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ABsTrRACT. We prove new measures of linear independence of logarithms on an abelian variety
defined over Q, which are totally explicit in function of the invariants of the abelian variety. Be-
sides, except an extra-hypothesis on the algebraic point considered, we improve on earlier results
(in particular David’s lower bound). We also introduce into the main theorem two algebraic
subgroups that lead to a great variety of different lower bounds. An important feature of the
proof is the implementation of J.-B. Bost’s slopes method and some results of Arakelov geometry
naturally associated with it.
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Notation. For the sake of notational consistency, we denote (in general) with a slanting letter a mathematical
object over a field, with a calligraphic letter an object over the ring of integers of a number field and with a bold
letter elements of product set (e.g. Y = (Y1,...,Yy)). In this way, we have the usual notation i! = i1!---ig!
(resp. the length |i| = i3 + --- +4g) for i = (é1,...,49) € N9. In a general way, D is a differential operator;
if x = (z1,...,zg) € € then Dy := wla‘% + o +:cg% and if w = (w1, ..., wy) is a basis of C9 then

Dt = Dfl}1 ---Dfﬁg where t = (t1, ..., tg) € N9. Let x € R. We define log*t(x) := logmax {1, z} and [z] the integral
part of x.

Let £ be a module over a ring R. We denote by V(&) (resp. P(€)) the spectrum of the symmetric algebra S(&)
(resp. the projective scheme ProjS(€)) over Spec(R) (following Grothendieck’s convention). We set £Y the dual
module Hompg(€, R). When £ = RN 11, we write PY instead.

For a group scheme G over Spec(R) we denote by tg its tangent space at the origin. Let G be a complex Lie
group and expg : Lie(G) — G its exponential map. For a point p € G(C), a logarithm of p is an element u € Lie(G)
such that expg(u) = p. For a nonnegative integer S, we shall denote by I'p(S) the set of points {0g, p, ..., S.p}-
If k is a number field, we denote by Oy, the ring of integers of k. Let A be an abelian variety over k (number field)
and L be an ample line bundle over A. We denote by h®(A, L) the dimension of the space of global sections L(A),
by ta the tangent space at the origin of A, by hp(A) the Faltings height of A and, for p € A(k), the real number
ﬁL(p) is the Néron-Tate height (relative to L) of p. Besides, for an archimedean place ¢ of number field k, we write
A, (C) the complex points of the abelian variety A Xgpeco(0,) SPecC and Ly — A (C) is the complex line bundle
induced by L.

Furthermore, when « is an algebraic number, we denote by h(a) the (Weil) absolute logarithmic height of a (see

for instance [46], § 3.2). Lastly, e := exp(1l) = 2.718... (do not confuse with e, which will occur later).
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1. INTRODUCTION

The theory of linear forms in logarithms over a commutative algebraic group (defined over Q)
with an abelian part (4.e., not reduced to linear groups) begins with the works of D. Masser [32, 33]
and S. Lang [31] in the seventies. The first theorems valid for an unspecified algebraic group are due
to P. Philippon and M. Waldschmidt in 1987 [40, 41]. Their theorems were improved in the last ten
years [28, 29, 1, 17, 22] but, in these works, appeared a constant depending on the algebraic group
that was not explicit (even if theoretically computable). Till now, only a result of S. David [15]
provided this constant in the particular case of a product of elliptic curves and an affine group
G, *. The measure of linear independence in logarithms he achieved was applied successfully to find
integral points on a wide range of diophantine equations through the so-called Elliptic Logarithm
Method [23, 43] (see also [44]). David’s result relies on Baker’s method (as developed in [40]) mixed
with concrete choice of Weierstrass models for these elliptic curves and explicit calculations on the
Weierstrass p-functions. One could think that the generalization to an abelian variety would have
involved some important technical difficulties induced by explicit calculations with theta functions
(see the thesis [25] of P. Graftieaux to get an idea of this assertion).

In this paper, we show how techniques arising from diophantine approximation (Baker’s method,
Hirata’s trick, Chudnovsky’s process of variable change) can be integrated in a wholly geometric way
into the Arakelovian method of slopes of J.-B. Bost. That simplifies and conceptualizes calculations
and then we achieve new measures of linear independence of logarithms (over a product of abelian
varieties) which take into account all the parameters of the problem (in particular Faltings’ heights
and degrees of the (polarized) abelian varieties) while remaining comparable to the ones given
in [22]. For a discussion about the theoretical aspect of the measures of this article (parameters
logb, loga;), we refer the reader to op.cit. For instance, a corollary representative of the main
theorem stated in § 2.3 is the following result.

Theorem 1.1. Let A be an abelian variety of dimension g defined over a number field k of degree
D over Q and embedded in C by oo. Let L be an ample symmetric line bundle over A.

Let Wy be a subspace of ta, of codimension t. We endow every complex tangent space ta_(C),
o : k — C, with the hermitian metric ||.||, given by the Riemann form of Ly — A,(C). We denote
by B(WO) the Arakelov degree of the hermitian vector bundle ta /Wy endowed with quotient metrics
deduced from ||.||s (see § 4.3.1).

Let us consider also a point p € A(k) and u € ta(C) a logarithm of p. Let a, b, ¢ be some
positive real numbers verifying the following inequalities:

o~ 2 -
e >e, logaZmaX{hL(p), W}, logb > D h(Wp)
Define the integer
a:= [i max{l, hr(A), logh®(A, L), logt <£> , logt loga}:| +1
loge loge
Let us assume the point p is of infinite order modulo any proper abelian subvariety of A. Then
u ¢ Wo ®,, C and, if we denote by d the distance on ta, (C) associated to ||.||,,, we have

D g/t
(1) logd(u, Wo) > —(209)°%"/*al/* (aloge + logb) (1 + 1—“ log ) :
oge

If we fix a basis of ta,, (C), we can choose equations of Wo, namely f; 121 + -+ + Bi g2y = 0,
1 <i<t Bij €k, and by denoting (u, ..., ug) components of u, the distance d(u, W) is
proportional to

lrgigt“m’lul + + Bigug|}

(up to a constant depending on the choice of the basis of £a, (C) and on $;’s), the latter quantity
appearing in the literature under the name “simultaneous approximation of linear forms in loga-
rithms of algebraic numbers (points)”. A direct proof of this corollary along the lines we propose
for the main theorem would require the sharpest lemmas of this paper.

Theorem 1.2. With the notation and hypotheses of theorem 1.1, let us assume moreover that Wy
is the tangent space at the origin of an abelian subvariety B of A. Then we have

; D
2) log d(u, tg) > —(209)%%9 (adeg B)!/ 4™ B (q]og ¢ + log b) (1 + 1—“ log a) .
oge

*Its value is about (105])10-92 where g is the number of elliptic curves.
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Estimate (2) is an avatar of Liouville’s inequality when applied to a rational linear form in (usual)

logarithms of algebraic numbers, namely, if we consider ay, - .., a, € Q\ {0} and by, ..., b, € Z
then

(3) log|bilogar + -+ bplogan| = —D|bi|h(a1) — - - — D|bn| h(an)

(here D is the degree [Q(az, ..., an) : Q]). Inequality (3) — whose proof is very easy (there is a
stronger variant in [2], Lemma 3) — means that for a rational subspace it is possible to have a linear
dependence of the measure in the height of p = (ay, ..., a,) € G%(Q) if one agrees to have an

exponential dependence in the height of the subspace* defined by linear form by 21 + - - - + by, 2, (note
that, from the Tangent Space Lemma [34], log deg B is greater than h(tg)). Here, inequality (2) is
not linear in log a but there is also loglog a just because we did not take into account the particular
hypothesis on Wy during the demonstration of the main theorem. We refer the reader to part II
of this work for a detailed study of this so-called “rational case”.

Another corollary of our main theorem deals with the minimal norm of a logarithm of an alge-
braic point of an abelian variety. That has already been considered for instance by D. Bertrand [3],
N. Hirata-Kohno [30] and F. Pellarin [38] in relation to Siegel’s theorem on integral points. None
of these results has precised the constant depending on the abelian variety.

Theorem 1.3. With the notation and hypotheses of theorem 1.1, we have
(4) 1og [|ulloy > —(609)%% D max {1, hr(A), logh®(A, L), hr(p)} -

We shall explain the main arguments of the proof in detail at the end of § 2.3. However,
let us already indicate that the method of slopes has been presented and developed by J.-B. Bost
in 8,9, 10]. It was also used by P. Graftieaux [26, 27] and some missing details (and improvements)
of [8] form the object of the thesis of E. Viada [45].

Acknowledgements. A first and weaker version of main theorem 2.1 can be found in the second part of
my thesis [20], supervised by G. Diaz, S. David and M. Waldschmidt and refereed by J.-B. Bost. I thank
them a lot for their help and their interest in this work. I am also very grateful to D. Bertrand and
P. Philippon for many encouragements and stimulating discussions (in particular about the possibility for
parameters D;’s to be zero). Besides, I thank again J.-B. Bost, G. Diaz and G. Rémond for numerous
helpful suggestions and comments on the original draft of this paper. Finally, I would like to express my
warmest thanks to the Number Theory Research Group of Saint-Etienne (France) for the hospitality and
the generous financial support while I was preparing my thesis.

2. DATA AND RESULT

2.1. Data. Let n be a positive integer. For every i € {1,...,n}, let A; be an abelian variety,
of dimension g;, defined over the field of algebraic numbers QQ, and let us consider also an ample
symmetric line bundle L; over A;. We put A := A; X --- X A,, g := dim A and L the external
tensor product Ly ®--- X L,. For i € {1,...,n}, let u; be an element of ta,(C) such that

Pi = expy g (u;) belongs to A;(Q). Let Wo be a (proper) subspace of ta(Q) of codimension ¢
and let ug be a vector of ta(Q)/Wo. Let Go := V ((ta/Wos)") be the affine group scheme (over

Spec(Q)) associated to the vector space ta/Wy. We denote by G the algebraic group Gog x A
and by p := (uo, P1, --., Pn) the induced algebraic point of G. Let A be the canonical projection
ta — ta/Wy and let us consider W the subspace of tg = (ta/Wo) @ ta defined as the graph of A
that is,

(5) W :={A\y)®z,z€ta} .

