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savait être à la fois généreux et rigoureux, et qui pendant des années d’enseignement
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Contents

5



6 CONTENTS



Chapter 1

Introduction

This thesis contains the work on various problems that I have considered over
the last three years. It is divided into four independent sections dealing with four
independent problems.

1.0.1 Section 1— Deformation theory
This section corresponds to chapter 2 of my thesis. In it, we recall the basic results
of deformation theory and then extend these results to a more general problem,
namely, the construction of formal neighbourhoods of a given scheme X with
specified normal bundle. All our schemes will be of finite type over a base field.
More precisely, we define more general deformations in the following way.

Definition 1 Let X be an l.c.i. scheme and V a vector bundle. An n-th order
formal deformation of X with normal bundle V is a scheme Xn together with an
embedding i : X → Xn and an isomorphism

j : IX/I
2
X ' V ∗

(IX is here the ideal sheaf of X in Xn) such that

1. In+1
X = 0 in OXn

,

2. The multiplication map j⊗n : SymnV ∗ → In
X is an isomorphism.

Although the results of abstract deformation theory do not translate directly into
this context, the results for embedded deformations carry over. We define an
embedded generalised deformation in the following way.

Definition 2 An embedded generalised n-th order deformation of X with normal
bundle V is given by the following data.
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8 CHAPTER 1. INTRODUCTION

1. A smooth scheme P and an embedding X → P ,

2. A vector bundle Ṽ → P and an isomorphism Ṽ |X = V ,

3. A subscheme Xn of Pn (the subscheme of Ṽ whose ideal sheaf is In+1

P/Ṽ
) such

that Xn ∩ P = X and the restriction and multiplication maps

r : V ∗ → IX/Xn
/I2

X/Xn

r⊗n : SymnV ∗ → In
X/Xn

/In+1
X/Xn

are isomorphisms.

By IX/Xn
we mean the ideal sheaf of X in Xn.

We then prove the following results for these embedded deformations.

Theorem 1 Let Xn be an n-th order embedded deformation of X . We can assign
to any pair (X1, X2) of extensions of Xn to (n + 1)-st order embedded deforma-
tions of X an element d(X1, X2) ∈ Hom(N ∗

X , Symn+1V ∗) such that

1. IfX3 is another extension ofXn, then d(X1, X2)+d(X2, X3) = d(X1, X3) and
d(X1, X2) = −d(X2, X1),

2. If X is generically smooth and the push-forward of

0 → N ∗
X → Ω1

P ⊗ OX → Ω1
X → 0

along d(X1, X2) is a trivial extension then X1 and X2 are isomorphic as
abstract infinitesimal neighbourhoods of Xn,

3. If any extensions of Xn exist they form a principal homogeneous space un-
der Hom(N ∗

X , Symn+1V ∗).

Theorem 2 We can associate to any Xn an element

ωXn
∈ H1(X,Hom(N ∗

X , Symn+1V ∗))

(or alternatively
ωXn

∈ H1(X,NX ⊗ Symn+1V ∗))

in such a way that Xn can be extended to an (n+ 1)-st order embedded deforma-
tion of X if and only if ωXn

= 0.
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In all the above, N ∗
X denotes the conormal bundle IX/P/I

2
X/P , and NX denotes its

dual.

These results are fairly straightforward generalisations of the equivalent results
for ordinary deformations, but I have not found them in the literature. The re-
sults for abstract higher-order deformations cannot be directly translated into this
context, since they depend on the existence of a canonical isomorphism between
IX/X1 and IX/X2 , (X1 and X2 being two separate (n + 1)-st order formal neigh-
bourhoods of X which have the same n-th part) which does not now exist.

In certain circumstances, all obstruction groups vanish for appropriate choices
of normal bundles V . We can then apply these theorems to prove the following
results.

Theorem 3 Let X be a projective local complete intersection scheme. Then there
exists a smooth formal neighbourhood X∞ of X , a vector bundle V on X∞ and a
section σ : X∞ → V such that

• V is a direct sum of line bundles,

• The rank of the vector bundle V is equal to the codimension of X in X∞,

• X is schematically the zero locus of σ.

This last result was the subject of a short article in the C.R.A.S [?].

1.0.2 Section 2— The Noether-Lefschetz locus
This section corresponds to chapters 3-5 of my thesis. The material in sections 3-4
form an article submitted for publication, [?], and the material in Chapter 5 form
another. Whilst writing this thesis I learnt that similar results have been indepen-
dently obtained by Ania Otwinowska in her articles [?] and [?]. I am grateful to
her for communicating her results to me and for the very interesting discussions
we have had.

If X is a generic degree d surface in P
3 and d > 3, the Noether-Lefschetz the-

orem says that
H1,1

prim(X,Z) = 0.

Here, H1,1
prim(X,Z) means the group of all primitive Hodge classes on X . A co-

homology class on X is said to be primitive if it is orthogonal for the cup product
to all cohomology classes inherited from projective space. The space of surfaces
which do not satisfy this condition is known as the Noether-Lefschetz locus; it is
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a union of countably many algebraic subvarieties of Ud, the parameter space of
smooth degree d surfaces in P

3.

Let W be a component of the Noether-Lefschetz locus. It can be shown that W
is locally the zero locus of a certain section of the bundle H

0,2
Ud

. The latter is the
bundle on the parameter space Ud whose fibre over the point [X] is H0,2(X,C); it
is therefore a bundle of rank h0,2(X,C) =

(

d−1
3

)

. This gives us a prediction of the
codimension of W— namely

(

d−1
3

)

— and we say that a component is exceptional
if its codimension is strictly smaller than this predicted dimension. In this section
we will study the infinitesimal geometry of these exceptional components.

Let X be a point of W and F the defining polynomial of X . Let σ be the section
defining W in some sufficiently small neighbourhood of X . In [?], Carlson and
Griffths gave a complete description of the map

dσ : TUd ⊗ OW → H
0,2

in terms of the multiplication in the Jacobian ring RF associated to F . In chapter
3 we extend this result by calculating the fundamental quadratic form of σ as a
polynomial invariant in the same ring.

In Chapter 4 we use this invariant to study those Noether-Lefschetz components
in U5 whose tangent spaces are of exceptional codimension because they are non-
reduced. More precisely, let γ be an element of H1,1

prim(X,Z) and let NL(γ) be
the component of the Noether-Lefschetz locus associated to γ in some sufficiently
small neighbourhood of X . By this we mean the following thing. Fix O, a simply
connected neighbourhood of X in Ud, and consider γ, the section of H|O which
is obtained by flat transport of γ. The scheme NL(γ) is then defined to be the set
of points of O over which γ is a (1, 1) Hodge class. We will prove the following
theorem.

Theorem 4 Suppose that NL(γ) ⊂ O ⊂ U5 is non-reduced and X is a point of
NL(γ). Then there is a hyperplane H ⊂ P

3 such that H ∩X contains 2 distinct
lines L1 and L2 and non-zero distinct integers α and β, such that

γ = α[L1] + β[L2] −
α + β

5
H.

In Chapter 5 we then give another application. It was conjectured by Harris and
Ciliberto that if X is any point in an exceptional Noether-Lefschetz locus, then
there is some surface S of degree ≤ d − 4 such that X ∩ S is reducible. This
was shown to be false by Voisin in [?]. We will obtain a lower bound which is
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cubic in d for the codimensions of Noether-Lefschetz components which violate
the Ciliberto-Harris conjecture. In the following theorem (and indeed, throughout
the rest of this thesis), Se denotes the vector space of degree e homogeneous poly-
nomials in four variables. (Ue is therefore an open subset of the projectivisation
of Se.)

Theorem 5 Suppose that e ≤ d−1
2

. There then exists an integer φe(d) such that if
NL(γ) is reduced and codim(NL(γ)) ≤ φe(d) then there is a polynomialQ ∈ Se

such that γ is supported on Q. Further, φ d−1
2

(d) = O(d3).

Here, when we say that γ is supported on Q, we mean that γ is a linear combi-
nation of classes of curves contained in {Q = 0}. Note that γ supported on Q
implies that X ∩ {Q = 0} is reducible. Indeed, if the curve X ∩ {Q = 0} is
irreducible, then γ supported on Q implies that γ is a multiple of X ∩ {Q = 0}.
However, γ has been assumed primitive, and hence this implies that γ = 0.

To the best of my knowledge all the bounds previously obtained for the codi-
mension of components violating the Ciliberto-Harris conjecture are linear or
quadratic in d (cf. [?], [?], [?] and [?]).

We will in fact prove a slightly stronger form of this theorem, which may be
found on page 72 of this thesis.

In particular, this shows that the number of reduced Noether-Lefschetz compo-
nents of codimension ≤ φ d−1

2
,1(d) is finite. This can be seen by Hilbert scheme

considerations. If a curveC is contain in the intersection of a smooth degree d sur-
face and a degree e surface, where e ≤ d−1

2
, then there are only a finite number of

possibilities for the Hilbert polynomial of C. Indeed, the degree of C is bounded
by dd−1

2
and its genus is bounded by the genus of smooth complete interesection

curves.

If we now denote the set of such possible polynomials by T , we can construct
a finite number of schemes which parameterise all pairs (C,X) such that

1. The Hilbert polynomial of C is in T .

2. X is a smooth degree d surface containing C.

The fact of being a complete intersection of a degree d and a degree e surface is
an open condition in a Hilbert scheme of curves in P

3 (see [?]). We can therefore
construct a finite number of schemes parameterising all pairs (C,X) such that

1. The Hilbert polynomial of C is in T .
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2. X is a smooth degree d surface containing C.

3. C is not a complete intersection of X with another surface.

These schemes have a projection to Ud. The result above implies, in particular,
that any Noether-Lefschetz component of codimension ≤ φ d−1

2
,1(d) is the image

of a component of one of these schemes.

A special case of the result given on page 72 is the result of Voisin [?] and Green
[?] according to which all Noether-Lefschetz loci have codimension ≥ d− 3,with
equality only holding for the space of surfaces containing a line— albeit with the
additional hypothesis thatNL(γ) be reduced. Note that the expected codimension
of Noether-Lefschetz loci is itself cubic in d.

1.0.3 Section 3— The Chow groups of K3 surfaces
In this short section which corresponds to chapter 6 of this thesis we study the
Chow groups of K3 surfaces. The structure of Chow groups has been known to
be intimately linked to the number of sections of KS ever since Mumford proved
in his seminal paper [?] that if S is a surface and H0(S,KS) 6= 0, then the Chow
group of S is not representable. Bloch has conjectured that the converse holds—
a converse which has been proved, in [?], for any surface not of general type.

In this section, we will show that there is a close connection between the fact
of having dense Chow group orbits and having h0(S,KS) ≤ 1. We will say that
two points x and y are equivalent (and will write x ≡ y) if the zero-cycles [x] and
[y] are equal in the Chow group A0(X). We will prove the following theorem.

Theorem 6 Let S be a general smooth projective K3 surface. Then for general
x ∈ S, the set

{y ∈ S|y ≡ x}

is dense in S (for the complex topology). Further, if T is a projective complex
surface such that the set

{y ∈ T |y ≡ x}

is Zariski dense in T for a generic point x of T then h2,0(T ) ≤ 1.

1.0.4 Section 4— Gromov-Witten invariants
This section, corresponding to the chapter 7 of the thesis, is devoted to the proof
of the following theorem, which was the subject of a note in the C.R.A.S., [?]. Let
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F : C → X
↓ ↓

f : ∆ → ∆

be a commutative diagram of proper holomorphic maps in which ∆ is a complex
disc, X is a smooth variety and X0 is a normal crossing variety. We assume that
X0 is the union of two irreducible smooth varieties X1 and X2 which are glued
together along isomorphic smooth divisors Z1 ⊂ X1 and Z2 ⊂ X2. We assume
further that C is a flat family of prestable curves and F is a family of stable maps.

The central curve C0 is the union of two (not necessarily connected) prestable
curves C1 and C2 such that Ci maps into Xi under F . We denote by Fi the re-
striction of F to Ci. There exist r-tuples of points, (x1

1, . . . , x
1
r) and (x2

1, . . . , x
2
r),

where for all j ∈ {1, 2 . . . r}, x1
j ∈ C1 and x2

j ∈ C2, such that

C0 = C1 ∪x1
j=x2

j
C2.

In general, given varieties, Y , V and U , a regular embedding i : U → Y of
codimension d and a map f : V → Y , Fulton defines in [10], Chapter 6 (see in
particular the summary page 92 and §6.1) an element

U ·f V ⊂ Ak−d(f
−1(U)),

where k is the dimension of V . (The subscript f in the notation is not contained in
Fulton: it is here included for clarity’s sake.) This coincides with the intersection
productU∩V when f is a closed embedding. We will prove the following theorem
on the Fulton intersections of Ci and Zi.

Theorem 7 There exist integers mj such that for i = 1 or 2 we have

j=r
∑

j=1

mjx
i
j = Zi ·Fi

Ci

as elements of the group
A0(F

−1
i (Zi)).

Note that it is immediate by definition of xi
j that it is a point in F−1

i (Zi). It follows
that

∑j=r
j=1mjx

i
j is a meaningful element of A0(F

−1
i (Zi)).

In the case where C1 and C2 intersect Z1 and Z2 in points (i.e. there are no
components of the central curve contained in the central divisor), then it can be
shown that

F−1
i (Zi) = ∪jx

i
j,
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and hence
A0(F

−1
i (Zi)) = ⊕jZx

i
j.

The result above then says simply the following.

Condition (A): Let x be a point of Ci which is mapped to Zi under Fi. Then
x is a point of gluing of C1 and C2. The multiplicities of x in the intersection
products C1 ∩ Z1 and C2 ∩ Z2 are equal.

The result then says that the condition given in the theorem, which was considered
by Gathmann in his definition of α-relative maps in [?], is the right generalisation
of Condition (A) to the case where Ci has components which are mapped into Zi

under F .

This result provides a geometric justification of the work of Li in [?], [?] in which,
emulating the work of Li and Ruan in the symplectic setting of [?], he derives a
recurrence formula for the Gromov-Witten invariants ofXt in terms of the relative
Gromov-Witten invariants of X1 and X2.



Chapter 2

Deformations of l.c.i.s

2.1 Introduction

If X ⊂ P
N(k) (k being any field) is a local complete intersection scheme, then X

is not necessarily a global complete intersection in projective space — that is,X is
not necessarily embedded in P

N(k) as the vanishing locus of codim X polynomi-
als. It seems natural to ask whether this is true for more general ambient varieties.
In particular, given such an X , we may wonder whether it can be embedded in
some smooth Y as a globally complete intersection, i.e., as the intersection of
codim(X) hypersurfaces. The aim of this chapter is to answer this question in the
affirmative, at least formally, by proving the following result.

Theorem 8 Let X ⊂ P
N(k) be a local complete intersection scheme. Then there

exists a smooth formal neighbourhood X∞ of X , a vector bundle V on X∞ and a
section σ : X∞ → V , such that

1. V is a direct sum of line bundles,

2. The rank of the vector bundle V is equal to the codimension of X in X∞,

3. X is schematically the zero locus of σ.

We begin this section by recalling the basic objects and results of deformation
theory. We will then generalise these ideas to the problem of constructing more
general formal neighbourhoods of the given scheme, especially formal neighbour-
hoods in which the normal bundle of the original variety is not trivial. In certain
cases, we will be able to show that the construction of successive formal neigh-
bourhoods is un-obstructed and that hence the formal neighbourhood that we seek
exists.

15
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2.2 Preliminaries on deformation theory
The material contained in this section is well-known. Proofs of all results cited
below may be found in [?] or in a much more general context in [?]. The presen-
tation of the results in the next section is heavily influenced by [?].

Definition 3 Suppose that X is a scheme defined over a field k. By a first order
deformation of X , we mean a flat pull-back diagram

X

²²

// Xε

²²

Spec(k) // Spec(k[ε]/ε2).

More generally, if A is a local Artinian k-algebra, then

Definition 4 A deformation of X over Spec(A) is a scheme XA which is flat over
A together with a pull-back diagram

X

²²

// XA

²²

Spec(k) // Spec(A).

Two deformations, XA, X
′
A of X over A are said to be isomorphic if there is an

isomorphism
XA ' X ′

A

↓ ↓
Spec(A) = Spec(A).

which induces the identity on the central fibres.

For X a generically smooth locally complete intersection the following result is
well-known.

Theorem 9 The first order deformations of X are classified by elements of
Ext1

OX
(ΩX ,OX).

This association of an element of Ext1(ΩX ,OX) to a first order deformation Xε is
straightforward— we simply associate to Xε the exact sequence

0 → OX → ΩXε
⊗ OX → ΩX → 0. (2.1)

This is exact becauseX is generically smooth and a locally complete intersection.
Similarly, given an extension

0 → OX
iE→ E

πE→ ΩX → 0, (2.2)



2.2. PRELIMINARIES ON DEFORMATION THEORY 17

we can construct from it a first-order deformation of X in the following way.
A first order deformation of X is simply an exact sequence of sheaves of OX-
modules

0 → OX
iF→ F

πF→ OX → 0 (2.3)

having the following properties:

1. F is a sheaf of k-algebras,

2. πF is a morphism of k-algebra sheaves,

3. Im(iF ) = I is an ideal of F such that I2 = 0.

Given a short exact sequence (??), we now construct a sheaf of k-algebras A(E).
As a sheaf of abelian groups A(E) is defined to be the kernel of the map

φ : OX ⊕ E → ΩX

which is given by
φ(f, e) = df − πE(e).

We impose a multiplication on A(E) given by

(f1, e1) × (f2, e2) = (f1f2, f1e2 + e1f2).

This gives a first-order deformation of X . These two maps, which are inverse to
each other, give the required equivalence.

Suppose that X is a locally complete intersection in V , a smooth variety over
k. We define first order deformations in the following way.

Definition 5 A first-order deformation of the embedding i : X → V is a scheme

Xε ⊂ V × Spec(k[ε]/ε2),

flat over k[ε]/ε2, such that Xε ∩ (V × Spec(k)) = X .

We define N ∗
X , the co-normal bundle of X in V , to be IX/V /I

2
X/V . We further

define NX , the normal bundle, to be its dual. We then have the following result
which is discussed in [?].

Theorem 10 There is a canonical isomorphism between first-order deformations
of the embedding i : X → V and H0(X,NX).
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Note that this result does not require the generic smoothness of X .
When X is generically smooth, there is a natural connection between these two
results. Let

0 → N ∗
X → ΩV ⊗ OX → ΩX → 0 (2.4)

be the standard exact sequence of sheaves of Kähler differentials (which is exact
because X is l.c.i. and generically smooth). Let E(Xε) be the extension of ΩX by
OX associated to Xε (as an abstract deformation of X) and d(Xε) the element of
H0(X,NX) = Hom(N ∗

X ,OX) associated to Xε (as an embedded deformation of
X). Then we have the following result.

