Superlensing using hyperbolic metamaterials

Eric Bonnetier, Université de Grenoble-Alpes Hoai Minh Nguyen, EPF Lausanne

Outline:

1. Introduction
2. Superlensing via complementary media using NIM's
3. A toy problem for an elliptic/hyperbolic equation
4. Another toy problem for a forward-backward device
5. More interesting devices
6. Design stability ?
7. Conclusion

1. Introduction

Consider Ω smooth bounded domain in \mathbb{R}^{d} and $D \subset \subset \Omega$
Let $k \geq 0$. Metamaterials generally concern PDE's of the type

$$
\left\{\begin{array}{l}
\operatorname{div}\left(s_{\delta} a \nabla u_{\delta}\right)+k^{2} s_{\delta} \sigma u_{\delta}=f \quad \text { in } \Omega \\
a \nabla u_{\delta} \cdot \nu-i k u_{\delta}=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

where the coefficients $a(x), \sigma(x)$ satisfy for some $a_{0}, \sigma_{0}>0$

$$
\begin{array}{ccc}
1 / a_{0}|\xi|^{2} & \leq a(x) \xi \cdot \xi & \leq a_{0}|\xi|^{2}, \quad \xi \in \mathbb{R}^{d} \\
1 / \sigma_{0} & \leq \sigma(x) & \leq \sigma_{0}
\end{array}
$$

and where for $\delta>0$

$$
s_{\delta}(x)=\left\{\begin{array}{cl}
1 & x \in \Omega \backslash \bar{D} \\
-1-i \delta & x \in D
\end{array}\right.
$$

The parameter δ models absorption of EM energy in the medium When $\delta>0$, the PDE (with proper BC 's) has a unique solution

- Under what conditions do the u_{δ} 's remain bounded or do they converge to some limiting u_{0} ?
- If this is the case, in what sense does u_{0} solve the limiting equation

$$
\left\{\begin{array}{l}
\operatorname{div}\left(s_{0}(x) a(x) \nabla u_{0}(x)\right)+k^{2} s_{0}(x) \sigma(x) u_{0}(x)=f \quad \text { in } \Omega \\
a \nabla u_{0} \cdot \nu-i k u_{0}=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

- What are the particular properties (localization, blow up,...) of the u_{δ} 's or of u_{0} ?

Metamaterials have become an active research area :

- Construction of metamaterials: Bouchitté-Bourel-Felbacq, Pendry, Shelby et al, Milton-McPhedran,...
- Well-posedness of transmission problems with sign-changing coefficients : Costabel-Stephan, Bonnet BenDiah-Ciarlet-Chesnel, Hoai-Minh Nguyen, ...
- Extraordinary properties : cloaking, fields enhancement, superlensing : Veselago, Nicorovici-Milton-McPhedran, Ammari-Ciraolo-Kang-Lee-Milton, Kohn-Lu-Schweizer-Weinstein, Hoai-Minh Nguyen, ...

We are particularly interested in hyperbolic metamaterials, where for $\delta=0$ the coefficient matrix in the inclusion has positive and negative eigenvalues

Some natural material exhibit hyperbolic properties in certain frequency ranges
Interesting effects have been observed experimentally, particularly superlensing, focusing, and enhancement of nonlinear response
[Poddubny et al, Nature Photonics, Vol 7. Dec. 2013]

2. Superlensing using NIM's

2.1. Complementary media [Hoai-Minh Nguyen]

Assume that u solves a conduction equation in a medium that contains 2 phases separated by an interface Γ

$$
\operatorname{div}\left(A_{1} \nabla u\right)=f
$$

$$
\begin{gathered}
\\
\Gamma
\end{gathered} \left\lvert\, \begin{gathered}
\operatorname{div}\left(A_{2} \nabla u\right)=f \\
\Omega_{2}
\end{gathered}\right.
$$

