COMPLETIONS OF NORMAL AFFINE SURFACES WITH A TRIVIAL MAKAR-LIMANOV INVARIANT

ADRIEN DUBOULOZ

Prépublication de l'Institut Fourier $n^{\circ}579 (2002)^{1}$ http://www-fourier.ujf-grenoble.fr/prepublications.html

ABSTRACT. We study normal affine surfaces with non-trivial algebraic \mathbb{C}_+ -actions in term of their completions. As a generalization of a result of Gizatullin [5], we prove that a normal affine surface has a trivial Makar-Limanov invariant if and only if it is completable by a zigzag.

CONTENTS

Introduction	1
1. Rulings and completions of normal surfaces	2
Properties of \mathbb{P}^1 -fibrations on normal projective surfaces	3
Properties of A ¹ -fibrations on normal affine surfaces	5
2. Completions of ML -surfaces	6
Normal affine surfaces completable by a zigzag	6
Completion of a normal affine surface with a trivial Makar-Limanov invariant	12
References	17

Introduction

For a connected normal affine surface V = Spec(A) over \mathbb{C} , the Makar-Limanov invariant of V [9] is the subalgebra $ML(V) \subset A$ of all regular functions invariant under every algebraic \mathbb{C}_+ -actions on V. Constant functions are certainly contained in ML(V), and we say that the Makar-Limanov invariant of V is trivial (or that V is an ML-surface) if $ML(V) = \mathbb{C}$. In [1], Bandman and Makar-Limanov have discovered a link between ML-surfaces and geometrically quasihomogeneous surfaces studied by Gizatullin in [5], that issurfaces whose automorphism group has a Zariski open orbit with a finite complement. More precisely, they have established that, on a nonsingular ML-surface V, there exist at least two non-trivial algebraic \mathbb{C}_+ -actions which generate a subgroup H of the automorphism group Aut(V) of V such that the orbit H.v of a general closed point $v \in V$ has finite complement. By Gizatullin [5] such a surface is rational and either isomorphic to $\mathbb{C}^* \times \mathbb{C}^*$ or can be obtained from a nonsingular projective surface V by deleting an ample divisor of a special form, called a zigzag. This is just a linear chain of nonsingular rational curves. More generally, in this paper we prove the following theorem:

 $^{^1}$ 2000 Mathematics Subject Classification: 14J26, 14R05, 14R20, 14R25. Keywords: affine surfaces, completions, \mathbb{C}_+ -actions, Makar-Limanov invariant.

Theorem. A normal affine surface V non isomorphic to $\mathbb{C}^* \times \mathbb{A}^1$ has a trivial Makar-Limanov invariant if and only if it is completable by a zigzag.

1. Rulings and completions of normal surfaces

We use the following terminology:

- A surface is a connected, reduced, normal C-scheme of finite type and of dimension 2.
- The intersection number of two divisors D_1 and D_2 on a surface V regular at the points of $D_1 \cap D_2$ is denoted by $(D_1 \cdot D_2)$. The self-intersection number of a divisor $D \subset V_{reg}$ is denoted by $(D^2) = (D \cdot D)$.
- For a morphism $f: W \to V$ between normal varieties and for a divisor D on V we denote by $q^{-1}(D)$ the set-theoretic preimage of D, whereas $q^*(D)$ denotes its preimage considered as a cycle.
- An \mathbb{A}^1 -fibration (a \mathbb{P}^1 -fibration) on a surface V is a surjective morphism $\rho: V \to Z$ on a nonsingular curve Z with general fibers isomorphic to the affine line \mathbb{A}^1 (to the projective line \mathbb{P}^1 , respectively). The fibers of ρ which either are not isomorphic to \mathbb{A}^1 (respectively \mathbb{P}^1) or are not reduced are called degenerate.
- \bullet An SNC-divisor D on a surface is a divisor with normal crossing singularities whose irreducible components are nonsingular.
- For a normal affine surface V we call a *completion* of V an open embedding $i:V\hookrightarrow \bar{V}$ of V into a normal projective surface \bar{V} , nonsingular along $B=\bar{V}\setminus i(V)$ and such that B is an SNC-divisor. We say that the completion is minimal if B contains no (-1)-curve which meets at most two other components transversally in a single point.
- For an isolated singularity (V, P) of a normal surface, a minimal embedded resolution of p is a birational morphism $\pi: W \to V$ such that W is nonsingular, $W \setminus \pi^{-1}(P) \simeq V \setminus \{P\}$ and $\pi^{-1}(P)$ is an SNC-divisor which contains no (-1)-curve meeting at most two other components transversally in a single point.

Definition 1.1. A zigzag B on a normal projective surface \overline{V} is a connected SNC-divisor with nonsingular rational curves as irreducible components and whose dual graph is a linear chain. If $Supp(B) = \bigcup_{i=1}^{n} B_i$, the irreducible components B_i , $1 \le i \le n$, of B can be ordered in such a way that

$$(B_i \cdot B_j) = \begin{cases} 1 & \text{if } |i-j| = 1 \\ 0 & \text{if } |i-j| > 1 \end{cases}$$

A zigzag with such an ordering on the set of its components is called *oriented* and the sequence $((B_1^2), \ldots, (B_n^2))$ is called the *type* of B. For an oriented zigzag B, the components B_1 and B_n are called the boundaries of B. Given an irreducible component B_{i_0} of B we denote by $B_{i_0}^{\pm}$ the component $B_{i_0\pm 1}$ provided it does exist. A zigzag B is called minimal if it contains no (-1)-curve.

Let $C \subset V$ be an SNC-divisor. A zigzag B of C is a zigzag with support contained in C and such that no irreducible component of B corresponds to a ramification vertex of the dual graph of C. A zigzag B which is maximal for the inclusion of supports is called maximal. If C itself is not a zigzag, then we call a maximal zigzag B of C simple if only one boundary of B meets a ramification vertex of the dual graph of C. We call it double if this happens for both boundaries of B.

We say that a normal affine surface V is completable by a zigzag if there exists a completion \bar{V} of V such that $B := \bar{V} \setminus V$ is a zigzag.

Properties of \mathbb{P}^1 -fibrations on normal projective surfaces. We recall some properties of \mathbb{P}^1 -fibrations on a normal projective surface. The following lemma is well known for a nonsingular surface \bar{V} (see [12, Lemma 1.4.1, p.195]).

Lemma 1.2. Let $\bar{q}: \bar{V} \to \bar{Z}$ be a \mathbb{P}^1 -fibration. If $F:=\sum_{1=1}^p n_i C_i$ is a fiber of \bar{q} with irreducible components C_i then the following hold.

- (1) The morphism \bar{q} admits a section $S \subset \bar{V}$.
- (2) If F is irreducible and $P = F \cap S$ is a regular point of \bar{V} then F is non-degenerate. Now assume that F is degenerate, then:
- (3) The support of F is connected.
- (4) If a singular point P of \bar{V} is contained in a unique curve C_i then it is a cyclic quotient singularity. In this case the proper transform of C_i in a minimal embedded resolution $\pi: \bar{W} \to \bar{V}$ of P meets a terminal component of $\pi^{-1}(P)$.
- (5) If C_i does not contain any singular point of \bar{V} then it is nonsingular $(C_i \simeq \mathbb{P}^1)$ and $(C_i^2) < 0$.
- (6) If C_i and C_j , $i \neq j$, are nonsingular and do not contain any singular point of \bar{V} then $(C_i \cdot C_j) = 0$ or 1.
- (7) For any three distinct indices i, j and l, either $C_i \cap C_j \cap C_l = \emptyset$ or $C_i \cap C_j \cap C_l$ is a singular point P of \bar{V} .
- (8) If F is contained in $\bar{V} \setminus Sing(\bar{V})$ then at least one of the C_i , say C_1 , is a (-1)-curve. If $\tau : \bar{V} \to \bar{V}_1$ denotes the contraction of C_1 then \bar{q} factors as

$$\bar{q}: \bar{V} \xrightarrow{\tau} \bar{V}_1 \xrightarrow{\bar{q}_1} \bar{Z},$$

where $\bar{q}_1: \bar{V}_1 \to \bar{Z}$ is a \mathbb{P}^1 -fibration. Hence all but one irreducible component of F can be contracted successively to obtain a non-degenerate fiber. Therefore F is an SNC-divisor whose dual graph $\Gamma(F)$ is a tree.

(9) If F is contained in $\overline{V} \setminus Sing(\overline{V})$ and if one of the n_i , say n_1 , is equal to 1, then there exists a (-1)-curve among the C_i , $2 \le i \le p$.

