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Abstract

Our goal is to recover and extend the difficult results of George Hage-
dorn (1994) on the propagation of coherent states in the Born-Oppenheimer
approximation in the case of generic crossings of eigenvalues of the (matrix
valued) classical Hamiltonian. This problem, going back to Landau and Zener
in the thirties, is often called the “Mode Conversion Problem” by physicists
and occurs in many domains of physics (see the paper [23] by W. Flynn and
R. Littlejohn).

We want to obtain a geometrical description of the propagation of states in
the framework of semi-classical analysis and WKB-Lagrangian states. It turns
out that, in the very beautiful (but not well known!) paper [7] published in
1993, Peter Braam and Hans Duistermaat found that there is a formal normal
form for this problem. A formal normal form for the dispersion relation were
already founded by Arnold [3]. In our paper, we show, using Nelson’s wave
operators method, that, in the hyperbolic case, their normal form can be
extended to a local normal form in the phase space.

Then, we extend this classical local normal form to the complete symbol,
getting a microlocal normal form, and derive from it a precise geometric de-
scription of the semi-classical propagation of states of a symmetric system of
pseudo-differential equations near a generic hyperbolic codimension 3 singu-
larity of the characteristic set (defined by the so called “dispersion relation”).

We describe in a sketchy way the elliptic case. The complex Hermitian
case will be worked out in [10].

Keywords: Mode conversion, polarization, Born-Oppenheimer approximation, Maxwell equations, eigen-
values crossing, pseudo-differential systems, semi-classical analysis, Lagrangian manifold, propagation of
singularities, coherent states, symplectic spinors.
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Introduction

Let us consider a d × d self-adjoint system of semi-classical pseudo-differential op-
erators Ĥ ~U = 0 in Rn. Many examples occur in physics: let us mention the
Born-Oppenheimer approximation in molecular physics (see [5], [14], [15], [37] and
[30]), the Maxwell equations for electromagnetic waves in a non homogeneous and
anisotropic medium (see [38]), the propagation of elastic waves in anisotropic media
(see [34]), the propagation of waves in oceans (see [33] and [45]), the spin-orbit inter-
action (see [24] and, for a global and geometrical point of view, [18] and [19]). The

principal symbol Hclass of Ĥ is a matrix valued function on the phase space T ?Rn,
often called the dispersion matrix by physicists. The ideal generated by det(Hclass)
is called the dispersion relation.

Near a generic point of the phase space where the principal symbol Hclass is
not invertible, the associated eigenspace ker(Hclass) (the polarization bundle) is one
dimensional and the system reduces mod O(h∞) to a scalar one. The principal
part of the solution is polarized meaning that it takes values into the polarization
bundle. For a precise description of the WKB states in this case, see the nice paper
[17].

An interesting problem, often called the Mode Conversion problem (see [23]), is
to describe what happens at points where the dimension of kerHclass jumps due to
eigenvalues crossings of the dispersion matrix. For the Maxwell equations, the fibers
of the zero set of the dispersion relation {ξ ∈ R3 | det(Hclass)(x0, ξ) = 0} are called
the Fresnel surfaces which in the generic case turn out to have 4 singular points
(x0, ξj) where the kernel of Hclass(x0, ξj) is of dimension 2 (see [38]) and hence the
polarization bundle is no more a bundle there. For the elastic waves, the singular
set is called acoustic axis in [34].

Of course the general situation is very complicated to describe, so that people
try to understand the generic case. One expect that 2 zero eigenvalues cross along
a submanifold Σ of the phase space of codimension 3 (resp. 4) in the real symmetric
(resp. complex Hermitian) case after [46] (see also [9]). But not all submanifolds of a
given codimension are equivalent in a symplectic manifold, even locally: restricted to
a generic manifold of codimension 3 a symplectic form admits a kernel of dimension
1, while a generic manifold of codimension 4 is symplectic. Near a point where
dim(kerHclass) = 2, the system splits into a direct sum of a 2 × 2 system and a
(d− 2)× (d− 2) elliptic system. So we need only to study 2× 2 systems near points
where the dispersion matrix Hclass vanishes in a generic way.

G. Hagedorn studied this problem for the Born-Oppenheimer approximation in
several papers starting with [29] (see also [31] and [32]) by the so called matching
method which consists in giving an Ansatz for the states near Σ and to match this
Ansatz with the WKB Ansatz in some h−dependent small domain around Σ. The
matching method is very difficult to implement and for that reason it is tempting
to find another method based on normal forms where we allow both canonical
diffeomorphisms in the phase space and gauge transforms in Cd.

In the paper [7], Peter Braam and Hans Duistermaat found a formal normal
form for the principal symbol of a 2 × 2 symmetric system near a generic crossing
of the eigenvalues. In this normal form, the dispersion matrix is linear w.r. to
phase space coordinates and is in fact closely related to the model introduced first
by Landau [39] and Zener [48].

In the present paper, we will derive, in the hyperbolic case, a local normal form
for the principal symbol. Our method, which is quite different from that of [7],
is to derive first a normal form for the determinant of the system (the dispersion
relation), which gives the classical dynamics, up to time reparametrization, using
the tool of wave operators introduced by E. Nelson [43] in his proof of Sternberg’s
linearization theorem. This is closely related to Arnold’s result [3]. We can then
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proceed by choosing the gauge transform. After that, the semi-classical microlocal
normal form is easy to derive.

From this normal form, we can easily study the microlocal solutions of our system
following the same kind of argument as in [11]: the solutions of the normal form are
explicit functions. Performing a gauge transform and a Fourier integral operator
gives the Mode Conversion rules. This way we derive geometric constructions of the
principal symbols of generic Lagrangian solutions and Hagedorn’s results [29] for the
propagation of coherent states. We give an explicit description of the transmission
rules for the principal symbols. These rules give the “Mode Conversion”. We
describe in particular the following solutions:

• If the incoming state is a WKB-Lagrangian state associated to one eigenvalue
and a generic Lagrangian manifold, the outgoing state corresponding to the
other eigenvalue is a Gaussian coherent state.

• If the incoming state is a Gaussian coherent state associated to one eigenvalue,
the outgoing state splits into 2 parts: the part corresponding to the same
eigenvalue is a non Gaussian coherent state, while the part corresponding to
the other eigenvalue is a Gaussian coherent state. This case allows to recover
Hagedorn’s results [29].

We give precise geometrical rules for the computation of the principal symbols.
An Appendix on semi-classical coherent states has been written, because there

are several definitions in the literature and we have here an example of coexistence
of Gaussian and non Gaussian coherent states. Moreover, we wanted to clarify
the behaviour of Gaussian coherent states w.r. to Fourier Integral Operators. The
starting point will be the paper [28] by V. Guillemin (see also [6]): we give a
short description of the construction of the “semi-classical” symplectic spinors which
are easily guessed from original Guillemin’s “homogeneous” symplectic spinors or
Boutet’s “Hermite operators” (see [6]).

It seems also to be possible to extend to this case the results of P. Gérard, C.
Fermanian-Kammerer and C. Lasser ([26], [20], [21] and [22]) on the propagation
of the associated semi-classical measures: their results mainly depend on a normal
form, for more particular Hamiltonians, which is very close to ours.