Let F be a reflection through Γ and $\quad v(x)=u \circ F^{-1}(x), \quad x \in \Omega_{2}$
Then u and v solve $\left\{\begin{array}{clll}\operatorname{div}\left(A_{2} \nabla u\right) & = & f & \\ \operatorname{div}\left(F_{*} A_{1} \nabla v\right) & = & f & \\ v & & \text { in } \Omega_{2} \\ v & u & & \text { on } \Gamma \\ F_{*} A_{1} \nabla v \cdot \nu & = & A_{2} \nabla u \cdot \nu & \\ \text { on } \Gamma\end{array}\right.$
where $\quad F_{*} A_{1}(y)=\frac{D F(x) A_{1}(x) D F^{T}(x)}{|\operatorname{det} D F(x)|}$
If $F_{*} A_{1}=A_{2}$ then unique continuation implies that $u \equiv v$

2.2. Cloaking by complementary media

Consider the annulus $\left\{r_{2}<r<r_{3}\right\}$ filled with NIM in a domain Ω, such that $B_{r_{3}} \subset \subset \Omega, \quad r_{3}=r_{2}^{2} / r_{1}$

Let $f \in L^{2}(\Omega)$ with $\quad S p t f \subset \Omega \backslash B_{r_{3}} \quad$ and let u_{δ} solve

$$
\operatorname{div}\left(\varepsilon_{\delta}(x) \nabla u_{\delta}(x)\right)=f \quad \text { in } \Omega
$$

where $\quad \varepsilon_{\delta}=\left\{\begin{array}{cl}-(1+i \delta) & \text { for } r_{1}<|x|<r_{2} \\ 1 & \text { otherwise }\end{array}\right.$
Assume that u_{δ} is uniformly bounded wrt δ and that $u_{\delta} \rightarrow u_{0}$ in $H^{1}(\Omega)$. Then

$$
\operatorname{div}\left(\varepsilon_{0}(x) \nabla u_{0}(x)\right) \quad=\quad f \quad \text { in } \Omega
$$

Let $F(x)=r_{2}^{2} x /|x|^{2}$ be the reflection through $\partial B_{r_{2}}$ and

$$
v(x)=u_{0} \circ F^{-1}(x), \quad x \in \mathbb{R}^{2} \backslash B_{r_{2}}
$$

Then $v(x)=u_{0}(x), \quad x \in B_{r_{3}} \backslash B_{r_{2}}$

Next, let $G(x)=r_{3}^{2} x /|x|^{2}$ be the reflection through $\partial B_{r_{3}}$ and

$$
w(x)=v \circ G^{-1}(x), \quad x \in B_{r_{3}}
$$

Then $\left\{\begin{array}{cll}\Delta w & =0 & \text { in } B_{r_{3}} \\ w & =v=u_{0} & \\ \left.\partial_{\nu} w\right|_{-} & =\left.\partial_{\nu} v\right|_{-}=\partial_{\nu} u_{0} & \\ \text { on } \partial B_{r_{3}}\end{array}\right.$

It follows that $\mathcal{U}(x)=\left\{\begin{array}{ll}u_{0}(x) & \text { in } \Omega \backslash B_{r_{3}} \\ w(x) & \text { in } B_{r_{3}}\end{array}\right.$ satisfies $\Delta \mathcal{U}=f$ in Ω
$\rightarrow \quad$ An observer located outside of $B_{r_{3}}$ cannot see the annulus

2.3. Superlensing via complementary media

Consider $0<r_{0}<r_{1}<r_{2}<r_{3}<R \quad m, \alpha>1$

$$
m r_{0}=r_{2} \quad m r_{1}=r_{3} \quad r_{3}=r_{2}^{\alpha} / r_{1}^{\alpha-1}
$$