Proof. We let $\phi: \bar{W} \to \bar{V}$ be a minimal embedded resolution of singularities. We denote by \tilde{q} the \mathbb{P}^1 -fibration on \bar{W} lifting \bar{q} and by \tilde{S} a section of \tilde{q} . Then $S:=\phi\left(\tilde{S}\right)$ is a section of \bar{q} , and so (1) follows. In the nonsingular case, (2) is a consequence of the existence of a section of \bar{q} and (3) – (9) follow from the genus formula.

In the normal case, (3) and (5) - (9) follow at once from the nonsingular case and (4) can be proved in the same way as Lemma 1.4.4 in [12, p.196]. To show (2) we let $F = \bar{q}^{-1}(z_0)$, $z_0 \in Z$, be an irreducible fiber of \bar{q} . Its total transform $\phi^{-1}(F)$ is the fiber $\tilde{F} = \tilde{q}^{-1}(z_0)$ of \tilde{q} . If $P \in F$ is a singular point of \bar{V} then $\phi^{-1}(P) \subset \bar{W}$ contains no (-1)-curve which meets at most two other components transversally in a single point. Then assertions (7) and (8) on \bar{W} imply that $\phi^{-1}(P)$ contains no (-1)-curve at all. It follows from (8) that the proper transform F' of F is the unique (-1)-curve in \tilde{F} . Thus F has to be a non-reduced fiber of \bar{q} for otherwise F' has multiplicity one in \tilde{F} which contradicts (9). Provided that $P_0 = S \cap F$ is a regular point of \bar{V} , F does not contain any singular point of \bar{V} and so is non-degenerate, which proves (2).

Remark 1.3. Note that by (7) and (8), a (-1)-curve E contained in a degenerate fiber $F \subset \overline{V}_{reg}$ of \overline{q} cannot be a ramification vertex of the dual graph of $F \cup S$.

We introduce the following:

Definition 1.4. Let $F \subset \bar{V}_{reg}$ be a degenerate fiber of a \mathbb{P}^1 -fibration $\bar{q}: \bar{V} \to \bar{Z}$ over a nonsingular projective curve \bar{Z} and S be a section of \bar{q} . A maximal zigzag D of F (see 1.1) is called terminal if either D = F or D is a maximal simple zigzag of F which does meet S.

In the following lemma we precise the position of (-1)-curves in a degenerate fiber of a \mathbb{P}^1 -fibration.

Lemma 1.5. Let $\bar{q}: \bar{V} \to \bar{Z}$ be a \mathbb{P}^1 -fibration on a normal projective surface \bar{V} over a nonsingular projective curve \bar{Z} . Let S be a section of \bar{q} and let $F \subset \bar{V}_{reg}$ be a degenerate fiber of \bar{q} . If $F \cup S$ is not a zigzag then the following assertions hold.

- 1) At least one (-1)-curve E in F is contained in a maximal terminal zigzag of F.
- 2) If all such (-1)-curve are contained in the same maximal terminal zigzag D of F then every ramification vertex of the dual graph $\Gamma(F \cup S)$ of $F \cup S$ belongs to the shortest path in $\Gamma(F \cup S)$ which joins D and S.

Proof. Given a (-1)-curve E in F we let $\tau_E: \bar{V} \to \bar{V}_1$ be the contraction of E and we consider the factorization

$$\bar{q}: \bar{V} \stackrel{\tau_E}{\to} \bar{V}_1 \stackrel{\bar{q}_1}{\to} \bar{Z},$$

where $\bar{q}_1: \bar{V}_1 \to \bar{Z}$ is a \mathbb{P}^1 -fibration with a degenerate fiber $F_1:=\tau_E(F)\subset \left(\bar{V}_1\right)_{reg}$ and a section $S_1=\tau_E(S)$. By our assumption the graph $\Gamma\left(F\cup S\right)$ has a ramification vertex so that $F\cup S$ has at least 4 irreducible components. By 1.3, E is a component of a maximal zigzag D of F.

We consider first the case that $F \cup S = E_1 \cup E_2 \cup E_S \cup S$ has 4 irreducible components, where E_S meets S. It is easily seen that E_S corresponds to a ramification vertex of $\Gamma(F \cup S)$. Then E_1 and E_2 are both maximal terminal zigzags of F and at least one of them is a (-1)-curve, which proves the first assertion in this case. The second assertion follows then at once since E_S is a unique ramification vertex of $\Gamma(F \cup S)$.

To show (1) we may assume that F is not a zigzag for otherwise our statement is evidently true. We also suppose that $F \cup S$ has n > 4 irreducible components, and we assume on the contrary that every (-1)-curve E in F is contained either in a maximal simple zigzag of F which meets S or in a maximal double zigzag of F. We denote this maximal zigzag by D = D(E). By our assumption the contraction τ_E of E gives a one-to-one correspondence between the maximal simple zigzags of $F \cup S$ and the maximal simple zigzags of $F_1 \cup S_1$. Moreover none of the maximal terminal zigzags of F is affected by this contraction. Since F_1 has one less irreducible components that F we can conclude by induction that there is a (-1)-curve E_1 in F_1 which belongs to a maximal terminal zigzag of F, a contradiction. Thus assertion (1) is proved.

To prove (2) we may suppose that F is not a zigzag and that $F \cup S$ has n > 4 irreducible components. We let E be a (-1)-curve in D. If $D \neq E$ then the contraction τ_E of E yields a bijection between maximal terminal zigzags of F_1 and those of F. Since D is the only maximal terminal zigzag of F affected by the contraction of E it follows from (1) that $\tau_E(D)$ contains a (-1)-curve. In fact it contains all (-1)-curves as in (1), and so we are done by induction.

In case D=E we let H be a ramification vertex of $\Gamma(F \cup S)$ such that E is a branch of $\Gamma(F \cup S)$ at H. Then H has valency 3 for otherwise $\tau_E(H)$ is a ramification vertex of $\Gamma(F_1 \cup S_1)$ and hence none of the maximal terminal zigzags of F_1 contains a (-1)-curve which contradicts (1). Thus if $F_1 \cup S_1$ is a zigzag then we are done. If $F_1 \cup S_1$ is not a zigzag then $\tau_E(H)$ is contained in a maximal zigzag D_1 of F_1 . If either D_1 meets S_1 or D_1

is double then τ_E provides a bijective correspondance between the maximal terminal zigzags of F different from E and those of F_1 . Since these maximal zigzags of F were not affected by the contraction of E it follows that none of the maximal terminal zigzags of F_1 contains a (-1)-curve which again contradicts (1). Therefore D_1 is a maximal terminal zigzag of F_1 and it contains a (-1)-curve E_1 by (1). Our induction hypothesis then implies that every ramification vertex of $\Gamma(F_1 \cup S_1)$ belongs to the shortest path from E_1 to S_1 in $\Gamma(F_1 \cup S_1)$. As H is the only ramification vertex of $\Gamma(F \cup S)$ which is eliminated by the contraction of E, we conclude that every such ramification vertex belongs to the shortest path from E to S in $\Gamma(F \cup S)$. This proves the second assertion.

Properties of \mathbb{A}^1 -fibrations on normal affine surfaces. Given a normal affine surface V together with an \mathbb{A}^1 -fibration $q:V\to Z$ over a nonsingular affine curve Z, we let \bar{V} be a minimal completion of V. Since V is affine the divisor $B:=\bar{V}\setminus V$ is connected. The \mathbb{A}^1 -fibration q on V induces a rational map $\bar{q}:\bar{V}\dashrightarrow \bar{Z}$, where \bar{Z} denotes a nonsingular projective model of Z. The closures of the fibers of q in \bar{V} define a pencil of nonsingular rational curves with at most one base point on B. If necessary, this base point and all infinitely near ones can be eliminated by a succession of blow-ups with centers outside of V. Thus we may suppose that \bar{q} is a well-defined \mathbb{P}^1 -fibration on \bar{V} .

- **1.6.** In this way we arrive at a completion \overline{V} of V with the following properties:
 - (1) \bar{V} is a normal projective surface, nonsingular along $B := \bar{V} \setminus V$, with a \mathbb{P}^1 -fibration $\bar{q} : \bar{V} \to \bar{Z}$ such that the following diagram commutes

$$V \hookrightarrow \bar{V}$$

$$q \qquad \qquad \downarrow \bar{q}$$

$$Z \hookrightarrow \bar{Z}$$

- (2) B is a connected SNC-divisor and can be written as $B = H \cup S \cup G$, where S is a section of \bar{q} , $H = \bigcup H_j$, where $H_j := \bar{q}^{-1}(z_j)$ with $z_j \in \bar{Z} \setminus Z$, and the connected components of G are trees of nonsingular rational curves.
- (3) We can write $G = \bigcup_{i=1}^{s} G_i$, where $\bar{q}(G_i) = z_i \in Z$ and where $z_1, \ldots, z_s \in Z$ are the points such that the fiber $q^{-1}(z_i) \subset V$ is degenerate. Thus $\bar{q}^{-1}(z_i) = G_i \cup \bar{q}^{-1}(z_i)$, $1 \le i \le s$, where $\bar{q}^{-1}(z_i)$ denotes the closure of $q^{-1}(z_i)$ in \bar{V} .

