Homogenization and the Neumann Poincaré operator

Eric Bonnetier, Charles Dapogny, Faouzi Triki

Outline:

- 1. Motivation : resonant frequencies in metallic nanoparticles
- 2. The NP operator/the Poincaré variational problem for a periodic collection of inclusions
- 3. The limiting spectra
- 4. Consequences concerning the homogenization of inclusions with non-positive conductivities

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

5. Conclusion

1. Resonant frequencies of metallic nanoparticles

Very small metallic particles exhibit interesting diffractive phenomena, related to resonances : localization and extremely large enhancement of the electromagentic fields in their vicinity

Many potential applications : nanophotonics, nanolithography, near field microscopy, biosensors, cancer therapy

2 main ingredients :

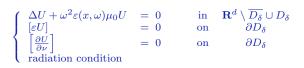
- The wavelength of the incident excitation should be larger than the particle diameter
- the real part of the electric permittivity $arepsilon(\omega)$ inside the particle is negative

Typical model problem

Consider a particule that occupies a bounded C^2 domain $\delta D \subset \mathbf{R}^d$

 δ is small, |D| = 1

 $\omega \in \mathbf{C}$ is a resonant frequency of the nanoparticle D_{δ} if there exists a non-trivial solution U to the PDE (TE polarization):



The Drude model gives a good description of the electric permittivity ε of metals such as Au, Ag, Al, in the range of frequencies of interest

$$\varepsilon(x,\omega) \quad = \quad \begin{cases} \varepsilon_0 & \text{for } x \in \mathbf{R}^d \setminus \overline{D_\delta} \\ \varepsilon_0 \hat{\epsilon}(\omega) &= \varepsilon_0 \left(\varepsilon_\infty - \frac{\omega_P^2}{\omega^2 + i\omega\Gamma} \right) & \text{for } x \in D_\delta \end{cases}$$

▲□▼▲□▼▲□▼▲□▼ □ ● ●

The change of variable $\tilde{x} = z + x/\delta$ transforms the original PDE into $\begin{cases}
\Delta \tilde{U} + \delta^2 \omega^2 \varepsilon(x, \omega) \mu_0 \tilde{U} = 0 & \text{in } \mathbf{R}^2 \setminus \overline{D} \cup D \\
[\varepsilon \tilde{U}] = 0 & \text{on } \partial D \\
[\frac{\partial \tilde{U}}{\partial \nu}] = 0 & \text{on } \partial D
\end{cases}$

where $~~\tilde{U}(x)=U(\tilde{x})~~$ and one expects that $\varepsilon\tilde{U}$ converges to a solution of the quasistatic problem

$$\begin{cases} \operatorname{div}(1/\varepsilon(\omega)\nabla u) &= 0 \quad \text{in } \mathbf{R}^d \\ u &\to 0 \quad \text{as } |x| \to \infty \end{cases}$$

Electrostatic resonances: find the values of ε for which the above PDE has non trivial solutions

[Mayergoyz-Fredkin-Zhang, Grieser, Ammari-Millien-Ruiz-Zhang]

We may seek u in the form $-u(x)=S_D\varphi(x)$ —where S_D is the single layer potential on $\partial\Omega$

$$S_D \psi(x) = \int_{\partial D} G(x, y) \psi(y) \, d\sigma(y), \quad x \in \mathbf{R}^d$$
$$G(x, y) = \begin{cases} \frac{1}{2\pi} \ln |x - y| & \text{if } d = 2\\ \frac{|x - y|^{d-2}}{(2 - d)\omega_d} & \text{if } d \ge 3 \end{cases}$$

For $\psi \in L^2(\partial D)$, the function $S_D \psi$ is harmonic in D and in $\mathbf{R}^d \setminus D$, continuous across ∂D and satisfies the Pelmelj jump relations

 $\partial_{\nu}S_D\psi|_{\pm} = \pm 1/2\psi + K_D^*\psi$

The operator K_D^* (or its adjoint) is the Neumann-Poincaré operator

$$K_D^*\psi(x) \quad = \quad \int_{\partial D} \frac{\nu(x) \cdot (x-y)}{|x-y|^2} \psi(y) \, d\sigma(y)$$