We fix a subfield k of Q of finite degree D on which there exists an MB-model ' of (A, L, {p})
(see § 4.2.2). We write og : k < C for the particular embedding deduced from k¥ C Q and
we shall assume also Wy be defined over k. We denote by ¢ the embedding G — P := X4 X
[T, P (HO(A;, LY?)) where Xo :=P (k @ (ta/Wo)"). Geometric degrees of subgroups of G will be

*The too rough aspect of estimate (3) explains why it is (very often) useless for applications. However, the
same lower bound with a very slight improvement in the b;’s (let us say bq}_s instead of b;) would have numerous
consequences for some diophantine equations (Catalan’, Fermat’s equations, see [19, 46] for some recent overviews
of these questions).

Initials MB are the ones of L. Moret-Bailly, whose work [36, 37] are at the root of the notion of MB-model,
introduced by J.-B. Bost in [7], § 4.3. A construction of such a subfield k is explained at the beginning of the
demonstration of theorem 4.10 of ibid., p. 58.
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relative to ¢. For instance, we have deg, G = 39 [[;_, {9:'h°(A;, L;)}. Besides, for any embedding
o : k — C, we consider the hermitian metric ||.||; on ta,(C) obtained from the Riemann form
of L, — A,(C). By quotient, we can extend that metric (keeping on the same notation) to

ta,(C) = (ta/Wo), (O é_S ta,(C). Let d be the distance on ta, (C) associated to ||.||q,-
Moreover, let us indicate that the term hm(muo) which will appear in the lower bound (8)
of log b below is the Faltings height of 1 ® mug € Xg,4,(C) (that is, more or less, the Weil height
of (1, muy) (writing ug in a basis of ta /Wy)). We refer the reader to § 4.3, p. 9, for a more precise

definition of this object.

2.2. Hypotheses and supplementary data. For the positive integer a defined below by (7), we
shall suppose either
For any integer m € {1, ..., (209)%9*1%a}, the point mp is not a k-rational point of any
proper algebraic subgroup G’ of G.
or
The preceding condition is true only for subgroups G’ such that W + tg: # tg.

Let us emphasize that the hypothesis  can be satisfied only when ¢ = 1 (otherwise we could take
G’ =V((k.up)") x A). Then we define an integer y € {0, 1} by

0 in case
(6) Y= { ’

1 in case .
Let us consider some (proper) algebraic subgroups G; = Gy x B; and Gy = Goz X By of G such
that A(tB,) C tgy, # ta/Wo and tgy, + A(ts,) # ta/Wo. Let 61 (resp. d2) be the smallest integer
i€ {1, ..., n} such that dimB; < g; +--- + g5, (resp. dimBy < g1 + --- + g5,)-

2.3. Result. By now, we are in a position to set out the main theorem of this paper, whose
purpose is to give lower bounds for the distance d(u, Wc) between u:=uo ® --- & u, € tg,,(C)
and Wg :=W ®,, C.

Theorem 2.1. With the previous notations, let a; > --- > a, and ¢ be some positive real numbers
such that ¢ > e and

) 2
Vie{lz--'an}a logaiZma,x{hLi(pi),(e'ul'ﬂ”O)} .

One define the integer

(7) a:= [i max {1, log™ (i) s hrp(A1), ..., hr(Ay), logh®(A, L), logdeg, G1, log™ log(as, an)H +1
loge loge

and let b be a positive real number satisfying

(8) logb > D (muo)} + DA(Wp) + log min {e, ea||uo||sq} -

ogmg (I;})?;)(sgﬂoa {hOxo 1)
Last, let U be
9)

dim(tgg, +X(tB,))—dim Goa
1 ) t—dim(tG, +A(tB,))

aloge

1
Da 9n Da 950 +1 Da 91+-+9s5, —dimBa | t—dim(tg,, +X(tB,))
X (1+ —logan> ---(1+—loga52+1) (1+—loga52) .
loge loge loge

t—dim Ggg
(a¥ log e + log b) t—dim(tg,, +A(IB,))

I S
(adeg, Gz) =G, (T8, ) (

Then u does not belong to W and we have the following estimate

logt ||ul|
(10) IOgd(ua WC) 2 - (1 + w) U,
aloge

codimg (Ga)
30g i—dim(tgg, TM(tBy))

with ¢1 := (20g)

The hypothesis on p is exactly what we need to extrapolate over its multiples during the proof.
This type of assumption has been usual in works related to the Lehmer’s problem (see for in-
stance [16]). Moreover the condition a; > - -+ > a, is of no consequence on the general nature of
the theorem. It allows us to simplify the presentation of the parameter U.

The high numerical value of the constant ¢; appearing in estimate (10) arises first from a Siegel-
type condition (lemma 5.7 below) which imposes the extrapolation process to be carried out with
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sufficiently many points (namely, with the notation of the proof, S/So 2 (209)9). Now, more
or less, the right hand side of (10) is —T'Sploge (arising from an “approached” Schwarz lemma)
and it must be lower than D;S? (D?LLi (pi) + (e||u,~||go)2), for any i € {1, ..., n}. So the ratio
between S and Sy has direct repercussions on the measure (10). Moreover the dependence in g of
the constant ¢; (i.e., ~ g9 if we choose G = {0}) has not been improved in comparison with the
result of S. David, although we take care of it during the demonstration (see the discussion about
that point in [15], p. 12). In the current state of the art, it seems difficult to improve this point as
Matveev [35] does it for commutative linear groups (replacing n™ by e”). Besides, the dependence
on Faltings heights of A;’s can be slightly improved. Indeed, we can take hp(A) instead of hp(A;),
1 < i < n, in the definition of a on condition that we add —10g* max {hr(Ai), ..., hr(Ap)} in
the right hand side of (10). We do not do it by concern of readability of the proof.

Let us mention also that the theorem 2.1 can be extended without any particular difficulty to a
semi-abelian variety except for the constants (20g)%9*1° and ¢; which are in that case unspecified
(because of auxiliary proposition 4.3). However, A. Chambert-Loir points out to me that proposi-
tion 4.3 should be (easily) generalized to semi-abelian varieties. We shall integrate his remark into
a next version of this paper.

Before explaining the proof of this result in a more detailed way, let us verify quickly how
theorems 1.1, 1.2 and 1.3 can be deduced from it.

Proof of theorem 1.1. In theorem 2.1, let us take n = 1,
(51 = (52 = ].) ]\:_“I'OIII § 433, we have hm( )
we are in case = that is, y = 1. We can also notice

D1 2
2at0g¢ > Diog™ (5.25%) > piog* { “Ie)} 5 10t ju
loge loge

because ¢ > e (in fact, as soon as n = 1 and ug = 0 we can remove the term
(log* [Julloy)/(alog e)
from (10)). Then inequality (1) is a simple consequence of (10). O

Proof of theorem 1.2. We choose here n =1, A; = A, up =0, u; = u, G; = {0}, G2 = {0} x B
and the result follows from (10).

A =A,U.0=0,G1=G2={0}(SO
= 0 and thanks to the hypothesis on p,

Proof of theorem 1.8. In the previous theorem we take B = {0},
logb = 2D max {1, hp(A), logh®(A, L)}

and we choose loge = D max {1, i (p), hp(A), logh®(A, L)}. Then if ¢[|ul|,, > 1 theorem 1.3 is
trivial and, if not, we can take loga = (loge)/D, a = 1 and from (2) we get the expected lower
bound for log||u]|s,- O

3. DESCRIPTION OF THE PROOF OF THE MAIN THEOREM

The demonstration of the theorem 2.1 relies both on slope inequality (73) (see § 5.8) which makes
up the heart of the so-called method of slopes and on Baker’s method* which guides the choice of
the filtration necessary to apply (73). This framework being fixed, the rest of the proof consists
in giving an estimate for each term appearing in the slope inequality, namely the Arakelov slope
of an hermitian vector bundle £, the maximal slope of quotients G;, ultrametric and archimedean
norms of morphisms ;. It is worth noticing that the distance d(u, W) between the logarithm u
and the subspace W occurs only in the upper bound of the gg-norm of ¢. So the slope inequality
gives immediatly a lower bound for d(u, W).

However, the quality of the measure of d(u, W) depends highly on the previous estimates
concerning terms in the slope inequality. In this manner, N. Hirata-Kohno showed in [28, 29]" how to
refine the problem to establish a much better measure with respect to the height of the subspace W.
In this paper, we use her new “trick” framework: geometrically, it consists in working with the group
G = Gy x A (instead of A) and in considering the transversal subspace W C tg = (ta/Wo) @ ta

*Let us recall that the principle of Baker’s method consists in using the vanishing of some jets of order 27" of a
section s of a line bundle (over a compact manifold X) in (at least) one point of X in order to get some informations
(most often in upper bound form) about jets of order T of s at other points of X.

tHer works were thorough and made best possible (for the parameter h(W)) in [17] and [22].
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obtained from the graph of the projection ta — ta /Wy (that is why theorem 2.1 is slightly more
general than theorem 1.1 as regards the considered group). One asset of this transformation is that
there is an additional parameter Dy associated to the affine group Gy, on which it is possible to
concentrate the weight of derivations (of order < T') along W. In this way, the expected quantity
T h(W) is replaced by min {Do, T} h(W). Moreover, as in [17, 22|, this trick allows us to use
Chudnovsky’s process of variable change in order to get a better estimate (min {Dy, T}T instead
of T!) for the denominator of some Taylor coefficients which appear during the proof (see § 5.5).
Both these processes lead to a best possible measure in the height of the subspace W (height
bounded from above by logb here). Once we have fixed the new data G and W (instead of the
original ones), calculations about Arakelovian objects needed during the method of slopes are
naturally simpler and more conceptual (see, for instance, propositions 5.3 and 5.6).

Finally, as a counterbalance to the numerous advantages brought by the method of slopes in
this type of problems, let us point out that the extra-hypothesis on the point p (it must not be a
torsion point modulo some subgroups) in the theorems above results from the need to be within
the scope of the “strict” Baker’s method, namely an extrapolation on points and not on derivations.
I have not yet seen how to remove that condition but it is known from the usual transcendence
method it could be.

The paper is organized as follows.

