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1. Introduction

Consider Ω smooth bounded domain in Rd and D ⊂⊂ Ω

Let k ≥ 0. Metamaterials generally concern PDE’s of the type

8<: div(sδa∇uδ) + k2sδσuδ = f in Ω

a∇uδ · ν − ikuδ = 0 on ∂Ω

where the coefficients a(x), σ(x) satisfy for some a0, σ0 > 0

1/a0|ξ|2 ≤ a(x)ξ · ξ ≤ a0|ξ|2, ξ ∈ Rd
1/σ0 ≤ σ(x) ≤ σ0

and where for δ > 0

sδ(x) =


1 x ∈ Ω \D

−1− iδ x ∈ D



The parameter δ models absorption of EM energy in the medium

When δ > 0, the PDE (with proper BC’s) has a unique solution

- Under what conditions do the uδ’s remain bounded or do they converge to some
limiting u0 ?

- If this is the case, in what sense does u0 solve the limiting equation8<: div(s0(x)a(x)∇u0(x)) + k2s0(x)σ(x)u0(x) = f in Ω

a∇u0 · ν − iku0 = 0 on ∂Ω
?

- What are the particular properties (localization, blow up,...) of the uδ’s or of u0 ?



Metamaterials have become an active research area :

- Construction of metamaterials : Bouchitté-Bourel-Felbacq, Pendry, Shelby et al,
Milton-McPhedran,. . .

- Well-posedness of transmission problems with sign-changing coefficients :
Costabel-Stephan, Bonnet BenDiah-Ciarlet-Chesnel, Hoai-Minh Nguyen, . . .

- Extraordinary properties : cloaking, fields enhancement, superlensing : Veselago,
Nicorovici-Milton-McPhedran, Ammari-Ciraolo-Kang-Lee-Milton,
Kohn-Lu-Schweizer-Weinstein, Hoai-Minh Nguyen, . . .

We are particularly interested in hyperbolic metamaterials, where for δ = 0 the
coefficient matrix in the inclusion has positive and negative eigenvalues

Some natural material exhibit hyperbolic properties in certain frequency ranges

Interesting effects have been observed experimentally, particularly superlensing,
focusing, and enhancement of nonlinear response
[Poddubny et al, Nature Photonics, Vol 7. Dec. 2013]



2. Superlensing using NIM’s

2.1. Complementary media [Hoai-Minh Nguyen]

Assume that u solves a conduction equation in a medium that contains 2 phases
separated by an interface Γ

div(A1∇u) = f div(A2∇u) = f

Γ Ω2

Let F be a reflection through Γ and v(x) = u ◦ F−1(x), x ∈ Ω2

Then u and v solve

8><>:
div(A2∇u) = f in Ω2

div(F∗A1∇v) = f in Ω2

v = u on Γ
F∗A1∇v · ν = A2∇u · ν on Γ

where F∗A1(y) =
DF (x)A1(x)DFT (x)

|detDF (x)|

If F∗A1 = A2 then unique continuation implies that u ≡ v



2.2. Cloaking by complementary media

Consider the annulus {r2 < r < r3} filled with NIM

in a domain Ω, such that Br3 ⊂⊂ Ω, r3 = r2
2/r1

Let f ∈ L2(Ω) with Sptf ⊂ Ω \Br3 and let uδ solve

div(εδ(x)∇uδ(x)) = f in Ω

where εδ =

8<: −(1 + iδ) for r1 < |x| < r2

1 otherwise

Assume that uδ is uniformly bounded wrt δ and that uδ → u0 in H1(Ω). Then

div(ε0(x)∇u0(x)) = f in Ω



Let F (x) = r2
2x/|x|2 be the reflection through ∂Br2 and

v(x) = u0 ◦ F−1(x), x ∈ R2 \Br2

Then v(x) = u0(x), x ∈ Br3 \Br2

Next, let G(x) = r2
3x/|x|2 be the reflection through ∂Br3 and

w(x) = v ◦G−1(x), x ∈ Br3

Then

8<: ∆w = 0 in Br3
w = v = u0 on ∂Br3

∂νw|− = ∂νv|− = ∂νu0 on ∂Br3

It follows that U(x) =


u0(x) in Ω \Br3
w(x) in Br3

satisfies ∆U = f in Ω

→ An observer located outside of Br3 cannot see the annulus



2.3. Superlensing via complementary media

Consider 0 < r0 < r1 < r2 < r3 < R m,α > 1

mr0 = r2 mr1 = r3 r3 = rα2 /r
α−1
1

Let F : Br2 \ {0} −→ R2 \Br2 defined by F (x) = rα2 x/|x|α

Consider a conductivity map of the form

Aδ(x) =

8>>>>>>><>>>>>>>:

