
Geometry and combinatorics of spherical varieties.

Notes of a course taught by Guido Pezzini.

Abstract

This is the lecture notes from a mini course at the Winter School “Geometry
and Representation Theory” from Erwin Schrụdinger International Institute for
Mathematics and Physics in January 2017.

In these lectures we will introduce spherical varieties and discuss some of their
basic properties; we will also introduce related combinatorial objects and see how
they govern the geometry of such varieties.
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1 Definitions, examples, first properties

We consider a connected linear reductive algebraic group G over C, e.g. G = GLn

or SLn, and a Borel subgroup B of G.

Definition 1.1. We will call a G − variety an irreducible C-variety X with a G-
action G×X → X which is a morphism of C-varieties.

Definition 1.2. If X is a G-variety, then we denote the minimal co-dimension of
a B-orbit by c(X), also called the complexity of X.

A spherical variety is a normal G-variety X such that c(X) = 0.

The complexity for a G-variety plays a role similar to the dimension of a variety.
An algebraic variety of dimension 0 is determined by a combinatorial datum, which
is simply the number of its points. We will see that a spherical variety is also
determined by combinatorial objects, which are however much more complicated.
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Example 1.3. (i) If B is a Borel of GLn, then GLn/B is a spherical variety.
More generally if P is a parabolic subgroup of G then G/P is a spherical
variety.

(ii) Symmetric spaces: If θ is an involution of G and Gθ is the closed subgroup of
G consisting of the fixed points of θ, then G/Gθ is a spherical variety.
For example, SLn/SOn and G×G/diag(G) are symmetric spaces.

(iii) X =
SL2 × SL2 × SL2

diag(SL2)
is a spherical variety.

(iv) If X is a toric variety for the action of a torus (C∗)dim(X), then X is a spherical
variety with G = (C∗)dim(X).

(v) If X is a smooth Schubert sub-variety of the Grassmannian Gr(n, d), then X
is spherical [HL16].

Theorem 1.4. Let X is a spherical variety.

(i) X has a finite number of G-orbits.

(ii) X has a finite number of B-orbits.

Remark 1.5. If c(X) = 0, then X has a dense B-orbit and a dense G-orbit.

Sketch of proof of (i) for X affine. The ring C[X] is a rational G-module. So it is
a direct sum of irreducible G-modules. We denote irreducible G-modules as V (λ),
where λ is the highest weight (so λ is in the group χ(B) of characters of B).

Exercise: C[X] is multiplicity-free i.e., for every λ, then V (λ) appears at most
once. (If X is normal and affine, this property is equivalent to X being spherical.)

Thus
C[X] =

⊕
λ∈Γ

V (λ),

where Γ is a set of dominant weight. Denote by ZΓ the subgroup of χ(B) generated
by Γ, and let us consider Γ inside the vector space ZΓ⊗ZQ. Since C[X] is a finitely
generated ring over C, then Γ is the set of integral points contained in a convex
polyhedral cone C.

If Y is a G-orbit, then Y is an irreducible closed G-stable set. And if Z is an
irreducible G-stable set, then we can consider the prime ideal I(Z), it is a G-module.
So

I(Z) =
⊕
λ∈Λ

V (λ).

And I(Z) is prime, so Λ is the set of integral points on a face of C. Since C has
finitely many faces, it follows that X has finitely many G-orbits.

Exercise 1.6. Prove the statement (ii) of Theorem 1.4 for G = SL2.

2 The Luna-Vust theory of embeddings

We fix an open G-orbit X0 ⊂ X. In order to describe X \ X0, we will use the
valuations of C(X) = C(X0).
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Example 2.1. If G = SL2, then X = C2 is a spherical variety and X0 = C2 \ {0} is
an open G-orbit.

But X ′ = Bl0(C2) (the blow-up of 0 in C2), X ′′ = P2 and X ′′′ = Bl0(P2) (the
llow-up of 0 in P2) are also spherical variety that contain an open G-orbit isomorphic
to C2 \ {0}.