Firstly, in the next section 4, we gather various elementary notions and properties about Arakelo-
vian objects used during the demonstration of theorem 2.1. It does not contain any new result
but it may clarify some technical points of the proof while introducing notation. Section 5 is
devoted to the demonstration of theorem 2.1. As it has often been the case in transcendence
proofs, the first step (§ 5.1) consists in fixing parameters z, T, S, Dy, ..., D,. To apply the slope
inequality, we need a certain linear map to be injective and this property is equivalent here to
proposition 5.2. The choice of z (from equality (33)) is totally determined by this purpose*. In
§ 5.2, we define the space &£ of sections considered in the following and after endowing it with
a structure of hermitian vector bundle we compute its slope. Then (§ 5.3), we define the vector
space F' of jets, the linear map ¢ : & — F we mentioned above and the filtration (F;); of F. We
give an estimate for the maximal slope of F;/F;;1, noteworthy inasmuch as the height of Wy is
combined with parameter Dy on Gg and not with the order of derivation T, as, for instance, it
was the case with estimates (5.29) and (5.30) in [8]. It is made possible thanks to Hirata’s trick.
In § 5.4, we prove a technical lemma, more or less a rewriting of a Siegel condition. Finally, in
order to estimate the height of morphisms ¢;, we give successively upper bounds for ultrametric
norms (§ 5.5) and archimedean norms (§ 5.6). In § 5.7, under the assumption that the distance
d(u, W) is “very small” (inequality (63) makes this precise), we give a sharp estimate for ||;||s,-
To conclude (§ 5.8), we apply the slope inequality (73) and that leads to a contradiction with the
hypothesis “very small”.

4. TOOLBOX

Each part of this section can be read independently from the rest of the text. It contains some
more or less elementary facts about Arakelovian objects, put together here in view of setting some
notation, conventions and recalling some results that will be used during the proof of theorem 2.1.
We assume familiarity with the notion of hermitian vector bundles over Spec(Oy) (k number field)
as well as their properties mentioned in the appendix of [8] or in § 4.1 of [10].

4.1. Symmetric powers. Let £ = (£, (||||ls)s:ksc) be an hermitian vector bundle over Spec(Oy)
of rank IV + 1 and ¢ be a positive integer. Let us recall that for a finite place p of k¥ with valuation

ring Oy, the module &, := £ ® O, is free of rank N + 1. If we consider a basis (eq, ..., en) over O,
of &, then, the p-adic norm ||.[[z, on &, is defined by || Zé\io zieillz, = Or<r1,ixN{|xi|p}, where the
k) b \z\

p-adic absolute value |.|, on O, is normalized by |w|, = card (O/p)”", @ being a uniformizing
parameter of Oy.

*Because of the structure of algebraic subgroups of G, we have been able to avoid introducing the (usual) subgroup
(called G in the literature, see proposition 5.2 of [40]) which allows us to manage (a part of) the obstruction subgroups
appearing in the zero estimate [39].
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For each place o : k < C, we endow the /-th symmetric power S¢(£,) with the quotient
metric ||.||¢,, deduced from the canonical surjective map £2¢ — S¢(&,). If we take (eo, - .., ex) an
orthonormal basis of £, the square norm |[|e[|7 , of an element e := Y z;el* - - - e} equals ) || i

o
We have a natural isomorphism ©, between S¢(£¥) ® k and (S¢(€))" ® k.

Lemma 4.1. The k-linear map Oy is an isometry at ultrametric places of k. For each archimedean
place o : k — C, the operator norms satisfy

o .
() lodis < mae {5} ana 07"l <1
1i|=¢

The very elementary proof is left to the reader.

4.2. Slope computations. The normalized slope of an hermitian vector bundle is the quotient of
the (normalized) Arakelov degree by its rank:

(12) i) = S

It turns tensor products into sums: i (€ ® F) = i (€) + fi (F). We shall give here the calculation
of fi(€) for some hermitian vector bundle £ arising from algebraic geometry. But before, let us

recall that the mazimal slope [imax(€) is the maximum of the slopes fi(£’) over (non zero) hermitian
vector subbundle £ of &.

4.2.1. Let &£ be an hermitian vector bundle of rank N + 1. We endow the canonical line bundle
Op(g)(1) with the Fubini-Study metrics (that is, quotient metrics 7*&; — Op(g,y(1), 7 : P(£) —
Spec(O})) at infinite places of k. Thus, for a positive integer n, the line bundle Opg)(n) :=
Op(£)(1)®™ is metrized and there is a structure of hermitian vector bundle on the sheaf of global

sections m,Op(g)(n). We can notice that the latter metrics are the same as the ones on S™(&)
(defined in the previous §), twisted by ("tV )_1/2 (see for instance lemma 4.3.6 of [11]). The

following result is a variant of proposition 4.2.8 of Randriambololona’s thesis [42].

Proposition 4.2. Denote by yn,r the real number

13 11 ()
ieNnN+1

li|=n

The slope of the hermitian vector bundle T (P(E), Op(g)(n)) is

(14) 7 (FE@), Orem)) = 3108 { (" M)} 40 @) -

Sketch of proof. After a field extension, we can suppose that £ is a free Op-module. Let us
choose an isomorphism ¢ : O,IEV +1 4 £. By endowing O,IEV +1 with “trivial” metrics, we can es-
timate archimedean norms of the n'" symmetric power S™q : S(OY ') 5 S™(€), from which
we deduce the slope of S™(€) (namely, 1i (S"E) = nji(€) + tlogyn,,) and formula (14) via
S™(€) ~T (P(E), Op(g)(n)) (we control the change of norms as we mentioned above). More details
can be found in op.cit. d

4.2.2. We are now going to estimate the Arakelov slope of sections bundle of an ample symmetric
line bundle over an abelian variety. Let A be an abelian variety over Q of dimension g and L an
ample symmetric line bundle on A. We consider (A, £) an MB-model of (A, L). Definition and
properties of this notion are given in § 4.3 of [7]. Nevertheless, let us recall that 4 is a semistable
(smooth) group scheme over Spec O, whose generic fiber Ay is isomorphic to A and £ — A is
a cubist line bundle (with £ ~ L). We endow the space of global sections I'(A, £) with the
hermitian metrics induced by the cubist structure on £ (definition (22)).

Proposition 4.3. The slope of the hermitian vector bundle T'(A, L) is

S 0
(15) 7 (T4 D) = ,% he(A) + ilog h ((21;39” _
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Remark 4.4. By ampleness, the dimension h°(A, L) is also the Euler-Poincaré characteristic
X(A, L) of L. Therefore, for any positive integer n, we have h®(A, L®") = n9h%(A, L) and we
deduce the slope of I'(A, £®") by adding ¥ log(n) in the right hand side of (15).

This proposition has been established by J.-B. Bost [7]. It relies on work by L. Moret-Bailly [36,
37] as well as on the arithmetic Riemann-Roch theorem of H. Gillet and C. Soulé [24] (see also [6]
for a more complicated exact formula when L is not supposed to be symmetric).

4.2.3. 'We use the same notation (A, L) as in the preceding paragraph. Let k be a number field of
definition of (A, L). At each infinite place ¢ : k < C, the Riemann form of the complex line bundle
L, = A,(C) induces a metric ||.||z, on the tangent space at the origin ta_(C) = ta (k) ®, C and
thus we get the hermitian tangent bundle t4 = (t4, (||.||z,0)o:k>c). The following statement is
proposition D.1 of [8].

Proposition 4.5. The slope of the dual hermitian vector bundle t' is

T hrp(A) 1 0 1
(16) u(tA):T-i-%logh (A, L)—Elogﬁ-

As we shall see in the following section, this result can also be viewed as a height computation.

4.3. Heights. Throughout this paper occurs the terminology of height applied to various objects
such that vector subspaces, k-linear maps and rational points of an arithmetic variety. We specify
here definitions and properties related to this notion. For a much more global vision, the interested
reader can refer to [5, 11] for instance.

4.3.1. We keep notation of § 4.2.3 (in particular the MB-model (A, £) of (A, L)). Let V be a
vector subspace of ta (k). Denote by V := V Nty the saturated Op-module obtained from V.
That defines a subbundle of t4 and the co-height h(V) of V (relative to (A, L)) is the normalized
Arakelov degree of t4/V, where V is endowed with the restricted metrics of Z4. That terminol-
ogy (quite personal for the moment!) is justified given the definition [8] who rather considered
h(V) = d/e\gnw. So we have h(V) = h(V) + (T(%HH and this last degree may be computed with
proposition 4.5. The interest of our choice is that it is the “natural” quantity which appears during
the demonstration of theorem 2.1.

4.3.2. Now, consider some hermitian vector bundles £ and F over Spec Oy and f : & — Fi a
k-linear map. At each place v of k, the vector spaces £ ® k, and F ® k, over an algebraic closure
k, of k, are metric spaces (when v is ultrametric, see beginning of § 4.1); let us denote by Iz
[|[l, these metrics; then the height h(E, F, f) (simplified in h(f)) of f with respect to & and F
is defined by the formula

h(f) =

! log sup {”f(m)”?’” } .
k:Q, iedore  =zegafor | lzllg,

4.3.3. In the same spirit, given an arithmetic variety X endowed with a metrized line bundle M,

the height of a rational point x € X(Q) is the Arakelov degree of z* M:
(17) hp(z) = deg,z* M .
If (X, M) is an MB-model of an abelian variety (A, L), this definition coincides with the Néron-
Tate height (relative to L) of z (see chap. III of [36]).
Now, let us assume (X, M) is (IP’(E), m) First fact we would mention here regards the

change of hm(az) when & is varying, at constant rank. Consider £, F some hermitian vector
bundles over Oy of the same rank and ¢ : & — Fj an isomorphism. Let z € P(&)(k) and V,

the hyperplane of & corresponding to z. We denote by ¢ : £ /V, — Fi/¢(V,) the map deduced
from ¢ and by ¢(z) € P(Fy)(k) the k-point of P(Fy) corresponding to the hyperplane ¢(V;) of F.
Then

(18) ey () = Py (942)) + 1 (3) -
Indeed it suffices to notice that we have isometric isomorphisms
Ex/Ve 2 2" Op(g)(1) and  Fr/P(Va) ~ ()" Op(ry(1)
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and to apply definition (17). As a corollary, we find that
(19) hOP(E)(l) (¢(x)) < ho,r»(s)(l) (z) +h (¢_1) :
For instance, when & = Op ! and ¢((o, ..., zn)) = (zo, mz1, ..., may) (multiplication by an
integer m), that gives the well-known inequality: hms—= (mz) < hs—75 () +logm. On the other
_ Opn (1) O:n(1)
hand, still in the case & = Op ', given & = (zg : --- : zn) € PN(k), one can show that (see for
instance [11], p. 49)
1/2
1 Moo (S o))
[k:Q o8 Ny (w00 + -+ + x v Of)

where, if I is a fractional ideal of Oy, the rational number Ny () is the norm of I. This formula
leads to a comparison with the absolute logarithmic height of x:

(20) he~m (@) =

1
(21) hweil(e) < hgqy(@) < hwei(2) + 7 log(1+ N) -

Finally, it is worth noting that the height relative to Op(o,ee)(1) of the (“zero”) point 1®0 € O, ®E
equals 0.