Let $F: B_{r_{2}} \backslash\{0\} \longrightarrow \mathbb{R}^{2} \backslash \overline{B_{r_{2}}} \quad$ defined by $\quad F(x)=r_{2}^{\alpha} x /|x|^{\alpha}$
Consider a conductivity map of the form

$$
A_{\delta}(x)=\left\{\begin{array}{cl}
a(x) & \text { in } B_{r_{0}} \quad \text { (to be imaged) } \\
m^{d-2} I & \text { in } B_{r_{1}} \backslash B_{r_{0}} \\
(-1-i \delta) F_{*}^{-1} I & \text { in } B_{r_{2}} \backslash B_{r_{1}} \\
I & \text { otherwise }
\end{array}\right.
$$

Let u_{δ} be the solution in $H_{0}^{1}\left(B_{R}\right)$ to

$$
\operatorname{div}\left(s_{\delta} A \nabla u_{\delta}\right)=f \quad \text { in } \Omega=B_{R}
$$

and let $\mathcal{U} \in H_{0}^{1}\left(B_{R}\right)$ be the solution to $\operatorname{div}(\mathcal{A} \nabla \mathcal{U})=f$
with $\mathcal{A}=\left\{\begin{array}{cl}a(x / m) & \text { in } B_{r_{2}} \\ I & \text { otherwise }\end{array}\right.$

Thm [HM Nguyen 15] Assume that $\quad \operatorname{Spt} f \cap B_{r_{3}}=\emptyset, \quad$ then

$$
u_{\delta} \rightharpoonup \mathcal{U} \quad \text { in } H^{1}\left(\Omega \backslash B_{r_{3}}\right) \text { as } \delta \rightarrow 0
$$

- Superlensing is achieved: for an observer outside $B_{r_{3}}$, the medium $a(x)$ that occupies $B_{r_{0}}$ is perceived as

$$
m^{2-d} a(x / m) \text { in } B_{r_{2}}=B_{m r_{0}}
$$

- A similar construction is valid in 3D and for the Helmholtz equation
- It uses reflecting complementary media, i.e. such that

$$
F_{*}(x) A(x)=A(x), \quad x \in B_{r_{3}} \backslash \overline{B_{r_{2}}}
$$

so that u_{δ} and $u_{\delta} \circ F^{-1}$ satisfy the same equation and the same Cauchy data across $\partial B_{r_{2}}$

3. A toy problem for an elliptic/hyperbolic equation

Consider

$$
\begin{aligned}
\Omega & =\Omega_{l} \cup \Omega_{c} \cup \Omega_{r} \\
& =(-l, 0) \times(0,2 \pi) \cup(0, T) \times(0,2 \pi) \cup(T, L) \times(0,2 \pi)
\end{aligned}
$$

and $\Gamma=\partial \Omega, \quad \Gamma_{l}=\{0\} \times(0,2 \pi), \quad \Gamma_{r}=\{T\} \times(0,2 \pi)$
Let a be a uniformly elliptic matrix-valued conductivity and

$$
a_{\delta}=\left(\begin{array}{cc}
1-i \delta & 0 \\
0 & -1-i \delta
\end{array}\right)
$$

Consider the conductivity

$$
A_{\delta}(x)= \begin{cases}a(x) & \text { in } \Omega_{l} \cup \Omega_{r} \\ a_{\delta}(x) & \text { in } \Omega_{c}\end{cases}
$$

Let $f \in L^{2}(\Omega)$, with $\quad \operatorname{Spt}(f) \cap \Omega_{c}=\emptyset$
and consider the equation

$$
\left\{\begin{array}{l}
\operatorname{div}\left(A_{\delta} \nabla u_{\delta}\right)=f \quad \text { in } \Omega \\
u_{\delta} \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

