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In this notes we present some of known results on R-equivalence on rationally con-
nected varieties de�ned over function �elds in one variable over C and, more generally,
over C1 �elds or over �elds of cohomological dimension at most one. We will mostly
focus on rationally simply connected varieties and explain in detail how to show that
R-equivalence on such varieties is trivial, as soon as we are over a function �eld in one
variable over C (cf.[Pi]).

The notion of rationally simply connected varieties has been introduced by de Jong
and Starr in [dJS]. They proved that a smooth complete intersection of r hypersurfaces
in Pn

k of respective degrees d1, . . . , dr and of dimension at least 3 is rationally simply
connected if

r∑
i=1

d2
i ≤ n + 1. We sketch some of their arguments. Then we discuss how,

using their ideas, one can get the triviality of R-equivalence over a function �eld in one
variable over C.

The study of R-equivalence on rationally simply connected varieties requires some
understanding of rational points on moduli space of stable curves and we discuss it in
section 2. In section 3 we proceed to the study of R-equivalence on RSC varieties. To
�nish we sketch some of results on R-equivalence on other rationally connected varieties,
over �elds as above (cf.[CTSa], [CTSk], [Ma]).
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1 Introduction
Let X be a (separably) rationally connected variety, de�ned over a �eld k. Recall that

two rational points x1, x2 of X are called directly R-equivalent if there is a morphism
f : P1

k → X such that x1 and x2 belong to the image of P1
k(k). This generates an

equivalence relation called R-equivalence.
Assuming one of the following hypothesis :

(i) k = C(C) a function �eld of a complex curve;

(ii) k = C((t)) a formal power series �eld;

(iii) k is a C1 �eld;

(iv) cd k ≤ 1

one wonders ([CT], 10.11) if the set X(k)/R is trivial. In general, the answer doesn't
expected to be positive, as pointed out in [CT], see also remark below.

Nevertheless, it turns out that this is the case in all results we know :

1. X is a smooth compacti�cation of a linear algebraic group and cd k ≤ 1 ([CTSa]);

2. X is a surface �bered in conics of degree 4 over the projective line and cd k ≤ 1
([CTSk]);

3. X is a smooth intersection of two quadrics in Pn
k with n ≥ 5 and cd k ≤ 1([CTSaSD]);

4. X is a smooth cubic hypersurface in Pn
k with n ≥ 5 and k is C1 ([Ma]);

5. k = C(C) or k = C((t)) and X is a smooth complete intersection of r hypersurfaces
in Pn

k of dergrees d1, . . . dr satisfying
∑

d2
i ≤ n+1. More generally, the same holds

for a k-rationally simply connected variety ([Pi]).

Remark 1.1. The trivialy of R-equivalence for smooth projective geometrically rational
surfaces over C(t) would imply the unirationality of (smooth projective) varieties of
dimension 3, �bered in conics over P2

C, which is an open question.
In fact, let p : X → P2

C be a morphism from a smooth projective variety X of
dimension 3, such that the general �ber of p is a conic. As P2

C is birational to P1
C × P1

C,
we can replace X by p′ : X ′ → P1

C × P1
C with the same assumption : the general �ber

of p′ is a conic. Let η : SpecC(t) → P1
C be the generic point. Base change by η on the

second factor gives a morphism p′η : X ′
η → P1

C(t). The variety X ′
η is a (geometrically)

rational surface over k = C(t). If the R-equivalence on X ′
η(k) is trivial, one can �nd a

rational curve f : C = P1
C(t) → X ′

η joining two rational points in di�erent �bers of p′η.
This means that the induced map p′η ◦f : C → P1

C(t) is surjective. Base change by p′η ◦f
gives the following diagram :

Y = X ′
η ×P1C(t)

C
g−−−−→ C ' P1

C(t)y
X ′

η

The general �ber of g is a conic, having a rational point as the map g has a section by
our construction. This means that Y is rational over C(t). The projection Y → X ′

η

now shows that X ′ is unirational.

In what follows we explain the proof of 5 and related questions. We will also give a
sketch of ideas for other results. First, we need to establish some facts on moduli spaces
of stable curves.
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2 Rational points on moduli space of curves
In this section we work with the moduli space M̄0,2(X, d) of stable curves of genus

zero. We analyse what one can say about an object representing a rational point of this
space. In particular, we are interested in applications for the R-equivalence.

2.1 Basic facts on M̄0,n(X, d)

Let us �rst precise some facts about the moduli space M̄0,n(X, d). Let X be a pro-
jective variety over a �eld k. Let H be an ample divisor on X. Let k̄ be an algebraic
closure of k. The space of rational curves of �xed degree1 on X is not compact in
general. One way to compactify it, due to Kontsevich, is to use stable curves.

De�nition 2.1. A stable curve over X of degree d with n marked points is a datum
(C, p1, . . . , pn, f) of

(i) a proper geometrically connected reduced k-curve C with only nodal singularities,

(ii) an ordered collection p1, . . . , pn of distinct smooth k-rational points of C,

(iii) a k-morphism f : C → X with degC f∗H = d,

such that the stability condition is satis�ed :

(iv) C has only �nitely many k̄-automorphisms �xing the points p1, . . . , pn and com-
muting with f .

We say that two stable curves (C, p1, . . . , pn, f) and (C ′, p′1, . . . , p
′
n, f ′) are isomor-

phic if there exists an isomorphism φ : C → C ′ such that φ(pi) = p′i, i = 1, . . . , n and
f ′ ◦ φ = f .