The layer potential φ yields a solution to the PDE provided

 $(\lambda(\omega)I - K_D^*)\varphi = 0$

where $\lambda(\omega)=rac{1/\hat\epsilon(\omega)+1}{2(1/\hat\epsilon(\omega)-1)}$ is thus an eigenvalue of K_D^*

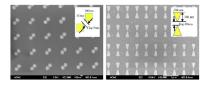
-
$$\sigma(K_D^*) \subset [-1/2, 1/2]$$

- When D is smooth ($\mathcal{C}^{1,\alpha}),\,K_D^*$ is compact consisting of a countable sequence of eigenvalues accumulating at 0

(日) (日) (日) (日) (日) (日) (日) (日)

- When D is Lipschitz, K_D^* may have continous spectrum

Goal in applications: tune the shape of D to trigger resonant frequencies at desired values of ω

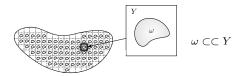


[Gang Bi et al, Optics Comm., 285 (2012) 2472]

The Neumann-Poincaré operator naturally appears also in other situations: cloaking, pointwise estimates on gradients of solutions to elliptic PDE's in composite media

[Ammari-Ciraolo-Kang-Lim, Perfekt-Putinar, Ola, Kang-Lim-Yu, EB-Triki]

2. The Neumann-Poincaré operator/ Poincaré variationnal problem for a periodic collection of inclusions



Consider $\Omega \subset {\bf R}^2,$ smooth bounded domain, that contains a periodic collection of smooth inclusions

 $D = \omega_{\varepsilon} = \bigcup_{i \in N_{\varepsilon}} (\omega_{\varepsilon,i}) \qquad \omega_{\varepsilon,i} = z_{\varepsilon,i} + \varepsilon \omega, \quad i \in N_{\varepsilon,i}$

Model PDE : given $f \in L^2(\Omega)$, seek $u \in H^1_0(\Omega)$ such that

$$-\operatorname{div}(A(x)\nabla u) = f \quad \text{in } \Omega, \qquad A(x) = \begin{cases} k & \text{in } \omega_{\varepsilon} \\ 1 & \text{otherwise} \end{cases}$$

What are the resonant frequencies of such a system ? Are there collective effects ? What is $\lim_{\varepsilon\to 0}\sigma(K^*_\varepsilon)$?

As the definition of the Neumann-Poincaré depends on the number of inclusions, we work with the Poincaré variational operator

$$\begin{split} T_{\varepsilon} &: H_0^1(\Omega) \to H_0^1(\Omega) \\ \forall \, v \in H_0^1(\Omega), \quad \int_{\Omega} \nabla T_{\varepsilon} u \cdot \nabla v &= \int_{\omega_{\varepsilon}} \nabla u \cdot \nabla v \end{split}$$

 $\text{If} \quad T_\varepsilon u \ = \ \beta u \quad \text{ for some } u \in H^1_0(\Omega) \text{ and } \beta \in \mathbf{R} \text{, then for any } v \in H^1_0(\Omega)$

$$\begin{split} &\int_{\Omega} \nabla T_{\varepsilon} u \cdot \nabla v \ - \ \int_{\omega_{\varepsilon}} \nabla u \cdot \nabla v \ = \ \beta \int_{\Omega} \nabla u \cdot \nabla v \ - \ \int_{\omega_{\varepsilon}} \nabla u \cdot \nabla v \\ &= \ \beta \int_{\Omega \setminus \omega_{\varepsilon}} \nabla u \cdot \nabla v + (\beta - 1) \int_{\omega_{\varepsilon}} \nabla u \cdot \nabla v \ = \ 0 \end{split}$$

(日) (日) (日) (日) (日) (日) (日) (日)

It follows that $\operatorname{div}(a(\beta)\nabla u) = 0$ $u = S_{\omega_{\varepsilon}}\varphi \quad \text{with} \quad (\lambda I - K^*_{\omega_{\varepsilon}})\varphi = 0, \qquad \lambda = 1/2 - \beta$

We conclude that $\sigma(T_{\varepsilon}) = 1/2 - \sigma(K^*_{\omega_{\varepsilon}})$