Theorem 11 E(Xε) is the push-forward of (??) along the map d(Xε).

Similar results hold for extensions of deformations over Spec(A) to deformations
over Spec(A′), when A is a quotient ring of A′. Suppose that we have an exact
sequence,

0 → a → A′ → A→ 0,

such that

1. A′ is a local Artinian k-algebra,

2. a is an ideal of A′ such that a · mA′ = 0.

Let XA be a deformation of X over Spec(A). We then define an extension of XA

over Spec(A′) as follows.

Definition 6 An extension of XA over Spec(A′) is a flat pull-back diagram

XA

²²

// XA′

²²

Spec(A) // Spec(A′).

The following theorems can be found in [?].

Theorem 12 To any ordered pair (X1, X2) of extensions of XA over Spec(A′),
we can assign a difference

D(X1, X2) ∈ Ext1(ΩX ,OX ⊗ a)

in such a way that if any extensions ofXA overA′ exist, then they form a principal
homogeneous space over Ext1(ΩX ,OX ⊗ a).
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Theorem 13 We can associate to XA, a deformation of X over Spec(A), an ele-
ment

ωXA
∈ Ext2(ΩX ,OX ⊗ a),

such that extensions of XA over Spec(A′) exist if and only if ω̃XA
= 0.

The fact that the isomorphism between deformations of XA and extension classes
is no longer canonical corresponds to the fact that there is no canonical inclusion
A → A′. It is precisely the inclusion k → k[ε]/ε2 which allows us to choose, for
first order deformations, a canonical base deformation, OXε

= OX ⊕ εOX .

There is a concept of extensions of embedded deformations. If V is a smooth
variety over k and XA ⊂ V × Spec(A) is a subscheme which is flat over A such
that XA ∩ (V × Spec(k)) = X , then we define extensions of XA in the following
way.

Definition 7 An extension of the embedding i : XA → V × Spec(A) over A′ is a
variety

XA′ ⊂ V × Spec(A′),

flat over A′, such that XA′ ∩ (V × Spec(A)) = XA.

Once again, there is a theory of the classification of embedded deformations which
does not require the generic smoothness of X .

Theorem 14 To any ordered pair (X1, X2) ↪→ V ×Spec(A′) of extensions ofXA

over A′, we can assign a difference

D(X1, X2) ∈ H0(NX) ⊗ a

in such a way that if any extensions of XA over A′ exist then they form a principal
homogeneous space over H0(X,NX) ⊗ a.

Here NX is once again the normal bundle (as defined on page 13) of X with
respect to the inclusion X → V .

Theorem 15 We can associate to XA ∈ V ×Spec(A), an embedded deformation
of X over Spec(A), an element

ω̃XA
∈ H1(X,NX) ⊗ a,

such that extensions of XA ⊂ V × Spec(A) over Spec(A′) exist if and only if

ωXA
= 0.
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Compatibility results similar to those given above still hold.

Theorem 16 D(X1, X2) is the push-forward of (??) along the map D(X1, X2).
ωXA

is the image of ω̃XA
under the boundary map

Ext1(N ∗
X ,OX ⊗ a) → Ext2(ΩX ,OX ⊗ a).

Note that H1(X,NX ⊗ a) = H1(Hom(N ∗
X ,OX ⊗ a)) ⊂ Ext1(N∗

X ,OX ⊗ a).

2.3 Generalised deformation theory
We will now think of a deformation as a sequence of formal neighbourhoods of
the space X , each containing the last, rather than as a family of schemes fibred
over an Artinian base. Given this interpretation, it seems natural to ask whether
or not the techniques of deformation theory can be applied to the construction
of more general formal neighbourhoods— and in particular, to the construction
of formal neighbourhoods in which the original space X has non-trivial normal
bundle. (It will be noted that X has trivial normal bundle in XA). More precisely,
we ask the following question.

Question 1 Suppose we have a variety, X , and an n-th formal neighbourhood
Xn of X which we want to extend to an (n + 1)-st formal neighbourhood Xn+1.
Which of the results of deformation theory are still valid in this context ?

We need first to define what we mean by a n-th order formal neighbourhood.

Definition 8 Let X be an l.c.i. variety and V a vector bundle over X . An n-th
order formal neighbourhood of X with normal bundle V is a scheme Xn together
with an embedding i : X → Xn such that

1. In+1
X/Xn

= 0 in OXn
,

2. There is an isomorphism j : V ∗ ' IX/Xn
/I2

X/Xn
,

3. The multiplication map j⊗n : SymnV ∗ → In
X/Xn

is an isomorphism.

The last condition replaces the fact that XA should be flat over A. It is justified by
the following lemma.

Lemma 1 LetXA be a deformation ofX overA = k[x1, x2, . . . , xl]/m
n+1, where

m is the ideal [x1, x2, . . . , xl]. Define W to be IX/XA
/I2

X/XA
. Then XA is flat over

A if and only if

1. W = O
⊕l
X ,
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2. The successive multiplication maps

Symk(W ) → Ik
X/XA

/Ik+1
X/XA

are isomorphisms whenever 2 ≤ k ≤ n.

Proof of Lemma 1.

We proceed by induction on n.

For n = 1, the ideals of A are precisely the subvector-spaces of mA, the maxi-
mal ideal of A, and the flatness of OXA

is then equivalent to W = Ol
X .

Assume the result holds for (n − 1). We will show that XA is flat over A if
and only if

1. XA ⊗A A/m
n
A is flat over A/mn

A and

2. The multiplication map OX ⊗ Symn(x1, x2, . . . , xl) → OXA
is injective.

Here, Symn(x1, x2, . . . , xl) denotes the k-vector space of all homogeneous poly-
nomials of degree n in the variables (x1, . . . , xl) with coefficients in k.

We prove first the necessity of these two conditions. Consider XA. We note
that in general if M is a flat A module and N is an A/mn

A-module, then

TorA
i (M,N) = Tor

A/m
n
A

i (M ⊗A (A/mn
A), N)

This can be seen from the spectral sequence for a composition of functors, noting
that if N is a A/mn

A-module then

⊗AN = (⊗A/m
n
A
N) ◦ (⊗AA/m

n
A)

and recalling that since M is flat, TorA
i (M,A/mn

A) = 0 whenever i > 0.

It follows by the Tor characterisation of flat modules that if XA is flat over A,
then XA ⊗A A/m

n
A is flat over A/mn

A. This is the first condition.

Further, if XA is flat over A, then the multiplication map OXA
⊗A I → OXA

is injective for any ideal I ⊂ A. But this holds in particular for I = m
n
A. Writing

m
n
A = Symn(x1, x2, . . . , xl), we obtain the second condition.

We now prove sufficience. The scheme XA is flat over A if and only if
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For every ideal I ⊂ A, the multiplication map I ⊗A OXA
→ OXA

is injective.

Suppose that the two conditions hold, and that I is an ideal of A. Then, by the
second condition, we know that

(OXA
⊗ A/mn

A) ⊗A/m
n
A
I/(I ∩ m

n
A) → (OXA

⊗ A/mn
A)

is injective. Therefore, given the exact sequence of A-modules

I ∩ m
n
A → I → I/(I ∩ m

n
A) → 0

we see that if x ∈ I ⊗A OXA
is contained in the kernel of the multiplication map,

then we have
x ∈ Im(mn

A ∩ I) ⊗k OX .

The tensor product can be taken over k without loss of information because be-
cause the space m

n
A is a k-vector space. However, we have that

Im(mn
A ∩ I) ⊗k OX ⊂ OX ⊗k Symn(x1, x2, . . . , xl)

Here we make the natural identification between m
n
A and Symn(x1, x2, . . . , xl).

Condition 2 tells us the multiplication map

OX ⊗ Symn(x1, x2, . . . , xl) → OXA

is injective: it follows that the multiplication map on Im(mn
A ∩ I) ⊗k OX is also

injective. It follows that for any ideal of A, I , the multiplication map

I ⊗A OXA
→ OXA

is injective. This is precisely the multiplicative criterion for flatness.

We now complete the proof of the lemma. By the induction hypothesis, the first
condition is equivalent to

1. W = Ol
X ,

2. Symk(W ) → Ik
X/XA

/Ik+1
X/XA

is an isomorphism for k < n.

The second condition is equivalent to Symn(W ) → In
X/XA

/In+1
X/XA

is an isomor-
phism. This completes the proof of Lemma 1. ¤

Our first result is the following.
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Proposition 1 Assume that X is generically smooth. Then first-order formal
neighbourhoods of X with normal bundle V are classified up to isomorphism
by Ext1(ΩX , V

∗).

Proof of Proposition 1.

We associate to Xε, a first-order formal neighbourhood of X , the exact se-
quence

0 → V ∗ → ΩXε
⊗ OX → ΩX → 0,

which we denote by E(Xε). This sequence is exact because X is generically
smooth. We need to show that this sequence is enough to enable us to recover Xε.
Given an exact sequence

0 → V ∗ i
→ E

π
→ ΩX → 0, (2.5)

we define a sheaf of k-algebras onX , A(E), as in the previous section. As a sheaf
of abelian groups, A(E) is defined to be the kernel of the map

φ : OX ⊕ E → ΩX

which is given by
φ(e, f) = df − π(e).

We now put a k-algebra structure on A(E). We define the multiplication on A(E)
by

(f1, e1) × (f2, e2) = (f1f2, f2e1 + f1e2).

This gives a generalised first-order deformation of X . We now need to show the
following.

Proposition 2 The algebra sheaf A(E(Xε)) is equal to OXε
.

Proof of Proposition 2.

Let E be the OX-module ΩXε
⊗ OX . Note that there is a map

τ : OXε
→ OX ⊕ E

given by τ(f) = f |X + df . The image of this map lies in A(E). We will show
first that τ is injective. We have τ(f) = 0 if and only if

1. f ∈ IX/Xε
= V ∗ and

2. df = 0.
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We know, however, that the map

d : V ∗ → ΩXε
⊗ OX

is an injection, whence it follows that f = 0.

Now we show that τ is surjective. Indeed, defining p to be the projection from
E ⊕ OX , we know that

p ◦ τ : OXε
→ OX

is a surjection, so it remains only to show that V ∗ is contained in the image of τ .

If f ∈ IX/Xε
= V ∗ then τ(f) = (0, df). It follows that i(f) = τ(f), and hence

i(V ∗) ∈ Imτ . This completes the proof of Proposition 2. ¤

We now need the following result.

Proposition 3 We have E(A(E)) = E.

Proof of Proposition 3.

Since the map A(E) → E is a derivation, it factors through an OX-module
map

d : ΩA(E) ⊗ OX → E.

Let πE and πΩA(E)⊗OX
be respectively the projections from E and ΩA(E) ⊗ OX

to OX . Let iE and iΩA(E)⊗OX
be the inclusions of V ∗ into respectively E and

ΩA(E) ⊗ OX . It is immediate that

πE ◦ d = πΩA(E)⊗OX

and
d ◦ iΩA(E)⊗OX

= iE.

It follows that this map is in fact an isomorphism of extensions. This completes
the proof of Proposition 3. ¤

Propositions 2 and 3 together establish Proposition 1. ¤

For higher-order deformations, things are a little more complicated. The classi-
fication of abstract higher-order deformations does not translate directly into this
context. However, the theory of embedded deformations can be translated into
this general setting without any problems.
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Definition 9 An embedded generalised n-th order deformation of X with normal
bundle V is given by the following data.

1. A smooth variety P and an embedding X → P ,

2. A vector bundle Ṽ → P and an isomorphism Ṽ |X = V ,

3. A subvarietyXn of Pn (the n-th formal neighbourhood of P in Ṽ ), such that
the restriction and multiplication maps

r : V ∗ → IX/Xn
/I2

X/Xn
,

r⊗n : SymnV ∗ → In
X/Xn

/In+1
X/Xn

,

are isomorphisms.

Once again, we define N ∗
X , the co-normal bundle, by N ∗

X = IX/P/I
2
X/P , and NX ,

the normal bundle, to be its dual.

We will now prove the following results.

Proposition 4 Let Xn be an n-th order embedded deformation of X . We can
assign to (X1, X2), a pair of extensions of Xn to (n+ 1)-st order deformations of
X , an element d(X1, X2) ∈ Hom(N ∗

X , Symn+1V ∗) in such a way that

1. d(X1, X2) + d(X2, X3) = d(X1, X3) and d(X1, X2) = −d(X2, X1),

2. If X is geometrically reduced and the push-forward of

0 → N ∗
X → ΩP ⊗ OX → ΩX → 0

along d(X1, X2) is a trivial extension then X1 and X2 are isomorphic as
abstract deformations of Xn,

3. If any extensions ofXn ⊂ Pn exist, then they form a principal homogeneous
Hom(N ∗

X , Symn+1V ∗) = H0(NX ⊗ Symn+1V ∗) space.

Proposition 5 We can associate to Xn an element

ωXn
∈ H1(Hom(N ∗

X , Symn+1V ∗))

(or alternatively
ωXn

∈ H1(NX ⊗ Symn+1V ∗))

in such a way that Xn can be extended to an (n+ 1)-st order deformation of X if
and only if ωXn

= 0.
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Before starting the proof of these two propositions, we will need the following
lemma. We choose some open affine neighbourhood U of x in P , such that

1. Ṽ is trivial over U .

2. X ∩ U is a complete intersection.

We will denote by πn the projection from Pn to P and by Un the scheme π−1
n (U).

Lemma 2 Let (f1, f2, . . . , fm) be a regular sequence generating IX∩U/U . Let f̃i

be liftings of fi to IXn/Un
. Then (f̃1, . . . , f̃m) is a regular sequence generating

IXn∩Un/Un
.

Proof of Lemma 2.

We proceed by induction on n. The theorem holds for n = 0. We assume it
holds for (n− 1). Consider a lifting f̃i of fi to IXn∩Un/Un

.

By the induction hypothesis, the restrictions of f̃i to Un−1 form a regular se-
quence for IXn−1∩Un−1/Un−1 in OUn−1 . Suppose f̃i were not a regular sequence
for IXn∩Un/Un

. We will use the following criterion for regularity of sequences.

Regularity criterion.

Let R be a ring. A sequence (g1, . . . , gn) ∈ Rn is a regular sequence in R if
and only if for all sequences (h1, . . . , hn) ∈ Rn such that

∑

i gihi = 0, there are
hi,j ∈ R such that

1. hi,j = −hj,i for all i and j and

2. hi =
∑

j hi,jgj for all i.

Proof of the regularity criterion.

We will first prove that regularity implies the criterion. We proceed by induc-
tion on the length of the regular sequence. A regular sequence of length n = 1,
immediately satifies the criterion, since it then simply says that g1 is not a zero-
divisor in R.

Suppse that regularity implies the criterion for n−1. Suppose that
∑n

i=1 higi = 0.
Then, since gn is not a zero-divisor in R/〈g1, . . . , gn−1〉, we know that

hn ∈ 〈g1, . . . , gn−1〉;
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hence we may set

hn =
n−1
∑

j=1

hn,jgj.

Now, upon setting for i ≤ (n− 1)

g̃i = gi + hn,igi

we see that
∑n−1

i=0 g̃ihi = 0. The result now follows by the induction hypothesis.

We will now prove that the criterion implies regularity. Suppose that the se-
quence is not regular— i.e., that there exists k such that gk is a zero-divisor in
R/〈g1, . . . gk−1〉. In other words, there exists (h1, . . . , hk) ∈ R such that

hkgk =
k−1
∑

i=1

higi

and hk 6∈ 〈g1, . . . gk−1〉. This immediately contradicts the statement of the crite-
rion. The criterion is proved. ¤

If (f̃1, . . . , f̃n) are not a regular sequence, there are then αi ∈ OUn
such that

1.
∑n

i=1 αif̃i = 0 in OUn
,

2. There do not exist ai,j ∈ OUn
such that ai,j = −aj,i and αi =

∑n
j=1 ai,j f̃j .

Choose such αi. Since f̃i|Un−1 are a regular sequence for IXn−1∩Un−1 , there exist
βi,j ∈ OUn

such that

1. αi|Un−1 =
∑n

j=1 βi,j|Un−1 f̃j|Un−1 ,

2. βi,j|Un−1 = −βj,i|Un−1 .

Set µi = αn
i=1 −

∑

j βi,j f̃j . It follows that
∑

i µif̃i = 0.

We will throughout the rest of the proof of this lemma use the isomorphism
IPn−1/Pn

∼ SymnṼ ∗. Note that, since

αi|Un−1 =
n
∑

j=1

βi,j|Un−1 f̃j|Un−1 ,
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we have µi ∈ SymnṼ j. By assumption, SymnṼ j is a free OU -module. Let
e1, . . . , el be an OU -module basis for SymnṼ ∗. We can choose gi,k ∈ OU such
that µi =

∑l
k=1 gi,kek. From this it follows that for all k

n
∑

i=1

gi,kfi = 0.

But by assumption fi is a regular sequence and hence we know that there exist
νi,j,k such that νi,j,k = −νj,i,k and for all k

gi,k =
n
∑

j=1

νi,j,kfj.

From this we see that

αi =
n
∑

j=1

f̃j(βi,j +
l
∑

k=1

νi,j,kek).

Now, if we set
ai,j = (βi,j +

∑

k+1n

νi,j,kek),

then ai,j = −ai,j and αi =
∑

i ai,j f̃i,j . This contradicts the assumption above.
Hence the f̃ are necessarily a regular sequence.

Finally, if (f̃1, . . . f̃n) do not generate IXn∩Un/Un
, then consider g1 ∈ IXn∩Un/Un

such that
g1 6∈ 〈f̃1, . . . f̃n〉.

By the induction hypothesis,

g1|Un−1 ∈ 〈f̃1|Un−1 , . . . f̃n|Un−1〉.

Alternatively, there is a

g2 ∈ 〈f̃1|Un−1 , . . . f̃n|Un−1〉

such that (g1 − g2)|Un−1 = 0. Setting (g1 − g2) = g, we have

g ∈ IXn∩Un/Un
∩ IUn−1/Un

and
g 6∈ SymnṼ ∗ ⊗OU

IX∩U/U .
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In other words, the natural surjection

Symn(V ∗) = IUn−1/Un
⊗OU

OX → IXn−1∩Un−1/Xn∩Un

has non-trivial kernel. But this is impossible by definition of a generalised defor-
mation, since we have assumed that this map is an isomorphism. This completes
the proof of Lemma 2. ¤

Proof of Proposition 4.

We define a map,

d̃(X1, X2) : IXn/Pn
→ Symn+1V ∗,

in the following way. Let f be an element of IXn/Pn
. Choose two liftings of f ,

f 1 ∈ IX1/Pn+1
and f 2 ∈ IX2/Pn+1

.

We know that
(f 1 − f 2) ∈ Symn+1(Ṽ ∗).

