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November 13, 2002
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1 Introduction

Let D ⊂⊂ Cn be a domain with smooth boundary. A compact K ⊂ ∂D is
called removable if every continuous CR-function f on ∂D\K has a holomor-
phic extension to all of D. In this paper we are interested in the link between
removability and convexity properties of K. For any compact L ⊂ D, we
define its A(D)-convex hull as

A(D)-hull(L) = {z ∈ D : |f(z)| ≤ max
L

|f |, ∀f ∈ A(D)},

where A(D) denotes as usual the space of holomorphic functions which are
continuous up to the boundary. If a compact K ⊂ ∂D satisfies A(D)-hull(K)∩
∂D = K, we call K CR-convex.

The main result of this paper is the following.

Theorem 1 Let D be a bounded domain in C
n, n ≥ 2, with boundary of class

C2 and K ⊂ ∂D be a compact CR-convex set such that ∂D\K is connected.
Then each continuous CR-function u on ∂D\K admits a holomorphic exten-
sion ũ ∈ O(D\A(D)-hull(K)) ∩ C((D\A(D)-hull(K)) ∪ (∂D\K)).
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We may notice that the connectedness of ∂D\K and the CR-convexity of K
imply, by the maximum principle, that D\A(D)-hull(K) is connected. Sec-
ondly we observe that Theorem 1 is essentially a result about domains with
connected boundary. Otherwise the CR-convexity of K and the connectedness
of ∂D\K imply that K contains all inner components of ∂D. If ∂D has sev-
eral components, Theorem 1 and the Hartogs-Bochner theorem imply that ũ
extends holomorphically to all relatively compact components of Cn\D.

The following removability result is an immediate consequence.

Corollary 2 Let D be a bounded domain in Cn, n ≥ 2, with connected bound-
ary of class C2 and K ⊂ ∂D be a compact CR-convex set such that ∂D\K is
connected. If K is A(D)-convex, then K is removable.

The theorem is best commented in its historical context.

For the case that D is a Stein compact, analogous results were proved by
E. L. Stout and G. Lupacciolu but with hypotheses formulated with respect
to the O(D)-hull, which can be larger than the A(D)-hull in the situation of
Theorem 1. However in these papers more general results were stated, in [14]
for weakly pseudoconvex domains, in [9] even for non-pseudoconvex domains.
Later J. M. Ortega [12] discovered that the construction of integral kernels
used in [14], [9] are only possible if D possesses a Stein neighborhood basis.
We stress that all statements appearing in [9] and [14] are true without change
and confirmed by Theorem 1.

In [8], the first author gave a complete proof of the following theorem, which
we state for later reference.

Theorem 3 Let Ω be a Stein manifold of complex dimension n ≥ 2, K ⊂ Ω
an O(Ω)-convex compact subset, and D ⊂ Ω a relatively compact domain such
that ∂D\K is a connected hypersurface of class C1. Then every continuous
CR-function u on ∂D\K admits a holomorphic extension ũ ∈ O(D\K) ∩
C((D\K) ∪ (∂D\K)).

Note that in this result the convexity condition is given with respect to func-
tions holomorphic on a uniform neighborhood of D.

In [5], B. Jöricke was able to treat the weakly pseudoconvex case completely
and with sharper hypotheses on A(D)-convex hulls. Following a suggestion of
Stout [14], she was the first to attack the problem by a global version of the
continuity principle, in contrast to the integral formula methods in the preceed-
ing works. The reader may consult [5] for explanations of additional features
in the pseudoconvex case. In particular, no assumption on connectedness of
∂D\K is needed.
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As a starting point to the non-pseudoconvex setting, let us look at two exam-
ples illustrating the assumptions in Theorem 1.

Example 4 a) Consider D = B(0, 1)\B( 1√
2
, 1√

2
), where B(z, r) ⊂ C2 denotes

the ball of radius r centered at z. The compact K = {(z1, z2) ∈ ∂D : x1 ≥
1

2
}

is A(D)-convex. Now ∂D\K has two components, whereas D\A(D)-hull(K)
is connected. Hence CR functions do not extend analytically from ∂D\K to
D\A(D)-hull(K) in general. By rounding off the corner we get an example
with smooth boundary.
b) If we drop CR-convexity, we run into monodromy problems: Consider D =
Q\({|z1| ≤ ε, |x2 − 1

