The spectrum of the Neumann-Poincaré operator of a bowtie

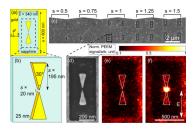
Eric Bonnetier, Charles Dapogny, Faouzi Triki (Grenoble) and Hai Zhang (HKUST Hong Kong)

Outline:

- 1. Introduction/motivation
- 2. The Neumann-Poincaré operator
- 3. Elliptic corner singularity functions in metamaterials
- 4. The resonant spectrum of the bowtie
- 5. The spectrum of the bowtie with close-to-touching wings
- 6. Conclusion

1. Introduction:

Bowtie nano-antennas are extensively studied in the physics literature, as they can produce a remarkably large enhancement of the electrical field near their corners, and particularly in their central neck



(E. Lorek et al, Optics Express Vol. 23, Issue 24, pp. 31460-31471 (2015))

Such plasmon resonances may occur in metallic particles if

• the electric permittivity $\varepsilon(\omega)$ inside the particle depends on the frequency of the excitation, and should have a negative real part and a small imaginary part

This is the case for metals such as Au, Ag, Al, for frequencies in the visible light range

In the wavelength of the incident excitation $\lambda=2\pi/\omega$ is much larger than the particle diameter δ

$$\delta/\lambda = \delta\omega/2\pi \prec \prec 1$$

In real life δ is between 10 and 100 nm and $\lambda \sim 650$ nm

The desired resonant frequencies as well as the local fields enhancement may be achieved by tuning the geometry of the nanostructure

[Mayergoyz-Fredkin-Z Zhang Phys. Rev. B 2005, Grieser Rev. Math. Phys. 14, Ammari-Ruiz-Yu-Zhang, Ammari-Millien]

We consider the simplest setting: 2D quasistatic resonances in the TE polarization, which correspond to finding non-trivial solutions to

$$\begin{cases} \operatorname{div}(\frac{1}{\varepsilon(\omega, x)} \nabla u(x)) = 0 & \text{in } \Omega \\ + \text{homogeneous BC's on } \partial \Omega \end{cases}$$
 (1)

- Ω is a smooth bounded domain in ${f R}^2$, that contains a metallic inclusion D homogeneous Dirichlet BC's are applied on $\partial\Omega$

One can also consider $\Omega={\bf R}^2$ with the radiation condition $u\to 0$ as $|x|\to \infty$

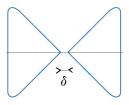
- The frequency ω is fixed and the conductivity $a(x)=\frac{1}{\varepsilon(\omega,x)}$ is defined by

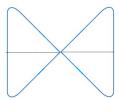
$$a(x) = \begin{cases} k, & \text{if } x \in D \\ 1 & \text{otherwise} \end{cases}$$

Resonances = values of k for which there exist non trivial solutions to (1)

Objectives

- Understand how the fields concentrate and get enhanced according to the shape of the particles
- In the case of the bowtie, understand the qualitative difference between the perfect and the approximate bowtie





2. Integral representation

2.1. The Neumann-Poincaré operator

We consider the Green function of Ω

$$\left\{ \begin{array}{rcl} -\Delta G(x,y) & = & \delta_y(x), & & \text{in } \Omega \\ \\ G(x,y) & = & 0 & & \text{on } \partial \Omega \end{array} \right.$$

and seek a solution to $\operatorname{div}(a\nabla u)=0$ in the form

$$u(x) = S_D \varphi(x) = \int_{\partial D} G(x, y) \varphi(y) \, ds(y) \quad x \in D \cup (\Omega \setminus \overline{D})$$

Its normal derivatives satisfy the Plemelj jump conditions : for $x \in \partial D$

$$\frac{\partial S_D \varphi}{\partial \nu}|^{\pm}(x) \quad = \quad \lim_{t \to 0^+} \nabla S_D \varphi(x \pm t \nu(x)) \cdot \nu(x) \ = \ (\pm \frac{1}{2} I + \mathcal{K}_D^*) \varphi(x)$$

NPO:
$$\mathcal{K}_D^* \varphi(x) = \int_{\partial D} \frac{\partial G}{\partial \nu_x}(x, y) \varphi(y) \, ds(y)$$

so that $u=S_D \varphi$ is a resonance iff $(\lambda I-K_D^*)\varphi=0$ $\lambda=rac{k+1}{2(k-1)}$