Theorem

$$\lim_{\varepsilon \to 0} \sigma(T_{\varepsilon}) = \{0, 1\} \cup \sigma_{\text{Bloch}} \cup \sigma_{\partial \Omega}$$

• The first term is the Bloch spectrum and corresponds to bulk resonant modes of single cells or group of cells

 $\sigma_{\text{Bloch}} = \bigcup_{i \ge 1} [\min_{\eta \in [0,1]^d} \lambda_i^-(\eta), \max_{\eta \in [0,1]^d} \lambda_i^-(\eta)] \cup [\min_{\eta \in [0,1]^d} \lambda_i^+(\eta), \max_{\eta \in [0,1]^d} \lambda_i^+(\eta)]$

where the operators T_{η} are defined by

$$\begin{aligned} \forall \ v \in H^1_{\#}(Y), \quad & \int_Y \left(\nabla T_\eta u + 2i\pi\eta T_\eta u \right) \cdot \overline{\left(\nabla v + 2i\pi\eta v \right)} \ = \\ & \int_\omega \left(\nabla u + 2i\pi\eta u \right) \cdot \overline{\left(\nabla v + 2i\pi\eta v \right)}, \quad \eta \neq 0 \\ \forall \ v \in H^1_{\#}(Y) / \mathbf{R}, \quad & \int_Y \nabla T_0 u \cdot \overline{\nabla v} \ = \ & \int_\omega \nabla u \cdot \overline{\nabla v}, \quad \eta = 0 \end{aligned}$$

• The boundary layer spectrum $\sigma_{\partial\Omega}$ is defined as the set of $\lambda \in (0,1)$ such that $\exists \ (\lambda_{\varepsilon}) \subset \sigma(T_{\varepsilon}) \quad \text{such that } \lambda_{\varepsilon} \to \lambda$

and for which the associated eigenvectors $u_{\varepsilon} \in H^1_0(\Omega)$ satisfy

$$\forall s > 0 \quad \lim_{\varepsilon \to 0} \varepsilon^{-(1-1/2+s)} ||\nabla u_{\varepsilon}||_{L^{2}(\mathcal{U}_{\varepsilon})} = \infty$$

where

$$\mathcal{U}_{\varepsilon} = \{x \in \Omega, d(x, \partial \Omega) < \varepsilon\}$$

Remarks :

- It is more convenient to work with T_{ε} (domains of definition easier to handle)
- Our work is largely inspired by the analysis of [Allaire-Conca] who studied the high frequency limit of spectra of diffusion equations using Bloch wave homogenization
- As $\varepsilon\to 0,$ the operators T_ε converge to a limiting operator T_∞ defined on $H^1_0(\Omega)$ by

$$\forall v \in H_0^1(\Omega) \quad \int_{\Omega} \nabla T_{\infty} u \cdot \nabla v \quad = \quad |\omega| \int_{\Omega} \nabla u \cdot \nabla v$$

However, the convergence is only in a weak sense, and thus does not yield any information on $\lim_{\varepsilon\to 0}\sigma(T_\varepsilon)$

- To take into account the microscopic effects in the limit, we define a 2-scale version \tilde{T}_{ε} of T_{ε} on the larger space $L^2(\Omega, H^1(\omega)/\mathbf{R})$, which has the same spectrum
- We show that the operators \tilde{T}_{ε} converge strongly to a limiting operator \tilde{T}_0 , and thus $\lim_{\varepsilon \to 0} \sigma(T_{\varepsilon}) \supset \sigma(\tilde{T}_0)$

Key ingredient :

2-scale convergence [Allaire, Nguetseng] and the associated compactness properties

Theorem : Let u_{ε} be a bounded sequence in $L^2(\Omega)$

1. Then there exists $u_0\in L^2(\Omega\times L^2_\#(Y))$ such that u_ε 2-scale converges weakly to $u_0,$ i.e.

$$\forall \ \phi \in L^2(\Omega, \mathcal{C}_{\#}(Y)), \quad \int_{\Omega} u_{\varepsilon}(x) \phi(x, x/\varepsilon) \ dx \quad \rightarrow \quad \int_{\Omega \times Y} u_0(x, y) \phi(x, y) \ dx dy$$