The precise construction of the moduli space of stable curves in this sense can be
found in the article of Araujo and Kollár [AK]. Here is some important points from
[AK] which we will use in what follows :

1. There exists a coarse moduli space M̄g,n(X, d) for all stable curves over X of
arithmetical genus g of degree d with n marked points, which is a projective k-
scheme ([AK], Thm. 50).2

2. Saying that M̄g,n(X, d) is a coarse moduli space means the following :

(i) there is a bijection of sets :

Φ :





isomorphism classes of
genus g stable curves over k̄

f : C → Xk̄ with n marked points,
degC f∗H = d





∼→ M̄g,n(X, d)(k̄);

(ii) if C → S is a family of genus g stable curves of degree d with n marked
points, parametrized by a k-scheme S, then there exists a unique morphism
MS : S → M̄g,n(X, d) such that for every s ∈ S(k̄) we have

MS(s) = Φ(Cs).

1We �x the degree of the curves we consider in order to have a space of �nite type.
2Over C the construction was �rst given in [FP]. In this paper, the authors �x a curve class

β ∈ H2dimX−2(X,Z) rather than the degree. They consider stable curves f : C → X such that the
class of f∗[C] is β. They prove that there exists a coarse moduli space M̄g,n(X, β) parametrizing all
genus g stable curves of class β with n marked points. The result in [AK] holds over arbitrary, not
necessarily algebraically closed �eld and, more generally, over a noetherian base.
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3. Note that over nonclosed �elds we do not have a bijection between isomorphism
classes of stable curves and rational points of the corresponding moduli space, see
[AK] p.31. In particular, a k-point of M̄g,n(X, d) does not in general correspond
to a stable curve de�ned over k.

We denote by Mg,n(X, d) the open locus corresponding to irreducible curves and by

evn : M̄g,n(X, d) → X × . . .×X︸ ︷︷ ︸
n

the evaluation morphism which sends a stable curve to the image of its marked points.
In what follows we will focus on stable curves of genus zero.

Let P and Q be two k-points of X. Suppose there exists a stable curve of genus
zero f : C → Xk̄ over k̄ with two marked points mapping to P and Q, such that the
corresponding point Φ(f) is a k-point of M̄0,2(X, d). Our goal is to deduce that P and
Q are R-equivalent over k. We will explain two ways how to proceed. The �rst one,
quite elementary, makes use of the combinatorics particular to stable curves of genus
zero. The second way requires more sophisticated tools and applies to the �elds of
cohomological dimension at most one. Let us state the main result of this section.

Proposition 2.2. Let X be a projective variety over a �eld k of characteristic zero. Let
P and Q be k-points of X. Let f : C → Xk̄ be a stable curve over k̄ of genus zero with
two marked points mapping to P and Q. Let H be a �xed ample divisor on X and let
d = degC f∗H. If the corresponding point Φ(f) ∈ M̄0,2(X, d) is a k-point of M̄0,2(X, d),
then the points P and Q are R-equivalent over k.

2.2 Combinatorial arguments
2.2.1 Notations
Let k be a �eld of characteristic zero. Let us �x an algebraic closure k̄ of k. Let

L
i

↪→ k̄ be a �nite Galois extension of k, and let G = Autk(L). For any σ ∈ G we denote
σ∗ : Spec L → Spec L the induced morphism. If Y is an L-variety, denote σY the base
change of Y by σ∗ and σYk̄ the base change by (i ◦ σ)∗. We denote the projection
σY → Y by σ∗ too. If f : Z → Y is an L-morphism of L-varieties, then we denote
σf : σZ → σY and σfk̄ : σZk̄ → σYk̄ the induced morphisms.

Note that if Y ⊂ Pn
L is a projective variety, then σY can be obtained by applying

σ to each coe�cient in the equations de�ning Y . Thus, if Y is de�ned over k, then the
subvarieties Y, σY of Pn

L are given by the same embedding for all σ ∈ G. In this case
the collection of morphisms {σ∗ : Y → Y }σ∈G de�nes a right action of G on Y . By
Galois descent ([BLR], 6.2), if a subvariety Z ⊂ Y is stable under this action of G, then
Z also is de�ned over k.

2.2.2 Some lemmas on graphs
Let us �rst give a proof of the following well-known lemma :

Lemma 2.3. Let C be a projective geometrically connected curve of arithmetic genus
pa(C) = h1(C, OC) = 0 over a perfect �eld k. Assume C has only nodal singularities.
Then any two smooth k-points a, b of C are R-equivalent.

Proof. For any �eld extension F of k let us call an F -path joining a and b a closed
F -subcurve C ′ ⊂ CF such that

(i) C ′ = C ′1 ∪ C ′2 ∪ . . . ∪ C ′r where C ′i, i = 1, . . . r are smooth F -rational curves;
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(ii) a ∈ C ′1, b ∈ C ′r;

(iii) if 1 ≤ i ≤ r − 1, the intersection C ′i ∩ C ′i+1 is an F -point and the curves C ′i and
C ′i+j do not intersect for j > 1.

Since the arithmetic genus of C is zero, its geometric components are smooth rational
curves over k̄ intersecting transversally. As C is geometrically connected, there exists a
k̄-path C ′ joining a and b. We may assume that C ′ is an L-path for some �nite Galois
extension L of k. Moreover, such a path is unique : if there were two di�erent paths
we would have a cycle formed by components of CL, which is impossible as pa(C) = 0.
We would like to �nd a k-path, thus we will achieve the proof.

