϕ).

Remark 5.18. By (5.1) the fixed points of ϕ are in bijection with Γϕ ∩ (R× 0R2n). Moreover, if
(x, y) ∈ R2n is fixed by ϕ, the corresponding point in Γϕ is (k(x, y), 0, 0, x, y) ∈ J1R2n.

Let f : Rk ×R2n → R be a generating function for Γϕ. If (v, x, y) is a critical point of f , then
(f(v, x, y), 0, 0, x, y) is a point of Γϕ and (x, y) is fixed point of ϕ. Moreover k(x, y) = f(v, x, y). In
particular the spectral invariants of Γϕ are values of k at fixed points of ϕ. We have the following
more precise result.

Lemma 5.19. Let f : Rk×R2n → R be a generating function for Γϕ. The projection Rk×R2n →
R2n induces a bijection between the set, crit(f), of critical points of f and the fixed point set, Fix(ϕ),
of ϕ. Moreover, for (v, x, y) ∈ crit(f), we have k(x, y) = f(v, x, y) and k(Fix(ϕ)) = vcrit(f) is a
subset of R of measure 0.

Proof. Recall that we defined Σ ⊂ Rk ×R2n by Σ = {(v, q); ∂f
∂v (v, q) = 0} and i : Σ → J1(R2n)

by i(v, q) = (f(v, q), ∂f∂q (v, q), q). We have seen that i is an embedding and gives a diffeomorphism
from Σ to Γϕ. It is clear that crit(f) is contained in Σ and, by the remark 5.18, i induces a bijection
between crit(f) and Fix(ϕ). The equality k(x, y) = f(v, x, y) for (v, x, y) ∈ crit(f) also follows from
the same remark. The last assertion follows from Sard’s theorem.
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Lemma 5.20. We assume that ϕ = ϕ1
h for some function h : R2n → R with compact support and

independent of time. We assume that 0 is a zero of dh (hence a fixed point of ϕ). Then k(0) = h(0).

Proof. Let Xh be the Hamiltonian vector field of h. We have ιXhdλ = −dh. For t ∈ [0, 1] we define
kt by the condition (ϕth)∗λ− λ = −dkt and kt is zero at infinity. We deduce

−d(
∂kt
∂t

) = (ϕth)∗(LXhλ) = (ϕth)∗(d(ιXhλ) + ιXhdλ) = −d((ϕth)∗(h− ιXhλ)).

Hence ∂kt
∂t = (ϕth)∗(h − ιXhλ) + ct, for some constant ct. Since h has compact support and kt

vanishes at infinity, we have ct = 0. Since h is independent of time, it is preserved by ϕth, that is
(ϕth)∗(h) = h. Our choice of λ implies λ0 = 0. Finally we have ∂kt

∂t (0) = h(0). Integrating between
t = 0 and t = 1 gives k1(0) = h(0), as required.

Proposition 5.21. For ϕ ∈ Hamc(R2n), we have

c−(ϕ) ≤ 0 ≤ c+(ϕ).

Moreover c+(ϕ) = c−(ϕ) if and only if ϕ = id.

Proof. Let f : Rk × S2n → R be a generating function for Γϕ which is quadratic at infinity. The
inequalities follow from Proposition 5.14-(ii) applied to the point ∞.

Let us assume c+(ϕ) = c−(ϕ) = 0. For any q ∈ S2n, c(fq) is a critical value of fq by Propo-
sition 5.14-(i) and we have c(fq) = 0 by Proposition 5.14-(ii) again. Hence the projection of Γϕ
to J0S2n contains the graph of the zero function. Therefore Γϕ contains the 1-graph of the zero
function which is {0} × 0S2n . Since Γϕ is a connected submanifold, it is equal to {0} × 0S2n and
we obtain ϕ = id.

5.6 Capacities

We say that a Hamiltonian isotopy ϕ = ϕ1 displaces a set K if ϕ(K) ∩ K = ∅. We say that
it is supported in K if the support of ϕt is contained in K for all t ∈ [0, 1]. We recall that
γ(ϕ) = c+(ϕ)− c−(ϕ) ≥ c+(ϕ).

Definition 5.22. For an open subset U and a compact subset K of R2n , we define

• c(U) to be the supremum of c+(ϕ) where ϕ ∈ Hamc(R2n) is supported in U ,

• γ(K) to be the infimum of γ(ϕ) where ϕ ∈ Hamc(R2n) displaces K,

• γ(U) to be the supremum of γ(K) where K runs over the compact subsets of U .