Prop: [Khavinson-Putinar-Shapiro, 2007]

- \mathcal{K}_D^* extends as an operator $H_0^{-1/2}(\partial D) \to H_0^{1/2}(\partial D)$
- As a consequence of the Calderón identity

$$\mathcal{K}_D S = S \mathcal{K}_D^*$$

 \mathcal{K}_D^* is self adjoint for the scalar product

$$<\varphi,\psi>_{S} = -<\varphi,S_{D}\psi>_{H^{-1/2},H^{1/2}}$$

- the spectrum of \mathcal{K}_D^* is real and contained in (-1/2,1/2]
- If D is smooth, \mathcal{K}_D^* is compact, so its spectrum consists in a set of eigenvalues that accumulate to 0

2.2. The Poincaré variational operator

We define $T_D : H^1_0(\Omega) \to H^1_0(\Omega)$ by

$$\forall v \in H_0^1(\Omega), \quad \int_{\Omega} \nabla T_D u \cdot \nabla v \quad = \quad \int_{D} \nabla u \cdot \nabla v$$

Prop:

- The operator T_D is non-negative, self adjoint, $||T_D|| \leq 1$,
- $Ker(T_D) = \{u \in H_0^1(\Omega), u_{|D} = const\}$
- $Ker(I T_D) = \{u \in H_0^1(\Omega), \ u_{|\Omega \setminus \overline{D}} = 0\}$
- $H_0^1(\Omega) = Ker(T_D) \oplus Ker(I T_D) \oplus \mathcal{H}$

where ${\cal H}$ is the space of single layer potentials

$$\mathcal{H} = \{ u \in H_0^1(\Omega), \ \Delta u = 0 \text{ in } D \cup (\Omega \setminus \overline{D}), \int_{\partial D} \partial_{\nu} u = 0 \}$$

As a consequence, the eigenvalues of the restriction of T_D to ${\cal H}$ are given by the min-max principle

$$\beta_{n}^{-} = \max_{\substack{F_{n} \subset \mathcal{H} \\ \dim(F_{n}) = n}} \min_{\substack{u \in F_{n} \setminus \{0\}}} \frac{\int_{D} |\nabla u|^{2}}{\int_{\mathbf{R}^{2}} |\nabla u|^{2}}$$

$$\beta_{n}^{+} = \min_{\substack{F_{n} \subset \mathcal{H} \\ \dim(F_{n}) = n}} \max_{\substack{u \in F_{n} \setminus \{0\}}} \frac{\int_{D} |\nabla u|^{2}}{\int_{\mathbf{R}^{2}} |\nabla u|^{2}}$$

so that, the eigenvalues of T satisfy

$$0 \le \beta_1^+ \le \beta_2^+ \le \dots \le 1/2 \le \dots \le \beta_2^- \le \beta_1^{-1} \le 1$$

2.3. Relationship between resonances, the NPO, and the Poincaré variational operator

If β is an eigenvalue of T_D with eigenvector u

$$\int_{\Omega} \beta \nabla u \cdot \nabla v = \int_{\Omega} \nabla T_D u \cdot \nabla v = \int_{D} \nabla u \cdot \nabla v$$
 i.e.
$$\int_{\Omega \setminus D} \beta \nabla u \cdot \nabla v + \int_{D} (\beta - 1) \nabla u \cdot \nabla v = 0$$

Thus, u is a non-trivial solution to

$$\left\{ \begin{array}{ccc} \operatorname{div}(a(x)\nabla u(x)) = 0 & \text{in } \Omega \\ u(x) = 0 & \text{on } \partial\Omega \end{array} \right. \quad \text{with } a(x) = \left\{ \begin{array}{ccc} 1 & x \in \Omega \setminus \overline{D} \\ k = 1 - 1/\beta & x \in D \end{array} \right.$$

so that the associated layer potential $\varphi = \partial_{\nu} u|^+ - \partial_{\nu} u|^-$ satisfies

$$(\lambda I - \mathcal{K}_D^*)\varphi = 0$$
 with $\lambda = \frac{k+1}{2(k-1)} = 1/2 - \beta$

In other words, $\sigma(T_D) = 1/2 - \sigma(\mathcal{K}_D^*)$

When D is merely Lipschitz, \mathcal{K}_D^* is no longer compact in general

Thm: [Perfekt-Putinar 2016]

