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1. Introduction :

Bowtie nano-antennas are extensively studied in the physics literature, as they can
produce a remarkably large enhancement of the electrical field near their corners, and
particularly in their central neck

5% 800 0m

(E. Lorek et al, Optics Express Vol. 23, Issue 24, pp. 31460-31471 (2015))



Such plasmon resonances may occur in metallic particles if

> the electric permittivity €(w) inside the particle depends on the frequency of the
excitation, and should have a negative real part and a small imaginary part

This is the case for metals such as Au, Ag, Al, for frequencies in the visible light
range

> the wavelength of the incident excitation A = 27 /w is much larger than the
particle diameter §

0/A = dw/2m << 1
In real life ¢ is between 10 and 100 nm and A ~ 650 nm

The desired resonant frequencies as well as the local fields enhancement may be
achieved by tuning the geometry of the nanostructure

[Mayergoyz-Fredkin-Z Zhang Phys. Rev. B 2005, Grieser Rev. Math. Phys. 14,
Ammari-Ruiz-Yu-Zhang, Ammari-Millien]



We consider the simplest setting : 2D quasistatic resonances in the TE polarization,
which correspond to finding non-trivial solutions to

div( Vu(z)) = 0 in Q

1
e(w,x) (1)

+ homogeneous BC’s on 0f2

- Qis a smooth bounded domain in R2, that contains a metallic inclusion D
homogeneous Dirichlet BC's are applied on 052

One can also consider 2 = R? with the radiation condition u — 0 as |z| — oo

- The frequency w is fixed and the conductivity a(z) = is defined by

T e(w, )
{ k, ifzeD

a(z) =
1 otherwise

Resonances = values of k for which there exist non trivial solutions to (1)



Objectives

- Understand how the fields concentrate and get enhanced according to the shape
of the particles

- In the case of the bowtie, understand the qualitative difference between the
perfect and the approximate bowtie




2. Integral representation

2.1. The Neumann-Poincaré operator

We consider the Green function of

{ —AG(z,y) = dy(a), in
G(z,y) = 0 on 02
and seek a solution to div(aVu) = 0 in the form
u@) = Spee) = [ Gawewdsy) weDU@\D)
Its normal derivatives satisfy the Plemelj jump conditions :  for « € 0D
as 1
Pl ) = lim VSpp(w+tw(@) v(z) = (E21+Kp)p()
ov t—0+ 2

oG

NPO: Kpp(z) = /aD a(% Y)p(y) ds(y)



k+1

that u = Spy i iff M —Kp)p =0 A= 2—x
so that u D Is a resonance | ( D)P 2(k—1)

Prop: [Khavinson-Putinar-Shapiro, 2007]

- K3, extends as an operator Hgm(am — H3/2(8D)

- As a consequence of the Calderdn identity
KpS = SKp,
K7, is self adjoint for the scalar product

<, >g = 7<<,9,S[)1Z)>II—1/2Y111/2

- the spectrum of K}, is real and contained in (—1/2,1/2]

- If D is smooth, K7, is compact, so its spectrum consists in a set of eigenvalues
that accumulate to 0



2.2. The Poincaré variational operator

We define Tp : H}(Q) — HL(Q) by
V?}EH&(Q)7 VIipu-Vv = / Vu - Vv
Q D
Prop:

- The operator Tp is non-negative, self adjoint, ||Tpl|| < 1,
Ker(Tp) = {u € H}(), ujp = const}

- Ker(I —Tp) = {u € H}(Q), U\ = 0}
- HY Q)= Ker(Tp) ® Ker(I —Tp) @ H
where H is the space of single layer potentials

H = {ucHYD), Au=0in DU(Q\ D), dyu = 0}
oD



As a consequence, the eigenvalues of the restriction of TH to H are given by the
min-max principle

\v4 2
P 41, 7
Fo CH  u€F\{0} [R2 |Vul
dim(Fp) =n
v 2
Br = min max fD|7u|2
F, CH  uwEF\{0} [R2|Vul
dim(Fp) =n

so that, the eigenvalues of T satisfy

0<B <BF<---<1/2<-.<By <Pt <1



2.3. Relationship between resonances, the NPO, and the Poincaré variational

operator

If 8 is an eigenvalue of Tp with eigenvector u
/BVu-VU = /VTDu-Vv:/Vu-Vv
Q Q D

i.e./ BVu-Vv—i—/(B—l)VUvVv = 0
Q\D D

Thus, u is a non-trivial solution to
div(a(z)Vu(z)) =0 inQ

. 1
th =
u(z) =0 on 9 v ale) { k=1-1/8

so that the associated layer potential » = 9, u|T — O, u|~ satisfies
k+1

(M —=Kp)e = 0 with/\:mzlﬂ—ﬁ

In other words, o(Tp) =1/2—o(K3,)

z€Q\D
reD



When D is merely Lipschitz, K7, is no longer compact in general

Thm :  [Perfekt-Putinar 2016]
If D is a planar domain with corners, o(K7,) contains essential spectrum and
gess(Kp) = [A-,A+] CC[-1/2,1/2]
A = :t%(l - %)

where « is the most acute angle in D

In other words

Uess(TD) = [B—7B+] CcC [071]