2
| ≤ ε} ∪ {|z1| ≤ ε, |x2 + 1

2
| ≤ ε, y2 ≤ 1 − ε}), where

Q = (−1, 1) × i(−1, 1) × (−1, 1) × i(−1, 1) and ε > 0 is a small constant. If
K = ∂Q ∩ {y2 = 0}, then ∂D\K is connected, whereas ∂D\A(D)-hull(K)
has three components. We can define a univalent holomorphic function u near
∂D\K which coincides near every z ∈ ∂D\K with some branch of log(z2).
But we cannot extend u to ∂D\A(D)-hull(K) without loosing the coincidence
near some part of the boundary 2

Theorem 1 was first proved by the second author in his thesis [13]. His method
combines the continuity principle with special constructions relying on geomet-
rical properties of Stein manifolds. The essential point both in [5] and in [13]
are monodromy problems of increasing difficulty, which are typical, if one tries
to construct hulls by direct application of the continuity principle. Therefore
techniques designed to handle this aspect may be of independent interest. This
provided the motivation for further joint research of B. Jöricke and the second
author [7], which led to a new version of the proof of Theorem 1, where all
essential steps are executed by extension along suitable families of complex
curves.

The argument presented in the present paper goes back to the observation
of the first author how to adapt the integral formula constructions of [8] to
the case at hand. However this would require considerable repetitions of the
material of [8]. At last we found it preferable to reduce Theorem 1 to Theorem
2 by exhaustion techniques. In the preparational steps (cf. Section 2), we use
a device of [5] in order to reduce the problem to the extension of holomorphic
boundary values.

Finally a comment on dimensions is in order. Some authors ([14],[5],[7]) prefer
to state results of the type of Theorem 1 only for domains in complex dimension
2. The reason is that it is known that in dimension n ≥ 3 additional extension
phenomena occur, which are principally overlooked by convexity assumptions
of the above type: The continuity principle tells how families of complex curves
give rise to holomorphic extension. Now the proofs based on the continuity
principle [5], [7] exhibit Theorem 1 clearly as a result on extension along fam-
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ilies of complex hypersurfaces. The difference between n = 2 and n ≥ 3 gets
very transparent in the characterization of removability for strongly pseudo-
convex domains, where convexity is adequat in dimension 2 (cf. [3]), whereas
the characterizing properties in higher dimension are of cohomological nature
(cf. [10]).

Acknowledgement: This paper was written in very close connection to [7].
We would like to thank B. Jöricke for many inspiring discussions on the topic.
Especially the second author, who was her thesis student, is indepted to her
for the introduction into the topic. Both authors are grateful to the European
TMR research network ERBFMRXCT 98063 for generous support.

Finally it is a pleasure to thank the referee for very valuable remarks, which
helped to ameliorate the overall quality of the article.

2 Extension to one-sided neighborhoods

In this section we reduce the proof of Theorem 1 to an analogous statement
with holomorphic boundary data.

Let H ⊂ C
2 be a hypersurface. A one-sided neighborhood of H is an open

set V such that for every z ∈ H and for every euclidean ball B of sufficiently
small radiuscentered at z contains at least one of the two components of B\H
is contained in V .

We shall use the following Lemma from [5].

Lemma 5 Let D, K be as in Theorem 1. Then there is a connected one-sided
neighborhood V of ∂D\K such that every continuous CR-function on ∂D\K
extends to V .

As the result is only stated in dimension 2 in [5], we give a short proof, which
makes intensive use of the concept of CR-orbits. We shall use without further
comment their elementary properties, for which the reader can consult [15],
[6].

Proof of Lemma 5: We observe that it is enough to show that ∂D\K has
only one CR-orbit. Indeed, in this case ∂D\K contains a point z in which
∂D\K is minimal in the sense of Tumanov, i.e. there is no local holomor-
phic hypersurface X ⊂ ∂D passing through z (otherwise the complex tangent
bundle T c∂D\K would be Frobenius integrable, and all orbits would be lower-
dimensional). The theorem of Trépreau [16] yields one-sided analytic extension
near z, and this property propagates along CR-curves to all points of ∂D\K.
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Assume that ∂D\K has several CR-orbits. It is well known that CR-orbits
of a real hypersurface are either subdomains or injectively immersed smooth
holomorphic hypersurfaces. The union of all lower-dimensional CR-orbits is
relatively closed and forms a lamination. Hence the connectedness of ∂D\K
implies the existence of a lower-dimensional CR-orbit O. By general proper-
ties of laminations the relative closure L of O in ∂D\K is a union of lower-
dimensional orbits, and each of these is dense in L.

