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Abstract

Dans ce travail, nous utilisons la méthode d’Uludag pour construire
de nouvelles courbes dont le groupe fondamental est extension centrale
de celui de la courbe initiale par un groupe fini cyclique.

Dans la premiere partie, nous généralisons la méthode d’Uludag
pour obtenir de nouvelles familles de courbes dont le groupe fonda-
mental est controlé. Dans la deuxieme partie, nous examinons les
propriétés de ces groupes préservées par cette construction. Nous
décrivons enfin précisément les familles de courbes obtenues par cette
construction appliquée a divers types de courbes planes.
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1 Introduction

The fundamental group of complements of plane curves is a very important
topological invariant with many different applications. This invariant was
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used by Chisini [5], Kulikov [11] and Kulikov-Teicher [12] in order to dis-
tinguish between connected components of the moduli space of surfaces of
general type. Moreover, Zariski-Lefschetz hyperplane section theorem (see
[13]) showed that

7T1(]P)N - S) = 7T1(H —HnN S)

where S is an hypersurface and H is a 2-plane. Since H N S is a plane
curve, this invariant can be used also for computing the fundamental group
of complements of hypersurfaces in P*.

A different direction for the need of fundamental groups’ computations is
for getting more examples of Zariski pairs ([32],[33]). A pair of plane curves
is called a Zariski pair if they have the same singularities, but their comple-
ments have non-isomorphic fundamental groups. Several families of Zariski
pairs were presented by Artal-Bartolo [1],[2], Degtyarev [6], Oka [15] and
Shimada [22],[23],[24]. Tokunaga and his coauthors thoroughly investigated
Zariski pairs of curves of degree 6 (see [3], [4], [25], [26] and [27]). Some
candidates for Zariski pairs can also be found in [10], where any pair of ar-
rangements with the same signature but with different lattices can serve as
a candidate for a Zariski pair (it is only needed to be checked that the pair
of arrangements have non-isomorphic fundamental groups).

It is also interesting to explore new finite non-abelian groups which are
serving as fundamental groups of complements of plane curves.

Uludag ([28],][29]) presents a way to obtain new curves whose fundamental
groups are central extensions of the fundamental group of a given curve.
Using his method, one can produce a family of examples of Zariski pairs
from a given Zariski pair (see also Section 6 here). His main result is:

Theorem 1.1 (Uludag). Let C be a plane projective curve and G = w1 (IP*—
Q) Then for any n € N, there is a curve C' C P? birational to C such that
G = m (P? — C) is a central extension of G by Z/(n + 1)Z:

1-2Z/n+1)2Z—-G—G—1
In particular, if C is irreducible so is C as well.

A natural question is which curves and fundamental groups can be ob-
tained by this method. Also, one might ask if this method can be generalized,
and what will be the effect of the general method on the relation between
the fundamental groups of the original curve and the resulting curve.



In this paper we first generalize Uludag’s method to get new families of
curves whose fundamental groups are controlled by the original curve in the
same manner. Precisely, instead of using only two fibers for performing the
elementary transformations between Hirzebruch surfaces F,, we allow any
finite number of different fibers. Afterwards, we list properties of groups
which are preserved by the methods. Also, we describe the curves obtained
by the application of these methods to several type of plane curves. Then we
present some infinite families of new Zariski pairs which can be obtained by
the application of these methods. In the last part of the paper, we suggest a
different construction based on Uludag’s method. In this case, the obtained
group is an extension of the fundamental group of the original curve by a
finite cyclic group. Since the extension is not central, we lose some of the
group properties preserved by the previous constructions.

Between the interesting results in this paper is the exploring of families
of curves with deep singularities which yet have cyclic groups as the fun-
damental group of the complement (see the beginning of Section 4). Also,
using the general construction, one can construct more curves with finite and
non-abelian fundamental groups and more Zariski pairs (see Section 6).

The paper is organized as follows. In Section 2 we present Uludag’s orig-
inal construction. In Section 3, we present some generalizations of Uludag’s
construction, and we prove that also in the general constructions, the ob-
tained curve has a fundamental group which is a central extension of the
original curve’s fundamental group by a finite cyclic group. Section 4 deals
with properties of groups which are preserved while applying the construc-
tions. In Section 5, we describe precisely the families of plane curves which
can be obtained by the general constructions and when we calculate the
degrees of the new curves. At the end of this section, we describe some
specific families of curves obtained by applying the constructions to several
types of plane curves. In Section 6 we discuss and present new examples
of Zariski pairs obtained by these constructions. Section 7 deals with a dif-
ferent generalization for Uludag’s construction in which the obtained curve
has a fundamental group which is only an extension of the original curve’s
fundamental group by a finite cyclic group.



2 Uludag’s method

The idea of the method is the following (it was partially introduced by Degt-
yarev [6], and the sequel was developed by Uludag [28],[29]). If a curve Cy is
obtained from a curve C; by means of a Cremona transformation v : P2 — P2,
then 1) induces an isomorphism

P> — (CLUA)=P? — (C,UB)

where A and B are certain line arrangements. Hence there is an induced
isomorphism between their fundamental groups. The fundamental groups
of the curves themselves are easy to compute by adding the relations which
correspond to the arrangements.

Now, if we start with a curve C'; whose fundamental group is known, one
can find a curve Cy whose fundamental group has not yet been known as
being a fundamental group of a plane curve.

For these Cremona transformations one can use Hirzebruch surfaces Fj,.
In principle, the Hirzebruch surfaces are P'-bundles over P!. It is known that
two Hirzebruch surfaces can be distinguished by the self-intersection of the
exceptional section (for F,, the self-intersection of its exceptional section is
—n).

There are two types of elementary transformations, one transforms F,, to
F, 11 for all positive n, and the other transforms F, to F;,_; for all positive n.
The first transformation blows up a point O on the exceptional section, and
then blows down the proper transform of the fiber passed through O. The
second transformation blows up a point () on one of the fibers F', outside the
exceptional section, and then blows down the proper transform of the fiber
F'. The two transformations are schematically presented in Figures 1 and 2.