Assume that u_{δ} is uniformly bounded in $H^{1}(\Omega)$ and that $u_{\delta} \rightharpoonup u_{0}$ weakly in $H^{1}(\Omega)$ Then $u_{0} \in H_{0}^{1}(\Omega)$ is a solution to

$$
\left\{\begin{array}{lll}
\operatorname{div}\left(a \nabla u_{0}\right) & =f & \text { in } \Omega \backslash \Omega_{c} \\
\left(\partial_{11}^{2}-\partial_{22}^{2}\right) u_{0} & =0 & \text { in } \Omega_{c}
\end{array}\right.
$$

with the transmission conditions

$$
\left\{\begin{array} { l l }
{ u _ { 0 } | _ { \Omega _ { c } } } & { = u _ { 0 } | _ { \Omega _ { l } } } \\
{ \partial _ { 1 } u _ { 0 } | _ { \Omega _ { c } } } & { = a \partial _ { 1 } u _ { 0 } | _ { \Omega _ { l } } }
\end{array} \text { on } \Gamma _ { l } \quad \left\{\begin{array}{lll}
u_{0} \mid \Omega_{c} & =\left.u_{0}\right|_{\Omega_{r}} \\
\partial_{1} u_{0} \mid \Omega_{c} & =\left.a \partial_{1} u_{0}\right|_{\Omega_{r}}
\end{array} \text { on } \Gamma_{r}\right.\right.
$$

This is an ill-posed probem, except for special choices of T

Consider the effective domain

$$
\hat{\Omega}=\Omega_{l} \cup\left(\binom{-T}{0}+\Omega_{r}\right)
$$

and define

$$
\hat{a}\left(x_{1}, x_{2}\right), \hat{f}\left(x_{1}, x_{2}\right)= \begin{cases}a\left(x_{1}, x_{2}\right), f\left(x_{1}, x_{2}\right) & \text { in } \Omega_{l} \\ a\left(x_{1}+T, x_{2}\right), f\left(x_{1}+T, x_{2}\right) & \text { in } \hat{\Omega} \backslash \Omega_{l}\end{cases}
$$

Assume that \hat{a} is smooth, so that the solution to

$$
\left\{\begin{array}{l}
\operatorname{div}(\hat{a} \nabla \hat{u})=\hat{f} \quad \text { in } \hat{\Omega} \\
\hat{u} \in H_{0}^{1}(\hat{\Omega})
\end{array}\right.
$$

is in $H^{2}(\hat{\Omega})$

Proposition : superlensing with tuned HHMs

Assume that T is a multiple of 2π and that $\quad \operatorname{Spt}(f) \cap \Omega_{c}=\emptyset$
Then the solutions u_{δ} to

$$
\left\{\begin{array}{l}
\operatorname{div}\left(A_{\delta} \nabla u_{\delta}\right)=f \quad \text { in } \Omega \\
u_{\delta} \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

are uniformly bounded and converge strongly in H^{1} to u_{0}, the unique solution to

$$
\left\{\begin{array}{l}
\operatorname{div}\left(A_{0} \nabla u_{0}\right)=f \quad \text { in } \Omega \\
u_{0} \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

Moreover, u_{0} satisfies

$$
u_{0}\left(x_{1}, x_{2}\right)= \begin{cases}\hat{u}\left(x_{1}, x_{2}\right) & \text { in } \Omega_{l} \\ \hat{u}\left(x_{1}-T, x_{2}\right) & \text { in } \Omega_{r}\end{cases}
$$

In other words, u_{0} can be computed in $\Omega_{l} \cup \Omega_{r}$ as if the part Ω_{c} had disappeared

Proof: Step 1. Construction of u_{0}

The smoothness assumption on \hat{a} implies that $\hat{u} \in H^{2}(\hat{\Omega})$ and

$$
\|\hat{u}\|_{H^{2}(\hat{\Omega})} \leq C\|f\|_{L^{2}(\hat{\Omega})}
$$

Interpreting x_{1} as a time variable in Ω_{c}, standard results for the wave equation show that there is a unique solution $v \in \mathcal{C}^{0}\left([0, T], H_{0}^{1}(0,2 \pi)\right) \cap \mathcal{C}^{1}\left([0, T], L^{2}(0,2 \pi)\right)$ to

$$
\left(\partial_{11}^{2}-\partial_{22}^{2}\right) v=0 \quad \text { in } \Omega_{c}=(0, T) \times(0,2 \pi)
$$

with the boundary condition $v=0$ on $\partial \Omega \cap \partial \Omega_{c}$, and with the initial conditions

$$
\begin{cases}v\left(0, x_{2}\right) & =\hat{u}\left(0, x_{2}\right) \\ \partial_{1} v\left(0, x_{2}\right) & =\partial_{1} \hat{u}\left(0, x_{2}\right)\end{cases}
$$