We then define d̃(X1, X2) by

d̃(X1, X2)(f) = (f 1 − f 2)|X .

As this map is a map towards an OX-module, it descends to a map

d(X1, X2) : N ∗
X → Symn+1V ∗.

We need to prove the following lemma.

Lemma 3 d(X1, X2) is well-defined.

Proof of Lemma 3.

Suppose that f̃ ′1 and f̃ ′2 are alternative liftings of f . Then

(f̃ ′1 − f̃ 1) ∈ IX1/Pn+1
∩ IPn/Pn+1 .

Lemma 2 implies that the right-hand side is simply IPn/Pn+1 ⊗OP
IX/P . This can

be seen locally by taking a regular sequence for IX1/Pn+1
which we denote by

(f̃1, . . . , f̃n). If now we consider

(f̃ ′1 − f̃ 1) ∈ IX1/Pn+1
∩ IPn/Pn+1 ,
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then there are ci such that
∑

i

cif̃i = (f̃ ′1 − f̃ 1).

Since f̃i|Pn
is a regular sequence, and

∑

i cif̃i|Pn
= 0, then there are di,j ∈ OPn+1

such that di,j = −dj,i and ci|Pn
=
∑

j di,j f̃j|Pn
.

In other words,
ci =

∑

j

di,j f̃j + ei

where ei ∈ IPn/Pn+1 . It follows that

(f̃ ′1 − f̃ 1) =
∑

i

eif̃i

whence it follows that

(f̃ ′1 − f̃ 1) ∈ IPn/Pn+1 ⊗OP
IX/P .

The latter space is equal to Symn+1(Ṽ ∗) ⊗ IX/P . It follows that

(f̃ ′1 − f̃ 1 − f̃ ′2 + f̃ 2) ∈ Symn+1Ṽ ∗ ⊗ IX/P ,

whence we see that d(X1, X2) is independent of the choice of liftings f̃ 1 and f̃ 2.
This completes the proof of Lemma 3. ¤

To finish the proof of Proposition 4, it will be enough to establish the required
properties of the map d(X1, X2). It is immediate from the definition that

d(X1, X2) + d(X2, X3) = d(X1, X3)

and
d(X1, X2) = −d(X2, X1).

We will now prove the following lemma.

Lemma 4 Assume further that X is generically smooth. Let i be the inclusion of
N∗

X into ΩP ⊗ OX . Assume that there exists a map

d′(X1, X2) : ΩP ⊗ OX → Symn+1V ∗

such that d(X1, X2) = d′(X1, X2) ◦ i. The schemes X1 and X2 are isomorphic
as abstract formal neighbourhoods of Xn+1.
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Proof of Lemma 4.

Suppose that such a map exists. Then we can define F : OPn+1 → OX2 by

F (g) = g|X2 + d′(X1, X2)d(g|P ).

This is a surjective map of sheaves of k-algebras whose kernel is IX1 and which is
the identity map on OXn

. Hence X1 and X2 are isomorphic. This concludes the
proof of Lemma 4. ¤

It remains only to establish that if there are any extensions of Xn then they form
a principal homogeneous Hom(N ∗

X , Symn+1V ∗) space. It follows from the con-
struciton in the proof of Proposition 4 that if d(X 1, X2) = 0, thenX1 = X2. It re-
mains to be shown that givenX1, there exists for every φ ∈ Hom(N ∗

X , Symn+1V ∗)
some X2 such that d(X1, X2) = φ.

Given X1, an extension of Xn, and φ ∈ Hom(N ∗, Symn+1V ∗), we define X2

in the following way. An element g ∈ OPn+1 is contained in the ideal sheaf of X2

if and only if there there exists a g′ in IX1/Pn+1
such that

1. g|Pn−1 = g′Pn1
,

2. (g′ − g)|X = φ(g′).

Then X2 is an extension of Xn to an (n+1)-st order generalised formal deforma-
tion and d(X1, X2) = φ. This completes the proof of Proposition 4. ¤

Proof of Proposition 5.

Let πn be the projection from Pn onto P . We choose first of all open affine
subsets U i of P over which Ṽ is trivial and on whichX is a complete intersection.
We denote by U i

n the scheme π−1
n (U i), and by X i

n the scheme U i
n ∩Xn.

By Lemma 2, X i
n is also a complete intersection. (Liftings of a regular sequence

for the ideal sheaf ofX i to a regular sequence for the ideal sheaf ofX i
n necessarily

exist because U i
n is an affine scheme).

We then choose X̃ i, extensions of X i
n = U i

n ∩ Xn to (n + 1)-st order embed-
ded formal neighbourhoods in U i

n+1. Such things exist because X i
n is a complete

intersection and U i
n+1 is an affine scheme. Hence we can simply take a regular

sequence defining X i
n and lift its elements to OU i

n+1
.



32 CHAPTER 2. DEFORMATIONS OF L.C.I.S

Consider the family

D(X̃ i, X̃j) ∈ Γ(U i,j,Hom(N ∗
X , Symn+1V ∗)).

This may be thought of as a Cech cocycle with coefficients in

Hom(N ∗
X , Symn+1V ∗).

We will prove the following lemma.

Lemma 5 There exists some extension of the embedding Xn → Pn if and only if
the cohomology class associated to D(X̃ i, X̃j) vanishes.

Proof of Lemma 5.

We denote by U i,j the intersection U i ∩ U j . By the third property of Propo-
sition 4, the ideals IX̃i/U i

n+1
and IX̃j/Uj

n+1
are compatible as subsets of OU i,j if

and only if D(X̃ i, X̃j) = 0. We prove that if the cohomology class associated to
D(X̃ i, X̃j) vanishes then we can choose extensions X

i
∈ U i

n+1 of X i
n which are

compatible on the intersections U i,j
n+1 and which therefore glue together to provide

a global extension of Xn.

If this cohomology class vanishes then there exist

Di ∈ Γ(U i,Hom(N ∗
X , Symn+1V ∗))

such that D(X̃ i, X̃j) = Di −Dj . By the third property of Proposition 4, for all i
there exists a unique embedded deformation X

i
⊂ U i

n+1 such that

D(X
i
, X̃ i) = −Di.

Now let us consider the cocycle D(X
i
, X

j
). We have

D(X
i
, X̃ i) +D(X̃ i, X̃j) +D(X̃j, X

j
) = 0.

This can be re-expressed as saying (by the second property given in Proposition
4) that

D(X
i
, X

j
) = 0.

It follows that the X
i

are compatible on the intersections and can be glued to-
gether to give a global deformation of Xn.
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Likewise, if there exist X
i

such that the X i and Xj are compatible on the in-
tersections, then

D(X̃ i, X̃j) = D(X̃ i, X
i
) −D(X̃j, X

j
).

In other words, D(X̃i, X̃j) is the boundary of the Cech class

D(X̃ i, X
i
).

We now set
ωXn

= [D(X̃ i, X̃j)].

The class ωXn
is independent of the choice of liftings, and satisfies the require-

ments of the proposition. This completes the proof of the lemma 5. ¤

This completes the proof of Proposition 5. ¤

2.4 Proof of Theorem 8
The scheme X is contained in some projective space P

N . We will construct an
embedding of P

N into a smooth variety Ṽ with highly negative normal bundle.
More precisely, P

N will be the zero locus of a section of a vector bundle on Ṽ
which is a direct sum of line bundles.

We will recursively construct an l.c.i. scheme Xn+1 in P
N
n+1 extending Xn. If

V is negative enough, the construction of Xn will be unobstructed and we may
therefore continue this construction to infinity to obtain X∞, a formal neighbour-
hood ofX . We will also be able to impose thatX∞ is smooth. The formal scheme
X∞ will then satisfy all the requirements of the theorem.

Consider IX/PN , the ideal sheaf of X in P
N . We recall Serre’s vanishing theo-

rem, which may be found in [?].

Proposition 6 Let F be a coherent sheaf on X , a projective scheme. There exists
an m such that, for all a ≥ m, and for all j ≥ 1

1. Hj(X,F (a)) = 0,

2. F (a) is generated by its global sections.

Define, as in the previous section, N ∗
X to be the sheaf IX/PN/I2

X/PN and NX to be
its dual. In particular, we may choose m ≥ 0 such that for all a ≥ m:
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1. H1(NX(a))) = 0,

2. NX(a) is generated by its global sections.

We make the following definitions.

1. l is the dimension of H0(NX(m)),

2. V is the vector bundle OPN (−m)⊕l in which P
N is naturally embedded as

the zero section.

As above, P
N
n will be the subscheme of V defined by the ideal In+1

PN . We now have
the following result.

Proposition 7 Let Xn be an extension of X to a generalised embedded deforma-
tion in P

N
n . Then there is no obstruction to the extension of Xn to a generalised

embedded deformation Xn+1 in P
N
n+1.

Proof of Proposition 7.

This is immediate, since the obstruction space for this problem is

H1(NX ⊗ Symn+1(V ∗)).

This is 0 by choice of V . Proposition 7 follows. ¤

We may then recursively choose Xn+1 ⊂ P
N
n+1 extending Xn for each n. The

formal scheme
lim

n→∞
Xn = X∞

is then a formal neighbourhood of X in which X is embedded as the zero locus of
the tautological section of π∗(OX(−m))⊕l. It remains only to prove the following
proposition.

Proposition 8 For some choice of Xn, the scheme X∞ is smooth.

Proof of Proposition 8.

The smoothness of X∞ depends only on the choice of X1. All the results we
now quote on Kähler differentials may be found in [?].
Consider the projection π1 : P

N
1 → P

N . The sheaf of Kähler differentials

ΩP
N
1
⊗ OPN

is canonically isomorphic to π∗
1ΩPN ⊕ V ∗. The universal derivative map

d : IX1/P
N
1
→ ΩP

N
1
⊗ OX
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is an OX1 linear map. After tensoring by OX , we obtain an OX-linear map

dX1 : N∗
X → ΩPN |X ⊕ V ∗|X .

The scheme X∞ is smooth at x if dX1(x) is injective.

We now associate Xφ to any φ : N ∗
X → V ∗|X . This Xφ will be a candidate

space for X1 such that any associated X∞ will be smooth if φ(x) is injective for
all x.

An element f ∈ OP
N
1

will be contained in IXφ
if and only if

1. f |PN ∈ IX and

2. (f − π∗
1(f |PN ))|X = φ(f).

For this choice of Xφ, we have

dXφ
(f) = π∗

1df + φ(f).

From this it follows that dXφ
(x) is injective for all x if φ(x) is injective for all x.

It remains to find φ ∈ Hom(N ∗
X , V

∗) such that φ(x) is injective for every x.
Note that Hom(N ∗

X ,OX(m)) is globally generated. If (v1, . . . , vl) is a basis for
H0(Hom(N ∗

X ,OX(m))), then the function φ defined by

φ = ⊕l
b=1vb : N∗

X → V ∗

is injective on N ∗
X(x) for every x. This completes the proof of proposition 8. ¤

This completes the proof of Theorem 8. ¤

Question 2 Is the space X∞ algebrisable ?

Note that, according to recent work of Bost and Bogolomov-McQuillan, described
in [?], we have the following theorem.

Theorem 17 Let X ⊂ V be a connected smooth projective subvariety of a quasi-
projective variety over an algebraically closed field, and X̂ a smooth formal sub-
variety of V̂ , the completion of V along X , which contains X . Assume that the
normal bundle of X in X̂ is ample. Then X̂ is algebraic.

Remark 1 One might wonder whether this work holds for otherX . We have used
the fact that X is projective only to invoke Serre’s vanishing theorem. Suppose
that X is a quasi-projective variety. The results of this section will hold for X ,
provided that we have the following property.

For any coherent sheaf, F on X , there exists m such that for any a ≥ m we
have H1(F(a)) = 0 and F(a) is generated by its global sections.
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Chapter 3

A second order invariant of the
Noether-Lefschetz locus

In this part, we will develop a second-order invariant of a component of the
Noether-Lefschetz locus which generalises the first-order invariant found by Carl-
son and Griffiths. In the following chapters, these will be used to prove two new
results on components of the Noether-Lefschetz locus of small co-dimension.

3.1 Introduction— the Noether-Lefschetz locus
In this chapter, we will be concerned with smooth surfaces in P

3 and the curves
that are contained in them. Suppose that X is a smooth surface of degree d in P

3,
cut out by a polynomial F ∈ k[X0, . . . X3]. The following three problems are all
equivalent.

1. Determine the group NS(X) of 1-cycles of X up to algebraic equivalence,

2. Determine the group Pic(X) of line bundles on X ,

3. Determine the group H1,1(X,Z) of Hodge classes of X .

For a generic X of degree d ≥ 4 we have the Noether-Lefschetz theorem.

Theorem 18 (Lefschetz) If X is a generic smooth degree d surface in P
3 and

d ≥ 4 then all curves in X are complete intersections of X with another surface.

Lefschetz proved this using a monodromy argument and the Hodge decomposi-
tion. In the early 80’s, Griffiths and Harris reproved the theorem using a degener-
ation technique, which will be presented in the next chapter, as it will be used to
give an alternative proof of one of the two theorems.

37
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Equivalently, the group H1,1
prim(X,Z), consisting of all primitive integral Hodge

(1, 1)-cohomology classes of X , is trivial. We will say that any X such that
H1,1

prim(X,Z) = 0 satisfies the Noether-Lefschetz (NL) condition. We will call
the set of surfaces containing a non-complete intersection curve the Noether-
Lefschetz locus. This locus consists of a countable union of proper algebraic
subvarieties of Ud. Ciliberto et al. showed in [?] that it is Zariski dense in Ud, and
indeed, dense for the usual complex topology.

A stronger version of the Noether-Lefschetz theorem was proved by Carlson,
Green, Griffiths and Harris in [?], via a study of the first-order infinitesimal varia-
tion of the Hodge structure of X . They showed, amongst many other things, that
for any X , a general first-order deformation of X contains only complete inter-
section curves.

If γ is an integral primitive class which is of type (1, 1), then NL(γ) the locus of
surfaces in some suitable simply-connected neighbourhood of X in which γ re-
mains of (1, 1) type. More precisely, the locus NL(γ) can be locally constructed
as the zero locus of a section of a certain vector bundle in the following way.

Let Hi be the vector bundle whose fibre over the point X is H i(X,C). This
vector bundle is equipped with the Gauss-Manin connection ∇ (a natural flat con-
nection) and has a holomorphic structure. The Hodge filtration onH i(X,C) gives
rise to a descending filtration F p(Hi) ⊂ Hi. We write F p/F p+1 = Hp,q. We need
the following classical results of Griffiths, which may be found in [?].

Theorem 19 (Griffiths) • F p(Hi) is a holomorphic sub-vector bundle of Hi,

• (Transversality) ∇ : F p(Hi) → F p−1(Hi) ⊗ ΩUd
,

• ∇ induces an OUd
-linear map

∇ : H
p,q → H

p−1,q+1 ⊗ ΩUd
.

Recall that γ is a non-zero element of H1,1(X,C). We now fix O, a simply con-
nected neighbourhood of X in Ud. By γ, we mean the flat section of H2|O which
is induced by flat transport of γ. Note that by the definition of the bundles Hp,q

there is a projection H2 → H0,2. We denote by γ0,2 the image of γ under this
projection. We are now in a position to define NL(γ).

Definition 10 The space NL(γ) is the zero locus in O of the section γ0,2.
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Being defined locally by h0,2 = rk(H0,2) equations, NL(γ) cannot have codi-
mension greater than h0,2(X) =

(

d−1
3

)

in O, and we expect that it should have
codimension exactly h0,2(X). However, for d > 4, there exist Noether-Lefschetz
components of strictly lower codimension. For example, if C is a line in X , then
we denote by [C]prim the primitive part of the cohomology class of C. We can
then show by a dimension count that the codimension of NL([C]prim) is d − 3,
since it is simply a component of the set of surfaces containing a line. We will
call a component of the NL locus exceptional if it has codimension less than

(

d−1
3

)

.

The Zariski tangent space of NL(γ) was described by Carlson and Griffiths in
[?]. The work we will present in this section is heavily based on these results,
which are summarised below. If we interpret the defining section γ0,2 as a set of
local equations for NL(γ), then [?] gives a complete description of the first order
part of these equations at a point X ∈ NL(γ).

This first-order invariant ofNL(γ) rendered possible many qualitative results con-
cerning these exceptional components, notably the following.

• (Voisin [?], Green [?]) Every exceptional NL component has codimension
at least d− 3, and for d ≥ 5 this bound is obtained only for the component
of surfaces containing a line.

• (Voisin, [?]) For d ≥ 5, the second largest NL component of Ud has codi-
mension 2d − 7, and this bound is achieved only by the space of surfaces
containing a plane conic.

• (Voisin [?]) There are infinitely many exceptional components in Ud, for d
sufficiently large.

This last result replies in the negative to a conjecture of Ciliberto and Harris, which
will be explained in chapter 5.

We will extend the results of Carlson and Griffiths via a second-order infinites-
imal study of NL(γ). In this chapter, we will calculate the second order part of
the equations for NL(γ) at X . This gives new information whenever NL(γ) is
singular at X or NL(γ) is exceptional. We will then use these results in the next
chapter to determine the non-reduced components of the Noether-Lefschetz locus
in U5 (the reduced exceptional components all having been found by Voisin in
[?] and [?]) and to get in any degree new bounds on the codimensions of those
exceptional loci which violate the conjecture of Ciliberto and Harris. These new
bounds may be seen as generalisations of known results in two different ways.
Firstly, they may be seen as generalising the work of Voisin in [?] to higher de-
grees than 6 or 7. Secondly, the results given will in fact be conditions for the
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space of polynomials of degree e vanishing on γ to be dimension at least j. For
e = 1 and j = 2 we will recover the results of Voisin and Green on maximal
Noether-Lefschetz loci, albeit with the additional condition that the locus should
be reduced.

3.2 Resume of the work of Carlson and Griffiths
In this section, we summarise the results of [?] and [?]. A summary of this work
may also be found in [?].
If P is a degree pd − 4 polynomial and Ω is the canonical section of the bundle
KP3(4) then PΩ

F p is a holomorphic 3-form on P
3 − X and has therefore a class

in H3(P3 − X,C). The group H3(P3 − X,C) maps via the residue mapping to
H2

prim(X,C): there is therefore in particular a composed mapping

resX : Spd−4 → H2
prim(X,C).

This is defined by

resX(P ) = resX

([

PΩ

F p

])

.

It is proved in [?] (see also [?] and [?]) that

Im(resX) = F 3−pH2
prim(X,C).

It is further proved that resX(Q) ∈ F 2−pH2(X,C) if and only ifQ ∈
〈

∂F
∂X0

, . . . , ∂F
∂X3

〉

.

We denote by JF (the Jacobian ideal ofF ) the homogeneous ideal
〈

∂F
∂X0

, . . . , ∂F
∂X3

〉

.
We further denote byRF (the Jacobian ring of F ) the graded ring k[X0 . . . X3]/JF .
The work above can be summarised in the following way.