Let us write C ′ = C ′1 ∪ C ′2 ∪ . . . ∪ C ′r, a ∈ C ′1, b ∈ C ′r. We will show that C ′ comes
from a k-path by base extension. Let us take σ ∈ Autk(L). Then σC ′1, . . . ,

σC ′r is an
L-path joining a and b. Since such a path is unique, for every i = 1, . . . r the components
C ′i and σC ′i of CL are equal and C ′i ∩ C ′i+1 = σC ′i ∩ σC ′i+1 = σ(C ′i ∩ C ′i+1), i = 1, . . . r.
This means that every component of the path C ′i ⊂ CL is stable over the action of
Autk(L) on CL, hence it is de�ned over k, that is C ′i = Di ×k L, for some k-curve
Di ⊂ C. By the same argument, the intersection points of Di and Di+1, i = 1, . . . r− 1
are k-points. We deduce that {D1, . . . Dr} is a k-path joining a and b, so the points a
and b are R-equivalent over k.

Next lemma will be used in the proof of Proposition 2.2. The necessity of all the
hypothesis, which corresponds to saying that we have a rational point on the moduli
space, will be clear from the context.
Lemma 2.4. Let X be a projective variety over a perfect �eld k. Let L be a �nite Galois
extension of k. Denote G = Autk(L). Let P and Q be k-points of X. Suppose we can
�nd an L-stable curve of genus zero f : C → XL with two marked points a, b ∈ C(L),
satisfying the following conditions :

(i) f(a) = P , f(b) = Q;

(ii) for every σ ∈ G there exists a k̄-morphism φσ : Ck̄ → σCk̄ such that

φσ(a) = σ(a), φσ(b) = σ(b) and σfk̄ ◦ φσ = fk̄.

Then the points P and Q are R-equivalent over k.

Proof. By lemma 2.3, we have a unique L-path {C1, . . . , Cm} joining a ∈ C1(L) and b ∈
Cm(L), where Ci are irreducible components of C. We will use the curves f(C1), . . . f(Cm)
to show that P and Q are R-equivalent over k. Let us �rst show that these curves are
de�ned over k and not only over L.

For every σ ∈ G we have an L-path { σC1, . . . ,
σCm} joining σ(a) ∈ σC1(L) and

σ(b) ∈ σCm(L). On the other hand, {φσ(C1,k̄), . . . , φσ(Cm,k̄)} is a k̄-path joining σ(a)
and σ(b). Since the arithmetic genus of σCk̄ is zero, such a path is unique. That is, it
coincides with the path { σC1,k̄, . . . , σCm,k̄}. So we have

φσ(Ci,k̄) = σCi,k̄, i = 1, . . . ,m.

Let us �x 1 ≤ i ≤ m. Denote the image f(Ci) of Ci in XL by Zi. As σf is a base
change by σ∗, we have the following commutative diagram :

σCi

σf−−−−→ σX
y

y
Ci

f−−−−→ X
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We thus see that σf( σCi) = σZi. Using base change by i : L → k̄ in the �rst line
of the diagram above we obtain that σfk̄( σCi,k̄) = σZi,k̄. On the other hand, since
φσ(Ci,k̄) = σCi,k̄ and σfk̄ ◦ φσ = fk̄, we have σZi,k̄ = σfk̄( σCi,k̄) = σfk̄(φσ(Ci,k̄)) =
fk̄(Ci,k̄) = Zi,k̄. Since σZi and Zi are L-subvarieties of XL, we deduce that σZi = Zi

for all σ ∈ G. By Galois descent, this means that the curve Zi is de�ned over k, that
is, there exists a k-curve Di ⊂ X such that Zi = Di ×k L.

In order to conclude the proof, we will show that the curve Di is a k-rational curve
on X, that is, it is the image of some morphism from P1

k to X, and that the point
f(Ci∩Ci+1) is the image of a k-point. Note that it may be not so obvious if f(Ci∩Ci+1)
is a singular point of Di.

Let D̃i → Di be the normalisation morphism. It induces an isomorphism over the
smooth locus Dsm

i . Since Ci is smooth, the morphism f |Ci
: Ci → Di ×k L extends to

a morphism fi : Ci → D̃i ×k L :

D̃i ×k L

²²
Ci

f |Ci//

fi

;;vvvvvvvvv
Di ×k L.

This implies that D̃i is an L-rational curve. We have σfi,k̄ ◦ φσ = fi,k̄, as this is
true over a Zariski open subset Dsm

i . Moreover, for every 1 ≤ i ≤ m − 1 we have
φσ(Ci ∩Ci+1) = σCi ∩ σCi+1. Using the same argument as above, we deduce that the
point fi(Ci ∩ Ci+1) is a k-point of D̃i. This implies that D̃i is a k-rational curve as it
is L-rational and has a k-point. Moreover, the point f(Ci ∩ Ci+1) is a k-point of X as
the image of fi(Ci ∩Ci+1). Hence P is R-equivalent to f(C1 ∩C2) as there is a rational
curve D̃1 → X connecting them. By the same argument, f(Ci−1 ∩ Ci) is R-equivalent
to f(Ci∩Ci+1) for all 1 < i < m−1 and f(Cm−1∩Cm) is R-equivalent to Q. Therefore
P and Q are R-equivalent.

