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ABSTRACT. We study normal affine surfaces with non-trivial algebraic C,-actions in term
of their completions. As a generalization of a result of Gizatullin [5], we prove that a normal
affine surface has a trivial Makar-Limanov invariant if and only if it is completable by a

zigzag.
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INTRODUCTION

For a connected normal affine surface V' = Spec (A) over C, the Makar-Limanov invariant
of V' [9] is the subalgebra M L (V) C A of all regular functions invariant under every algebraic
C-actions on V. Constant functions are certainly contained in ML (V'), and we say that the
Makar-Limanov invariant of V' is trivial (or that V' is an M L-surface) if ML (V) = C. In [1],
Bandman and Makar-Limanov have discovered a link between M L-surfaces and geometrically
quasihomogeneous surfaces studied by Gizatullin in [5], that issurfaces whose automorphism
group has a Zariski open orbit with a finite complement. More precisely, they have established
that, on a nonsingular M L-surface V, there exist at least two non-trivial algebraic C-actions
which generate a subgroup H of the automorphism group Aut (V') of V such that the orbit
H.v of a general closed point v € V has finite complement. By Gizatullin [5] such a surface
is rational and either isomorphic to C* x C*or can be obtained from a nonsingular projective
surface V by deleting an ample divisor of a special form, called a zigzag. This is just a linear
chain of nonsingular rational curves. More generally, in this paper we prove the following
theorem:
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Theorem. A normal affine surface V non isomorphic to C* x A' has a trivial Makar-Limanov
invariant if and only if it is completable by a zigzag.

1. RULINGS AND COMPLETIONS OF NORMAL SURFACES

We use the following terminology :

e A surface is a connected, reduced, normal C-scheme of finite type and of dimension 2.

e The intersection number of two divisors Dy and Dy on a surface V regular at the points
of Dy N Dy is denoted by (D; - D3). The self-intersection number of a divisor D C Vg is
denoted by (D?) = (D - D).

e For a morphism f : W — V between normal varieties and for a divisor D on V' we denote
by ¢! (D) the set-theoretic preimage of D, whereas ¢* (D) denotes its preimage considered
as a cycle.

e An Al-fibration (a P!-fibration) on a surface V is a surjective morphism p : V — Z on
a nonsingular curve Z with general fibers isomorphic to the affine line A! (to the projective
line P!, respectively). The fibers of p which either are not isomorphic to Al (respectively P!)
or are not reduced are called degenerate.

e An SNC-divisor D on a surface is a divisor with normal crossing singularities whose
irreducible components are nonsingular.

e For a normal affine surface V we call a completion of V an open embedding i : V «— V
of V into a normal projective surface V, nonsingular along B = V \ i (V') and such that B is
an SNC-divisor. We say that the completion is minimal if B contains no (—1)-curve which
meets at most two other components transversally in a single point.

e For an isolated singularity (V, P) of a normal surface, a minimal embedded resolution of
p is a birational morphism 7 : W — V such that W is nonsingular, W \ 7! (P) ~ V' \ {P}
and 7! (P) is an SNC-divisor which contains no (—1)-curve meeting at most two other
components transversally in a single point.

Definition 1.1. A zigzag B on a normal projective surface V is a connected SNC-divisor
with nonsingular rational curves as irreducible components and whose dual graph is a linear
chain. If Supp (B) = |J;_ B, the irreducible components B;, 1 <i < n, of B can be ordered
in such a way that
1 fi—jl=1

(Bi'Bﬂ’)_{ 0 if |i—j]>1
A zigzag with such an ordering on the set of its components is called oriented and the sequence
((B%) ey (B?L)) is called the type of B. For an oriented zigzag B, the components B; and
B,, are called the boundaries of B. Given an irreducible component B;, of B we denote by
Bfg the component B;,+; provided it does exist. A zigzag B is called minimal if it contains
no (—1)-curve.

Let C C V be an SNC-divisor. A zigzag B of C is a zigzag with support contained in C
and such that no irreducible component of B corresponds to a ramification vertex of the dual
graph of C. A zigzag B which is maximal for the inclusion of supports is called maximal. If
C itself is not a zigzag, then we call a maximal zigzag B of C simple if only one boundary of
B meets a ramification vertex of the dual graph of C. We call it double if this happens for
both boundaries of B.

We say that a normal affine surface V' is completable by a zigzag if there exists a completion
V of V such that B := V' \ V is a zigzag.
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Properties of P!-fibrations on normal projective surfaces. We recall some properties
of P!-fibrations on a normal projective surface. The following lemma is well known for a
nonsingular surface V' (see [12, Lemma 1.4.1, p.195]).

Lemma 1.2. Let ¢ : V. — Z be a P'-fibration. If F := > }_, n;C; is a fiber of q with
wrreducible components C; then the following hold.

(1) The morphism q admits a section S C V.

(2) If F is irreducible and P = F N S is a reqular point of V then F is non-degenerate.
Now assume that F is degenerate, then :

(3) The support of F is connected.

(4) If a singular point P of V is contained in a unique curve C; then it is a cyclic quotient
singularity. In this case the proper transform of C; in a minimal embedded resolution
7 : W — V of P meets a terminal component of 7= (P).

(5) If C; does not contain any singular point of V then it is nonsingular (C; ~ P') and
(€2) <0,

(6) If C; and C;, i # j, are nonsingular and do not contain any singular point of V then
(C;-C5) =0 orl.

(7) For any three distinct indices i, j and l, either C;NC;NC =0 or C;NC;NC s a
singular point P of V.

(8) If F is contained in V' \ Sing (V) then at least one of the C;, say C1, is a (—1)-curve.
If 7: V — Vi denotes the contraction of Cy then q factors as

g:vV-nsz

where @, : Vi — Z is a P'-fibration. Hence all but one irreducible component of
F can be contracted succesively to obtain a non-degenerate fiber. Therefore F' is an
SNC-divisor whose dual graph T (F) is a tree.

(9) If F is contained in V' \ Sing (V) and if one of the n;, say ny, is equal to 1, then there
exists a (—1)-curve among the C;, 2 <1 < p.

