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Abstract.

Using lambda coordinates from Teichmiiller theory, we study the action of Thompson’s group T
on a relative Teichmiiller space, which is defined in terms of piecewise projective homeomorphisms.

1 Introduction

Let T be the group of piecewise-modular homeomorphisms of RP!. It is well known that 7T is one of
the Thompson groups, the first examples of finitely presented infinite simple groups ([McK-Tho],
[Can-Flo-Par|). Thompson’s groups have been studied in different fields such as group theory,
homotopy theory, logic and dynamical systems [Ghy-Ser|, [Bri].

In [Gre2], Peter Greenberg provides a geometrical study of the group T, using piecewise-
projective geometry, called CPP geometry. More precisely, the author introduces the infinite-
dimensional space of PSL;R-classes of Cl-piecewise projective diffeomorphisms of RP!, with ra-
tional breaks, denoted G, (T¢ in [Gre2]). His goal is to study the action of the group T' by
precomposition on G,.. There, the main result is a sketch of proof of the contractibility of G,. He
further points out the analogy between this action and the action of the Mapping-Class group on
the corresponding Teichmiiller space.

This article forms an essential backdrop to [Gre2]. A key ingredient is an injection of CPP
geometry into Penner’s universal decorated Teichmiiller space [Pen2], which provides a system of
affine coordinates, called lambda lengths. The rest of the paper is organized as follows. In section
2, we define Thompson’s group 7', CPP geometry and give an example of a C' P P-homeomorphism,
which is central in Penner’s theory, and is called there a log-lambda deformation. In section 3,
we recall some material from the theory of decorated tesselations and state some results of Penner
[Pen2]. Then, we inject CPP geometry into the theory of decorated tesselations. This is done in
proposition 3.4 and corollary 3.5. Section 4 discusses two different systems of coordinates over
G,. Coordinates of the first type are called lambda coordinates [Pen2]. They are provided by the
injection discussed above and lead to the principal theorem of this paper: G, is topologically a
direct limit of Euclidean vector spaces (theorem 4.4). As a direct consequence, we retrieve the
contractibility of G, (corollary 4.6). Coordinates of the second type, called shift coordinates, are
intrinsic to the space G, and provide another interesting analytic point of view of G, (theorem
4.9). In section 5, we recall the action of Thompson’s group T on G, and translate it in terms
of coordinate changes in both systems of coordinates. The lambda coordinates’ behavior under T’
provides a nice tool to show, via Ptolemy’s formula [Pen1], that the action is discrete (proposition
5.6). Then, we follow more or less [Gre2] to describe the stabilizers, although we improve the
argument in avoiding the use of a theorem from [Ghy-Ser| which says that elements of T have



rational rotation numbers (lemma 5.8 and theorem 5.9). This discussion leads to the construction
of a classifying space for T' (corollary 5.14). We also points out the analogy with the Teichmiiller
space of a surface. Indeed, we show that T acts isometrically for a certain metric associated
to shift-coordinates (proposition 5.10). Compare with a theorem of Royden which says that the
Mapping-Class group of a surface coincides with the group of isometry for the Teichmiiller space
(with the Teichmiiller metric) of the surface [Roy|. More recently, Gardiner and Harvey proved
an analogue in the universal case [Gar-Har|. Still more recently, two other works tend to see
Thompson’s group as the Mapping-Class group of an infinite surface ([Kap-Ser|,[DeF-Gar-Har]).
Finally, the appendix deals with horocyclic lengths associated with bracelets [Grel], and gives
successively a complete proof of a conjecture given in the same article (lemma 5.4) and the proof
of theorem 4.9.

2 Thompson’s Group and Piecewise-Projective Geometry

2.1 Thompson’s Group 7T

The tangent function tan : z € S = R/Z + tan(rz) € RU {00} = R induces a homeomorphism
between the abstract version of the circle Si and the one-point compactification of the real line R.
Hence, we shall denote the circle by S! or R depending on the model we are referring to.

The projective group PSLoR = SLy(R)/{+12} acts on the hyperbolic plane by projective trans-
formations z € H? s %IS € H? with ad — bc = 1, and fixes the boundary 9H2 = R set-wise. The
group of orientation-preserving homeomorphisms (resp. C!-diffeomorphisms) of the circle will be
denoted Homeot(R) (resp. Dif f; (R)), or Homeo™ (S!) (resp. Diff; (S!)).

The modular subgroup PSLyZ C PSLyR acts transitively on the subset of rational numbers
Q = QU {oc}. Elements of PSLyZ are called modular transformations. If x is rational, P, is
the subgroup of PSL>Z of elements fixing z. Notice that the conjugation isomorphism v € P, —
gyg~t € Py = Z, for g-x = oo does not depend on the choice of g. In that sense, we say
that the isomorphism P, = P, is canonical. This assertion comes from the fact that modular
transformations of hyperbolic type do not have rational fixed points.

Definition 2.1. (Thompson’s group T) Let T = PPSL,7 be the subgroup of Homeo" (R) of
elements f for which there exists a finite sequence 1 < xo < -+ < x, < x1 withn >3 and z; € Q
such that f; = f(z,.0,,,) is the restriction of a modular transformation for each i.

The PSLsZ-invariance of the subset @ implies that 7' is stable under composition and inverse.
The arithmetic nature of definition 2.1 turns the group 7 into a subgroup of Dif f;"(R) (proposi-
tion 1.8. [Mar]).

2.2 CPP Geometry
CPP geometry has been introduced and studied by P.Greenberg in [Grel], [Gre2].

Definition 2.2. (CPP-homeomorphism) Let C PP be the subgroup of H omeoJr(I@) of elements f
for which there exists a finite sequence z; < 22 < --- < x, < x1 withn > 3such that f; = fijz,;2,,,)

is the restriction of a projective transformation for each i. For x € @, denote by f. € PSL,R
(resp. fI € PSLyR) the left (resp. right) germ of f € CPP. The projective transformation
D.f = (fr)"to fl is called the shift of f at x. If the shift is not the identity, x is a breakpoint of
f- The set of breakpoints of f will be denoted bk(f).