Singular Weyl sequences

Characterization of the essential spectrum

B € gess(T)  if and only if there exists a sequence (uc)e—o C HJ () such that

strongly in Hé ()

o

(BI —THue —

luellgry = 1

— 0 weakly in H}(Q)

Ue



3. Corner singularity functions

Assume that D is as in the figure

Consider the transmission problem
—div(a(z)Vu(z)) =0 inQ {

with a(z) =
u(z) = f on 0

Prop: [Kondratiev, Grisvard, Dauge-Costabel,. . .|
u(x) = Ureg + Using  With
Ureg € HQ(Q)
{ Using(x) = Crlp(@), 0<r<rg, 0<6<27w
where 6§ is a smooth function in each sector

1 € (0,1] is determined by o and k (the geometry and the contrast)



How does one find n ?

Seek uging as a solution to div(aVu) = 0 in the whole plane, with

B B k<0 0] < a/2
a@) = a(d) = { 1 otherwise

which has the form uging = 7"9(0) with0<n <1

ay cos(nB) + by sin(nh) 0] < /2
e(0) = , .
as cos(nB) + bz sin(nh) otherwise
Expressing the transmission conditions [u] = [afpu] = 0 on the interfaces = +a/2

yields a homogeneous linear system for the a;, b;'s

Condition for the existence of non-trivial solutions
2k _ sin(an) sin((27 — a)n)
E2+1 11— cos(an)cos((2r — a)n)




2k - sin(an) sin((27 — a)n)
E24+1 1 —cos(an)cos((2m — a)n)

Picture when o« = I1/3 :
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When k4 < k < k— < 0, one may seek more singular functions in the form
Using = T‘Z£§0(9) with € cR

for which ¢(0) = a; cosh(£6) + b; sinh(£6) in each sector

Condition for the existence of non-trivial solutions:

2%k sinh(a€) sinh((27 — @)&)

E2+1 1 —cosh(af)cosh((2m — a)€)

K~ 17
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see also [Dauge-Teixier, Bonnet-Chesnel,Bonnet-Chesnel-Clayes]



4. The resonant spectrum of the bowtie

D
Let D be a bowtie antenna, contained in a set QO C R?2

Strictly speaking, the bowtie is not a Lipschitz domain :
the definition of the Neumann-Poincaré operator may
require caution

5%
i

D,
However, defining a Poincaré variational operator is straightforward

Tp :HJ(Q) — H(Q)

Vo € H3(Q), /VTDu-Vv = / Vu - Vo

Q D
The resonant frequencies are related to o(Tp) as (generalized) eigenfunctions of Tp
satisfy (in D’)

Tp(u) = Pu & div(aVu) = 0
1 inQ\ D

{ 1-1/8 inD

where a =



Thm : The essential spectrum of the bowtie antenna saturates the interval of possible
values

Oess (TD) = [0* 1}

1. The corner singularity functions associated to the central neck of D are easily
determined :

Assume that 8 € (0,1),8#1/2. Setk=1—1/8 and
B B k if|f|<e/2 and |7—0|<a/2
a(z) = a(0) = { 1 otherwise
Then there exists a solution u to div(aVu) = 0 in R?, of the form

u(r,0) = Re(r'®)p(6), r>0, 0<6<2r

for some £ > 0, where
p(0) = a;cosh(€0) + b; sinh(&0) ¢

in each angular sector



2. The function u = r%€p(0) is not in H}

Lo as Vu = O(r~1) near the corner

Let € > 0 and x1(r), x2(r) be 2 smooth cut-off functions of the form

and define  uc(z) = sex1(Z)x2(r)u(z) € H(Q)



3. We choose s. so that ||uc|| g1 = ||sexi(r/e)xaullg1 =1

/ VXS + xS Vul? + / Vul? + / uVxe + 2 Vul? | = 1
e<r<2e 2e<r<rg/2 H<r<rg

The first and second terms are O(1) while the second tends to oo

It follows that s — 0 and thus that wu. — 0 weakly in H!
4. We finally show that (8] — Tp)ue — 0 in H}(Q)

Conclusion : u. is a singular Weyl sequence for any 8 € (0,1), and consequently

[0, 1] C Oess (TD)