Pick some z ∈ L and a function f ∈ A(D) with f(z) = 1 and maxK |f | < 1/2.
Then the modulus of f |L attains a maximum in some z′ ∈ L. By the maximum
principle, f is constant on Oz′ and, by density, also on L. So L has positiv
distance from K and must be compact. But a non-void compact union of
holomorphic subvarieties of positive dimension is impossible. Indeed, for such
an L one finds a closed euclidean ball B containing L such that L ∩ ∂B 6= ∅.
But this leads to a contradiction to the maximum principle on the varieties
passing through points of L ∩ ∂B (cf. [4], §V, Lemma 5) 2

Remark 6 As the referee pointed out, the original proof of [5], which was
given for n = 2, can be extended to boundaries of class C1 by using techniques
from [2]. For n > 2, some additional slicing arguments would be necessary 2

Let V be as in the lemma. After shrinking V conveniently, we can suppose
that (i) D′ = int(D ∪ V ) is a domain which contains K in its boundary, and
that (ii) every f ∈ A(D) extends to a function in A(D′). For (ii), we have
to observe that f extends holomorphically through a point z ∈ ∂D\K if V
contains near z the exterior side of ∂D. By (ii), A(D) can be identified with
A(D′), and we have A(D)-hull(K) = A(D′)-hull(K).

Near every point z ∈ ∂D\K, V contains at least one side of ∂D. Slightly
deforming ∂D\K into V , we can construct a third domain D′′ such that ∂D′′

is of class C2 and ∂D′′\K ⊂ D′. As A(D) = A(D′), we can choose ∂D′′\K so
close to D\K that

A(D′)-hull(K) ∩ ∂D′′ = K

holds true. Observe that the analytic extension to V of a given CR-function
on D\K induces holomorphic data on ∂D′′\K. Writing again D instead of D′′,
the proof of Theorem 1 is now reduced to the following intermediate statement.

Proposition 7 Let D be a bounded domain in C2 with boundary of class C2

and K ⊂ ∂D be a compact set with ∂D\K connected. Let D′ ⊃ D be a bounded
domain satisfying K ⊂ ∂D′, K = A(D′)-hull(K)∩ ∂D, and D\K ⊂ D′. Then
each function u which is holomorphic in a neighborhood U of ∂D\K has (after
shrinking U if necessary) a holomorphic extension to D\A(D′)-hull(K).
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3 Proof of Theorem 1

As explained in Section 2, it is enough to prove Proposition 7.

First we observe that we cannot immediatly apply Theorem 3 by taking Ω as
the envelope of holomorphy of D′. Of course D need not be relatively compact
in Ω. In what follows we will derive Proposition 7 by an exhaustion argument.

For every w ∈ D\A(D′)-hull(K), there is a function fw ∈ A(D′) with fw(w) =
1 and maxz∈K |fw(z)| ≤ 1/4. By a standard covering argument, we select a
subsequence f1, f2, . . ., such that

D\A(D′)-hull(K) =
∞⋃

i=1

{z ∈ D : |fi(z)| > 3/4}.

Note that a given compact subset of D\A(D′)-hull(K) is already contained in
the finite union

⋃k

i=1
{z ∈ D : |fi(z)| > 3/4}, if k is sufficiently large.

Let ρ ∈ C2(D) be a defining function of D, i.e. a function with ∇ρ 6= 0
on ∂D and D = {ρ < 0}. We can choose a strictly decreasing sequence of
positive numbers rj ↓ 0 and domains Dj = {ρ < −rj} so that for every j
the intersection ∂Dj ∩

⋃j

i=1
{z ∈ D : |fi(z)| > 1/2} is contained in U (the

neighborhood of ∂D\K where u is defined). If Ω denotes the envelope of
holomorphy of D′, we can consider each Dj as a relatively compact subdomain
of Ω. Define

Kj = O(Ω)-hull(

j⋂

i=1

{z ∈ Dj : |fi(z)| ≤ 3/4}).

As Ω is holomorphically convex, Kj is compact in Ω. By construction, we have
Kj ∩ Dj =

⋂j

i=1
{z ∈ Dj : |fi(z)| ≤ 3/4} and ∂Dj\Kj ⊂ ∂Dj ∩

⋃j

i=1
{z ∈ D :

|fi(z)| > 1/2} ⊂ U . For later use we remark Dj\Kj ⊂ Dj+1\Kj+1. Observe
that we cannot immediately apply Theorem 3 because (i) Dj\Kj may have
several components, and (ii) the intersection of the closure of a component of
Dj\Kj with ∂Dj need not be connected.