2. Assume that a sequence (u_{ε}) converges weakly in L^2 to some $u_0 \in H^1(\Omega)$. Then there exists $\hat{u} \in L^2(\Omega, H^1_{\#}(Y)/\mathbf{R})$ such that, up to a subsequence

- $u_{arepsilon}$ 2-scale converges to u

- ∇u_{ε} 2-scale converges to $\nabla u_0(x) + \nabla_y \hat{u}(x,y)$

3. Bloch wave homogenization

Following [Allaire-Conca] (see also [Cioranescu-Damlamian-Griso]) we define

- an extension operator E_{ε} : $L^2(\Omega) \longrightarrow L^2(\Omega \times Y)$

$$E_{\varepsilon}u(x,y) = \begin{cases} u(\varepsilon[x/\varepsilon] + \varepsilon y) & \text{if } x \in \omega_{\varepsilon,i} \subset \Omega \\ 0 & \text{otherwise} \end{cases}$$

- a projection operator $P_{\varepsilon} : L^2(\Omega \times Y) \longrightarrow L^2(\Omega)$

$$P_{\varepsilon}\phi(x) \quad = \quad \left\{ \begin{array}{cc} \int_{Y} \phi(\varepsilon[x/\varepsilon] + \varepsilon z, \{x/e\}) \, dz & \text{ if } x \in \omega_{\varepsilon,i} \subset \Omega \\ \\ 0 & \text{ otherwise} \end{array} \right.$$

Denoting Ω_{ε} the union of all the cells $\omega_{\varepsilon,i}$ that are fully contained in Ω

- E_{ε} and P_{ε} are bounded operators with norm 1
- $P_{\varepsilon}: L^2(\Omega \times Y) \to L^2(\Omega)$ and $E_{\varepsilon}: L^2(\Omega) \to L^2(\Omega \times Y)$ are adjoint operators

(日) (日) (日) (日) (日) (日) (日) (日)

• P_{ε} and E_{ε} are almost inverse to one another for $u \in L^2(\Omega)$, $P_{\varepsilon}E_{\varepsilon}u(x) = \begin{cases} u(x) & \text{if } x \in \Omega_{\varepsilon} \\ 0 & \text{otherwise} \end{cases}$

 $\text{for }\phi\in L^2(\Omega\times Y),\quad E_\varepsilon P_\varepsilon\phi\to\phi\text{ strongly in }L^2(\Omega\times Y)$

In our setting, we should be cautious as the definition of T_ε involves derivatives, whereas the operators $E_\varepsilon,P_\varepsilon$ may not define functions in H^1

We set $\tilde{T}_{\varepsilon} := E_{\varepsilon} T_{\varepsilon}^{\circ} P_{\varepsilon}$ with

$$\begin{split} \tilde{T}_{\varepsilon} &: L^{2}(\Omega, H^{1}(\omega)/\mathbf{R}) & \longrightarrow & L^{2}(\Omega, H^{1}(\omega)/\mathbf{R}) \\ P_{\varepsilon} \downarrow & \uparrow & E_{\varepsilon} \\ T_{\varepsilon}^{\circ} &: H_{\varepsilon} &:= H^{1}(\omega_{\varepsilon})/C(\omega_{\varepsilon}) & \longrightarrow & H_{\varepsilon} \\ \downarrow & \uparrow \\ T_{\varepsilon} &: H_{0}^{1}(\Omega) & \longrightarrow & H_{0}^{1}(\Omega) \end{split}$$

where $C(\omega_{\varepsilon}) = \{ u \in H^1_0(\Omega), u = (\text{const})_i \text{ on } \omega_{\varepsilon,i} \}$

$$\begin{split} \phi &\in L^2(\Omega \times H^1(\omega)/\mathbf{R}) \to P_{\varepsilon}\phi := u_{\varepsilon} \in H^1(\omega_{\varepsilon})/C(\omega_{\varepsilon}) \\ \to v_{\varepsilon} \in H^1_0(\Omega), \quad \text{such that} \quad \int_{\Omega} \nabla v_{\varepsilon} \cdot \nabla v = \int_{\omega_{\varepsilon}} \nabla u_{\varepsilon} \cdot \nabla v \\ \to \tilde{T}_{\varepsilon}\phi = E_{\varepsilon}v_{\varepsilon}|_{\Omega \times \omega} \end{split}$$