If D is a planar domain with corners, $\sigma(\mathcal{K}_D^*)$ contains essential spectrum and

$$\begin{array}{rcl} \sigma_{ess}(\mathcal{K}_D^*) & = & [\lambda_-, \lambda_+] \subset \subset [-1/2, 1/2] \\ \lambda_{\pm} & = & \pm \frac{1}{2} (1 - \frac{\alpha}{\pi}) \end{array}$$

where α is the most acute angle in ${\cal D}$

In other words

$$\sigma_{ess}(T_D) = [\beta_-, \beta_+] \subset [0, 1]$$

Singular Weyl sequences

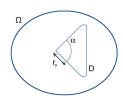
Characterization of the essential spectrum

$$\beta\in\sigma_{ess}(T)$$
 if and only if there exists a sequence $(u_{arepsilon})_{arepsilon o 0}\subset H^1_0(\Omega)$ such that

$$\begin{cases} (\beta I - T)u_{\varepsilon} & \to & 0 \text{ strongly in } H_0^1(\Omega) \\ ||u_{\varepsilon}||_{H_0^1(\Omega)} & = & 1 \\ u_{\varepsilon} & \to & 0 \text{ weakly in } H_0^1(\Omega) \end{cases}$$

3. Corner singularity functions

Assume that D is as in the figure



Consider the transmission problem

$$\left\{ \begin{array}{ccc} -\mathrm{div}(a(x)\nabla u(x)) = 0 & \text{in } \Omega \\ & & \\ u(x) = f & \text{on } \partial \Omega \end{array} \right. \quad \text{with } a(x) = \left\{ \begin{array}{ccc} 1 & & x \in \Omega \setminus \overline{D} \\ \frac{k}{>0} & & x \in D \end{array} \right.$$

Prop: [Kondratiev, Grisvard, Dauge-Costabel,...]

$$\begin{split} u(x) &= u_{reg} + u_{sing} &\quad \text{with} \\ &\left\{ \begin{array}{l} u_{reg} \in H^2(\Omega) \\ \\ u_{sing}(x) &= C r^\eta \varphi(\theta), \quad 0 < r < r_0, \quad 0 \leq \theta < 2\pi \end{array} \right. \end{split}$$

where θ is a smooth function in each sector

 $\eta \in (0,1]$ is determined by α and k (the geometry and the contrast)

How does one find η ?

Seek u_{sing} as a solution to $\operatorname{div}(a\nabla u)=0$ in the whole plane, with

$$a(x) = a(\theta) = \begin{cases} k < 0 & |\theta| < \alpha/2 \\ 1 & \text{otherwise} \end{cases}$$

which has the form $u_{sing} = r^{\eta} \varphi(\theta)$ with $0 < \eta < 1$

$$\varphi(\theta) = \begin{cases} a_1 \cos(\eta \theta) + b_1 \sin(\eta \theta) & |\theta| < \alpha/2 \\ a_2 \cos(\eta \theta) + b_2 \sin(\eta \theta) & \text{otherwise} \end{cases}$$

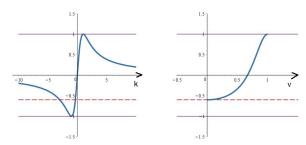
Expressing the transmission conditions $[u]=[a\partial_{\theta}u]=0$ on the interfaces $\theta=\pm\alpha/2$ yields a homogeneous linear system for the a_i,b_i 's

Condition for the existence of non-trivial solutions

$$\frac{2k}{k^2 + 1} = \frac{\sin(\alpha \eta) \sin((2\pi - \alpha)\eta)}{1 - \cos(\alpha \eta) \cos((2\pi - \alpha)\eta)}$$

$$\frac{2k}{k^2+1} \quad = \quad \frac{\sin(\alpha\eta)\sin((2\pi-\alpha)\eta)}{1-\cos(\alpha\eta)\cos((2\pi-\alpha)\eta)}$$

Picture when $\alpha = \Pi/3$:



$$\frac{(k_{\pm}+1)}{2(k_{\pm}-1)} = \pm (1-\alpha/\pi)/2 = \lambda_{\pm}$$

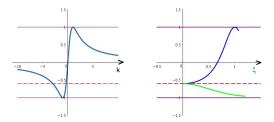
When $k_+ < k < k_- < 0$, one may seek more singular functions in the form

$$u_{sing} = r^{i\xi}\varphi(\theta) \text{ with } \xi \in \mathbf{R}$$

for which $\varphi(\theta) = a_i \cosh(\xi \theta) + b_i \sinh(\xi \theta)$ in each sector