Proof. We let ¢ : W — V be a minimal embedded resolution of singularities. We denote by
g the P'-fibration on W lifting ¢ and by S a section of . Then S := ¢ (§> is a section of ¢,

and so (1) follows. In the nonsingular case, (2) is a consequence of the existence of a section
of ¢ and (3) — (9) follow from the genus formula.

In the normal case, (3) and (5) — (9) follow at once from the nonsingular case and (4) can
be proved in the same way as Lemma 1.4.4 in [12, p.196]. To show (2) we let F' = g~ ! (o),
20 € Z, be an irreducible fiber of §. Tts total transform ¢~' (F) is the fiber ' = G~'(29) of
4. If P € F is a singular point of V then ¢! (P) C W contains no (—1)-curve which meets
at most two other components transversally in a single point. Then assertions (7) and (8)
on W imply that ¢! (P) contains no (—1)-curve at all. It follows from (8) that the proper
transform F’ of F is the unique (—1)-curve in F. Thus F has to be a non-reduced fiber of §
for otherwise F” has multiplicity one in F' which contradicts (9). Provided that Py = SN F
is a regular point of V, F does not contain any singular point of V and so is non-degenerate,
which proves (2). O

Remark 1.3. Note that by (7) and (8), a (—1)-curve E contained in a degenerate fiber F' C V.,
of ¢ cannot be a ramification vertex of the dual graph of F U S.

We introduce the following :
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Definition 1.4. Let F' C ‘77169 be a degenerate fiber of a P!'-fibration § : V — Z over a
nonsingular projective curve Z and S be a section of g. A maximal zigzag D of F' (see 1.1) is
called terminal if either D = F or D is a maximal simple zigzag of F' which does meet S.

In the following lemma we precise the position of (—1)-curves in a degenerate fiber of a
P!-fibration.

Lemma 1.5. Let ¢ : V — Z be a P'-fibration on a normal projective surface V over a
nonsingular projective curve Z. Let S be a section of ¢ and let F C Vreg be a degenerate fiber
of ¢. If FU S is not a zigzag then the following assertions hold.

1) At least one (—1)-curve E in F is contained in a mazimal terminal zigzag of F .

2) If all such (—1)-curve are contained in the same mazimal terminal zigzag D of F then
every ramification vertex of the dual graph T'(F' U S) of F'US belongs to the shortest path in
I'(F US) which joins D and S.

Proof. Given a (—1)-curve E in F we let 7p : V — Vj be the contraction of E and we consider
the factorization B

g:VENQLZ
where @ : Vi — Z is a P!-fibration with a degenerate fiber I} := 75 (F) C (Vl)mg and a
section S1 = 75 (S). By our assumption the graph I' (F' U S) has a ramification vertex so that
F U S has at least 4 irreducible components. By 1.3, ' is a component of a maximal zigzag
D of F.

We consider first the case that FFUS = F1UFE>;UEgUS has 4 irreducible components, where
Eg meets S . It is easily seen that Eg corresponds to a ramification vertex of I' (F' U S). Then
E; and Ej are both maximal terminal zigzags of F' and at least one of them is a (—1)-curve,
which proves the first assertion in this case. The second assertion follows then at once since
Eg is a unique ramification vertex of I' (F'U S).

To show (1) we may assume that F' is not a zigzag for otherwise our statement is evidently
true. We also suppose that F U S has n > 4 irreducible components, and we assume on
the contrary that every (—1)-curve F in F' is contained either in a maximal simple zigzag of
F which meets S or in a maximal double zigzag of F. We denote this maximal zigzag by
D = D (F). By our assumption the contraction 75 of E gives a one-to-one correspondance
between the maximal simple zigzags of F'U S and the maximal simple zigzags of Fi U 5.
Moreover none of the maximal terminal zigzags of F' is affected by this contraction. Since
F1 has one less irreducible components that F' we can conclude by induction that there is a
(=1)-curve F; in Fy which belongs to a maximal terminal zigzag of F1. Then 75! (F) is a
(—1)-curve contained in a maximal terminal zigzag of F', a contradiction. Thus assertion (1)
is proved.

To prove (2) we may suppose that F is not a zigzag and that F'U S has n > 4 irreducible
components. We let F be a (—1)-curve in D. If D # E then the contraction 7z of F yields a
bijection between maximal terminal zigzags of F; and those of F. Since D is the only maximal
terminal zigzag of F' affected by the contraction of E it follows from (1) that 7 (D) contains
a (—1)-curve. In fact it contains all (—1)-curves as in (1), and so we are done by induction.

In case D = E we let H be a ramification vertex of I' (FUS) such that E is a branch
of '(FUS) at H. Then H has valency 3 for otherwise 7z (H) is a ramification vertex of
I'(F1 US;) and hence none of the maximal terminal zigzags of F) contains a (—1)-curve
which contradicts (1). Thus if F; U Sy is a zigzag then we are done. If F} U S; is not a
zigzag then 75 (H) is contained in a maximal zigzag D; of Fy. If either D meets S or Dy
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is double then 7 provides a bijective correspondance between the maximal terminal zigzags
of F' different from F and those of Fj. Since these maximal zigzags of F' were not affected
by the contraction of F it follows that none of the maximal terminal zigzags of F contains
a (—1)-curve which again contradicts (1). Therefore D is a maximal terminal zigzag of F}
and it contains a (—1)-curve E; by (1). Our induction hypothesis then implies that every
ramification vertex of I (F} U S7) belongs to the shortest path from F; to Sp in I' (Fy U Sy).
As H is the only ramification vertex of I' (F' U S) which is eliminated by the contraction of E,
we conclude that every such ramification vertex belongs to the shortest path from E to S in
I'(FUS). This proves the second assertion. O

Properties of Al-fibrations on normal affine surfaces. Given a normal affine surface V
together with an Al-fibration ¢ : V — Z over a nonsingular affine curve Z, we let V be a
minimal completion of V. Since V is affine the divisor B := V \ V is connected. The Al-
fibration q on V induces a rational map g : V --» Z, where Z denotes a nonsingular projective
model of Z. The closures of the fibers of ¢ in V define a pencil of nonsingular rational curves
with at most one base point on B. If necessary, this base point and all infinitely near ones can
be eliminated by a succession of blow-ups with centers outside of V. Thus we may suppose
that ¢ is a well-defined P'-fibration on V.