One can moreover assume that the boundary divisor B contains no (-1)-curve except may be the section S. Since B contains no singular point of \bar{V} , it follows that every H_j is a nonsingular rational curve. In the sequel, such a completion will be called a *good completion of* V *with respect to* g.

For degenerate fibers of an \mathbb{A}^1 -fibration on a normal affine surface V, there exists the following description.

Lemma 1.7. (Miyanishi [12, Lemmas 1.4.2 and 1.4.4, p.196]) If $q: V \to Z = \mathbb{A}^1$ is an \mathbb{A}^1 -fibration then the following assertions hold:

- (1) Every irreducible component C of $q^{-1}(z)$ is a connected component of $q^{-1}(z)$ and is a rational curve with only one place at infinity. Hence C is isomorphic to \mathbb{A}^1 provided it is nonsingular.
- (2) Every such component C contains at most one singular point of V.

- (3) The surface V has at most cyclic quotient singularities.
- (4) If C contains a singular point P of V and if $\pi: W \to V$ is a minimal embedded resolution of P then the closure \bar{C}' in W of the proper transform C' of C meets a terminal component of $\pi^{-1}(P)$.

2. Completions of ML-surfaces

This section is devoted to the proof of the following theorem:

Theorem 2.1. A normal affine surface V has a trivial Makar-Limanov invariant if and only if it is completable by a zigzag.

To reformulate our statement we need the following lemma.

Lemma 2.2. (See e.g. [4]). If V is a normal affine surface then the following assertions are equivalent:

- (1) There exists an \mathbb{A}^1 -fibration $q:V\to Z$ over a nonsingular affine curve Z.
- (2) The surface V contains a principal Zariski open subset U which is a cylinder : $U \simeq C \times \mathbb{A}^1$.
- (3) There exists a non-trivial algebraic \mathbb{C}_+ -action on V.

As a consequence we obtain:

Corollary 2.3. For a normal affine surface V the following assertions are equivalent:

- (1) The Makar-Limanov invariant of V is trivial.
- (2) There exists at least two nontrivial algebraic \mathbb{C}_+ -actions on V such that their general orbits do not coincide.
- (3) There exists at least two \mathbb{A}^1 -fibrations $q_1: V \to Z_1$ and $q_2: V \to Z_2$ over nonsingular affine curves Z_1 and Z_2 , such that the general fibers of q_1 and q_2 do not coincide.

Thus, Theorem 2.1 can be equivalently formulated as follows.

Theorem 2.4. A normal affine surface is completable by a zigzag if and only if it admits two \mathbb{A}^1 -fibrations whose general fibers do not coincide.

Normal affine surfaces completable by a zigzag.

This section is closely related to the work of Danilov and Gizatullin [5] and [6], where the case of nonsingular surfaces completable by a zigzag was treated. Let us mention first some useful technical results about zigzags on normal projective surfaces. The following construction will be frequently used in the sequel.

Definition 2.5. Let \bar{V} be a normal projective surface, and let C and D be two irreducible nonsingular curves on \bar{V} which intersect transversally at a single nonsingular point of \bar{V} . By the *iterative modification* of \bar{V} with center (C,D), length $r \in \mathbb{N}^*$ and divisors $E_1, \ldots E_r$, we mean the birational morphism $\sigma: \bar{W} \to \bar{V}$, where \bar{W} is a normal projective surface, obtained by the following blow-up procedure:

- Step 1 is the blow-up $\sigma_1: \bar{W}_1 \to \bar{V}$ of the intersection point of C and D with exceptional curve $E_1 \subset \bar{W}_1$.
- Step k for $2 \le k \le r$ is the blow-up $\sigma_k : \overline{W}_k \to \overline{W}_{k-1}$ of the intersection point of E_{k-1} and the proper transform of D in \overline{W}_{k-1} , with exceptional curve $E_k \subset \overline{W}_k$.

We let $\sigma := \sigma_r \circ \cdots \circ \sigma_1 : \bar{W} := \bar{W}_r \to \bar{V}$. If $C' \subset \bar{W}$ $(D' \subset \bar{W})$ denotes the proper transform of $C \subset \bar{V}$ (of $D \subset \bar{V}$ respectively) then $(C'^2) = (C^2) - 1$, $(D'^2) = (D^2) - r$, $(E_r^2) = -1$ and $(E_i^2) = -2$, $1 \le i \le r - 1$. For the dual graph of the total transform of $C \cup D$ in \bar{W} we use the following notation :

$$D \quad E_r \quad C$$

$$\bullet \quad \bullet \quad r-1 \quad \bullet$$

In 2.6-2.9 below we establish some useful properties of affine surfaces completable by a zigzag.

Lemma 2.6. Let \bar{V} be a normal projective surface and $B \subset \bar{V}$ be a zigzag such that \bar{V} is nonsingular along B and $V := \bar{V} \setminus B$ is affine. If B is irreducible then $(B^2) > 0$. If B is reducible then it contains an irreducible component C with $(C^2) \geq -1$.

Proof. Since $V = \bar{V} \setminus B$ is affine, by a theorem of Goodman [7] there exists an ample divisor D on \bar{V} such that Supp(D) = B. Thus the first assertion follows. Let further B be reducible: $B = \bigcup_{i=1}^n C_i$ with C_i irreducible, $n \geq 2$, and let $D = \sum_{i=1}^n m_i C_i$ with $m_i > 0$ for all $1 \leq i \leq n$. Since B is a zigzag we have $\left(C_i \cdot \sum_{j \neq i} C_j\right) \leq 2$. From

$$(D \cdot B) = \sum_{i=1}^{n} m_i (C_i \cdot B) = \sum_{i=1}^{n} m_i \left((C_i^2) + \left(C_i \cdot \sum_{j \neq i} C_j \right) \right) > 0$$

we conclude that there exists i_0 with $\left(C_{i_0}^2\right) > -\left(C_{i_0} \cdot \sum_{j \neq i_0} C_j\right) \geq -2$, whence $\left(C_{i_0}^2\right) \geq -1$.

Lemma 2.7. Given a normal affine surface V completable by a zigzag, there exists a minimal completion \bar{V} of V by an oriented zigzag B such that its left boundary C_1 has non-negative self-intersection.

Proof. If B is irreducible then the assertion follows from lemma 2.6. Thus we may assume that $B = \bigcup_{i=1}^n C_i$ with $n \geq 2$. By lemma 2.6, $\binom{2}{i_0} \geq -1$ for some $i_0, 1 \leq i_0 \leq n$. In fact $\binom{2}{i_0} \geq 0$ as B is minimal. If $i_0 = 1$ or $i_0 = n$ then, up to reversing the ordering, we are done. If not, we let i_0 be the minimal indice such that $\binom{2}{i_0} \geq 0$, and we denote $C(B) := C_{i_0}$ and $d(B) = d(C_1, C(B)) = i_0 - 1$. Thus $\binom{2}{i_0} \leq -2$ for every component C_i to the left of C(B). Since C(B) is not a boundary of B, the successor $C(B)^+$ of C(B) exists, and so we can perform the iterative modification $\sigma: \bar{W} \to \bar{V}$ of \bar{V} with center $\binom{2}{i_0} = \binom{2}{i_0} = \binom{$

Corollary 2.8. A normal affine surface completable by a zigzag is rational.

Proof. It is enough to show that there exists a completion \overline{W} of V and a nonsingular rational curve $C \subset \overline{W}_{reg}$ with $(C^2) > 0$. Let \overline{V} , B and C_1 be as in lemma 2.7. If $(C_1^2) > 0$ then we are done. If not then B is reducible as it is the support of an ample divisor. By our assumptions $(C_1^2) = 0$ and $(C_2^2) \le 0$. After blowing-up with center in $C_1 \setminus C_2$, the proper transform of C_1 becomes a (-1)-curve, and we contract it, obtaining a completion of V with (C_2^2) increased by one. By iterating this procedure we get a completion \overline{W} of V and a nonsingular rational curve $C \subset \overline{W}_{reg}$ with $(C^2) > 0$.

Lemma 2.9. If V is a normal affine surface completable by a zigzag then the following assertions hold.