Elements of CPP will be simply called CPP-homeomorphisms . Since elements of 1" are of
class C', CPP contains T as a subgroup. Notice that such homeomorphism of the circle extends



to a homeomorphism between two regions of H? whose complementary sets are finite-sided ideal
polygons. Compare with quasisymmetric homeomorphisms which are extended to quasiconformal
homeomorphisms of H2. It seems somewhat difficult to extend naturally a CPP-homeomorphism
on the whole half-plane without using quasiconformal extensions. However, the C!-condition allows
f to act on horocycles. Let H be the set of horocycles of H?2, provided with the Hausdorff topology
on compact-subset of D2, after conjugation by the Cayley transform. If x € R, a horocycle based
on z is usually denoted h,.

Proposition 2.3. The following action:

CPP x H — H

is well defined.

Proof: Let f be CPP-homeomorphism and = € R. Since it is of class C ! the shift transformation
D, f is a parabolic transformation fixing . Hence, any horocycle h, based on x is invariant under
D, f, and it follows the equality f.(h,) = f(h.). This completes the proof. O

It is an important geometric data on CPP-homeomorphisms which will be used constantly in
the sequel.

We shall now define the principal topological space studied in this article and previously in
[Gre2]. Topologically, it will be a direct limit space. To see this, recall that Q is filtrated as
follows. Let S; = {0;00; —1}. Suppose S, = {x7;---;2% ..} is constructed in such a way that:

1
O=af < <P <2t <. <al,. =
’
Let i €< 1;3-2""1 >. Since z7 = £ and 2,, = L are rational numbers, we can form the

!
Farey sum of these two elements, namely z;™! = Zi—g, (if i = 3-2"" ! set 7, = a¥). Moreover,

we define xg;fl =af, forall i e<1;3-2""1 —1 >. We have defined in this way a set

1
1 1
S = fo=aptiseniag - g ]

Then, @ is the direct limit of the sequence (S, ),>1 under the inclusions S,, C S,,41 for n > 1.

Definition 2.4. (The Greenberg space G,.) Let é: denote the space of CPP-homeomorphisms with

rational breakpoints. The space G, is defined as the subspace of é: consisting of elements which
fix simultaneously the points 0, —1 and co. These elements are said to be normalized. In the same
manner, we define G,.,, to be the space of CPP—homeomorp}ES\ms with breakpoints in .S, and G,.,,
its subspace of normalized elements, or equivalently, G,.,, = G,,, N G,.

Since PSLyR acts triply-transitively on CPP by post-composition, and does not change the
set of breakpoints, G, (resp. G,,) is homeomorphic to PSLsR\G, (resp. PSLyR\G,,). We give
CPP, G,, and G,,, the C' topology, with its associated metric:

di(f;9) = sup sup{ds: (f(z); g(2)); |f'(x) — ¢'(x)[}

zest

The space G, (resp. é;) is given the direct-limit topology, under inclusions G,,, C Gy, 11 (resp.
grn - g?"n+1)‘



Ezample 1. Generalized hyperbolic elements: For each increasing sequence x = (2;)ic<1,2n> €
(R)2" and each t > 0, let us denote h, the unique map which restricts to the hyperbolic trans-
formation with fixed points z2;, 2,41 and with derivative % (resp. t) at xo; (resp. 2;+1) on the
interval ]xo;; x9;11[ and to the hyperbolic transformation with fixed points xo; 41, x2;+2 and with
derivative t (resp. %) at wo;11 (resp. Ta2;i2) on the interval |x9;y1;%2;42[- By construction, h
is a CPP homeomorphism with breakpoint set bk(f) = {z1;---;x2,}. It can be thought of as a
generalization of hyperbolic transformations in PSLoR.

The case n = 2 appears in a series of papers on decorated Teichmiiller spaces ([Penl],[Pen2]).
In these papers, the previous transformations (with n = 2) are called log-lambda deformations. Let
Q@ be an ideal quadrilateral with vertices x = {z1,---, 24}, t > 0 and e = (z1;x3) one of its two
diagonals. Then h? is called the (Q,e)-log-lambda deformation with length t. The next section is
a brief overview of the Penner theory of Teichmiiller spaces introduced in ([Penl],[Pen2]).

3 Embedding CPP Geometry into Penner’s Decorated The-
ory

3.1 Decorated Tesselations

We briefly recall the definition of the beautiful objects that are decorated tesselations, due to
Penner.

Definition 3.1. (Tesselation) A tesselation 7 is a countable and locally finite ideal triangulation
of H?, with a given distinguished oriented edge, called the doe.

Notice that 7 is also understood as a collection of geodesics. We let 79 denote the vertices
of the triangulation. It is a countable and dense subset of R. There is a standard tesselation 7,
called Farey tesselation, with underlying triangulation PSLsZ - Ty, where Tj is the ideal triangle
with vertices 0,00 and —1, and with doe the geodesic running from 0 to co. It is well known that
Tﬁo) = @ Let Tess’ denote the set of all tesselations, and Tess the PSLyR-normalized subset
consisting of tesselations with doe eg and with triangle to the left of ey equal to Tj.

Definition 3.2. (Decorated tesselation) A decorated tesselation T = (7, h) is a tesselation 7, with

a countable and locally finite collection of horocycles h = (hy),er € HT(O), based on the set of
vertices of 7.

There is also a standard decorated tesselation 7., with underlying tesselation 7., and whose
collection of horocycles corresponds to the set of Ford circles, based on Q (see [Rad] for a definition
of Ford circles). We let (AL )me@ denote the collection of Ford circles. 7, is called the Farey-Ford
decorated tesselation and verify the property that any two horocycles intersect if and only if their

base-points are the endpoints of a geodesic of .. Moreover, the intersection is tangent. We call it
the tangent property. Let fgs/s/ denote the set of all decorated tesselations and Tess the subset of
elements with underlying tesselation in T'ess.

Let 7/ € Tess. It is combinatorically rigid in the sense that its doe provides two natural
bijections:

Xr:Te —7 and X0 : Q— r®

X is called the characteristic map associated to 7 and is uniquely determined by the fact that
it maps doe to doe and triangles to triangles. X(TO) is defined by extending ., to the vertices of
the respective tesselations. The one-to-one map 7 € Tess’ — X(TO) € RQ provides tess’ with the
topology induced by the product topology on RQ. The same argument allows to embed I/“efs/s/ in
the product H?, given the product topology.



Figure 1: Farey-Ford decorated tesselation.

Tess (resp. fe\s/s) is called the universal Teichmiiller space (resp. universal decorated Teich-
miller space) in the sense that it contains each of the classical Teichmiiller spaces of surfaces with
punctures. We close this section with a theorem due to Penner. By density of the sets 7 and
70 in I@, the map XS‘” extends to a homeomorphism of the circle for any 7 € Tess’. Denote this
extension simply f.