Uludag used a special type of Cremona transformations which can be
described as follows. We start with a curve C' in P?, and an additional line
() which intersects the curve transversally. We choose another line P which
also intersects the curve transversally, and meets () outside the curve C.
Then we blow up the intersection point of the two lines. This yields the
Hirzebruch surface F;. Then we apply n elementary transformations of the
first type each time on the same fiber (which is the image of the line Q) to
reach F),,1. Then we apply n elementary transformations of the second type
each time on the same fiber (which is the image of the line P) to return back
to F1. Then we blow down the exceptional section (whose self-intersection

4



0 0 1 0
blow up O
—_—s
-1
E

[e) . .

Exceptional — Exceptional

al section -l section
0 0 blow down
Q
Exceptional
-l section

Figure 1: Elementary transformation from F), to F,

is now —1), and we get again P?. This process defines a family of Cremona
transformations from P? to P2.

For each n, we get a different Cremona transformation. Uludag has shown
in [28] that applying to a curve C' a Cremona transformation whose process
reaches F), .1, yields a new curve C such that its fundamental group 7, (IPQ—C’ )
is a central extension of 7y (P? — C) by a cyclic group of order n + 1.

3 Generalizations of Uludag’s method

In this section we present some generalizations for Uludag’s method. These
generalizations yield new ways to construct curves with deep singularities
whose fundamental groups can be controlled, though they produce no more
new groups as fundamental groups than the original method of Uludag.

In the first step, we generalize Uludag’s method in the simplest way:
instead of using the same fiber all the time to perform the elementary trans-
formations of the first type, we will use two different fibers for performing
them, n times with the first fiber and m times with the second one (Subsec-
tion 3.3). Afterwards, we will generalize the method to an arbitrary finite
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Figure 2: Elementary transformation from F, to Fj,_;

number of different fibers (Subsection 3.4). In Subsection 3.5, we generalize
our construction even more, and we allow also an arbitrary finite number of
fibers for performing the elementary transformations of the second type. In
Subsection 3.6 we discuss a particularly interesting special case, where we
perform all the transformations (of both types) on the same fiber.

Before we pass to the generalizations of the methods and their proofs, we
first have to introduce meridians and prove a lemma which we need in the
sequel (Subsection 3.1). Also, we have to understand what happens to the
fundamental group when we glue one line back to P? (Subsection 3.2).

3.1 Meridians and a generalization of Fujita’s lemma

As in Uludag’s proof [28], in order to find the relations induced by the addi-
tional lines, we have to calculate the meridians of these lines. We first recall
the definition of a meridian of a curve C' at a point p (see [28],[29]): Let A be
a smooth analytical branch meeting C' transversally at p and let zy € P? —C
be a base point. Take a path w joining zy to a boundary point of A, and
define the meridian of C' at p to be the loop p, = w -6 - w™!, where ¢ is the



boundary of A, oriented in the positive sense (see Figure 3).

C
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Figure 3: A meridian of a curve C' at a point p

For computing the meridians in our case, one has to use some rules. The
first rule deals with the connection between the meridian of the curve C' at a
point p € C' before the blow up and the meridian of the exceptional section
created by the blow up (see [28, p. 5]):

Claim 3.1. Let 0, : X — P? be a blow up of the point p € C, and let E C X
be the exceptional section. Let C' = o, *(C). Then, the loop o, (1) is the
meridian of E at a point ¢ € E — C".

The second rule deals with the meridian at a nodal point:

Lemma 3.2 (Fujita [8, p. 540, Lemma 7.17]). Let B be a ball centered
at the origin O of C%, and consider the curve C' defined by x> —y* = 0. C has
an ordinary double point at the origin and 7 (B — C) = Z*. Take meridians

a and B of C' on the branches x =y and x = —y respectively. Then af3 is a
meridian of C at the node O (see Figure 4).

For our generalizations, we need the following more general version of this
lemma:

Lemma 3.3. Let B be a ball centered at the origin O of C?, and consider
the curve C' defined by Hle(y — myx) = 0 where the m; are some complex
numbers and k > 3. C has an intersection of k lines at the origin and
m(B—C) =Z®F_1, where Fy_; is the free group on k—1 generators. Take
meridians a; of C on the branches y = m;x respectively. Then aiag - - -y 1S
a meridian of C' at the intersection point O up to orientation.
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Figure 4: The situation of Fujita’s lemma

Proof. The fact that m (B — C) = Z @ Fy_; is from [18] or [9]: Using van
Kampen’s method [30], the presentation of the group 7 (B — C) is:

(1, oy | Q12 Qg = Qg - A = -+ = Qg+ - Q1)
which can be written also as:
(o, g, -+, | aay = ava, vz = aza, - -+ oy, = )
where oo = ayap - - -, (see [9]). This presentation can be written also as:
() @ (g, -+, ap) 2ZOFy 4

and hence the generator of the cyclic group (which is also the center of the
group) is @ = aqay - - - ay.

In order to prove the lemma, we have to show that this generator is indeed
the meridian of the exceptional section E after we blow up the point O. When
we blow the point O up, we get Hirzebruch surface F, — P!. After deleting
the exceptional section and another disjoint section (which corresponds to
the line at infinity), we also throw away k fibers corresponding to the k lines
which pass through O before the blow up. The resulting affine surface can
be decomposed as a product: (C — {pt}) x (P! — {k points}). Hence, its
fundamental group can be decomposed into a direct sum too:

m1(C — {pt}) ® m (P* — {k points}) 2 Z © F;_;.

Now, since the cyclic group Z is in the center of the group Z & Fj;_q, its
generator corresponds indeed to the meridian of the base E. Due to the fact



that the generator of the cyclic group in the center is & = ajas - - - a (up to
orientation, as we have shown above), therefore since both the meridian and
the generator o = ayas - - - oy, generate the infinite cyclic group which is the
center of the group, this generator is a meridian of the exceptional section F
(up to orientation), and a meridian of the intersection point O too. O

3.2 The effect on the fundamental group while gluing
back a line

In this short subsection, we prove a simple but useful lemma about the effect
on the fundamental group when we glue a line back to P2.
Zaidenberg [31] has proved the following lemma:

Lemma 3.4 (Zaidenberg [31, Lemma 2.3(a)]). Let D be a closed hyper-
surface in a complex manifold M. Then the group Ker{i, : m(M — D) —
m (M)} is generated by the vanishing loops of D. In particular, if D is irre-
ducible, then, as a normal subgroup, this group is generated by any of these
loops.