Definition 2.2. Let X be a spherical variety.

(i) Ξ(X) = {λ|λ is a B-eigenvalue of a B-eigenvector fλ ∈ C(X)}.
(ii) N(X) = HomZ(Ξ(X),Q).

(iii) If D ⊂ X is a B-stable prime divisor then we define ρ(D) ∈ N(X) as
⟨ρ(D), λ⟩ := ordDfλ.

Remark 2.3. Since X is spherical, λ determines fλ up to multiplication by a con-
stant. Because, if fλ, gλ ∈ C(X) are semi-invariant with weight λ, then fλ/gλ is
B-invariant, thus constant.

Remark 2.4. If Z ⊂ X \X0 is of codimension strictly greater than 1, then Z ⊂ D
for a prime divisor D that is B-stable but not G-stable.

Definition 2.5. A divisor D ⊂ X is a color if it is a B-stable, not G-stable prime
divisor.

The set of colors of X is denoted ∆(X).

Example 2.6. We consider G = SL2 and B the Borel subgroup of upper triangular
matrices of determinant 1.

Then the only color of the spherical variety X = C2 is {x = 0}. It contains
X \X0 = {0}.

Definition 2.7. Let X be a spherical variety, and Y ⊂ X be a G-orbit.
We denote the convex cone in N(X) generated by ρ(D) for D a B-stable prime

divisor containing Y by CY .
Let DY = {D|D is a color of X containing Y }.
The colored cone of Y is the couple (CY ,DY ).
The colored fan of X is the set FX = {(CY ,DY )|Y ⊂ X is a G-orbit}.

The colored fan of X describes what is outside of the open G-orbit. If we fix an
open G-orbit X0 then the colored fan FX uniquely determines X.

Theorem 2.8 (uniqueness part of Luna-Vust Theory). Let X, Y be spherical va-
rieties with the same open G-orbit X0

∼= Y0. Then FX = FY if and only if X ∼= Y
as G-varieties.

Example 2.9. We consider G = GLn+1 and X the quadrics in Pn. Then the smooth
quadrics in X form an open G-orbit. And X = P(M) where M is the set of
(n+ 1)× (n+ 1) symmetric matrices.

If α1, . . . , αn are simple roots, then (exercise) Ξ(X) = ⟨2α1, 2α2, . . . , 2αn⟩ (Hint:
consider p ∈ X as p = [q] where q is a symmetric matrix, and define B-semi-
invariant rational functions on X using minors of q.)

If n = 2 then X has 2 colors D1 and D2 such that ρ(D1) =
1
2α

∨
1 and ρ(D2) =

1
2α

∨
2 .
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Theorem 2.10. Let X0 be a spherical homogeneous space. Let F be a set of couples
(C,D) such that C is a strictly convex polyhedral cone in N(X0) and D is a set of
colors of X0.

Then F is F(X) for a spherical variety X with open G-orbit X0 if and only if
the following conditions are verified for all (C,D) in F :

(i) C is generated by ρ(D) for D ∈ D and by finitely many elements in the
valuation cone of X0 (denoted by V (X0)

1);

(ii) For every D ∈ D, we have ρ(D) ̸= 0;

(iii) C0 ∩ V (X0) ̸= ∅, where C0 is the relative interior of C;

(iv) Every face of (C,D) belongs to F , where (C′,D′) is called a face of (C,D) if C′

is a face of C and D′ = D ∩ ρ−1(C′);

(v) For all x ∈ V (X0), there is at most one (C,D) ∈ F such that x ∈ C0.

3 Local structure theorem

The colored fan determines uniquely a spherical variety among those having the
same open G-orbit. Nevertheless, it is not trivial to deduce geometric properties
from the colored fan. For example, using the colored fan it is relatively easy to
determine whether a variety is complete, or projective, and there is an explicit
description of the Picard group. Other questions are more difficult, for example
whether the variety is smooth.