Condition for the existence of non-trivial solutions:

$$\frac{2k}{k^2+1} \quad = \quad \frac{\sinh(\alpha\xi)\sinh((2\pi-\alpha)\xi)}{1-\cosh(\alpha\xi)\cosh((2\pi-\alpha)\xi)}$$



see also [Dauge-Teixier, Bonnet-Chesnel,Bonnet-Chesnel-Clayes]

4. The resonant spectrum of the bowtie

Let D be a bowtie antenna, contained in a set $\Omega \subset \mathbf{R}^2$

Strictly speaking, the bowtie is not a Lipschitz domain : the definition of the Neumann-Poincaré operator may require caution

However, defining a Poincaré variational operator is straightforward

$$\begin{array}{cccc} & T_D : H^1_0(\Omega) & \longrightarrow & H^1_0(\Omega) \\ \forall \, v \in H^1_0(\Omega), & \int_{\Omega} \nabla T_D u \cdot \nabla v & = & \int_{D} \nabla u \cdot \nabla v \end{array}$$

The resonant frequencies are related to $\sigma(T_D)$ as (generalized) eigenfunctions of T_D satisfy (in \mathcal{D}')

$$T_D(u) = \beta u \quad \Leftrightarrow \quad \operatorname{div}(a\nabla u) = 0$$

$$a = \begin{cases} 1 & \text{in } \Omega \setminus D \\ 1 - 1/\beta & \text{in } D \end{cases}$$

where

Thm: The essential spectrum of the bowtie antenna saturates the interval of possible values

$$\sigma_{ess}(T_D) = [0,1]$$

1. The corner singularity functions associated to the central neck of ${\cal D}$ are easily determined :

Assume that $\beta \in (0,1), \beta \neq 1/2$. Set $k = 1 - 1/\beta$ and

$$a(x) = a(\theta) = \begin{cases} k & \text{if } |\theta| < \alpha/2 \text{ and } |\pi - \theta| < \alpha/2 \\ 1 & \text{otherwise} \end{cases}$$

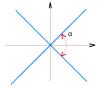
Then there exists a solution u to $\operatorname{div}(a\nabla u)=0$ in \mathbf{R}^2 , of the form

$$u(r,\theta) = Re(r^{i\xi})\varphi(\theta), \quad r > 0, \quad 0 \le \theta < 2\pi$$

for some $\xi > 0$, where

$$\varphi(\theta) = a_i \cosh(\xi \theta) + b_i \sinh(\xi \theta)$$

in each angular sector

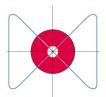


2. The function $u=r^{i\xi}\varphi(\theta)$ is not in H^1_{loc} , as $\nabla u=O(r^{-1})$ near the corner

Let $\varepsilon>0$ and $\chi_1(r),\,\chi_2(r)$ be 2 smooth cut-off functions of the form

and define

$$u_{\varepsilon}(x) = s_{\varepsilon} \chi_1(\frac{r}{\varepsilon}) \chi_2(r) u(x) \in H_0^1(\Omega)$$



3. We choose s_{ε} so that $||u_{\varepsilon}||_{H^1} = ||s_{\varepsilon}\chi_1(r/\varepsilon)\chi_2 u||_{H^1} = 1$

$$s_{\varepsilon}^2 \left(\int_{\varepsilon < r < 2\varepsilon} |u \nabla \chi_1^{\varepsilon} + \chi_1^{\varepsilon} \nabla u|^2 + \int_{2\varepsilon < r < r_0/2} |\nabla u|^2 + \int_{\frac{r_0}{2} < r < r_0} |u \nabla \chi_2 + \chi_2 \nabla u|^2 \right) = 1$$

The first and second terms are O(1) while the second tends to ∞

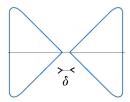
It follows that $s_{\varepsilon} \to 0$ and thus that $u_{\varepsilon} \rightharpoonup 0$ weakly in H^1