Theorem 20 (Carlson, Griffiths) The residue map induces a natural isomorphism
between Rpd−4

F and H3−p,p−1
prim (X,C).

In [?], the infinitesimal variation of this Hodge structure with variations of the
hypersurface X was also calculated. The map, ∇F , induced by the Gauss Manin
connection, can be thought of as a map

∇ : H
p,q
prim → Hom(TUd

,Hp−1,q+1
prim ).

Carlson and Griffiths showed that after making the following identifications

1. TUd
(F ) = Sd/ 〈F 〉,
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2. H
p,q
prim(F ) = R

(3−p)d−4
F ,

3. H
p−1,q+1
prim (F ) = R

(4−p)d−4
F ,

we have the following result.

Theorem 21 (Carlson, Griffiths) Up to multiplication by a constant, ∇F (resXP )
is identified with the multiplication map

·P : Rd
F → R

(4−p)d−4
F .

As a first application, we have the following description of the tangent space of
the NL locus. NL(γ) is the zero locus of γ0,2. If γ ∈ H1,1

prim(X,C) is represented
by P then the derivative map:

dγ0,2 : TUd
(X) → H

0,2(X)

is identified with the multiplication map, ·P . In other words, we have

Ker(dγ0,2) = TNL(γ)(X).

This implies that

TNL(γ)(X) = Ker(·P : Rd
F → R3d−4

F ).

Thus after identification of TUd
(X) with Sd/F , we have

H ∈ TNL(γ)(X) if and only if there exist Qi ∈ S2d−3 such that PH =
3
∑

i=0

Qi
∂F

∂Xi

.

We will lean heavily in what follows on the following classical result, due to
Macaulay (which may be found in [?], for example).

Theorem 22 (Macaulay) The ring RF is a Gorenstein graded ring. In other
words, R4d−8

F = C and the multiplication map

Ra
F ⊗R4d−8−a

F → R4d−8
F = C

is a perfect pairing.
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3.3 The second order invariant of IVHS
Throughout the rest of this section, P will be a degree 2d − 4 polynomial whose
image under the residue map is γ, andG andH will be degree d polynomials con-
tained in TNL(γ)(X). We take {Qi}

3
i=0, {Ri}

3
i=0 to be degree 2d− 3 polynomials

such that

PG =
3
∑

i=0

Qi
∂F

∂Xi

.

and

PH =
3
∑

i=0

Ri
∂F

∂Xi

and Let (s1, . . . , sh2,0(X)) be defining equations for NL(γ) near X . If

d : 〈s1, . . . , sh0,2(X)〉 → TUd
(X)

is the map sending an equation to its first order part at X , then there is a well-
defined map

r : Ker(d) → Sym2(T ∗
NL(γ)(X))

sending an equation which vanishes to first order at X to its second order at
X . This may be interpreted as a set of dim(Ker(d)) quadratic equations on
TNL(γ)(X). By Macaulay’s theorem, we have

dim(Ker(d)) = codim(Im(·P ) ⊂ R3d−4
F ).

Indeed, after dualising, there is a canonical identification

Ker(d)∗ = R3d−4
F /Im(·P ).

The main result of this section is an explicit formula for q = r∗.

Theorem 23 The second quadratic form described above

q : Sym2(TNL(γ)(X)) → R3d−4
F /Im(·P )

is given by

q(G,H) =
3
∑

i=0

(

H
∂Qi

∂Xi

−Ri
∂G

∂Xi

)

.

The attentive reader will be surprised to see that this form is apparently not sym-
metric inG andH . This is, however, only apparent: we have the following lemma.
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Lemma 6 For all H and G in TNL(γ)(X),

q(G,H) = q(H,G).

Proof of Lemma 6.

We know that
3
∑

i=0

GRi
∂F

∂Xi

= GHP =
3
∑

i=0

HQi
∂F

∂Xi

.

Rearranging, we get that

3
∑

i=0

(GRi −HQi)
∂F

∂Xi

= 0.

However, F is smooth, and hence the ∂F
∂Xi

form a regular sequence. It follows that
there exist Ai,j , polynomials, such that

1. Ai,j = −Aj,i ,

2. GRi −HQi =
∑3

j=0Ai,j
∂F
∂Xi

.

Deriving this second equation and summing over i, we get that

3
∑

i=0

(

G
∂Ri

∂Xi

+Ri
∂G

∂Xi

)

−

3
∑

i=0

(

H
∂Qi

∂Xi

−Qi
∂H

∂Xi

)

=
∑

i,j

(

∂Ai,j

∂Xi

∂F

∂Xi

+ Ai,j
∂F

∂Xi∂Xj

)

.

From this we deduce that

3
∑

i=0

(

G
∂Ri

∂Xi

+Ri
∂G

∂Xi

)

−

3
∑

i=0

(

H
∂Qi

∂Xi

+Qi
∂H

∂Xi

)

∈

〈

∂F

∂Xi

〉

.

This completes the proof of Lemma 6. ¤

3.4 The fundamental quadratic form of a vector bun-
dle section

We will prove Theorem ?? using the fundamental quadratic form of a section of a
vector bundle— a generalisation of the Hessian, which we now briefly recall. We
consider M , a smooth complex scheme, a vector bundle V on M and a section
σ of V . We denote by W the zero scheme of σ and choose a point x of W . We
choose holomorphic co-ordinates, z1, . . . , zm, in some neighbourhood of x and we
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choose a trivialisation of V near x. Of course, having picked such a trivialisation,
we can consider σ to be an r-tuple of holomorphic functions (σ1, σ2 . . . σr).
We define the map

dσx : TU(x) → Vx

by

dσx(
m
∑

i=1

αi
∂

∂zi

) =
n
∑

i=1

αi
∂σ

∂zi

.

This map is independent of the choice of trivialisation and of local co-ordinates.
If we think of σ as r holomorphic functions that cut out W then (dσx)

∗ is the map
sending an equation for W to its first order part at x. Further, Ker(dσx) is the
Zariski tangent space to W at x.

We define the fundamental quadratic form, qσ,x, of σ at x to be the dual of the
map sending an equation for W whose first order part at x vanishes to its second
order part at x. It may also be thought of as the second derivative map. More
precisely,

qσ,x : TW (x) ⊗ TW (x) → Vx/Im(dσx)

is defined by

qσ,x

(

m
∑

i=1

αi
∂

∂zi

,
m
∑

j=1

βj
∂

∂zj

)

=
m
∑

i=1

αi
∂

∂zi

(

m
∑

j=1

βj
∂

∂zj

(σ)

)

.

This, similarly, is independent of the choice of local trivialisation of V and the
choice of local co-ordinates zj .
This form may also be understood as a first order invariant of the bundle mor-
phism dσ : TU |W → V |W defined by dσx at the point x. Indeed, given a bundle
morphism ψ : E → F on a scheme W we may associate to any x ∈ W a map

dψx : TW (x) → Hom(Ker(ψx),Coker(ψx)).

This map dψx is simply the derivative of ψ computed with respect to some local
trivialisations of E and F. The restriction of such a derivation to Ker(ψx) and
Coker(ψx) is independent of the choice of local trivialisations. When ψ = dσ, the
map dψx is the fundamental quadratic form of σ at x.
In particular, if x is a smooth point of Wred and rk(Ker(dσ)) is constant in a
neighbourhood of x, then q(u,w) = 0 for any u ∈ TWred

, for the simple reason
that we may choose a local trivialisation of TU such that Ker(dσ) is a trivial sub-
bundle of E in a neighbourhood of x. This observation will be the starting point
for our work in the next section.
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3.5 Proof of Theorem ??
In this section, we prove that for V = H

0,2
prim|O and σ = γ0,2 (and hence for

W = NL(γ)), the fundamental quadratic form qγ0,2,X described above is pre-
cisely the quadratic form given in Theorem ??.

Recall that G,H are elements of TNL(γ)(X). Whenever f is a section of a vector
bundle which vanishes at X , we will denote by ∂f

∂G
(X) the derivative along the

tangent vector G of f at the point X .

The fundamental quadratic form, qγ0,2,X , is defined as follows

qγ0,2,X(G,H) =
∂(dγ0,2(H))

∂G
(X).

This equation is an equality between elements of the spaceH0,2(X,C)/Im(dγ0,2).

Carlson and Griffiths’ results on the first order IVHS of hypersurfaces tell us that
after identification of H

3−p,p−1
prim and Rpd−4

F we have

1. Im(dγ0,2(X)) = Im(·P )

2. dγ0,2(H)(X̃) = Hs(X̃).

Here, s is some section of S2d−4 ⊗ ONL(γ) such that resX̃(s(X̃)) = γ(X̃), where
X̃ is any point in NL(γ). Hence qγ0,2 now reduces to

qγ0,2,X(G,H) =
∂(resX̃(Hs(X̃)))

∂G
(X), (3.1)

this last equation being an equality between elements of R3p−4
F /Im(·P ).

Let us explain more precisely what we mean by the formula (??). Since Hs(X̃) is
a degree 3d−4 polynomial, it has a residue class inH0,2(X̃) for any X̃ ∈ NL(γ).
This residue class disappears at X , and therefore its derivation along the tangent
vector G ∈ TUd

(X) is a well-defined element of H0,2(X,C). This is the entity
that we seek to calculate. We note that

∂(resX̃(Hs(X̃)))

∂G
(X) = resX

(

H
(X̃)

∂G
(X)

)

+
∂(resX̃(HP ))

∂G
(X).

Lemma 7 We have
∂(resX̃(HP ))

∂G
(X) = −resX(

3
∑

i=0

Ri
∂G

∂Xi

).
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Proof of Lemma 7.

If Xε is the variety cut out by the polynomial F + εG, then we have

∂(resXε
(HP ))

∂ε
(0) = lim

ε→0

1

ε
resXε

(HP ).

We know that HP =
∑3

i=0Ri
∂F
∂Xi

, whence we see that

HP =
3
∑

i=0

(

Ri
∂F + εG

∂Xi

− εRi
∂G

∂Xi

)

.

Therefore,

resXε
(HP ) = resXε

(

−ε
3
∑

i=0

Ri
∂G

∂Xi

)

,

and hence

∂(resX̃(HP ))

∂G
(X) =

∂(resXε
(HP ))

∂ε
(X) = lim

ε→0
resXε

(

−
3
∑

i=0

Ri
∂G

∂Xi

)

.

From this we get that

∂(resX̃(HP ))

∂G
(X) = resX

(

−

3
∑

i=0

Ri
∂G

∂Xi

)

.

This completes the proof of Lemma 7. ¤

It remains to calculate
∂s

∂G
(X).

Lemma 8 The section s can be chosen in such a way that
∂s

∂G
(X) =

3
∑

i=0

∂Qi

∂Xi

.

Proof of Lemma 8.

By definition

resX(P ) = resX

[

PΩ

F 2

]

.

The polynomial s(X̃) is chosen such that the section resX̃(s(X̃)) = resX̃
s(X̃)Ω

F̃ 2 of
H2 ⊗ ONL(γ) is flat with respect to the Gauss-Manin connection. In particular,

∂(resX̃(s(X̃)))

∂G
(X) = 0
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and hence

resX

(

∂ sΩ
F 2

∂G
(X)

)

= 0.

On deriving this formula, we obtain that

resX

(

( ∂s
∂G

(X))Ω

F 2
− 2

GPΩ

F 3

)

= 0.

It is proved in [?] that this happens only when there is some α ∈ H 0(Ω2
P3(2Y ))

such that
∂s
∂G

(X)Ω

F 2
− 2

GPΩ

F 3
= dα.

Any α ∈ H0(Ω2
P3(2Y )) may be written in the form

α =

∑3
i=0 Siint( ∂

∂Xi
)Ω

F 2
,

where the Si are degree 2d− 3 polynomials. Here, the operation int is defined for
any smooth variety Y as follows. The map

int : TY ⊗ Ω2
Y → Ω1

Y

is given by
int(t, ω)(v) = (ω(t, v)).

It may be verified that (see, for example, [?] or [?]) that

dα =
−2

F 3

3
∑

i=0

Si
∂F

∂Xi

Ω +
1

F 2

3
∑

i=0

∂Si

∂Xi

Ω.

Recall that
3
∑

i=0

Qi
∂F

∂Xi

= GP.

Therefore, the equation

(( ∂s
∂G

(X))Ω)

F 2
− 2

HPΩ

F 3
= dα

is satisfied whenever
∂s

∂G
(X) =

3
∑

i=0

∂Qi

∂Xi
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and

α =

∑3
i=0Qiint( ∂

∂Xi
)Ω

F 2
.

Since the kernel of the map S6 ⊗ OUd
→ H2 is of constant rank, it follows that

we may choose s such that ∂s
∂G

(X) =
∑3

i=0
∂Qi

∂Xi
.

This completes the proof of Lemma 8. ¤

It follows that

∂dH(γ0,2)

∂G
(X) = resX

(

3
∑

i=0

(

∂Qi

∂Xi

H −Ri
∂G

∂Xi

)

)

.

Therefore qγ0,2,X(H,G) is equal to

3
∑

i=0

(

∂Qi

∂Xi

H −Ri
∂G

∂Xi

)

.

As always, this is of course an equality of elements of R3d−4
F /Im(·P).

This completes the proof of Theorem 23. ¤



Chapter 4

Non-reduced Noether-Lefschetz loci
in U5

In this chapter we will give a first application of Theorem ?? by proving the fol-
lowing theorem.

Theorem 24 Suppose that NL(γ) ⊂ O ⊂ U5 be non-reduced and let X be a
point of NL(γ). There is then a hyperplane H ⊂ P

3 such that H ∩X contains 2
lines, L1 and L2, and non-zero distinct integers α and β such that

γ = α[L1] + β[L2] −
α + β

5
H.

This result completes the classification of components of the Noether-Lefschetz
locus of U5 with exceptional codimension of tangent spaces which was started
in [?]. In this paper, it was shown that the only reduced exceptional Noether Lef-
schetz components in U5 are the space of surfaces containing a plane conic and the
space of surfaces containing a line. Two proofs of this result will be presented—
the first being original, and the second applying the degeneration technique used
by Griffiths and Harris in [?].

When d = 5, any component of the Noether-Lefschetz locus has codimension
at most 4. It has been proved in [?] and independently in [?] that the codimension
of NL(γ) is ≥ 2 and this bound is achieved only if there is a rational number α
such that γ = α(5∆ −H), where H is the class of a hyperplane section and ∆ is
the class of a line. Further, it has been shown in [?] that if NL(γ) is of codimen-
sion 3, then there is some rational number α such that γ = α(5∆− 2H) where ∆
is the class of a conic.

The only other Noether-Lefschetz loci in U5 which may have tangent spaces with

49
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exceptional codimension are non-reduced components, whose reductions are of
codimension 4 or 3.

Proposition 9 Assume there exists a hyperplane H whose intersection with X
has 3 components C1, C2, C3 such that C1 and C2 are distinct lines and C3 is a
cubic. If α and β are distinct non-zero integers, then the cohomology class

γ = αC1 + βC2 −
α+ β

5
H

is such that NL(γ) has a non-reduced component.

Proof of Proposition 9.

Since α, β are distinct and non-zero, γ is neither a linear combination of a line
and a hyperplane section nor a linear combination of a conic and a hyperplane
section. We know by the work of Voisin in [?] that codim(TNLγ

(X)) > 3, and
hence codim TNL(γ)red(X)) = 4. We now show that NL(γ) has a non-reduced
component.

The space NL(γ) contains the space

NL(C1prim) ∩NL(C2prim).

Here, by C1prim, we mean the primitive part of the cohomology class [C1]. Since
this set has codimension ≤ 2 + 2 = 4, it follows that NL(C1prim) ∩NL(C2prim)
is in fact a component of NL(γ).

Note further that if Y ∈ NL(C1prim), then there is a line CY
1 ∈ Y such that

(C1)prim(Y ) = [CY
1 ]prim. This can be seen by a simple dimension count.

Further, in the surface Y , the intersection number of CY
1 and CY

2 is 1— in other
words, there is a point

pY ∈ CY
1 ∩ CY

2

The important point is that there is a plane HY in P
3 containing CY

1 ∩CY
2 . Hence,

in particular, there is a hyperplane HY in P
3 on which γY is supported.

In [?] (see also [?]) it is shown that if there exists a holomorphic form ω on Y
such that γ is supported on the zero locus of ω then codim(TNL(γ)(Y )) < 4. Since
KY = OY (1), there exists such a holomorphic form, and

codim(TNL(γ)(Y )) < 4
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at every point of NL(γ). The space NL(γ) is therefore non-reduced. This com-
pletes the proof of Proposition 9. ¤

We will now prove Theorem ??, which says that this is the only possible type
of non-reduced Noether-Lefschetz locus in U5.

4.1 Proof of Theorem ??
We assume that X is a sufficiently general smooth point of NL(γ)red. Recall that
F is the polynomial defining X , that RF is the associated Jacobian ring, and the
P is a degree 6 polynomial such that resX(P ) = γ. Since codim TNL(γ)(X) < 4,
it follows from the definition of TNL(γ)(X) = Ker(·P ) that the map

·P : S5 → R11
F

is not surjective. Alternatively, by Macaulay duality there is an X0 ∈ S1 such that

X0PH = 0 for all H ∈ R5
F ,

whence we deduce that X0P = 0 in RF . We define H to be the plane X0 = 0.

There exist cubics, Pi ∈ S3, such that

X0P =
3
∑

i=0

Pi
∂F

∂Xi

.

We first use the fundamental quadratic form derived in the last section to obtain
relations on the Pi and ∂F

∂Xi
which will imply that X ∩H is reducible.

Proposition 10 We have

3
∑

i=1

Pi
∂F

∂Xi

|H = 0 (4.1)

3
∑

i=1

∂Pi

∂Xi

|H = 0. (4.2)

Note that the first equation implies immediately thatX∩H is a singular curve. We
will demonstrate not only that X ∩H is a reducible curve but also that the space
of triples P1, P2, P3 satisfying (??) and (??) has dimension at most (j− 1), where
j is the number of components of X ∩H . We will then deduce that if D1, . . . , Dj
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are the components of X ∩ H , Di being of degree di, then the subspace V ′ of
H1,1

prim defined by

V ′ =

〈

γ, [D1] −
d1H

5
, [D2] −

d2H

5
, . . . , [Dj−1] −

dj−1H

5

〉

has dimension (j − 1)— and that therefore γ is supported on H .

Proof of Proposition 10.

We will begin by proving the following lemma.

Lemma 9 There is a non-zero L contained in S1 such that in R4
F

L

(

X0

3
∑

i=0

∂Pi

∂Xi

− P0

)

= 0. (4.3)

Proof of Lemma 9.