1.6. In this way we arrive at a completion V of V with the following properties :
(1) V is a normal projective surface, nonsingular along B := V \ V, with a P!-fibration
q :V — Z such that the following diagram commutes

Ve oV

ql |
Z 7
(2) B is a connected SNC-divisor and can be written as B = H U S UG, where S is
a section of ¢, H = |J H;, where H; := g ! (z;) with z; € Z\ Z,and the connected
components of G are trees of nonsingular rational curves.
(3) We can write G = |J;_ Gi, where §(G;) = z; € Z and where z,...,z; € Z are the
points such that the fiber ¢=! (2;) C V is degenerate. Thus ¢ ! (2;) = G; Uq~ ! (%),
1 <i < s, where ¢! (2;) denotes the closure of ¢~ ! (z;) in V.

One can moreover assume that the boundary divisor B contains no (—1)-curve except maybe
the section S. Since B contains no singular point of V, it follows that every H; is a nonsingular
rational curve. In the sequel, such a completion will be called a good completion of V' with
respect to q.

For degenerate fibers of an A!-fibration on a normal affine surface V, there exists the
following description.

Lemma 1.7. (Miyanishi [12, Lemmas 1.4.2 and 1.4.4, p.196]) If ¢ : V — Z = Al is an
Al-fibration then the following assertions hold :

(1) Ewvery irreducible component C of ¢~ (2) is a connected component of ¢~' (2) and is
a rational curve with only one place at infinity. Hence C is isomorphic to A provided
it 1s nonsingular.

(2) Ewery such component C contains at most one singular point of V.
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(3) The surface V has at most cyclic quotient singularities.

(4) IfC contains a singular point P of V and if 71 : W — V is a minimal embedded
resolution of P then the closure C' in W of the proper transform C' of C' meets a
terminal component of =1 (P).

2. COMPLETIONS OF M L-SURFACES

This section is devoted to the proof of the following theorem :

Theorem 2.1. A normal affine surface V has a trivial Makar-Limanov invariant if and only
if it is completable by a zigzag.

To reformulate our statement we need the following lemma.

Lemma 2.2. (See e.g. [4]). If V is a normal affine surface then the following assertions are
equivalent :

(1) There exists an A'-fibration q : V — Z over a nonsingular affine curve Z.

(2) The surface V' contains a principal Zariski open subset U which is a cylinder : U ~
C x Al

(3) There exists a non-trivial algebraic C -action on V.

As a consequence we obtain :

Corollary 2.3. For a normal affine surface V the following assertions are equivalent :

(1) The Makar-Limanov invariant of V is trivial.

(2) There exists at least two nontrivial algebraic Ci-actions on V' such that their general
orbits do not coincide.

(3) There exists at least two Al-fibrations q1 : V — Z1 and ¢z : V — Z5 over nonsingular
affine curves Z1 and Zs, such that the general fibers of q1 and g2 do not coincide.

Thus, Theorem 2.1 can be equivalently formulated as follows.

Theorem 2.4. A normal affine surface is completable by a zigzag if and only if it admits two
Al-fibrations whose general fibers do not coincide.

Normal affine surfaces completable by a zigzag.

This section is closely related to the work of Danilov and Gizatullin [5] and [6], where
the case of nonsingular surfaces completable by a zigzag was treated. Let us mention first
some usefull technical results about zigzags on normal projective surfaces. The following
construction will be frequently used in the sequel.

Definition 2.5. Let V be a normal projective surface, and let C' and D be two irreducible
nonsingular curves on V which intersect transversally at a single nonsingular point of V. By
the iterative modification of V with center (C, D), lenght r € N* and divisors E, ... E,, we
mean the birational morphism o : W — V, where W is a normal projective surface, obtained
by the following blow-up procedure :

o Step 1 is the blow-up o1 : Wi — V of the intersection point of C' and D with excep-
tional curve E; C Wj.

o Step k for 2 < k < r is the blow-up oy, : Wi, — Wj,_; of the intersection point of Ej_;
and the proper transform of D in W),_1, with exceptional curve Ej, C W.
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Welet 0 := g,0---001: W =W, —» V. If C" C W (D' C W) denotes the proper transform
of C C V (of D C V respectively) then (C"?) = (C?) — 1, (D) = (D?) —r, (E?) = —1 and
(E?) = =2, 1 < i <r— 1. For the dual graph of the total transform of C U D in W we use
the following notation :

In 2.6-2.9 below we establish some usefull properties of affine surfaces completable by a zigzag.

Lemma 2.6. Let V be a normal projective surface and B C V be a zigzag such that V is
nonsingular along B and V := V' \ B is affine. If B is irreducible then (B2) > 0. If B is
reducible then it contains an irreducible component C' with (Cz) > —1.

Proof. Since V = V' \ B is affine, by a theorem of Goodman [7] there exists an ample divisor
D on V such that Supp (D) = B. Thus the first assertion follows. Let further B be reducible :
B = U ,C; with C; irreducible, n > 2, and let D = 3" | m;C; with m; > 0forall 1 <i <n.

Since B is a zigzag we have <C’i DI Cj) < 2. From

(D-B)=> mi(C;-B)=>Y mi [ (CH+[Ci-d Cj|] >0
i=1 i=1 j#i
we conclude that there exists ig with (0220) > — <C’i0 -z#io C’j) > —2, whence (0120) >
—1. O

Lemma 2.7. Given a normal affine surface V' completable by a zigzag, there exists a minimal
completion V of V by an oriented zigzag B such that its left boundary C1 has non-negative
self-intersection.