~

Theorem 3.3. (Penner [Pen2]) The map 7 € Tess' — f, € Homeo™ (R) is a PSLyR-equivariant
homeomorphism, with Homeo™ (R) given the compact-open topology.

3.2 Injecting G, into Tess

~

Since CPP C Homeo™ (R), theorem 3.3 gives a one-to-one PSLsR-equivariant map i : CPP —
Tess'. Roughly speaking, this map consists of "pushing" the Farey tesselation by first moving its
vertices. Moreover, proposition 2.3 /Sll_(lWS that C'P P-homeomorphisms push not only the vertices,
but the horocycles as well. Let ¥ : Tess — Tess be the forgetful map, thought of as a R-fibration.

Proposition 3.4. There exists a continuous one-to-one map
s: PSLoR\CPP — Tess such that the diagram:

Tess
S v
CcpP 7
—_ T
PSL,R €38

commutes.

Proof: Let g € PSLoyR\CPP and define the decorated tesselation g - 7. as follows:

Let e = (x;y) € 7 and set g(e) = (g(x); g(y)). Denote g - 7, the collection (g(e))eer, With doe
g(ep)- In other words, g - 7. is i(g).

Now, take any z = g(z) in (g-7.)(® = ¢(Q) and denote h, = g-h¥ as defined in proposition 2.3,
where AL is the Ford circle based on x € Q. It is easy to see that the collection b/ = (R))2e(gory©
is locally finite in H?, hence it is a decoration of the tesselation g-7.. Let g- 7. denote the resulting
decorated tesselation.The map s is defined by s(g) = g - 7.



It is clear that W o s = 4. It follows that s is one-to-one. To prove that s is continuous, recall
from lemma A.2 in [Mal-Pen| that the horocycle f - hf has Euclidean diameter |f’(z)|d, in H?,
where d,, is the Euclidean diameter of hl’ if x # co. If x = oo, f - hL is the horizontal line located

at height m Thus, for any = € Q, the map s, : f € PSLy;R\CPP  f-hf € H is continuous

with the metric d; introduced in 2.2. Since Tess € HQ is given the product topology, the map s
is also continuous. O

Corollary 3.5. The space G, is continuously injected in Tess.

4 Global Coordinates on G,

4.1 Lambda Coordinates

Let I denote any subset of the circle. We say that I is decorated by h if h = (hs).er is a collection
of horocycles, with one horocycle based on each point of the set I. If (z,y) € I?, and e is the
geodesic with endpoints = and y, we define the quantity

[haNhy|
dn(has hy) = (1) dyga (hy N €3 hy N e)
If h, and h, are tangent, this quantity is null.

Definition 4.1. (Lambda-length) Let I C R decorated by h and e = (z;y) a geodesic with vertices

in I. The quantity
—dp(hzs h
A(hye) = \/2exp <—h(2 y))

is called the lambda-length of h along e.

If 7 is a decorated tesselation, the preceding definition applies to I = 7(9) and e € 7. In that
case, we rewrite A(h;e) = A(7;e). Recall the characteristic map x, associated with 7 and defined
in 3.1.

Theorem 4.2. (Penner [Pen2]) The map:

E: Tess: — R: ™
T — B o1, — R%
e — AFx-(e))

is an embedding of Tess into R%™ with the product topology.

This provides Tess with global affine coordinates. These coordinates are called lambda coor-
dinates and are carried by Farey geodesics. Note that the tangent property of 7. discussed in 3.1
implies that each coordinate of 7, is V2.

We recall now some properties of log-lambda deformations in terms of lambda lengths. Let
7 be a decorated tesselation and e one of its edges. Let ) denote the unique ideal quadrilateral
in H? \ {7 Ue} (any other component of H? \ {r Ue} is a triangle). Finally, let 6, , . denote the
(@, e)-log lambda deformation with length ¢ as defined in example 1.

Proposition 4.3. 1. (‘gtme)teu{* is a I-parameter subgroup of CPP isomorphic to R . If
+
T = Ty, then this subgroup is contained in G,.

2. Let (e,e’) € 72, and set Ay(e') = N0y 1. o701 7. c(€')). Then we have the following equalities:

1. A(e) = tA(T,e) 2.A(e') = A(F,€') Ve €1\ {e}



Proof: 1. By definition of log-lambda deformations.
2. See proof of Lemma 3.2 in [Pen2]. O
We are now ready to prove the main result of this paper. Let us first introduce some notations.
The filtration Q = U,,;>15,, introduced in 2.2, defines a filtration 7, = Up>2(7)n by

(T)n = {e = (z39) € 7| (2,y) € (Su_1)?} Vn>2

If A € R.™, let Supp(A) = {e € 7.|A(e) # V/2} C 7. denotes the support of A. Let us
introduce the following subspaces of R* ™:

(R* 7'* {AER*T*

card(Supp(A)) < oo}
(R3) 75" = {A € RY™ [ Supp(A) C (7))}
so that (R*)72" is homeomorphic to the Euclidean space R32"'~1). Since (R%)75 is also the

V2

direct-limit of the sequence of spaces ((R* )(\;_) ) - under the inclusions (R )E;_) C (R% )E;i)"“,

it is given the direct-limit topology. Finally let A : G, — R ™ be the composition Eos (proposition
3.4 and theorem 4.2) and A, its restriction to G,,,.

Theorem 4.4. The map A : G, — (R%)7; is a homeomorphism.