More general type of crossings could be studied using the same tools: the main
hypothesis is the hyperbolicity of the transversal dynamics. We describe also the
elliptic case where only a formal normal form is founded which allows to describe the
coherent states remaining close to the singular part of the characteristic manifold.

Finally, we describe briefly the case of a complex Hermitian principal symbol.
This case will be the subject of another publication [10].

Many authors have recently studied this problem: a (non complete) list is [4],
[17], [23], [26], [27], [22], [29], [31], [32], [35] and [44].

1 The general setting

Let Ĥ be a d×d self-adjoint system of (semi-classical) pseudo-differential equations
of order 0 on Rn. Our study will be microlocal in T ?Rn, so we will always reduce to
some neighbourhood of the origine. Hclass, the principal symbol of Ĥ, is assumed
to be real valued and hence symmetric. We will reformulate Braam-Duistermaat’s
analysis in [7] in the semi-classical context.

Our basic assumptions are:
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1. If E0 = kerHclass(0), we have dim E0 = 2

2. The mapping z → Hclass(z) is transversal at the point 0 to the codi-
mension 3 submanifold

W2 ⊂ Sym(Rd)

defined by W2 = {A|dim kerA = 2}.
This condition is equivalent to δz →< δHclass.|. >|E0

is a surjectiv
mapping.

3. If p = det(Hclass), the Hamiltonian vector field Xp of p vanishes at 0
and its linearization admits a pair of non zero real eigenvalues ±λ.
It implies that Σ = {z|dim kerHclass = 2} is a submanifold of codi-
mension 3 of T?Rn on which the symplectic form ω admits a kernel
(the characterictic foliation) of dimension 1.

If d = 2, we can write Hclass as

Hclass =

(
q + r s
s q − r

)
(1)

Our assumptions can be rewritten as follows:
(i) q(0, 0) = r(0, 0) = s(0, 0) = 0,
(ii) The differentials dq, dr, ds are linearly independent at the origin,
(iii) The Poisson brackets satisfy {q, r}2 + {q, s}2 − {r, s}2 > 0.
The previous assumptions are structurally stable. The generic case includes also

the elliptic case where the pair of non zero eigenvalues is purely imaginary, see [7].
Property (2) says that Σ is a smooth submanifold of codimension 3. Let us

denote by M the linearization of Xp at the origin.
Because M is of rank 3, M admits an hyperbolic block and a 2 dimensional non

trivial Jordan block with 0 as eigenvalue and hence the following linear symplectic
normal form at each point of Σ:

M =




(
λ 0
0 −λ

)
0 0

0

(
0 0
1 0

)
0

0 0 0




. (2)

The linear vector field defined by M is the Hamiltonian vector field of the quadratic
form λx1ξ1 − 1

2x
2
2. In general, the Jordan block could have ±1 as entries, but here

the + sign is forced by the signature (+,−,−, 0, · · · , 0) of p′′ at the points of Σ.

2 Examples

2.1 Born-Oppenheimer approximation (stationnary case)

If
Ĥ = Ŝ ⊗ Id + V (x) (3)

where Ŝ = −h2∆g−E is the free stationnary Schrödinger equation in Rn and V is a
symmetric d×d matrix potential which admits a generic crossing of two eigenvalues
along a codimension 2 submanifold S in Rn, the previous assumptions are satisfied
at the point (x0, ξ0), where x0 ∈ S and E − ‖ξ0‖2 is the degenerate eigenvalue of
V (x0), if and only if the velocity 2ξ0∂x is transversal to S at the point x0.
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2.2 Born-Oppenheimer approximation (time dependent case)

We can also apply our results to the time dependent Schrödinger equation

Ĥ = Ŝ ⊗ Id + V (x, t) (4)

where Ŝ = ih∂t−h2∆g and V is a symmetric d×d matrix potential which admits a
generic crossing of two eigenvalues along a codimension 2 manifold S ⊂ R×Rn. The
previous hypothesis are satisfied at the point (t0, τ0, x0, ξ0) if (t0, x0) ∈ S, τ0−‖ξ0‖2

is the degenerate eigenvalue of V (x0, t0)) = 0 and the vector field −∂t + 2ξ0∂x is
transversal to S at the point (t0, x0).

2.3 Adiabatic limit with extra parameters

This example is very close to the case studied in our paper [11]. Let us consider the
following adiabatic evolution problem:

1

i

du

dθ
= A(x, εθ)u

where A(x, t) is a d× d real symmetric matrix.
Here x is a real extra parameter close to 0. The goal is to get uniform estimates

w.r. to the small parameters ε and x We can transform this equation into a semi-
classical problem: by putting t = εθ, we get

ε

i

du

dt
= A(x, t)u

where ε is the semi-classical parameter. The principal symbol is A(x, t)− τ Id. The
hypothesis are fulfilled at the point (0, t0, ξ0, τ0) if and only if dim ker(A(0, t0) −
τ0Id) = 2 and (x, t, τ) → A(x, t) − τ Id is transversal to W2 at that point.

2.4 Maxwell equations

We consider the stationnary Maxwell equations for an electromagnetic field inside
a non homogeneous and non isotropic medium (see [38]). In this case the semi-
classical regime is the high frequency regime and the corresponding geometry is the
geometrical optic. Let us give a dielectric tensor ε(x) (a Riemannian metric on R3),
µ the magnetic permeability and c the light velocity, we get the following dispersion
matrix (see [38]):

µ

c2
ε(x) − ‖ξ‖2Projξ⊥

Generically Σ consists of 4 branches (x,±ξj(x)), j = 1, 2. The algebraic surfaces
p(x0, ξ) = 0 are called the Fresnel surfaces. It is proven in [7], that the hyperbolic
case as well as the elliptic case can occur.

2.5 Acoustical waves

We consider the propagation of acoustical waves in elastic media. The dispersion
matrix is given by:

D(x, ξ) = ρ(x)Id − C(x, ξ)

where ρ(x) > 0 is the density and ξ → C(x, ξ), the elastic tensor, is a quadratic
map on R3 with values in the positive definite symmetric 3 × 3 matrices. In this
case they are at most 16 singular points on det(D(x0, .)) = 0 (see [34]). They can
be elliptic or hyperbolic (see [7]).
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2.6 Oceanography

The mode conversion problem has also been considered in oceanography, see [33],
[45].

2.7 The Landau-Zener model

We denote by

Ĥ0 =

(
D1 x2

x2 x1

)

with D1 = h
i

∂
∂x1

and by

H0 =

(
ξ1 x2

x2 x1

)

its Weyl symbol. Hypothesis (1), (2) and (3) are satisfied at the points x1 = x2 =
ξ1 = 0.

The system Ĥ0, which is closely related to the case computed by Landau and
Zener, will be our local model.

It will be usefull to denote by Xp (resp. X0) the Hamiltonian vector field of p
(resp. p0 = x1ξ1 − x2

2). We have:

X0 = x1∂x1
− ξ1∂ξ1

+ 2x2∂ξ2
.

2.8 Avoided crossings

Let us assume that our system Ĥu = 0 depends on a real parameter a. We can
add a as another coordinate (like some xn+1) and we assume that the new system

satisfies our hypothesis (1), (2) and (3). Then we get the normal form Ĥ0 and the
operator â (multiplication by a) commute with it. So we see that the Weyl symbol
of â is a function of (x2, x

′, ξ′). If we assume moreover that ∂a/∂x2 6= 0, we can
recover x2 as a function of (a, x′, ξ′) so that we get a normal form

Ĥa =

(
ξ̂1 Pa

P t
a x1

)

where Pa is an a−dependent pseudo-differential operator w.r. to x′ only. This way,
we see how to recover the results of [31] and [32].