2.2.3 Proof of Proposition 2.2.
We will show that the hypothesis of the lemma 2.4 are satis�ed. We call a and b the

marked points of C. We may assume that C, f , a and b are de�ned over a �nite Galois
extension L

i
↪→ k̄ of k. That is, we may assume that C is an L-curve, a, b ∈ C(L) and

that we have an L-morphism f : C → XL. Let us denote T = SpecL. We view L as a
k-scheme and f : C → X ×k T as a family of stable curves parametrized by T . Thus
we have a moduli map MT : T = Spec L → M̄0,2(X, d) de�ned over k and such that for
every t ∈ T (k̄) we have

MT (t) = Φ(Ct)

where ft : Ct → Xk̄ is the �bre of f : C → X ×k T over t.
Note that T ×k k̄ =

∏
G

Spec k̄ where the product is indexed by G = Autk(L) and

the morphism
∏
G

k̄ → T = Spec L is given by (i ◦ σ)∗ on the corresponding component.

This implies that a k̄-point t ∈ T (k̄) corresponds to some σ ∈ G and the morphism ft is
the base change by (i ◦ σ)∗. Hence the morphism ft is the morphism σfk̄ : σCk̄ → Xk̄

and the marked points of σCk̄ are σ(a) and σ(b).
Since the curve fk̄ : Ck̄ → Xk̄ corresponds to a k-point of M̄0,2(X, d), we can factor

MT as
T = Spec L → Spec k

Φ(fk̄)→ M̄0,2(X, d).

We thus see that for every t ∈ T (k̄) the point MT (t) is the same point Φ(fk̄) of
M̄0,2(X, d). Hence for every σ ∈ G the curves σCk̄ and Ck̄ are isomorphic as stable
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curves. This means that there exists a k̄-morphism φσ : Ck̄ → σCk̄, such that

φσ(a) = σ(a), φσ(b) = σ(b) and σfk̄ ◦ φσ = fk̄.

Now the proposition follows from lemma 2.4.

2.3 Stack-theoretical arguments
We will give a second proof of Proposition 2.2 in the case when the base �eld k is of

cohomological dimension at most 1. In fact, using this assumption and the fact that
the automorphism group a stable curve is �nite, we will show that any rational point
of a moduli space corresponds to an object de�ned over the base �eld. We will present
a point of view of [DDE], all the arguments can be found there.
De�nition 2.5. Let k be a perfect �eld, k̄ an algebraic closure and G = Gal(k̄/k).
We say that k is of cohomological dimension at most 1 if for any (continuous) �nite
G-module M and any integer i ≥ 2 we have Hi(G,M) = 0.
Example 2.6. Any C1 �eld is of cohomological dimension at most 1. Note that the
converse is not true ([A]). Thus �nite �elds, function �elds in one variable over an
algebraically closed �eld and formal series �elds in one variable over an algebraically
closed �eld give examples of a �eld of cd ≤ 1.

Let us give a short sketch of the argument. It is a general fact that, given a point x
on a moduli space, corresponding to an object over k̄ with the automorphisms group G,
the obstruction to lift x to an object over k lives in a certain (non-abelian, as G is not
necessarily abelian) 2-cohomology set (and not a group in general), in the sense of [Gi].
Now, the fact that G is �nite, allows us to reduce to the abelian case and to deduce
that H2 vanishes under the hypothesis cd k ≤ 1.

We �rst give some notions from non-abelian cohomology.

2.3.1 Gerbes and non-abelian cohomology
Let S be an étale site.
De�nition 2.7. An S-gerbe is a stack3 satisfying the following conditions :

(i) any two sections over an open set U are locally isomorphic, i.e. there exists an
open subset V ⊂ U such that the restrictions to V of the two given section to
G(V ) are isomorphic;

(ii) locally each �ber is nonempty : each open set U admits an open subset V such
that the �ber above V is nonempty.

Example 2.8. Let us consider the following stack Gf over the étale site Spec két :

(i) the objects of Gf over an extension L of k are stable curves D → XL over L which
become isomorphic over k̄ to the k̄-curve C → Xk̄ corresponding to the point Φ(f)
as in Proposition 2.2.

(ii) the morphisms between two stable curves over L are L-isomorphisms.
3Let us brie�y recall the de�nition of a stack. It is a category X �bered on groupoids over S (i.e.

for each open U ⊂ S the �ber X(U) is a groupoid), such that for each open U ⊂ S and x, y ∈ X(U),
Hom(x, y) is a sheaf and the following glueing condition is satis�ed : given an open U ⊂ S, an open
covering (Ui)i∈I of U and elements xi ∈ X(Ui), i ∈ I, if for all i, j there exists an isomorphism φij

between the restrictions of xi and xj to Ui ∩ Uj such that φij = φikφkj over Ui ∩ Uj ∩ Uk, then there
exists x ∈ X(U) restricting to xi over Ui.
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One can also view Gf as the �bre of the morphism M0,2(X, d) → M̄0,2(X, d) over
the point Φ(f), where M0,2(X, d) is the stack of all genus zero stable curves over X
of degree d with two marked points. By this description, the objects of Gf exist lo-
cally (that is, over some �nite extension of k). Moreover, any two such objects are
locally isomorphic (that is, after taking some �nite extension of k). What we want to
prove is the existence of objects over k, that is, that the curve C → Xk̄ is de�ned over k.

De�nition 2.9. A gerbe which has objects over S is called neutral.