We know that codimTNL(γ)(X) ≥ 2 by the result of Voisin and Green, and
codim TNL(γ)red(X) =4, since X is a smooth point of NL(γ)red. We treat first the
case where the codimension of TNL(γ)red(X) in TNL(γ)(X) is 1. We have

(X0H)P =
3
∑

i=0

PiH
∂F

∂Xi

and similarly

(X0G)P =
3
∑

i=0

PiG
∂F

∂Xi

.

Now, suppose that G ∈ S4 is such that X0G ∈ TNL(γ)red(X). Then for any
H ∈ S4 we have that

qγ0,2,X(X0H,X0G) = 0

(by the remark at the end of section 3.4). More precisely, using the equation for
the second fundamental form given in ??, we get that the following equations hold
in RF

X0G

3
∑

i=0

∂(PiH)

∂Xi

−

3
∑

i=0

PiG
∂(X0H)

∂Xi

∈ Im(·P ).

Rearranging, we get that

GH

(

X0

3
∑

i=0

∂Pi

∂Xi

− P0

)

∈ Im(·P ).
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Multiplying by X0, we get that

X0GH

(

X0

3
∑

i=0

∂Pi

∂Xi

− P0

)

= 0,

and finally, by Macaulay duality, we have

X0G

(

X0

3
∑

i=0

∂Pi

∂Xi

− P0

)

= 0. (4.4)

Recall that this last equation holds for any G in the space E which is defined by

E = {G ∈ S4 such that X0G ∈ TNL(γ)red(X)}.

We have that codim(E) ≤ 1 (since we have supposed that the codimension of
TNL(γ)red(X) in TNL(γ)(X) is 1). Straightforward algebraic manipulations show
that the ideal generated by any vector space of codimension 1 in R4

F contains R5
F .

It follows that for any J ∈ R5
F we have

JX0

(

X0

3
∑

i=0

∂Pi

∂Xi

− P0

)

= 0,

and hence by Macaulay duality

X0

(

X0

3
∑

i=0

∂Pi

∂Xi

− P0

)

= 0.

Hence Lemma 9 is proved in this case.

We now treat the case where the codimension of TNL(γ)red(X) in TNL(γ)(X) is 2.
In this case, there are two distinct elements of S1, X0 and X1 such that X0P = 0
and X1P = 0. Once again, we define E by

E = {G ∈ S4 such that X0G ∈ TNL(γ)red(X)}.

and we then obtain that

X0G

(

X0

3
∑

i=0

∂Pi

∂Xi

− P0

)

= 0,

and similarly

X1G

(

X0

3
∑

i=0

∂Pi

∂Xi

− P0

)

= 0.
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The codimension of E is at most 2. There are 2 maps,

φ0 and φ1 : S4/E → Ker(·E) ⊂ R8
F

given by multiplication by X0(X0

∑3
i=0

∂Pi

∂Xi
− P0) and X1(X0

∑3
i=0

∂Pi

∂Xi
− P0)

respectively. Here by Ker(·E), we mean the set of all elements in R8
F which give

0 on multiplying with any element of E. If φ0 is not an isomorphism then the
equation (??) holds for all G contained in φ−1

0 (0), which is a hyperplane, and the
lemma follows as in the case where the codimension of TNL(γ)red(X) in TNL(γ)(X)
is 1.

Only the case where φ0 is invertible remains. But in this case φ−1
0 ◦ φ1 has an

eigenvalue, λ. The multiplication map

·(X0 − λX1)

(

X0

3
∑

i=0

∂Pi

∂Xi

− P0

)

: R4
F → R8

F

has a kernel of codimension at most 1, from which we conclude as before that
(X0 − λX1)(X0

∑3
i=0

∂Pi

∂Xi
− P0) = 0. This concludes the proof of Lemma 9. ¤

We will now attempt to prove that this implies that X0

∑3
i=0

∂Pi

∂Xi
− P0 = 0. We

start with the following technical lemma.

Lemma 10 If W ′ is defined to be the space S3×S1×{C4/0}×S5, then the map
φ : W ′ → S4 given by

φ(P,L, α0, α1, α2, α3, F ) = PL−
3
∑

i=0

αi
∂F

∂Xi

is submersive.

Proof of Lemma 10.

Let (Y0, . . . Y3) be a new set of co-ordinates for P
3, such that

∑3
i=0 αi

∂F
∂Xi

=
∂F
∂Y0

. We then have
∂φ

∂F
(G) =

∂G

∂Y0

.

It follows that the map dφ : TW ′ → TS4 is surjective. This completes the proof of
Lemma 10. ¤

From this lemma we will deduce the following:
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Lemma 11 If U ′ ⊂ U5 is defined by

{F such that ∃L1 ∈ R1
F , L2 ∈ R3

F such that L1 6= 0, L2 6= 0 and L1L2 = 0 in R4
F},

then codim U ′ ≥ 6.

Proof of Lemma 11.

We now define W to be the subset of W ′ consisting of all septuples
(P,L, α0, α1, α2, α3, F ) such that

PL =
3
∑

i=0

αi
∂F

∂Xi

.

It follows that the codimension of W in W ′ is dim(S4)= 35, whence we see that

dim(W ) = dimS5 + 4 + 4 + 20 − 35 = dim(S5) − 7.

It follows that the codimension of the image of W under projection to U5 is ≥ 6.

This completes the proof of Lemma 11. ¤

And finally, this gives us the following.

Lemma 12 In RF we have

X0

3
∑

i=0

∂Pi

∂Xi

− P0 = 0. (4.5)

Proof of Lemma 12.

Indeed, it follows immediately from Lemma ??, and the fact that

codim(NL(γ)red) = 4,

that for a generic point of NL(γ) (??) implies that

X0

3
∑

i=0

∂Pi

∂Xi

− P0 = 0.

So Lemma 12 follows from Lemma 11. This completes the proof of Lemma 12.
¤
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We now complete the proof of the proposition. The equation (??) of Proposition
?? follows from the two equations

P0 = X0

3
∑

i=0

∂Pi

∂Xi

(4.6)

and
3
∑

i=0

Pi
∂F

∂Xi

= X0P.

We turn now to the equation (??), which follows when we differentiate (??) with
respect to X0 to obtain

∂P0

∂X0

=
3
∑

i=0

∂Pi

∂Xi

+X0

∂(
∑3

i=0
∂Pi

∂Xi
)

∂X0

.

Re-arranging, we get that

−X0

∂
∑3

i=0
∂Pi

∂Xi

∂X0

=
3
∑

i=1

∂Pi

∂Xi

.

This completes the proof of Proposition 10. ¤

Now, let us consider the quintic plane curve, D = X ∩ H . In the next section,
we will denote by F̃ the restriction of F to H . We define D1, . . . , Dj to be the
components of D and di to be the degree of Di.

We now prove the following proposition.

Proposition 11 The cohomology class γ is a linear combination of [D1], . . . , [Dj].

Proof of Proposition 11.

It will be enough to show that

dim

(〈

γ, [D1] −
d1H

5
, . . . , [Dj−1] −

dj−1H

5

〉)

≤ j − 1. (4.7)

Recall that we had denoted this space by V ′. We denote by V the space of all
triplets of cubics (P1, P2, P3) in variables X1, X2, X3 such that

3
∑

i=1

Pi
∂F̃

∂Xi

= 0 (4.8)
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and
3
∑

i=1

∂Pi

∂Xi

= 0. (4.9)

These are of course none other than the equations of Proposition ??. We will first
show that the dimension of V is less than or equal to (j − 1) and then construct
an injective linear map V ′ → V , from which (??) will follow.

Indeed, we will show that given any ν ∈ V ′ it is represented by Pν ∈ S6 (by
which we mean that resXPν = ν) such that

X0Pν =
3
∑

i=0

P i
ν

∂F

∂Xi

and the triple (P 1
ν |H , . . . , P

3
ν |H , ) is in V . We will assign this triple to ν.

Lemma 13 The dimension of V is ≤ j − 1.

Proof of Lemma 13.

For this, we will need to interpret the equations (??) and (??) geometrically.
We consider the maps

f : V → H0(TP2(2))

and
g : H0(TP2(2)) → H0(ΩP2(D))

which are given by

f(P1, P2, P3) =
3
∑

i=1

Pi
∂

∂Xi

and

g(α) =
int(α)Ω

F̃
.

Here once again, for any smooth variety Y , the map

int : TY × Ω2
Y → Ω1

Y

is given by
int(t, ω)(v) = ω(t, v)

In this case, Ω is the canonical section of KP2(3). The map g is an isomorphism.
We will show the following lemma.

Lemma 14 The map f is injective.
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Proof of Lemma 14.

Suppose that f were not injective, and the triple (P1, P2, P3) were such that
f(P1, P2, P3) = 0. This would then imply the existence of P such that

(P1, P2, P3) = (X1P
′, X2P

′, X3P
′).

However we would then have
3
∑

i=1

Pi
∂F̃

∂Xi

= P ′F̃

and hence (??) implies that P ′ = 0. This completes the proof of Lemma 14. ¤

We now consider the image of g ◦ f in H0(ΩP2(D)). We will use the follow-
ing lemma.

Lemma 15 If (P1, P2, P3) ∈ V then g ◦ f(P1, P2, P3) ∈ H0(Ω1,c
P2 (logD)).

Here, Ω1,c
P2 (logD) denotes the sheaf of closed differential forms with logarithmic

singularities along D.

Proof of Lemma 15.

It is enough to show that d(g ◦ f(P1, P2, P3)) = 0. But

d





∑3
i=1

(

Piint( ∂
∂Xi

)(Ω)
)

F̃



 =
3
∑

i=1

(−Pi
∂F̃
∂Xi

+ F̃ ∂Pi

∂Xi
)Ω

F̃ 2
.

Now, by the equations (??) and (??), the right hand side of this equation is 0. This
completes the proof of Lemma 15. ¤

We now complete the proof of Lemma 13. By the above, V injects into
H0(Ω1,c

P2 (logD)). Note that D, being the intersection of a smooth surface and a
plane, is reduced.

We define U to be P
2 − Dsing. By the above comment, U is P

2 minus a codi-
mension 2 subset. There is an exact sequence on U ,

0 → Ω1,c
U → Ω1,c

U (logD)
res
→ CD−Dsing

→ 0,

from which we get an associated long exact sequence,

H0(Ω1,c
U ) → H0(Ω1,c

U (logD)) → H0(D/Dsing,C)
δ
→ H1(Ω1,c

U )



4.1. PROOF OF THEOREM ?? 59

However, since Ω1
P2 is free and P

2 − U is of codimension 2, it follows by Levi’s
extension theorem that

H0(Ω1
U) ' H0(Ω1

P2).

In other words, there are no global holomorphic 1-forms, closed or otherwise, on
U . Hence,

H0(Ω1,c
U (logD)) ' Ker δ.

Since dim(H0(D/Dsing,C)) = j, if we denote the map H0(Ω1,c
U (logD)) →6=

H0(D −Dsing,C by p, it will be enough to show that

Im(p) 6= H0(D −Dsing,C).

But if u ∈ H0(Ω1,c
U (logD)) then we have that

p(u)(Di) = resDi
(u)

where resDi
(u) is the residue of the form u along Di. But now we know that

j
∑

i=1

diresDi
u = 0.

This can be seen by considering the integral of u along a closed path in

(P2 −D) ∩H,

where H is a general line in P
2 and noting that 2πiresDi

u is precisely the integral
of u along a path looping once around a point of Di. From this it follows that

dim(H0(Ω1,c
P2 (logD))) ≤ j − 1.

This completes the proof of Lemma 13. ¤

We now prove the following lemma.

Lemma 16 The space V ′ has dimension ≤ j − 1.

Proof of Lemma 16.

The strategy is clear. We will construct a map L : V ′ → V which we will then
show to be injective.

We choose a basis (e1 . . . , em) for V ′, such that

1. e1 = γ
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2. e2, . . . , em ∈
〈

[D1] −
d1H

5
, . . . , [Dj−1] −

dj−1H

5

〉

.

The point of this choice of basis is the following. The argument presented in the
proof of Proposition 10 will also be valid for polynomials representing classes in
the space

〈

[D1] −
d1H

5
, . . . , [Dj−1] −

dj−1H

5

〉

,

and hence, we will be able to assign to every element of this basis an element of
V in the same way as P 1|H , P

2|H , P
3|H was assigned to γ.

For each el, we choose Ql a degree 6 polynomial such that resX(Ql) = el. By
the choice of basis, we have the following.

Lemma 17 For all l, X0Q
l = 0 in R7

F .

Proof of Lemma 17.

Indeed, this is true for e1 = γ by definition. For l ≥ 2, it follows from

el ∈

〈

[D1] −
d1H

5
, . . . , [Dj−1] −

dj−1H

5

〉

that
X0 · S

4 ⊂ TNL(el)(X).

Indeed, if G ∈ S4, and Y is the surface defined by the polynomial F +X0G, then
Di ⊂ Y for all i. Now assume further that Y ∈ O. There are complex numbers
αi such that

el =

j
∑

i=1

αi[Di],

In H2(Y,C) we then have that

el(Y ) =

j
∑

i=1

αi[Di]Y ,

where in the right hand side [Di]Y represents the cohomology class in H2(Y,C)
of Di ⊂ Y . From the the expression on the left hand side, this is of Hodge type
(1, 1). Hence the surface Yε defined by F + εX0G is contained in NL(el) for any
G and for small ε. Hence we have

X0 · S
4 ⊂ TNL(el)(X).
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This, by Macaulay duality and the results of Carlson and Griffiths, is equivalent
to X0Q

l = 0 in RF . This completes the proof of Lemma 17. ¤

We now choose polynomials Ql
0, Q

l
1, Q

l
2, Q

l
3 (in four variables) such that

X0Q
l =

3
∑

i=0

Ql
i

∂F

∂Xi

.

We then have the following lemma.

Lemma 18 The equation (4.5) is valid for (Ql
0, . . . , Q

l
3). The equations (??) and

(??) are valid for the triple (Ql
1|H , . . . , Q

l
3|H).

Proof of Lemma 18.

For l = 1, this is the statement of Proposition 10. For l ≥ 2, Lemma 17
implies that for all degree 4 polynomials G1 and G2,

X0G1, X0G2 ∈ TNL(el)red(X).

Hence we see that for all G1 and G2 in S4,

qel
0,2,X(X0G1, X0G2) = 0

Alternatively, as in the proof of Proposition 10

G1G2

(

X0

3
∑

i=0

∂Ql
i

∂Xi

−Ql
0

)

∈ Im(·P )

and multiplying by X0 we see that

X0G1G2

(

X0

3
∑

i=0

∂Ql
i

∂Xi

−Ql
0

)

= 0

in RF This time, this relationship is valid for any choice of G1 and G2, so it
follows immediately by Macaulay duality that

X0

(

X0

3
∑

i=0

∂Ql
i

∂Xi

−Ql
0

)

= 0
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in RF . This is precisely the equation (4.5). By Lemma 12, it follows that, since
X has been chosen general in NL(γ),

(

X0

3
∑

i=0

∂Ql
i

∂Xi

−Ql
0

)

= 0

in RF . Indeed, since deg(Ql
0) = 3, it follows that (X0

∑3
i=0

∂Ql
i

∂Xi
−Ql

0) = 0. The
two equations (??) and (??) now follow from the argument given at the bottom of
page 51. This completes the proof of Lemma 18. ¤

We define L by setting L(el) = (Ql
1|H , Q

l
2|H , Q

l
3|H) and extending by linear-

ity.

We will now prove the following lemma.

Lemma 19 L is injective.

Proof of Lemma 19.

Let v be any element of V ′. By linearity, there are cubic polynomialsQv
0, Q

v
1, Q

v
2, Q

v
3

in variables X0, . . . , X3 such that

1. L(v) = (Qv
1|H , Q

v
2|H , Q

v
3|H),

2. The equation (4.5) is valid for Qv
0, . . . , Q

v
3,

3. There exists a Qv such that
∑3

i=0Q
v
i

∂F
∂Xi

= X0Q
v,

4. Qv represents the cohomology class v.

Lemma 19 now follows from the following lemma.

Lemma 20 Suppose that γ = resX(P ), and there exist (P0, . . . , P3) such that

X0P =
3
∑

i=0

Pi
∂F

∂Xi

.

Suppose further that (4.5) is valid and that

P1|H = P2|H = P3|H = 0, i ≥ 1.

Then γ1,1 = 0.
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Proof of Lemma 20.

We have

X0P =
3
∑

i=0

Pi
∂F

∂Xi

. (4.10)

By hypothesis, X0 divides Pi for i ≥ 1. It follows from (4.5) that X0 divides P0 .
Therefore, (??) implies that

P ∈

〈

∂F

∂Xi

〉

from which it follows that

resXP ∈ F 2(H2(X,C)).

Alternatively, we have that
γ1,1 = 0.

This completes the proof of Lemma 20. ¤

Since all elements of V ′ are Hodge (1, 1) classes, the injectivity of L follows
immediately. This completes the proof of Lemma 19. ¤

This completes the proof of Lemma 16. ¤

This completes the proof of Proposition 11. ¤

To complete the theorem, it will be enough to show that D is necesarily the union
of two lines and a (possibly reducible) cubic.

Lemma 21 The curve X ∩H must have at least 3 components.

Proof of Lemma 21.

We know that γ is a linear combination of classes of curves contained on
X ∩ H . If X ∩ H contains only two reducible components, then γ is either the
linear combination of

1. a line and a hyperplane section or

2. a conic and a hyperplane section.

This is not possible, since all such cohomology classes have reduced associated
Noether-Lefschetz loci. This completes the proof of Lemma 21. ¤

There are now two possibilities:
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1. γ is a linear combination of the cohomology classes of two lines and a
hyperplane section,

2. X belongs to S, the space of all quintic hypersurfaces possessing a hyper-
plane section which is the union of two conics and a line.

The codimension of S is 5 and the codimension of NL(γ) is at most 4, so the
general element of NL(γ) cannot be contained in S.

It remains only to exclude the cases γ = α(L1 + L2 −
2H
5

) or γ = α(L1 −
H
5
).

In the first case, γ is (a multiple of) the primitive part of the cohomology class of
a conic, and in the second case γ is (a multiple of) the primitive part of the coho-
mology class of a line. In either case, γ has a reduced Noether-Lefschetz locus.

This concludes the proof of Theorem ??. ¤

4.2 Alternative proof of Theorem ??
This proof will be based on the degeneration argument used by Griffiths and Harris
in [?]. We consider the space of polynomials

S = {F +X0G where G ∈ S4 and F +X0G ∈ Ud}.

We will prove the theorem by considering a degenration of X onto a union of a
quartic surface and a line. In order to do this, we need to prove the following
proposition.

Proposition 12 There is a ∇-flat section of F 1H(X,C)⊗OS which is equal to γ
at the point X .

Proof of Proposition 12.