Proposition

•
$$\tilde{T}_{\varepsilon}$$
 is self-adjoint and $\sigma(\tilde{T}_{\varepsilon}) = \sigma(T_{\varepsilon}) \setminus \{0\}$

• For any $\phi \in L^2(\Omega, H^1(\omega)/\mathbf{R})$, $\tilde{T}_{\varepsilon}\phi$ converges strongly in $L^2(\Omega, H^1(\omega)/\mathbf{R})$ to some $\tilde{T}_0\phi$

 $\tilde{T}_0\phi = Q\hat{v}$ where $Q : L^2(\Omega, H^1_{\#}(Y)/\mathbf{R}) \longrightarrow L^2(\Omega, H^1(\omega)/\mathbf{R})$ is the restriction operator and \hat{v} is the unique solution in $L^2(\Omega, H^1_{\#}(Y)/\mathbf{R})$ of

$$-\Delta_y \hat{v}(x,y) = -\operatorname{div}_y (1_\omega(y) \nabla_y \phi)(x,y) \quad \text{in } Y, \ a.e. \ x \in \Omega$$

- It follows that $\lim_{\varepsilon \to 0} \sigma(T_{\varepsilon}) \supset \sigma(\tilde{T}_0)$
- Actually, $\sigma(\tilde{T}_0) = \sigma(T_0) \setminus \{0\}$, where $T_0 : H^1_{\#}(Y)/\mathbf{R} \longrightarrow H^1_{\#}(Y/\mathbf{R})$ is defined by

$$\forall v \in H^1_{\#}(Y), \quad \int_Y \nabla T_0 u \cdot \nabla v \quad = \quad \int_{\omega} \nabla u \cdot \nabla v$$

The values in $\sigma(T_0)$ can be interpreted as eigenvalues of single-cell resonant modes

This follows from the compactness induced by 2-scale convergence :

$$\begin{split} \phi &\in L^2(\Omega \times H^1(\omega)/\mathbf{R}) \to P_{\varepsilon}\phi := u_{\varepsilon} \in H^1(\omega_{\varepsilon})/C(\omega_{\varepsilon}) \\ \to v_{\varepsilon} \in H^1_0(\Omega), \quad \text{such that} \quad \int_{\Omega} \nabla v_{\varepsilon} \cdot \nabla v = \int_{\omega_{\varepsilon}} \nabla u_{\varepsilon} \cdot \nabla v \\ \to \tilde{T}_{\varepsilon}\phi = E_{\varepsilon}v_{\varepsilon}|_{\Omega \times \omega} \end{split}$$

then

$$\begin{cases} \varepsilon v_{\varepsilon} & \rightharpoonup & v_{0} & \text{weakly in } H_{0}^{1}(\Omega) \\ \varepsilon E_{\varepsilon}(\nabla v_{\varepsilon}) & \rightharpoonup & \nabla v_{0} + \nabla_{y}\hat{v} & \text{weakly in } L^{2}(\Omega \times Y) \end{cases}$$
$$\int_{\Omega \times Y} (\nabla v_{0} + \nabla_{y}\hat{v}) \cdot (\nabla \phi + \nabla_{y}\psi) = \int_{\Omega \times \omega} \nabla_{y}\phi(x, y) \cdot (\nabla \phi + \nabla_{y}\psi)$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Collective resonances of the inclusions

The rescaling procedure can also be performed on a pack of cells (i.e. over K^d copies of the unit cell Y)

- define corresponding projection and extension operators $E_{\varepsilon}^{K}, P_{\varepsilon}^{K}$
- define $\tilde{T}_{\varepsilon}^{K}$
- show that $\tilde{T}_{\varepsilon}^{K}$ converges strongly to a limiting operator \tilde{T}_{0}^{K}
- whose spectrum coincides with that of $T_0^K:H^1_\#(KY)/{\bf R}\longrightarrow H^1_\#(KY)/{\bf R}$ defined by

$$\forall \, v \in H^1_{\#}(KY), \quad \int_{KY} \nabla T_0 u \cdot \nabla v \quad = \quad \int_{\omega^K} \nabla u \cdot \nabla v$$