Remark 2.10. The following picture may illustrate the terminology of gerbes and
stacks (�champ� in french, which means ��eld�) :

COARSE MODULI

K−POINT

NEUTRAL
GERBE

GERBE

    L −−−
EXTENSION
OF K

OBJECTS OVER L

By considering the automorphism groups of objects of G one can associate a band
L = L(G) to the gerbe G, see [Gi] Ch.IV for details. For example, if S = Spec két,
then an S-band corresponds to a group A endowed with a homomorphism Gal(k̄/k) →
Aut(A)/Inn(A). Next, one can de�ne a cohomological set H2(S,L) parametrizing all
classes of gerbes whose associated band is L. Note that in the case of Gf the automor-
phism group of objects is locally (that is, starting from some extension of k) a �nite
constant group consisting of the automorphisms of C → Xk̄ over k̄.

A morphism u : L →M of bands induces a relation

H2(S,L) ( H2(S,M)

where p ( q means that there are gerbes P and Q of classes p and q respectively and
an u-morphism P → Q. If p is neutral and if p ( q than q is neutral.

2.3.2 Reduction to the abelian case
Let us give a sketch of the proof of the following result of Dèbes, Douai and Emsalem
([DDE], cor. 1.3) :
Theorem 2.11. If the cohomological dimension of k is at most one, then any gerbe G
over the étale site S = Spec két whose associate band L is locally a constant �nite group
C is neutral.
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Proof. As the authors point out, their idea goes back to the work of Springer [Sp]. Let
us �rst suppose that C is not nilpotent. Then one can �nd a prime p and a p-Sylow
subgroup H of C which is not normal. One veri�es that the following data de�nes a
gerbe G′ over S :

(i) the objects of G′ over a separable extension L of k are the couples (x, T ), x ∈ G(L)
and T is a subsheaf in p-Sylow of AutL(x);

(ii) the L-morphisms (x, T ) → (x′, T ′) are the L-morphisms a : x → x′ such that the
induced morphism a∗ : AutL(x) → AutL(x′) maps T to T ′.

The band associated to the gerbe G′ is locally the normalizer B = NC(H) and by
contruction B is a proper subgroup of C. The morphism of bands LB → LC induced
by the inclusion gives a relation H2(S,LB) ( H2(S,LC). Thus if G′ is neural, then we
have the same for G.

Thus we may reduce to the case C is nilpotent. Let

0 → C ′ → C → C ′′ → 0

be an exact sequence with C ′′ abelian. The fact that π : C → C ′′ is surjective allows
us to de�ne a band π∗L and the fact that C ′′ is abelian implies that we have a well
de�ned morphism π∗ : H2(S,L) → H2(S, π∗L). As cd k ≤ 1 and C ′′ is abelian, the
image π∗([G]) is zero. As one can check, this implies that [G] comes from an element of
H2(S,LC′). Thus we conclude the proof by an induction argument.

Now we can apply the previous theorem to Gf . We conclude that Gf is neutral
and thus there is a genus zero k-stable curve f ′ : C ′ → X with two marked points
a, b ∈ C ′(k) such that the images of a and b are respectively the points P and Q. By
lemma 2.3 we deduce that a and b are R-equivalent in C ′, thus their images P and Q
in X are also R-equivalent.

3 R-equivalence over function �elds in one variable
3.1 Case of RSC varieties
One can see rationally connected varieties as an analogue of path connected spaces in

topology. From this point of view, de Jong and Starr introduce the notion of rationally
simply connected varieties as an algebro-geometric analogue of simply connected spaces.
We use here the following de�nition4 :
De�nition 3.1. Let k be a �eld of characteristic zero. A projective geometrically
integral variety X over k is called k-rationally simply connected if for any su�ciently
large integer e there exists a geometrically irreducible component Me,2 ⊂ M̄0,2(X, e)
intersecting the open locus of irreducible curves M0,2(X, e) and such that the restriction
of the evaluation morphism

ev2 : Me,2 → X ×X

is dominant with rationally connected general �ber.

Note that a k-rationally simply connected variety X over a �eld k is rationally
connected as X ×X is dominated by Me,2 ∩M0,2(X, e) from the de�nition above. This
implies that two general points of X over any algebraically closed �eld Ω ⊃ k can be
connected by a rational curve.

The following result is essentially contained in [dJS] and gives an example of RSC
varieties in the sense above (essentially the only one we know). We precise some points

4The de�nition in [dJS] is given over C. Here we precise that the distinguished component Me,2

should be de�ned over k. Thus we use the notion of k-rational simple connectedness.
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of the proof, having in mind that we are interested in applications to not algebraically
closed �elds.
Proposition 3.2. Let k be a �eld of characteristic zero. Let X be a smooth complete
intersection of r hypersurfaces in Pn

k of respective degrees d1, . . . , dr with
r∑

i=1

d2
i ≤ n+1.

Suppose that dim X ≥ 3. Then for every e ≥ 2 there exists a geometrically irreducible
k-component Me,2 ⊂ M̄0,2(X, e) such the restriction of the evaluation morphism

ev2 : Me,2 → X ×X

is dominant with rationally connected generic �bre.

Proof. Let us �rst recall the construction of [dJS] in the case k = C. In this paper,
the authors work with the space M̄0,2(X, β) of [FP] which parametrizes stable curves
of genus zero over X of class β ∈ H2dim X−2(X,Z) with two marked points. Hovewer,
as dim X ≥ 3, we know that H2dim X−2(X,Z) = Zα where the degree of α equals to 1
([V], 13.25). Thus we can replace β by its degree e and work with the space M̄0,2(X, e)
as in [AK].