Let C be a plane curve. Substituting P? — C for M and a line L for D,
we get that Ker{i, : m(P? — (C U L)) — m(P? — C)} is generated by the
vanishing loops (=meridians) of L. Since L is a line, we have:

Ker{i. : m(P* — (CU L)) — m(P* — C)} = ({u))

where p is a meridian of L.

Therefore, it is easy to deduce the following lemma:

Lemma 3.5. Let C' be a plane projective curve and let L be a line. Let u be
a meridian of L. Then:

m(P* — (CUL)/{u) = m(P* - C)

Note that it is not necessary that L will be transversal to C'.

3.3 The case of three fibers

The first generalized construction can be described as follows. Let C' be the
initial plane curve, and let m,n be two given natural numbers. Instead of



one line ) in Uludag’s original construction, here we have two lines, ()1 and
(2, which both meet C' transversally. They intersect in a point O outside
C. The other line P passes through O too and intersects C' transversally.
Now blow up the point O, in order to get Hirzebruch surface Fj. Then
apply n elementary transformations of the first type on the proper image
of @)1. After that, apply m elementary transformations of the first type on
the proper image of (). After this step, we have reached F), ., 1. Now, we
apply n + m elementary transformations of the second type on the proper
image of P. Then, we reach back F}. At last, we blow down the exceptional
section (with self-intersection —1), and we get again P2. This defines a family
of Cremona transformations from P? to P2. Note that this construction is
indeed a generalization of Uludag’s method, since when we set m = 0, we
return to the original construction of Uludag.

For any pair of natural numbers n and m, we obtain a Cremona transfor-
mation, denoted by T, ,,. We will show that the new curve C = T.m(C) has
a fundamental group m; (P? — (') which is a central extension of 71 (P2 — C)
by a cyclic group of order n +m + 1.

Remark 3.6. Before formulating the result, we note that the curve obtained
by T), . can not be obtained by two successive applications of Uludag’s method,
since two appropriate applications will yield an extension of order n+m + 2
whereas the extension of the Cremona transformation T, ,, is of order n +
m + 1. Also the obtained singularities will be different (see Section 5).

Theorem 3.7. Let C be a plane projective curve and G = m(P? — C).
Then for any n,m € N, the curve C' = T, ,,(C) is birational to C' and its
fundamental group G = m (P2 — C) is a central extension of G by Z/(n +
m+1)Z:

1—=Z/(n+m+1)Z—-G—G—1

In particular, if C' has r irreducible components so is C.

Proof. We start with precising the notations. Let Q1,Q2 and P be the
three lines which meet in the point O outside C. After the blow up of
the point O, we denote the proper image of ()1, Q)s, P,C under this blow
up by Q1,QL, P!, C*! respectively. After the first elementary transformation
of the first type (blow up of the point ¢ = Qi N E where E is the excep-
tional section and blow down of @Q}), we denote by Q? the blow up of the
point ¢f = Q1 N E, and by Q3, P?, C? the proper image of Qi, P!, C! by this
elementary transformation (see Figure 5, where we omit the images of ).
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blow down

Figure 5: Elementary transformations of the first type

Applying n — 1 more elementary transformations of the first type in this
manner, we get that the images of Q?, Q2, P2, C? are Q7! Qu*!, prtt, Cntl
respectively. Now we perform m elementary transformations of the first type

in a slightly different manner (blow up of the point ¢y*' = Q4 N E, 4

where E,,; is the corresponding exceptional section and blow down of Q5™
see Figure 6), to get after the applications of these transformations that
the images of Q7! Q™! P+l CnHl are QU™+t Qptmtt pramtl CntmAl
respectively.

After these two sequences of elementary transformations of the first type,
we have reached Hirzebruch surface Fj,.,,.1, which has an exceptional sec-
tion E,,ymn1 with self-intersection —(n +m + 1). Now, we start to perform
n + m elementary transformations of the second type in order to return
to Fy. After the first elementary transformation of the second type (blow
up of a point ppymyr € PP — (B, e U CPT ) and blow down of
PrmHL) “we denote by P2 the fiber replacing P"™™*! which is the blow
up of the point p, 41 and by QU™ +2 Q™2 Cn+m+2 the proper images
of Qutm+t Qutmtl Cmtm+l by this elementary transformation (see Figure
7).

After performing all the elementary transformations of the second type,

11



blowup qj*

n+1 n+l

blow down

n+l

Q,

Figure 6: Elementary transformations of the first type

we are back in Fy, and the images of Q"2 Qytm+2 prim+2 COnim+2 are
Q3ntam Al Q2ntimtl pnt2m+l C2nt2m+l pegpectively. At last, we blow down
the exceptional section (whose self-intersection is now —1), and the images
of Q2nt2m+l QZntmtl  p2n+2mil C2nt2m+l ypder this map are Qy, Qq, P, C
respectively.

The composition of all the above transformations yields a Cremona trans-
formation from P? to P? (which was denoted by T}, ,,). At this point we
remark that since the blow up and the blow down transformations are bira-
tional transformations, then C' = T}, ,,(C) is birational to C, and if the curve
C has r irreducible components, C has 7 irreducible components too.

This Cremona transformation defines an isomorphism:

P2 — (CUPUQUQ,) 2P2— (CUPUQUQ,)
which induces an isomorphism of the corresponding fundamental groups:
P2 — (CUPUQLUQ,)) Zm(P?— (CUPUQ,UQ,))

In order to compute 7 (P2 — C), we just have to add the relations which
correspond to gluing back the lines P, (), and Q5.