4.4. Gromov-type lemma. Terminology “Gromov inequality” refers to the comparison between
the sup-norm and the L2-norm of a section of an hermitian vector bundle over a (compact) complex
manifold. The archetype of such an inequality is at § 5.2.3 of [24].

Let 7 : X — Spec(O},) be a projective arithmetic variety (in the sense of [7]) and M — X an
hermitian line bundle over X. We suppose that M is ample. For each o : kK — C, we consider
a probability measure du, on the complex manifold X,(C). Then one can define a hermitian
structure ||.|| 7, on HO(X5(C), M,):

(22) Vs € HO(Xo (), Mo),  lslE— ==/ lls(@)|13 . dpio ()
M, %.(C) .
and there are also sup norms:
(23) Vs € H(X(0), Mo), |lslloc,oc := sup |Is(@)ll%s,, -
zE€Xy(C)

The quantity that interests us here is

(24) S(A M) = —— 3 log sup {7”50%0’« }

[k:Q o ksC sa-EHO(X;((;C),Ma') ||SU||7r*M,0

From Cauchy-Schwarz inequality, we see that = is an “almost” additive function:

- . m 1 m
(25) 0 < E[(X1 X+ X X, My B+ B Mim)] = 3 S[(X, Mi)] < 5 D logh (X, M) -
i=1 i=1

The first basic statement for an estimate of Z[(X', M)] concerns projective spaces.

Lemma 4.6. Let £ an hermitian vector bundle over Spec(O) of rank N + 1. Then, for any
positive integer m, we have

_ — 1 N+m
(26) =[(P©),0rem)] < 5108 (7 ™) -
The following statement for abelian varieties is more difficult to establish.

Lemma 4.7. Let (A, L) be a polarized abelian variety and (A, £) be an MB-model of (A, L).
Then, for any positive integer m, we have

(27) = [(A,297)] < c(g) max {1, hr(A), 1ogh®(A, T), logm}
where ¢(g) depends only on the dimension of the abelian variety. Furthermore, if the polarization

is principal, we may take c(g) = 4g*.

The proof of this lemma relies on the effective form of the “matrix lemma” of D. Masser
given in [6, 8] as well as estimates on theta functions. The constant has been computed by
P. Graftieaux [26], proposition 2.11.
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Remark 4.8. Estimates (26) and (27) will be very useful to give an upper bound of the analytic
part of h(ip;), the height of linear maps ; considered during the proof (see § 5.6 and 5.7). Actually,
quantity (24) occurs through most of analytic estimates required to achieve some sharp upper bound
for (maximal) slopes of hermitian vector bundles, for it is often simpler to work with the sup norm
than the original hermitian metric! For example, J.-B. Bost described in [8], § 5.3.4, how to provide

quickly an estimate of fimax (V¥) (where V C t4) from the “Shimura map” ¥ : " (A, £®3)®2 — Y,
Y(s1 ® s2) = &* (552 ®d(s1/s2)) (where € : SpecO, — A is the zero section of A) and from
slopes inequalities (proposition 4.3, ibid.). As it were, the main issue is to evaluate the height hA(X)

of ¥ (in the sense of § 4.3.2). Now, one can see at once from the definitions (cf. the proof of
proposition 2.14 of [26]) that

A(Z) < log(6g) + 2 [(A, W)] .

Hence (lemma 4.7 above) one deduces the following inequalities:

(28) fimax (F4) < 59 +22 [ (A4, £8%)] < c1(g) max {1, hr(A), logh®(A, L)}
and
(29) fimax (V¥) < deg, VY + (dim V — 1) fimax (1) < c2(g) max {1, hy(A), logh®(A, L), h(V)}

by using also the lower bound hr(A) > —% log(27) mentioned in [6] (here ¢;, i = 1,2, are constants
that depend only on g = dim A and c; = 14g* (resp. ca(g) = 15¢°) if L is principal).

We conclude thus general points and it is time presently to look into the proof of the main
theorem.

5. PROOF OF THE MAIN THEOREM

Preliminary remark . For the demonstration, we shall assume the polarization L of A to be
principal that is, h°(A, L) = 1. Indeed, it is possible to reduce the original problem to this case by
using isogenies ¢; : (A;, L;) = (AL, L), of degree hO(A;, L;), for alli € {1, ..., n}. So (AL, L!) is
a principally polarized abelian variety and then we must know how each quantity in the theorem 2.1
has been modified when working with the new system of data

{A}, L}, «(G1), §(G2), dsi-(u;), ds.(Wo), ds.(uo)},

“image” of the original one by the isogeny ¢ :=¢; X --- X ¢, between A and A’ := A} x --- x Al
(and dg : to — tar is the differential map at the origin). We have

he(A') < hp(A)+  log (A, 1),
degs(G;) = deg(G;) (1 = 1,2),
BL; (ci(pi)) = hr,(pi) (i=1,...,n)

and the choice of (cubist) metrics does not change the distance between u and W (nor norms of
u;’s). We need (A, L) to be principal because of inequality (42) of proposition 5.3 which relies on
the totally effective version of lemma, 4.7.

5.1. Choice of parameters and zero estimate. We are going to give in an abrupt way the
values of parameters used in the course of the proof. Nevertheless, in order to attempt to convince
the reader they are best possible (given the constraints and apart from the absolute constant), we

shall explain locally during the demonstration the reasons of our choice.

We use again notation of § 2.1 (with, as explained above, the hypothesis of principality) and,
in all the proof, the Hilbert-Samuel polynomial of G will be relative to the canonical embedding ¢
considered in that paragraph. We fix algebraic subgroups G; and Gs considered in theorem 2.1.
Let us define Sy := (10g)%a and S := (209)%972S, — 1. We define the real number Uy by

(11g+414) codimg (G2) 1
Uo := (209) t—dim(tqg, TA(tBy)) (So deg, Ga) t=dim(igg, T2 (tBy))

dim(tgg, +A(tB,))—dim Gog

1 T—dim(tgy, T3 (IB,)) __ t=dimGoy
« ( ) Goz2 By ™ (10gb—|— S("{ log e) i—dim(tg, TA(tB,))
Sologe
(30) I
DS gn DS 9834+1\ T—dim(Eg,, FX(g,))
X ((1+ 0 logan> (]_+ 0 10ga52+1) ) Goa By
loge log e

1
(1 . DSOI )gl+...+952—dimB2 t—dim(tG02+A(t52))
X oga, .
log e 8 432
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Let 1~)1, - l~)n, T be positive real numbers given by
~ Up ~ Uop
(31) T:= %) , D;:= oS
ologe (10g)69+11(Sg loge) (1 + logg log a,q;)
Then define
(32) Do := Yo

(129)¢ (log b+ S log e)

where y € {0, 1} was introduced in § 2.2. Furthermore, we recall that a connected subgroup G*
of G can be written G§ x A* with G C Gg (of dimension t*) and A* C A (resp. g*). Then, for
such a subgroup G* with t* < ¢, we consider

dim(W +tgx )—dim G*

T H* S + 1) deg, G*\ /(=)
(33) z(G*) == _ _ (~) — i AN T x (( (24))9( %)LS )
Do (Dgr -+ DYE i Dgithos —dimAn) = 7
where 6* = 0*(G*) is the smallest integer in {1, ..., n} such that dim A* < g; +---+gs+. Let = be

the real number « := inf {(G*)} where the lower bound is taken on the algebraic subgroups G* of
G such that tg« + W C tg (so for these subgroups we have necessarily t* < t). Besides, it is worth
noting that for such subgroups, we have codimg G* — codimy (W Ntg+) =t — dim(tg; + A(ta+))
and with definitions (31) and (32), we get z < z(G») < 1.

Denote T := [JN"] , D; = [ﬁ,] for 1 <i < n,and Dg := [mﬁo]. In the following, the D;’s will
be (partial) degrees of polynomials, T will be an “order of derivation”, S a “number of points” for
the extrapolation process and z a fitting variable for the zero estimate. In the following lemma,
we sum up some important properties of these parameters.

Lemma 5.1. We have the following inequalities.
(i) T > (10g)** " max{D; + 1, ..., Dp + 1}.

(ii)) Do =1 and D, > 1.

(iii) T > (69)Do/Sy *.

(iv) 2(g9 +t)Tlog(4Dg) < Uy/D.

Proof. First assertion is a straightforward consequence of the choice of parameters T and D;’s (31).
For Dy, it must be noted that for subgroups G* which occur in the definition of x we have

dim(W +tg+) —dimG* > g — dim A*

and so, as T > max {51, e, l~)n}, we get the lower bound
1
_ (S + 1) deg, G* i=1%
IDW&f{(ww) }21-
As for D,,, we bound Uy from below, using a; > ap, for all i € {1, ..., n} and logh + S§ loge >
S loge,

dim(t gy, +A(tB,))—dim Gog

1

t—dim(t FAtB,)) 1 t—dim(¢ ESYCI )]

Uo > (209)%+14 x 5,7 G027 ( ) o
Sologe

y(t—dim Gog) t—dim Ggg DS = ?‘dimff( 53
t—dim(¢ +A(t )) F—dim(t o~ T A(io ) t—dim(t t
% SO Go2 Ba (log e)t dim(tgg, TA(tB,y)) x (1 + 1 0 log an) Go2 By))
oge
And then we get
1+dimG0%+y(i—di(m GO)Q))—t DS - g(;—dimf)?( ))_1

~ t—dim(t ESY (] t—dim(t t

(34) Dy > 8, TG0 TABy X (1 + 3 2 log an> Go2 B

Tt is easy to verify 1 4 dim Gga + y(t — dim Gg2) > ¢ using the definition of y. Likewise, we have
g—dimB, >t — dim(tg,, + A(tB,)) because
t— dim(tG02 =+ )‘(tBZ )) < dim(tA/Wo) — dim(th =+ Wo)/WO
< dim(ta /(tB, + Wo)) < g —dim B2 .