- (1) If V is completable by a zigzag of type (0,0) then $V \simeq \mathbb{A}^2$.
- (2) If V is completable by a zigzag of type (0,0,0) then $V \simeq \mathbb{C}^* \times \mathbb{A}^1$.
- (3) If $V \not\simeq \mathbb{C}^2$ and $V \not\simeq \mathbb{C}^* \times \mathbb{C}$ then there exists a completion \bar{V} of V by an oriented zigzag of type $(0,0,k_1,\ldots k_m)$, where $k_i \leq -2, 1 \leq i \leq m$.

Proof. We let \overline{W} be a minimal completion of V by an oriented zigzag $B = \bigcup_{i=1}^{n} C_i$ such that its left boundary C_1 is a curve with non-negative self-intersection.

(1) If $B = C_1$ then $c := (B^2) > 0$ because B is the support of an ample divisor. Let $D \subset \bar{W}$ be a nonsingular curve germ meeting C_1 transversally in a single point, and consider the iterative modification $\sigma : \bar{W}_1 \to \bar{W}$ of \bar{W} with center (D, C_1) , length c and divisors $E_1, \ldots E_c$ (see 2.5). Then the total transform B_1 of B is a zigzag whose left boundary is the proper transform C_1' of C_1 . Moreover $(C_1'^2) = 0$, $(E_c^2) = -1$ and $(E_i^2) = -2$, $1 \le i \le c - 1$. Thus B is now replaced by a zigzag with the following dual graph:

$$C_1' \quad E_c \quad E_{c-1} \quad E_1$$

$$0 \quad -1 \quad -2 \quad -2$$

Let $\pi: \bar{W}_2 \to \bar{W}_1$ be the blow-up of a point $v \in C_1' \setminus E_c$ with exceptional component $E \subset \bar{W}_2$. Then the proper transform of C_1' in \bar{W}_2 is a (-1)-curve that can be contracted to obtain a completion \bar{V} of V by a zigzag of type $(0,0,-2,\ldots,-2)$.

- (2) If $B \neq C_1$ and $c = (C_1^2) > 0$ then by applying the same procedure as in (1) we obtain a new minimal completion W_1 of V by a reducible zigzag such that $(C_1^2) = 0$. Performing, if necessary, elementary transformations we obtain a minimal completion by a zigzag with $(C_1^2) = (C_2^2) = 0$. We must distinguish then the following three cases:
 - o $B = C_1 \cup C_2$. Since \bar{W}_1 is rational the linear system $|C_1|$ defines a \mathbb{P}^1 -fibration $\bar{q}: \bar{W}_1 \to \bar{Z} = \mathbb{P}^1$ whose restriction to V is an \mathbb{A}^1 -fibration $q: V \to Z = \bar{Z} \setminus \{\bar{q}(C_1)\} \simeq \mathbb{A}^1$. Thus \bar{W}_1 is a good completion of V with respect to q. Moreover, every fiber $\bar{q}^{-1}(z), z \in Z$, coincides with the closure of $q^{-1}(z)$ in \bar{V} , and, being connected, it is irreducible. Therefore, by virtue of lemma 1.2(2), \bar{q} has no degenerate fiber, and hence \bar{W}_1 is nonsingular. From $(C_1^2) = (C_2^2) = 0$ we finally deduce $\bar{W}_1 \simeq \mathbb{P}^1 \times \mathbb{P}^1$ so that $V = \bar{W}_1 \setminus (C_1 \cup C_2)$ is isomorphic to \mathbb{A}^2 .
 - o If $B = C_1 \cup C_2 \cup C_3$ and $(C_3^2) = 0$ then the linear system $|C_1|$ defines a \mathbb{P}^1 -fibration $\bar{q}: \bar{W}_1 \to \bar{Z} = \mathbb{P}^1$ whose restriction to V is an \mathbb{A}^1 -fibration $q: V \to Z = \bar{Z} \setminus \{\bar{q}(C_1), \bar{q}(C_3)\} \simeq \mathbb{C}^*$. Thus \bar{W}_1 is a good completion of V with respect to q and we

can again conclude that \bar{q} has no degenerate fiber. Hence \bar{W}_1 is a nonsingular surface isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$. Finally we have $V = \bar{W}_1 \setminus (C_1 \cup C_2 \cup C_3) \simeq \mathbb{C}^* \times \mathbb{A}^1$.

o It remains to consider the case $B = C_1 \cup C_2 \cup G$, where either $G = C_3$ with $\left(C_3^2\right) \neq 0$ or $G = \bigcup_{i=3}^n C_i$ with n > 3. The linear system $|C_1|$ defines a \mathbb{P}^1 -fibration $\bar{q} : \bar{W}_1 \to \mathbb{P}^1$ having C_2 as a cross-section. Since G is connected and does not intersect C_1 it must be contained in a fiber F of \bar{q} . Moreover, F must be a singular fiber of \bar{q} for otherwise, we would have $F = C_3$ and hence, $0 = \left(F^2\right) = \left(C_3^2\right) \neq 0$, a contradiction. In virtue of lemma 1.2, every C_i with $3 \leq i \leq n$ has negative self-intersection. Since the initial completion \bar{W} has been assumed minimal and since our transformations do not affect the curves C_i for $3 \leq i \leq n$, we conclude that $\left(C_i^2\right) \leq -2$ for all $3 \leq i \leq n$.

The next proposition proves one of the two implications of theorem 2.1.

Proposition 2.10. If V is a normal affine surface non-isomorphic to $\mathbb{C}^* \times \mathbb{A}^1$ and completable by a zigzag then V has a trivial Makar-Limanov invariant.

Proof. If V admits a completion \bar{V} by a zigzag of type (0,0) then, by case (1) of lemma 2.9, $V \simeq \mathbb{C}^2$ which has a trivial Makar-Limanov invariant. Therefore we may assume from now on that case (3) of lemma 2.9 holds, that is V has a completion \bar{V}_1 by a zigzag B_1 of type $(0,0,-k_1,\ldots,-k_n)$ with $k_i \geq 2, 1 \leq i \leq n$. As in (1.6) we write

$$B_1 = F_{1,1} \cup S_1 \cup \left(\bigcup_{i=1}^n E_{1,i}\right) ,$$

where $(F_{1,1}^2) = (S_1^2) = 0$ and $(E_{1,i}^2) = -k_i$, $1 \le i \le n$. The dual graph $\Gamma(B_1)$ is the following:

The linear system $|F_{1,1}|$ defines a \mathbb{P}^1 -fibration $\bar{q}_1:\bar{V}_1\to\mathbb{P}^1$ with S_1 as a cross-section so that the restriction $q_1:V\to\mathbb{A}^1$ of \bar{q}_1 to V is an \mathbb{A}^1 -fibration. Thus it remains to find a second \mathbb{A}^1 -fibration $q_2:V\to\mathbb{A}^1$ such that the general fibers of q_1 and q_2 do not coincide. To do this we construct a completion \bar{W} of V together with a birational morphism $\sigma_1:\bar{W}\to\bar{V}_1$ which will also dominate a good completion \bar{V}_2 of V with respect to this \mathbb{A}^1 -fibration q_2 . It will be convenient in the sequel to denote the component $F_{1,1}$ of B by $E_{2,n}$.

If n = 1 then $\sigma_1 : \overline{W} \to \overline{V}_1$ is the iterative modification of \overline{V}_1 with center $(S_1, E_{2,1})$, length k_1 and divisors $D_1, \ldots, D_{k_1-1}, S_2$. For the total transform B of B_1 we obtain the following symmetrical dual graph:

$$E_{2,1}$$
 S_2 S_1 $E_{1,1}$
 $k_1 \cdot 1$ $k_1 \cdot 1$ $k_2 \cdot 1$ $k_3 \cdot 1$ $k_4 \cdot 1$ $k_5 \cdot 1$ $k_6 \cdot 1$

In case n=2 we obtain $\sigma_1: \overline{W} \to \overline{V}_1$ by the following procedure:

- Step 1 is the iterative modification $\pi_1: \bar{W}_1 \to \bar{V}_1$ with center $(S_1, E_{2,2})$, length k_1 and divisors $D_{1,1}, D_{1,k_1-1}, E_{2,1}$. The dual graph of the total transform of B_1 is the following:

$$E_{2,2}$$
 $E_{2,1}$ S_1 $E_{1,1}$ $E_{1,2}$
 k_1 -1 k_1 -1 k_1 -1 k_2

- Step 2 is the iterative modification $\pi_2: \bar{W}_2 \to \bar{W}_1$ of \bar{W}_1 with center $\left(E_{2,1}^+ = D_{1,k_1-1}, E_{2,1}\right)$, length $k_2 - 1$ and divisors $D_{2,1}, \ldots, D_{2,k_2-2}, S_2$ if $k_2 > 2$ or just S_2 if $k_2 = 2$. We then let $\bar{W} := \bar{W}_2$ and $\sigma_1 = \pi_1 \circ \pi_2 : \bar{W} \to \bar{V}_1$. The dual graph of the total transform $B = \sigma_1^{-1}(B_1)$ of B_1 has the following structure:

$$E_{2,2}$$
 $E_{2,1}$ S_2 D_{1,k_1-1} S_1 $E_{1,1}$ $E_{1,2}$
 k_2-2 k_1-2 k_1-2 k_2-2 k_1-2 k_2-2 k_1-2 k_1-2 k_2

We observe that the same dual graph can be obtained from a zigzag of type $(0, 0, -k_2, -k_1)$ by reversing the ordering and the blow-up procedure.