12



n+m+l n+m+1 n+m+1 n+m+1
P

blowup p

n+m+1

p n+m+l

n+m+1 n+m+1

n+m+2 mm+2 n+m+2

blow down

n+m+l

Figure 7: Elementary transformations of the second type

Let o, B and v be the meridians of P,(Q); and ()5 respectively. Using
Lemma 3.3 for k = 3, we get that the meridian of the curve CUPUQ; UQ>
at the point O in our case (which is the intersection of P, @1 and (Q)2) is a3,
and hence the meridian of E, which is the blow up of this point, is a3y too
(see Figure 8).

aBy

Exceptional
section

Figure 8: The meridians of the lines after the first blow up

When we apply the first n elementary transformations of the first type
using the fibers Q},1 < i < n, we use Fujita’s lemma (Lemma 3.2) each

13



time we blow up the intersection point between the fiber and the exceptional
section, to get at last that the meridian of Q7" is (aBy)" - 8 (see Figure
9 for the effect of one elementary transformation of the first type). At the
same time the meridians of Q% and P’ do not change and remain v and «
respectively.

bl
L B y a
B y a
(apy)B
apy afy
blow down
(aBy)B v a
apy

Figure 9: The effect of an elementary transformation of the first type on the
meridians

In the second step, when we apply m elementary transformations of the
first type using the fibers Q4,n +1 < i < n + m, we use Fujita’s lemma
(Lemma 3.2) in the same way to get that the meridian of Q3™ is (aBy)™-7.
In the same time the meridians of @} and P’ do not change and remain
(afBy)™ - 6 and « respectively. In the last two steps, when we apply n + m
elementary transformations of the second type using the fibers P!, n+m+1 <
i < 2n + 2m, and the last blow down (to return to P?), all the meridians do
not change (see Figure 10 for the effect of one elementary transformation of
the second type). Hence, the meridians of P,Q; and Q, are a, (afy)™ - B
and (o)™ -~y respectively.

Therefore, by Lemma 3.5, we conclude that:

m(P? = C) 2 m(P* — (CUPUQLUQ))/ e, (af)"B, (a8y)™)

14



blow up a
(@By) B @y a (@py) B @Byy a
apy apy
blow down
@By B @My a
apy

Figure 10: The effect of an elementary transformation of the second type on
the meridians

which is equivalent to:
m (P? — C) = m(P* = (CUPUQIUQ))/{a, (87)"5, (67)™),
since the connecting relations between «, 3 and v are
afy = fya = ap,

because all the three lines intersect in one point O (see the proof of Lemma

3.3). Since the Cremona transformation defines an isomorphism between
P2 - (CUPUQR;UQ,) and P* — (CUPUQ; UQ,), we can also write:

m(P? = C) =2 m(P* = (CUPUQLUQ))/ e, (B7)"B, (B7)™)

When we pass to the quotient by («) which corresponds to gluing the line
P back into P? in the original configuration (by Lemma 3.5), we get that:

m(P? = C) = m(P* — (C'U Q1 UQ))/{(BY)"B, (B7)™)

While moving to this quotient, we get that § and + commute since in the
quotient a = 1, and hence the relation a3y = va 8 becomes v = v3. Hence,

15



we get:

m(P? — C) = m(P* — (CUQ UQy))/(B™ ", 57y

Now, since we choose ()1 and ()2 to be both transversal to C', then their
meridians are central elements in 7, (P?—(CUQ,UQ>)). By Lemma 3.5, when
we take the quotient of m (P? — (C'UQ;UQ>)) by the group (3,~) generated
by these meridians, we get 7(P* — C). Hence, the following extension is
central:

1= Z@®Z=(B,7]|By=78) - mP*— (CUQUQs)) = m(P*~C) — 1
Now, it is easy to see that:

I[DQ —(C n+l.n Am m+1
e = (- (CUQ U @)/ 15

and therefore:

7T1(]P)2 - é)
(B, | By =)/ (Brtiyn, frymtL)

which can be written as the following extension:

1= (8,7 | By =98)/(B"y", Bmy™ ) — m(P? — C) - m(P* - C) — 1

= 7T1(]P)2 - C)

In order to finish the proof, we have to show two more things:

L B,y | By =48, 87y ) 2 Z/(n+m+ 1)Z.

2. This extension is central.

Since Bntlqyn. gmaymtl — gndmtlyntm+l we can change the presentation
of the subgroup in the denominator a bit:

(B, By | By = 4B) = (BT, BT L] By = )

On the other hand, one can see that the following is a presentation of Z & Z
too:

ZOLEBY, By | By =18)
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since both 3 and + can be achieved by the new pair of generators. Using
these two new presentations, it can be easily seen that the quotient of these
two groups is Z/(n+ m+ 1)Z, since the first generator in both presentations
is the same, and the second generator of the denominator is the (n+m+ 1)-
th power of its corresponding generator in the numerator, and hence (1) is
proved.

About the centrality of the extension, due to the centrality of the exten-
sion

1= (6,7) = m(P* - (CUQUQy)) = m(P*-C) —1

it follows that:
(8,7) < Z(m(P* = (CUQ1UQy)))

where Z(@) is the center of the group G. Therefore, also the following holds:

(B,7) <7 (Wl(PZ_ (CUQIUQ2>>)
(frtlyn, gmymtl) = (Brtiqn, gmaym+l)

which means that:

Z)(n+m+1)Z < Z(m(P* = C))

and therefore the extension is central, (2) is proved, and we have proved
Theorem 3.7. O

3.4 The general case

The general construction is the following: Let C' be the initial plane curve,
and let nq, - - -, n; be k given natural numbers. In this construction, we have
k different lines @)1, - - -, Q) which all meet C' transversally. They intersect in
a point O outside (', in such a way that locally they are organized counter-
clockwise around O. The additional line P passes via O too and intersects
C transversally. Now we blow up the point O, in order to get Hirzebruch
surface F7. Then we apply n; elementary transformations of the first type on
the proper image of @); for all i = 1,..., k. After this step, we have reached
Hirzebruch surface F, (k)41 Now, we apply Zle n; elementary transfor-
mations of the second type on the proper image of P. Then, we reach back
Fy. At last, we blow down the exceptional section, and we get again P?. As
before, this defines a family of Cremona transformations from P? to P2.
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For any k-tuple (ny,---,n;) € NF, we get a Cremona transformation,
denoted by Tiy, ..n,). We will show that the new curve C' = Ty, ... n,)(C) has
a fundamental group 7 (IP? — C') which is a central extension of 71 (P? — C)
by a cyclic group of order (Zle n;) + 1. As before, the curves obtained by
the general construction can not be obtained by successive applications of
Uludag’s original method (see Remark 3.6).

