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Abstract. A simple proof is given for the existence of a sharp interface in three-
dimensional Ising systems, at least up to the critical temperature of the corresponding
two-dimensional system.

1. Introduction

For the three-dimensional Ising model with nearest neighbour
interactions on a simple cubic lattice Dobrushin has shown [1] that at
low enough temperature there can exist a sharp interface between areas
of opposite magnetization. A horizontal sharp interface is characterized
by a vertical level / and a positive constant a, independent of the size of
the system, such that the expectation values of all spins above /are > a
and those of spins below / are < — a, or vice versa. The spin system can
be forced into a state possessing such an interface by applying a positive
magnetic field to all the boundary spins above the level / and a negative
magnetic field to all the boundary spins below /.

On the other hand for the two-dimensional square Ising model
with nearest neighbour interactions Gallavotti has shown [2] that even
at very low non-zero temperature no sharp interface exists. By low-
temperature series expansions Weeks, Gilmer, and Leamy [3] found
strong evidence that the three-dimensional system has a ;"roughening-
temperature" TR above which the interface is no longer sharp. For this
roughening temperature they find values of about 0.57 times the critical
temperature Tc. This is somewhat larger than the critical temperature of
the corresponding two-dimensional system, which is about half of the
critical temperature of the three-dimensional system.

Here we give a very simple proof that the critical temperature of the
two-dimensional system is a lower bound on the roughening temperature
TR. We use a variant of Percus' method of the "duplicate set of variables",
which has recently been described by Lebowitz [4]1. Moreover we will
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discuss some simple generalizations of our result, as well as some con-
sequences of the inequalities which were derived by Lebowitz in Ref. [4].

2. The Main Result

We consider a simple cubic lattice on a cube of 2N + 1 horizontal
layers numbered — JV, — N + 1, ..., N. The spins on the central layer, 0,
are numbered σm, σn . . ., those on the layers 1, ... N are numbered σh σ . . .
and those on the layers — 1, ... — N are numbered σ^ , σ_7 .... This
numbering is chosen so that the sites i and — i are each others mirror
image with respect to the central layer. Furthermore we consider a two-
dimensional square lattice of (2ΛΓ+ i)x(2N + 1) sites with spins num-
bered σ^, σ'n ... . All the spins in both systems may assume the values ± 1
only. The Hamiltonians of both systems are given as

(i }

The square brackets denote that the summations are restricted to pairs
of nearest neighbours. All the ht and Hm must be non-negative. We are
especially interested in the case where ht and Hm are -f oo at the boundary
sites and zero at all other sites. Then at low temperatures we expect an
interface between the layers 0 and 1.

In analogy with the method of Percus 1 we change to the variables

Sί = τ(<*i + <r-ί), ίf = έ(σ ί-σ_ ί),

sm = \ (σm + σj, tm = \ (σm - σj ,

which may assume the values — 1, 0, 1, with the constraint

s. = +!=>£. = () and ^ = 0=^=11. (3)

The sum of H and H' can be expressed in these new variables as

10'] [mn] [im]

+ Σ 2^ ί

i+Σ2Hmsm . (4)
i m

In the same way as in Ref. [4] the Griffiths, Kelly, and Sherman inequali-
ties [5] can be used to obtain the result:

_ <O^O, (5)
1 In contrast to Ref. [4] we do not combine two identical systems, but we combine

one system partly with itself and partly with another system.
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where the brackets denote an expectation value with respect to the
product measure of the canonical measures for σ and σ' respectively.
This expectation value may be considered as a canonical average over
the 5 and t variables with the Hamiltonian (4) under the constraint (3).
This average on its turn can be written as a weighted sum of partial
averages in each of which half of the s and t variables are kept fixed at
zero and the remaining ones assume the values ± 1. Each partial average
by itself is a canonical average for an Ising system with ferromagnetic
interactions, to which the GKS inequalities apply.

The implication of (5) is that the average magnetization of the central
layer is larger than the average magnetization in a corresponding two-
dimensional Ising system with equal, positive, boundary fields.

It is interesting also to consider the system with 2N layers and similar
boundary conditions, where there is a symmetry between the upper and
the lower half of the system. The 2ΛΓ-layer system can be obtained in the
following way: Start with a 2N + 1-layer system with boundary fields
•f oo above the level — 1 and — oo below the level 0, and apply a field
-f oo to all spins in the layer N — 1. The resulting system is antisymmetric
with respect to the plane between the layers 0 and — 1. From the Fortuin,
Kastelein and Ginibre inequalities [6] it follows that the average
magnetization in the layer 0 is not decreased by applying a positive field
to the spins in the layer N — 1, hence this magnetization is still larger than
the average magnetization in the corresponding two-dimensional Ising
system. By symmetry the average magnetization in the layer — 1 is
exactly the opposite of that in the layer 0. [Notice that this magnetization
was even more strongly negative in the (2N -f l)-layer case, as a con-
sequence of the FKG inequalities.] Hence we may conclude that under
the given boundary conditions there is indeed a sharp interface between
the layers 0 and — 1.

3. Some Simple Generalizations

Some straightforward extensions of the result obtained in Section 2
are listed below. In all these extensions (5) remains true if the central
layer is compared with a two-dimensional Ising system of the same
shape, with the same, ferromagnetic, coupling constants and with the
same, nonnegative external fields.