3 Reduction of high dimensional systems to 2 di-

mensional systems

Let us consider a d × d symmetric matrix of pseudo-differential operators Ĥ and
assume that its principal symbol Hclass(0) at some point 0 is singular with a kernel
of dimension 2. Then it is well known that we can find an invertible matrix A of
pseudo-differential operators such that AtĤA splits mod O(h∞) into a direct sum

of a 2×2 symmetric system Ĥ1 whose principal symbol vanishes at the point 0 and
a (d− 2)× (d− 2) system Ĥ2 which is invertible at the point 0 (see for example [7]
and [17]).

Hence, we will work in what follows with a 2 × 2 system.
We will derive a semi-classical normal form in the following way: we first work

on the classical level where we give a refined version of the Braam-Duistermaat
normal form. We then proceed on the semi-classical level.
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4 Technical Lemmas

Our canonical coordinates will be (x1, ξ1;x2, ξ2;x
′, ξ′) with ω = dξ1 ∧ dx1 + dξ2 ∧

dx2 + · · · . The associated Poisson bracket will be denoted by {., .}. We will denote
by Z the hyperplane {x2 = 0}, by Y the subspace Y = {x1 = ξ1 = 0} and by Σ
their intersection

Σ = Y ∩ Z = {x1 = ξ1 = x2 = 0} .
This notation could seem to be confusing, but this Σ is the previous Σ for the
Landau-Zener model.

For n ∈ N ∪ ∞, f = OV (n) means that f is of of order n transversally to the
submanifold V , i.e. the Taylor expansion of f starts with terms of degree ≥ n along
V .

We will need the following Lemmas:

Lemma 1 The equation {X, x1ξ1} = R admits a smooth solution X if and only
if the Taylor expansion of R admits no monomials (x1ξ1)

k. The same result holds
with smooth dependence of parameters.

The equation {X, x1ξ1} + Y x1ξ1 = R admits a smooth solution (X,Y ) if and
only if R vanishes at the origine. The same result holds with smooth dependence of
parameters.

Proof.–

The first assertion is proven in [13]. The second one is a trivial conse-
quence: it is enough to choose Y so that R−Y x1ξ1 admits no monomials
(x1ξ1)

k in its Taylor expansion.

�

Lemma 2 The equation
tU ′

x − U = R , (5)

where R = O(t∞) is a compactly supported smooth function of (x, t), admits a
smooth solution U = O(t∞).

Proof.–

The smooth function U defined by

U(x, t) = −
∫ 0

−∞

euR(x− tu, t)du

satisfies the equation (5) and and is flat on t = 0.

�

Lemma 3 Let p0 = x1ξ1−x2
2 and ρ a given smooth function, vanishing on Σ, there

exist smooth functions U and V such that

{U, p0} + V p0 = ρ . (6)

Moreover, if ρ = OΣ(N), we can choose U = OΣ(N) and V = OΣ(N − 2). If
ρ ∈ OZ(∞) ∩ OY (N), we can choose V = 0 and U ∈ OZ(∞) ∩ OY (N).

Proof.–
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• We first solve equation (6) formally with respect to x2: expanding
everything in power series of x2, namely U =

∑∞
j=0 Ujx

j
2, V =∑∞

j=0 Vjx
j
2 and ρ =

∑∞
j=0 ρjx

j
2, we get the following equations to

solve for j = 0, · · · :

(?j) {Uj , x1ξ1} + Vjx1ξ1 = ρj + 2
∂Uj−1

∂ξ2
+ Vj−2(:= σj) ,

where U−1 = V−1 = V−2 := 0. We can solve (?j) if and only if

σj(0, 0;x2, ξ2; z
′) = 0

by Lemma 1.

The condition σj(0, 0;x2, ξ2; z
′) = 0 is satisfied for j = 0 and can

be ajusted for j ≥ 1 by the choice of Uj−1(0, 0;x2, ξ2; z
′) which is

free in the equation (?(j − 1)).

If ρ = OΣ(N), we have for j ≤ N , ρj = OY (N − j). We can choose
Uj = OY (N − j) for j ≤ N and Vj = OY (N − j− 2) for j ≤ N − 2.

We now can assume that ρ is flat on x2 = 0.

• We solve now equation (6) in power series w.r. to (x1, ξ1). We

will choose V = 0 and expand U =
∑
Uα,β(x2, ξ2, · · · )xα

1 ξ
β
1 and

similarly ρ =
∑
ρα,β(x2, ξ2, · · · )xα

1 ξ
β
1 with ρα,β = O(x∞2 ). We get

for α 6= β:

(α− β)Uα,β − 2x2
∂Uα,β

∂ξ2
= ρα,β (7)

and for α = β:

−2x2
∂Uα,β

∂ξ2
= ρα,β (8)

Because ρ is flat on x2 = 0 it can be divided by x2, so that equation
(8) is easy to solve.

Equation (7) can be solved using Lemma 2.

It is clear from the proof that, if ρ ∈ OY (N) ∩ OZ(∞), we can
choose U = OY (N).

• We can now assume that ρ is flat on x2 = 0 and on x1 = ξ1 = 0
and vanishes outside a compact set. We take V = 0 and need to
solve X0U = ρ. We first solve formally (6) along the hyperplanes
x1 = 0 and ξ1 = 0 as in [13] and then just by integrating along the
trajectories from the diagonals x1 = ±ξ1.
This last result could also have been derived from a linearization
of Nelson result cited in subsection 6.1.

�

5 Other Lemmas: matrices

Lemma 4 Let R = R1 + iR2 : T ?
R

2 → Herm(2 × 2) such that (R2)|Σ = 0, there
exist smooth functions S : T ?R2 → R and A : T ?R2 → Mat2(C) such that:

{S,H0} +A?H0 +H0A = R .

Proof.–
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• Splitting A = A1 + iA2, we get the equations

{S,H0} +At
1H0 +H0A1 = R1 (9)

where R1 is real symmetric, and

−At
2H0 +H0A2 = R2 (10)

where R2 is real and antisymmetric. Equation (10) is easily solved,
using the hypothesis (R2)|Σ = 0, by Taylor formula.

• We first want to solve equation (9) formally with respect to x2 by
using a Taylor expansion with respect to x2. We get the following
system of equations

− ∂S
∂x1

+ 2aξ1 = T1
∂S
∂ξ1

+ 2dx1 = T2
∂S
∂ξ2

+ cx1 + bξ1 = T3

(11)

where Tj are given and the unknown quantities are a, b, c, d and

S, functions of (x1, ξ1, ξ2, · · · ). Here A1 =
∑

j A1,jx
j
2 and A1,j =(

a b
c d

)
.

We solve the two first equations by choosing d = 0 and a such
that the compatibility condition, which give an equation of the
form ξ1

∂a
∂ξ1

+ a = r, is satisfied. Then we solve the last one on
x1 = ξ1 = 0 because, in the two first equations, we can add to
S any function independent of (x1, ξ1) and we choose b and c by
using Taylor formula.