Theorem 3.8. Let C' be a plane projective curve and G = m1(P*—C). Then
for any k-tuple (ni,---,n;) € N¥, the curve C = Tiy, ...y (C) is birational
to C, and its fundamental group G = m (P% — é) is a central extension of G
by Z/ (5, ma) + 1)Z:

1= Z/((O n)+1)Z—G—G—1

i=1
Moreover, if C has r irreducible components so is C'.

The proof of the general case is similar to the proof of the case of three
fibers (Theorem 3.7). Hence, we will focus only on the differences between
the two proofs.

Proof. As in the previous case, since the blow up and the blow down transfor-
mations are birational transformations, then C'is birational to C, and if the
curve C has r irreducible components, also C has r irreducible components.

Let P = Tiny ey (P) and Qi = Ty ey (Qi) for 1 < i < k. This
Cremona transformation defines an isomorphism:

P —(cupPuJen)=r-(CuPu(Ja)

i=1

which induces an isomorphism of the corresponding fundamental groups:

m(P* - (CUPU (U Qi) = m(P* = (CUPU (U @i)))

In order to compute 7 (P? — C'), we have to add the relations correspond
to gluing back the lines P and Q;,1 < i < k.

Let § and «; be the meridians of the lines P and @; respectively. Using
Lemma 3.3, we get that the meridian of the curve C'U P U (Ui, @) at the
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point O in our case (which is the intersection of k+ 1 lines: P, Q1+, Qy) is
Baq - - - ay, and hence the meridian of £, which is the blow up of this point,
is fay - - -y too.

As before, by Fujita’s lemma (Lemma 3.2), one can easily see that the
meridian of Q; is (Baq « - o)™ - ; for all 1 <4 < k, and the meridian of P
remains [.

Therefore, by Lemma 3.5, we conclude that:

Qi)))/ (B, (Boy -+ o)™y, -+, (B -+ - )™ o)

=

m(P2—C) = 1y (P2 —(CUPU(

i=1

-
Il

which is equivalent to:

e

Wl(P2—é) = 7r1(IP’2—(C~'UI5U( @J))/(ﬁ, (041 . 'Oék)qu, Ty (041 . 'Oék)nkak>

.
I

since the connecting relations between 3, aq, - - -, oy are

/Bal"'ak:al"'ak‘ﬁ:"':ak‘ﬁal"'ak—l

(see proof of Lemma 3.3), because all the k + 1 lines intersect in one point

0.

Since
k k
P~ (CuPU(JQ)) =P~ (CuPuU(JQ)),

i=1 i=1

we can also write:
k

ﬂ_l(PQ_C«) ~ ﬂl(PQ—(CUPU(U QJ))/(ﬁ) (@1 e ak)nlah e (al .. .ak)nkak>
i=1

When we pass to the quotient by () which corresponds to gluing the line
P back into P? in the original configuration (by Lemma 3.5), we get that:

k

(B = C) = (B — (CU Q) (a1 an)ar, -, (a1 - ) a)

i=1
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While moving to this quotient, we get the following k cyclic relations for the
denominator:

QA1+ O = Qg+ Q] = =+ + = Q1 Qg+ Olpp_q

since in the quotient 3 = 1. These relations can be presented also as the
following set of relations, where o = ajan - - - ay:

{aqs = ava, aas = aza, -+ -, aay, = agack

Now, since we choose @1, - -, Q. to be all transversally intersected with
C, then their meridians commute with the meridians of C'. By Lemma 3.5,
when we take the quotient of 7y (P2 —(C'U (Uf:1 @;))) by the normal subgroup
generated by the meridians of Qq,---,Q, we get m(P? — C). Due to the
fact that all the lines are intersected at O, then the subgroup generated by
the meridians @, - - -, Q is of the form (see the proof of Lemma 3.3):

ZOF, 1 Z{a,n, 0 | aq; = 0,2 <1 < k)

where o = aq - - - a,.
As before, it is easy to see that:

m(P?* — (CU (UL, Q)/(@™ar, - -, a™ay) ~
<OZ,O{2,"',O[]§ | [8767; :OéZOZ,QSZ S k>/<anla1’...’ankak> N
k

= m(B? — (CU (| o)/ (e s an)

i=1

where o = a1 - - - i, and therefore:

m(P? - O)

(@02, 0 | aci=a;0,2<i<k)
(@™ ay, a0k ag)

= 7T1<P2 - C)

which can be written as the following extension:

(o, g, g | acy = oy, 2 <0 < k)

2 ~ 2
<&m&1’“.’&nk&k> HWl(IP) —C)Hﬂj([@ —C)—>1

The centrality of the extension in this case is a little bit tricky. Although
a; does not commute with a; (2 <i4,5 <k, i # j), the generators of G =
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71 (P2 —C) are the meridians of C' and only one more generator - a (the other

generators - az, - - -, ay - corresponding to the lines ()2, -+, Q% in the bigger
group m (P* — (C U (Uf:1 Q;))) disappear in G by the additional relations
a™ag, -+, a™ay). This generator indeed commutes with the meridians of

C in m(P? — C) (as it is equal to the multiplication of all the «;’s which
commute with the meridians of C in 7 (P? — C') as mentioned above), and
hence we get also in this case that the extension is central.

Therefore, it remains to show that:

. k
a, a0 | ooy =02 <0 <k
< y X2, ’n]j‘ i nz )4 b= >gZ/((an)—l—1)Z
<O{ &17"',0{ ak) p
Since
Omlal . ankak = oM Tk (al . 0%) = oMt TE, = a”1+"'+”k+1

we can change the presentation of the subgroup in the denominator a bit:

<an1+---+nk+1’ n2

a™ag, - ooy | aag = e, 2 <i < k)

On the other hand, one can see that the following is a presentation of Z&F,_,
too:
ZOF 1 = (o, 0™y, -, a™ay | aq; = a2 < i < k)

since all the «;,2 < ¢ < k can be achieved by the new set of generators.
Using these two new presentations, it can be easily shown that the quotient
of these two groups is Z/ ((Zf:1 n;)+1)Z, as we have shown it in the previous
case, and hence we are done, and Theorem 3.8 is proved. O

