THE ISING MODEL Exercises

Loren Coquille (loren.coquille@univ-grenoble-alpes.fr)

The Ising model in DIMENSION 1

Consider the graph $V_{N}:=\{1,2 \ldots, N\} \subset \mathbb{Z}$, on which live the random variables $\sigma_{i} \in\{-1,+1\}, i \in V_{N}$ denoted "spins". We write $\boldsymbol{\sigma}:=\left(\sigma_{i}\right)_{i \in V_{N}}$.

Let $\beta \in \mathbb{R}^{+}$be the inverse temperature, and $h \in \mathbb{R}$ be the magnetic field. The energy (called "Hamiltonian") of the system is:

$$
\mathcal{H}_{N, \beta, h}(\boldsymbol{\sigma}):=-\beta \sum_{\substack{i, j \in V_{N} \\ i \sim j}} \sigma_{i} \sigma_{j}-h \sum_{i=1}^{N} \sigma_{i}
$$

We introduce the following probability measure on $\Omega_{N}:=\{-1,+1\}^{V_{N}}$:

$$
\mathbb{P}_{N, \beta, h}(\boldsymbol{\sigma}):=\frac{1}{Z_{N, \beta, h}} \exp \left(-\mathcal{H}_{N, \beta, h}(\boldsymbol{\sigma})\right)
$$

where $Z_{N, \beta, h}=\sum_{\boldsymbol{\sigma} \in \Omega_{N}} \exp \left(-\mathcal{H}_{N, \beta, h}(\boldsymbol{\sigma})\right)$ is the normalizing constant called "partition function". The following limit, if it exists, is called the "free energy":

$$
f_{\beta}(h)=\lim _{N \rightarrow \infty} f_{N, \beta}(h):=\lim _{N \rightarrow \infty} \frac{1}{N} \log Z_{N, \beta, h}
$$

QUESTION 1. Show that for all $\beta>0$ and all $h \in \mathbb{R}$,

1. the free energy exists and equals:

$$
f_{\beta}(h)=\log \left(e^{\beta} \cosh (h)+\sqrt{e^{2 \beta} \cosh ^{2}(h)-2 \sinh (2 \beta)}\right)
$$

Hint :

- Calculate the partition function $\tilde{Z}_{N, \beta, h}$ and then the free energy $\tilde{f}_{\beta}(h)$ for the graph V_{N} where we add an edge between 1 and N (periodic boundary condition): show that $\tilde{Z}_{N, \beta, h}$ can be rewritten as

$$
\tilde{Z}_{N, \beta, h}=\operatorname{Tr}\left(T^{N}\right) \text { where } T=\left(\begin{array}{cc}
e^{\beta+h} & e^{-\beta+h} \\
e^{-\beta-h} & e^{\beta-h}
\end{array}\right) \text { is called "transfert matrix". }
$$

- Show that $\tilde{f}_{\beta}(h)=f_{\beta}(h)$ by upper-bounding $\left|\mathcal{H}_{N, \beta, h}-\tilde{\mathcal{H}}_{N, \beta, h}\right|$.

2. $f_{\beta}(h)$ is a convex function of h.

Hint : Show that $\log Z_{N, \beta, h}$ is convex in h for all N and use the following theorem:
Let $\left(g_{n}\right)_{n \geq 1}$ be a sequence of convex functions from an open interval $\mathcal{I} \subset \mathbb{R}$ into \mathbb{R} converging pointwise towards a function g, then g is also convex.

QUESTION 2. Show that, for $h=0$, the average magnetization of a system of size N concentrates exponentially (in N) on 0 , i.e. show that for all $\beta \in(0, \infty)$ and for all $\varepsilon>0$, there exists $c(\beta, \varepsilon)>0$ such that for all N :

$$
\mathbb{P}_{N, \beta, 0}\left[\frac{1}{N} \sum_{i=1}^{N} \sigma_{i} \in(-\varepsilon, \varepsilon)\right] \geq 1-2 e^{-c(\beta, \varepsilon) N}
$$

in particular $\frac{1}{N} \sum_{i=1}^{N} \sigma_{i} \rightarrow 0$ in probability. The first bound implies also the almost sure convergence. This hence prove a strong law of large numbers for the (non independant) random variables σ_{i}.

Hint :

- Use the Chebychev inequality to show that $\mathbb{P}_{N, \beta, 0}\left[\frac{1}{N} \sum_{i=1}^{N} \sigma_{i} \geq \varepsilon\right] \leq e^{-h \varepsilon N} \mathbb{E}_{N, \beta, 0}\left[e^{h \sum_{i=1}^{N} \sigma_{i}}\right], \forall h \geq 0$.
- Show that $\sup _{h \geq 0}\left\{h \varepsilon-\Lambda_{\beta}(h)\right\}>0$ by writing $\Lambda_{\beta}(h)$ in terms of $f_{\beta}(h)$ and using Question 1 .

QUESTION 3. On the graph V_{N} with periodic boundary condition, calculate the finite volume magnetization, i.e.

$$
\tilde{m}(\beta, h):=\lim _{N \rightarrow \infty} \tilde{\mathbb{E}}_{N, \beta, h}\left[\sigma_{1}\right] .
$$

Draw the graph of $\tilde{m}(\beta, h)$ as a function of h for two values of β.
Hint : Show that $\tilde{\mathbb{E}}_{N, \beta, h}\left[\sigma_{1}\right]=\tilde{\mathbb{E}}_{N, \beta, h}\left[\frac{1}{N} \sum_{i=1}^{N} \sigma_{i}\right]=\frac{\partial}{\partial h} f_{N, \beta}(h)$, and use the following theorem:
Let $\left(g_{n}\right)_{n \geq 1}$ be a sequence of convex functions from an open interval $\mathcal{I} \subset \mathbb{R}$ into \mathbb{R} converging pointwise towards a function g. If g is differentiable at x, then

$$
\lim _{n \rightarrow \infty} \partial^{+} g_{n}(x)=\lim _{n \rightarrow \infty} \partial^{-} g_{n}(x)=g^{\prime}(x)
$$

QUESTION 4. Show that for $k \leq N$,

$$
\operatorname{Cov}_{N, \beta, 0}\left[\sigma_{1} \sigma_{k}\right]=\mathbb{E}_{N, \beta, 0}\left[\sigma_{1} \sigma_{k}\right]=\operatorname{th}(\beta)^{k-1}
$$

i.e., when $h=0$, the covariance of two spins decays exponentially in the distance between the spins.

Hint :

- Rewrite the Hamiltonien $\mathcal{H}_{N, \beta, 0}(\boldsymbol{\sigma}):=-\beta \sum_{i=1}^{N-1} J_{i} \sigma_{i} \sigma_{i+1}$ with $J_{i}=1$ for all i, and show that

$$
\mathbb{E}_{N, \beta, 0}\left[\sigma_{1} \sigma_{k}\right]=\left.\frac{1}{\beta^{k-1} Z_{N, \beta, 0}} \frac{\partial^{k-1} Z_{N, \beta, 0}}{\partial J_{1} \ldots \partial J_{k-1}}\right|_{J_{i}=1 \forall i}
$$

- Calculate $Z_{N, \beta, 0}$ in terms of $Z_{N-1, \beta, 0}$ to show that $Z_{N, \beta, 0}=\prod_{i=1}^{N} 2 c h\left(\beta J_{i}\right)$ and conclude.