• Now we need to solve equation (9) which we expand as follows

(a) − ∂S
∂x1

+ 2(aξ1 + cx2) = T ′
1

(b) ∂S
∂ξ1

+ 2(dx1 + bx2) = T ′
2

(c) ∂S
∂ξ2

+ cx1 + bξ1 + ax2 + dx2 = T ′
3

(12)

with T ′
j flat on x2 = 0. Taking the linear combination x1(a) +

ξ1(b) − 2x2(c) of equations (a), (b), (c) of (12), we get

(d) {S, p0} + 2(a+ d)p0 = T ′′ ,

with T ′′ = OZ(∞), which can be solved using Lemma 3. Moreover,
we can choose a = d = 0 and S = OZ(∞). We deduce b and c from
equations (a) and (b). Now equation (c) is fulfilled by relation (d).

�

Lemma 5 We define z1 = (x1, ξ1). If L : R3
z1,x2

→ Sym2(R) is a linear map such
that det(L(z1, x2)) = x1ξ1−x2

2, there exists a constant invertible matrix A such that
AtL(z1, x2)A = H0(±z1, x2).

Proof.–

We first restrict to x2 = 0. We put L = x1q1 + ξ1q2 + x2q3 with fixed
quadratic forms qj . We have det(q1) = det(q2) = 0 and q1 6= 0, q2 6= 0.
The kernel of q1 is generated by V1 and the kernel of q2 by V2. (V1, V2)
are independent because q1 and q2 are linearly independent (otherwise
det(x1q1 + ξ1q2) = 0). We can assume that q1(V2) = q2(V1) = ±1 (both
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have the same sign because of the value of the determinant of L(z1, 0)).
Hence, by choosing the basis (V2, V1), we get

L(z1, 0) = ±
(
ξ1 0
0 x1

)
.

We have now L(z1, x2) = H0(±z1, 0) + x2M and by identification of
the determinants we get L(z1, x2) = H0(±z1,±x2). It is easy to change
−x2 into plus x2 by using the gauge transform (u, v) → (u,−v).

�

Lemma 6 Let H = H0 + OΣ(2) and assume that det(H) = det(H0). Then there
exists a smooth map x → A(x) defined in some neighbourhood of Σ such that

AtHA = H0 .

The same result holds in the real analytic and in the formal series settings.

Proof.–

We will use Moser’s path method.

1. Let us first construct a path Ht, 0 ≤ t ≤ 1, from H0 to H with
det(Ht) = det(H0). Let H = H0 + K where K = OΣ(2) and
H̃t = H0+tK, 0 ≤ t ≤ 1. We have only det(H̃t) = det(H0)+OΣ(3).
Using the Morse-Bott Lemma to the function det(H̃t), we can find
a smooth family of diffeomorphisms ϕt(x, ξ) = (x, ξ) +OΣ(2) with
ϕ0 = ϕ1 = Id such that

det(H̃t) ◦ ϕt = det(H0) .

We define
Ht(x, ξ) = H̃t(ϕt(x, ξ)) .

We have now det(Ht) = det(H0) and Ht = H0 +OΣ(2). We put

Ht =

(
Ξ1 X2

X2 X1

)

and let

Dt =
d

dt
Ht = −

(
r s
s u

)

From det(Ht) = det(H0), we get

uΞ1 + rX1 − 2sX2 = 0 (13)

2. Let us solve the following linear equation:

BtHt +HtB = −Dt

with B = OΣ(1) and Tr(B) = 0. We put B =

(
a b
c −a

)
. We

get the following system of equations:

2(aΞ1 + cX2) = r (1)
2(bX2 − aX1) = u (2)
cX1 + bΞ1 = s (3)

10



From equation (13), we get that

(Ξ1 = X2 = 0) ⇒ (r = 0)

and
(X1 = X2 = 0) ⇒ (u = 0)

So
r = 2(aΞ1 + cX2), u = 2(b′X2 − a′X1)

Then equation (13) implies a− a′ = ωX2, so we can change a′ by
a′+ωX2 and b′ to b′+ωX1 in the previous equations. Equation (3)
is then fulfilled from equation (13). All previous arguments work
smoothly with respect to t.

3. The path method works now as follows: we try to find At such that
At

tHtAt = H0. Taking the derivative and putting d
dtAt = BtAt, we

get:
Bt

tHt +HtBt = −Dt

which we have already solved with Tr(Bt) = 0..

�

6 The classical normal form

6.1 Nelson’s result

For convenience, we recall here an adapted version of the statement of Theorem 8
p. 46 of [43]:

Theorem 1 (Sternberg’s theorem) Let X be a smooth vector field on Rs, with
X(0) = 0. Let X0x = DX(0)x be the linear part of X at the origin, let U(t) and
U0(t) be the flows generated by X and X0, and define X = X0 +X1. We assume
that X1 is compactly supported. Suppose there is a linear subspace N , invariant
under X0, such that X1 = ON (∞).

Let
E = {x ∈ R

s | lim
t→+∞

‖U0(t)x−N‖ = 0} .

Then, for all j ∈ N and x ∈ E, Dj (U(−t)U0(t)) x converges as t → +∞ and the
limit W−(x) (x ∈ E) has a smooth extension G to Rs such that G − Id = ON (∞)
and such that (G−1)?X −X0 = OE(∞).

6.2 Classical normal form

Theorem 2 Assuming hypothesis (i), (ii) and (iii), there exists a germ of canonical
transformation χ at the origin and a germ of map (x, ξ) → A(x, ξ) where A ∈
GL(2,R) such that (

AtHclassA
)
◦ χ = H0 . (14)

The normal form is local while in [7] it was only formal along the codimension 3
subspace Σ = {x1 = ξ1 = x2 = 0}.
Proof.–

Let f and g germs of function near the origin, we will denote f ∼ g
if there exists a (germ of) canonical transformation χ and a (germ of)
non vanishing positive function e such that f ◦ χ = eg. Same notation
for matrix valued germs by allowing gauge transformations: if H,K
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are germs of matrix valued maps, we denote H ∼ K if there exists a
canonical transformation χ and an invertible matrix valued function A
such that H ◦ χ = AtKA. This implies det(H) ∼ det(K) as germs of
functions.

The proof splits into several steps. The idea is to start finding a
normal form for the ideal generated by the determinant p (the dispersion
relation).

1. Assuming hypothesis (1), (2) and (3), we prove first that p ∼
p0 +OΣ(3).

Let us denote by Aσ the linearized vector field of Xp at the point
σ ∈ Σ and by ±λ(σ), λ(σ) > 0 the non zero eigenvalues of Aσ .
Using our hypothesis on p, we choose vectors e2, f2 ∈ TσT

?Rn

so that ω(f2, e2) = 1, Af2 = 0, Ae2 = λ(σ)f2. There exist local
coordinates (ξ2, x

′, ξ′) on Σ so that f2 = ∂ξ2
and ω|Σ = dξ′∧dx′. We

extend these coordinates to TΣT
?Rn by choosing e1, f1 ∈ TσT

?Rn

so that Aσe1 = λ(σ)e1, Aσf1 = −λ(σ)f1 and ω = f?
1 ∧ e?