3.5 A slightly more general construction

During the proof, we have shown that elementary transformations of the
second type do not affect the meridians of the fibers which we perform the
transformations on. Therefore, we can even generalize our construction to
the following one: instead of performing all the elementary transformations
of the second type on the same fiber P, we can apply them on several fibers
Py, ---, P, with the condition that the total number of applications of ele-
mentary transformations of the second type will be equal to the total number
of applications of elementary transformations of the first type.
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Using this observation, we can describe a slightly more general construc-
tion: Let C' be the initial plane curve, and let nq,---,n, and mq,---, m; be
two sets of k and [ given natural numbers, such that Y n;, = > m;. We
start with k + [ different lines @, -+, Qx and Py, ---, P, which all meet C
transversally. They all intersect in a point O outside C', in such a way that
locally they are organized counterclockwise around O. Now we blow up the
point O, in order to get Hirzebruch surface F;. Then we apply n; elementary
transformations of the first type on the proper image of Q); foralli =1,... k.
After this step, we have reached Hirzebruch surface F’ (k)41 Now, we ap-
ply m; elementary transformations of the second type on the proper image
of Pj forall j =1,...,0. Since > n; = > m;, we reach back Fj. At last, we
blow down the exceptional section (whose self-intersection is now —1), and
we get again P2. This defines a family of Cremona transformations from P?
to P2

For any (k + I)-tuple (ny,---,ng,my,---,m;) € N such that Y n; =
> m;, we get a Cremona transformation, denoted by Ty, ....ngmy,-m,)- Then
we can state:

Corollary 3.9. Let C be a plane projective curve and G = w1 (P*—C). Then
for any (k+1)-tuple (nq, -+, ng,my, -+, my) € NEsuch that S n; = S my,
the curve C = Ty, . ppoms, ) (C) is birational to C' and its fundamental
group G = m(P*> — C) is a central extension of G by Z/ (35, ni) + 1)Z:

k
1=Z/((> n)+1)Z—G—G—1

i=1

Moreover, if C has r irreducible components so is C'.

3.6 An interesting special case

Just before finishing the section of the constructions, we want to concentrate
on an interesting special construction. In this construction, we perform all
the elementary transformations from both types on the same fiber.

First, we define this construction precisely, and then we prove that the
fundamental group of the obtained curve is again a central extension of the
original curve, as we had in the previous constructions. We have to prove it,
since the proof is slightly different from the proofs of the previous cases.
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We start with a curve C and one additional line L in P? which intersects C
transversally. Blow up a point O on L (which does not belong to C') in order
to reach F;. Then perform n elementary transformations of the first type on
the proper image of L. Hence we reach F),.;. Now, perform n elementary
transformations of the second type again on the proper image of L. Now,
blow down the exceptional section (which now has self-intersection —1) in
order to return to P2. This construction defines a Cremona transformation
from P? to P2, which we denote by 7,,. Then we have the following result:

Proposition 3.10. Let C be a plane projective curve and G = 7 (P?* — C).
Then for any natural number n € N, the curve C = T, (C) is birational to
C' and its fundamental group G = 1, (P? — C~’) 1s a central extension of G by
Z/(n+1)Z:

1-7Z/n+1)2—-G—G—1

Moreover, if C' has r irreducible components so is C'.

Proof. As before, since the blow up and the blow down transformations are
birational transformations, then C' is birational to C, and if the curve C has
r irreducible components, C' has r irreducible components too.

Let L = T,,(L). T,, defines an isomorphism:

P2 - (CUL)=P?>—(CUL)
which induces an isomorphism of the corresponding fundamental groups:

m(P?— (CUL)) = m((P*—(CUL))

In order to compute 71 (P2 — C), we have to add the relation correspond
to gluing back the line L. Let o be the meridian of L. By Claim 3.1, we get
that the meridian of the exceptional section F, which is the blow up of the
point O € L, is again a.

After we apply the sequence of n elementary transformations of the first
type using the fiber L and its images, we have by Fujita’s lemma (Lemma
3.2) that the meridian of the image of L is a™"*. As before, the applications
of elementary transformations of the second type and the final blow down do
not change this meridian.

Therefore, by Lemma 3.5, we conclude that:

m(P? - C) =2 1 (P* — (CUL))/(a™)
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Since

P> - (CUL)=P*— (CUL),
we can also write:
7T1(]P’2 — é) it 7r1(]P’2 —(Cu L))/(a”“}

Now, since L intersects C' transversally, its meridian o commutes with
the meridians of C'. By Lemma 3.5,

(P2 — (CUL)/{a) = m(P? - C).

As before, since:

(m(P* = (CUL)/(a")/({a)) = m(P* — (CUL))/{a)

we have:

m (P2 — C)/{a) = 1 (P? - C)
which can be written as the following extension:
L= ((a)/(a™*) = m(P* = C) — m (P~ C) — 1

Obviously, (a)/(a™) = Z/(n + 1)Z, and since o commutes with the
generators of m;(P? — '), the extension is central. O

4 Properties of groups preserved by the con-
structions

In this section, we indicate some properties of the fundamental group which
are preserved by the constructions of the previous section.

We start with an interesting property about the splitness of the central
extension we have in the constructions. Using this property, we will show the
following important property of the fundamental group: if we start with an
irreducible curve which has a cyclic group as the fundamental group (such
as smooth irreducible curves), then the resulting fundamental group will be
cyclic too. The importance of this property is that although the constructions
add to the curve deep singularities (as is proved in Proposition 5.3), the
fundamental group of the curve is still cyclic. Hence, these constructions
may yield families of plane curves which have some deep singularities but
have cyclic fundamental groups.
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Proposition 4.1. Let C' be a plane curve with r irreducible components. Let
n € N. Let C be the curve whose fundamental group G is obtained from
G = m (P? — C) by a central extension by Z/(n + 1)Z. If the abelian group
H(P? — C) has r direct summands, then the extension does mot split, i.e.

G*GZ/(n+1)Z.

Proof. On the contrary, assume that G = G @ Z/(n + 1)Z. As Hy(X) is the
abelinization of 7 (X), we have that

H\(P* -~ C) = Ab(G) Z AB(G @ Z/(n +1)Z) = H\(P* -~ C) @ Z/(n +1)Z.