Moreover, v satisfies

$$
\|\nabla v\|_{L^{2}\left(\Omega_{c}\right)} \leq C \int_{0}^{2 \pi}\left|\hat{u}\left(0, x_{2}\right)\right|^{2}+\left|\partial_{1} \hat{u}\left(0, x_{2}\right)\right|^{2} \leq C\|f\|_{L^{2}(\Omega)}
$$

As $\quad v(x)=\sum_{n \geq 1} \sin \left(n x_{2}\right)\left(a_{n} \cos \left(n x_{1}\right)+b_{n} \sin \left(n x_{1}\right)\right)$
and since $T \in 2 \pi \mathbf{N}$ we have

$$
\left\{\begin{array}{rlr}
v\left(0, x_{2}\right) & = & v\left(T, x_{2}\right) \\
\partial_{1} v\left(0, x_{2}\right) & = & \partial_{1} v\left(T, x_{2}\right)
\end{array}\right.
$$

i.e., v satisfies the same Cauchy data at $x_{1}=0$ and at $x_{1}=T$

One can then define the H_{0}^{1} function

$$
u_{0}\left(x_{1}, x_{2}\right)= \begin{cases}\hat{u}\left(x_{1}, x_{2}\right) & \text { in } \Omega_{l} \\ v\left(x_{1}, x_{2}\right) & \text { in } \Omega_{c} \\ \hat{u}\left(x_{1}-T, x_{2}\right) & \text { in } \Omega_{r}\end{cases}
$$

which satisfies

$$
\begin{aligned}
& \operatorname{div}\left(A_{0} \nabla u_{0}\right)=f \quad \text { in } \Omega, \text { and } \\
& \quad\left\|u_{0}\right\|_{H^{1}(\Omega)} \leq C\|f\|_{L^{2}(\Omega)}
\end{aligned}
$$

Step 2. Uniqueness of u_{0}

Assume that w_{0} is another solution
$\ln \Omega_{c}, w_{0}$ can be expanded as
$w_{0}(x)=\sum_{n \geq 1} \sin \left(n x_{2}\right)\left(\alpha_{n} \cos \left(n x_{1}\right)+\beta_{n} \sin \left(n x_{1}\right)\right)$

$$
\text { so that }\left\{\begin{array}{rrr}
w_{0}\left(0, x_{2}\right) & = & w_{0}\left(T, x_{2}\right) \\
\partial_{1} w_{0}\left(0, x_{2}\right) & = & \partial_{1} w_{0}\left(T, x_{2}\right)
\end{array}\right.
$$

one can then define

$$
\hat{w}\left(x_{1}, x_{2}\right)= \begin{cases}w_{0}\left(x_{1}, x_{2}\right) & \text { in } \Omega_{l} \\ w_{0}\left(x_{1}+T, x_{2}\right) & \text { in } \hat{\Omega} \backslash \Omega_{l}\end{cases}
$$

which is in $H_{0}^{1}(\hat{\Omega})$, and which solves $\quad \operatorname{div}(\hat{A} \nabla \hat{w})=\hat{f}$ in $\hat{\Omega}$
Uniqueness for this problem implies that $\hat{w} \equiv \hat{u}$, from which it follows that $w_{0} \equiv u_{0}$