1 + f?
2 ∧

e?
2 + dξ′ ∧ dx′. Applying Weinstein’s theorem ([47] Theo. 4.1.),

these coordinates can be extended to symplectic coordinates near
Σ. We have then clearly p = λ(σ)(x1ξ1 − x2

2) +OΣ(3).

We remark for later use that x2 is uniquely defined up to ± mod
OΣ(2) (look at the Hamiltonian vector field of x2 on Σ).

We remark for later use that x2 is uniquely defined up to ± mod
OΣ(2).

2. Using Lemma 3 in order to solve the homological equation, we
prove that p ∼ p0 + OΣ(∞): if we assume p = p0 + rN where
rN = OΣ(N) and N ≥ 3, we use χN which is the time 1 flow of an
Hamiltonian U = OΣ(N) and e = 1 + V with V = OΣ(N − 2). We
solve

{U, p0} + V p0 = rN ,

we get a remainder term rN+1 = OΣ(N + 1) and we proceed by
induction. 1

3. We want to prove that p ∼ p0 +OY (∞). We have already p = p0 +
OΣ(∞). Let ψ : T ?

R
n → [0, 1] a function which is homogeneous of

degree 0 w.r. to (x1, ξ1, x2), vanishes in a conical neighbourhood of
the cone p0 = 0, is 1 in some conical neighbourhood of Y and the
restriction of which to the unit sphere is smooth. We define e as
follows :

e = (1 − ψ) + ψ
p

p0
.

One can check that e is smooth and non vanishing near Σ and we
have p = ep0 +OY (∞).

4. We use Nelson’s theorem 8 (p. 46 of [43]) (see also subsection 6.1):

• With ′′X ′′
0 = Xp0

, ′′X ′′ = Xp, where p − p0 = OY (∞) and
p − p0 compactly supported, and ′′N ′′ = Y . We get p ∼
p0 +O{x1=0}(∞).

• With ′′X ′′
0 = −Xp0

, ′′X ′′ = −Xp, where p− p0 = O{x1=0}(∞)
and p − p0 compactly supported, and ′′N ′′ = {x1 = 0}. We
get conjugacy of flows.

1Let us remark that the conclusion of this step is already a corollary of the main result of [7].
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5. We show that by gauge transform Hclass ∼ H0 + OΣ(2). This is
based on Lemma 5.

We can assume the plus sign in the normal form of Lemma 5 by us-
ing the canonical transformation (z1, x2, ξ2, x

′, ξ′) → (±z1, x2, ξ2, x
′, ξ′).

6. We now apply Lemma 6.

�

From the previous normal form, we can deduce some geometrical properties:
the dynamics of X admits the codimension 3 submanifold Σ as a singular manifold,
Σ admits smooth unstable (resp. stable) manifold Σ− (resp. Σ+) which are of
codimension 2 and both included into a smooth codimension 1 invariant manifold.

7 The semi-classical normal form

We have the following normal form:

Theorem 3 Under the assumptions (i), (ii) and (iii), there exists a Fourier integral
operator, microlocally unitary, U , a symbol of order 0 denoted by Ah : T ?Rn →
GL(2,C) (a gauge transform), and a real valued symbol denoted

γ(h) ∼
∞∑

j=0

γj(ξ2, x
′, ξ′)hj

(called the minimal gap) such that:

U?Âh

?
ĤÂhU = Ĥ0 + ihγ̂(h)

(
0 1
−1 0

)
+ O(h∞) .

If the subprincipal symbol of Ĥ vanishes, γ0(ξ2, x
′, ξ′) = 0.

Proof.–

First using the classical normal form of Theorem 2 and Egorov theorem,
we reduce the system to Ĥ0 +hR̂ where R̂ is self-adjoint of order 0. We
normalize the next terms (transport equations) by using Lemma 4.

Let assume that sub(Ĥ) = 0. It is not difficult to show that, if we

choose Â so that its subprincipal symbol vanishes, the samething is true
for Â?ĤÂ. It is enough then to choose U so that its principal symbol is
constant to get the fact that γ0 vanishes.

�

8 Microlocal description of the solutions of the
normal form

We will assume in this section that γ̂(h) = 0. The result can be extended to the

general case using the fact that γ̂(h) commutes with x̂1 and ξ̂1. If the subprincipal
symbols vanish, the formulae below for the principal symbols are still valid.
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8.1 Some notations

We will give some notations for the Hamiltonian Ĥ . All geometric sets defined
below are preserved by canonical transformations and by gauge transforms.

C will denote the characteristic manifold p−1(0) where p is the determinant of
Hclass. We have C = Σ ∪ C+ ∪ C− which is a disjoint union where C+ (resp. C−)
is defined by the fact that both eigenvalues of Hclass close to 0 are λ− = 0 < λ+

(resp. λ− < λ+ = 0). We will also define Σ+ ⊂ C (resp. Σ− ⊂ C) as the stable
(resp. unstable) manifolds of Σ for the dynamics φt of Xp.

We will denote by WFh(uh) the semi-classical wave front set or microsupport
or frequency set of the family uh. We will write uh = 0 or uh = 0(h∞) in Ω where
Ω is an open set in T ?Rn if WFh(uh) ∩ Ω = ∅.

If ~U a microlocal solution of Ĥ ~U = 0 in Ω, an open neighbourhood of some
point z0 ∈ Σ, we will denote by

• ~U+
in the restriction of ~U to some neighbourhood of C+ ∩ Σ+

• ~U−
in the restriction of ~U to some neighbourhood of C− ∩ Σ−

• ~U+
out the restriction of ~U to some neighbourhood of C− ∩ Σ+

• ~U−
out the restriction of ~U to some neighbourhood of C+ ∩ Σ−

We will concentrate on solutions whose component ~U−
in vanishes.

We will also use a partial Fourier transform w.r. to x1:

û(ξ1, x2, x
′) = (2πh)−

1
2

∫

R

e−ix1ξ1/hu(x1, x2, x
′)|dx1| .

U+
out

U−out

U−
in

U+
in

C
−

C+

Σ

Σ+

Σ
−

Figure 1: the microlocal solutions

8.2 Special solution

We will build a special solution of the model problem which will allow to describe
all microlocal solutions of Ĥ0

~U = 0 near Σ.
Let us consider the solution

~U0 =

(
u
v

)
(15)
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of the model equation:
D1u+ x2v = 0
x2u+ x1v = 0

(16)

given by

• ~U+
out:

u(x1, x2) = −i
√

2π
h Y (x1)x2

(
Γ(1 + i

x2
2

h )
)−1

e
x2
2

h
(i log

x1
h

−π
2
)

v(x1, x2) = −x2

x1
u(x1, x2)

(17)

where Y is the Heaviside function and Γ the Gamma function. Previous
formulae define u as a distribution associated with a locally integrable function
and v outside x1 = 0.

The precise definition of the distribution v is given below in term of its partial
Fourier transform.

• ~U+
in: the h-Fourier transforms û (resp. v̂) with respect to x1, of u (resp. v) at

the non zero values of ξ1 are given, for ξ1 > 0, by:

û(ξ1, x2) = −x2

ξ1
e−

i
h

x2
2 log ξ1

v̂(ξ1, x2) = e−
i
h

x2
2 log ξ1

(18)

• ~U−
out: for ξ1 < 0, by:

û(ξ1, x2) = x2

|ξ1|
e−

π
h

x2
2e−

i
h

x2
2 log |ξ1|

v̂(ξ1, x2) = e−
π
h

x2
2e−

i
h

x2
2 log |ξ1|

(19)

The partial Fourier transform of v is the distribution associated with the
locally integrable function given by the previous formulae.