a(x) in Br0 (to be imaged)

md−2I in Br1 \Br0

(−1− iδ)F−1
∗ I in Br2 \Br1

I otherwise



Let uδ be the solution in H1
0 (BR) to

div(sδA∇uδ) = f in Ω = BR

and let U ∈ H1
0 (BR) be the solution to div(A∇U) = f in Ω

with A =

8<: a(x/m) in Br2

I otherwise

Thm [HM Nguyen 15] Assume that Sptf ∩Br3 = ∅, then

uδ ⇀ U in H1(Ω \Br3 ) as δ → 0



- Superlensing is achieved: for an observer outside Br3 , the medium a(x) that
occupies Br0 is perceived as

m2−da(x/m) in Br2 = Bmr0

- A similar construction is valid in 3D and for the Helmholtz equation

- It uses reflecting complementary media, i.e. such that

F∗(x)A(x) = A(x), x ∈ Br3 \Br2
so that uδ and uδ ◦ F−1 satisfy the same equation and the same Cauchy data

across ∂Br2



3. A toy problem for an elliptic/hyperbolic equation

Consider

Ω = Ωl ∪ Ωc ∪ Ωr

= (−l, 0)× (0, 2π) ∪ (0, T )× (0, 2π) ∪ (T, L)× (0, 2π)

and Γ = ∂Ω, Γl = {0} × (0, 2π), Γr = {T} × (0, 2π)

Let a be a uniformly elliptic matrix-valued conductivity and

aδ =

„
1− iδ 0

0 −1− iδ

«
Consider the conductivity

Aδ(x) =

8<: a(x) in Ωl ∪ Ωr

aδ(x) in Ωc



Let f ∈ L2(Ω), with Spt(f) ∩ Ωc = ∅

and consider the equation 
div(Aδ∇uδ) = f in Ω
uδ ∈ H1

0 (Ω)

Assume that uδ is uniformly bounded in H1(Ω) and that uδ ⇀ u0 weakly in H1(Ω)

Then u0 ∈ H1
0 (Ω) is a solution to

div(a∇u0) = f in Ω \ Ωc
(∂2

11 − ∂2
22)u0 = 0 in Ωc

with the transmission conditions
u0|Ωc = u0|Ωl

∂1u0|Ωc = a∂1u0|Ωl

on Γl


u0|Ωc = u0|Ωr

∂1u0|Ωc = a∂1u0|Ωr

on Γr

This is an ill-posed probem, except for special choices of T



Consider the effective domain

Ω̂ = Ωl ∪
„„

−T
0

«
+ Ωr

«

and define

â(x1, x2), f̂(x1, x2) =

8<:
a(x1, x2), f(x1, x2) in Ωl

a(x1 + T, x2), f(x1 + T, x2) in Ω̂ \ Ωl

Assume that â is smooth, so that the solution to8<: div(â∇û) = f̂ in Ω̂

û ∈ H1
0 (Ω̂)

is in H2(Ω̂)



Proposition : superlensing with tuned HHMs

Assume that T is a multiple of 2π and that Spt(f) ∩ Ωc = ∅

Then the solutions uδ to 
div(Aδ∇uδ) = f in Ω
uδ ∈ H1

0 (Ω)

are uniformly bounded and converge strongly in H1 to u0, the unique solution to
div(A0∇u0) = f in Ω
u0 ∈ H1

0 (Ω)

Moreover, u0 satisfies

u0(x1, x2) =


û(x1, x2) in Ωl
û(x1 − T, x2) in Ωr

In other words, u0 can be computed in Ωl ∪ Ωr as if the part Ωc had disappeared



Proof: Step 1. Construction of u0

The smoothness assumption on â implies that û ∈ H2(Ω̂) and

||û||H2(Ω̂) ≤ C ||f ||L2(Ω̂)

Interpreting x1 as a time variable in Ωc, standard results for the wave equation show
that there is a unique solution v ∈ C0([0, T ], H1

0 (0, 2π)) ∩ C1([0, T ], L2(0, 2π)) to

(∂2
11 − ∂2

22)v = 0 in Ωc = (0, T )× (0, 2π)

with the boundary condition v = 0 on ∂Ω ∩ ∂Ωc, and with the initial conditions
v(0, x2) = û(0, x2)
∂1v(0, x2) = ∂1û(0, x2)