So inequality (34) implies D,, > 1. As for (iii), it arises directly from the definitions of T and Dy
as well as property z < 1. Finally, as regards estimate (iv), we get an upper bound for log Dg from
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the definition of z by taking G* = Gg:

D
log Do < 25¢° max {1, log So, log deg, G1, log™ (1— log(as, an))}
oge

and then we deduce (iv) from the definition of T. O

Remarks .

(1) Let us emphasize that hypothesis A(t,) C tG,, on Gi (a priori the condition tg,, +
A(tB,) # ta /Wy would have been enough) is justified here to get rid of Uy from the upper
bound of 2Dy (Up is raised to the power (dim(W +tg, ) — dim G, —g)/(t—dim Gg1) = 0).
Without that precaution, the upper bound of log Dy would have depended on logb and
the final measure (10) would have not been best possible in the height of Wy (there would
have been a supplementary loglogb in definition (9) of U, as there was for instance in
theorem 2.1 of [28]). Besides, the presence of the term log™ log(as, - - - a,,) in the definition
of a is justified here by inequality (iv) that is, as we shall show in § 5.5, by the arithmetic
part of the proof.

(2) Integers D;, 1 < i < n — 1, are not necessarily positives. So, for instance, in the next
definition (35), we should rather consider Op; instead of L?BD “ if D; = 0 and we should
introduce k the least integer > 1 such that D, > 1 etc. However, for the sake of notational
simplicity, we shall do this abusive writing which does not disrupt further calculations.

We denote by M the line bundle
(35) Oxy (Do) R LE*P1 R ... ) [,93Dn

over the Zariski closure G of ((G).

Proposition 5.2. No nonzero element s € H° (E, M) vanishes along W at order (g +t)T + 1 in
all points of {0c, P, 2P, ..., (g +1)Sp}.

Proof. We suppose that there exists such a section s # 0. For every 1 < i < n, the complex
line bundle Lg?go (over A; ;,(C)) is normally generated and, if we define D} := max {1, D;}, the
restriction map

H (Pgiﬂ O(D;)) - HO (Ai)ao (O, L®3Di)

4,00

(where N; := h(A;, L¥?*)—1 = 39 —1) is surjective (see [4], chap. 7, Theorem (3.1)). Therefore, the
section s arises from a polynomial P(Xj, ..., X,), homogeneous in X; = (X, -.., X; n,), with
complex coefficients and of degree < Dj, that has the same property as s (in terms of vanishing).
From the zero estimate of P. Philippon [39], there exists a proper connected subgroup G* of G
such that

(36) eodimw (Wntes) carq (%ﬂ) #(G*; D}y, ..., Dh) < 299! #(G; Dy, ..., D) .
Like in remark 2 (before proposition 5.1), let & be the least integer in {1, ..., n} such that D, > 1.

We define the projection map 7, : A = A, X---x A, and G the (connected) algebraic subgroup
Gf x Ay X --- x Ag_1 x m(A*) (where, as before, we have split G* into G§ x A*, G§ C Gy,
A* C A). As G* C G} and by definition of &, inequality (36) is still true if we replace G* by G¥.
We also note that
H (Gr; Dy, ..., D)) <39! (G*; Dy, ..., D)

and since codimy (W Ntg-) > 0, T > 69(g!)?, we deduce from (36) that G* # G. Now, let us
show that (36) cannot happen and this will give a contradiction with the assumption on s. We
shall distinguish several cases according to GJ.

First, let us suppose that tg: + W = tg. Then codimy (W Ntg:) = codimg(G}) and (36)
implies

eodima (GL) card (FP(S) + GZ(’C))

Gy (k)
< 189(9)° D™ max {1, Dy, ..., Dp}dmdmA XAy X (AT
Since max {1, D1, ..., D,} does not exceed T/(10g)%9+!! (lemma 5.1, (i)), we obtain

o T'p(S) + G2 (k) e
t—t P t—t
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So by lemma 5.1 (iii), we have necessarily y = 0 which implies ¢ = 1. But then hypothesis on p
involves
Ip(S) + G (k)

(37) card ( G (h)

) —541

and there is a contradiction yet with lemma 5.1 (iii). Hence we have tg: + W C tg. Then on
noting that (37) is still true because of hypothesis or ~ on p and that D; < --- < D, we get
from (36):

(38) TcodimW(WﬂtG;) (S +1)deg G < 1sg(g!)3 (Iﬁo)t—t*Di7/+..-+g~—dim7m(A )Di”c:l-tl ... Dgn

where &' is the smallest integer > & such that g + -+ - + g, > dim7,(A*). Since &' is also the
least integer such that g +---+ g1 > dim(A; X --- X A,_1 X . (A*)), we have &' = 6*(G¥) (by
definition of 6* next (33)). Then, using T > T/2, for T is a positive integer, inequality (38) is
contradicting with the definition of x.

Finally, the subgroup G* cannot exist and the proposition has been proved. a

5.2. The hermitian vector bundle. In this paragraph, we define the hermitian vector bun-
dle that is the starting point of the construction of all the objects necessary to apply the slope

inequality.
By definition of the number field &, and for each ¢ € {1, ..., n}, there exists an MB-model
(39) (mi : As = Spec(Ok), Lis {emps : Spec(Ok) = Aibpeqo, .. (g40)53 )

of (A, L;, T'p, ((g+t)S)). Such models, studied in [7], possess exactly the properties we need for this
work and we refer the reader to op.cit., theorem 4.10, for more detail. We put A = A; x---xA,, and
Wo the saturated Op-module t4 N Wy. Let G be the smooth group scheme V ((t Al WO)V) x A over
Spec(Oy), whose generic fiber identifies with G. Denote by X the scheme P (O ® (t4/Wo)") x A
over Spec(Oy), and to simplify some future expressions, we put Xo := P (O @ (t4/Wo)"). The k-
rational points mp € G(k), 0 < m < (9+1)S, extend to €,,,p € X(O}), thanks to the (€mp,;)1<i<n-
Finally, consider W the graph of the canonical projection X : t 4 — t 4 /W, that is, the Of-submodule
of tg = (ta/Wo) @ ta made of elements A(z) @ z, z € t4. Its generic fiber W = W ® k is the

subvector space of tg (of dimension g) considered in § 2.1. On the scheme X, we can consider the
line bundle

(40) M = 0x, (Do) RLEPI R ... ) LE3n

It can be endowed with hermitian metrics at infinite place o : k — C, obtained from the cubist

metrics on each £; and from the Fubini-Study metrics on Oy, (1). The Oy-module £ := H° (X, M)
of global sections of M is locally free and finitely generated. Its rank is

k€ = (D°+t)39Df1---Dgn
t

(we used here the ampleness and the principality of L;). For each archimedean embedding o : k <
C, the C-vector space &, := € ®, C is endowed with an hermitian metric ||.||z , defined by

R o @l @

where du, is the probability measure on the (compact) set X, (C), invariant under the action
of the unitary group Ug;1(C) and the group of translations of A,(C). The hermitian vector
bundle £ = (€, (Illlz ,)o) made in this way has a normalized Arakelov slope i(€). The following
proposition is the explicit calculation of this quantity.

Proposition 5.3. The (normalized) Arakelov slope of € is

(41) i@ = g { (™) Yo | - 1 Doh(wo) + ; {~thran + %o (*2) )

where v, p, has been defined in proposition 4.2. In particular, with the notations of § 4.4, we have

(42) AE) — 2 [(x, M)] > —10g* (max {1, hp(A1), ..., hr(An)} +log (Do -+ - Dp)) — Do h(Wo) -
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Proof. Equality (41) is a straightforward application of the results of § 4.2. As for inequality (42),
we use first § 4.4 to get an upper bound for E [(X, M)]:

= [(x, M)] < % logh®(X, M) +Z [(P(Ok @ (ta/Wo)"), m)] + gz [(Ai, £83Di )]

) + zn:élg? max {1, hr(A;), log(3D;)}

i=1

Do+t

1 1
< - logrk & 710(
< logrke + log (7,

from which we deduce easily (42) using (41). O

Remark 5.4. Even if we shall not need the following property for the demonstration, let us point
out that the hermitian vector bundle € is semi-stable that is, [i(€) = fimax (£). Indeed, from
proposition A.3 of [8], it suffices to show there exists a group made of isometric automorphisms
of £, whose action on & is irreducible. The group product of unitary matrices ¢ x ¢+ by Mumford

groups K (L?BD ") fulfils this condition (for more details, see [8], p. 12).

5.3. Choice of the space of jets and its filtration. The analytic part of the proof rests on
Baker’s method, which determines in this way the choice of the filtration. As in all proofs using
method of slopes until now, the morphism ¢ : E — F we need will be an evaluation map. To a
section of the line bundle M, we associate jets of order 2(g + ¢)T (resp. (g + t)T) along W at the

points mp for m € {0, ..., So} (resp. m € {So+1, ..., (g +1t)S}). With a suggestive writing, we
want ¢(s) = ((jet}y s) (mp)) where (m, t) belongs to

o . t<2(g+¢)T and 0 < m < Sp or }
(“43) V._{(m, ) t<(g+t)T and So+1<m< (g+1¢t)S

Obviously, the vector space F will be built in an appropriate way to “welcome” all these jets. It will

be isomorphic to ( G? k. The filtration F; of F' will be defined by vanishing the first components
m,t)EV

up to ¢ of F' (the set V being endowed with the lexicographical order):

(44) ifi=(m,t) then F;:= D k.
(m!, ') 2 (m,t)

The notion of infinitesimal neighbourhood will enable us to give a precise mathematical statement
for these considerations.
Given a nonnegative integer £, we denote by G%,) the infinitesimal neighbourhood of order ¢

along W of the zero section of (the group scheme) G that is, the closed subscheme of X} whose
ideal sheaf IG(e) is defined by
w

(45) s € IG(vfz) <= ((eXPG,O (C))*s) (z1w1 + -+ - + zgwg) € (21, - -+, z‘q)l"'1

for any basis (wi, ..., wy) of W,, and local coordinates zi, ..., 2z, near 0. For g € G(k), we
denote by 7 : Gy — Gy, the translation map. Let us consider the non-reduced closed subscheme
of Xk

So (g+1)S
(46) Ti= | | rmp (GRET U | mp (GWFO7)
m=0 m=Sp+1
and F' the k-vector space of sections of the restriction of the line bundle M to T:
(47) F:=H°(T, Mt) .
We consider then ¢ : E — F' the restriction morphism.
Lemma 5.5. The linear map ¢ is injective.
It is a direct consequence of proposition 5.2. Define the integer N := ((g+1t)S+So+2)(g+t)T+1.