One get easily other solutions supported by x1 ≥ 0 by multiplying the previous one
by an arbitrary function of (x2, · · · , xn).

Remark 1 : if γ̂(h) does not vanish, our system is replaced by

D1u+ Pv = 0
P ?u+ x1v = 0

(20)

where P = x2 + ihγ̂(h) commutes with x̂1 and ξ̂1. We can do the same calculations
where x2 is replaced at some places by P , at other places by P ?, and x2

2 is replaced
by P ?P or by PP ?. We get the same kind of formulae from which we can deduce
that the results described below also holds in this case with the same rules for the

principal symbols if the principal symbol of γ̂(h) vanish.
If |x2| >>

√
h and x1 ≥ c > 0, we get

u(x1, x2) = uWKB(x1, x2)

(
1 +O(

h

x2
2

)

)

where, by using Stirling’s formula ([1] p 257):

uWKB(x1, x2) = −sign(x2)e
i π
4 e

− i
h

x2
2

(
log

x2
2

x1
−1

)

. (21)

More precisely

u(x1, x2) = uWKB(x1, x2)ψ(
x2

2

h
)
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where ψ is the smooth function on ]0,+∞[, continuous at 0, whose limit at infinity
is 1, given by:

ψ(x) =
Γ

ΓStir
(1 + ix) .

Moreover, we can check that

|u(x1, x2)|2 = |ψ(
x2

2

h
)|2 = 1 − e−2πx2

2/h .

8.3 Microlocal solutions

In this section, we will describe all microlocal solutions of Ĥ0
~U = 0 for which ~U−

in

vanishes using our previous solution ~U0.
We get the:

Theorem 4 Let ~U be a microlocal solution near the origine of Ĥ0
~U = 0, i.e.

WFh(Ĥ0
~U) ∩ Ω = ∅ ,

where Ω is a neighbourhood of the origine. Let us assume moreover that ~U−
in = 0.

Then, if ϕh(x2, x
′) = v̂(ξ1 = 1, x2, x

′), we have

~U = ϕh(x2, x
′)~U0

microlocally near the origin.

The proof is an extension of an argument given in [12] (Prop. 17).
All microlocal solutions near Σ are sums of the previous one’s and a similar one

whose ingoing part is ~U−
in, i.e. ~U+

in = 0.

9 Lagrangian states

9.1 Qualitative description

We want to describe solutions for which ~U−
in vanishes while ~U+

in is a Lagrangian
state associated to a germ of Lagrangian manifold Λ+

in ⊂ T ?Rn which is contained
in C+ near some point z ∈ C+ ∩ Σ+. We will assume that Λ+

in and Σ+ intersect
transversally inside C+. Their intersection is then an isotropic manifold W+

in of
dimension n− 1. We will denote by

W0 = { lim
t→+∞

φt(z)|z ∈ W+
in} .

W0 is an isotropic submanifold of Σ of dimension n − 2 transversal to the one
dimensional null foliation Ξ of Σ. We will also denote by W−

out ⊂ Σ+ ∩ C− the
isotropic submanifold of dimension n− 1

W−
out = {z| lim

t→+∞
φt(z) ∈W0} ∩ C− .

Theorem 5 Let ~U+
in ∈ I0(Λ+

in) be a microlocal solution of Ĥ0
~U+

in = 0. There exists

an unique microlocal solution of Ĥ0
~U = 0 in some neighbourhood of Σ such that

~U−
in vanishes.

We have the following qualitative description of this solution:

• The flow-out Λ′ ⊂ C+ of Λ+
in \ Σ+ by φt is a smooth Lagrangian manifold

whose closure is singular along Σ− ∩ C+. ~U is a Lagrangian distribution of
order 0 on Λ′. Its principal symbol does not extend continuously (in general)
along Σ− ∩ C+ although Λ′ is C1 (but not C2).

16



• Along C−, ~U = ~U−
out is a Gaussian state of order 1

2 associated to the isotropic

manifold W−
out and a positive Lagrangian manifold Λ−

out.

Proof.–

It is of course enough to prove the theorem for the model. In this case
~U = ϕ ~U0 where ϕ(x2, x

′) is any Lagrangian state w.r. to the variables
(x2, x

′). The theorem follows directly by examination of the expressions

of ~U0 given by Theorem 4.

�

9.2 Principal symbols

We will now describe a construction of the Lagrangian manifold Λ−
out as well as of

the principal symbol of ~U−
out.

9.2.1 Logarithmic maps

Let X be a fixed finite dimensional complex vector space and Gn the Grassmann
manifold of its complex subspaces of dimension n. We will say that a map F :
]− a, 0[→ Gn is logarithmic if there exist maps fj :]− a, 0[→ X, j = 1, · · · , n, such
that fj(u) = ej log |u| + gj(u) with gj smooth at 0 and F (u) is the vector space
freely generated by the fj(u)’s. Such a mapping F admits a formal extension to
u > 0 defined by fj(u) = ej(logu+ iπ)+gj(u). This extension, called the canonical
extension of F , is independent of the choice of the basis as well as invariant by
increasing diffeomorphisms ψ in u such that ψ(0) = 0.

9.2.2 The transmission rule for the Lagrangian manifold

We will choose a trajectory γ+(t), t ∈]t0,+∞[, of Xp contained in Λ+
in ∩ Σ+. This

trajectory admits an unique prolongation γ− as another trajectory contained in
C− ∩ Σ+ so that the closure of their union is a smooth arc denote by γ(u) with u
close to 0. We will assume that

• If u < 0, γ(u) = γ+(u) ∈ C+

• γ(0) ∈ Σ

• If u > 0, γ(u) = γ−(u) ∈ C−

It is clear that W−
out is foliated by the trajectories γ−. So it is enough to make

our constructions along any γ.
We will denote by L+(u) the tangent plane of Λ+

in at the point γ(u), u < 0.
Similarly L−(u) will be the complex Lagrangian plane tangent to Λ−

out at the
point γ(u), u > 0.

L+(u) is logarithmic in the sense of the previous section.

Proposition 1 L−(u), u > 0, is uniquely defined by its formal expansion which is
the canonical extension of L+(u) and its invariance by the linearization of φt.

9.2.3 The transmission rule for the principal symbol

Both limits of L±(u) as u→ 0 agree

L0 := lim
u→0∓

L±(u) = TW0 ⊕ Ξ⊕ <
dγ

du
> .

The following Proposition describes the transmission rules for the principal symbol
which is an half density on L±(u).
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Proposition 2 We have

lim
u→0+

(log |u|) 1
2 σ(γ−(u)) = lim

u→0−
(log |u|) 1

2 σ(γ+(u)) = σ0 ∈ Ω
1
2 (L0) .

Once given the transport equation (see for example [17]), one can check that there
exists unique σ±(u) which satisfy the transport equation and such that the previous
rule holds. So we have really described the transmission rule for the principal
symbol.

10 Gaussian states: “the dromadery becomes a

camel”

In this section, we will use the definitions of the Appendix.