- and in fact $\sigma(T_0^K) = \bigcup_{0 \le j \le K-1} \sigma(T_\eta)$ $\eta = j/K$

4. Homogenization with NIM's

Let $f \in L^2(\Omega)$ and consider $u_{\varepsilon} \in H^1_0(\Omega)$ solution to $(P_{\varepsilon}) \qquad -\operatorname{div}(A_{\varepsilon}(x)\nabla u_{\varepsilon}(x)) = f \quad \text{ in } \Omega$

where $A_{\varepsilon}(x) = \begin{cases} a > 0 & x \in \omega_{\varepsilon} \\ 1 & \text{otherwise} \end{cases}$

Then $u_{\varepsilon} \rightharpoonup u_*$ weakly in $H_0^1(\Omega)$, with $(P_*) - \operatorname{div}(A_* \nabla u_*(x)) = f \quad \text{ in } \Omega$

 A_* is a (constant) matrix, whose entries are given in terms of the solutions to the cell problems : find $\chi_j \in H^1_{\#}(Y)/\mathbf{R}$ such that

 $-\operatorname{div}(A(y)\nabla(\chi_j(x)+y_j)) = 0 \quad \text{in } Y$

What happens in the more general case when $a \in \mathbb{C}$?

[Bouchitté-Bourel-Feldbacq, Hoai-Minh Nguyen, Bunoiu-Ramdani,...]

Note that if $\lambda=1/(1-a)$ is not in the spectrum of $T_0~: H^1_{\#}(y) \to H^1_{\#}(Y)$

$$\forall \ v \in H^1_{\#}(Y) \quad \int_Y \nabla T_0 u \cdot \nabla v \quad = \quad \int_{\omega} \nabla u \cdot \nabla v$$

the homogenized tensor is formally well defined

Prop.

Let $f \in H^{-1}(\Omega)$. Assume that $\lambda = 1/(1-a) \notin \sigma(T_0)$ so that A^* is well defined

- If u_{ε} is a sequence of solutions to (P_{ε}) such that $u_{\varepsilon} \to u$ weakly in H^1 , then u is a solution to (P_*)

- If u is a solution to (P_*) (if any), then there exists a sequence $(f_{\varepsilon}) \subset H^{-1}(\Omega), f_{\varepsilon} \to f$ such that the solutions $u_{\varepsilon} \in H^1_0(\Omega)$ to $-\operatorname{div}(A_{\varepsilon} \nabla u_{\varepsilon}) = f_{\varepsilon}$ in Ω satisfy $u_{\varepsilon} \to u$ weakly in $H^1(\Omega)$

In particular, homogenization cannot discriminate among solutions to the homogenized equation, if they are not unique

We can then relate (partially) the limiting spectrum with the homogenization tensor

Prop.

Let $a \in \mathbb{C} \setminus \sigma(T_0)$ and let A_* denote the associated homogenized matrix Assume that there exists $f \in H^{-1}(\Omega)$ such that the PDE

 $-\operatorname{div}(A^*\nabla u) = f \quad \text{in } \Omega$

does not have a solution in $H^1_0(\Omega)$

```
Then 1/(1-a) \in \lim_{\varepsilon \to 0} \sigma(T_{\varepsilon})
```

The converse is false: the case of rank-one laminates shows that the above system can be well-posed when a is in the limiting spectrum

High contrast $(a \rightarrow \pm \infty \text{ or } a \rightarrow 0)$

Recall that we assumed that $\omega\subset\subset Y$

Prop.

There exists $-\infty < c < C < 0$ such that if $-\infty < a < c$ or if C < a < 0

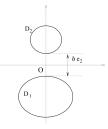
- (P_{ε}) is well posed and its solution u_{ε} depends continuously on f
- The homogenized tensor A^* is elliptic (uniform bounds wrt a)

In particular the homogenized problem (P_*) is well-posed.

5. Conclusion/perspectives

- Does the Bloch spectrum really play a role wrt resonance ?
- How to better characterize the boundary spectrum
- What if the inclusions are not smooth ?
- The hypothesis $\omega\subset\subset Y$ plays an important role. Laminates provide counter-examples to some of the properties we derived
- Is it possible to construct hyperbolic media under the hypothesis that $\omega \subset \subset Y$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