
Chow groups of surfaces with h2,0
= 1.

Abstract 1 We will investigate the geometry of rational equivalence classes of
points on a surface S. We will show that if S is a general projective K3 surface
then these equivalence classes are dense in the complex topology. We will also
show that if S has the property that these equivalence classes are Zariski dense,
then h2,0(S) ≤ 1.

1 Introduction and statement of results

The connection between the Chow group CH0(S) of 0-cycles on a surface S and
h2,0(S) has been an object of interest since Mumford’s 1968 paper[5], in which
he proved the following result.

Theorem 1.1 (Mumford) If CH0(S) is representable, then h2,0(S) = 0.

Bloch [1] conjectured that the converse is also true.

Conjecture 1 (Bloch) If S is a smooth projective surface and h2,0(S) = 0
then CH0(S) is representable.

Bloch, Kas and Liebermann proved the Bloch conjecture for surfaces not of gen-
eral type in [2]. This conjecture has also been shown to hold for various surfaces
of general type such that h2,0(S) = 0— see, for example, [7].

Our aim is to show there is also a close connection between the condition
h2,0(S) = 1 and the geometry of 0-cycles on S. In particular, we will show
the following result.

Theorem 1.2 Let S be a general smooth projective K3 surface. Then for gen-
eral x ∈ S, the set

{y ∈ S|y ≡ x}

is dense in S (for the complex topology).

Here ≡ denotes rational equivalence between points. We will also prove a partial
converse to this result.

Theorem 1.3 Let S be a smooth complex surface, such that for a generic point
x of S the set

{y ∈ S|y ≡ x}

is Zariski dense in S. Then h2,0(S) ≤ 1.

2 Proof of Theorem 1.2

The proof of this theorem relies on three fundamental facts:

1. If E is an elliptic curve and x ∈ E, then the set {y ∈ E|ny ≡ nx for some integer n}
is dense in E,

2. There are many families of elliptic curves on a K3 surface,
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3. By a theorem of Roitman’s, [6], the Chow group of a K3 surface is torsion-
free.

What we actually need to prove the theorem is two one-dimensional families of
elliptic curves which intersect transversally. It is well-known that such things ex-
ist, but finding a precise reference is harder. Chen proved the following theorem
in [3].

Theorem 2.1 (Chen) For any integers n ≥ 3 and d > 0, the linear system
|OS(d)| on a general K3 surface S in P

n contains an irreducible nodal rational
curve.

From this we can deduce— as Griffiths and Green did in [4]— the following
result.

Proposition 2.1 The linear system |OS(d)| contains a 1-dimensional family of
curves of geometric genus ≤ 1 whose general element is irreducible and nodal.

The space of nodal curves of geometric genus ≤ 1 is of codimension g − 1 in
the moduli space Mg of stable curves of genus g. There is a map from an open
subset (corresponding to nodal curves) of |OS(d)| towards Mg. The image of
this space meets the subvariety corresponding to nodal curves of genus ≤ 1,
since it contains a nodal irreducible rational curve.

The space of nodal curves of genus ≤ 1 in |OS(d)| therefore has a component
of dimension ≤ dim |OS(d)| + 1 − g, whose general element is irreducible. It is
enough to show that if C is a generic (smooth, genus g) curve in |OS(d)|, then
h0(OS(C)) = g + 1 and hence dim |OS(d)| = g.
By the Kodaira vanishing theorem, we have

h1(OS(C)) = h2(OS(C)) = 0.

It will hence be enough to show that χ(OS(C)) = g +1. By Riemann Roch and
the adjunction formula,

χ(OS(C)) = χ(OS) +
1

2
C2 = g + 1.

The proposition follows. We now choose two distinct irreducible 1-dimensional
families,

π1 : F1 → B1, π2 : F2 → B2

which are in the linear systems |OS(1)| and |OS(2)| respectively and whose
general elements are integral nodal curves of geometric genus ≤ 1.There are
surjective maps φi : Fi → S.

We consider those x ∈ S such that x is not contained in the image under
φ2 of any non-integral fibre of π2. This is the only condition needed to prove
the theorem for x.

Choose y ∈ F1 such that φ1(y) = x and denote π1(y) by z. Denote the curve
π−1

1
(z) by D. There is a surjective map from a nodal curve of genus ≤ 1 to D,

r : D → D.
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Every component of D is of geometric genus ≤ 1. There is a component of
D which intersects (φ1 ◦ r)−1(x) and whose image under φ1 ◦ r is not a single
point. Denote the image of this component by E. Since E has a normalisation
of genus ≤ 1, the set

{z ∈ E such that z − x is torsion in CH0(E)}

is dense in E. By a result of Roitman’s, [6], the torsion part of CH0(S) is 0.
Hence, the set

{z ∈ E such that z ≡ x in CH0(S)}

is dense in E.