10.1 Model problem

In order to recover Hagedorn’s results, one first has to choose an incoming trajectory
γ+

in ⊂ C+ ∩ Σ+ of the vector field Xp. We can assume that γ+
in(+∞) = γ∞ ∈ Σ.

We have two outgoing trajectories

• γ+
out ⊂ C+ ∩ Σ− so that γ+

out(−∞) = γ∞

• γ−out ⊂ C− ∩ Σ+ so that γ−out(+∞) = γ∞.

Theorem 6 Let ~U+
in be a Gaussian state of order 0 based on the isotropic manifold

γ+
in and assume ~U−

in = 0.

Then the microlocal solution near σ0 of Ĥ ~U = 0 satisfies

• ~U−
out is a Gaussian state of order 0 associated to γ−out

• ~U+
out is non Gaussian symplectic spinor of order 0 associated to γ+

out.

Proof.–

We look at our model problem. We choose γ+
in(t) = (0, e−t; 0, 0; 0, 0).

We have γ+
out(t) = (et, 0; 0, 0; 0, 0) and γ−out(t) = (0,−e−t; 0, 0; 0, 0).

A typical “Gaussian state” is given by

~U+
in = ϕ(x2, x

′)
(
~U0

)+

in
,

where
ϕ(x2, x

′) = Ah−(n−1)/2eQ(x2,x′)/h

with Q = Q1 + iQ2 and Q1 << 0.

• From the explicit formulae, we get that ~U+
out is a coherent state

associated to γ+
out. The symbol of u+

out is

AeQ(X2,X′)X2Γ(1 + iX2
2 )−1eX2

2 (i log
x1
h

−π
2
)

apart from trivial factors. The Γ factor prevent u+
out to be Gaussian.

We have:

|σ(u+
out)(X2, X

′)|2 = |A|2e2Q1(X2,X′)(1 − e−2πX2
2 ) , (22)

hence a dromadery!

The rules for the symbol along γout
− are the same as for the La-

grangian states.

�

It remains to describe the rules for the principal symbol of the symplectic spinor
associated to γout

+ .
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γ+
in

γ−
out

γ+
out

Figure 2: the squares of the modulus of the solutions

11 The elliptic case

If we replace in our assumptions of section 1 the condition (3) by (4)
4. The linearization of Xp admits a non zero pair of purely imaginary

eigenvalues ±iµ.
and (iii) by (iv):

(iv) {q, r}2 + {q, s}2 − {r, s}2 < 0 ,

we get that the semi-simple factor is now elliptic. As already observed in [7], this
case occurs in Maxwell equations as well as in propagation of waves in elastic media.

On the level of formal series expansions, the same results holds, but we can no
more use Sternberg’s theorem.

We get the:

Theorem 7 Assuming hypothesis (1), (2) and (4), Theorem 3 remains true on
the level of formal series transversally to Σ = {x1 = ξ1 = ξ2 = 0} with

H0 =

(
ξ2 − x1 ξ1
ξ1 ξ2 + x1

)

We can describe easily the solutions of the model system

Ĥ0

(
u
v

)
= 0

by using the unknown functions w± = u ± iv. We get the following equation for
w+:

(2Ω + h)w+ + h2 ∂
2

∂x2
2

w+ = 0

where Ω = −h2∂2
x1

+ x2
1 is an harmonic oscillator. The formal normal form suffices

to describe microlocal solutions whose microsupport is Σ; it is enough to developp
the value of w+ at x2 = 0 using the basis of eigenfunctions of Ω.

12 The Hermitian case

The same method can be applied to other kinds of generic eigenvalues crossings. The
main hypothesis in order to get a microlocal normal form is transversal hyperbolicity,
namely the linearized Hamiltonian vector field should have hyperbolic blocks and
Jordan blocks with 0 as eigenvalue only. We give below a sketchy presentation of
the Hermitian case which will the object of [10].

In the Hermitian case, because of the signature (+,−,−,−, 0, · · · , 0) of p′′, there
are only 4 cases. We will classify according the corank of ω|Σ which is assumed to
be locally constant:
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12.1 Corank 0: the generic case (elliptic-hyperbolic)

The singular stratum Σ of the characteristic manifold is symplectic. The lineariza-
tion of Xp do admit two pairs of non vanishing eigenvalues (±λ,±iµ).

We get moduli in the normal form: we cannot reduce both semi-simple blocks
using our equivalence relation. We do not know some physical example of this last
case. The normal form should be:

H0 =

(
ξ1 a(x1ξ1, x

2 + ξ2, x′, ξ′)(x2 ± iξ2)
a(x1ξ1, x

2 + ξ2, x′, ξ′)(x2 ∓ iξ2) x1

)
,

where a(τ, x′, ξ′) is a smooth > 0 function.
Both cases (±) are not equivalent: the open cones C± which correspond respec-

tively to λ− = 0 < λ+ (λ− < λ+ = 0) are well defined near Σ. Morse indices
differs by 1 on those cones. Moreover, both cones are oriented by p > 0. Hence the
polarization bundle have a well defined first Chern class on C+ and both signes in
the normal form gives both signes in the Chern class.

In the case of 2 degrees of freedom and analytic data, the normal form for the
dispersion relation has been proved to be convergent by Moser [42]. The model
problem is studied in [20].

12.2 Corank 2: the hyperbolic case

The singular manifold is not symplectic and the linearization of Xp admits one pair
of real non vanishing eigenvalues.

H0 =

(
ξ1 x2 + ix3

x2 − ix3 x1

)
.

This normal form is local as in our previous result. We get this model in the
Born-Oppenheimer approximation with magnetic field.

12.3 Corank 2: the elliptic case

The singular manifold is not symplectic and the linearization of Xp admits one pair
of purely imaginary non vanishing eigenvalues.

We get a normal form which is only formal as before. This model is used in
the example of spin-orbit interaction ([18] and [19]). It leads to transition of an
eigenstate from one band to another one.

H0 =

(
x1 x3 + iξ3
x3 − iξ3 x2

)
.

12.4 Corank 4: the involutive case

The singular manifold is involutive. A similar case has been studied by Melrose and
Uhlmann in [41].

13 Bifurcations

It would be interesting to describe generic bifurcations which may occur at least for
three reasons:

1. The condition 2. is no more satisfied at some points. This imply a singularity
of the manifold Σ.
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2. There is a change in the normal form involved. For example in the symmetric
case, how do we pass generically from the hyperbolic to the elliptic case?

3. For a d × d system with d ≥ 3, there exists triply and more degenerated
eigenvalue of the classical Hamiltonian at some points.

14 Appendix: coherent states, symplectic spinors

and Gaussian states

14.1 Definitions

A (semi-classical) coherent state is, roughly speaking, a semi-classical state whose
microsupport is an isotropic submanifold K of the cotangent space. It is desirable
to describe nice families of coherent states for which a so-called symbolic calculus is
available. Of course, such families should be invariant by Fourier Integral Operators.

There are at least 3 available theories of coherent states which are closely related:

1. (Semi-classical) Fourier Integral Operators with complex phase functions stud-
ied by Melin and Sjöstrand [40].

2. (Semi-classical) Symplectic Spinors studied by Boutet de Monvel and Guillemin
[28] and [6], see also [36].