In order to meet (i), we choose subdomains Gj ⊂ Dj in the following way:
Let G1 be an arbitrary component of {z ∈ D1 : |f1(z)| > 3/4}. By induc-
tion we choose, for every j > 1, Gj as the unique component of

⋃j

i=1
{z ∈

Dj : |fi(z)| > 3/4} with Gj−1 ⊂ Gj. Because ∂D\K is connected and
D\A(D′)-hull(K) has, by the maximum principle, no components which are
relatively compact in D, D\A(D′)-hull(K) is connected. As mentioned above,
every compact arc in D\A(D′)-hull(K) is contained in almost every finite union⋃j

i=1
{z ∈ D : |fi(z)| > 3/4}. Since D\A(D′)-hull(K) is connected, we deduce

D\A(D′)-hull(K) =
⋃∞

j=1
Gj.

6



As indicated in (ii), there is no reason for ∂Gj\Kj to be connected. We shall use
an elementary topological property of Stein manifolds to handle this difficulty.

Lemma 8 Let Ω be a Stein manifold of dimension n ≥ 2 and L a compact
O(Ω)-convex subset. Let M be a connected, properly embedded, orientable real
hypersurface of Ω\L of class C1 such that M ∪L is compact. Then Ω\(M ∪L)
contains exactly one relatively compact component.

Of course Lemma 8 is a byproduct of E. M. Chirka’s relative version of the
Harvey-Lawson theorem ([1], Theorem 19.6.2). For the reader’s convenience,
we provide an elementary proof, based on an argument communicated by
N. Sherbina. The assumption that M be orientable is not necessary, since
our proof also works with Z/2Z-valued intersection numbers.

Proof: By the maximum principle, Ω\L has no relatively compact compo-
nents. Hence every component of Ω\(M ∪ L) has accumulation points on M .
As M is connected, Ω\(M ∪ L) has at most two components. Because Ω has
only one end and M ∪L is compact, there is a unique unbounded component.
Consequently the second component, if it exists, has to be relatively compact.

Assume that there is no relatively compact component of Ω\(M ∪ L). Then
we can easily construct a smoothly embedded oriented loop γ ⊂ Ω\L which
intersects M transversely in only one point. Hence the intersection number of
γ and M equals ±1, the sign depending on the orientations we choose for γ and
M . We shall obtain a contradiction to the homotopy invariance of intersection
numbers by deforming γ within Ω\L to a loop contained in Ω\(M ∪ L).

As L is O(Ω)-convex, an elementary construction gives a smooth plurisubhar-
monic non-negative exhaustion function φ of Ω such that L = {φ = 0} and φ
is strictly plurisubharmonic on Ω\L (being exhaustive means that {φ < c} is
relatively compact for any c ∈ R). Fix c1, c2 > 0 such that M ∪ L ⊂ {φ < c2}
and γ ⊂ {c1 < φ < c2}. After a slight modification, we can assume that φ is a
Morse function on a neighborhood of {c1 ≤ φ ≤ c2} (for information on Morse
theory we refer to [11]). Then there are finitely many critical points q1, . . . , qk

in {c1 ≤ φ ≤ c2}. It is a well-known consequence of strict plurisubharmonicity
that the Morse-indices at the points q1, . . . , qk cannot exceed n. This implies
that the associated stable manifolds

Si = {p ∈ Ω : lim
t→+∞

Φ∇φ,t(p) = qi}

are at most of dimension n, in particular of codimension at least n ≥ 2.
Here ΦX,t denotes the time-t-map of a vectorfield X and ∇φ the gradient
with respect to some fixed riemannian metric on Ω. After an arbitrarily small
deformation of γ, we can assume γ ∩

⋃k

i=1
Si = ∅. This means that, for every

p ∈ γ, we have φ(Φ∇φ,t(p)) > c2, if t is sufficiently large. Now a compactness
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argument yields that there exists T > 0 such that φ(Φ∇φ,t(γ)) is disjoint from
{φ ≤ c2} ⊃ M ∪ L for t > T , a contradiction to the homotopy invariance of
intersection numbers 2

In the situation of Lemma 8, we shall call the relatively compact component of
Ω\(M∪L) the inner domain of M∪L. For j fixed, let Cj be the set of connected
components of ∂Gj\Kj. Since Kj is O(Ω)-convex, Lemma 8 associates to any
T ∈ Cj the inner domain BT of T ∪ Kj. Hence we may introduce a partial
order on Cj by writing T1 ≺ T2 if BT1

⊂ BT2
. Reflexivity and transitity are

obvious. The following lemma contains antisymetry and the existence of a
unique maximal element.