Proof. If B is irreducible then the assertion follows from lemma 2.6. Thus we may assume
that B = U}",C; with n > 2. By lemma 2.6, (C’ZQO) > —1 for some ig, 1 < ig < n. In fact
(CZ?O ) > 0 as B is minimal. If ip = 1 or ig = n then, up to reversing the ordering, we are done.
If not, we let iy be the minimal indice such that (C?) > 0, and we denote C' (B) := C;, and
d(B) =d(C1,C(B)) =iy — 1. Thus (C?) < —2 for every component C; to the left of C'(B).

Since C (B) is not a boundary of B, the successor C' (B)" of C'(B) exists, and so we can
perform the iterative modification o : W — V of V with center (C'(B),C (B)"), length c¢+1

and divisors F1,..., E., E.41 with ¢ := <C’ (B)Q). Then we get that (C (B)Q) = (E%,) =
—1. If 7 : W — W is the contraction of C' (B)’ then (7- (c (B)/*)Q) = <(C’ (B)*)z) +1
and (7’ (Ec+1)2) = 0. By iterating this procedure, we obtain that ((C (B)7)2> = —1 and
(C (B)2> =0 . Contracting C' (B)~ and all (—1)-curves that arise successively to the left of

C (B) we arrive at a new completion Vi of V by a zigzag By with d (B;) < d (B). Since under
this procedure, no (—1)-curve has been created on the right of C'(By), it follows that V] is a
minimal completion of V. Now the proof can be completed by induction. O
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Corollary 2.8. A normal affine surface completable by a zigzag is rational.

Proof. Tt is enough to show that there exists a completion W of V and a nonsingular rational
curve C' C Wreg with (02) > 0. Let V, B and C; be as in lemma 2.7. If (012) > 0 then we are
done. If not then B is reducible as it is the support of an ample divisor. By our assumptions
(012) =0 and (022) < 0. After blowing-up with center in C \ C3, the proper transform of C
becomes a (—1)-curve, and we contract it, obtaining a completion of V' with (C’%) increased
by one. By iterating this procedure we get a completion W of V and a nonsingular rational
curve C' C V_Vreg with (02) > 0. O

Lemma 2.9. IfV is a normal affine surface completable by a zigzag then the following asser-
tions hold.

(1) If V is completable by a zigzag of type (0,0) then V ~ A2,

(2) If V is completable by a zigzag of type (0,0,0) then V ~ C* x Al

(3) IfV £ C? and V £ C* x C then there exists a completion V of V by an oriented zigzag
of type (0,0,k1,...kp), where k; < =2, 1 <i<m.

Proof. We let W be a minimal completion of V by an oriented zigzag B = U!'_;C; such that
its left boundary C is a curve with non-negative self-intersection.

(1) If B = C4 then ¢ := (B?) > 0 because B is the support of an ample divisor. Let
D C W be a nonsingular curve germ meeting C; transversally in a single point, and consider
the iterative modification o : W7 — W of W with center (D,C}), length ¢ and divisors
Eq,...E. (see 2.5). Then the total transform B of B is a zigzag whose left boundary is the
proper transform Cjof C;. Moreover (0{2) =0, (ECQ) = —1 and (Ef) =-21<i<c-—1.
Thus B is now replaced by a zigzag with the following dual graph:

Cl E. E. Ey

0 -1 -2 -2

Let 7 : Wy — Wj be the blow-up of a point v € C} \ E,. with exceptional component E C Wh.
Then the proper transform of C] in W is a (—1)-curve that can be contracted to obtain a
completion V of V by a zigzag of type (0,0, —2,...,—2).

(2) If B# Cy and ¢ = (012) > 0 then by applying the same procedure as in (1) we obtain
a new minimal completion W; of V by a reducible zigzag such that (012) = 0. Performing,
if necessary, elementary transformations we obtain a minimal completion by a zigzag with
(C?) = (C3) = 0. We must distinguish then the following three cases :

o B = C; UC(C,. Since Wy is rational the linear system |Cy| defines a P!-fibration
q: W1 — Z = P! whose restriction to V is an Al-fibration ¢ : V — Z = Z\{g(C1)} ~
Al. Thus W is a good completion of V with respect to q. Moreover, every fiber
g1 (2), z € Z, coincides with the closure of ¢~! (z) in V, and, being connected, it is
irreducible. Therefore, by virtue of lemma 1.2(2), g has no degenerate fiber, and hence
W1 is nonsingular. From (012) = (022) = 0 we finally deduce W; ~ P! x P! so that
V =W\ (C1 U Cy) is isomorphic to A2

o If B=C;UCyUC5 and (C’g) = 0 then the linear system |C;| defines a P!-fibration
q: W1 — Z = P! whose restriction to V is an Al-fibration ¢ : V — Z = 7\
{G(C1),q(C3)} ~ C*. Thus W is a good completion of V with respect to ¢ and we
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can again conclude that ¢ has no degenerate fiber. Hence W, is a nonsingular surface
isomorphic to P! x P!. Finally we have V = W7 \ (C; UCy U C3) ~ C* x Al

o It remains to consider the case B = C1 U Cy U G, where either G = C3 with (Cg) #0
or G = U ;C; with n > 3. The linear system |C;| defines a P!-fibration g : W, — P!
having Cs as a cross-section. Since G is connected and does not intersect C'y it must
be contained in a fiber F' of g. Moreover, F' must be a singular fiber of ¢ for otherwise,
we would have F' = ('3 and hence, 0 = (F 2) = (Cg) # 0, a contradiction. In virtue
of lemma 1.2, every C; with 3 <14 < n has negative self-intersection. Since the initial
completion W has been assumed minimal and since our transformations do not affect
the curves C; for 3 < < n, we conclude that (C?) < —2 for all 3 <i < n.

O

The next proposition proves one of the two implications of theorem 2.1.

Proposition 2.10. If V is a normal affine surface non-isomorphic to C* x A and completable
by a zigzag then V has a trivial Makar-Limanov invariant.