Consider the section of F 1H(X,C)⊗OS defined in the following way. Let Y
be an element of S and G be an element of S4 such that Y is defined by F +X0G.
Define a function Q on S by

Q(Y ) = P +
3
∑

i=0

∂(GPi)

∂Xi

.

We then set
γ(Y ) = resY (Q(Y )).

We will prove that the section γ(Y ) is a ∇-flat section of H2 ⊗ OS . We start by
proving the
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Lemma 22 At any point Y of S, we have TS(Y ) ⊂ TNL(γ)(Y ).

Proof of Lemma 22.

We know that

X0

(

P +
3
∑

i=0

∂(GPi)

∂Xi

)

=
3
∑

i=0

(

Pi
∂F

∂Xi

+X0G
∂Pi

∂Xi

+X0Pi
∂G

∂Xi

.

)

Now, since P0 = X0

∑3
i=0

∂Pi

∂Xi
, we have

X0

(

P +
3
∑

i=0

∂(GPi)

∂Xi

)

=
3
∑

i=0

(

Pi
∂F

∂Xi

+X0Pi
∂G

∂Xi

)

+GP0.

From this it follows that

X0

(

P +
3
∑

i=0

∂(GPi)

∂Xi

)

=
3
∑

i=0

Pi
∂(F +X0G)

∂Xi

.

This last equation implies that in RF+X0G we have

X0 ∈ Ker

(

·(P +
3
∑

i=0

∂(GPi)

∂Xi

)

)

.

Recall that resY (P +
∑3

i=0
∂(GPi)

∂Xi
) = γ(Y ). Hence, the above statement says that,

for all H ∈ S4,
X0H ∈ TNL(γ)(Y ).

In other words, we have
TS(Y ) ⊂ TNL(γ)(Y ).

This completes the proof of Lemma 22. ¤

The point of this lemma is that over some neighbourhood of Y in NL(γ(Y )),
we know that there exists P̃ , a section of S6 ⊗ ONL(γ(Y )), such that

resỸ (P̃ ) = γ(Y )(Ỹ ).

Here γ(Y ) denotes the local ∇-flat extension of γ(Y ) to a section of the vector
bundle H2 ⊗ ONL(γ(Y )). Since we know that

TS(Y ) ⊂ TNL(γ)(Y )

we can compare the derivatives of P̃ and Q(Y ) along X0H for any H ∈ S4.
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Lemma 23 We can choose P̃ such that

∂P̃

∂(X0H)
=

∂Q(Y )

∂(X0H)
.

Proof of Lemma 23.

From the equation

X0P̃ (Y ) =
3
∑

i=0

Pi
∂(F +X0G)

∂Xi

,

we see that we can choose P̃ in such a way that

∂P̃

∂(X0H)
=

3
∑

i=0

∂(HPi)

∂Xi

.

It is clear that
∂Q(Y )

∂(X0H)
=

3
∑

i=0

∂(HPi)

∂Xi

.

This completes the proof of Lemma 23. ¤

This shows that we have indeed constructed a ∇-flat section of primitive Hodge
classes over S. Proposition 12 follows. ¤

We now need to show that, given a ∇-flat section of primitive Hodge classes
over S, it actually comes from a curve supported on X0 = 0. The argument that
establishes this is given in [?] and [?]: we summarise it here.

Theorem 25 (Griffiths, Harris) Under these circumstances, γ is supported on
H ∩X .

Proof of Theorem 25.

This is a slightly adapted version of the material contained in [?]. There is
another, more general version of this in [?].

We denote the curve H ∩ X by D. Once again, we denote the irreducible com-
ponents of D by D1, . . . , Dl, and denote the degree of Di by di. We will need a
G ∈ S4 such that

1. G is smooth,
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2. Pic(G) = Z,

3. G intersects D transversally at smooth points of D,

4. C = G ∩X0 is a smooth curve,

5. Let pi,j , with 1 ≤ i ≤ 4dj be the points of Dj ∩ G. Then the equation in
Pic(C)

OC(
∑

i,j

ni,jpi,j) = OC(n) (4.11)

is only satisfied when there exist integers nj such that for all i, ni,j = nj .

Lemma 24 There exists some G satisfying 1-5.

Proof of Lemma 24.

1), 2) and 4) are satisfied for a generic quartic. 3) holds for generic G because
D, being the intersection of a smooth surface with a plane, is reduced. The diffi-
cult thing to prove is 5).

Let M be the space of polynomials in S4 satisfying 3) and 4). The fundamen-
tal group of M acts by monodromy as a permutation of the points pi,j .

In general, if S is any set, then we denote the group of all permutations of S
by Perm(S).

Let σ be an element of Perm({pi,j}) contained in the image of π1(M). Suppose
given integers ni,j such that in Pic(C)

OC(
∑

i,j

ni,jpi,j) = OC(n)

for general G. Then we would also have

OC(
∑

i,j

ni,jσ(pi,j)) = OC(n).

But it is proved in [?] that

Im(π1(M)) = ⊕jPerm({p1,j . . . p4dj ,j}).

In other words, the image of π1(M) is precisely the set of all permutations that
send points of Dj to points of Dj . It follows that if (??) holds for a generic G then
for any j, k, l and for any G we have

OC((nk,j − nl,j)(pk,j − pl,j)) = OC (4.12)
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in Pic(C). We want to deduce that nk,j − nl,j = 0. We now have to do a little
more work than Griffiths and Harris, since we do not have the luxury of starting
with a generic F and cannot therefore assume that pk,j and pl,j are general points
of C.

Consider a variation of G. This induces a deformation of the triple (C, pk,j, pl,j).
We choose a variation of G under which the point pk,j approaches the point pl,j . If
(??) holds for generic G then under this deformation pk,j − pl,j can be considered
as a section of the Jacobian bundle which is always torsion and which vanishes at
the limit point. From this it follows that pk,j − pl,j = 0.

This is not possible, since C is a smooth plane curve of degree 4 and is hence
non-rational. This completes the proof of Lemma 24. ¤

We choose such a G, which we will now use to construct a degeneration of X
onto Ỹ0, a surface whose Picard group we will be able to describe. Consider Y ,
the subvariety of P

3(C) × C given by the equation

X0G+ tF = 0.

Here, t parameterises C. The variety Y is smooth over some neighbourhood of
the origin except at the points where t = 0, X0 = 0, F = 0 and G = 0. The set
of these points will be denoted in what follows by D ∩ G. At these points Y has
ordinary double points of type

x1x2 + y1y2 = 0.

We denote the central fibre of Y by Y0. In Proposition 12 we have constructed
γ(t), a global section of Pic(Yt), which we will study via its degeneration to Y0.
In order to be sure that such a degeneration exists, we need to smooth the variety
Y by blowing up.

Let us consider the blow-up of Y at D ∩ G. When we blow up such a point
the exceptional divisor is P

1 × P
1, and may be contracted along either of its rul-

ings to give a smooth variety.

More concretely, let A be an affine piece of P
3 containing D ∩ G. Let x0, f

and g be functions on A corresponding to X0, F and G. Define Y ◦ by

Y ◦ = (A× C) ∩ Y.

We will smooth Y ◦ by an explicit blow-up. Consider the space Ỹ ◦ ⊂ C
4 × P

1

which is defined by the equations

tf + x0g = 0,
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gU = fV,

x0V = −tU,

where U and V are the co-ordinate functions on P
1. It is easy to check that this

variety is smooth. We now glue this variety to Y −{D∩G}×C along Y ◦− (D∩
G × C). This forms a smoothing of Y which we denote by Ỹ . We will examine
the central fibre of Ỹ , which we denote by Ỹ0. This fibre is the gluing together of
two varieties,

1. the subvariety in A× P
1 given by the equations x0g = 0 and gU = fV,

2. Y0 −D ∩G,

along the open subset (Y0 −D ∩G) ∩ A.

The variety Ỹ0 is the union of two components, H̃ and G̃, where H̃ is the glu-
ing together of

1. the subvariety of A× P
1 given by the equations x0 = 0 and gU = fV,

2. H −D ∩G.

along the open subset (H −D ∩G) ∩ A.

Similarly, G̃ ⊂ P
3 × P

1 is the gluing together of two varieties

1. the subvariety of A× P
1 given by g = 0 and V = 0,

2. G−D ∩G,

along the open set (G−D ∩G) ∩ A.

The variety H̃ is the plane H blown up at each of the points D ∩ G. The va-
riety G̃ is isomorphic to the surface G. They are glued together along the curve C̃
which is the gluing together of

1. the subvariety of A× P
1 given by the equations x0 = 0, g0 = 0 and V = 0,

2. C −D ∩G.

along the open set (C −D ∩G) ∩ A.

The curve C̃ is simply the proper transform of C in H̃ . Since the global vari-
ety is smooth, a line bundle L defined on (Ỹ − Ỹ0) such that

L|Yt
= γ(t)

can be extended to a line bundle on Ỹ . We need to understand Pic(Ỹ0).
A line bundle on Ỹ0 is given by the following data
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1. A line bundle LG on G̃,

2. A line bundle LH on H̃ ,

3. An isomorphism between LG|C̃ and LH |C̃ .

We know that Pic(G) = Z and hence LG = OG̃(n) for some integer n. Letting
Ei,j be the exceptional divisor in H̃ over the point D ∩ G, we have Pic(H̃) is a
free group generated by

1. OH̃(1) and

2. OH̃(Ei,j).

We can now find a generating set for Pic(Ỹ0). Suppose that

L = OH̃(m+
∑

ni,jEi,j)

is a bundle on H̃ . L extends to a bundle on the whole of Ỹ0 if and only if there
exists n such that L|C̃ = OC̃(n), or equivalently, such that

OC̃(n) = OC̃(m+
∑

ni,jpi,j).

This is equivalent to saying that in the Picard group of C̃,

OC̃(
∑

ni,jpi,j) = OC̃(n−m).

By the assumptions on G, we know that this happens only if there exist nj such
that for all i, ni,j = nj . Hence, Pic Ỹ0 is a free abelian group generated by the
following bundles:

1. OỸ0
(1),

2. Lj such that Lj|H̃ = OH̃(
∑4dj

i=1Ei,j) and Lj|G̃ = OG̃(dj).

We will now prove the following result.

Proposition 13 For each Lj , there is a line bundle Kj defined on Ỹ such that

1. For small t,

Ki,t ∈ 〈OYt
(D1),OYt

(D2), . . . ,OYt
(Dl),OYt

(1)〉,

2. Kj|Ỹ0=Lj
.
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Proof of Proposition 13.

Consider the divisor Bj on Ỹ which is the proper transform of Dj × C in Ỹ .
Bj can be explicitly constructed in the following way. Bj is the gluing together of

1. the subvariety of C × A× P
1 defined by the equations

U = 0 and IDj
= 0,

where IDj
is the ideal sheaf of Dj ∩ A, considered as a sheaf of functions

on A,

2. (Dj − {Dj ∩G}) × C,

along the open subset ((Dj −Dj ∩G) ∩ A) × C.

We now consider the line bundle OỸ (Bj), which we denote by K ′
j .

Note that K ′
j|Ỹt

= OYt
(Dj) for t 6= 0. The divisor Bj|Ỹ0

is Dj , the proper trans-
form of Dj in H̃ , which does not meet G̃. It follows that

1. K ′
j|G̃ = OG̃,

2. K ′
j|H̃ = OH̃(Dj).

We know that
OH̃(Dj) = OH̃(p−1(Dj) −

∑

i

Ei,j)

whence it follows that

OH̃(Dj) = OH̃(djH −
∑

i

Ei,j)

and finally that
K ′

j|Ỹ0
= L−1

j ⊗ OỸ0
(dj).

We set Kj = K ′
j
−1|Ỹ0

⊗ OỸ0
(dj). This completes the proof of Proposition 13. ¤

Now let γ(0) be the restriction of γ(t) to Ỹ0. There are integers nj , m such that

γ(0) = OỸ0
(m) ⊗j

O
Ỹ0

L
nj

j .

From this it follows that in some neighbourhood of 0,

γ(t) = OỸt
(m) ⊗j

O
Ỹt

K
⊗nj

j (t)

and hence we have
γ(t) ∈ 〈Dj, H〉.

This completes the proof of Theorem 25. ¤

Hence, this gives a different proof of Theorem 24. ¤
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Chapter 5

Exceptional loci of small
codimensions

5.1 Ciliberto and Harris’ conjecture
Let NL(γ) be an exceptional Noether-Lefschetz locus and X ∈ NL(γ) be a
surface defined by the polynomial F ∈ Sd. Let P ∈ S2d−4 be a polynomial repre-
senting γ. We recall that (see for example page 37) the tangent space TNL(γ)(X)
is simply the kernel of the map

·P : Sd/F → R3d−4
F

which is multiplication by P . If NL(γ) is exceptional, then the multiplication
map ·P : Rd

F → R3d−4
F is not onto. Since the multiplication map

Rd−4
F ⊗R3d−4

F → R4d−8
F

is a perfect pairing this is equivalent to saying that there exists Q ∈ Sd−4 such that
QP = 0 in RF . This is equivalent to saying that

Q · S4 ⊂ TNL(γ)(X).

There is one case in which it is clear this will be the case. Denote the surface cut
out by Q by Z. Suppose X ∩ Z is a reducible curve,

X ∩ Z = C1 ∪ C2 ∪ · · · ∪ Cl

and that γ is a linear combination of the classes [Ci],

γ =
∑

i

ai[Ci].

In this case we say that γ is supported on Q. We have that

73
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Lemma 25 If γ is supported on Q, then GQ + F ∈ NL(γ) for all G ∈ S4 such
that {GQ+ F = 0} ∈ O and hence QS4 ⊂ TNL(γ)(X).

Proof of Lemma 25. Indeed, suppose that Y ∈ O is given by the equation GQ+
F . We then have that Ci ∈ Y for all i. Suppose that we have

γ =
l
∑

i=1

ai[Ci]

then we have that

γ(Y ) =
l
∑

i=1

ai[Ci]Y

where [Ci]Y is the cohomology of class of Ci in Y . Hence γ(Y ) is of (1, 1) type,
and hence Y ∈ NL(γ). This completes the proof of Lemma 25. ¤

These considerations led Ciliberto and Harris to postulate (see for example [?]
or [?]) their

Conjecture 1 (Ciliberto-Harris) IfNL(γ) is exceptional, then γ is supported on
Q for some Q ∈ Sd−4.

Initial progress on this conjecture was promising. Voisin even showed in [?] that
the conjecture was true for d = 6, 7. Unfortunately, it is now known to be false in
general. Voisin proved the following theorem in [?].

Theorem 26 (Voisin) The Ciliberto-Harris conjecture is false for d = 4s and s
sufficiently large.

When γ is supported on Q for some Q ∈ Sd−4, we will say that γ satisfies the
Ciliberto-Harris conjecture.

The main theorem of this section is as follows.

Theorem 27 Suppose that e ≤ d−1
2

and j ≤
(

e+3
3

)

. There exists an integer, φe,j(d)
such that if NL(γ) is reduced and codim(NL(γ)) ≤ φe,j(d) then the dimension
of the space {Q ∈ Sesuch that γ is supported on Q} is ≥ j.

Further, φ d−1
2

,1(d) = O(d3).

On setting j = 1 in this statement, we obtain the result given in the introduction.
Our main theorem implies, in particular, that the Ciliberto-Harris conjecture is
true for any reduced locus of codimension ≤ φ d−1

2
,1(d), which is a function of

cubic order in d. To the best of my knowledge, all bounds known for this problem
till the present are linear or quadratic in d.
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5.2 Proof of Theorem 27
The theorem will follow immediately from the following two propositions.

Proposition 14 Suppose that NL(γ) is reduced and for all Y in some neighbour-
hood of X , a general element of NL(γ), the space

V = {Q ∈ Se|Q · Sd−e ⊂ TNL(γ)(Y )}

is of dimension j > 0. Suppose further that e ≤ d−1
2

. Then, for all Q ∈ V we
have F +GQ2 ∈ NL(γ) for all G ∈ Sd−2e such that F +GQ2 defines a smooth
variety.

It will then be enough to prove the following proposition.

Proposition 15 Let X be an element of NL(γ). We can construct φe,j(d) as
above such that if

codim(NL(γ)) ≤ φe,j(d)

then dim{Q ∈ Se|Q · Sd−e ⊂ TNL(γ)(X)} ≥ j.

It follows from Proposition 14, by the argument given in section 2 of [?], (pp
56-59), that γ is supported on Q2 = 0— and hence on Q = 0. We now summarise
this argument.

The aim is, of course, to use the degeneration methods of Griffiths and Harris
from [?] explained in the alternative proof of Theorem 24, pp 64-69 of the cur-
rent thesis. The difficulty that arises is that, Q2 not being smooth (or indeed even
reduced), we have no control on the singularities of the central fibre. This is
a particular problem since the article of Griffiths and Harris required a detailed
description of the family after base-change and blow-up, in order the deal with
the problem of monodromy. (In the previous section, no such base-change was
needed, since we knew by the explicit construction that γ was invariant under
monodromy).

In her article, Voisin gets around this problem in the following way. Consider-
ing the family of surfaces, Y in C × P

3 given by the equation

tF +Q2G = 0

for some sufficiently general G ∈ S , she denotes by C the curve F = G = 0: she
then proves that the derivative ∂

∂t
of γ|C , considered as an element of Pic(C), is

0. Since we know (this can be found in [?]) that for generic G the restriction map

Pic(X) → Pic(C)



76 CHAPTER 5. EXCEPTIONAL LOCI OF SMALL CODIMENSIONS

is injective, it follows that γ is invariant under monodromy on this family; hence,
γ exists as a global section of H1,1 on this space— which is enough to be able to
start the degeneration.

Voisin then completes by a more subtle version of the degeneration of Chapter
4, pp.64-69, noting that, although we cannot construct an explicit blow-up in this
case, we know by resolution of singularities that there exists some blow-up, Ỹ of
Y , which has the following properties:

The proper transform of C×C in Ỹ is smooth and is isomorphic to C×C outside
of the points pi given by F = G = Q = t = 0.

The proper transform, G̃, of G = t = 0 in Ỹ is smooth and is isomorphic to
G outside of the points pi.

If we assume (as we may, sinceG is generic) that Pic(G) = Z, then this is enough
to be able to apply the argument given in the previous section.

Proof of Proposition 14.

We assume, since the question was dealt with for d = 6, 7 in [?], that d ≥ 8.
We choose construct a space W in the following way:

W = {(Y,A) ∈ NL(γ) × Se|A · Sd−e ⊂ TNL(γ)(Y )}.

If X is a sufficiently general smooth point of NL(γ), then the space

VY = {A ∈ Se|A · Sd−e ⊂ TNL(γ)(Y )}

is of constant dimension nearX— indeed, given any map of vector bundles over a
holomorphic variety, the space over which its kernel is of minimal dimension is an
(analytic) open subset. The space W will be a smooth over some neighbourhood
of X . We will prove the following lemma.