In this section we will see a powerful tool to investigate the geometry of a
spherical variety in the neighborhood of (points on) a G-orbit.

Example 3.1. Let G be GLn+1 and let X be the quadric in Pn. Then p = [x20] lies
on the closed G-orbit.

Exercise: no neighbourhood of G.p in X retracts G-equivalently to G.p (Hint:
compare the stabilizers of a general point of X and of p).

Let us consider the neighbourhood Y = {q(1, 0, . . . , 0) ̸= 0} of p, where q
denotes a quadratic form representing a point [q] on X. If [q] ∈ Y then q =
c.(x0 + a1x1 + · · · + anxn)

2 + q′(x1, . . . , xn) where q′ is also a quadratic form and
c ∈ C \ {0}, ai ∈ C for all i ∈ {1, . . . , n}.

Let P = StabG(Y ). Then P = Cn o L, where L is a Levi subgroup of P , and
we can choose L = GLn acting linearly on x1, . . . , xn.

The unipotent radical P u ∼= Cn of P acts by translation on a1, . . . , an.
We consider S =

{
[c.x20 + q′(x1, . . . , xn)]

}
. The above expression q = c.(x0 +

a1x1 + · · · + anxn)
2 + q′(x1, . . . , xn) for [q] ∈ Y shows that (u, [q]) ∈ P u × S →

u.[q] ∈ Y is an isomorphism. Moreover this isomorphism is P -equivariant, where
for every p = ul (u ∈ P u and l ∈ L) we set p · (g, [q]) =

(
ulgl−1, l[q]

)
.

Theorem 3.2. We consider X a spherical variety and Z a closed G-orbit. Let us
consider

XZ = X \
∪
D

D,

where the union is over the B-stable prime divisors D not containing Z.
Then XZ is open, affine and intersects Z. If P = StabG(XZ), then B ⊆ P , and

there is SZ ⊆ XZ such that:
1For the definition of V (X0) see Section 4, Definition 4.5
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(i) SZ is closed in XZ , it is L-stable (where L is a Levi of P ) and P u×SZ → XZ

is a P -equivariant isomorphism.

(ii) SZ is a spherical L-variety.

Remark 3.3. (i) XZ is smooth if and only if X is smooth along Z if and only if
SZ is smooth.

(ii) SZ is a toric variety (i.e. (L,L) acts trivially) for all G-orbits Z if and only if
no color of X contains a G-orbit.
In this case X is call toroidal.

Exercise 3.4. Find SZ for X = P1 × P1, G = SL2 and Z = diag
(
P1

)
.

4 Spherical roots and the multiplication of

regular functions

4.1 Spherical roots

Remark 4.1. If X is a quasi-affine spherical variety, then

C[X] =
⊕
λ∈Γ

V (λ)

for a set of dominant weights Γ.
In general C[X] is not graded by Γ, i.e., V (λ)V (µ) ⊇ V (λ + µ) but in general

the inclusion is strict. (Here we denote by V (λ)V (µ) the vector spaced spanned by
the products fg where f ∈ V (λ) and g ∈ V (µ). It is a G-submodule.)

Example 4.2. We consider G = SL2 and X = C2. Let ω be the fundamental
dominant weight, then

C[X] =
⊕
λ∈Nω

V (λ)

is graded.
But if Y = SL2/T , then

C[Y ] =
⊕

λ∈N2ω
V (λ)

is not graded.

Even for well-known varieties, it is extremely difficult to describe the set of
(λ, µ, ν) satisfying V (ν) ⊆ V (λ)V (µ).

However, we can extract some “global data” from the set of differences λ+µ−ν,
and remarkably this turns out to be of fundamental importance for studying the
geometry of X.

