THE ISING MODEL Exercises

Loren Coquille (loren.coquille@univ-grenoble-alpes.fr)

The mean field Ising model

Consider the complete graph with N vertices, denoted K_{N}. Let $\sigma_{i} \in\{-1,+1\}, i=1 \ldots N$ be the spin variables, with the notation : $\boldsymbol{\sigma}:=\left(\sigma_{i}\right)_{i=1}^{N}$.

For $\beta \in \mathbb{R}^{+}$, and $h \in \mathbb{R}$, the Hamiltonian is:

$$
\mathcal{H}_{N, \beta, h}(\boldsymbol{\sigma}):=-\frac{\beta}{2 N} \sum_{i, j=1}^{N} \sigma_{i} \sigma_{j}-h \sum_{i=1}^{N} \sigma_{i}
$$

We consider the following probability measure on $\Omega_{N}:=\{-1,+1\}^{K_{N}}$:

$$
\mathbb{P}_{N, \beta, h}(\boldsymbol{\sigma}):=\frac{1}{Z_{N, \beta, h}} \exp \left(-\mathcal{H}_{N, \beta, h}(\boldsymbol{\sigma})\right) \quad \text { where } \quad Z_{N, \beta, h}=\sum_{\boldsymbol{\sigma} \in \Omega_{N}} \exp \left(-\mathcal{H}_{N, \beta, h}(\boldsymbol{\sigma})\right)
$$

QUESTION 1. Calculate the distribution of the magnetization $m_{N}:=\frac{1}{N} \sum_{i=1}^{N} \sigma_{i}$.
Hint : Express the Hamiltonien in terms of m_{N} : observe that $\mathcal{H}_{N, \beta, h}(\boldsymbol{\sigma})=\mathcal{H}_{N, \beta, h}\left(m_{N}(\boldsymbol{\sigma})\right)$.

QUESTION 2.

1. Let $x_{k}:=-1+\frac{2 k}{N}$ with $k=0,1, \ldots, N$. Using the Stirling formula ${ }^{1}$, show that there exists $c_{1}, c_{2} \in(0, \infty)$ uniform in x_{k} such that

$$
c_{1} N^{-1 / 2} e^{N s\left(x_{k}\right)} \leq\binom{ N}{k} \leq c_{2} N^{1 / 2} e^{N s\left(x_{k}\right)}
$$

with

$$
s(x):=-\frac{1+x}{2} \log \left(\frac{1+x}{2}\right)-\frac{1-x}{2} \log \left(\frac{1-x}{2}\right)
$$

[^0]2. Conclude that
\[

$$
\begin{equation*}
c_{1} N^{-1 / 2} e^{N f\left(x_{k}\right)} \leq \sum_{\boldsymbol{\sigma}: m_{N}(\boldsymbol{\sigma})=x_{k}} e^{-\mathcal{H}_{N, \beta, h}\left(m_{N}\right)} \leq c_{2} N^{1 / 2} e^{N f\left(x_{k}\right)} \tag{1}
\end{equation*}
$$

\]

with

$$
f(x)=s(x)+\frac{\beta x^{2}}{2}+h x .
$$

QUESTION 3.

1. Study the function f in terms of β and h.
2. Show that

$$
N\left|\max _{x \in[-1,1]} f(x)-\max _{0 \leq k \leq N} f\left(x_{k}\right)\right| \leq \text { const. }
$$

3. Using (11), show that there exists $c_{3} \in(0, \infty)$ such that

$$
c_{3} N^{-1 / 2} e^{N \max _{x \in[-1,1]} f(x)} \leq Z_{N, \beta, h} \leq(N+1) c_{2} N^{1 / 2} e^{N \max _{x \in[-1,1]} f(x)}
$$

QUESTION 4. Let $-1 \leq a<b \leq 1$. Show that

$$
\left|\frac{1}{N} \log \left(\mathbb{P}\left(m_{N} \in[a, b]\right)\right)-\left(\max _{x \in[a, b]} f(x)-\max _{y \in[-1,1]} f(y)\right)\right|=O\left(\frac{\log N}{N}\right)
$$

QUESTION 5.

1. Let $\mathcal{M}(\beta, h)$ be the set of global maxima of f.

Let $\mathcal{M}_{\epsilon}(\beta, h):=\left\{x \in[-1,1]: \min _{y \in \mathcal{M}(\beta, h)}|x-y| \leq \epsilon\right\}$.
Show that for all $\epsilon>0$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \log \mathbb{P}_{N, \beta, h}\left(m_{N} \notin \mathcal{M}_{\epsilon}(\beta, h)\right)<0
$$

2. Conclude that the law of large numbers for the magnetization is verified when $h \neq 0$ as well as when $h=0$ and $\beta \leq 1$, but it is violated when $h=0$ and $\beta>1$.
3. Draw the graph of the magnetization as a function of h when $\beta \leq 1$ and when $\beta>1$.

[^0]: ${ }^{1} N!=N^{N} e^{-N} \sqrt{2 \pi N}(1+O(1 / N))$