Lemma 9 a) If T1 ≺ T2, T2 ≺ T1, for T1, T2 ∈ Cj, then T1 = T2.
b) There is a unique maximal component Mj ∈ Cj, which is the unique element
of ∈ Cj which belongs to the closure of the unbounded connected component of
Ω\(Gj ∪ Kj). Moreover its inner domain BMj

contains Gj and all the other
inner domains BT , T ∈ Cj.

Proof: a) If we assume T1 ≺ T2, T2 ≺ T1, and T1 6= T2, then the definition of ≺
implies T1 ⊂ BT2

and T2 ⊂ BT1
. Hence BT1

∪BT1
is a relatively compact domain

whose boundary is contained in Kj, a contradiction to the O(Ω)-convexity of
Kj and the maximum principle.

b) Lemma 8 implies that there is at most one Mj ∈ Cj belonging to the closure
of the unbounded connected component of Ω\(Gj ∪Kj). If there were no such
Mj, then Gj would be contained in a relatively compact component of Ω\Kj,
which is in contradiction with the maximum principle. Hence Mj is uniquely
defined, and we have BMj

⊃ Gj.

Let T be another component of ∂Gj\Kj. Then (Gj ∪ T ) ⊂ BMj
by connect-

edness of Gj, and BT ⊂ BMj
by definition of BT and BMj

2

By Theorem 3, the restriction of u to a sufficiently small neighborhood of Mj

extends to a function uj ∈ O(BMj
) ⊂ O(Gj) which coincides with u near Mj.

It is not yet clear, whether uj coincides with u near all components of ∂Gj\Kj.
So we must carefully check that we can produce the desired extension of u by
gluing the uj.

For this purpose we fix some compact subset L ⊂ D\A(D′)-hull(K). By
construction, L ⊂ Gj for sufficiently large j. According to the following lemma,
the sequence {uj} gets stable near L thus suggesting a natural candidate for
the final extension near L.

Lemma 10 There is kL ∈ N and a neighborhood V of L such that the func-
tions uj coincide on V , for all j ≥ kL.
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Proof: Choose c ∈ C, |c| > 3/4, such that C = {p ∈ Ω : f1(p) = c} is
a smooth complex curve which intersects ∂D\K transversally. Since Ω does
not contain compact complex curves, there is some p0 ∈ ∂D\K which is an
accumulation point of a non-relatively compact component of C\D.

Near p0, C intersects the hypersurfaces ∂D and ∂Dj, for j sufficiently large,
in a family of almost parallel short segments λj which are all contained in U .
Hence for large j, the segments λj are adherent to an unbounded component
of C\Dj by transversality. Fix some j0 for a moment. Then λj0 is contained in
all Gj, for j ≥ j1, if j1 is sufficiently large. For j ≥ j1, we deduce λj ⊂ ∂Gj\Kj.
As λj lies in the closure of an unbounded component of C\Dj, we even obtain
λj ⊂ Mj.

If we take j2 ≥ j1 so large that L ⊂ Gj, j ≥ j2, then all the functions uj, j ≥ j2,
coincide near L. Indeed we can connect a given point p ∈ L with λj2 by an
arc γ ⊂ Gj2 ∪λj2 and compare the functions uj, j ≥ j2, along γ. Hence we can
take kL = j2. 2

Proposition 7 follows from Lemma 10 without difficulties: Let us take some
exhaustion of D\A(D′)-hull(K) by compact sets L1 ⊂ L2 ⊂ . . . satisfying
Lj ⊂ int(Lj+1). By Lemma 10 we get near every Lj a natural candidate ũj by
taking the restriction of some uk for k ≥ kLj

. Since the Lj are monotonuously
increasing sets, it is clear from Lemma 10 that the ũj glue to a well-defined
function ũ ∈ O(D)\A(D′)-hull(K). Finally the connectedness of ∂D\K im-
plies the coincidence of u and ũ near ∂D\K. Proposition 7 and Theorem 1
are proved 2
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