Our strategy is as follows. The curve E is transverse to general elements of the
family F2. Consider the curves in the family F2 which are elliptic or rational and
meet E in a point rationally equivalent to x. The set of such curves is dense in
F2. If E2 is such a curve then the set {points of E2 rationally equivalent to x}
is dense in E2.

More precisely, consider the variety V = φ−1

2
(E) which parameterises points

of intersection of E with a curve in the family F2. The projection of V onto B2

is surjective. Let SE be the set

{y ∈ E such that y ≡ x in CH0(S)}.

The set SE is dense in E for the complex topology. We denote by T the closure
of

{y ∈ S such that y ≡ x in CH0(S)}.

We define B̃2 to be the open set in B2 parameterising irreducible members of
the family F2. Consider

Z = π2 ◦ φ−1

2
(SE),

the set parameterising curves in the family F2 which meet E in at least one
point of S(E). We denote by Z̃ the set Z ∩ B̃2. Once again, if z ∈ Z̃, then the
set

{y ∈ F2,z such that y ≡ x in CH0(S)}

is dense in F2,z, the fibre over z in F2. Hence, T contains π−1

2
(Z̃). We now need

the following lemma.

Lemma 1 The set Z is dense in B2.

There is a component C of V mapping surjectively to E. Since x is not contained
in any non-integral fibre of π2, and E is not an element of |OS(2)| for degree
reasons, π2 : C → B2 is surjective. Since C is irreducible and φ2|C is surjective
onto E φ2|

−1

C (S(E)) is dense in C. It follows that, since π2|C is surjective and
continuous, Z is dense in B2.

It immediately follows that T is dense in S. This completes the proof of Theorem
30. ¤
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3 Proof of Theorem 1.3

Now suppose that S satisfies the hypothesis that for general x ∈ S the set

{y ∈ S|x ≡ y ∈ CH0(S)}

is Zariski dense in S. We want to show that h2,0(S) ≤ 1. Mumford proved the
following result in [5].

Theorem 3.1 (Mumford) There exists a countable union of maps of reduced
algebraic schemes

φi : Wi → S × S

such that the following hold.

1. x ≡ y if and only if there exists i such that (x, y) ∈ φi(Wi),

2. Let pr1 and pr2 be the two projections from S × S onto S. Consider the
maps

π1

i and π2

i : Wi → S

given by π
j
i = prj ◦ φi. We then have for any 2 form on S, ω,

π1∗

i (ω) = π2∗

i (ω).

We may restrict ourselves to the case where the images of all the maps φi are
of dimension ≤ 2, since Mumford proved in [5] that

Proposition 3.1 (Mumford) If there is an i such that the image of φi is of
dimension ≥ 3 then h2,0(S) = 0.

We now choose y such that

1. y 6∈ π
j
i (Wi) for any i such that dim(Im φi) ≤ 1,

2. There do not exist x, i, j such that (x, y) ∈ Im(φi) and π
j
i is not submersive

at any point of φ−1

i (x, y),

3. The set {x ∈ S|y ≡ x} is Zariski dense in S.

Since the varieties described in 1 and 2 are of dimension ≤ 1 and, by assumption,
3 holds for general y, there exists such a y. The theorem follows from the
following proposition.

Proposition 3.2 There is no non-zero 2-form ω on S vanishing at y.

Let ω be such a 2-form, and consider x ∈ S such that y ≡ x. By the assumptions
on y it follows that ω vanishes at x. Indeed, there is some Wi such that (x, y) ∈
φi(Wi). By assumption 2, there exists p ∈ Wi such that φi(p) = (x, y) and π1

i ,
π2

i are both submersive at p. We know that

π2

i
∗(ω)(p) = 0

since ω(y) = 0. It follows that π1

i
∗(ω)(p) = 0. But by assumptions 1 and 2, this

implies that ω(x) = 0. Therefore, since the set of such points is Zariski dense,
ω is identically 0. It follows immediately that

h2,0(S) ≤ 1.

This completes the proof of the theorem. I would like to express my gratitude
to my thesis supervisor, Claire Voisin, for proposing this problem and for all her
help.

4



References

[1] S. Bloch, K2 of Artinian Q-algebras, with application to algebraic cycles,
Comm. Algebra 3 (1975), 405–428.

[2] S. Bloch, A. Kas, D. Lieberman, Zero cycles on surfaces with pg = 0,
Compositio Mathematica 33 (1976), no.2, 135–145.

[3] X. Chen, Rational curves on K3 surfaces, J. Algebraic Geometry 8 (1999),
no.2, 245–278.

[4] P. Griffiths, M. Green, Two applications of algebraic geometry to entire
holomorphic mappings, The Chern Symposium 1979 (Proc. Internat. Sym-
pos., Berkeley, Calif.,

[5] D. Mumford, Rational equivalence of 0-cycles on surfaces, J. Math. Kyoto
Univ. 9 (1968), 195–204.

[6] A. Roitman, The torsion of the group of 0-cycles modulo rational equiva-
lence, Ann. of Math. (2) 111 (1980), no. 3, 553–569.
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