Moreover, v satisfies

||∇v||L2(Ωc) ≤ C

Z 2π

0
|û(0, x2)|2 + |∂1û(0, x2)|2 ≤ C||f ||L2(Ω)



As v(x) =
P
n≥1 sin(nx2) (an cos(nx1) + bn sin(nx1))

and since T ∈ 2πN we have
v(0, x2) = v(T, x2)

∂1v(0, x2) = ∂1v(T, x2)

i.e., v satisfies the same Cauchy data at x1 = 0 and at x1 = T

One can then define the H1
0 function

u0(x1, x2) =

8<: û(x1, x2) in Ωl
v(x1, x2) in Ωc
û(x1 − T, x2) in Ωr

which satisfies div(A0∇u0) = f in Ω, and

||u0||H1(Ω) ≤ C ||f ||L2(Ω)



Step 2. Uniqueness of u0

Assume that w0 is another solution

In Ωc, w0 can be expanded as
w0(x) =

P
n≥1 sin(nx2) (αn cos(nx1) + βn sin(nx1))

so that


w0(0, x2) = w0(T, x2)

∂1w0(0, x2) = ∂1w0(T, x2)

one can then define

ŵ(x1, x2) =


w0(x1, x2) in Ωl
w0(x1 + T, x2) in Ω̂ \ Ωl

which is in H1
0 (Ω̂), and which solves div(Â∇ŵ) = f̂ in Ω̂

Uniqueness for this problem implies that ŵ ≡ û, from which it follows that w0 ≡ u0



Step 3. Convergence

Set vδ = uδ − u0 in Ω. Then

div(Aδ∇vδ) = div(Aδ∇uδ)− div(A0∇u0) + div(A0∇u0)− div(Aδ∇u0)

= div(iδ1Ωc∇u0)

Multiplying by vδ, integrating, taking the imaginary and real parts yields

||∇vδ||2L2(Ωc)
≤

˛̨̨̨Z
Ω
∇u0∇vδ

˛̨̨̨
Z

Ω
|∇vδ|2 ≤ C

˛̨̨̨Z
Ω
∇u0∇vδ

˛̨̨̨

from which it follows that uδ is uniformly bounded in H1, and that vδ converges
strongly to 0



4. Another toy problem for a forward-backward device

Ω = (−l, 0)× (0, 2π) ∪ (0, T/2)× (0, 2π) ∪ (T/2, T )× (0, 2π) ∪ (T, L)× (0, 2π)

= Ωl ∪ Ωc,1 ∪ Ωc,2 ∪ Ωr

We consider a conductivity of the form

Aδ(x) =

8>>>>>>><>>>>>>>:

a(x) x ∈ Ωl ∪ Ωr„
1 + iO(δ) 0

0 −1 + iO(δ)

«
x ∈ Ωc,1

„
−1 + iO(δ) 0

0 1 + iO(δ)

«
x ∈ Ωc,2



Prop: superlensing via the complementary property

Assume that Sptf ∩ Ωc = ∅

Then for some C > 0, independent of δ and f , we have

||uδ||H1(Ω) ≤ C||f ||L2(Ω)

Further, as δ → 0, uδ → u0 in H1(Ω), where u0 ∈ H1
0 (Ω) is the unique solution to

div(A0∇u0) = f in Ω

Additionnally, let û denote the H1
0 (Ω̂)-solution to

div(Â∇û) = f̂ in Ω̂

then u0(x1, x2) =

8<: û(x1, x2) in Ωl

û(x1 − T, x2) in Ωr

Again, the part Ωc has disappeared in the limit. There is no hypothesis on T here



• The proof consists in the same 3 steps as in the previous proof

• In the first step construct a solution to the wave equation

(∂2
11 − ∂2

22)v = 0 in Ωc,1

with Cauchy data

v(0, x2) = û(0, x2) ∂1v(0, x2) = ∂1û(0, x2)

The reflection of v across x1 = T/2

vr(x1, x2) = v(T − x1, x2)

is also a solution to the wave equation and satisfies the transmission conditions

v(T/2, x2) = vr(T/2, x2) ∂1v(T/2, x2) = −∂1vr(T/2, x2)