4. The spectrum of the bowtie with close-to-touching wings

In the case of a bowtie D5 whose wings are separated by a distance § > 0, the
situation is qualitatively different :

- Inthat case  0css(Tpg) = [/, 1 — /7] € (0, 1) independently of &

- When k > 0, the regularity of the associated field us also changes qualitatively
us = r"¢(0), n>2/3 Voa,k
{ up = r"¢(0), n >0 arbitrary small(e, k)
[E.B., M. Vogelius]



Thm : As § — 0, o(Tp,) must contain eigenvalues outside of its essential spectrum

O—(TD(;) = Cress(TD(;) U {/3?:,] << N}

0 'oegz 1

The proof is based on
Lemma [Allaire-Concal
Let S5 : H — H be a sequence of self-adjoint operators in a Hilbert space H
Assume that the Ss's converge pointwise to a limit operator S

YueH, |[|Ssu—Sull — 0
Then o(S) C limgs_g o(Ss)

For the Poincaré operators, one easily sees that Tp; — Tp pointwise
Applying the Lemma, it follows that

[07 ].] = O’(T) = 6]1_1;[10 O’(Té)

and thus that o(7Ts) must contain eigenvalues when ¢ is small enough



A more direct approach
(that hopefully gives insight on what the eigenfunctions may look like)
Let 3 > 1 — a/7 so that B ¢ oess(Tpy) for any 6 > 0, and let
u@) = Re(r®)p(0)
be a generalized eigenfunction for Tp (i.e. when § = 0)
Set also

ue(@) = sexl@m(r)u(z)

The constant s. is chosen so that ||uc|| = 1 (and thus, s — 0)

The sequence u. satisfies

li I —T, =
lim |81 = Tp)uclln = 0

[ 19l

B = lim 2 —

e—0 /|vu|2
Q

so that in particular



Consider now
ue(x1 +6/2,22) ifxg < —6/2
ve,s(z1,22) = ue (0, 22) if |z1] < §/2
ue(x1 — /2, 22) ifx1 >6/2

By construction v 5 € H}(£2) and one can estimate

/ Vo2 = / Vuel? + s2 / 1025 Dt (2/)xa(22)u(0, 22)] 2
Q Q |y |<5/2

1 + s20(3/¢)

and choosing € = §, and setting vs = vs,s, it follows that

Vos|?
7/D§\ sl o

<

/ \Vv5|2 [1n(5)]
Q

— 0



For ¢ sufficiently small, the function vs has a Rayleigh quotient above the essential
spectrum of Tp,

However, to give a relevant bound for an eigenvalue above the essential spectrum, the
functions vs should be orthogonal to the subspace associated to 8 =1, i.e. to
Ker(TDs -1~ H&(Dg)

[ 1wus? [ 1wz
57[)57 B,L —
/lws\2 /|V25|2

Q Q

Zs = projection of vs on Ker(Tp; — I)J-

One can show that

0



Remarks :

- One can also show that there are eigenvalues 8 € (0, a/7)

- In fact the spectrum contains more and more eigenvalues in the range
0,a/m)U (1l —a/m,1]asd — 0

- [Helsing-Kang-Lim, 2016] contains very nice numerical illustrations of similar
phenomena

- The situation is reminiscent of the case of close-to-touching disks [EB-Triki]



5. Conclusion

- We established a link between the spectral properties of the Neumann-Poincaré
operator (or the Poincaré variatonal op.) and the corner singularity functions

- Extension to 3D possible

- The behavior of the associated eigenmodes is interesting, in view of their
properties of localization, concentration of energy

- Are shapes with singularities
more interesting for applications ?

I can feel...
a certain resonance here...

Can that be quantified 7
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Let W5 denote the orthogonal projection of v5 s on H(} (Ds)

vy = Ws+Zs with / VWs - -VZs =0
Q
Construct Us as
Ws(z1 —6/2,22) ifzy; <0
Us(z) = .
W5(11+6/2,1‘2) ifzy >0

Then Us € HY (D) = Ker(Tp — I)



We can estimate

(1= B)IWel[ 7

(1—6)/Q|VW5\2 - (1_,3>/va§.vv5

/V(TDJ—ﬂ])VK;'V’U(; = /V(TD(; —Bl)v5~VW5
Q Q

/9 V(Tp — Bl)us - VUs

I(Tp — BDus| g1 [1Wsl| g1

IN

It follows that  lims_,o ||[Ws|| g1 =0



It follows from the decomposition
vs = Ws + Zs, Zs L Ker(Tps — I)
that

where Z5 € Ker(Tp; — I)*

and therefore, Tp, has at least one eigenvalue above its essential spectrum