In case $n \geq 3$, \bar{W} is obtained from \bar{V}_1 by the following procedure :

-Step 1 is the iterative modification $\pi_1: \bar{W}_1 \to \bar{V}_1$ with center $(S_1, E_{2,n})$, length k_1 and divisors $D_{1,1}, \ldots, D_{1,k_1-1}, E_{2,1}$. Then the dual graph of the total transform of B_1 is the following one:

$$E_{2,n}$$
 $E_{2,n-1}$ S_1 $E_{1,1}$ $E_{1,n}$
 $k_{1}-1$ $k_{1}-1$ $k_{1}-1$ $k_{1}-1$ $k_{2}-1$ $k_{3}-1$ $k_{4}-1$ $k_{5}-1$ $k_{5}-1$ $k_{5}-1$ $k_{5}-1$ $k_{5}-1$ $k_{5}-1$ $k_{5}-1$

-Step m, where $2 \leq m \leq n-1$, is the iterative modification $\pi_m : \bar{W}_m \to \bar{W}_{m-1}$ of \bar{W}_{m-1} with center $\left(E_{2,n-m}^+, E_{2,n-m}\right)$, length k_m-1 and divisors $D_{m,1}, \ldots, D_{m,k_m-2}, E_{2,n-m-1}$ if $k_m > 2$ or just $E_{2,n-m-1}$ if $k_m = 2$.

- Step n is the last step and consists of the iterative modification $\pi_n: \bar{W}_n \to \bar{W}_{n-1}$ of \bar{W}_{n-1} with center $\left(E_{2,1}^+, E_{2,1}\right)$, length $k_n - 1$ and divisors $D_{n,1}, \ldots, D_{n,k_n-2}, S_2$ if $k_n > 2$ or just S_2 if $k_n = 2$.

Then we let $\bar{W} := \bar{W}_n$ and $\sigma_1 := \pi_1 \circ \cdots \circ \pi_n : \bar{W} \to \bar{V}_1$. For the total transform $B := \sigma_1^{-1}(B_1)$ of B_1 we obtain the following dual graph:

The dual graph of C looks like:

where $r_j \geq 0$ $(0 \leq j \leq p)$ depend on the number of (-2)-curves among the $E_{1,i}$, $1 \leq i \leq n$. Obviously, $V = \bar{W} \setminus B$. We observe as before that the same dual graph can be obtained from a zigzag of type $(0, 0, -k_n, \ldots, -k_1)$ by a symmetric blow-up procedure. Henceforth, the

sub-zigzag

$$D := C \cup S_1 \cup \bigcup_{i=1}^{n-1} E_{1,i}$$

of B can be contracted to a nonsingular point. We denote this contraction by $\sigma_2: \bar{W} \to \bar{V}_2$, and we let

$$B_2 = F_{2,1} \cup S_2 \cup \left(\bigcup_{i=1}^n E_{2,n-i+1}\right)$$

be the image of B by σ_2 , where $F_{2,1} := E_{1,n}$. Then $V = \overline{V}_2 \setminus B_2$ where B_2 is a zigzag of type $(0,0,-k_n,\ldots,-k_1)$.

The linear system $|F_{2,1}|$ defines then a \mathbb{P}^1 -fibration $\bar{q}_2: \bar{V}_2 \to \mathbb{P}^1$ whose restriction to V is a second \mathbb{A}^1 -fibration $q_2: V \to \mathbb{A}^1$. Moreover, since

$$\sigma_2(\sigma_1^*(F_{1,1})) = \alpha S_2 + \sum_{i=1}^n \beta_i E_{2,i}$$

with $\alpha > 0$ and $\beta_i \geq 0$, $1 \leq i \leq n$, it follows that $(F_{2,1} \cdot \sigma_2(\sigma_1^*(F_{1,1}))) \geq 1$. Thus the general fibers of q_1 and q_2 do not coincide, whence V has a trivial Makar-Limanov invariant.

Finally we have the following proposition:

Proposition 2.11. Every normal affine toric surface except for $\mathbb{C}^* \times \mathbb{C}^*$ and $\mathbb{C}^* \times \mathbb{A}^1$ has a trivial Makar-Limanov invariant. Consequently, every cyclic quotient singularity appears as a singular point of an ML-surface.

Proof. Recall that, given a 2-dimensional lattice N, an affine toric surface corresponds to a strictly convex rational polyhedral cone in $N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R}$. If V is a normal affine toric surface non-isomorphic to $\mathbb{C}^* \times \mathbb{C}^*$ or $\mathbb{C}^* \times \mathbb{C}$, then there exists a basis of N such that V is given by the cone $\sigma_{12} = \langle e_1, e_2 \rangle$ with $e_1 = (1, 0)$ and $e_2 = (n, q)$ where n and q are coprime integers.

In order to construct a completion of V we need to include σ_{12} into a complete fan Δ in $N_{\mathbb{R}}$. This can be done e.g. in the following way.

We let $\sigma_{ij} = \langle e_i, e_j \rangle$ with $e_3 = (0,1)$, $e_4 = (-1,0)$ and $e_5 = (0,-1)$. The only possibly singular cones (i.e. cones whose generators do not form a basis of N) in Δ are σ_{12} and σ_{23} . We can subdivide the cone σ_{23} if necessary to obtain a new fan $\tilde{\Delta}$ such that σ_{12} is the only possibly singular cone in $\tilde{\Delta}$. We denote by e_i for $6 \le i \le r$ the new generators introduced in this subdivision procedure. Then $\bar{V} := V\left(\tilde{\Delta}\right)$ is a completion of $V := V\left(\sigma_{12}\right)$. We let $D_i = V\left(\tau_i\right)$ be the divisor on \bar{V} corresponding to the cone $\tau_i = \langle e_i \rangle$ for $3 \le i \le r$. Then $B := \bar{V} \setminus V = D_3 \cup D_4 \cup \cdots \cup D_r$ is a zigzag, whence V has a trivial Makar-Limanov invariant by proposition 2.10.

Completion of a normal affine surface with a trivial Makar-Limanov invariant. In this subsection we prove that, conversely, every ML-surface V is completable by a zigzag.

2.12. By corollary 2.3 there exist two \mathbb{A}^1 -fibrations $q_1:V\to Z_1\simeq \mathbb{A}^1$ and $q_2:V\to Z_2\simeq \mathbb{A}^1$ whose general fibers do not coincide. We denote by \bar{V}_1 a good completion of V with respect to q_1 , with a boundary divisor $B=H\cup S\cup G\subset \left(\bar{V}_1\right)_{reg}$ as in 1.6. Thus q_1 extends to a \mathbb{P}^1 -fibration $\bar{q}_1:\bar{V}_1\to\bar{Z}_1=\mathbb{P}^1$ so that $H=\bar{q}_1^{-1}\left(\infty\right)=:F_\infty$ is a non-degenerate fiber of \bar{q}_1 over the point $\infty:=\bar{Z}_1\setminus Z_1$, and $S\simeq \mathbb{P}^1$ is a section.

We let $\bar{q}_2: \bar{V}_1 \longrightarrow \bar{Z}_2 \simeq \mathbb{P}^1$ be the rational map which extends $q_2: V \to Z_2$. We let \bar{T}_2 be the closure in \bar{V}_1 of a general fiber T_2 of q_2 . The point $\bar{T}_2 \setminus T_2$ belongs to F_{∞} , for otherwise the restriction of q_1 to a general fiber of q_2 would be constant and the general fibers of these two \mathbb{A}^1 -fibration would coincide, in contrary to our assumption. As G is disjoint from F_{∞} , the map \bar{q}_2 has no base point on G, and so $\bar{q}_2|_G$ must be locally constant. Moreover $\bar{q}_2|_{S\setminus\{P_0\}}=\infty$, for otherwise q_2 would be bounded whence constant along a general fiber of q_1 . Since $S\cup G$ is connected, it follows that $\bar{q}_2|_{(S\cup G)\setminus\{P_0\}}=\infty$.