Hence, H 1(P? —C) has r +1 direct summands. This contradicts the fact that
C has only r irreducible components, as the number of irreducible compo-
nents is preserved by the constructions. O

Proposition 4.2. Let C be an irreducible plane curve with a cyclic funda-
mental group Z/rZ. Letn € N. Let C be the curve whose fundamental group
G is obtained from G = m (P*> — C) by a central extension by Z/(n + 1)Z.
Then G = 1, (P? — C) is also cyclic of order v(n + 1).

Proof. As H{(X) is the abelinization of 7 (X ), we have that G = H;(P?—C).
Since G is cyclic, H; (P*— (') has one direct summand, which equals the num-
ber of irreducible components in C' (one too). By the previous proposition,
the extension does not split, and Hy(P? — C) is cyclic too.

Since the extension is central, we have that G is abelian of order r(n+1).
Hence, G = H;(P? — C). Therefore, G is cyclic of order r(n + 1). O

Remark 4.3. The condition that the curve is irreducible is essential, since if
we take a reducible curve with a cyclic fundamental group, it is not guaranteed
that the resulting curve will have a cyclic fundamental group. For example, if
we start with a curve C consists of two intersecting lines whose fundamental
group m (P2 —C) = Z is cyclic, and we apply on it Uludag’s method forn =1,
we get that the resulting curve C has a fundamental group 7 (P? — C~’) =
Z.& (Z)27) (see after Proposition 5.11) which is not cyclic.

Let p be a prime number. Then:

Remark 4.4. Let C be a plane curve with a fundamental group G which is
a p-group. Let n € N. Let C be the curve whose fundamental group G is
obtained from G = w1 (P?> — C) by a central extension by Z/(n + 1)Z. Then:
ifn+1=p for somel, then G = m (P> — C) is also a p-group.
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Proof. From the extension, we get that G/(Z/(n+1)Z) = G. Since n+1 = p!,
Z/(n+ 1)Z is a p-group, and since G is also a p-group, then G is a p-group
too. 0

Remark 4.5. Let C' be a plane curve with a finite fundamental group G.
Let n € N. Let C be the curve whose fundamental group G is obtained from
G = m(P?> — C) by a central extension by Z/(n + V)Z. If (|G|,n+1) =1,
then the fundamental group G of the resulting curve is a direct sum of G and
Z)(n+1)Z:

G2GPZ/(n+1)Z

Proof. Use Theorem 7.77 of [20] that “if @ is a finite group, K is a finite
abelian group, and (|K|,|Q|) = 1, then an extension G of @ by K is a
semidirect product of K and ()7, and the fact that if the extension is central,
semidirect products become direct products. O

In the following proposition, we will list some more properties of the fun-
damental group which are preserved by the constructions. Before stating it,
we remind some definitions. A group is called polycyclic if it has a subnormal
series with cyclic factors. A group is called supersolvable if it has a normal
series with cyclic factors. We say that a group G is nilpotent if its lower
central series reaches 1 (see for example [20]).

Proposition 4.6. Let C' be a plane curve with a fundamental group G. Let
n € N. Let C be the curve whose fundamental group G is obtained from
G = m (P? — C) by a central extension by Z/(n+ 1)Z. Then if G has one of
the following properties, the fundamental group G of the resulting curve has
this property too:

1. Finate.
Non-abelian.
Solvable.
Supersolvable.
Polycyclic.

Nilpotent.

NS @ e e

Finitely presented.
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Proof. (1-2) Trivial.

(3) From the extension, we get that G/(Z/(n 4+ 1)Z) = G. But it is known
20, Theorem 5.17] that if Z/(n 4+ 1)Z and G are both solvable, then G is
solvable too.

(4) From the extension, we have that G/(Z/(n+1)Z) = G. It is easy to show
(very similar to the solvable case, see [20, Theorem 5.17]) that if Z/(n +1)Z
and G are both supersolvable, then G is supersolvable too.

(5) Same proof as (4).

(6) Since G is a central extension of G' by Z/(n + 1)Z for a given n, we get
that G/(Z/(n+ 1)Z) = G where Z/(n + 1)Z < Z(G). But it is easy to see
that if Z/(n +1)Z < Z(G) and G is nilpotent, then G is nilpotent too (see
for example [20, p. 117, Exercise 5.38]).

(7) From the extension, we get that G/(Z/(n + 1)Z) = G. Using a theorem
of Hall (see for example [19, Theorem 2.2.4]) that “if N and G/N are finitely
presented, then G is finitely presented”, we are done. O

We note here that if G is a nilpotent group of class ¢ (means that the
last non-zero term of the lower central series is the c-th term), then G is a
nilpotent group of class ¢ or ¢ + 1. It will be of class ¢ if and only if the
2-cocycle defining the extension is symmetric (see [21]).

Here we indicate one more family of group properties which are preserved
by the constructions.

Remark 4.7. Let C be a plane curve with a fundamental group G which
has a subgroup N of finite index with a special property (for example: finite,
solvable, nilpotent, etc.). Then the fundamental group G of the resulting
curve C has a subgroup N of finite index with the same special property too.

In particular, if G is virtually-finite, virtually-nilpotent or virtually-solvable,
then G has the same property as well.

Proof. Let n € N. Since G is an extension of G by Z/(n + 1)Z, then
G/(Z)(n+1)Z) = G. N < G = G/(Z/(n+ 1)Z), therefore there exists
N < G such that N/(Z/(n+1)Z) = N. Obviously [G : N] = [G : N] < .

Since G is a central extension, one can show that also N is a central ex-
tension of N by Z/(n+1)Z (since Z/(n+1)Z is a subgroup of the intersection
of Z(G) and N, and hence in Z(N)).

Therefore, one can apply Proposition 4.6 to show that the properties of
N are moved to N. O
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Remark 4.8. Note that all the results of this section hold also for the con-
structions of Oka [15] and Shimada [22], since also in their constructions
the fundamental group of the resulting curve is a central extension of the
fundamental group of the original curve by a cyclic group.

5 The curves obtained by the constructions

In this section we investigate the curves which can be obtained using Uludag’s
original construction and the general constructions we have presented in the
previous sections. In the first subsection, we will describe the types of singu-
larities which are added by the constructions. In Subsection 5.2 we compute
the degrees of the resulting curves. In the next subsections, we describe
some families of curves which can be obtained if we apply the constructions
on several different types of curves.