Tx

Proof: To prove that A maps G, onto (R ) 1) 5 We use the corresponding filtrations and restrict
to G,,,. This is done in the following lemma:

Lemma 4.5. A, (G,,) = (Ri)i;%)n

Proof: We proceed by inclusions.
o C: Ife=(z;y) € v\ (Tu)n, the ideal points x and y are included in a segment [z;; z;1] whose
extremities are two consecutive points in .S,,. By definition of G,.,,, any element of G,.,, restricts to
a projective transformation h; on this segment. Thus, we have
dn(f - s f - hy) = dn(ha(hy)s hi(hy)) = di(hy's hy))
This implies that A(f)(e) = v/2. In other words, we have the direct inclusion.
e D : For the reverse inclusion, we define a natural order on 7, and proceed by induction on this
order. Let
e1 = (0;00) < e = (00;—1) < ez = (—1;0)

define the beginning of the order. Now suppose the order has been defined on (7.),,. The set of
edges (T )n+1 \ (7)n forms an ideal 3-2"!-gon with set of vertices S, = {a7;--- ;25 ,._. } already
ordered in 2.2. Then, we can write (7.)n41 \ (Tx)n = {a1;---az.on-1_1} with a; = (2};27,,). It
has a natural order given by the indexes. Finally, by requiring that a; is greater than each element
of (7:)n, we have defined a natural order on (7 ),+1-

Now, let (t1v/2, - “tgean—1_ 1)\/_ 2,1/2,---) be an element of (Ri)%)” We construct, inductively

on the order (denoted k) of (7.),, a sequence (f;)ic<1.x> € CPP¥ such that: g, = fro--- f1 € Gy,
and A(gr) = (t1vV2, -, teV/2,V/2, -+ ).

e Rank 1: let g; = f1 be the normalization of the log-lambda deformation 6; ,, .,. According to
proposition 4.3, we have A(g1)(e1) = t1v/2 and A(g1)(e) = V2 if e # e1.

e Rank & + 1 assuming rank k: Assume that we have defined f1,..., fx. Let fy4+1 be the normal-
ization of the log-lambda deformation 0;, g, (r.).g:(er.1) @0d €t gx11 = fri1 09k By assumption,
we have bk(gi) C S,- Since the vertices of the quadrilateral associated with e € 7, belong to S,
we have bk(fr11) C gr(S,). Thus, with the inclusions bk(gi+1) C bk(gr) U g " (0k(fri1)) C Sn, it
is true that gx11 € G,,. Now by definition, we have:

A(gr+1)(e) = Afi+1 0 gr)(€) = A(fit1 0 9x) (Fe); (fr+1 0 gr)(e))




By proposition 4.3, the last term equals:

A(gr - Tx; gr(e)) if gr(e) # gr(er+1)

and
tkr1A(gk - T gr(e)) if gr(e) = gr(er+1)

This shows that
Agri1) = (V2,8 V2, 1 V2, V2, )

and finishes the proof of the lemma. O
Return to the proof of the theorem. Surjectivity of A follows from lemma 4.5 and the fact that

(R%)7 is the direct-limit of the sequence ((Ri)i;%)n)nzz. Since E and s are injective, the same

holds for A, which is therefore bijective. Since G, and (R*Jr)r/i have the direct-limit topology, it
remains to be shown that A,, is a homeomorphism to complete the proof. Continuity follows from
the fact that each component map A, (e) : f € G, — Ay (f)(e) € RY is continuous. To prove that
A, is continuous, assume that a sequence of maps (f,),>0 of G, and f € G,, are given such
that A, (f,) tends to A, (f) when p tends to co. Since A(f,)(e) = v2 = A(f)(e) for all e ¢ (),
A(fp) tends to A(f) for the product topology. Since E is open (theorem 4.2), s(f,) tends to s(f).
Moreover, the forgetful map ¥ : Tess — Tess is continuous, which implies, via theorem 3.3, that
(fp)p>0 converges uniformly with limit f. Let us restrict to a fixed interval of the circle whose
extremities are two consecutive points of S,,. We apply proposition 4.5.4. of [Bea] on this interval
to conclude that (f,),>0 converges uniformly with limit f’ on this interval. Since there is a finite
number of such intervals which cover the circle, we can conclude that (f,),>0 tends to f with the
metric d;. This proves that A ! is continuous and ends the proof of the theorem. O

An immediate consequence of the theorem is:
Corollary 4.6. G, is a contractible space.

We end this part with an interesting link between the C!-topology defined as the restriction of
the topology corresponding to the metric d; and the lambda coordinates metric superior defined
on G, as follows:

d*(f;9) = sup |A(f)(e) — Alg)(e)]

€ETx

T

which is well defined since the range of A is (R%) 5.

Proposition 4.7. The identity map id : (G,,d1) — (G,,d") is continuous.

Proof: Fix f € G, and € > 0 once and for all. Let
70 ={e = (z;y) € 7| (z,y) € [0;1]*}. To show continuity at f, it suffices, up to PSLyR, to show
that there exists a > 0 such that:
A(f)(e) — Alg)(e)
V2

From lemmas A.1. and A.2. in [Mal-Pen], we deduce easily the following formula for any g € CPP:

di(f;9) < o= sup

ect?

\<e vged, 1)

Alg(h);g(e)) _ l9(p) — 9(q)| 1 @)

A(hse) lp— 4l 9'(p)g'(a)
where e = (p;q) lies in 70. Assume, up to symmetry, that p < ¢. Since f and g are C!, we
can find two numbers a:g,q and xj inside the segment [p; ] such that f’ (xgq) = % and



g (:z:g q) = w. Applied to both f and g, and combined with a triangular inequality, equation

2 then gives:

A(f)(e) = Alg)(e) | _ f’( ) f'(@5.0) F(h) 9 (75.0)

\/f @) VIl \/f’ @) Viw9d @

Slnce f" is uniformly continuous over [0;1] and |z9 , — 2 | < ¢ — p, we can find a finite subset
Ay C 72 such that:

0 g\ _ £ (f S S
Veer, \ Ay " (@hg) = f (.0) | < 2infyepo) f'(@)

(f’ does not vanish). It follows easily that:

f (Ig;q) B f' (24)
VI® (@) F®) ()

For the second member of 3, since the derivative is uniformly bounded below by a positive constant,
we can find « such that ¥(z,v, z, f) € [0;1]% x By, (f; ), we have:

‘ )
VI () Ve (z)

By replacing 4 and 5 (applied to 2 = 29 , y = p and z = ¢) in 3, one obtains:

‘ A(f)(e) = Alg)(e)
V2
Since A; is finite, the map g € G, — (A(9))eca, € (R%)"¥A7) is continuous with the metric d;

on the domain. Therefore, up to decreasing «, inequality 6 holds for any e € 79, which proves 1
and the proposition. O

VBET,?\Af 4)

<

N

<3 (5)

<e  V(g.e) € By (fia) x 70\ Ay (6)

Though we are not able to prove that the two topologies agree, we have a good reason to believe
it is true (see [Mar]| section 2.4. for details).