Lemma 2.13. If $\bar{q}_2: \bar{V}_1 \longrightarrow \bar{Z}_2$ is a morphism then $G = \emptyset$, $B = F_{\infty} \cup S$ is a zigzag and $V \simeq \mathbb{A}^2$.

Proof. If $\bar{q}_2: \bar{V}_1 \to \bar{Z}_2$ is a morphism then it is a \mathbb{P}^1 -fibration and its general fiber meets F_{∞} at one point. It follows that F_{∞} is a section of \bar{q}_2 and $S \cup G$ is contained in the fiber $\bar{q}_2^{-1}(\infty) \subset (\bar{V}_1)_{reg}$. Moreover $\bar{q}_2^{-1}(\infty) = S \cup G$ as $\bar{q}_2^{-1}(\infty) \subset \bar{V}_1 \setminus V$. Since \bar{V}_1 is a minimal completion of V it follows that $S \cup G$ contains no (-1)-curve whence is a non-degenerate fiber of \bar{q}_2 (see (5) of 1.2). Thus $(S^2) = 0$, $G = \emptyset$ and $\bar{q}_2^{-1}(\infty) = S$ so that the zigzag $B = F_{\infty} \cup S$ is of type (0,0) and $V \simeq \mathbb{A}^2$ by lemma 2.9.

2.14. If \bar{q}_2 is not a morphism then \bar{q}_2 defines a linear pencil with a unique base point $P \in F_{\infty}$. Suppose that $P = P_0 := S \cap F_{\infty}$. If we blow-up the point P_0 into an exceptional component E, the proper transform F'_{∞} of F_{∞} is a (-1)-curve. By contracting F'_{∞} , we obtain a new completion of V in which (S^2) has decreased by one. By applying these transformations with center P_0 several times, we arrive at the situation that the linear pencil $\bar{q}_2 : \bar{V}_1 \longrightarrow \bar{Z}_2 \simeq \mathbb{P}^1$ has no base point on the proper transform of S. So we may assume from the very beginning that \bar{V}_1 is a good completion of V with respect to q_1 such that \bar{q}_2 has a unique base point $P \in F_{\infty} \setminus S$. Note that this new completion \bar{V}_1 of V is not necessarily minimal, but anyhow the only possible (-1)-curve in the boundary B is a section S of \bar{q}_1 . Observe also that, as \bar{V}_1 is obtained from a given good completion \bar{V} of V with respect to \bar{q}_1 by means of elementary transformations with centers in F_{∞} , $\bar{V}_1 \setminus V$ is a zigzag if and only if $\bar{V} \setminus V$ is.

The following proposition proves the second implication of theorem 2.1.

Proposition 2.15. If V is a ML-surface with an \mathbb{A}^1 -fibration $q:V\to Z\simeq \mathbb{A}^1$ then, for any good completion \bar{V} of V with respect to q as in 1.6, the divisor $B=\bar{V}\setminus V$ is a zigzag. Moreover the \mathbb{A}^1 -fibration q has at most one degenerate fiber.

Proof. If $\bar{q}_2: \bar{V} \to \bar{Z}_2$ is a morphism then, by lemma 2.13, B is a zigzag and we are done. We now suppose that \bar{q}_2 is not a morphism. Due to 2.14 we can also suppose that the unique base point P of the linear pencil \bar{q}_2 belongs to $F_{\infty} \setminus S$. We let $\pi : \bar{W} \to \bar{V}_1$ be a minimal resolution of the base points of \bar{q}_2 , and we denote by $\tilde{q}_2: \bar{W} \to \bar{Z}_2$ the \mathbb{P}^1 -fibration which lifts \bar{q}_2 . The last (-1)-curve arising from this elimination procedure gives rise to a section S_2 of \tilde{q}_2 , and it is a unique (-1)-curve in $\pi^{-1}(P)$. Since $\bar{q}_2|_{S \cup G} = \infty$, the proper transform of $S \cup G$ in \overline{W} is contained in the fiber $\tilde{q}_2^{-1}(\infty)$. If \tilde{T}_2 is a general fiber of \tilde{q}_2 then the point $\tilde{T}_2 \setminus T_2$ belongs to $\pi^{-1}(P)$. It follows that the proper transform of F_{∞} in \bar{W} is disjoint from \tilde{T}_2 whence is contained in a fiber of \tilde{q}_2 . Since $P \in F_{\infty} \setminus S$ the proper transform of $B = F_{\infty} \cup S \cup G$ is connected and so is contained in $\tilde{q}_2^{-1}(\infty) \subset \bar{W}_{reg}$. As $\tilde{q}_2^{-1}(\infty) \subset \bar{W} \setminus V$ is then degenerate, by (8) of lemma 1.2 it must contain a (-1)-curve. Since no such curve can be contained in $G \cup (\pi^{-1}(P) \cap \tilde{q}_2^{-1}(\infty))$ it follows that the proper transform of S or F_{∞} is a (-1)-curve. Since these two curves meet and are contained in a maximal simple zigzag of $\tilde{q}_2^{-1}(\infty)$ which intersects the section S_2 , we deduce from lemma 1.5 that $\tilde{q}_2^{-1}(\infty) \cup S_2$ is a zigzag. Therefore G is connected and is a zigzag, whence q has a unique degenerate fiber. It follows that $B = F_{\infty} \cup S \cup G$ is a zigzag.

More generally we have the following theorem.

Theorem 2.16. If V is an ML-surface then the boundary divisor $C := \bar{V} \setminus V$ of any minimal completion \bar{V} of V is a zigzag.

The proof is done in 2.17-2.20 below. Remind that \bar{V} is a minimal completion of V iff C is an SNC-divisor containing no (-1)-curve which meets at most two other irreducible components transversally in a single point (see 1.1). Since V is affine C is connected. The \mathbb{A}^1 -fibration $q_1: V \to \mathbb{A}^1$ extends to a rational map $\bar{q}_1: \bar{V} \dashrightarrow \mathbb{P}^1$ with at most one base point P on C.

Lemma 2.17. If $\bar{q}_1: \bar{V} \to \mathbb{P}^1$ is a morphism then C is a zigzag.

Proof. Since the closure \bar{T}_1 of a general fiber T_1 of q_1 intersects C in a single point it follows that there exists a unique irreducible component S of C which is a section of \bar{q}_1 . If C = S we are done.

If S is a terminal component of C then $C \setminus S$ is connected whence contained in a unique fiber F of \bar{q}_1 . Moreover since $\bar{q}_1^{-1}(\infty) \subset C$ we get that $F = F_{\infty} = \bar{q}_1^{-1}(\infty)$ and $F_{\infty} = \overline{C \setminus S} \subset V_{reg}$. By the minimality of C, it then follows from 1.3 that $\overline{C \setminus S}$ cannot contain a (-1)-curve. Hence the fiber F_{∞} of \bar{q}_1 is nondegenerate, and so $C = S \cup F_{\infty}$ is a zigzag with two components.

If S is not a terminal component of C we denote by G_1, \ldots, G_n the connected components of $\overline{C \setminus S}$. Then every G_i is contained in a fiber F_i of \overline{q}_1 , whence with the same argument as above G_i cannot contain a (-1)-curve. Since one of the F_i , say F_n , is the fiber $F_{\infty} = \overline{q}_1^{-1}(\infty) \subset \overline{V}_{reg}$ it follows that $G_n = F_{\infty} \simeq \mathbb{P}^1$. Hence \overline{V} is a minimal good completion of V with respect to q_1 (see 1.6). Thus according to proposition 2.15 n=2 and $C=F_{\infty}\cup S\cup G_1$ is a zigzag. \square

2.18. Therefore we may suppose in the sequel that that neither q_1 nor q_2 extends to a morphism on \bar{V} . We let $P \in C$ be the unique base point of the rational map $\bar{q}_1 : \bar{V} \longrightarrow \bar{Z}_1$, and $\pi : \bar{W} \to \bar{V}$ be a minimal resolution of P. That is \bar{q}_1 lifts to a \mathbb{P}^1 -fibration $\tilde{q}_1 : \bar{W} \to \bar{Z}_1$ and $\pi^{-1}(P)$ contains a unique (-1)-curve S which is a section of \tilde{q}_1 . Since the closure \tilde{T}_1 in \bar{W} of a general fiber of q_1 meets $\pi^{-1}(C)$ in a single point it follows that every connected component of the proper transform C' of C in \bar{W} is contained in a fiber of \tilde{q}_1 .

Lemma 2.19. If P belongs to just one irreducible component D of C then C is a zigzag.