In [dJS], de Jong and Starr prove that for every integer e ≥ 2 there exists an
irreducible component Me,2 ⊂ M̄0,2(X, e) such that the restriction of the evaluation
morphism ev2 : Me,2 → X ×X is dominant with rationally connected generic �bre. We
will specify more precisely how they get the component Me,2. It will follow from their
construction that Me,2 is in fact the unique component satisfying the above property.
The construction of Me,2 is the following :

1. One �rst shows that there exists a unique irreducible component M1,1 ⊂ M̄0,1(X, 1)
such that the restriction of the evaluation ev1|M1,1 : M1,1 → X is dominant ([dJS],
1.7).

2. The component M1, 0 ⊂ M̄0, 0(X, 1) is constructed as the image of M1,1 under
the morphism M̄0,1(X, 1) → M̄0, 0(X, 1) forgetting the marked point. Then one
constructs the component of higher degree Me,0 as the unique component of
M̄0, 0(X, e) which intersects the subvariety of M̄0, 0(X, e) parametrizing a degree
e cover of the smooth, free curve parametrized by M1, 0 ([dJS], 3.3).

3. The component Me,2 ⊂ M̄0,2(X, e) is the unique component such that its image
under the morphism M̄0,2(X, e) → M̄0, 0(X, e), which forgets about the marked
points, is Me,0.

The proof of the fact that the general �ber of the evaluation morphism ev2 : Me,2 →
X × X is rationally connected uses elaborated arguments, in particular, it uses the
techniques of twisting surfaces. We will not discuss it here, see [dJS] for details.

Let us now consider the general case. Let k̄ be an algebraic closure of k. As k
is of �nite type over Q, we may assume that k̄ ⊂ C. Since the decomposition into
geometrically irreducible components does not depend on which algebraically closed
�eld we choose, by the �rst step above there exists a unique irreducible component
M1,1 ⊂ M̄0,1(Xk̄, 1) such that the restriction of the evaluation ev1|M1,1 is dominant. As
this component is unique, it is de�ned over k. Hence, from the construction above, the
component Me,2 is also de�ned over k, which completes the proof.

Next, we will give a proof of the following theorem :
Theorem 3.3. Let k be either a function �eld in one variable over C or the �eld C((t)).
Let X be a k-rationally simply connected variety over k. Then X(k)/R = 1.

Combined with the theorem of de Jong and Starr, this gives :
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Corollary 3.4. Let k be either a function �eld in one variable over C or the �eld
C((t)). Let X be a smooth complete intersection of r hypersurfaces in Pn

k of respective
degrees d1, . . . , dr. Assume that

r∑
i=1

d2
i ≤ n + 1. Then X(k)/R = 1.

3.1.1 Sketch of the proof
The hypothesis that X is rationally simply connected implies that there exists a

(su�ciently large) integer e and an irreducible component Me, 2 ⊂ M̄0,2(X, e) such that
the restriction of the evaluation morphism ev2 : Me, 2 → X × X is dominant with
rationally connected general �bre.

Let P and Q be two k-points of X. Let us suppose that k is a function �eld in
one variable over C. A general strategy is the following. We would like to apply the
theorem of Graber, Harris and Starr [GHS] and to deduce that there is a rational point
in a �bre over (P, Q). If it is so, we can use Proposition 2.2 to deduce that P and Q
are R-equivalent. But we only know that a general �bre of ev2 is rationally connected.
We will explain two methods how to solve this problem. We will also precise how to see
that the same argument applies in case k = C((t)).

3.1.2 Specialisation arguments
First method. The �rst possibility is to use the following theorem of Hogadi and Xu
[HX] :
Theorem 3.5. Let k be a �eld of characteristic zero. Let h : Y → Z be a dominant
proper morphism of k-varieties such that Z is smooth and the generic �bre of h is ra-
tionally connected. Then for every point z ∈ Z there exists a subvariety of the �bre Yz,
de�ned over k(z), which is geometrically irreducible and rationally connected.

Let X be as in the theorem 3.3. Let us, as before, take two k-points P and Q of X.
By the theorem above, we can �nd a rationally connected k-subvariety V in the �bre
ev−1

2 (P, Q). If k = C(C), there is a rational point in V by [GHS], hence in ev−1
2 (P, Q).

By the proposition 2.2, the points P and Q are R-equivalent. So we obtain X(k)/R = 1.

Second method. The next argument shows that every �ber in a family with ratio-
nally connected general �ber has a rational point, as soon as we are over a function �eld
of a complex curve. See also [Sta] p.25.
Lemma 3.6. Let k = C(C) be the function �eld of a (smooth) complex curve C. Let
Z and T be projective k-varieties, with T smooth. Let f : Z → T be a morphism with
rationally connected general �bre. Then for every t ∈ T (k) there exists a rational point
in the �bre Zt.

Proof. One can choose proper models T → C and F : Z → T of T and Z respectively
with T smooth. We know that any �bre of F over some open set U ⊂ T is rationally
connected.