4.2 Shift (or Horocyclic) Coordinates

Let f € G andz € Q, arational point. Recall from definition 2.2 that the shift D, (f) is a parabolic
transformation fixing z, which measures locally at = how f fails to be a projective transformation.
By transitivity, choose v € PSLyZ such that v -z = oco. The conjugate 7D, fy~ ! is of the form
z € R z+4d,(f) € R. Since the isomorphism P, = P, is canonical, we have the following:

Definition 4.8. (Shift coordinate) If 2 € Q, the well-defined real number d.(f) is called the x-
shift coordinate of f.

Notice that for x € @, the function d, : é: — R is continuous. The proof (as well as some
interesting properties of these coordinates) of the following theorem will be given at the end of
the appendix of the paper, which deals with bracelets and horocyclic coordinates. Let us denote

Ri(@) = limR%" under the natural inclusions R%» ¢ RSn+1,

Theorem 4.9. The mapd: f € R — (d=(f)) € Ri@) is a homeomorphism onto its image.

xeRj—(Q)

It provides interesting global coordinates, which, as we shall see in 5, are well-adapted to the
geometry of the group 7.



5 Action of Thompson’s Group T

The simple following result is the key lemma to understand the action of Thompson’s group 7" on

Gr. Recall that b" = (h}) g represents the set of all Ford circles. We call b” the Ford bracelet.

Since C'PP acts to the left on H (proposition 2.3), the same holds for the group 7.

Lemma 5.1. The Ford bracelet bli is globally invariant under the action of T, and we have
v-hl = hf(z) for any pair (x,v) € Q x T.

Proof: This follows from the fact that b% is PSL,Z-invariant, by construction. |

In order to define the action of T on G,, remark that for any pair (u,v) € CPP?, we have
bk(u o v) C v~ 1(bk(u)) U bk(v). Since Q is invariant under T, it follows that G, C CPP is T-
invariant by pre-composition. Hence the following action:

(f,7) €G- x T+ N(foy)=f-v€Gr

where N(f o+) is the normalization of f o~y in G,, is well defined. By definition, we have
N(fo~v) =ho for~, where h is the unique projective transformation such that h=*(0;00; —1) =

foy(0;500;—1).
For now, this action is defined in the CPP geometry. We next study the action in both
coordinates systems introduced in section 4.

5.1 Coordinate Transformations

We shall now study the behavior of global coordinates (both lambda and shift coordinates) given
in section 4 under the action of 7. We say that a geodesic e = (z;y) is a rational geodesic if its

endpoints x and y are elements of @ Let Ag denote the set of rational geodesics. T  acts on Ag
as follows: v- (z;y) = (y(x);v(y)), since Q is invariant under T'. To each rational geodesic e € Ag
corresponds a parameter on the space G, defined by:

feé:HA(f;e) e Ry
where A(f;e) is the lambda-length of f - b along f(e) (see definition 4.1). This parameter is
obviously invariant under PSLsR.
Proposition 5.2. V(f,v,e) € @: x T x Ag, we have A(f;7-e) = A(f ovy;e).
Proof: This follows directly from definition 4.1 and lemma 5.1. (]

A tesselation whose edges are rational geodesics is called a rational tesselation. Let Tess(’@
denote the subspace of Tess’ of rational tesselations. As for 7., there are global coordinates
defined from any 7 € Tessg by the map A7 : f € G, — (A(f;€))eer € RL7. This time, the
coordinates are carried by the edges of 7. For example A™ corresponds to the map A = EFos
defined in theorem 4.4, up to PSLsR.

Thompson’s group T acts on the left on the space Tess{Q. In terms of lambda-coordinates, this
action is nothing more than coordinate changes. More precisely:

Lemma 5.3. V(f,7,e) € @: x T X 7., we have

AT (f-7)(e) = A (f)(v - e)

Proof: This follows from the definition of A7 A™ lemma 5.1 and the fact that A™ is PSLoR-
invariant. O

We end this subsection with a result which relates the behavior of the shift-coordinates under
the action of T.
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Lemma 5.4. For any pair (f,7v,z) € é; x T x @, we have:

de(fory)= d’Yx(f) +do(7)

Proof: By definition, we have D, (f o) = (v5)"'D,..(f)7L. Now let p; € PSLyZ such that
p1 -2 = 0o and pg = p; o (7%) L. The following equalities hold:

P1Do(f o NPT = ta,(foyys  P2Dra(f)pa =ta, .y and p1Du(y)py " = ta,(y)

where ¢, denotes the translation z — z + a. By writing D, (f o) = D,(v)(v}) 1Dy (F)AL,
we obtain, by uniqueness of the conjugations by modular transformations,

tdm(fo"/) = td'ym(f) o tdz ('Y)

which proves the lemma, O

5.2 Orbits

We fix g € Gr,, once and for all in this subsection. Let A = {ag = v/2;a1;--;a;} denote the set of
all lambda coordinate values taken by g. It is a finite set since A(Gr,) C (Ri)7*2. Let us denote

k
N(A) = {Z nia; | (ni)ie<oms € (N)*FH\ {0}}

=0

It is a discrete subset of R% . Finally, we introduce a discrete subset of (Ri)f/*i with the direct
topology, namely:

(®3); = {A e R)5/A() € N(4) Veer)

Notice that this is also a discrete subspace under the topology of the metric d* defined in
section 4.

To understand the goal of the preceding argumentation, we recall Ptolemy’s formula. Let @
denote an ideal quadrilateral with sides a, b, c,d and diagonals e, f. The labelling of the sides is
taken so that a and c¢ are opposing sides. Let h be a decoration of the set of vertices of @), so that
A(h; x) makes sense for any x € {a;b; c; d; e; f}, according to definition 4.1.

Proposition 5.5. (Ptolemy’s formula [Pen2]) We have:
A(h; e)A(h; f) = A(h; a)A(h; ) + A(h; b)A(h; d)

In the context of tesselations, Penner defines a group, which is generated by flips along tessela-
tions. Roughly speaking, a flip consists to change a diagonal of one quadrilateral of the tesselation.
This group is called the Ptolemy group. In [Imb]|, Imbert has shown that the Ptolemy group and
Thompson’s group 1" are isomorphic. Since Thompson’s group fixes globally the Ford bracelet,
the idea is to apply inductively (on the flips) Ptolemy’s formula in order to control the lambda
coordinates along a single orbit. This is done as follows:

Proposition 5.6. We have the inclusion A(Or(g)) C (R%)’;. In particular, the orbits under T
are discrete.