It follows that û(0, x2) = vr(T, x2) ∂1û(0, x2) = −∂1vr(T, x2)

so that one can define

u0 =

8><>:
û in Ωl
v in Ωc,1
vr in Ωc,2
û in Ωr



5. More interesting devices :

The metamaterials lie in the red annulus

- Tuned superlensing in 2D, static (Laplace) and finite frequency (Helmholtz) case

- Tuned superlensing in 3D, finite frequency case

- Superlensing via the complementary property in 2D and 3D, static and finite
frequency case



Example : Tuned superlensing in 3D, finite frequency case

Let Ω be a smooth bounded connected domain in R3

Assume that 0 < r1 < r2, r2 − r1 ∈ 4πN, Br2 ⊂ Ω

Assume that k > 0, f ∈ L2(Ω \Br2 )

Medium description (using spherical coordinates r, θ, ϕ)

Aδ,Σδ =

8>>>><>>>>:
a (uniformly elliptic, smooth) σ (bounded) in Br1

1

r2
er ⊗ er − (eθ ⊗ eθ + eϕ ⊗ eϕ)− iδ

1

4k2r2
+ iδ in Br2 \Br1

I 1 in Ω \Br2



Thm : The solutions uδ to
div(Aδ∇uδ) + k2Σδuδ = f in Ω
∂νuδ − ikuδ = 0 on ∂Ω

are uniformly bounded in H1(Ω) and converge strongly to u0 the unique solution to
the above system with δ = 0

Moreover, u0 = û in Ω \Br2 , where û is the unique solution to8<: div(Â∇û) + k2Σ̂û = f in Ω

∂ν û− ikû = 0 on ∂Ω

where Â, Σ̂ =

8<:
I 1 in Ω \Br2

r1

r2
a(
r1

r2
x)

r3
1

r3
2

σ(
r1

r2
x) in Br2



Remarks :

- The object in Br1 is magnified in the limit δ → 0 by a factor
r2

r1

- The equation for uδ in Br2 \Br1 takes the form

∂2
rru−∆S1u+

1

4
u = 0

Expansion in spherical harmonics shows that the Cauchy data are transported
from ∂Br2 to ∂Br1



6. Design stability

Consider again the toy problem

What happens when T is not a multiple of 2π ?

If we can define a limiting solution u0 when δ = 0, then the same proof as for the case
T = 2π shows that uδ → u0 (in particular the uδ are uniformly bounded)



By linearity, we can restrict the study to

Seek

u0(x, y) =

8<:
P
n≥1 sin(ny)

`
anenx + bne−nx

´
−l < x < 0P

n≥1 sin(ny)
`
αneinx + βne−inx

´
0 < x < T

Expressing the transmission and boundary conditions fixes the values of the
an, bn, αn, βn’s provided the determinant of the associated linear system does not
vanish



The case of a homogeneous Dirichlet BC at x = T

det = 2i
h
enl (cos(nT ) + sin(nT ))− e−nl (cos(nT )− sin(nT ))

i

• If l = T/π is irrational and diophantine of class r

∀ (p, q) ∈ Z× Z∗ |l −
p

q
π| >

ε

qr

for some ε > 0, then

|enl (cos(nT ) + sin(nT )) |

= enl
˛̨̨̨
(cos(nT ) + sin(nT ))−

„
cos(

3π

4
+ 2πp) + sin(

3π

4
+ 2πp)

«˛̨̨̨
with 2πp < nT < 2π(p+ 1)

≥ enl
√

2

2
n |T −

3 + 8p

4n
π|

≥ enl
√

2

2

εn

(4n)r
≥ c > 0

Thus, there is a unique solution u0 to the elliptic/hyperbolic PDE



• If T =
4p+ 3

4q
π, p, q ∈ Z, q 6= 0

then cos(nT ) + sin(nT ) vanishes for an infinite number of n’s

The determinant is O(e−nl) and there is no solution u0

Remarks :

See also [Bourgin-Duffin 1939, F. John 1941]

Diophantine numbers in (0, 1) form a set of Lebesgue measure 1

The behavior of HMM’s strongly depends on the geometry of the inclusions



7. Conclusion

- The superlensing properties of NIM’s are related to the unique continuation
principle; those of HMM’s to the uniqueness of solutions to the Cauchy problem
for the wave equation

- HMM’s can be constructed by homogenization of ‘metals’, for instance by
homogenization of laminates, at least concerning electric permittivity.

Are there other constructions ?

- Concerning superlensing using HMM’s, there are many open questions :

Other geometries (in 2D, in 3D) ?

Extension to the Maxwell system or to the system of elasticity ?