Step 3. Convergence

Set $\quad v_{\delta}=u_{\delta}-u_{0} \quad$ in Ω. Then

$$
\begin{aligned}
\operatorname{div}\left(A_{\delta} \nabla v_{\delta}\right) & =\operatorname{div}\left(A_{\delta} \nabla u_{\delta}\right)-\operatorname{div}\left(A_{0} \nabla u_{0}\right)+\operatorname{div}\left(A_{0} \nabla u_{0}\right)-\operatorname{div}\left(A_{\delta} \nabla u_{0}\right) \\
& =\operatorname{div}\left(i \delta 1_{\Omega_{c}} \nabla u_{0}\right)
\end{aligned}
$$

Multiplying by $\overline{v_{\delta}}$, integrating, taking the imaginary and real parts yields

$$
\begin{aligned}
\left\|\nabla v_{\delta}\right\|_{L^{2}\left(\Omega_{c}\right)}^{2} & \leq\left|\int_{\Omega} \nabla u_{0} \nabla v_{\delta}\right| \\
\int_{\Omega}\left|\nabla v_{\delta}\right|^{2} & \leq C\left|\int_{\Omega} \nabla u_{0} \nabla v_{\delta}\right|
\end{aligned}
$$

from which it follows that u_{δ} is uniformly bounded in H^{1}, and that v_{δ} converges strongly to 0

4. Another toy problem for a forward-backward device

$$
\begin{aligned}
\Omega & =(-l, 0) \times(0,2 \pi) \cup(0, T / 2) \times(0,2 \pi) \cup(T / 2, T) \times(0,2 \pi) \cup(T, L) \times(0,2 \pi) \\
& =\Omega_{l} \cup \Omega_{c, 1} \cup \Omega_{c, 2} \cup \Omega_{r}
\end{aligned}
$$

We consider a conductivity of the form

$$
A_{\delta}(x)=\left\{\begin{array}{cc}
a(x) & x \in \Omega_{l} \cup \Omega_{r} \\
\left(\begin{array}{cc}
1+i O(\delta) & 0 \\
0 & -1+i O(\delta)
\end{array}\right) & x \in \Omega_{c, 1} \\
\left(\begin{array}{cc}
-1+i O(\delta) & 0 \\
0 & 1+i O(\delta)
\end{array}\right) & x \in \Omega_{c, 2}
\end{array}\right.
$$

Prop: superlensing via the complementary property

Assume that $\quad \operatorname{Spt} f \cap \Omega_{c}=\emptyset$
Then for some $C>0$, independent of δ and f, we have

$$
\left\|u_{\delta}\right\|_{H^{1}(\Omega)} \leq C\|f\|_{L^{2}(\Omega)}
$$

Further, as $\delta \rightarrow 0, u_{\delta} \rightarrow u_{0}$ in $H^{1}(\Omega)$, where $u_{0} \in H_{0}^{1}(\Omega)$ is the unique solution to

$$
\operatorname{div}\left(A_{0} \nabla u_{0}\right)=f \operatorname{in} \Omega
$$

Additionnally, let \hat{u} denote the $H_{0}^{1}(\hat{\Omega})$-solution to

$$
\operatorname{div}(\hat{A} \nabla \hat{u})=\hat{f} \text { in } \hat{\Omega}
$$

then $\quad u_{0}\left(x_{1}, x_{2}\right)= \begin{cases}\hat{u}\left(x_{1}, x_{2}\right) & \text { in } \Omega_{l} \\ \hat{u}\left(x_{1}-T, x_{2}\right) & \text { in } \Omega_{r}\end{cases}$
Again, the part Ω_{c} has disappeared in the limit. There is no hypothesis on T here

- The proof consists in the same 3 steps as in the previous proof
- In the first step construct a solution to the wave equation

$$
\left(\partial_{11}^{2}-\partial_{22}^{2}\right) v=0 \quad \text { in } \Omega_{c, 1}
$$

with Cauchy data

$$
v\left(0, x_{2}\right)=\hat{u}\left(0, x_{2}\right) \quad \partial_{1} v\left(0, x_{2}\right)=\partial_{1} \hat{u}\left(0, x_{2}\right)
$$