If U ⊂ V we have c(U) ≤ c(V ) and γ(U) ≤ γ(V ).

Proposition 5.23. Let ϕt, t ∈ [0, 1], be a Hamiltonian isotopy supported in a compact set K
such that R2n \ K is connected, and let ψ ∈ Hamc(R2n) be an isotopy which displaces K. Then
c+(ψ ◦ ϕt) = c+(ψ).
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Proof. (i) We have ψ∗λ = λ + dk with k = 0 at infinity. On R2n \ K, we have ψ ◦ ϕt = ψ and
thus, (ψ ◦ϕt)∗λ = λ+ dkt with dkt = dk on R2n \K, and kt = 0 at infinity. By connectedness, we
obtain kt = k on R2n \K. The fixed points of ψ ◦ ϕt are outside of K and are precisely the fixed
points of ψ.
(ii) Let ft be a family of gfqi for Γψ◦ϕt . By the remark 5.18 the critical values of ft are values of
kt at fixed points of ψ ◦ ϕt. These are the same as the fixed points of ψ, they are outside of K
and kt = k outside of K. Hence kt(Fix(ψ ◦ ϕt)) = k(Fix(ψ)) and, by Lemma 5.19, this is a set of
measure 0. Since t 7→ c+(ψ ◦ ϕt) is continuous and takes values in k(Fix(ψ)), it is constant.

Proposition 5.24. Let ϕ,ψ ∈ Hamc(R2n). Then c±(ψ ◦ ϕ ◦ ψ−1) = c±(ϕ).

Proof. Let kt be the function associated with ψt ◦ϕ◦ψ−1
t . It is defined by dkt = λ−(ψt ◦ϕ◦ψ−1

t )∗λ
and kt = 0 at infinity. Let lt, l′t be associated in the same way with ψt and ψ−1

t . We have

d(ϕ ◦ ψ−1
t )∗lt = (ϕ ◦ ψ−1

t )∗λ− (ψt ◦ ϕ ◦ ψ−1
t )∗λ, d(ψ−1

t )∗k0 = (ψ−1
t )∗λ− (ϕ ◦ ψ−1

t )∗λ

and d(ψ−1
t )∗lt = (ψ−1

t )∗λ− λ. Summing up we have kt = k0 ◦ ψ−1
t + lt ◦ ϕ ◦ ψ−1

t − lt ◦ ψ
−1
t .

We remark that Fix(ψt ◦ ϕ ◦ ψ−1
t ) = ψt(Fix(ϕ)) and, for z ∈ ψt(Fix(ϕ)), we have ϕ ◦ ψ−1

t (z) =
ψ−1
t (z) and thus kt(z) = k0(ψ−1

t (z)). Hence kt(Fix(ψt ◦ϕ ◦ψ−1
t )) = k0(Fix(ϕ)). We conclude with

the same continuity argument as in the second part of the proof of Proposition 5.23.

Proposition 5.25. Let ϕ,ψ ∈ Hamc(R2n). Then c+(ψ ◦ ϕ) ≤ c+(ψ) + c+(ϕ).

Sketch of proof. We define Hamiltonian isotopies a, b on R2n×R2n by a(z, z′) = (ϕ(z′), ψ(z)) and
b(z, z′) = (ϕ(z), z′). We set a′ = b−1 ◦ a ◦ b. Then we have a′(z, z′) = b−1(ϕ(z′), ψ(ϕ(z))) =
(z′, ψ(ϕ(z))). We let s : R2n ×R2n → R2n ×R2n be the switch s(z, z′) = (z′, z).

We can apply τ × τ to the graphs of s ◦ a, s ◦ a′ and compactify R2n × R2n into S2n × S2n

instead of S4n. We obtain Legendrian submanifolds Γa, Γa′ of J1(S2n × S2n). Then Γa = Γψ × Γϕ
and Γa′ = Γψ◦ϕ × 0S2n .

Let (µ, µ′) be the generator of H4n(S2n × S2n). Since a′ is obtained from a by conjugating
with the isotopy bt = s ◦ (id × ϕt), the same proof as in Proposition 5.24 gives c(Γa′ , (µ, µ′)) =
c(Γa, (µ, µ

′)). Now we have c(Γa′ , (µ, µ′)) = c+(ψ ◦ ϕ) and c(Γa, (µ, µ
′)) ≤ c+(ψ) + c+(ϕ), by

Proposition 5.16 and this gives the result.