Proof: Let (Aqg)n = {e = (z;y) € Ag| (z,y) € S2}. We shall prove by induction the following
assertion:
A(g(b™);g(e)) € N(A) ¥ (e,n) € (Ag)n x N*

Let us assume it is true for a moment. If (e,~) € 7. x T, following lemma 5.3, we have A(g-v)(e) =
A(g(b¥); go~y(e)). Since y(e) lies in (Ag),, the assumption proves that the term A(g(b¥); go~y(e))
lies in N(A). This proves the proposition since A is a homeomorphism.
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€4

Figure 2: Ptolemy’s formula

Thus, it remains to prove the assertion. Notice that it is already proved for any n < p by
definition of N(A). Assume the assertion is true for some n > p. Let e = (z;y) € (Ag)n+1-
Consider two cases whether or not both endpoints of e lie in S, 41 \ Sy

ez € 5,41 \5, and y € S,: Label the edges as on figure 2. Since g € Gr, and n > p, we have

A(g(bF); g(w)) = V2 for any w € {ey;eq; f}. By assumption, there are two elements (n3)ic<ok>,
(nY)ic<oms in (N)FT1\ {0} such that A(g(b");g(em)) = b, na; for m € {3;4}. Ptolemy’s
formula applied to the quadrilateral on figure 2 gives A(g(b"); g(e)) = Zfzo(n? +nd)a;.

e €S5,11\ S, ety € Syi1\ Sy Since a and b lies in S,,, the former case says that there are
two elements (n?)ic <ok>, (M)ic<oks in (N)¥+1\ {0} such that A(g(bF); g(em)) = S, ni"a; for
m € {3;4}. Once again, applying Ptolemy’s formula, we obtain A(g(b%); g(e)) = Zfzo(nf +nd)ai,
which concludes the proof of the proposition. O

Corollary 5.7. T acts with discrete orbits on G, with the C'-topology.

Proof: This follows from the fact that (R% )7 is a discrete subset of (G,,d") and that A :
(Gr,d1) — ((Ri)%, dp) is continuous (proposition 4.7). O

5.3 Stabilizers

The method employed to describe the stabilizers here is essentially the same as that used in [Gre2].
However, we avoid the use of a non trivial result from [Ghy-Ser| which shows that the rotation
number of any element of T is rational. To do so, we first show:

Lemma 5.8. Let f € G, and a torsion free element v € Stab(f) C T. Then, D, f is a modular
transformation for any x € Q.

Proof: By assumption, there exists a projective transformation h such that ho f = fo~.
Consider the finite y-invariant subset A = (1, ., 7"bk(f) of Q. We proceed in two cases whether
or not A is empty. R

Suppose first that A is empty. Since D, f = (75) ' o Dy, f o Al for all z € Q, it follows that
there exists a sequence of pairs (a,, by )nez € (PSLQZ)QZ such that D, f = a, 0 Dyng f 0 by, for all
n € Z. Since A = (), there exists n, € Z such that = € v~"=(bk(f)). Hence Dyn. .. f = id, which
proves that D, f = a,,_ o b,, is indeed a modular transformation.

Suppose now that it is not empty. Since hof = fo, f(A) must be a finite subset invariant under
h, and h is of infinite order since -y is torsion-free by assumption. These two facts combined imply
first that h is either of parabolic or hyperbolic type and then that card(A) < 2. If card(A) = 2,
then h must be of hyperbolic type. Thus, its derivative at both fixed-points is different from 1, and
the same holds for v since it is a conjugate of i by the C!-diffeomorphism f. Let x denote one of
the two fixed-points of 7. Then the germs 77 and +. must be of hyperbolic type with at least one
rational fixed-point, x, but it contradicts the fact that they are in PSLsZ. Indeed, any modular
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transformation of hyperbolic type possesses only irrational fixed-points. Hence the set A must
consist to a single element . Up to PSLsR, we can assume that f. = id. Let bk(f) = (2:)ic<1.n>
where z = 1 < 29 < --- < x, < x1 on the circle and set f; = fii. Since x5 ¢ A, there exists
ng € Z such that v"2(z) is a breakpoint for f. By the same argument used in the case A is empty,
we deduce that D,,f = f5 Lop = fa !'is a modular transformation. We repeat the argument
on each z;, since none of each belongs to A, to prove that f; € PSLyZ for each i €< 1;n >. In
particular, it proves the proposition for the new normalization of f, but since D, (ho f) = D, f for
any h € PSL;R, the same holds for the previous f. |

We are now ready to give the types of stabilizers.
Theorem 5.9. Let f € G,.
1. If f € Or(id), then Stab(f) is conjugated to PSLyZ in T.

2. If f ¢ Or(id), then Stab(f) is a cyclic group with order bounded by the number of breakpoints
for f.

Proof: 1. It is clear that Stab(id) = PSLsZ. Hence, for f = id -~y € Or(id), we have

Stab(f) =y 1PSLyZ~.
2. We first prove that any element of Stab(f) has a finite order by contradiction. Assume it is not
the case for some v € Stab(f). By lemma 5.8, D, f is a modular transformation for all = € @ Let
f' = ho f, where h € PSLsR, such that f! = id. It is easy to see that f’ is an element of T, so
that f belongs to Or(id), hence a contradiction.

Now, we shall show that the order of any v € Stab(f) is bounded by card(bk(f)). To do
so, it suffices to prove that there exists x whose v-orbit is contained in bk(f). If it is not the
case, then for all z € bk(f), there exists an integer k,, verifying v*(z) ¢ bk(f). This implies
Dy f~1 = Dy fy* f~ = id. Hence D,f = (D,v")~! is a modular transformation for
x € bk(f), but it contradicts the fact that f is not an element of Or(id).