The reflection of v across $x_{1}=T / 2$

$$
v_{r}\left(x_{1}, x_{2}\right)=v\left(T-x_{1}, x_{2}\right)
$$

is also a solution to the wave equation and satisfies the transmission conditions

$$
v\left(T / 2, x_{2}\right)=v_{r}\left(T / 2, x_{2}\right) \quad \partial_{1} v\left(T / 2, x_{2}\right)=-\partial_{1} v_{r}\left(T / 2, x_{2}\right)
$$

It follows that

$$
\hat{u}\left(0, x_{2}\right)=v_{r}\left(T, x_{2}\right) \quad \partial_{1} \hat{u}\left(0, x_{2}\right)=-\partial_{1} v_{r}\left(T, x_{2}\right)
$$

so that one can define

$$
u_{0}= \begin{cases}\hat{u} & \text { in } \Omega_{l} \\ v & \text { in } \Omega_{c, 1} \\ v_{r} & \text { in } \Omega_{c, 2} \\ \hat{u} & \text { in } \Omega_{r}\end{cases}
$$

5. More interesting devices :

The metamaterials lie in the red annulus

- Tuned superlensing in 2D, static (Laplace) and finite frequency (Helmholtz) case
- Tuned superlensing in 3D, finite frequency case
- Superlensing via the complementary property in 2D and 3D, static and finite frequency case

Example: Tuned superlensing in 3D, finite frequency case

Let Ω be a smooth bounded connected domain in \mathbb{R}^{3}
Assume that $0<r_{1}<r_{2}, \quad r_{2}-r_{1} \in 4 \pi \mathbf{N}, \quad B_{r_{2}} \subset \Omega$
Assume that $k>0, f \in L^{2}\left(\Omega \backslash B_{r_{2}}\right)$

Medium description (using spherical coordinates r, θ, φ)
$A_{\delta}, \Sigma_{\delta}=\left\{\begin{array}{ccc}a \text { (uniformly elliptic, smooth) } & \sigma & \text { (bounded) } \\ \text { in } B_{r_{1}} \\ \frac{1}{r^{2}} e_{r} \otimes e_{r}-\left(e_{\theta} \otimes e_{\theta}+e_{\varphi} \otimes e_{\varphi}\right)-i \delta & \frac{1}{4 k^{2} r^{2}}+i \delta & \text { in } B_{r_{2}} \backslash B_{r_{1}} \\ I & 1 & \text { in } \Omega \backslash B_{r_{2}}\end{array}\right.$

Thm : The solutions u_{δ} to

$$
\left\{\begin{array}{llll}
\operatorname{div}\left(A_{\delta} \nabla u_{\delta}\right)+k^{2} \Sigma_{\delta} u_{\delta} & = & f & \text { in } \Omega \\
\partial_{\nu} u_{\delta}-i k u_{\delta} & =0 & \text { on } \partial \Omega
\end{array}\right.
$$

are uniformly bounded in $H^{1}(\Omega)$ and converge strongly to u_{0} the unique solution to the above system with $\delta=0$

Moreover, $u_{0}=\hat{u}$ in $\Omega \backslash B_{r_{2}}$, where \hat{u} is the unique solution to

$$
\left\{\begin{array}{lll}
\operatorname{div}(\hat{A} \nabla \hat{u})+k^{2} \hat{\Sigma} \hat{u} & =f & \text { in } \Omega \\
\partial_{\nu} \hat{u}-i k \hat{u} & =0 & \text { on } \partial \Omega
\end{array}\right.
$$

where $\quad \hat{A}, \hat{\Sigma}=\left\{\begin{array}{ccl}I & 1 & \text { in } \Omega \backslash B_{r_{2}} \\ \frac{r_{1}}{r_{2}} a\left(\frac{r_{1}}{r_{2}} x\right) & \frac{r_{1}^{3}}{r_{2}^{3}} \sigma\left(\frac{r_{1}}{r_{2}} x\right) & \text { in } B_{r_{2}}\end{array}\right.$