The point t ∈ T (k) corresponds to a section s : C → T . What we want is to �nd a
section C → Z×T C. One can view the image s(C) in T as a component of a complete
intersection C ′ of hyperplane sections of T for some projective embedding. In fact, it
is su�cient to take dim T − 1 functions in the ideal of s(C) in T generating this ideal
over some open subset of s(C). Moreover, one may assume that C ′ is a special �bre
of a family C of hyperplan sections with general �bre a smooth curve intersecting U .
After localization, we may also assume that C is parametrized by C[[t]]. Let A be any
a�ne open subset in C containing the generic point ξ of s(C). We have the following
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diagram:
Z ×T Spec A

FA

²²

// Z
F

²²
ξ // Spec A⊗C[[t]] C //

²²

Spec A

²²

// T

SpecC // SpecC[[t]].

Let K = C((t)) and let K̄ be an algebraic closure of K. By construction, the generic
�bre of FK̄ : Z ×T K̄ → Spec A⊗C[[t]] K̄ is rationally connected. By [GHS] we obtain a
rational section of FK̄ . As K̄ is the union of the extensions C((t1/N )) for N ∈ N, we have
a rational section for the morphism Z×T C[[t1/N ]] → Spec A⊗C[[t]]C[[t1/N ]] for some N .
By properness, this section extends to all codimension 1 points of Spec A⊗C[[t]]C[[t1/N ]],
in particular, to the point ξ on the special �ber. This extends again to give a section
C → Z ×T C as desired.

3.1.3 Case k = C((t))

The theorem of Graber, Harris and Starr admits the following corollary over the power
series �elds :
Theorem 3.7. Let X be a projective rationally connected variety over C((t)). Then X
has a rational point.

Proof. We present here a proof from [CT], 7.5. We will use two following facts :

Fact 1. (Theorem of Greenberg, [Gr]) Let Z be a variety over a henselian discrete valuation
ring O. Let t be a generator of the maximal ideal. Then Z(O) 6= ∅ ⇔ Z(O/tn) 6= ∅
for all n > 0.

Fact 2. (cf.[BLR] p.82) Let K be the �eld of fractions of a henselian discrete valuation
ring. Let K̂ be a completion of K. Let Z be a smooth K-variety. Then Z(K) is
dense in Z(K̂).

Let us �x some notations.

1. We denote R the henselisation of C[t] in t = 0 and K the �eld of fractions of R.
Note that K̂ can be identi�ed to C((t)). We also have R/tn ' C[t]/tn.

2. Let X be the closure of X ⊂ Pn
C((t)) in Pn

C[[t]]. There exists a C-algebra i : A ↪→
C[[t]] of �nite type and a projective and �at A-scheme X ′ such that X ′C[[t]] ' X
(take A to be generated by the coe�cients of equations de�ning X in Pn

C[[t]].)

3. Let us denote S = Spec A and let ξ ∈ S(C[[t]]) be the point corresponding to i.

4. Let U ⊂ S be an open set such that X ′u is rationally connected for all u ∈ U . One
may assume that U is smooth.

Now we proceed to the proof of the theorem. By the fact 2, U(K) ⊂ U(C((t))) is
dense. On the other hand, the map S(C[[t]]) → S(C[t]/tn) has open �bres. Thus there
exists a point ξn ∈ U(K)∩ S(C[[t]]) having the same image in S(C[t]/tn) = S(R/tn) as
ξ. By considering the valuation at t we observe that ξn is in fact an R-point.

Let us denote Xn the base change of X ′ by ξn. We view Xn as an R-scheme. Note
that the generic �bre Xn/K of Xn is rationally connected by choice of U and that
Xn ×R R/tn ' X ′ × C[t]/tn by choice of ξn. As the fraction �eld K of R = C[t]h(t) is a
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union of function �elds of curves, Xn(K) is not empty by [GHS]. By properness, Xn(R)
is not empty. Thus X ′ × C[t]/tn ' Xn(R/tn) is not empty. By the fact 1, we deduce
that X(C((t))) 6= ∅.

3.1.4 Proof of 3.3
The theorem now follows by combining the previous results. Let us precise it. Let,

as before, Me, 2 ⊂ M̄0,2(X, e) be an irreducible component, such that the restriction of
the evaluation morphism ev2 : Me, 2 → X × X is dominant with rationally connected
general �bre.

Let P and Q be two k-points of X. We know that a general �bre of ev2 is ratio-
nally connected. If k = C((t)), one concludes using 3.7 and the fact that R-equivalence
classes are Zariski dense in this case by [Ko99]. If k is a function �eld in one variable
over C, ev−1

2 (P, Q) is not empty by 3.6. By the proposition 2.2, the points P and Q are
R-equivalent. So we obtain X(k)/R = 1 in both cases.

Note that the methods used in the proof of the theorem apply more generally over
a �eld k of characteristic zero such that any rationally connected variety over k has a
rational point.

As for the corollary, there is in fact a much simplier proof for any C1 �eld in the
case

∑
d2

i ≤ n. The argument is due to Jason Starr.

Proposition 3.8. Let k be a C1 �eld. Let X
i

↪→ Pn
k be the vanishing set of r polynomials

f1, . . . fr of respective degrees d1, . . . dr. If
∑

d2
i ≤ n then any two points x1, x2 ∈ X(k)

can be joined by two lines de�ned over k : there is a point x ∈ X(k) such that l(x, xi) ⊂
X, i = 1, 2, where l(x, xi) denote the line through x and xi.

Proof. We may assume that x1 = (1 : 0 : . . . : 0) and x2 = (0 : 1 : 0 : . . . : 0) via the
embedding i. The question is thus to �nd a point x = (x0 : . . . : xn) with coordinates
in k such that {

fi(tx0 + s, tx1, . . . txn) = 0
fi(tx0, tx1 + s, . . . txn) = 0,

i = 1, . . . r.