4. We finally show that $(\beta I - T_D)u_{\varepsilon} \to 0$ in $H_0^1(\Omega)$

Conclusion : u_{ε} is a singular Weyl sequence for any $\beta \in (0,1)$, and consequently

$$[0,1] \subset \sigma_{ess}(T_D)$$

4. The spectrum of the bowtie with close-to-touching wings



In the case of a bowtie D_δ whose wings are separated by a distance $\delta>0$, the situation is qualitatively different :

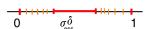
- In that case $\sigma_{ess}(T_{D_\delta}) = [lpha/\pi, 1-lpha/\pi] \subsetneq (0,1)$ independently of δ
- When k>0, the regularity of the associated field u_δ also changes qualitatively

$$\left\{ \begin{array}{ll} u_{\delta} = r^{\eta} \varphi(\theta), & \quad \eta \geq 2/3 \quad \forall \alpha, k \\ \\ u_0 = r^{\eta} \varphi(\theta), & \quad \eta > 0 \quad \text{arbitrary small}(\alpha, k) \end{array} \right.$$

[E.B., M. Vogelius]

Thm : As $\delta \to 0$, $\sigma(T_{D_\delta})$ must contain eigenvalues outside of its essential spectrum

$$\sigma(T_{D_{\delta}}) = \sigma_{ess}(T_{D_{\delta}}) \cup \{\beta_i^{\pm}, 1 \le i \le N\}$$



The proof is based on

Lemma [Allaire-Conca]

Let $S_{\delta}: H \longrightarrow H$ be a sequence of self-adjoint operators in a Hilbert space H

Assume that the S_{δ} 's converge pointwise to a limit operator S

$$\forall u \in H, \quad ||S_{\delta}u - Su|| \quad \to \quad 0$$

Then

$$\sigma(S) \subset \lim_{\delta \to 0} \sigma(S_{\delta})$$

For the Poincaré operators, one easily sees that $T_{D_\delta} o T_D$ pointwise Applying the Lemma, it follows that

$$[0,1] = \sigma(T) = \lim_{\delta \to 0} \sigma(T_{\delta})$$

and thus that $\sigma(T_{\delta})$ must contain eigenvalues when δ is small enough

A more direct approach

(that hopefully gives insight on what the eigenfunctions may look like)

Let $\beta>1-\alpha/\pi$ so that $\beta\notin\sigma_{ess}(T_{D_\delta})$ for any $\delta>0$, and let

$$u(x) = Re(r^{i\xi})\varphi(\theta)$$

be a generalized eigenfunction for T_D (i.e. when $\delta = 0$)

Set also

$$u_{\varepsilon}(x) = s_{\varepsilon} \chi_1(\frac{r}{\varepsilon}) \chi_2(r) u(x)$$

The constant s_{ε} is chosen so that $||u_{\varepsilon}||=1$ (and thus, $s_{\varepsilon}\to 0$)

The sequence u_{ε} satisfies

$$\lim_{\varepsilon \to 0} ||(\beta I - T_D)u_{\varepsilon}||_{H^1} = 0$$

so that in particular

$$\beta = \lim_{\varepsilon \to 0} \frac{\int_{D} |\nabla u_{\varepsilon}|^{2}}{\int_{\Omega} |\nabla u|^{2}}$$

Consider now

$$v_{\varepsilon,\delta}(x_1,x_2) = \begin{cases} u_{\varepsilon}(x_1 + \delta/2, x_2) & \text{if } x_1 < -\delta/2 \\ u_{\varepsilon}(0,x_2) & \text{if } |x_1| < \delta/2 \\ u_{\varepsilon}(x_1 - \delta/2, x_2) & \text{if } x_1 > \delta/2 \end{cases}$$

By construction $v_{\varepsilon,\delta} \in H^1_0(\Omega)$ and one can estimate

$$\begin{split} \int_{\Omega} |\nabla v_{\varepsilon,\delta}|^2 &= \int_{\Omega} |\nabla u_{\varepsilon}|^2 \, + \, s_{\varepsilon}^2 \int_{|x_1| < \delta/2} |\partial_{x_2} \left[\chi_1(x_2/\varepsilon) \chi_2(x_2) u(0,x_2) \right] |^2 \\ &= 1 \, + \, s_{\varepsilon}^2 O(\delta/\varepsilon) \end{split}$$

and choosing $\varepsilon=\delta$, and setting $v_\delta=v_{\delta,\delta}$, it follows that

$$\left| \beta - \frac{\int_{D_{\delta}} |\nabla v_{\delta}|^2}{\int_{\Omega} |\nabla v_{\delta}|^2} \right| \leq \frac{C}{|\ln(\delta)|} \to 0$$