3. Hagedorn’s Semi-classical Wave Packets [29] or Gaussian states..

The first two theories are better adapted to the context of microlocal analysis
being invariant by Fourier Integral Operators. We will use the second one in what
follows: we will first give the definition of the semi-classical symplectic spinors
following closely [28]. Then we will define a subset of it, the so-called Gaussian
states, associated to some jet of order ∞ of positive complex Lagrangian manifold
containing K; they are very close to Hagedorn’s semi-classical wave packets. After
that, we will define the principal symbols of these objects. All our discussion will
be (micro-)local even if it is not always specified.

Definition 1 • Let K0 be the isotropic submanifold of T ?(Rk
x ⊕ Rn−k

y ) defined
by

K0 = {(x, 0; 0, 0) | x ∈ R
k} .

We will say that a(x, Y, h) ∈ C∞(Rk
x ⊕ R

n−k
Y ) is a symbol in Σl(K0) if

a(x, ., h) ∈ S(Rn−k) and, for all semi-norms N of the Schwartz space S(Rn−k
Y ),

and all ε > 0, we have:
N(a) = O(hl+ε) ,

uniformly on compacts in Rk
x.

• A classical symbol in Σl(K0) is a symbol which admits an asymptotic expan-

sion a(x, Y, h) ∼ hl
(∑∞

j=0 h
j/2aj(x, Y )

)
. We will denote by Σl

class(K0) this
space.

• A symplectic spinor (resp. classical symplectic spinor) uh(x, y) of order l
associated with the isotropic manifold K0 = {(x, 0; 0, 0)} ⊂ T ?(Rk

x ⊕ Rn−k
y ) is

defined by:

uh(x, y) = h−(n−k)/2a(x,
y√
h
, h) ,

where a ∈ Σl(K0) (resp. a ∈ Σl
class(K0)). We will denote a ∈ SSl(K0) (resp.

a ∈ SSl
class(K0)).
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• If K is an isotropic submanifold of T ?Rn and χ a canonical transformation
such that χ(K0) = K, we choose an elliptic FIO of order 0 say A and define
SSl(K) = A(SSl(K0)) (resp. SSl

class(K) = A(SSl
class(K0))).

Remark 2 :if K is a Lagrangian submanifold, symplectic spinors associated with
K are exactly the Lagrnagian states (WKB-Maslov states).

The proof of the coherence of the previous definition is an easy adaptation of
Guillemin’s argument in [28] (see also [6]). It is clear that, if uh ∈ SSl(K), we have
WFh(uh) ⊂ K.

An example which is useful in our paper is a(x, Y, h) = a0(x, Y )eiP (Y ) log h (see
formula (22)) where a0 is in the Schwartz class w.r. to Y and P is a real valued
polynomial.

Definition 2 A positive formal Lagrangian manifold along K is a jet of infinite
order of complex Lagrangian manifold along K whose linear part is a positive La-
grangian subspace of ((TK)o/TK)⊗ C.

If K = K0, Λ = Λϕ is defined by a formal series ϕ(x, y) =
∑∞

j=2 ϕj(x, y) where
ϕj(x, y) is homogeneous of degree j w.r. to y and =ϕ2(x, .) is a strictly positive
quadratic form.

Definition 3 A Gaussian state of order l associated to (K0,Λϕ) is defined by

uh(x, y) = ah(x, y)eiϕ(x,y)/h

where a is a classical symbol of order l − (n− k)/2.
We will denote by GSl(K0,Λϕ) the corresponding space.
We can define GSl(K,Λ) using Fourier integral operators.

Proposition 3 A Gaussian state is a symplectic spinor. If u ∈ GS0(K0,Λϕ), its
total symbol is

∑∞
j=0 Aj(x, Y )hj/2eiϕ2(x,Y ) where Aj(x, Y ) is a polynomial in Y of

degree less than 3j and conversely.

Remark: the “3j” can already be seen in the formula (3.2) in [16].

14.2 Principal symbols

14.2.1 Symplectic spinors

We will now define the principal symbol of a symplectic spinor following [28].
Let K be a k−dimensional isotropic submanifold of T ?Rn. We will assume

as in [28] that K is equipped with a metalinear structure. The vector bundle
E = TKo/TK of dimension 2(n− k) over K is symplectic. We will assume that it
is equipped with a metaplectic structure. It implies that each Lagrangian subbundle
is equipped with a metalinear structure. We assume also that Rn is equipped with
the standard metalinear structure.

We want to define the principal symbol of a semi-classical symplectic spinor
which is a half form: uh(x, y)

√
dxdy. We start with a direct sum decomposition

E = L ⊕ L′ of E into a sum of 2 transversal Lagrangian subbundles. The symbol
σ(uh) of uh will be an element [ah(x, Y )]

√
dxdY where x ∈ K, Y ∈ L and the

equivalent class [.] is in Σ0(L)/Σ
1
2 (L). We use a local trivialisation of L in order to

get functions of (x, Y ). If K = K0, u = h−(n−k)/2ah(x, y/
√
h)
√
dxdy, L = 0⊕Rn−k

and L′ = 0 ⊕ (Rn−k)?, we have σ(uh) = [a(x, Y )]
√
dxdY .

It is now enough to say what is the transformation rule for the symbol under
the action of an elliptic Fourier Integral Operator of order 0: the canonical trans-
formation χ such that χ(K0) = K transforms the K0-bundles L0 ⊕ L′

0 ⊂ E0 into
the K-bundles L⊕L′ ⊂ E. It acts in a natural way on principal symbols using the
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metaplectic representation associated to the linear part of χ. The symbol of A(uh)
using this natural action is just obtained by multiplication by the principal symbol
of the Fourier Integral Operator.

It remains to speak about the transport equation: we assume that P is a pseudo-
differential operator whose principal symbol p vanishes on K and such that Xp is
tangent to K. If uh ∈ Σ0(K), Puh ∈ Σ1(K) and its principal symbol is given by
the familiar formula

σ(Pu) =
1

i
LXp

σ(u) + sub(P )σ(u)

where one need to interpret properly as in [28] the Lie derivative!
In the matrix case, we need a natural extension of the calculus of [17]. For the

standard examples (Born-Oppenheimer or adiabatic cases), it is enough to consider
the canonical connexion on the polarization bundle.

14.2.2 Gaussian states

The case of Gaussian states is easier to describe: the principal symbol is just a
half form on the bundle of Lagrangian spaces J1(Λ) over K. If K = K0 and
Λ = Λϕ. J1(Λ) = {(x, 0; y, ∂ϕ2(x, y)/∂y)} and, if we denote by π : J1(Λ) →
TK0

Rn the canonical projection, the principal symbol of ah(x, y)eiϕ(x,y)/h
√
dx ∧ dy

is π?(a0(x, 0)
√
dx ∧ dy).
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Physique mathématique. Coll. CNRS Aix-en-Provence (1974).

[29] G. Hagedorn, Molecular Propagation through Electron Energy Level Crossings.
Memoirs of the AMS, 536 (1994).

24



[30] G. Hagedorn, Higher Order Corrections to the Time-Dependent Born-
Oppenheimer Approximation I: Smooth Potentials. Ann. Math., 124:571-590,
1986.

[31] G. Hagedorn and A. Joye, Landau-Zener Transitions through small Electronic
Eigenvalues Gaps in the Born-Oppenheimer Approximation. Annales de l’IHP
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