Fact .
< For every integer i € {1, ..., 2(So + 1)(g + t)T'}, there exists a unique couple (m, £) €
{0, ..., 80} x{0,...,2(g+t)T} such that i = 2m(g+ )T + ¢ + 1.
> For every integer i € {2(So+1)(g+t)T+1, ..., N}, there exists a unique couple (m, £) €
{So+1,...,(g+t)S} x{0, ..., (g + )T} such that i = (So +m + 1)(g + )T + £+ 1.

We shall say that (m, £) is associated to the index i € {1, ..., N'}.
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For such an integer i, we let
m—1
(48) T; := I_I Tm'p (GE,?,(Q_H)T)) U Tmp (G%,))
=0

if 1 <i<2(So+1)(g+)7T, and

S -1
(49) T; := |_0| Tm'p (G%f,(g-'_t)T)) U m|_| Tm/p (G%,E,Q-H)T)) U Tmp (G%))
m'=0 m!'=Sp+1

if 2(So +1)(g + t)T < i < N. By convention, we put Tg := ). We have Ty = T and, moreover,
if 7 : X — Spec(k) denotes the structural morphism of X}, there are (surjective) morphisms
(k-linear maps)

qi : T (M‘T) — T (MlT,-) .
We consider the k-vector space F; := ker ¢;. This defines a filtration of F"
(50) {0}=Fy CFy-1C--CFo=F

whose intermediary quotients G; := F;/F;;; also identify with the kernels of the maps 7. (M|,) =
Tu(Mjr;_,) (use for instance the snake lemma to see this). The vector space G; is isomorphic to
St (W) ® (mp)* M (where mp : Spec(k) — X}, refers to the point of G(k) extended to X (k) by
G < X}). In this way, it has an underlying integral structure given by

(51) Gi:=8'W")® EmpM -

The Op-module G; has then a natural structure of hermitian vector bundle G;. Indeed, for each
infinite place o : k — C, the tangent space tx, (C) = (ta/Wo), @ ta,(C) can be endowed with
the Riemann metric on ¢, (C) (coming from the line bundle (L; X --- X L,),) and the quotient
metric on (ta/Wy),. The inclusion W — tx gives by restriction a metric on W,, and so on
the dual WY then on the tensor product (Wl‘,’)®land, at last, by quotient, there is a (hermitian)
metric on S¢ (WY). Fubini-Study and cubist metrics give a structure of metrized line bundle on
M, which provides an hermitian line bundle structure on ¢;,,M. We can then give an estimate

for the maximal slope of G;.

Proposition 5.6. For every integer i € {1, ..., N'}, the mazimal slope of the hermitian vector
bundle G; is smaller than Uy/(3D).

Proof. By using formulae (4.5) and (4.6) of [10], we get
ﬁmax (az) < 0 (ﬁmax (W) + 2glog g) + hm(smp) .

Contrary to [8] and thanks to the choice of the hermitian vector bundle W, the maximal slope of W¥
admits an upper bound that does not depend on the co-height of W,. This point is crucial to have

the best estimate (that is, linear) in A(W;) for measure (10). The proof of this statement relies on
a simple slope inequality. First we note the injective map W < t 4, A(y) ® y — y has v-adic norms
< 1 (v is any place of k) and then we deduce fimin (£4) < fimin (W) and 50 fimax (VY) < Fimax (t)-
Since (A, L) is principally polarized, we can apply inequality (29) to V = f4 (or also prop. 2.14
of [26], which is more precise for the numerical constant), that gives an upper bound for the latter
maximal slope and we get:

Bmax (W¥) < 15¢° max {1, hr(A)} .

Moreover the Arakelov degree of € , M breaks up into a sum

hzr(emp) = Do hm(muo) + 3m? (DlﬁLl (P1) + -+ Dnhyp, (pn)) :

So we get
~ =. 6 2 h ) —
(52)  fmax (Gi) < 5(9 +1) {Tmax{l, he(A)} + S ; Dihy; (pl)} + Do max s {hoxo (1)(muo)}

and the proposition follows from the choice of parameters. O



DIOPHANTINE APPROXIMATION ON ABELIAN VARIETIES I 17

5.4. Lower bound for a rank. Following the example of M. Laurent’s method of interpolation
determinants, the method of slopes does not require the construction of an auxiliary function as it
has been usual in transcendence’s proofs. Nevertheless, there is no miracle (!) and Siegel condition
(number of unknowns versus number of equations), even transformed, has to be present somewhere
in the demonstration. The following lemma gives an account of this type of constraint.

Lemma 5.7. Let ig be the integer 2(So +1)(9 +t)T + 1. Thenrk&;, > (tk&)/2.

Proof. First, by choice of iy, we notice that s € £;, when s vanishes along W at order 2(g + ¢)T in

all points 0, p, ..., Sop- Using the surjective map

(P, Op(Do, - - ., D)) = I'(X, M)
(see the proof of proposition 5.2), whose kernel is made of polynomials vanishing on G, it amounts
to considering multihomogeneous polynomials of degree (Do, ..., D,,). Thus the rank of &;, equals
the maximal number of polynomials P, linearly independent (over k), and not identically zero on
G, such that Poto eXpg(q) vanishes along W at order 2(g+#)T in 0, u, ..., Sou. In other words,
we have to estimate the rank p of the linear system
(53) Ve {0,u,...,Sou}, t € N9, [t| < 2(g+t)T, DI (P oto expG(C)) (r)=0
where w = (wy, ..., wy) is a basis of W and 1D, (P oLo expg((@) (z) is the t-th Taylor coefficient

of (Potoexpg(q))(z+2z1w1+- - -+24w,). Then the continuation of the proof has been classical since
the basic work of P. Philippon and M. Waldschmidt [40]. As we need an effective estimate, the more
precise calculations in § 6.3 of [14] suit better for our situation. Let us consider a subgroup G of

G that reaches the minimum in the definition of z (p. 12). Then, recalling that D} = max {1, D;},
we have

2(g + )T + codimyy (W Ntx) d(d+1)
PS ( codimy (W N tg) ¢ )(SO+1) < 2

@412 Dy .., D’n)>

where d := dim G. Choices of z and G imply
(59)% #(G; Dy, ..., D)
(S + 1) Tcodimw (Wﬂta)

s0 p < (109)% (g + )92 525 #(G ; Dy, ..., Dy,). Since £ D§ < (P5), we have

H#(G; Dy, ..., D) <

H(G; Dy, ..., D) <tk &
and so
(54) tk & > (1 — (109)*9 (g + )7 24! 5;’7:11) k€ -
Now lemma, 5.7 is an immediate consequence of the definition of S. O

5.5. Ultrametric estimate. In this part, we are going to give an upper bound for the p-adic
norm of each ;. For a section s # 0 of M, we have to find a denominator for the jet ¢;(s) that
is, a positive integer m such that my;(s) extends to an element of G;. When s is an integral
section of M, a naive solution would be £! (to see this, you can do a simple local calculation).
Unfortunately, that leads to an extra logarithm of the height of Wy in the final measure (10) (see
for instance [28]). As we showed in the general case of a commutative algebraic group (not only
an abelian variety) [22], we have to be shrewder to avoid such a situation and to obtain a linear
measure in the height of Wj.

Let ¢, h be positive integers. We define the integer
(55) d¢(h) :==lem {iy -+ +ipr s LK R < hy 45 EN*, iy + - +ip <L} -
Prime number theorem implies there exists an absolute constant ¢ such that

log (k) < £Llog(ch)

S. Bruiltet [12] showed ¢ = 4 did suit.

Proposition 5.8. For every integer i € {1, ..., N'} and every finite place p € Spec(Ox) \ {(0)},
we have ||6¢(Do)pillp < 1.
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Proof. We adapt the demonstration of lemma 3.1 given in [21]. It slightly simplifies because we do

not resort to explicit addition formulae on the abelian variety.

Fix an integer i € {1,..., N} and an element s # 0 of I'(X, M). We must control the
denominator of p;(s) € S¢(W"Y) ® (mp)* M. By considering the pull-back of s by the translation
map 7., : G — G, we can suppose that m = 0. Let p be a non zero prime ideal of O and

Oy (C ky) its valuation ring. Consider the scheme X, =X x  Spec O, and /'/V\p the formal group
Spec Oy

over O, obtained by completion of X, along the neutral element ¢ of G, (extended to &,). As
Xy, — Spec Oy is smooth, there exist formal parameters X1, ..., X, Y1, ..., Y, such that O(?p is
isomorphic (over Oy) to Op[[ X1, ..., Y]]. Moreover we can choose them in a compatible way with
the “splitting” G = V ((t4/Wo)") x A (as we have in fact suggested in the notation of parameters).
We develop the section s ® 1 of M ® O, in terms of these parameters:

56 s®@1=" 6;; XYl with 6;; € Op.
5J s p

And, as s is a polynomial map of degree < Dy on the first components X, ..., X;, we have ; ; =0

when |i| > Dy + 1. The invariant differential forms {dz; = €*dY;}1<igy on the cotangent bundle

wY ., ®O, infer local coordinates 21, ..., z, on the Lie algebra t 4 ® @,. The relationship between
A|Op p 9 g p

z;’s and Y;’s is given by the formal logarithm z; = £;(Y1, ..., Yy) € ky[[Y1, ..., Y;]] whose property

g
(57) dt; € > Op[[Yi, ..., Yy]]dY;

i=1
implies some arithmetic informations on the coefficients ag) of £;; namely for alln = (ny, ..., ny) €
N and i € {1, ..., g}, there exists an index j = j(i,n) € {1, ..., g} such that (n; + l)ag,') € Oy.
If we denote by (A ;) € Mat; ,(Op) the matrix of the map A, : t4, = (ta/Wo) ® Oy (note this
last module is torsion free on a local ring and so it is a free module) with respect to coordinates

(21, ..., 2¢) and (X3, ..., X}), the equations defining W are
g

(58) X =3 Mz, Le{l,...,t}
j=1

and so the ones defining the formal Lie subgroup expg W of 2?,, are
g9
X = Z)\l,jﬁj(Y) .
j=1

Since s vanishes up to order £ along W at the unit section, the change of variables (Xj, z;) ~ (X;,Y;)
does not modify the £-th jet of s along W at 0. Thus ¢;(s) is the part of degree £ of

)
t g
(59) sigpw = »_ 0 Y [] <Z Al,jej(Y)) .
=1 \j=1

We develop this expression using the multinomial formula and we find that §,(Dg)y;(s) belongs to
Op[Y1, ..., Y] and so it belongs to Oplz1, ..., z,]e = St W) ®0, O. O

5.6. General upper bound for archimedean norms of evaluation maps. In this section,
for any fixed embedding o : kK — C, we give an upper bound for the operator norm ||¢;||s- As we
have already underlined, an important feature of inequality (10) is that it is best possible in logb
and it is crucial that the factorial of the order of derivation do not appear anywhere else during
the proof*. To be on the safe side and in order that there be no doubt on this (critical) point,
we describe very carefully morphisms ¢; and associated operator norms ||.||,, before stating the
result. Details we mention here for the estimate of ||¢;||, are very close to those of the proof of
proposition 2.13 of [26].