Proof. If V admits a completion V by a zigzag of type (0,0) then, by case (1) of lemma 2.9,
V ~ C? which has a trivial Makar-Limanov invariant. Therefore we may assume from now
on that case (3) of lemma 2.9 holds, that is V' has a completion V; by a zigzag B; of type

(0,0, —k1,...,—ky) with k; > 2,1 <i <n. As in (1.6) we write
n
By =F1US5 U (U El,z‘) ;
i=1

where (F7;) = (S7) = 0 and <E%Z> = —Fk;, 1 <1i <n. The dual graph I' (B;) is the following:

Fii S Eix Eip,

0 0 —k?l —k‘n

The linear system |F} ;| defines a P!-fibration g; : Vi — P! with S; as a cross-section so
that the restriction ¢; : V' — Al of g to V is an Al-fibration. Thus it remains to find a second
Al-fibration ¢o : V — A! such that the general fibers of ¢; and ¢ do not coincide. To do this
we construct a completion W of V together with a birational morphism oy : W — V; which
will also dominate a good completion V, of V with respect to this Al-fibration go. It will be
convenient in the sequel to denote the component Fy; of B by Es .

If n =1 then oy : W — V] is the iterative modification of V; with center (S1,E2,1), length
k1 and divisors Dy,..., Dy, _1,S52. For the total transform B of B; we obtain the following
symmetrical dual graph:

Ey1 S S1 Eia
-k -1 -1 -k
In case n = 2 we obtain o1 : W — Vi by the following procedure :

- Step 1 is the iterative modification 7 : Wi — Vi with center (Si, Ea2), length k; and
divisors D1 1, D1y, -1, F2,1. The dual graph of the total transform of By is the following :
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Ero Eoi S1 Ein Eip

-k1 -1 -1 -k1 -ko

- Step 2 is the iterative modification my : Wo — W; of W; with center (E;r1 = D1 -1, E2,1>,
length ko — 1 and divisors Dy 1,...,Da g, 2,5 if ko > 2 or just Sy if ko = 2.We then let
W := Wy and oy = 7 oy : W — Vi. The dual graph of the total transform B = afl (B1)
of B; has the following structure:

Eyo Eri S D1 k-1 S1 Eix Eip
.—o—o—| ko-2 |—o—| k1-2 |—o—o—o
k1 ke 1 -3 1k -ke

We observe that the same dual graph can be obtained from a zigzag of type (0,0, —ka, —k1)
by reversing the ordering and the blow-up procedure.
In case n > 3, W is obtained from V; by the following procedure :

-Step 1 is the iterative modification 7 : Wi — V; with center (S1, Eap), length k; and
divisors D1 1,...,D1 ,—1, Eo1. Then the dual graph of the total transform of B; is the
following one:

Espn Eopy S1 g Ein
k-1 o —0
-k1 -1 -1 -k1 -kn

-Step m, where 2 < m < n — 1, is the iterative modification 7, : W, — Wy—1 of W,,_1
with center <E§L7n7m,
km > 2 or just B 1 if ky, = 2. B B -

- Step n is the last step and consists of the iterative modification w,, : W,, — W,,_1 of W,,_1
with center (E;Tl,Eg,l), length k,, — 1 and divisors Dy, 1,..., Dy k,—2,52 if k, > 2 or just So
if k, = 2.

Then we let W := W,, and 01 := my0---om, : W — V. For the total transform B := afl (By1)
of By we obtain the following dual graph:

Egm,m), length k,, — 1 and divisors Dy, 1,..., D k-2, B2 n—m—1 if

Eyp Es1 Sy S Fia Ein
S I
-k1 -kn -1 - -1 -k1 —kn

The dual graph of C looks like:

Dint—ry oy =2 D1 kg -1

kn-2 kEn-1-r-2 f—.-.-. kq-2
-r1-3 -Tp-3

where r; > 0 (0 <j< p) depend on the number of (—2)-curves among the E;;, 1 <i < n.
Obviously, V.= W \ B. We observe as before that the same dual graph can be obtained
from a zigzag of type (0,0, —k,, ..., —k1) by a symmetric blow-up procedure. Henceforth, the
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sub-zigzag

n—1
D:=CUS5 U UELZ'
i=1

of B can be contracted to a nonsingular point. We denote this contraction by o9 : W — V5,
and we let

n
By =F; US U (U Ez,n—z‘+1>

i=1

be the image of B by o9, where Fy 1 := Fy,. Then V = Vs \ By where Bj is a zigzag of type
(0,0, —kp,...,—ky).

The linear system |F5 ;| defines then a P!-fibration ¢, : Vo — P! whose restriction to V is
a second Al-fibration ¢ : V' — A!. Moreover, since

o2 (07 (F11)) = Sz + ZﬁiEz,z‘
i=1

with @ > 0 and 3; > 0, 1 < i < mn, it follows that (F2; - o2 (6] (F1,1))) > 1. Thus the general
fibers of ¢1 and ¢ do not coincide, whence V has a trivial Makar-Limanov invariant. O

Finally we have the following proposition :

Proposition 2.11. Every normal affine toric surface except for C* x C* and C* x A has a
trivial Makar-Limanov invariant. Consequently, every cyclic quotient singularity appears as a
singular point of an M L-surface.

Proof. Recall that, given a 2-dimensional lattice N, an affine toric surface corresponds to a
strictly convex rational polyhedral cone in Ng = N ®zR. If V is a normal affine toric surface
non-isomorphic to C* x C* or C* x C, then there exists a basis of N such that V is given by
the cone o019 = (e1,e2) with e; = (1,0) and es = (n,q) where n and ¢ are coprime integers.

In order to construct a completion of V' we need to include 012 into a complete fan A in Np.
This can be done e.g. in the following way.
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034

045 |051 045 |051

A A

We let 0;; = (e, e;) with e3 = (0,1), e4 = (—1,0) and e5 = (0, —1).The only possibly singular
cones (i.e. cones whose generators do not form a basis of N) in A are o1 and o93. We
can subdivide the cone o3 if necessary to obtain a new fan A such that o1 is the only
possibly singular cone in A.-We denote by e; for 6 < i < r the new generators introduced

in this subdivision procedure. Then V := V <A> is a completion of V' := V (012). We let

D; = V (7;) be the divisor on V corresponding to the cone 7; = (e;) for 3 < i < r. Then
B:=V\V =D3UDyU---UD, is a zigzag, whence V has a trivial Makar-Limanov invariant
by proposition 2.10. O

Completion of a normal affine surface with a trivial Makar-Limanov invariant. In
this subsection we prove that, conversely, every M L-surface V is completable by a zigzag.