It suffices and remains to show that Stab(f) is cyclic. Let (v,7') € Stab(f)? and (h,h') €
PSLy;R? such that foy = ho fand for = h' o f. Thus, f respectively conjugates v to h, '
to A’ and the commutator [y,~'] to [k, h']. Since they are of finite order, h, h’ and [h, h'] are of
elliptic type. By theorem 7.39.2 in [Bea], this implies that [h, '] must be trivial. We deduce that
f conjugates Stab(f) to a subgroup of S = PSO(R). Any subgroup of the circle is either dense
or finite cyclic. Since the number of breakpoints of f bounds uniformly the order of elements of
Stab(f), Stab(f) is finite cyclic, and this finishes the proof. O

5.4 T Acts Isometrically (as does the Mapping-Class Group)

Recall that theorem 4.9 provides G, with the global shift coordinates. For each element, there is a
finite number of non-zero coordinates. Hence, as for lambda coordinates, we can provide G, with
another metric:

d"(f;9) = sup |d f — dug| V(f,9) €G;
z€Q

Proposition 5.10. T embeds in Is0(G,,d")

Proof: From lemma 5.4, we have d,(f oy) —dy(90v) = dy.of — dy.zg for all (z, f,g,7). The
proof of the proposition follows from the definition of d°. |

As pointed out by Greenberg in the original preprint [Gre2], it may be useful for our intuition to
consider the pair (G, T) as a sort of infinite Teichmiiller space with its associated Mapping-Class
group. Indeed, we have seen that G, is contractible (and even topologically a vector-space) and
that T acts with finite stabilizers apart from one orbit. Although not finite on this orbit, it is
essentially the "small" group PSL2Z. In the classical theory of Teichmiiller spaces, an important
result [Roy] says that the Mapping-Class group coincides with the full group of isometries under
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the Teichmiiller metric. This result has been recently extended to the universal case in [Gar-Har].
The analogy with Teichmiiller theory raises the natural question in our context:

Question: Is 7' the full group of isometries, relatively to the metric d®?
Proposition 5.11. T acts on (G,,d®) with discrete orbits.

Proof: Tt follows directly from lemma 5.4 and the facts that for each f € G,., the sequence
(df), ) takes on a finite number of values, and these values are integers whenever f lies in 7. [J

Corollary 5.12. T acts on G, (under the direct-limit topology) with the following property:
V f € Gr, 3V} an open neighborhood of f|Vy -y NV # 0 = 7 fizes f

Proof: Assume by contradiction that there exists f € G, that does not verify the property. For
each p > 1, let V, = Ba(f; %), which is an open neighborhood of f for the direct-limit topology,
so there exists 7, € T such that f-~, # f and V, NV, -7, # 0. Let f, be an element of this
intersection. It follows by a triangular inequality that d°(f; f - 7,) < 2, since d” is invariant under
T and f, - vp € Vp. This contradicts proposition 5.11. O

5.5 Classifying Spaces for Thompson’s Groups

In this subsection, we use the notation S! instead of R to denote the circle. The set Homeo™ (ShH
of orientation-preserving homeomorphisms of the real line which commute with the translation
t:x — x + 1 is the universal covering of Homeo™ (S') and provides the central extension:

0 — Z — Homeo+(S') > Homeo™ (S') — 1

where Z is the subgroup generated by t.
Now, we recall the definition of two other Thompson’s groups related to 7'

Let F' = {y €T |y, =~} =1id} and T = {ﬁ € Homeot(SY) |y =p(7) € T}.
Notice that F’ corresponds to the commutator subgroup of the group F = Stabr(0) and T is

a central extension of T': B
0—-Z—-T—-T—1

As for T, let us consider the lift of @:, namely G, C Homeot(S1).

Lemma 5.13. @ is contractible. Moreover, the group T acts on it with quotient space homeo-
morphic to G, /T.

Proof: By corollary 4.6 G, is a contractible space. Thus, the fi\t/)ration PSI;R — é: — G,
indicates that é: is topologically the product PSLsR x G,.. Hence,Né: is also contractible, since it

is topologically the product P/S_\L?R X G,. The composition map é: — é: — @:/T is continuous,
onto, and factors to:

6 f[T] € Go/T v fIT] € GoJT

with the obvious notations for equivalence classes. It remains to show that ¢ is one-to-one. If
o(f[T]) = #(g[T)), then there exists v € T such that g = f o~. Let 4 be a lift of v and k € Z such

that § = f o~ + k. Since the last term is also f o (¥ + k), and 4 + k lies in T, we conclude that

f[T] = g[T]. This ends the proof. O
Corollary 5.14. One has the following:
1. G./F" is a K(F';1).
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2. G, /T is a K(T;1).
3. G,/T xs1 ES! is a K(T;1).

Proof: 1. Since the germ of any element of F’ is the identity near 0, the group F’ embeds in
Homeo™ (R) which has no torsion. It follows from theorem 5.9 that Stabp (f) = {e}if f ¢ Or(id).
Moreover, PSL,Z N F' = {e}, so the previous assertion on the stabilizer holds even if f € Or(id).
We have proved that F” acts freely on G,.. It follows from proposition 5.12 that it also acts properly
discontinuously. Since G, is contractible, G, /F’ is indeed a K (F’;1).

2. Sin~ce T acts freely and properly discontinuously on é;, it follows from lemma 5.13 that é:/ T is
a K(T;1).
3. The long exact sequence of the S'-fibration

PSO5(R) =S' — G, /T x ES' — G, /T xg ES'

shows that =; (é:/ T xgt ESl) =0 Vi > 2, and gives the short exact sequence of groups:
0— 771(81) =T = ™ (@:/T X g1 ESI) —1

since 7y (@/T X ESl) =T by lemma, 5.13. The generator of Z corresponds to the loop
PSO5(R) C G, and lifts to the path p:s€E0l]— (z—xz+s)c€ G, via the tangent function.

This generator is also the generator of the center of 7', and we conclude with the central extension
T that T = m, (gr/T g1 ESl). Finally, G, /T xg1 ES is a K(T;1). 0

Since T is a discrete group, @:/ T xg1 ES' is a classifying space for T. It is worth notifying the
reader that as an application of this version of BT, we have found (see [Mar] for further details) a
simple geometric interpretation of the theorem in [Ghy-Ser| which gives an isomorphism between
the homology of Thompson’s group T and the homology of the free loop space over S3. This work
will form the subject of a forthcoming paper by the author.

6 Appendix: horocyclic lengths

This appendix gives a brief account on horocyclic lengths, associated with bracelets, and links
these lengths to the shift coordinates in order to prove theorem 4.9.
Let (z;)ic<1;n> a finite increasing sequence of the circle 1 < zo < -+ <z, < 1.

Definition 6.1. (Bracelet) An n-bracelet is a collection of horocycles (hy,)ic<1.n> such that each
horocycle of the collection is tangent to its two neighbors.