Remarks :

- The object in $B_{r_{1}}$ is magnified in the limit $\delta \rightarrow 0$ by a factor $\frac{r_{2}}{r_{1}}$
- The equation for u_{δ} in $B_{r_{2}} \backslash B_{r_{1}}$ takes the form

$$
\partial_{r r}^{2} u-\Delta_{\mathcal{S}^{1}} u+\frac{1}{4} u=0
$$

Expansion in spherical harmonics shows that the Cauchy data are transported from $\partial B_{r_{2}}$ to $\partial B_{r_{1}}$

6. Design stability

Consider again the toy problem

What happens when T is not a multiple of 2π ?
If we can define a limiting solution u_{0} when $\delta=0$, then the same proof as for the case $T=2 \pi$ shows that $u_{\delta} \rightarrow u_{0}$ (in particular the u_{δ} are uniformly bounded)

By linearity, we can restrict the study to

Seek

$$
u_{0}(x, y)= \begin{cases}\sum_{n \geq 1} \sin (n y)\left(a_{n} e^{n x}+b_{n} e^{-n x}\right) & -l<x<0 \\ \sum_{n \geq 1} \sin (n y)\left(\alpha_{n} e^{i n x}+\beta_{n} e^{-i n x}\right) & 0<x<T\end{cases}
$$

Expressing the transmission and boundary conditions fixes the values of the $a_{n}, b_{n}, \alpha_{n}, \beta_{n}$'s provided the determinant of the associated linear system does not vanish

The case of a homogeneous Dirichlet BC at $x=T$

$$
\operatorname{det}=2 i\left[e^{n l}(\cos (n T)+\sin (n T))-e^{-n l}(\cos (n T)-\sin (n T))\right]
$$

- If $l=T / \pi$ is irrational and diophantine of class r

$$
\forall(p, q) \in \mathbf{Z} \times \mathbf{Z}^{*} \quad\left|l-\frac{p}{q} \pi\right| \quad>\frac{\varepsilon}{q^{r}}
$$

for some $\varepsilon>0$, then

$$
\begin{aligned}
& \left|e^{n l}(\cos (n T)+\sin (n T))\right| \\
& \begin{array}{l}
=e^{n l}\left|(\cos (n T)+\sin (n T))-\left(\cos \left(\frac{3 \pi}{4}+2 \pi p\right)+\sin \left(\frac{3 \pi}{4}+2 \pi p\right)\right)\right| \\
\quad \text { with } 2 \pi p<n T<2 \pi(p+1)
\end{array} \\
& \geq e^{n l} \frac{\sqrt{2}}{2} n\left|T-\frac{3+8 p}{4 n} \pi\right| \\
& \geq e^{n l} \frac{\sqrt{2}}{2} \frac{\varepsilon n}{(4 n)^{r}} \geq c>0
\end{aligned}
$$

Thus, there is a unique solution u_{0} to the elliptic/hyperbolic PDE

- If $T=\frac{4 p+3}{4 q} \pi, p, q \in \mathbf{Z}, q \neq 0$
then $\cos (n T)+\sin (n T)$ vanishes for an infinite number of n 's
The determinant is $O\left(e^{-n l}\right)$ and there is no solution u_{0}

Remarks :

See also [Bourgin-Duffin 1939, F. John 1941]
Diophantine numbers in $(0,1)$ form a set of Lebesgue measure 1
The behavior of HMM's strongly depends on the geometry of the inclusions

7. Conclusion

- The superlensing properties of NIM's are related to the unique continuation principle; those of HMM's to the uniqueness of solutions to the Cauchy problem for the wave equation
- HMM's can be constructed by homogenization of 'metals', for instance by homogenization of laminates, at least concerning electric permittivity.

Are there other constructions ?

- Concerning superlensing using HMM's, there are many open questions :

Other geometries (in 2D, in 3D) ?
Extension to the Maxwell system or to the system of elasticity ?