Proof. In this case C' is connected whence contained in the fiber F_{∞} of \tilde{q}_1 . Thus $F_{\infty} \subset \bar{W}_{reg}$ does not contain (-1)-curves except maybe for the proper transform D' of D. Indeed, by the minimality of C and of the resolution of P, such a (-1)-curve in F_{∞} , different from D', must be a ramification point of C', which is excluded by 1.3. If the fiber F_{∞} does not contain a (-1)-curve then it is nondegenerate, so $F_{\infty} = D'$ with $(D'^2) = 0$ and C = D is a zigzag. We now suppose that $C \neq D$. Then F_{∞} is degenerate and D' is a unique (-1)-curve in F_{∞} . Therefore D is a terminal component of C for otherwise D' is a ramification vertex of $\Gamma(F_{\infty} \cup S)$, which contradicts 1.3. If C is not a zigzag then $F_{\infty} \cup S$ is not a zigzag either since it contains C'. To eliminate this possibility we note that if $\pi^{-1}(P)$ is a zigzag then D' is contained in a maximal simple zigzag of F_{∞} which meets S, and otherwise D' is contained in a maximal double zigzag of F_{∞} . But both these possibilities are excluded by lemma 1.5. Hence C is a zigzag.

The following lemma completes the proof of theorem 2.16.

Lemma 2.20. In the situation of 2.18, if P belongs to two irreducible components say D_1 and D_2 of C then C is a zigzag.

Proof. In this case the proper transform C' of C has two connected components C'_1 and C'_2 , where D'_i is a terminal component of C'_i , i=1,2. Therefore either C' is entirely contained in the fiber F_{∞} of \tilde{q}_1 , or there exists another fiber F_1 of \tilde{q}_1 such that say $C'_1 \subset F_1$ and $C'_2 \subset F_{\infty}$. The latter happens if and only if $D'_1 \cup \pi^{-1}(P) \cup D'_2$ is a zigzag. Indeed, otherwise at some step $k \geq 2$ of the resolution procedure, we must have blown-up a simple point $P_k \in \pi_{k-1}^{-1}(D_1 \cup D_2)$ into an exceptional component E_k . As E_k is terminal in the dual graph of $D'_1 \cup \pi_k^{-1}(P) \cup D'_2$ we then conclude that $\pi_k^{-1}(C) \setminus E_k$ is connected. Since all further blow-ups have their centers over E_k it follows that the proper transform of $\pi_{k-1}^{-1}(C)$ in \bar{W} contains C' and is connected. This implies that C' is entirely contained in a fiber of \tilde{q}_1 .

1) We first suppose that C' is contained in the fiber $F_{\infty} \subset \overline{W}_{reg}$ of \tilde{q}_1 . For i=1,2 we consider the shortest paths joining D'_i to S in the tree $\Gamma(F_{\infty} \cup S)$, and we denote by D_0 the vertex where they meet. Since C' is not connected it follows that D_0 is contained in $\overline{F_{\infty} \setminus C'}$

and is a ramification vertex of $\Gamma(F_{\infty} \cup S)$. Moreover F_{∞} is degenerate and the only possible (-1)-curves in F_{∞} are D_1' and D_2' . So by (1) of lemma 1.5 at least one of the D_i' , say D_1' is a (-1)-curve contained in a maximal terminal zigzag of F_{∞} . Clearly, this zigzag contains also C_1' . This implies that D_1 is not a ramification vertex of $\Gamma(C)$ for otherwise D_1' is a ramification vertex of $\Gamma(F_{\infty} \cup S)$ which contradicts 1.3.

If either C_2' is not a zigzag or D_2 is a ramification vertex of $\Gamma(C)$ then D_1' is a unique (-1)curve contained in a maximal terminal zigzag of F_{∞} and there exists a ramification vertex H' of $\Gamma(F_{\infty} \cup S)$ which is not contained in the shortest path joining D_1' to S in $\Gamma(F_{\infty} \cup S)$.

Indeed in the first case C_2' is not a zigzag whence it contains such a ramification vertex H', and in the second case we can choose $H' = D_2'$. This contradicts (2) of lemma 1.5 hence, C_2' is a zigzag and D_2 is not a ramification vertex of $\Gamma(C)$. Thus $C = C_1 \cup C_2$ is a zigzag too.

2) We now suppose that C' is not entirely contained in a fiber of \tilde{q}_1 . Thus $D'_1 \cup \pi^{-1}(P) \cup D'_2$ is a zigzag. Moreover there exist two connected components, say G_1 and G_2 , of $\overline{\pi^{-1}(C)} \setminus S$ and two different fibers F_1 and $F_2 = F_{\infty}$ of \tilde{q}_1 such that $C'_i \subset G_i \subset F_i$ for i = 1, 2. Since $F_{\infty} \subset \overline{W}_{reg}$ we can deduce similarly as in lemma 2.19 that $F_{\infty} \cup S$ is a zigzag. This implies that C_2 is a zigzag and D_2 is not a ramification vertex of $\Gamma(C)$. We let $\tau_{\infty} : \overline{W} \to \overline{W}_1$ be the contraction of F_{∞} to a nondegenerate fiber of a \mathbb{P}^1 -fibration. That is, $\tau_{\infty}(F_{\infty}) \simeq \mathbb{P}^1$ is a nondegenerate fiber $\hat{F}_{\infty} = \hat{q}_1^{-1}(\infty)$ of the resulting \mathbb{P}^1 -fibration $\hat{q}_1 : \overline{W}_1 \to \overline{Z}_1$. Since the components of F_1 are not affected by this contraction it follows that $\tau_{\infty}(D'_1)$ is the only possible (-1)-curve in $\tau_{\infty}(G_1) \subset \hat{F}_1 = \tau_{\infty}(F_1)$. Moreover as $D'_1 \cup \pi^{-1}(P) \cup D'_2$ is a zigzag, $\tau_{\infty}(D'_1)$ is contained in the maximal simple zigzag of $\tau_{\infty}(G_1)$ which meets the section \hat{S} of \hat{q}_1 .

If $\tau_{\infty}(G_1)$ contains no (-1)-curve then \bar{W}_1 is a good completion of V with respect to q_1 , and it follows from proposition 2.15 that $\tau_{\infty}(G_1 \cup \hat{S})$ is a zigzag. Thus C_1 is a zigzag too and D_1 is not a ramification vertex of $\Gamma(C)$.

Otherwise $\tau_{\infty}\left(D_{1}'\right)$ is a unique (-1)-curve of $\tau_{\infty}\left(G_{1}\right)$. Starting with $\tau_{\infty}\left(D_{1}'\right)$ we can succesively contract the (-1)-curves which arise in $\tau_{\infty}\left(G_{1}\right)$ to obtain a minimal good completion \overline{W}_{2} of V with respect to q_{1} . Hence the image of $\tau_{\infty}\left(G_{1}\cup\hat{S}\right)$ in \overline{W}_{2} is a zigzag by proposition 2.15. Since $\tau_{\infty}\left(D_{1}'\right)$ is contained in a maximal simple zigzag of $\tau_{\infty}\left(G_{1}\right)$ which meets \hat{S} it follows that none of the possible ramification vertices of $\tau_{\infty}\left(G_{1}\cup\hat{S}\right)$ has been eliminated by the above contractions. This means that $\tau_{\infty}\left(G_{1}\cup\hat{S}\right)$ is also a zigzag. Thus C_{1} is a zigzags and D_{1} is not a ramification vertex of $\Gamma\left(C\right)$. Hence $C=C_{1}\cup C_{2}$ is a zigzag too.

We complete our discussion by a characterization of the affine plane. We need the following lemma

Lemma 2.21. (see also [1]) Let V be an ML-surface and $q_i: V \to Z_i \simeq \mathbb{A}^1$, i=1,2, be two \mathbb{A}^1 -fibrations whose general fibers do not coincide. Then $\phi_{12}:=q_1\times q_2: V\to \mathbb{A}^2$ is a surjective, quasi-finite morphism.

Proof. We let \bar{V} be a good completion of V with respect to q_1 by a zigzag $B=G\cup S\cup F_\infty$ as in 2.12, and we denote by $\bar{q}_1:\bar{V}\to\bar{Z}_1\simeq\mathbb{P}^1$ the \mathbb{P}^1 -fibration which extends q_1 . If the \mathbb{A}^1 -fibration $q_2:V\to Z_2\simeq\mathbb{A}^1$ extends to a \mathbb{P}^1 -fibration $\bar{q}_2:\bar{V}\to\bar{Z}_2\simeq\mathbb{P}^1$ then $V\simeq\mathbb{A}^2$ by lemma 2.13 and q_1 and q_2 are coordinates on V which proves the assertion. So we may assume from now on that $\bar{q}_2:\bar{V}\longrightarrow\bar{Z}_2\simeq\mathbb{P}^1$ is a linear pencil with a unique base point $P\in F_\infty\setminus S$

(see 2.14). Therefore $\bar{q}_2|_{S\cup G}=\infty$ and $\bar{T}_2\setminus T_2=P$ for the closure \bar{T}_2 of a general fiber T_2 of q_2 .