Let exp, : tg,(C) — X, be the exponential map of the complex Lie group G,(C), extended
to X,(C). Then the vector bundle exp* M, over tg,(C) is trivial. Let us choose an isomorphism
v :expy, My = O (C) such that for any s € £;(C), the holomorphic function v(exp} s) on
ta, (C) satisfies

i 1L
Ve=20® @2 € tg,(C) = (ta/Wo), (C) ®ta, ,(C)®---Dta, ,(C) and z=exp,(z),

*Besides, that technical difficulty has also been at the center of theorem 3.4 of [10] (see beginning of § 4) and
results of P. Graftieaux [26, 27].
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lv(expg s)(2)| {_31
(14 ||zo]|2) 70/ 2
This equality enables us to work with “authentic” holomorphic functions and all estimates involving
o-norm of s(z) (or s) will be made with v(exp¥ s).

Fix an integer ¢ € {1, ..., N'} and let us consider a non-zero element s € E; ®, C. The image
of 5 by ¢; belongs to S* (W") ® (mp)*M ®, C, which is isomorphic to Homc (S*W,, (mp)*M,).
However this isomorphism is not isometric as we saw in lemma, 4.1. Thus, with the notation ©, of
this lemma, we can consider the map O (¢;(s)), : S‘W, — (mp)*M,, D — (Ds)(mp) where D is
viewed as a derivation (of order ¢) along W,. So

llpi(s)lle < 110 (#ils)) llo

IDs(mp)llzz 74,0
< sup —_— TP T L.

(60) e —— (allalz, , + -+ DallntiZ, ) }

pestwa) IDlszmy,»
By writing D =Y diw! @ --- ® wég with (w1, ..., wy) an orthonormal basis of W, we have
2
i! _
Pl = 3 Wl > (o) o
ij=¢ i
and so

wil Q- ® w;"s(mp)

lleillo < g‘/z‘rir‘lg); {‘

Ev*an""}

gt/2e= FmA(DulluillZ++Dn flur, I12) 178\ L
(1 + |lmug||2)P0/? li=¢ | |i! (&) vexpz s)(u' b zwn 4o+ 2gwg)iamg
where u' := mug & u; & --- ®u;, and uf, 1 < j < n, is a logarithm of mo(p;) of norm < 2,/g;

(it is possible by Minkowski theorem). We can bound from above this last term with the Cauchy
inequality applied to the holomorphic function v(exp% s). We have

{ 1
max
li|]=¢

1

} < 5 sup  |v(exp} s)(u' + )
T zeWs
lzlle<r

o\
5 (7) v(exp} s)(u' + z1w1 + - - - 4 2gWg)a=0
i! \ 0z

(61) X
< sup |v(expy s)(u' + )]
™ ectq, (©)

el <
so, with equality (60), we deduce
1y e , : L+ ([[muolls + )2\ 772
o < —g%/2 r(D12lluylle+7r)++Da(2lluy llo+r)) ( Z T AT Z00e T 1) x -
lpille < 297z T+ [[muol2 [Islco,

Let us choose r = /g (that is not the best possible choice but it involves the disappearance of £
from the upper bound). Then we get

9w
lpills < (39)P0/2 5 nomax AD1, . Dud o gy { ISlleee
sege | llsllz o

1+(|lmuo|lo+1)*
(we bounded T+ a2

following general estimate.

< 1+ r+7r? < 3g) and from choice of parameters, we obtain the

Proposition 5.9. For all archimedean places o : k — C and all integers i € {1, ..., N'}, we have
(62) llpslle < €U0/GP) x max ”S‘”o‘”’} .
& lIsllz o

5.7. Precise upper bound for some evaluation maps. In the previous section, we did not use
all the information concerning properties of element s of E;. As a matter of fact, the membership
of s to E; has been only convenient to define @;(s), but the vanishing of first jets (up to £) of s
along W at (only) mp would have been sufficient to define ¢;(s). Here, we are going to be more
careful, using a so-called interpolation lemma. By and large, all the “essence”’ of Baker’s method

holds in estimates of this paragraph.
In all this section, the archimedean embedding considered is og : k — C. We keep notation
of the last section. Fix an integer i € {1,..., N'}, a non zero element s of FE; ,, and denote
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by ¥ the entire function v(exp}, s) defined over tg,, (C). We also consider an orthonormal basis
w = (wi, ..., wy) of Ws,. So, knowing

Im'u+ 21w1 4 -+ 2gwg) € (21, - -, 2¢)20HOTHL for m’ € {0, ..., So},

we want to give a (precise) upper bound for derivatives of ¥ along W at order £ in mp. Let w be a
vector of W, such that |[u — w||,, = d(u, W). We prove theorem 2.1 by contradiction and, from
Nnow on, we assume

(63) logd(u, W) < —128 (1 + M) Up -
aloge
Let us stress that, strictly speaking, this hypothesis is not necessary to continue the demonstration
but it is a convenient way to present it.
First of all, we shall need the following comparison lemma.

Lemma 5.10. For any t € N9 of length < 2(g + t)T and any m' € {0, ..., (g +t)S}, we have

log(1 + ||u||ao)) .

1 1
(64) log | - Dy (m'u) — jDﬁ,ﬂ(m’w)‘ < —64 (1 +
t! t! aloge

Proof. Tt relies on the mean value theorem applied to the real variable function [0, 1] - C, z —
L(DEY) (m'a + zm'(w — u)). We use also hypothesis (63) (in particular 2(g + t)S|lu — w||,, < 1)
and the Cauchy upper bound (61) with r = 1. O

Let t € N? be of length £ (this integer is the one corresponding to i, see the Fact p. 15). In
particular, we have [t| < (9 +¢)T. Let f be the analytic function of one complex variable defined
by

(65) f(z) = 5 (D9) (zw) -

Let us write w = 2wy + - -- + z4w,. For any integer [ > 0, derivation formula of composed maps
gives

1 t 4y i, DiH9
Loy = FIY gin L gl Y ow
H0() |E(J) R il
from which we deduce the upper bound
1 1 .
(66) e {0} <m0 ) ma S [photw)] ] -
0<IL(at)T ii<iarar b

On one hand, the real number ||+ -- -+ |z4| is bounded by /g||w||+,, and then by 14 ,/g||ul|,,.

On the other hand, for 0 < h < Sy and |j| < 2(g + )T, derivatives D3, 99(hu) vanish and from
lemma 5.10 we get the upper bound

(67) log max {%\f(l)(h)\} < -32 (1 + M) Uo -

0<h<Sg aloge
0<IK(g+)T

Remark 5.11. It is only at this place that log (1 + ||ul|,,) shows itself, which has repercussions
on measure (10) (despite its very discreet appearance). However, if we take G; = {0} (as it has
been usual) then §; = 1 and aloge > log™ ||ul|,, and so, in that particular case, it is possible to

+ u .
remove the term (1 + M) in (10).

aloge
Here is a last technical lemma, before the extrapolation process.
Lemma 5.12. For any integer m € {0, ..., (g +1t)S}, we have

(68) sup {If(=)1} < €0 x Isllo0,00 -
zel

|z|<ame
Proof. It is an immediate consequence of Cauchy inequality
If(2)| <2 sup {¥(zw+a)[}

aceWs

llall<1/2

and of inequality 8(g + t)Se||lu — w||,, < 1 deducible from (63). O

The precise estimate for [|¢;||r, mentioned in the title of this section relies on the following
“approached Schwarz lemma’.
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Lemma 5.13 (Lemma 2 of [13]). Let f be an holomorphic function on the disc centered at 0 and of
radius R. Let Sy be an integer > 2. We suppose R > 251 and consider a real number r € [S1, R/2].
Let also Ty be a positive integer. Then

(69) sup |f(z)|<2(4—T)TISI>< sup \f(z)|+5(&)T151 < max {3 ]0m]} -

|zI<2r R lzI<R 51 P
We can now state the main result of this section, which is at the heart of the extrapolation
process in Baker’s method.

Proposition 5.14. Fori € {io, ..., N'}, we have

log(1
(70) 10g ||¢i]lcg < —8 <1 + W) Uo + log max Islloo.c0
aloge *€200 lIsllz o

Proof. After the preparatory phase which came before the statement of the proposition, the demon-
stration of this proposition is a straightforward application of lemma 5.13. We use it with R := 4me
(note that m > Sg because of the choice of ), Ty := (g + )T, S1 := So, r := m and f defined
by (65). In this way, we achieve an upper bound for %|D%d¥(mw)| and a second use of lemma 5.10
enables us to bound §|DE¥(mu)|. Proposition 5.14 immediately follows. O
5.8. End of the proof. We are synthesizing the series of results we got in the following statement.