2.12. By corollary 2.3 there exist two Al-fibrations @V — 72~ Aland qo: V — Z5 ~ Al
whose general fibers do not coincide. We denote by Vi a good completion of V' with respect
to q1, with a boundary divisor B = HUS UG C (Vl)reg as in 1.6. Thus ¢; extends to a
P!-fibration ¢; : V} — 7y = P! so that H = ¢; ' (00) =: Fx is a non-degenerate fiber of g
over the point co := Z; \ Z1, and S ~ P! is a section.

We let ¢ : Vi --» Z5 ~ P! be the rational map which extends ¢» : V — Z5. We let T, be
the closure in V; of a general fiber T5 of go. The point 15 \ T3 belongs to F, for otherwise the
restriction of ¢; to a general fiber of g» would be constant and the general fibers of these two
Al-fibration would coincide, in contrary to our assumption. As G is disjoint from F,, the map
@2 has no base point on G, and so ¢2|¢ must be locally constant. Moreover ¢2|s\(p,} = o0,
for otherwise g2 would be bounded whence constant along a general fiber of ¢;. Since SUG
is connected, it follows that ga2|(sua)\ (py} = 00

Lemma 2.13. If ¢ : Vi --» Z is a morphism then G = 0, B = F,, U S is a zigzag and
V ~ AZ

Proof. If o : Vi — Zy is a morphism then it is a P!-fibration and its general fiber meets
F at one point. It follows that F is a section of g and S U G is contained in the fiber
3@t (o0) C (‘71)7"6_9' Moreover g, (00) = SUG as ¢, ' (00) € V1 \ V. Since V; is a minimal
completion of V' it follows that S UG contains no (—1)-curve whence is a non-degenerate fiber
of @ (see (5) of 1.2). Thus (5?) =0, G =0 and 3y ' (00) = S so that the zigzag B = Fio U S
is of type (0,0) and V ~ A? by lemma 2.9. O
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2.14. If ¢» is not a morphism then ¢, defines a linear pencil with a unique base point P € F..
Suppose that P = Py := S N F. If we blow-up the point Py into an exceptional component
E, the proper transform F! of F., is a (—1)-curve. By contracting F! , we obtain a new
completion of V' in which (52) has decreased by one. By applying these transformations with
center P, several times, we arrive at the situation that the linear pencil ¢ : V; --» Zp ~ P!
has no base point on the proper transform of S. So we may assume from the very beginning
that V; is a good completion of V' with respect to ¢; such that ¢, has a unique base point
P € F, \ S. Note that this new completion V; of V is not necessarily minimal, but anyhow
the only possible (—1)-curve in the boundary B is a section S of g;. Observe also that, as V;
is obtained from a given good completion V of V with respect to ¢; by means of elementary
transformations with centers in Fi,, V1 \ V is a zigzag if and only if V' \ V is.

The following proposition proves the second implication of theorem 2.1.

Proposition 2.15. If V is a M L-surface with an Al-fibration q : V — Z ~ Al then, for
any good completion V' of V' with respect to q as in 1.6, the divisor B = V \'V is a zigzayg.
Moreover the A'-fibration q has at most one degenerate fiber.

Proof. If o : V. — Z5 is a morphism then, by lemma 2.13, B is a zigzag and we are done.
We now suppose that g» is not a morphism. Due to 2.14 we can also suppose that the unique
base point P of the linear pencil o belongs to Fi, \ S. We let 7 : W — Vi be a minimal
resolution of the base points of G2, and we denote by o : W — Z, the P!'-fibration which
lifts g2. The last (—1)-curve arising from this elimination procedure gives rise to a section
So of g2, and it is a unique (—1)-curve in 7= (P). Since §2|sug = 0o, the proper transform
of SUG in W is contained in the fiber Gy 1 (00). If Ty is a general fiber of ¢» then the
point 75 \ Ty belongs to 7! (P). Tt follows that the proper transform of F, in W is disjoint
from T, whence is contained in a fiber of §,. Since P € Fy \ S the proper transform of
B = Fy, US UG is connected and so is contained in G, ' (00) C Wiyeg. As Gy (00) € W\ V
is then degenerate, by (8) of lemma 1.2 it must contain a (—1)-curve. Since no such curve
can be contained in GU (771 (P) N gy ! (00)) it follows that the proper transform of S or Fi
is a (—1)-curve. Since these two curves meet and are contained in a maximal simple zigzag
of g, ' (co) which intersects the section Sa, we deduce from lemma 1.5 that ¢, ' (c0) U Sy is a
zigzag. Therefore G is connected and is a zigzag, whence ¢ has a unique degenerate fiber. It
follows that B = F,o U S UG is a zigzag. O

More generally we have the following theorem.

Theorem 2.16. IfV is an M L-surface then the boundary divisor C' := V\V of any minimal
completion V of V is a zigzag.

The proof is done in 2.17-2.20 below. Remind that V is a minimal completion of V iff
C' is an SNC-divisor containing no (—1)-curve which meets at most two other irreducible
components transversally in a single point (see 1.1). Since V' is affine C is connected. The

Al-fibration ¢; : V — A! extends to a rational map g; : V --» P! with at most one base point
P on C.

Lemma 2.17. If ¢, : V — P! is a morphism then C is a zigzag.

Proof. Since the closure T} of a general fiber T} of q; intersects C' in a single point it follows
that there exists a unique irreducible component S of C which is a section of ¢;. If C' = 5 we
are done.
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If S is a terminal component of C' then C'\ S is connected whence contained in a unique fiber
F of §1. Moreover since ¢; ' (00) C C we get that F = Fy, = ¢ ' (00) and Foo = C'\ S C Vyey.
By the minimality of C it then follows from 1.3 that C'\ S cannot contain a (—1)-curve. Hence
the fiber F, of ¢; is nondegenerate, and so C' = S U F, is a zigzag with two components.