To prove that ϕ_{12} is quasi-finite it is sufficient to show that none of the irreducible components of a fiber of q_2 is contained in a fiber of q_1 . Suppose on the contrary that there exists an irreducible component C of a fiber F_1 of q_1 which is contained in a fiber F_2 of q_2 . If F_1 were a nondegenerate fiber of q_1 then its closure $\bar{F}_1 = \bar{C}$ in \bar{V} would meet S in a single point P_1 . Since $\bar{q}_2|_C$ is constant and finite and \bar{q}_2 $(\bar{C} \cap S) = \infty$ it follows that P_1 would be a base point of \bar{q}_2 which is impossible. Thus by proposition 2.15 F_1 is a unique degenerate fiber of q_1 and hence, \bar{C} meets G (see 2.12). Since $q_2|_C$ is constant and finite and \bar{q}_2 $(G \cap \bar{C}) = \infty$ it follows that $Q = G \cap \bar{C}$ is a base point of \bar{q}_2 which is again impossible. Thus there is no such curve C on V and hence, ϕ_{12} is quasi-finite.

The normalisation of every irreducible component C of a fiber of q_2 is isomorphic to \mathbb{A}^1 by lemma 1.7. Hence the restriction of q_1 to C is nonconstant and surjective, and so $\phi: V \to \mathbb{A}^2$ is a surjection as required.

Corollary 2.22. A normal affine surface V is isomorphic to \mathbb{A}^2 if and only if it admits two \mathbb{A}^1 -fibrations whose general fibers meet in a single point.

Proof. We let $q_i: V \to Z_i \simeq \mathbb{A}^1$, i=1,2 be two \mathbb{A}^1 -fibrations as above. The morphism $\phi:=q_1\times q_2: V \to \mathbb{A}^2$ is surjective and quasi-finite by lemma 2.21. Since the general fibers of q_1 and q_2 meet in a single point it follows that ϕ is birational. By the Zarisky Main Theorem (see e.g. [8]) there exists a factorization

$$\phi: V \xrightarrow{\phi'} X \xrightarrow{u} \mathbb{A}^2$$

where ϕ' is an open immersion and $u: X \to \mathbb{A}^2$ is finite and birational whence an isomorphism. Then $\phi' = \phi$ is an isomorphism too as ϕ is surjective.

To conclude we provide a series of examples of nonsingular affine surfaces in \mathbb{A}^3 with easily computable completions, and we distinguish ML-surfaces among these.

Example 2.23. We consider the hypersurface $V := V_{P,n}$ of $\mathbb{A}^3 = Spec\mathbb{C}[x,y,z]$, with equation $x^nz = P(y)$, where $P = \prod_{i=1}^r (y-y_i)$ is a polynomial with r simple roots. Let us show if that V has a nontrivial Makar-Limanov invariant provided $n,r \geq 2$ (see [?] and [11] for a purely algebraic proof of this result). By theorem 2.16 it is sufficient to find a minimal completion \bar{V} of V such that $B = \bar{V} \setminus V$ is not a zigzag. We proceed as follows. We consider the birational morphism

$$\begin{array}{ccc} V & \stackrel{\phi_0}{\rightarrow} & V_0 := \mathbb{A}^2 \subset \bar{V}_0 := \mathbb{P}^1 \times \mathbb{P}^1 \\ (x,y,z) & \mapsto & (x,y) \end{array}$$

and we let $S = \mathbb{P}^1 \times \{\infty\} \subset \bar{V}_0$, $F_\infty = \{\infty\} \times \mathbb{P}^1 \subset \bar{V}_0$ and $F_0 = \{0\} \times \mathbb{P}^1 \subset \bar{V}_0$. We denote by $C_i \subset V$ the curve $x = 0, y = y_i$ for $1 \leq i \leq r$; these are the irreducible components of the degenerate fiber of the \mathbb{A}^1 -fibration $pr_1 \circ \phi_0$ on V. Then $\phi_0(C_i) = (0, y_i) \subset F_0$ is a point. We let $V_i = V \setminus \left(\bigcup_{j \neq i} C_i\right) \simeq \mathbb{A}^2$ with coordinates (x, u_i) , where $u_i := x^{-n} (y - y_i) = \prod_{j \neq i} (y - y_j)^{-1} z$. The restriction of ϕ_0 to V_i is given by

$$\begin{array}{ccc} V_i \simeq \mathbb{A}^2 & \stackrel{\phi_0|_{V_i}}{\longrightarrow} & \mathbb{A}^2 \\ (x, u_i) & \mapsto & (x, x^n u_i + y_i) \end{array} .$$

We let $\pi_1: \bar{V}_1 \to \bar{V}_0$ be the blow-up of \bar{V}_0 in the points $\phi_0\left(C_i\right)$ with exceptional divisors $E_{1,i}$ for $1 \leq i \leq r$. Clearly $\phi_0: V \to V_0$ lifts to a morphism $\phi_1: V \to V_1 \subset \bar{V}_1 \setminus (F'_{\infty} \cup S' \cup F'_0)$. Moreover $\phi_1\left(V_i\right) \subset V_{1,i} := \bar{V}_1 \setminus \left(F'_{\infty} \cup S' \cup F'_0 \cup \left(\bigcup_{j \neq i} E_{1,j}\right)\right) \simeq \mathbb{A}^2$, and ϕ_1 is given by

$$V_i \simeq \mathbb{A}^2 \stackrel{\phi_1|_{V_i}}{\longrightarrow} \mathbb{A}^2$$

$$(x, u_i) \longmapsto (x, x^{n-1}u_i + y_{1,i})$$

for some $y_{1,i} \in \mathbb{C}$. Iterating the construction, after n blow-ups as above we arrive at an open embedding $\phi_n : V \hookrightarrow \bar{V}$ of V in a nonsingular projective surface \bar{V} . We let $B = \bar{V} \setminus V$. If \bar{C}_i denotes the closure of $\phi_n(C_i)$ in \bar{V} then the dual graph of $B \cup \bar{C}_1 \cup \cdots \cup \bar{C}_r$ has the following structure:

where \square stands for a linear chain of (-2)-curves of length n-3 (provided $n \ge 3$).

Thus \bar{V} is a minimal completion of V by an SNC-divisor B, which is a zigzag iff r=1. Hence by proposition 2.10 and 2.15 V has a trivial Makar-Limanov invariant iff n=1 or n>1 and r=1. The interested reader is referred to [?, ?] for a more systematic study of these surfaces and to [2] for more explicit examples of surfaces with \mathbb{C}_+ -actions.

REFERENCES

- [1] T. Bandman and L. Makar-Limanov, Affine surfaces with $AK(S) = \mathbb{C}$, Michigan J. Math. 49 (2001), 567-582.
- [2] J. Bertin, Pinceaux de droites et automorphismes des surfaces affines, J. reine angew. Math. 341 (1983), 32-53.
- [3] A. Dubouloz, A class of normal affine surfaces with a trivial Makar-Limanov invariant, in preparation.
- [4] H. Flenner and M. Zaidenberg, Rational curves and rational singularities, E-print math.AG/0109221, 2001, 24p; Preprint MPI, MPI-2001,81, 24p.
- [5] M.H. Gizatullin, Quasihomogeneous affine surfaces, Math. USSR Izvestiya 5 (1971),1057-1081.
- [6] M.H. Gizatullin and V.I. Danilov, Automorphisms of affine surfaces I., Math. USSR Izvestiya 9 (1975), 493-534.
- [7] J.E. Goodman, Affine open subset of algebraic varieties and ample divisors, Ann. of Math. 89 (1969), 160-183.
- [8] A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique. IV. Etude locale des schémas et des morphismes de schémas, Publ. Math. IHES 28 (1966).
- [9] S. Kaliman and L. Makar-Limanov, On the Russel-Koras contractible threefolds, J. Algebraic Geom. 6 (1997), 247-268.
- [10] L. Makar-Limanov, On groups of automorphisms of a class of surfaces, Israel J. Math. 69 (1990), 250-256.
- [11] L. Makar-Limanov, On the group of automorphisms of a surface $x^n y = P(z)$, Israel J. Math. 121 (2001), 113-123.
- [12] M. Miyanishi, Open algebraic surfaces, CRM Monograph Series 12, 2001.