Proposition 5.26. With the same hypothesis as in Proposition 5.23 we have c+(ϕt) ≤ γ(ψ).

Proof. First observe that c+(ψ−1) = −c−(ψ). Indeed, if f is a generating function for Γψ, then −f
is a generating function for Γψ−1 . Using Poincaré duality we can prove that c+(−f) = −c−(f). By
Propositions 5.25 and 5.23 we have

c+(ϕt) = c+(ψ−1 ◦ ψ ◦ ϕt) ≤ c+(ψ−1) + c+(ψ ◦ ϕt) = −c−(ψ) + c+(ψ) = γ(ψ).

Corollary 5.27. For any U and ϕ ∈ Hamc(R2n) we have c(ϕ(U)) = c(U), γ(ϕ(U)) = γ(U) and
c(U) ≤ γ(U).
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We set B = {(x, y) ∈ R2n; ||(x, y)|| < 1} and Z = {(x, y) ∈ R2n; ||(x1, y1)|| < 1}.

Lemma 5.28. We have c(B) ≥ π.

Proof. We define h : R2n → R by h(x, y) = f(||(x, y)||2), where f(r) is a function on [0,∞[ which
is 0 for r ≥ 1 and is a smoothing of r 7→ π(1 − r) on [0, 1] with −π < f ′(r) < 0 on [0, 1[. Then
f(0) = π − ε for some ε > 0 which can be made as small as desired.

Let ϕ = ϕ1
h be the Hamiltonian flow of h. Then ϕ has a support contained in B. Since

−π < f ′(r) ≤ 0, the fixed point set of ϕ is {0} ∪ (R2n \ supp(h)).
Defining k by dk = λ−ϕ∗λ, the value of k on (R2n \ supp(h)) is zero. By Lemma 5.20 its value

at 0 is k(0) = h(0) = π − ε. Hence we only have two possible values for the spectral invariants of
ϕ. Since ϕ 6= id, Proposition 5.21 implies that c+(ϕ) = π − ε. It follows that c(B) ≥ π − ε.

Lemma 5.29. We have γ(Z) ≤ π.

Proof. We choose r < 1 and R� 0 and we set K = Br ×B′R where Br is the closed ball of radius
r in R2 and B′R the closed ball of radius R in R2n−2. We can find a Hamiltonian isotopy of R2

which sends Br into B+ = {||(x1, y1)|| ≤
√

2; y1 > 0}. Its product with idR2n−2 sends K into
K+ = B+×Br. It is thus enough to find a Hamiltonian isotopy ϕ which displaces K+ and satisfies
γ(ϕ) ≤ π + ε for ε > 0 arbitrarily small.

We define h1 : R2 → R by h1(x, y) = f(||(x, y)||2), where f(r) is a function on [0,∞[ which is
0 for r ≥ 3, equals π

2 (2− r) + ε on [0, 2] and −π < f ′(r) < 0 on ]2, 3[. Then f(0) = π + ε for some
ε > 0 which can be made as small as desired.

We then define h : R2n → R by h(x, y) = h1(x1, y1)ρ(x, y) for some bump function ρ with
compact support which is 1 on B√2 × B

′
R. Then ϕ1

h displaces K+. We can check that c+(ϕ1
h) =

h(0) = π+ ε, as in the proof of Lemma 5.28, and c−(ϕ1
h) = 0. Hence γ(ϕ1

h) = π+ ε and we deduce
the lemma.

Proposition 5.30. We have c(B) = γ(B) = c(Z) = γ(Z) = π.

Proof. This follows from Lemmas 5.28, 5.29 and the inequalities c(B) ≤ γ(B) ≤ γ(Z) and c(B) ≤
c(Z) ≤ γ(Z).

Theorem 5.31 (Gromov non-squeezing theorem). Let Br be the ball of radius r in R2n. If there
exists ϕ ∈ Hamc(R2n) such that ϕ(Br) ⊂ Z, then r ≤ 1.

Proof. We can deduce from the previous proposition that c(Br) = πr2. We deduce πr2 = c(Br) =
c(ϕ(Br)) ≤ c(Z) = π.