Some spaces of bracelets are carefully studied in [Grel] and more recently in [Mar]. By definition
of the space G,,, (definition 2.4), for any f € G,.,, the collection f - b5 = (f(hL)).es, isa 3 2" 1
bracelet. To a given n-bracelet b = (hy,)ic<1.n>, We can associate n real numbers as followed:

Definition 6.2. (Horocyclic length) Let I; = 1;(b) denote the hyperbolic length of the segment in
h; whose endpoints are h,, N (z;_1;2;) and hy, N (zi41;2;)- I; is called the i" horocyclic length of
the bracelet b.

From the remark preceding definition 6.2, there is a map: ¢, : f € Gy, — (lo(f - bE))zes, €
(R%.)5», where I,,(f - bL') denotes the horocyclic length based on f(z) for the bracelet f-b%. Using
h-coordinates introduced in [Pen2], we can express the horocyclic lengths in terms of lambda
lengths. Let b = (hy,)ic<1:n> be an n-bracelet and consider the set of geodesics (e;)ic<3n—1>
where e¢; = (z1;x;). Furthermore, let o; denote the lambda length of the decoration b along e;
divided by v/2. The following lemma was originally conjectured in [Grel].
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Lemma 6.3. 1. If n =3, we have l; =13 = U% et ly =1y = 03.

2. In the general case:

_ 1 1
o h= +Z] 2 U]+1U;+2 + On—1
o ly=o03
o 3= 1to4

o3
o ;=TT Yiec i~ 2>

140, _2

® lp1= On—1

o l,=0,1

Proof: We prove directly the general case. Let P denote the hyperbolic n-gon defined by the
collection of base-points of b. The sequence of geodesics (e;)ic<2n—1> cuts P into n — 2 triangles
Ty, -+, Th—o. Each horocycle is also cut into small horocyclic segments and for V(¢, j) €< 1,n+1 >
X < 1,n—1 >, we denote I the hyperbolic length of the segment h; 0T}, so that [; = Z] L
Now proposition 2.8. in [Penl] applied to each triangle T} gives:

[ ] Tll l%za%,l%:crg,l%:i

o3

P - 1 J _ Tit2 10 41
o Ty h = Oj+105+27 by = Tjt1’ Lo = oj+2
=1 _ 1 n—1 __
(] Tn—l- ll = o ln = E’ ln-‘,—l = 0p
and the formulas of the lemma follow by summations. |

Let us consider the "coordinate changes" map:

-3
To R3" — RL"™
(03, 0n_1) +— v 3_ 1 4 1 g, ldos | GimifGipn | Idon-2 o
3 »On—1 o3 =2 0410542 | on_129%" Tog 07 o; 7 o,y 29l

Proposition 6.4. The map r, is an embedding.

Proof: The map is obviously of class C'. It is also one-to-one, since o3 depends uniquely on
lo, then o4 on I3 and [ = o3, and so on. To see that it is an immersion, it suffices to cyclically
permute the coordinates by the map (Iy,---,1,,) — (l2,---,ln,l1) and a simple calculation shows
that the Jacobian is decomposed into an upper triangular (n — 3) x (n — 3) block, with diagonal
Loy, ...,0,', and a (n — 3) x 3 block. Henceforth, the Jacobian is one-to-one.

It remains to show that r, is a proper map. It is equivalent to show that it maps any unbounded
sequence ¢ to an unbounded sequence (r,(c*)),. . Let us consider an unbounded sequence

(6%) .5, and let ig denote the smallest i €< 3;n—1 > such that the sequence (o}'),  , is unbounded.

> k>0

We consider two cases:

o limy_. o a = 0: If ig = 3, then the sequence ( =ok k>0 tends to 0, hence the sequence
(rn(0*)) <, is unbounded. If iy > 3, then the sequence < — Tio- 1+01°“> tends to oo, by

= k>0

definition of i()

o limy_o 0F = +o0: If ig = 3, then (l§)k>0 tends to co. If i > 3, this time, the sequence
<l20 | = ‘)(f,f’JW") tends to oo.

K k>0

In both cases, it follows that 7,,(0%) is unbounded, hence r,, is proper. Finally, r,, is a one-to-one
proper immersion. Thus, it is an embedding. ]

Lemma 6.5. For any f € G,,, and = € S,,, we have the equation: d,(f) = L, (f b)) =1, (bE)
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Proof: Let x € S, and denote 2™, ™ the two neighbors of zin S,,, suchthat 2~ <z < 2% <z~
with respect to the orientation of the circle. Consider P € PSLs2Z and ) € PSLyR such that
P(z) = 0o and Q(f(x)) = oo. Since P € PSLyZ, QfP~" belongs to G,. Hence, Do (QfP7!) is
well defined and equals to PD, fP~! since Q € PSLyR. Thus, we have Do (QfP™) =tq,(s)-

Moreover, QfP~! fixes the point at infinity. Therefore, it is of the form z — a?z + dta
(resp. z +— a®z + d~a) on the interval [oo; P(z)] (resp. [P(z7);00]). We compute explicitly that
Do (QfP™Y) =t 4+_a—, and it follows the equality d,(f) = ‘ﬁ%‘l_.

Let us compute the z-horocyclic coordinate for f and for id. Since P € PSLy7Z, we have:

_ (P dy Pt -P@)
L OF) =t (Pobf)) = [ 5= )

where h is the height of the horocycle P - hf based at co. In the same manner, we have:

Qf(z™) dy P(zt)—P(z7) N dt —d-

L (f-0F) =1, (Qf~b5)—/Qf(w+) 2h h ah

since Q@ € PSL,R and QfP~! maps the horocycle with height h to the horocycle with height a2h.
Thus, we obtain I, (f-b5) — I, (bF) = %) Finally, since P € PSLyZ, P (hE) is a Ford
circle, based at oo, its height must be 1, and the result follows. |

We end the appendix by proving theorem 4.9.

Proof: (of theorem 4.9) Since both domain and range are given the direct-limit topology, it
is sufficient to prove that each map d,, : f € Gp, — (do(f))zes, € (R7)S" is an embedding.
By lemma 6.5, this is equivalent to showing that the map ¢, : f € G, — (lo(f b)) €

(R%)5" is an embedding. Label S, as in subsection 2.2 and set o;(f) = w for each

1 €< 3,3 . 2"71 — 1 >. Denote DPn f € g?"n = (Ui(f))i€<3;3.2n71,1> S (Ri)g(znilil) so that
Gn = T3.9n—1 0py. We can adapt the proof of theorem 4.4 to prove that p,, is a homeomorphism. It

follows from proposition 6.4 that ¢, is an embedding and this concludes the proof of the theorem.
O

€S,
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