As x1, x2 are in X(k) these conditions are satis�ed for t = 0. Thus we may assume

t = 1. Writing fi(x0 + s, x1, . . . xn) =
di∑

j=0

P i
j (x0, . . . xn)sj with degP i

j = di − j we see

that each equation fi(x0+s, x1, . . . xn) = 0 gives us di conditions on x0, . . . xn of degrees
1, . . . di. By the same argument, each equation fi(x0, x1 + s, . . . xn) = 0 gives di − 1
conditions of degrees 1, . . . di − 1 as we know from the previous equation that we have
no term of degree zero. The sum of the degrees of all these conditions on x0, . . . xn is
r∑

i=0

d2
i . As

r∑
i=0

d2
i ≤ n by Tsen-Lang theorem we can �nd a solution over k, which �nishes

the proof.

3.2 Case of cubic hypersurfaces
The case of R-equivalence on cubic hypersurfaces was studied by Madore. Let us

sketch the proof of the folowing result ([Ma]) :
Theorem 3.9. Let k be a C1 �eld. Let X ⊂ Pn

k be a cubic hypersurface. If n ≥ 5, then
X(k)/R = 1.
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Proof. The proof proceeds by reduction to a singular case. So let us �rst assume that
X is a singular. We may assume that P = (1 : 0 : . . . : 0) is a singular point of X. Thus
X is de�ned by an equation x0q(x1, . . . xn) + c(x1, . . . xn) with q and c respectively a
quadratic and a cubic forms. Let Q = (y0 : . . . : yn) ∈ X(k). We will show that P is
R-equivalent to Q.

If P = Q or if a line PQ is contained in X, it is clear. Otherwise q(y1, . . . yn) 6= 0.
Let S = (z1 : . . . : zn) be a zero of q, which exists in k by hypothesis that k is C1.

Let us consider a rational map

φ : Pn−1
k 99K X, (x1 : . . . : xn) 7→ (−c(x1, . . . xn) : x1q(x1, . . . xn) : . . . : xnq(x1, . . . xn)).

Let h be the restriction of φ to any rational curve C ⊂ Pn−1
k joining Q′ = (y1 : . . . : yn)

to S. We have h(Q′) = Q. Thus φ is de�ned at Q′, so it is de�ned on an open subset of
C. This implies that h is well de�ned. If c(S) 6= 0 then h is de�ned at S and h(S) = P .
Thus the points P and Q are R-equivalent.

Otherwise, the line l = (u : vz1 : . . . : vzn) joining P to (0 : z1 . . . : zn) is contained
in X. Let us show that h(S) is on this line. This will imply that P is R-equivalent to
Q by a chain Ph(S)Q. In fact, consider a rational map

Pn−1
k

φ99K X
p99K Pn−1

k

where p is given by (x0 : x1 : . . . : xn) 7→ (x1 : . . . : xn). Note that the map p ◦ φ is
identity on the domain of its de�nition.

The map p is de�ned at Q and p(Q) = (y1 : . . . : yn). The map φ is de�ned at Q′

and φ(Q′) = Q. Thus the composite p◦φ is de�ned at Q′. This means that p◦φ induces
the identity map on C. Thus the image of p(S) = (z1 : . . . : zn) by φ is S, which means
that p(S) = (u : z1 : . . . : zn) is on the line l, as desired.

Let us now suppose that X is smooth. We want to prove that any two K-points P
and Q of X are R-equivalent. Let T (P ) and T (Q) by the tangent hyperplans to X at
P and at Q respectively. The cubic hypersurface C(P ) = X ∩ T (P ) in T (P ) ' Pn−1

k

has a singular point P . Let us de�ne C(Q) similarly. Then either Q ∈ T (P ) and the
result follows from the singular case or T (P ) is distinct from T (Q). In the latter case,
X ∩T (P )∩T (Q) is a cubic form in n− 1 variables in the projective space T (P )∩T (Q)
of dimension n− 2, thus it has a non trivial zero M . Thus P (resp. Q) is R-equivalent
to M , again by the singular case. This �nishes the proof.

Remark 3.10. Note that in the theorem above one can replace the hypothesis k is C1

by that any quadratic and any cubic for over k in at least n− 1 variables has a zero.

3.3 Some other cases
The triviality of R-equivalence in cases 1−3 p. 2, follows from the explicit description

of the set of R-equivalence classes as some cohomology group H1(Gal(k̄/k),M) : one
uses the fact that cd k ≤ 1 to establish that this group vanishes. Let us consider, as an
example, the case X is a smooth compacti�cation of an algebraic tori T . We know from
[CTSa] Th.2 and Prop.13, that X(k)/R

∼→ H1(G, Ŝ) where Ŝ is the character group of
some particular tori, coming from so-called �asque resolution of T .

Note that Ŝ is not a �nite G-module, so we can not simply use the de�nition of
a �eld of cohomological dimension at most 1. Consider a �nite Galois extension K/k
trivialising Ŝ. Let G = Gal(k̄/k). Let H be an invariant subgroup of G acting trivially
on Ŝ and let L/k be the corresponding extension. The restriction-in�ation sequence
gives an isomorphism H1(G/H,S(L)) ∼→ H1(G, S(K)). As cd k ≤ 1, the �rst group is
zero, so is the second.
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