Lemma 26 At any point (Y,A) of W we have (GA2, 0) ∈ TW (Y,A) for all G.

Proof of Lemma 26.

We know that there exists some B such that (GA2, B) ∈ TW (Y,A), since the
map W → NL(γ) is locally the projection from a vector bundle onto the base,
and hence induces a surjection on the tangent spaces.
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Denote this tangent vector by χ. Let us derive the equation

AP =
∑

i

Li
∂F

∂Xi

in the direction χ. It was calculated at the end of chapter 3 that

χ(P ) =
∑

i

∂(LiGA)

∂Xi

.

By definition of χ we have χ(A) = B and χ(F ) = (GA2). Hence we have

A
∑

i

(

∂(LiGA)

∂Xi

)

+BP =
∑

i

(

Li
∂GA2

∂Xi

+ χ(Li)
∂F

∂Xi

)

.

Rearranging, we get that in RF

GA
∑

i

(

A
∂Li

∂Xi

− Li
∂A

∂Xi

)

= −BP.

We will now prove the following result.

Lemma 27 We have

A
∑

i

(

A
∂Li

∂Xi

− Li
∂A

∂Xi

)

= 0 in RF .

Proof of Lemma 27.

It is in the proof of this key lemma that we will use the fundamental quadratic
form. Note that for all H1, H2 ∈ Sd−e,

AH1 and AH2 ∈ TNL(γ)(X),

and further,
qγ0,2,X(AH1, AH2) = 0.

Hence, for all H1, H2 the following equality holds in RF

∑

i

(

AH1
∂(H2Li)

∂Xi

−H1Li
∂(AH2)

∂Xi

)

∈ Im(·P ).

Rearranging, we get that

H1H2

∑

i

(

A
∂Li

∂Xi

− Li
∂A

∂Xi

)

∈ Im(·P ).
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From this we see that for all H ∈ S2d−2e,

HA
∑

i

(

A
∂Li

∂Xi

− Li
∂A

∂Xi

)

= 0

in RF . We know that

deg HA
∑

i

(

A
∂Li

∂Xi

− Li
∂A

∂Xi

)

= 3d− 4 + e ≤ 4d− 8.

In the last inequality we have used the fact that d ≥ 8. It follows that

A
∑

i

(

A
∂Li

∂Xi

− Li
∂A

∂Xi

)

= 0

in RF . This completes the proof of Lemma 27. ¤

Returning to the proof of Lemma 26, we see that BP = 0. Hence

(0, B) ∈ TW (Y,A)

and therefore
(GA2, 0) ∈ TW (Y,A) for all G ∈ Sd−2e.

This completes the proof of Lemma 26. ¤

We now complete the proof of Proposition 14. We have just shown there is a
field of tangent vectors on W which we denote by τG given by

τG(Y,A) = (GA2, 0).

We may now integrate along the tangent field τG, at least locally. (Here, we have
used the fact that (Y,A) is a smooth point of W ). It follows that F + εGp2 is con-
tained in NL(γ) for all sufficiently small ε. Hence, since NL(γ) is holomorphic,
F + GA2 is contained in NL(γ), provided that the associated variety is smooth.
This completes the proof of Proposition 14. ¤

It remains only to construct the integer φe,j(d) such that if we have

codim(NL(γ)) ≤ φe,j(d)

then the dimension of the space

V = {Q ∈ Se such that Q · Sd−e ∈ TNL(γ)(X)}
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is at least j.

Proof of Proposition 15.

This theorem is essentially a statement about multiplication in a certain poly-
nomial ring. We will rely on the following theorem, due to Macaulay and Gotz-
mann which may be found in [?] (pp. 64-65).

Theorem 28 (Macaulay, Gotzmann) Given an integer, d, any other integer c
may be written in a unique way as

c =

(

kd

d

)

+

(

kd−1

d− 1

)

+ . . .

(

ki

i

)

,

for some integer i. where kd > kd−1 · · · > ki. We define c<d> by

c<d> =

(

kd + 1

d+ 1

)

+

(

kd−1 + 1

d

)

+ . . .

(

ki + 1

i+ 1

)

.

Let V be a subvector space of Sd of codimension c. Then, the codimension of
〈V 〉d+1 in Sd+1 is ≤ c<d> and if equality holds then for all j we have

codim (〈V 〉d+j) = (((c<d>)<d+1>) . . . )<d+j−1>.

Here, 〈V 〉i denotes the degree i part of the ideal generated by V in C[X0, . . . X3].
We now define a set of functions, gi(n). The function gi(n) should be thought of
as the maximal codimension of 〈V 〉d+i in Sd+i if V is a subvector space of Sd of
codimension n containing 〈 ∂F

∂X0
, . . . , ∂F

∂X3
〉. We define

• g0(n) = n,

• gi+1(n) = gi(n)<d+i> − 1.

Lemma 28 If V ⊂ Sd has codimension n and S1 ·

〈

∂F

∂Xi

〉

⊂ V , then for any

integer j the subspace generated by V in Sd+j has codimension ≤ gj(n).

Proof of Lemma 28.

This follows from Macaulay-Gotzmann by induction once we note that the
inclusion

S1 ·

〈

∂F

∂Xi

〉

⊂ V
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implies that V generates S4d−8, and hence it is not possible to have

codim(〈V 〉d+j+1) = (codim(〈V 〉d+j))<d+j>

for all j. This completes the proof of Lemma 28. ¤

We are now in a position to define the integer φe,j(d).

Definition 11 The integer φe,j(d) is the smallest integer n having the property
that

g2d−4−e(n) ≤

(

e+ 3

3

)

− j.

The above work can be combined to prove the main theorem, with this definition
of φe,j .

Completion of the proof of Theorem 25.

It will be enough to show that if

codim (NL(γ)) ≤ φe,j(d)

then dim Ker(·P ) ≥ j. But the ring

SF = RF/Ker(·P )

is a Gorenstein graded ring of rang 2d− 4. It follows by duality that

dim (SF )e = dim (SF )2d−4−e

and hence that

dim(RF/Ker(·P ))e ≤

(

e+ 3

3

)

− j

by the definition of φe,j(d). Hence we have

dim (Ker(·P ))e ≥ j.

Remark 2 When we choose e = 1, j = 2, we recover the result of [?] and [?]—
albeit with the additional hypothesis that NL(γ) should be reduced. Further, for
degrees 6 and 7 and using the hypothesis e ≤ d−4 rather than e ≤ d−1

2
we recover

the work of Voisin in [?].

It remains only to prove that φ d−1
2

(d) is indeed a cubic function of d.
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Proposition 16 There exists α > 0 such that

φ d−1
2

(d) ≥ αd3

for d sufficiently large.

Proof of Proposition 16.

Since
( d−1

2
+3

3

)

is a cubic in d, there exists β < 1 such that for d large

(

d−1
2

+ 3

3

)

− 1 ≥ (βd+ 1)

(

3d−1
2

+ 2

2

)

.

Hence
(

d−1
2

+ 3

3

)

− 1 ≥

dβde
∑

i=0

(

3d−1
2

− i+ 2

2

)

,

and it follows that

g d+1
2

(

dβde
∑

i=0

(

d− i+ 2

2

)

) ≤

(

d−1
2

+ 3

3

)

− 1.

Hence we have

φ d−1
2

,1(d) ≥

dβde
∑

i=0

(

d− i+ 2

2

)

.

But we know that
dβde
∑

i=0

(

d− i+ 2

2

)

>
β(1 − β)

2
d3.

and this completes the proof of Proposition 16. ¤

Theorem 25 follows immediately. ¤
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Chapter 6

The Chow group of K3 surfaces

6.1 Introduction and statement of results
Since Mumford’s 1968 paper [?], the connection between the Chow groupCH0(S)
of 0-cycles on a surface S and sections of the sheaves of 2-forms on S has been
an object of study. In this article, Mumford proved the following result.

Theorem 29 If CH0(S) is representable, then h2,0(S) = 0.

Bloch [?] conjectured that the converse is also true.

Conjecture 2 (Bloch) If S is a smooth projective surface such that

h2,0(S) = 0

then the group CH0(S) is representable.

This conjecture is a special case of the Bloch-Beilinson conjectures, which pre-
dict that the Chow groups of a complex variety possess a filtration which is both
compatible with correspondences and in a certain way intimately linked with the
Hodge structures on H∗(S). Bloch, Kas and Liebermann proved the Bloch con-
jecture for surfaces not of general type in [?]. This conjecture has also been shown
to hold for various surfaces of general type such that h2,0(S) = 0— see, for ex-
ample, [?].

Note that, by a result of Roitman’s, [?], if CH0(S) is representable, then
CH0(S)hom— the subgroup of homologically trivial elements of CH0(S)— is
isomorphic to the Albanese variety.

The aim of this section is to show that there is also a close connection between the
condition h2,0(S) = 1 and the geometry of 0-cycles on S. In particular, we will
show the following result.

83



84 CHAPTER 6. THE CHOW GROUP OF K3 SURFACES

Theorem 30 Let S be a general smooth projective K3 surface. Then for general
x ∈ S, the set

{y ∈ S|y ≡ x}

is dense in S (for the complex topology).

Here ≡ denotes rational equivalence between points. We will also prove a partial
converse to this result.

Theorem 31 Let S be a smooth projective complex surface, such that for a generic
point x of S the set

{y ∈ S|y ≡ x}

is Zariski dense in S. Then h2,0(S) ≤ 1.

6.2 Proof of Theorem ??

The strategy for proving Theorem ?? is quite straightforward. Note that there
exist many families of elliptic curves in a K3 surface. If E is an elliptic curve and
x ∈ E, then the set of points

{y ∈ E|ny ≡ nx for some integer n}

is dense in E. But, by a theorem of Roitman’s[?], the Chow group of a K3 surface
is torsion-free, and hence, for x and y as above we necessarily have that x ≡ y in
S, whence the result will follow.

It has been known for some time that there are rational curves and infinitely many
elliptic curves on a general K3 surface. Mori and Mukai included in [?] a sketch
proof of this result which they attributed to Mumford and Bogolomov indepen-
dently, but for which they did not give a reference. In [?], Chen gave a complete
proof of the existence of nodal rational curves in all linear systems on a general
K3 surfaces.

Theorem 32 (Chen) For any integers n ≥ 3 and d > 0, the linear system |OS(d)|
on a general K3 surface S in P

n contains an irreducible nodal rational curve.

From this we can deduce the following result, as in [?].

Proposition 17 The linear system |OS(d)| contains a 1-dimensional family of
curves of geometric genus ≤ 1 whose general element is irreducible and nodal.
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Proof of Proposition 17.

The proof of this is straightforward. The space of nodal curves of geometric
genus ≤ 1 is of codimension g − 1 in the moduli space Mg of stable curves of
genus g. There is a map from an open subset (corresponding to nodal curves) of
|OS(d)| towards Mg. The image of this space meets the subvariety corresponding
to nodal curves of genus ≤ 1— since we know that it contains a nodal irreducible
rational curve. The space of nodal curves of genus ≤ 1 in |OS(d)| therefore has a
component of dimension ≤ dim |OS(d)| + 1 − g. Moreover, the general element
of this component is irreducible.

It is therefore enough to show that if C is a generic (smooth, genus g) curve
in |OS(d)|, then h0(OS(C)) = g + 1 and hence dim |OS(d)| = g. By the Kodaira
vanishing theorem, we have

h1(OS(C)) = h2(OS(C)) = 0.

It follows that it will be enough to show that χ(OS(C)) = g+ 1. But by Riemann
Roch and the adjunction formula, we have

χ(OS(C)) = χ(OS) +
1

2
C2 = g + 1.

This completes the proof of Proposition 17. ¤

Now, we choose
π1 : F1 → B1

and similarly
π2 : F2 → B2

two distinct irreducible 1-dimensional families in the linear systems |OS(1)| and
|OS(2)| respectively whose general elements are integral nodal curves of geomet-
ric genus ≤ 1.There are surjective maps

φi : Fi → S.

We consider those x ∈ S such that

x is not contained in the image of any non-integral fibre of π2.

This is the only condition needed on x to prove the theorem for x.
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Choose y ∈ F1 such that φ1(y) = x and denote π1(y) by z. Denote the curve
π−1

1 (z) by D. There is a surjective map from a nodal curve of genus ≤ 1 to D

r : D → D.

Every component ofD is of geometric genus ≤ 1. There is some component ofD
which intersects (φ1 ◦ r)

−1(x) and whose image under φ1 ◦ r is not a single point.
Denote the image of this component by E. Then since E has a normalisation of
genus ≤ 1, the set

{z ∈ E such that z − x is torsion in CH0(E)}

is dense in E. But by a result of Roitman’s[?] the torsion part of CH 0(S) is
isomorphic to the torsion part of the Jacobian of S which is 0 for a K3 surface.
Hence, the set

{z ∈ E such that z ≡ x in CH0(S)}

is dense in E.

Now, the idea of the rest of the proof is clear. There is a curve E containing x
of genus at most 1, which is transverse to general elements of a family of nodal
elliptic curves in S (namely F2). Consider the set of those members of this family
which meet E in a point rationally equivalent to x. This is a dense set. If E2

is elliptic or rational and meets E in a point rationally equivalent to x, then the
points of E2 which are rationally equivalent to x are dense in E2.

More precisely, consider the variety V = φ−1
2 (E), which parameterises points

of intersection of the curve E with a curve in the family F2. The projection of V
onto B2 is surjective because the fibres of π2 are very ample divisors. We denote
by SE the set

{y ∈ E such that y ≡ x in CH0(S)}.

The set SE is dense in E for the complex topology. We denote by T the closure of

{y ∈ S such that y ≡ x in CH0(S)}.

We define B̃2 to be the open set in B2 parameterising irreducible members of the
family F2. Consider

Z = π2 ◦ φ
−1
2 (SE)

the set parameterising curves in the family F2 which meet E in at least one point
of S(E). We denote by Z̃ the set Z ∩ B̃2. Once again, if z ∈ Z̃, then the set

{y ∈ F2,z such that y ≡ x in CH0(S)}

is dense in F2,z (the fibre over z in F2). Hence, T contains π−1
2 (Z̃). We now need

the following lemma.
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Lemma 29 The set Z is dense in B2.

Proof of Lemma 29.

It is in the proof of this lemma that we will need the condition that x is not
contained in the image of any non-integral fibre of F2. Note that, since φ2 is sur-
jective, there exists C a component of V which maps surjectively onto E. By the
assumption on x, and since E cannot be an element of the linear system |OS(2)|
for degree reasons, we see that C maps surjectively onto B2 under π2.

Since C is irreducible and φ2|C is surjective, φ2|
−1
C (S(E)) is dense in C. It fol-

lows that since π2|C is surjective and continuous Z is dense in B2. This completes
the proof of Lemma 28. ¤

It immediately follows that T is dense in S. This completes the proof of The-
orem 30. ¤

6.3 Proof of Theorem ??
Now suppose that S satisfies the hypothesis that for general x ∈ S the set

{y ∈ S|x ≡ y ∈ CH0(S)}

is Zariski dense in S. We want to show that h2,0(S) ≤ 1. Mumford proved the
following result in his paper [?].

Theorem 33 (Mumford) There exists a countable union of maps of reduced al-
gebraic schemes

φi : Wi → S × S

such that the following hold.

1. x ≡ y if and only if there exists i such that (x, y) ∈ φi(Wi),

2. Let pr1 and pr2 be the two projections from S × S onto S. Consider the
maps

π1
i and π2

i : Wi → S

given by πj
i = prj ◦ φi. We then have for any 2 form on S, ω,

π1∗
i (ω) = π2∗

i (ω).

We may restrict ourselves to the case where the images of all the maps φi are of
dimension ≤ 2, since we have the following lemma, which is also found (in a
more general form), in [?].
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Lemma 30 If there is an i such that the image of φi is of dimension ≥ 3 h2,0(S) =
0.

Proof of Lemma 30.

Indeed, assume that dim(Im(φi) ≥ 3). Note that if π1
i is not surjective, then

there is some point q ∈ S such that the space

{r ∈ S|r ≡ q ∈ CH0(S)}

is of dimension 2: in other words, CH0(S) = Z. From this it follows by the
theorem of Mumford’s quoted on page 81 that h2,0(S) = 0. It follows that we
may assume that π1

i and π2
i are both surjective.

By a similar argument, we may assume Im(φi) is of dimension exactly 3. Suppose
that ω is a non-zero 2-form on S. We may therefore choose a point p ∈ Wi such
that

1. The image of the push-forward map induced on tangent spaces by φi

φi∗(p) : (TWi
)(p) → TS×S(φ(p))

is of dimension 3.

2. π1
i and π2

i are both submersive at p.

3. π1
i (p) and π2

i (p) are both points at which ω is non-zero.

Now let us consider π1
i
∗(ω)(p) and π2

i
∗(ω)(p). By the assumptions 2 and 3, these

two forms (which according to Mumford’s theorem are equal) are non-zero. We
know that in TWi

(p)

Ker(π1
i ∗(p)) ⊂ Ker(π1

i
∗(ω))(p).

Similarly,
Ker(π2

i ∗(p)) ⊂ Ker(π2
i
∗(ω))(p).

And now since π1
i
∗(ω) = π2

i
∗(ω), it follows that

〈Ker(π1
i ∗(p)) ∪ Ker(π2

i ∗(p))〉 ⊂ Ker(π1
i
∗(ω))(p).

Now, by assumption 1

codim(Ker(π1
i ∗(p)) ∩ Ker(π2

i ∗(p))) = 3.
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Further, codim(Ker(π1
i ∗(p))) = 2. Hence,

codim(Ker(π1
i
∗(ω)(p))) ≤ 1.

But now, since π1
i
∗(ω)(p) is an alternating 2-form on TWi

(p) it follows that

π1
i
∗(ω)(p) = 0.

This is contrary to assumptions 2 and 3 which imply that π1
i
∗(ω)(p) 6= 0. This

completes the proof of Lemma 30. ¤

We now choose y such that

1. y 6∈ πj
i (Wi) for any i such that dim(Wi) ≤ 1,

2. There do not exist x, i, j such that (x, y) is in the image of Wi and πj
i is not

submersive at any point of φ−1
i (x, y).

3. The set {x ∈ S|y ≡ x} is Zariski dense in S.

Since the varieties described in 1) and 2) are of dimension ≤ 1, and by assump-
tion 3) holds for general y, there exists such a y. The theorem follows from the
following proposition.

Proposition 18 There is no non-zero 2-form ω on S vanishing at y.

Proof of Proposition 18.

Let ω be such a 2-form, and consider x ∈ S such that y ≡ x. By the assump-
tions on y we then have the following lemma.

Lemma 31 The holomorphic 2-form ω vanishes at x.

Proof of Lemma 31.