1. The lattice need not be a cube. Both the central layer and the
other layers may be of arbitrary shape, as long as the layers n and — n are
each others mirror image with respect to the central layer.

2. The restriction to nearest neighbour couplings of equal strength
may be loosened: First the strength of different nearest neighbour inter-
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actions may be different, provided the couplings between pairs z, j and
— z, —j or z, m and — z, m remain equal. An interesting case is the so-called
solid-on-solid model [3], frequently used in the theory of crystal growth,
which has a coupling of finite strength J between horizontal nearest
neighbours and a coupling of infinite strength between vertical nearest
neighbours. It follows that also in this model TR is not smaller than the
critical temperature of the corresponding two-dimensional Ising model.
This is consistent with results obtained in computer experiments by
crystal growth theorists [7].

Furthermore it is allowed to add arbitrary ferromagnetic interactions
which do not involve spins both above and below the central layer,
provided again the symmetry between above and below is maintained.
For instance it is allowed to add ferromagnetic couplings anywhere
between next-nearest and next-next-nearest neighbour pairs. It is even
allowed to add an interaction between symmetric pairs of spins in the
layers 1 and — 1 such interactions give rise to terms of type sf — tf in
the Hamiltonian (4), but these are allowed since they are constant in each
partial average, where a given set of s and ί variables is kept fixed to zero.
It is not allowed however to add any other interactions which couple
spins in vertical layers above and below the central layer, since this
would introduce antiferromagnetic terms in the Hamiltonian (4).

4. Additional Results

In this section we consider the three-dimensional system by itself
without combining it with a two-dimensional layer. The Hamiltonians
for the (2N + l)-layer case and the 2iV-layer case respectively can be
written as

[im\ „.

H2N(σ) = 2J £ (siSj + titj) + J Σ (sf - ί?) + X (2hiti + 2HiSί), (6b)
[ij] ie{l} i

where {1} denotes the layer 1 and where we have allowed for non-
negative fields HI and Hm acting upon sf and σm respectively.

The following inequalities, derived by Lebowitz in Ref. [4] can
immediately be shown to hold here as well:
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<5ίίJ.>^<5 i><ίJ.>, (7 a)

<σmί,.>£<(7m><f/>, (7b)

<s .̂> ̂  <*;><*;>, (7c)

^O^iXO, (7d)

(ί̂ ^Xί,.). (7e)

Obviously (7b) and (7d) apply to the (2N + l)-layer case only.
Equations (7a)-(7c) imply that an increase of the field on site i,

together with a decrease of the field on site — i by the same amount,
lowers the expectation value of Sj or σm and raises the expectation value
of tj. A consequence is that in the (2N + l)-layer system with + boundary
above and — boundary below, the magnetization of the central layer
increases as a function of N, whereas in the 2AΓ-layer system the difference
between the magnetizations of the layers 1 and — 1, and hence the
magnetization of the layer 1 itself, decreases with N 2.

Furthermore it is possible to say something about the behaviour
of <(σ("}), which will denote the average magnetization per site in the
layer n. To this end consider the 2iV-layer system. We start with a
situation in which in (6 b) h{ = h > 0 if i is a boundary site, ht = 0 otherwise
and Ht = 0 for all ί. Next we change Ht to 2h for the boundary spins on the
layer 1, which means that we create a situation in which the boundary
fields on the layers — 1, 2, 3 ... are ft, those on the layer 1 are 3ft and those
on the layers — 2, — 3 ... are — ft. As a consequence of (6 a) the expectation
value of none of the t variables is increased by this change. The expectation
value of a ί variable in layer 1 is \ <σ(1) — σ (~1 }> on the average. With
the new boundary conditions however this corresponds to \ <σ(2) — σ(1)>
in the original situation, provided one takes the limits of ft and N going
to oo. By next increasing also the fields Ht on the boundary sites of the
layers 2, 3,... the expectation value of all ί variables is lowered again.
Therefore we may conclude that in the limit of ft and N going to oo
<(σ(»+i)_σ

( n )>^<σ ( n )-σ ( n~1 )> for all n > l ; in other words <σ(n)> is a
concave function of n for n > 0.

5. Concluding Remarks

By the simple method sketched in Section 2 we have obtained a
lower bound for the roughening temperature TR of an interface in the
three-dimensional Ising model, which is much higher than the lower

2 Lebowitz has pointed out that (6 a) can be used to prove our main result in an
alternative way: By setting all the ht (but not the Hm) equal to 4- oo the central layer becomes
equivalent to a two-dimensional Ising system. By subsequently relaxing the ht values the
magnetization of the central layer is not decreased.



6 H. van Beijeren

bound obtained by completely different methods by Dobrushin. On
the other hand Dobrushin obtains several additional results which are
not reproduced by our method.

Application of our method to the phase separation line in a two-
dimensional Ising system yields no information; in that case it comes
out that the magnetization of a central row is not lower than the mag-
netization of a one-dimensional Ising chain, which is zero at each non-
zero temperature.

It would be desirable also to have a non-trivial upper bound for the
temperature 7^. If one could find an upper bound below the critical
temperature, this would prove the possibility of more than one phase
transition in the three-dimensional Ising model. However, not even for
the solid-on-solid model, where the critical temperature is infinite, such
an upper bound for TR has been found. On the other hand the estimates
of TR provided for this model by computer experiments [7] are of the
same order of magnitude as for the isotropic model.
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