If S is not a terminal component of C' we denote by (1, ..., G, the connected components of
C—\S. Then every G; is contained in a fiber F; of ¢;, whence with the same argument as above
G; cannot contain a (—1)-curve. Since one of the F;, say F,,, is the fiber F,, = cjl_l (0) C Vreg
it follows that G,, = Fs, ~ P'. Hence V is a minimal good completion of V with respect to
q1 (see 1.6). Thus according to proposition 2.15 n =2 and C' = F,, U S UG} is a zigzag. O

2.18. Therefore we may suppose in the sequel that that neither g; nor ¢» extends to a mor-
phism on V. We let P € C be the unique base point of the rational map q; : V --» Z;, and
7 : W — V be a minimal resolution of P. That is g lifts to a P'-fibration §; : W — Z; and
7! (P) contains a unique (—1)-curve S which is a section of §. Since the closure T} in W of
a general fiber of ¢; meets 7! (C) in a single point it follows that every connected component
of the proper transform C’ of C'in W is contained in a fiber of §.

Lemma 2.19. If P belongs to just one irreducible component D of C then C is a zigzag.

Proof. In this case C’ is connected whence contained in the fiber F, of ¢;. Thus Fi, C V_Vreg
does not contain (—1)-curves except maybe for the proper transform D’ of D. Indeed, by the
minimality of C' and of the resolution of P, such a (—1)-curve in F,, different from D’, must
be a ramification point of C’, which is excluded by 1.3. If the fiber F., does not contain a
(—1)-curve then it is nondegenerate, so Foo = D' with (D"?) = 0 and C = D is a zigzag.
We now suppose that C' # D. Then F., is degenerate and D’ is a unique (—1)-curve in
F,. Therefore D is a terminal component of C for otherwise D’ is a ramification vertex of
I'(F US), which contradicts 1.3. If C' is not a zigzag then F, U S is not a zigzag either
since it contains C’. To eliminate this possibility we note that if 7= (P) is a zigzag then D’
is contained in a maximal simple zigzag of Fl,, which meets S, and otherwise D’ is contained
in a maximal double zigzag of F,,. But both these possibilities are excluded by lemma 1.5.
Hence C' is a zigzag. O

The following lemma completes the proof of theorem 2.16.

Lemma 2.20. In the situation of 2.18, if P belongs to two irreducible components say D1 and
Dy of C then C is a zigzag.

Proof. In this case the proper transform C’ of C' has two connected components C] and C%,
where D) is a terminal component of C/, ¢ = 1,2. Therefore either C’ is entirely contained in
the fiber F, of ¢1, or there exists another fiber Fy of ¢; such that say C] C Fy and C) C F.
The latter happens if and only if DjUn~! (P)U D) is a zigzag. Indeed, otherwise at some step
k > 2 of the resolution procedure, we must have blown-up a simple point P;, € w,;_ll (D1 U Dy)
into an exceptional component Ej. As Ej is terminal in the dual graph of D} U 77,;1 (P)u D,
we then conclude that 7, ' (C)\ Ej, is connected. Since all further blow-ups have their centers
over Fj it follows that the proper transform of 711;11 (C) in W contains C’ and is connected.
This implies that C” is entirely contained in a fiber of ¢;.

1) We first suppose that C’ is contained in the fiber F, C V_Vreg of g;. For i = 1,2 we
consider the shortest paths joining D} to S in the tree I' (F U S), and we denote by Dy the
vertex where they meet. Since C’ is not connected it follows that Dy is contained in Fy, \ C’



COMPLETIONS OF NORMAL AFFINE SURFACES WITH A TRIVIAL MAKAR-LIMANOV INVARIANT 15

and is a ramification vertex of I' (Fi, U S). Moreover F, is degenerate and the only possible
(—1)-curves in F,, are D} and D5. So by (1) of lemma 1.5 at least one of the D}, say D]
is a (—1)-curve contained in a maximal terminal zigzag of F,,. Clearly, this zigzag contains
also (7. This implies that D; is not a ramification vertex of I' (C) for otherwise D] is a
ramification vertex of I' (F, U S) which contradicts 1.3.

If either CY is not a zigzag or Do is a ramification vertex of I" (C') then D] is a unique (—1)-
curve contained in a maximal terminal zigzag of Fi, and there exists a ramification vertex
H' of T'(Fx US) which is not contained in the shortest path joining D} to S in I' (Fy U S).
Indeed in the first case CY is not a zigzag whence it contains such a ramification vertex H’,
and in the second case we can choose H' = D). This contradicts (2) of lemma 1.5 hence, C/
is a zigzag and Dy is not a ramification vertex of I' (C'). Thus C' = Cy U Cs is a zigzag too.

2) We now suppose that C’ is not entirely contained in a fiber of ¢;. Thus DjUr~! (P)U D),
is a zigzag. Moreover there exist two connected components, say G and Gs, of =1 (C)\ S
and two different fibers F} and F, = F, of ¢; such that C] C G; C F; for i = 1,2. Since
F C Wreg we can deduce similarly as in lemma 2.19 that F, U S is a zigzag. This implies
that Cy is a zigzag and D is not a ramification vertex of I' (C'). We let 7o, : W — Wj be
the contraction of Fi, to a nondegenerate fiber of a P!-fibration. That is, 7o (Fo) =~ P!
is a nondegenerate fiber Foo = (jfl (00) of the resulting P!-fibration ¢; : W, — Z;. Since
the components of Fj are not affected by this contraction it follows that 7o, (D}) is the only
possible (—1)-curve in 7o, (G1) C F| = 7o (F1). Moreover as D) Un~! (P) U D} is a zigzag,
Too (D)) is contained in the maximal simple zigzag of 7o (G1) which meets the section S of
q1-

If 7o (G1) contains no (—1)-curve then Wi is a good completion of V with respect to qi,
and it follows from proposition 2.15 that 7 (G1 U S) is a zigzag. Thus C is a zigzag too

and D; is not a ramification vertex of I" (C).
Otherwise 7o, (D)) is a unique (—1)-curve of 7 (G1). Starting with 7, (D]) we can succe-
sively contract the (—1)-curves which arise in 7 (G1) to obtain a minimal good completion

Wy of V with respect to ¢;. Hence the image of 7o <G1 U 5‘) in Wy is a zigzag by proposition
2.15. Since 7o, (D)) is contained in a maximal simple zigzag of 7o, (G1) which meets S it

follows that none of the possible ramification vertices of 7 <G1 U 5‘) has been eliminated by

the above contractions. This means that 7., <G1 U 5’) is also a zigzag. Thus C] is a zigzags

and D; is not a ramification vertex of I (C). Hence C = Cy U C} is a zigzag too. O

We complete our discussion by a characterization of the affine plane. We need the following
lemma.