For δ sufficiently small, the function v_δ has a Rayleigh quotient above the essential spectrum of T_{D_δ}

However, to give a relevant bound for an eigenvalue above the essential spectrum, the functions v_δ should be orthogonal to the subspace associated to $\beta=1$, i.e. to $Ker(T_{D_\delta}-I)\sim H_0^1(D_\delta)$

One can show that

$$\left| \beta - \frac{\int_{D_{\delta}} |\nabla v_{\delta}|^2}{\int_{\Omega} |\nabla v_{\delta}|^2} \right| \sim \left| \beta - \frac{\int_{D_{\delta}} |\nabla Z_{\delta}|^2}{\int_{\Omega} |\nabla Z_{\delta}|^2} \right| \to 0$$

 $Z_{\delta} = \text{projection of } v_{\delta} \text{ on } Ker(T_{D_{\delta}} - I)^{\perp}$

Remarks:

- One can also show that there are eigenvalues $\beta \in (0, \alpha/\pi)$
- In fact the spectrum contains more and more eigenvalues in the range $[0,\alpha/\pi)\cup(1-\alpha/\pi,1]$ as $\delta\to0$
- [Helsing-Kang-Lim, 2016] contains very nice numerical illustrations of similar phenomena
- The situation is reminiscent of the case of close-to-touching disks [EB-Triki]

5. Conclusion

- We established a link between the spectral properties of the Neumann-Poincaré operator (or the Poincaré variatonal op.) and the corner singularity functions
- Extension to 3D possible
- The behavior of the associated eigenmodes is interesting, in view of their properties of localization, concentration of energy
- Are shapes with singularities more interesting for applications?
 Can that be quantified?

Save the date!

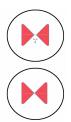
Let W_δ denote the orthogonal projection of $v_{\delta,\delta}$ on $H^1_0(D_\delta)$

$$v_{\delta} = W_{\delta} + Z_{\delta} \quad \text{with } \int_{\Omega} \nabla W_{\delta} \cdot \nabla Z_{\delta} = 0$$

Construct U_{δ} as

$$U_{\delta}(x) = \begin{cases} W_{\delta}(x_1 - \delta/2, x_2) & \text{if } x_1 < 0 \\ W_{\delta}(x_1 + \delta/2, x_2) & \text{if } x_1 > 0 \end{cases}$$

Then
$$U_\delta \in H^1_0(D) = Ker(T_D - I)$$



We can estimate

$$\begin{split} (1-\beta)||W_{\delta}||_{H^{1}}^{2} &= (1-\beta)\int_{\Omega}|\nabla W_{\delta}|^{2} = (1-\beta)\int_{\Omega}\nabla W_{\delta}\cdot\nabla v_{\delta} \\ &= \int_{\Omega}\nabla(T_{D_{\delta}}-\beta I)W_{\delta}\cdot\nabla v_{\delta} = \int_{\Omega}\nabla(T_{D_{\delta}}-\beta I)v_{\delta}\cdot\nabla W_{\delta} \\ &= \int_{\Omega}\nabla(T_{D}-\beta I)u_{\delta}\cdot\nabla U_{\delta} \\ &\leq ||(T_{D}-\beta I)u_{\delta}||_{H^{1}}||W_{\delta}||_{H^{1}} \end{split}$$

It follows that $\lim_{\delta \to 0} ||W_{\delta}||_{H^1} = 0$

It follows from the decomposition

$$v_{\delta} = W_{\delta} + Z_{\delta}, \qquad Z_{\delta} \perp Ker(T_{D_{\delta}} - I)$$

that

$$\left| \beta - \frac{\int_{D_{\delta}} |\nabla v_{\delta}|^2}{\int_{\Omega} |\nabla v_{\delta}|^2} \right| \sim \left| \beta - \frac{\int_{D_{\delta}} |\nabla Z_{\delta}|^2}{\int_{\Omega} |\nabla Z_{\delta}|^2} \right| \to 0$$

where $Z_{\delta} \in Ker(T_{D_{\delta}} - I)^{\perp}$

and therefore, $T_{D_{\delta}}$ has at least one eigenvalue above its essential spectrum