Proposition 5.15. For alli € {0, ..., N}, we have

_ U, _
(71) Bmax (Gi) + h(pi) < 50 +E[(x, M)] -
For all i € {ig, ..., N'}, we have

(72) Bmax (Gi) + h(pi) < —4 (1 + M) Yo

aloge D tE [(X’ ﬂ)]

Proof. Let i € {0, ..., N'}. From propositions 5.6, 5.8 and 5.9, we deduce

Aimax (G5) + h(gi) < 22 ¢ (@ +E[A, ﬂ)]) + 1og ¢ (Do) -

3D 3D
Then (71) follows from the estimate of S. Bruiltet for d¢(Dp) (p- 17) as well as from inequality (iv)
of lemma 5.1. As for the second inequality, we use also proposition 5.14 (true for i > 4g). a

As ¢ is an injective map (lemma 5.5), we can apply the general slope inequality (proposition 4.6
of [10]):

s

Il
<)

(73) deg,& < (rk & =tk Ei1) (fimax (Ga) + h(e)) |
which becomes after an obvious simplification:
= _ rk &;, = = ] rk &, = = ] ]
i(€) < (1 E ) o {Amax (G:) + h(pi)} + — = Jmax, {fimax (Gs) + h(vi)}
Astk&;, > rk2£ (lemma 5.7) and by using proposition 5.15, we obtain

log (1 + IIUIlao)) Uo

aloge D

and this is a contradiction with lower bound (42) (p. 14). So the assumption (63) is false and we
achieve the lower bound (10) for the distance between u and W¢ by replacing Sy by its value in
the definition of Uj.

i (8) — = [(x, M)] g%—2(1+

REFERENCES

[1] M. ABLy. Formes linéaires de logarithmes de points algébriques sur une courbe elliptique de type CM. Ann.
Inst. Fourier (Grenoble), 50(1):1-33, 2000.

[2] A. Baker and G. WistHOLZ. Logarithmic forms and group varieties. J. reine angew. Math, 442:19-62, 1993.

[3] D. BErTrAND. Transcendental methods in arithmetic geometry. In Analytic Number Theory (Tokyo 1988),
volume 1434 of Lecture Notes in Maths., pages 31-44. Springer, 1990.

[4] C. BirkenuakE and H. Lance. Complez abelian varieties, volume 302 of Grundlehren Der Mathematischen
Wissenschaften. Springer-Verlag Berlin, 1992.

[5] J.-B. Bost. Semi-stability and heights of cycles. Invent. Math., 118(2):223-253, 1994.

[6] J.-B. Bost. Arakelov geometry of abelian varieties. In Conference on Arithmetical Geometry, volume 96-51,
Max Planck Institut fiir Mathematik Bonn, mars 1996. Manuscript notes.



22

[7]
(8]

o
(1]
(2]
13]

[14]
[15]

[16]
[17]
[18]
[19]

[20]

[21]
[22]
23]
[24]
[25]
[26]
[27]
28]
[29]

30]

31]
32]
33]
[34]
[35]
[36]
37]
38]
391
[40]

[41]

ERIC GAUDRON

J.-B. BosT. Intrinsic heights of stable varieties. Application to abelian varieties. Duke Math. J., 82:21-70, 1996.
J.-B. Bost. Périodes et isogénies des variétés abéliennes sur les corps de nombres (d’aprés D. Masser et G.
Wiistholz). In Séminaire Bourbaki, volume 237 of Astérisque, pages 115-161. Société Mathématique de France,
1996.

J.-B. Bost. DEA lectures at the Institut Henri Poincaré (Paris), 1997 and 1999. Manuscript notes.

J.-B. Bosrt. Algebraic leaves of algebraic foliations over number fields. Publications Mathématiques de I'IHES,
93:161-221, 2001.

J.-B. Bosr, C. SouLE, and H. GiLLeT. Heights of projective varieties and positive Green forms. J. Amer. Math.
Soc., 7(4):903-1027, 1994.

S. BrRuiLTeT. D’une mesure d’approximation simultanée 4 une mesure d’irrationalité : le cas de I'(1/4) et I'(1/3).
Acta Arith., 104(3):243-281, 2002.

P. L. Cusouw and M. WaLpscHMIDT. Linear forms and simultaneous approximations. Compos. Math., 34:173—
197, 1977.

S. Davip. Minorations de hauteurs sur les variétés abéliennes. Bull. Soc. Math. France, 121:509-544, 1993.

S. Davip. Minorations de formes linéaires de logarithmes elliptiques, volume 62 of Mémoire de la Société
Mathématique de France. S. M. F., 1995.

S. Davip and M. HiNnDRY. Minoration de la hauteur de Néron-Tate sur les variétés abéliennes de type C. M. J.
reine angew. Math., 529:1-74, 2000.

S. Davip and N. HiraTta-KoHNO. Linear forms in elliptic logarithms. Preprint in preparation, 2002. A weaker
version has been presented in [18].

S. Davip and N. HiraTta-KouNo. Recent progress on linear forms in elliptic logarithms. In A Panorama in
Number Theory. Cambridge Univ. Press, September 2002. Ed. by G. Wiistholz.

N.I. FEUpMAN and Yu.V. NESTERENKO. Number Theory IV. Transcendental numbers, volume 44 of Ency-
clopaedia of Mathematical Sciences. Springer-Verlag Berlin, 1998. A.N. Parshin, I.R. Shafarevich (Eds).

E. GauprON. Mesure d’indépendance linéaire de logarithmes dans wun groupe algébrique commu-
tatif. Thése de doctorat, Université Jean Monnet de Saint-Etienne, décembre 2001. http://theses-EN-
ligne.in2p3.fr/documents/archives0/00/00/11/65/index fr.html.

E. Gaupron. Mesure d’indépendance linéaire de logarithmes dans un groupe algébrique commutatif. C. R.
Acad. Sci, I 333:1059-1064, 2001.

E. Gaupron. Mesures d’indépendance linéaire de logarithmes dans un groupe algébrique commutatif. Preprint,
February 2002.

J. GEBEL, A. PETHO, and H.G. ZiMMER. Computing integral points on elliptic curves. Acta. Arith., 68:171-192,
1994.

H. GiLLET and C. SouLE. An Arithmetic Riemann-Roch Theorem. Invent. Math., 110:473-543, 1992.

P. GRAFTIEAUX. Groupes formels et critéres d’isogénie. Thése de Doctorat, Université Paris VI, mars 1998.
P. GrarTiEAUX. Formal Groups and Isogeny Theorem. Duke Math. J., 106:81-121, 2001.

P. GrarTIEAUX. Formal subgroups of abelian varieties. Invent. Math., 145:1-17, 2001.

N. HiraTa-Kouno. Formes linéaires de logarithmes de points algébriques sur les groupes algébriques. Invent.
Math., 104:401-433, 1991.

N. Hirara-KonNo. Approximations simultanées sur les groupes algébriques commutatifs. Compos. Math.,
86:69-96, 1993.

N. HiraTa-Kouno. Une relation entre les points entiers sur une courbe algébrique et les points rationnels de
la jacobienne. In Advances in number theory (Kingston, ON, 1991), pages 421-433. Oxford Univ. Press, New
York, 1993.

S. Lang. Diophantine approximation on abelian varieties with complex multiplications. Advances in Math.,
17(3):281-336, 1975.

D. Masser. Elliptic functions and transcendence., volume 437 of Lecture Notes in Maths. Springer-Verlag,
1975.

D. Masser. Linear forms in algebraic points of abelian functions. I.(IL.). Math. Proc. Cambridge Philos. Soc.,
77 (79):499-513 (55-70), 1975 (1976).

D. Masser and G. WUsTHOLzZ. Periods and minimal abelian subvarieties. Annals of Mathematics, 137:407—-458,
1993.

E.M. MaTvEEV. An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic num-
bers I II. Izv. Ross. Akad. NaukSer. Math, 62,(resp. 64)(4,(resp. 6)):81-136,(resp. 125-180), 1998,(resp. 2000).
L. MoORET-BAILLY. Pinceauz de variétés abéliennes, volume 129 of Astérisque. Société Mathématique de France,
1985.

L. MoreT-BaIiLLy. Sur I’équation fonctionnelle de la fonction théta de Riemann. Compositio Math., 75(2):203—
217, 1990.

F. PELLARIN. Sur la distance d’un point algébrique a I’origine dans les variétés abéliennes. J. Number Theory,
88:241-262, 2001.

P. PuiLippON. Lemme de zéros dans les groupes algébriques commutatifs. Bull. Soc. Math. France, 114:355-383,
1986. Errata et Addenda, id.115 (1987).

P. PuiLippoN and M. WaLbpscHMIDT. Formes linéaires de logarithmes sur les groupes algébriques commutatifs.
Illinois J. Math., 32(2):281-314, 1988.

P. PuiLippoN and M. WALDscHMIDT. Formes linéaires de logarithmes simultanées sur les groupes algébriques
commutatifs. In Séminaire de Théorie des Nombres Paris 1986 — 87, volume 75 of Progress in Mathematics,
pages 313-347. Birkhduser Boston, Inc., 1989. Edité par Catherine Goldstein.



DIOPHANTINE APPROXIMATION ON ABELIAN VARIETIES I 23

[42] H. RANDRIAMBOLOLONA. Hauteurs de sous-schémas, géométrie d’Arakelov des schémas de Hilbert et ezem-
ples d’utilisation de méthodes arakeloviennes en théorie de 'approzimation diophantienne. Thése de doctorat,
Université Paris XI, Janvier 2002.

[43] R.J. STROEKER and N. Tzanakis. Solving elliptic diophantine equations by estimating linear forms in elliptic
logarithms. Acta. Arith., 67:177-196, 1994.

[44] R.J. STrROEKER and N. Tzanakis. Computing all integer solutions of a general elliptic equation. In ANTS-IV,
volume 1838 of Lecture Notes in Computer Science, pages 551-561. Springer-Verlag, 2000. W. Bosma (Ed).

[45] E. Viapa-AEeHLE. Elliptic Isogenies and Slopes. Dissertation, Swiss Federal Institute of technology Zurich, 2001.
Number 14195.

[46] M. WaLbscumipT. Diophantine Approzimation On Linear Algebraic Groups, volume 326 of Grundlehren der
mathematischen Wissenschaften. Springer-Verlag, 2000.

UNIVERSITE GRENOBLE I

INsTITUT FOURIER. UMR 5582

BP 74

38402 SAINT-MARTIN-D’HERES CEDEX

FRANCE
Eric.Gaudron@ujf-grenoble.fr