Definition 4.3. If X is a quasi-affine spherical variety we define:

(i) τ(X) = {λ+ µ− ν|V (ν) ⊆ V (λ)V (µ)}.
(ii) We denote by Σ(X) the set of primitive elements in Ξ(X) on the extremal

rays of the cone cone(τ(X)) generated by τ(X).
The elements of Σ(X) are called the spherical roots of X.
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Example 4.4. (i) Σ(C2) = ∅
(ii) Σ(SL2/T ) = {α} (Exercise: Find λ, µ, ν such that ν = λ+ ν − 2α)

(iii) Σ(quadrics in Pn) = {2α1, . . . , 2αn}
(iv) Σ(SLn+1/GLn) = {α1 + · · ·+ αn}

If X is not a quasi-affine, then we observe that X0 ⊆ P(V ) where V is a G-
module.

We define in this case τ(X) = {λ + µ − ν|V (ν) ⊆ V (λ)V (µ) ∈ C[X̂0]}, where
X̂0 is the cone in V over X0. (One shows this doesn’t depend on V , and that
Σ(X) ⊂ Ξ(X)).

Definition 4.5. V (X) = {η ∈ N(X)|∀σ ∈ Σ(X), ⟨σ, η⟩ 6 0}

Example 4.6. (i) We consider G = GL3 and X the conics in P2.

V(X)

2α1

2α2

bb

b

b

b

b

(ii) Let us consider G = SO5 and X = SO5/GL2. Then Σ(X) = {α1, α1 + α2}.

V(X)

α1

α2 α1 + α2

bb

b

b

b

b

b

b

Question 4.7. Why does V (X) appear in the Luna-Vust theorem?

In order to answer this question, we consider ν : C(X)∗ → Q discrete G-invariant
valuation.

Then ν induces an element η ∈ N(X) similarly as above: for every B-semi-
invariant fλ ∈ C(X) of B-eigenvalue λ, we set ν(fλ) = ⟨η, λ⟩.

Proposition 4.8. V (X) is the set of η ∈ N(X) such that η is induced by some
G-invariant valuation.

Exercise 4.9. If X is affine, prove that: if ν : C(X)∗ → Q is a G-invariant discrete
valuation, and V (ν) ⊆ V (λ)V (µ), then η(λ+ µ− ν) 6 0.
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4.2 Classification of homogeneous spherical varieties

The following Theorem is due to M. Brion [Bri90] in characteristic 0 and F. Knop
[Kno14] in characteristic p > 2. It is false in characteristic 2 [Sch11].

Theorem 4.10. V (X) is a fundamental chamber of a Weyl group W (X) of a root
system with simple roots Σ(X).

We have the following analogy: Ξ(X): Lattice; Σ(X): Simple roots of a root
system; ∆(X): “Simple coroots”.

This analogy is precise for Σ(X), which is indeed the set of simple roots of a
root system, but not for ∆(X), which is not the corresponding set of simple coroots.
However it possesses some quite strict combinatorial properties, motivating the idea
that (Ξ,Σ,∆) is in some sense a generalization of a root datum.

Luna has given combinatorial axioms in [Lun01] of this generalization, calling
the resulting objects homogeneous spherical data. They also include a fourth ob-
ject, which is a parabolic subgroup of G (see the theorem below) and is actually
somewhat less relevant, since in most interesting cases it can be deduced from the
other three data.

Example 4.11. We consider G = GLn+1, and we write B = TU where T is a
maximal torus and U the unipotent radical. Set H = T · (U,U).

Then Σ(G/H) = {α1, . . . , αn}, and ∆(G/H) = {D+
1 , D

−
1 , . . . , D

+
n , D

−
n } (so it

has 2n elements). Then ∆(G/H) has too many elements to be the set of simple
coroots of Σ(G/H), but notice that it holds D+

i +D−
i = α∨

i for all i.

Theorem 4.12. [BP16, Th. 1.2.3] Let X0 be a homogeneous spherical G-variety,
and let P (X0) be the stabilizer in G of the open B-orbit X0.

The map:
X0 → (Ξ(X0),Σ(X0),∆(X0), P (X0))

is a bijection between homogeneous spherical varieties and homogeneous spherical
data.
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