Lemma 2.21. (seealso [1])Let V be an M L-surface and q; : V — Z; ~ A, i = 1,2, be
two Al—ﬁbmtions whose general fibers do not coincide. Then ¢12 == q1 X g2 : V — A2 is a
surjective, quasi-finite morphism.

Proof. We let V be a good completion of V with respect to q; by a zigzag B = GU S U F,
as in 2.12, and we denote by q; : V — Z; ~ P! the P'-fibration which extends ¢;. If the
Al-fibration ¢z : V — Zo ~ Al extends to a P!-fibration g : V — Z5 ~ P! then V ~ A? by
lemma 2.13 and ¢; and ¢» are coordinates on V which proves the assertion. So we may assume
from now on that go : V --» Z5 ~ P! is a linear pencil with a unique base point P € F., \ S
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(see 2.14). Therefore ¢o|sug = 0o and Ty \ Ty = P for the closure T of a general fiber Ty of
q2.

To prove that ¢15 is quasi-finite it is sufficient to show that none of the irreducible compo-
nents of a fiber of ¢o is contained in a fiber of ¢;. Suppose on the contrary that there exists
an irreducible component C' of a fiber F; of g1 which is contained in a fiber F; of ¢o. If F}
were a nondegenerate fiber of ¢; then its closure F; = C in V would meet S in a single point
Py. Since @2|c is constant and finite and o (C’ N S) = oo it follows that P, would be a base
point of ¢ which is impossible. Thus by proposition 2.15 F} is a unique degenerate fiber of
q1 and hence, C' meets G (see 2.12). Since go|c is constant and finite and g» (G N C) = oo it
follows that Q = G N C is a base point of §» which is again impossible. Thus there is no such
curve C' on V and hence, ¢15 is quasi-finite.

The normalisation of every irreducible component C' of a fiber of ¢ is isomorphic to A! by
lemma 1.7. Hence the restriction of ¢; to C is nonconstant and surjective, and so ¢ : V — A2
is a surjection as required. O

Corollary 2.22. A normal affine surface V is isomorphic to A? if and only if it admits two
Al-fibrations whose general fibers meet in a single point.

Proof. We let ¢; : V. — Z; ~ A', i = 1,2 be two Al-fibrations as above. The morphism
¢ :=q1 X qo: V — A? is surjective and quasi-finite by lemma 2.21. Since the general fibers of
q1 and g2 meet in a single point it follows that ¢ is birational. By the Zarisky Main Theorem
(see e.g. [8]) there exists a factorization

6:V X2 A

where ¢’ is an open immersion and v : X — A? is finite and birational whence an isomorphism.
Then ¢’ = ¢ is an isomorphism too as ¢ is surjective. O

To conclude we provide a series of examples of nonsingular affine surfaces in A? with easily
computable completions, and we distinguish M L-surfaces among these.

Example 2.23. We consider the hypersurface V := Vp,, of A3 = SpecC [z, v, 2], with equation
z"z = P (y), where P = [['_, (y — y;) is a polynomial with r simple roots. Let us show if that
V has a nontrivial Makar-Limanov invariant provided n,r > 2 (see [?] and [11] for a purely
algebraic proof of this result). By theorem 2.16 it is sufficient to find a minimal completion V'
of V such that B =V \ V is not a zigzag. We proceed as follows. We consider the birational
morphism

\%4 L Vo:=A2C Vy: =P x P!

(z,y,2) — (2,9)
and we let S = P! x {oo} C Vi, Fso = {00} x P! C Vj and Fy = {0} x P! € Vj. We denote
by C; C V the curve x = 0,y = y; for 1 < i < r ; these are the irreducible components
of the degenerate fiber of the Al-fibration pry o ¢g on V . Then ¢g (C;) = (0,1;) C Fp is a

point. We let V; = V' \ (U#i C’i) ~ A? with coordinates (x,u;), where u; := ™" (y — ;) =
Hj 4 (y — yj)*1 z. The restriction of ¢ to V; is given by

#olv;
—

V; ~ A2 A2

(z,u;) +—  (z,2"ui+y)
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We let 71 : Vi — Vj be the blow-up of Vj in the points ¢ (C;) with exceptional divisors E
for 1 < i <r. Clearly ¢p : V. — V} lifts to a morphism ¢; : V. — V; C V1 \ (F, U S U Fp).

Moreover ¢ (V;) C Vi = Vi \ <Féo US UFjU (Uj#i E17j>) ~ A2 and ¢, is given by
Vi ~ A2 ¢1—“>/i A2
(z,u) = (22" u + )

for some y;; € C. Iterating the construction, after n blow-ups as above we arrive at an open

embedding ¢, : V < V of V in a nonsingular projective surface V. Welet B =V \ V. If ;

denotes the closure of ¢, (C;) in V' then the dual graph of BUC; U---UC, has the following

structure:

r times

where O stands for a linear chain of (—2)-curves of length n — 3 (provided n > 3) .

Thus V is a minimal completion of V by an SNC-divisor B, which is a zigzag iff » = 1. Hence
by proposition 2.10 and 2.15 V has a trivial Makar-Limanov invariant iff n = 1 or n > 1 and
r = 1. The interested reader is referred to [?, ?] for a more systematic study of these surfaces
and to [2] for more explicit examples of surfaces with C-actions.
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