There is some Wi such that (x, y) ∈ φi(Wi). By assumption 2) on y, there
exists p ∈ Wi such that φi(p) = (x, y) and π1

i , π2
i are both submersive at p.

We know that
π2

i
∗(ω)(p) = 0

since ω(y) = 0. It follows that π1
i
∗(ω)(p) = 0. But by assumptions 2 and 1, this

implies that ω(x) = 0. This completes the proof of Lemma 31. ¤.

Therefore, since the set of such points is Zariski dense, ω is identically 0. This
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completes the proof of Proposition 18. ¤

It follows immediately that
h2,0(S) ≤ 1.

This completes the proof of Theorem 31. ¤



Chapter 7

Deformations of stable maps of
curves

The aim of this chapter will be to prove a geometric property implied by the
existence of smoothing morphisms for stable maps of curves. These will give
a geometric motivation for the work of [?] and [?] on relative Gromov-Witten
invariants.

7.1 Introduction to Gromov-Witten invariants

The Gromov-Witten invariant of a projective variety is an invariant which, given
certain incidence conditions, returns a number which represents the number of
curves in the variety satisfying these conditions which “ ought to ” exist. It bears
the same relation to the actual number of such curves as the Fulton intersection
bears to the set-theoretic intersection of subschemes of a given variety. In other
words, in defining the Gromov-Witten invariant, we may have to ignore certain
curves. This counter-balances the fact that obstructions to deformations of curves,
which are predicted by deformation theory, turn out to be trivial. Hence, the
Gromov-Witten invariant is not generally equal to the actual number of curves
that it is supposed to count. The advantage is that the invariant thus defined has
good deformation properties— which the number of curves on a variety lacks.

In algebraic geometry, the Gromov-Witten invariant is constructed as an integral
over a certain moduli space— namely, the space of pointed stable maps. We define
first a stable map and then their moduli space.

Definition 12 A stable n-pointed map of genus g towards X consists of the fol-
lowing data.

91
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1. A projective, connected reduced curve C of genus g with at worst ordinary
double points.

2. Distinct smooth points, p1, . . . , pn, of C.

3. A morphism µ : C → X such that if C ′ is a component of C of genus g
which is contracted by µ then

(a) if g= 0, then the number of special points (singular points or marked
points) on C ′ is ≥ 3,

(b) if g= 1, then the number of special points (singular points or marked
points) on C ′ is ≥ 1.

Let β be an element of H2(X,Z). We can then define as follows the associated
moduli space of stable maps.

Definition-Theorem 1 For any projective algebraic X and any β ∈ H2(X),
there exists a projective coarse moduli space M g,n(X, β) classifying stable n-
pointed maps, µ of genus g towards X such that µ∗([C]) = β.

Further, there are n evaluation maps

σi : M g,n(X, β) → X,

which send {µ : C → X; (p1, . . . , pn)} to µ(pi).

The idea of Gromov-Witten invariant is now the following: we will pull back
cohomology classes on X by σi and then integrate their product over the space
M g,n(X, β). If αi is Poincaré dual to the homology class of a subvariety ci then
σ∗

i (αi) should be Poincaré dual to the subvariety of n-pointed stable maps such
that µ(pi) lies on ci.

Hence if σ∗
1(α1) ^ · · · ^ σ∗

n(αn) is of the appropriate dimension then its in-
tegral over M g,n(X, β) should be the expected number of curves of genus g and
cohomology class β in X which meet all the subvarieties ci.

Unfortunately, this definition does not work except for certain types of X , and
in genus 0 (see [?]).

Definition-Theorem 2 If αi are pure-dimensional elements of H∗(X, β) and X
is a homogeneous variety G/P , then when σ∗

1(α1) ^ · · · ^ σ∗
n(αn) is of the

appropriate dimension we define

Iβ(α1, . . . , αn) =

∫

M0,n(X,β)

σ∗
1(α1) ^ · · ·^ σ∗

n(αn).
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If gi ∈ G are general elements of G and ci are subvarieties of X such that [ci]
∗ =

αi, then the scheme-theoretic intersection

∩σ−1
i (gi(ci))

is a finite number of reduced points on M 0,n(X, β). Further, we have that

#(∩σ−1
i (gi(ci))) = Iβ(α1, . . . , αn).

We impose g = 0 andX homogeneous to ensure that obstructions to deformations
of stable maps should vanish. This is important firstly to be sure that the space
Mg,n(X, β) has nice properties, and secondly to be sure that Iβ(α1, . . . , αn) be-
haves well under deformations. For example, if the obstruction space is not zero,
the moduli space may suddenly jump dimension in a family of varieties— which
naturally makes it impossible to expect that the Gromov-Witten invariants should
be deformation-invariant.

These problems were later overcome in the algebraic setting by [?] and [?], who
independently constructed the fundamental cycle classes inside A∗(M g,n(X, β)).
These are an analogue of Fulton’s intersections, in a more general context. Given
a moduli space, equipped with a perfect tangent-obstruction complex, they con-
struct a cone in an associated vector bundle over the moduli space. They then
intersect this cone with the zero section of the vector bundle to construct the
fundamental cycle class, M

vir

g,n(X, β). More precisely, Li and Tian showed the
following.

Definition-Theorem 3 For any smooth projective variety, X , and any choice of
integers g and n and class β ∈ A2(X), there is a virtual fundamental class
M

vir

g,n(X, β) in A∗(M g,n(X, β)) such that the associated Gromov-Witten invari-
ants:

Iβ(α1, . . . , αn) =

∫

M
vir
g,n(X,β)

σ∗
1(α1) ^ · · ·^ σ∗

n(αn)

are deformation-invariant.

Gromov-Witten invariants have also been defined for symplectic manifolds using
analytic techniques (see [?], for example). Although the definitions given in the
two cases are different, it has been shown in [?] and [?] that for complex projec-
tive manifolds the symplectic and algebraic Gromov-Witten invariants co-incide.

In [?], Li and Ruan related the Gromov-Witten invariants of a symplectic vari-
ety X to the relative Gromov-Witten invariants of X±, the symplectic cuttings of
X . We define what we mean by a symplectic cutting. Suppose that X is a sym-
plectic variety, and X0 is an open domain in X with a Hamiltonian function H
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such that the associated vector field χH generates a circle action. Assume that
X −H−1(0) has two components. Then X

±
, the component of X −H−1(0) con-

taining H−1(R±), is a symplectic manifold with contact boundary. The boundary,
Z = H−1(0), can be quotiented by the circle action, and the resulting manifold is
a symplectic manifold,X±, containing a distinguished symplectic subvariety, Z±.

Li and Ruan then obtained a complicated recurrence relation which gives the
Gromov-Witten invariants of X in terms of the log Gromov-Witten invariants of
X± relative to Z±. These are known in the algebro-geometric context as relative
Gromov- Witten invariants. These log invariants count stable maps of pseudo-
holomorphic curves, F : C → X± with prescribed tangency to Z± at marked
points.

We will now consider comutative diagrams of the following type:

X1 ∪Z1=Z2 X2
//

²²

X

²²

0 // ∆

where X1 ∪Z1=Z2 X2, which we will also denote by X0, is the union of 2 smooth
varieties glued along isomorphic smooth codimension 1 subvarieties, ∆ is an open
complex disc and X → ∆ has generically smooth fibres. Then the pairs (Xi, Zi)
play the role in algebraic geometry of (X±, Z±) in symplectic geometry, and Xt

(for t 6= 0) is the algebro-geometric analogue of the symplectic variety X . In
this case, Li recently defined in [?] both the stack of relative stable maps of a
pair (Z,D), and the stack of stable maps to an expanded degeneration of a fam-
ily of varieties degenrating to a normal crossing variety. He then builds a perfect
tangent-obstruction complex on these stacks, allowing him to define a virtual mod-
uli class. In the subsequent paper [?] he uses these virtual moduli classes to define
relative Gromov-Witten invariant of (Z,D), and re-prove the recursion relation of
Li and Ruan.

The result of Li and Ruan has the following intuitive (and incorrect) interpreta-
tion:

Given such a commutative diagram, a stable map f : C0 → X0 can be smoothed
to a flat family of maps,

C //

²²

X

²²

∆ // ∆
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if and only if any p ∈ C0 which maps to the singular locus of X0 is contained in
two components C1 and C2 of C, such that the image of Ci under f is contained
in Xi and the order of tangency of Ci to Zi at p is independent of i.

This interpretation fails when components of C are sent onto the central divi-
sor X1 ∩X2: as a result, the space of maps that have the property above will not
generally be proper, which prevents us from intersecting cycle classes on it. In
the case of genus-0 Gromov-Witten invariants, Gathmann proposed the following
definition in [?].

Definition 13 Let X be an algebraic variety, D a codimension-1 subvariety,
a = (a1, . . . , ar) an r-tuple of non-negative integers, β ∈ H2(X), and n a non-
negative number. Then the moduli space of a-relative stable genus zero n-pointed
maps F : C → X with homology class β is the closed subspace of the usual
Kontsevich space, M0,n+r(X, β), of maps F : C 7→ X such that the Fulton inter-
section,

D ·F C ∈ A0(F
−1(D))

is
∑r

i=1 αixi.

Here, D ·F C denotes the intersection (with respect to F ) constructed by Fulton in
[?] (see the summary on p.92).

In this chapter we will give a geometric motivation for this definition. Let

F : C → X
↓ ↓

f : ∆ → ∆

be a commutative diagram of proper holomorphic maps. Assume that X is a
smooth variety, and X0, the central fibre, is a normal crossing variety,

X0 = X1 ∪Z1=Z2 X2,

where X1 and X2 are smooth varieties glued together along isomorphic smooth
codimension 1 subvarieties, Z1 and Z2. The space C is a flat family of stable
curves and F is a family of stable maps. Suppose that the central curve C0 is
C1 ∪x1

j=x2
j
C2, where Ci, a not necessarily connected prestable curve (i.e., a union

of disjoint nodal curves) maps into Xi under F and {xi
j} is an r-tuple of points

of Ci. We denote the restriction of F to Ci by Fi. Then we have the following
theorem.



96 CHAPTER 7. DEFORMATIONS OF STABLE MAPS OF CURVES

Theorem 34 There exist integers mj , such that, for i = 1, 2, we have
∑

j

mjx
i
j = Zi ·Fi

Ci

in the group
A0(F

−1
i (Zi)).

Here once more the symbol Zi ·Fi
Ci denotes the intersection class constructed by

Fulton in chapter 6 of [?] (see in particular page 92 and §6.1)

7.2 Proof of Theorem ??
We prove the theorem first for smooth C. We denote by πC and πX the maps from
C, X to ∆. As divisors, we have

F ∗(π∗
X(0)) = π∗

C(f−1(0)) and X1 +X2 = π∗
X(0)

whence it follows that
F ∗(X1 +X2) = nC0.

Here, n is the order of the vanishing of the map f at 0.

The Weil divisors X1 and X2 are also Cartier divisors. Since no component of
C is sent to X0 by F , we can pull these back to divisors F ∗(X1) and F ∗(X2) on
C.We know that

F ∗(X1) + F ∗(X2) = nC0.

We will write Li for OX(−Xi). Notice that

L1|X1 = OX1(Z1),

and similarly
L1|X2 = OX2(−Z2).

We also have that L1 ⊗ L2 = OX .

Further, we have
F ∗(L1)|C1 = F ∗

1 (OX1(Z1)),

F ∗(L2)|C2 = F ∗
2 (OX2(Z2)).

In a similar way, we see that

F ∗(L1)|C2 = F ∗
2 (OX2(−Z2)),

F ∗(L2)|C1 = F ∗
1 (OX1(−Z1)).

We will need the following lemma.
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Lemma 32 Consider the set of all ordered triples, T = (C ′, C, p) where

1. C ′ and C distinct are components of C0,

2. p ∈ C ′ ∩ C.

To each element T of the set we can assign an integer, mT , such that

1. m(C′,C′′,p) = −m(C′′,C′,p) for all elements of T ,

2. mT = 0 if F (p) 6∈ X1 ∩X2,

3. For all components C ′, in Pic(C ′) we have

F ∗(L1) = OC′(
∑

T=(C′,C,p)

mTp) (7.1)

where the sum is taken over all triples (C ′, C, p), where C is a components
of C0 such that C 6= C ′ and p ∈ C ′ ∩ C. Equivalently, we could write

F ∗(L2) = OC′(
∑

T=(C′,C,p)

−mTp).

Proof of Lemma 32.

There exists an n such that F ∗(X1 +X2) = nC0. For each component of C1,
C ′, we define an integer kC′ by

F ∗(X1) = kC′C ′ + other components of C0.

I claim that
m(C ′, C ′′, p) = kC′ − kC′′

satisfies the conditions of the theorem. Note that

F ∗(L1) = F ∗(L1) ⊗ OC(kC′C0).

The right hand side is the line bundle of the divisor F ∗(−X1) + kC′C0, in which
the coefficient of C ′ is 0.

Let p be a smooth point of C0, u a local equation for X1 in X at F (p) and x
a local equation at p for C ′ in C. Near p, u ◦ F = xkC′v, where v is invertible and
holomorphic.
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F ∗(−X1) + kC′C0 is represented near p by v. Now, let p be a singular point
of C0, at which the components C ′ and C ′′ meet. Let y be a local equation for C ′′

in C at p. Near p, we have

u ◦ F = xkC′ykC′′w,

where w is invertible and holomorphic. It follows that F ∗(−X1) + kC′C0 is rep-
resented near p by ykC′′−kC′w.

Restricting these functions to C ′ (which we can do, since C ′ is not a compo-
nent of F ∗(−X1) + kC′C0) we obtain a Cartier divisor on C ′ whose associated
line bundle is L1|C

′. This Cartier divisor is represented at a smooth point of C0

by an invertible holomorphic function. At an intersection point p of C ′ and C ′′ it
is represented by ykC′′−kC′ where y is a local equation for p on C ′. This completes
the proof of Lemma 32. ¤

Suppose that x1
i and x2

i are contained in, respectively, Ci1 ⊂ C1 and Ci2 ⊂ C2,
components of C0.

Lemma 33 For smooth C, the numbersmi = m(Ci1 , Ci2 , xi) defined in the state-
ment of Lemma 32 satisfy the conditions of the theorem.

Proof of Lemma 33.

Let q be an isolated point of F−1
1 (Z1). We need to show that q = xi for some

i ≤ r and that the intersection multiplicity of Ci1 and Z1 at xi is m(Ci1 , Ci2 , xi).

Let u1, u2 be local equations for X1, X2, respectively. The divisor cut out by
F ∗(u2), which we denote by

∑

mCj
Cj , is non-trivial and contains q in its sup-

port. Further, mCi1
= 0.

Thus, there is another component of C0 containing q along which F ∗(u2) van-
ishes. This component is sent into X2, and since q was a 0-dimensional connected
component of F−1

1 (Z1) it is part of C2. So q is one of the marked points xi.

Let Ci1 ⊂ C1 and Ci2 ⊂ C2 be the components of C containing q. Let yj be
a local equation at q for Cij . Note that at q we have uj ◦ F = yn

j vj , where vj is
holomorphic. From the definition of m(T ) it is clear that

m(C1
i , C

2
i , xi) = n.

Further, the intersection multiplicity of Z1 and C1 at q is simply the order of van-
ishing of u2 ◦ F1 at q, since u2|X1 is a local equation for Z1. This is also equal to
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n and the lemma follows for a point component.

Now suppose that A is a 1-dimensional topological component of F −1
1 (Z1), with

components A1, . . . , As. Let S1 . . . Sj be the components of C1 meeting A which
are not contained in A. We note that F1(Sj) 6⊂ Z1. We define pi to be the point
where Si meets A. From the canonical decomposition described on page 95 of
[?], the component of Z1 ·F1 C1 supported on A0(A), which we denote by Z, is
given by

Z = −c1(F
∗
1 (L1)|A) +

∑

Si

m(Si)pi (7.2)

where m(Si) is the intersection multiplicity of Si and Z1 at pi. Now, by (1)

c1(F
∗
1 (L1)|A) =

∑

T

m(C ′, C ′′, p)p

where T is the set of triples, (C ′, C ′′, p) such that C ′ and C ′′ are components of
C0 which meet at p and C ′ is contained in A.

Using Lemma 32 and the fact that

m(Si) = m(Si, Aj, pi) = −m(Aj, Si, pi),

we see that in the expression (7.2), any singular point of C0 which joins two com-
ponents of C1, one of which is in A, is counted twice with cancelling coefficients,
and so only the C ′′ ⊂ C2 will contribute. The expression (??) reduces to

Z =
∑

i|x1
i∈A

mix
1
i .

Of course, the same argument applies to a component of F−1
2 (Z2). We have shown

that
Zi ·Fi

Ci =
∑

mjx
i
j

in A0(F
−1
1 (Z1)). This completes the proof of Lemma 33. ¤

We now consider a non-smooth family C. The family C is stable and therefore
has reduced fibres. After base change and restriction to components of C we may
assume that C is smooth, apart from a finite number of Ak singularities in the
central fibre. After blow-up of these singularities, we obtain a smooth curve, C,
fibred over ∆, and a map:

F : C → X
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factoring through the blow-down, τ : C → C. This blow-down is a contraction of
some number of chains of rational components of C0. We denote τ−1(C1) by C1

and the closure in C0 of C −C1 by C2. We denote by τi the restriction of τ to C i.

Since τ−1
2 (x2

i ) is a single point, we may denote by x2
i the point τ−1

2 (x2
i ), and

by x1
i the point in C1 whose image in C0 is x2

i . We need the following lemma:

Lemma 34 Let
τ ′i ∗ : A0(Fi

−1
(Zi)) → A0(F

−1
i (Zi))

be the push-forward morphism. Then we have

τ ′i ∗(Zi ·F i
Ci) = Zi ·Fi

Ci.

Proof of Lemma 34.

It will be enough to show that, given

1. c : B → A, a map between two nodal curves which is an isomorphism
except that there is a unique rational components C which is contracted by
c,

2. X a smooth variety containing a smooth divisor, D,

3. F is a map from A to X ,

then the image of D ·F◦c B under

c∗ : A0((F ◦ c)−1(D)) → A0(F
−1(D))

is A ·F D.

If f(C) 6∈ D there is nothing to prove. If Bi are the components of B, and ci
is c restricted to Bi, then

c∗(D ·F◦c B) = c∗(
∑

i

D ·F◦ci
Bi).

Further, D ·F◦c C vanishes, since C is sent under F ◦ c to a point in D. This
completes the proof of Lemma 34. ¤.

Since C is globally smooth, there exist mi such that

Z1 ·F 1
C1 =

∑

i

mix
1
i
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and
Z2 ·F 2

C2 =
∑

i

mix
2
i .

Further, τi∗(Zi ·F i
C i) = Zi ·Fi

Ci. Since the image under τ∗ of xj
i is xj

i , this
completes the proof of Theorem 34. ¤
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