5.1 The types of singularities which are added to the
curves

At the beginning of this subsection, we want to fix a notation for singular
points. We follow the notations of Flenner and Zaidenberg [7]. Any singular
point P has a resolution by a sequence of s blow ups. We denote by t; > 1
(1 <4 < s) the multiplicity of the curve at P before the i-th blow up. Then
[t1,- -+, ts] is called the type of the singularity. If we have a sequence of r
equal multiplicities I, we abbreviate it by [,. For example, [2,2,2] = [23]
corresponds to a ramphoid cusp, which has to be blown up three times (each
time of multiplicity 2) for smoothing it. We note that in general it is possible
that a blow up can split a singular point into two or more singular points,
and then we have to do two or more different resolutions for each singular
point, and it indeed happens in the last generalization (Corollary 3.9), but
except for this case, in all the other cases such a situation cannot occur, since
we choose for the construction fibers which meet the curve not in singular
points.

To simplify the description, we also introduce the notion of a d-tacnode.

Definition 5.1. d-tacnode s a singular point where d smooth branches of
the curve are tangented to the same line in the same point.

For example, the usual tacnode is 2-tacnode.
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Here we describe the singularities which are added to the curve during
these constructions:

Proposition 5.2. Let C' be a curve of degree d. Let n € N. Let C be
the curve which is obtained by Uludag’s original construction for this n (see
Section 2).

Then C has two additional singularities to those of C: a d-tacnode of
order n — 1, and another singular point which is a blow down of a d-tacnode
of order n — 1 (i.e., the curve has the following additional singularities: [d,)

and [dn,d,]).

Proof. The first blow-up (from P? to F}) does not change the curve. The
first elementary transformation of the first type (from F} to F,) creates one
intersection point (of d branches) on one of the fibers. The second elementary
transformation of the first type (from F, to F3) converts it into a d-tacnode
of order 1. Another n—2 elementary transformations of the first type convert
it into a d-tacnode of order n — 1. Now, the first elementary transformation
of the second type (from F, ;1 to F),) creates another intersection point (of d
branches) which is located on the exceptional section. The second elementary
transformation of the second type (from F), to F,_;) converts it into a d-
tacnode of order 1. Another n — 2 elementary transformations of the second
type convert it into a d-tacnode of order n — 1, which is located on the
exceptional section. Therefore, when we blow down this section in order
to return to P2, this d-tacnode of order n — 1 is blown down into a more
complicated singular point. O

Now we describe the corresponding situation for the general construction:

Proposition 5.3. Let C be a curve of degree d. Let (ny,---,n;) € N* be a
k-tuple. Let C' = Tiny ) (C) (see Theorem 3.8).

Then C has k + 1 additional singularities to those of C: k d-tacnodes of
order n; — 1 (1 < i < k), and another singular point which is a blow down
of a d-tacnode of order ny + ---+ ny — 1 (i.e., the curve has the following
additional singularities: [dy,],- -+, [dn,] and [d(ny + - -+ nk), dny4oegny)] )-

Proof. As in Uludag’s original construction, the first blow-up (from P? to F})
does not change the curve. Each sequence of n; elementary transformations
of the first type on the fiber Q! and its images creates one d-tacnode of order
n; — 1, which is located at the image of @}, outside the exceptional section.
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The sequence of ny + - - - + ny elementary transformations of the second type
(from F), 4. in,+1 to F1) creates another d-tacnode of order ny +- - - +mny — 1,
which is now located on the exceptional section. Hence, when we blow down
this section in order to return to P2, this d-tacnode of order nq 4 ---+n; —1
is blown down too to a more complicated singular point. O

Here we describe the situation concerning the special case (Proposition
3.10).

Proposition 5.4. Let C' be a curve of degree d. Let n € N. Let C = T, (C)
(see Proposition 3.10).
Then C' has one additional singularity to those of C': a blow down of a d-

tacnode of order 2n—1 (i.e., the curve has the following additional singularity:
[2nd, dgn])

Proof. As before, the first blow-up does not change the curve. The sequence
of n elementary transformations of the first type creates one d-tacnode of
order n — 1. Since we apply the second sequence of n elementary transfor-
mations of the second type on the same fiber, we continue to deepen this
singularity into a d-tacnode of order 2n — 1 which is now located also on
the exceptional section. Hence, when we blow down this section in order to
return to P2, this d-tacnode of order 2n — 1 is blown down too to a more
complicated singular point. O

The description of the curves obtained by Corollary 3.9 is a little bit more
complicated: In this case we indeed have a singular point which is splitted
after the first blow-up into several singular points.

Proposition 5.5. Let C' be a curve of degree d. Let (nq, -+, ng,my,---,my) €
N be a (k+1)-tuple such that Y n; = S mj. Let C = Tin . npmy o) (C)
(see Corollary 3.9).

Then C has k + 1 additional singularities to those of C: k d-tacnodes
of order n; — 1 (1 < i < k), and another singular point which is a blow
down of | d-tacnodes of order m; —1 (1 < j <1) on the exceptional section
of that blow down (i.e., the curve has the following additional singularities:

[dm]v T [dnk] and [d(nl +oot nk)v ([dml]7 T [dmz])])

Proof. The proof is similar to the proof of the previous proposition. As
before, the elementary transformations of the first type create k d-tacnodes
of order n; — 1.
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The sequences of m; (1 < j <) elementary transformations of the second
type on the fibers Py, - - -, P, create | d-tacnodes of order m; —1, which are all
located on the exceptional section. Hence, when we blow down this section
in order to return to P2, these [ d-tacnodes are blown down together to a
complicated singular point. O

5.2 Change of the degree of the curve

In this subsection, we compute the degree of the resulting curve:

Proposition 5.6. Let C' be a plane projective curve of degree d. Let (nq,--+,ng) €
N¥. Let C = Tiny ) (C) (see Theorem 3.8).
Then the degree of the resulting curve is d(ny + -+ ng + 1).

Proof. Let d be the degree of C'. We have to show that d = d(ny+- - -+ng+1).
When we blow up once one of the singularities, say P, in order to resolve it,
we have to decrease the self-intersection of the original curve C' by (multsP)?
(where mults P is the local multiplicity of C at P) to get the self-intersection
of the curve C after the blow-up. Since this is the data which is given by
the types of the singularities, one can compute easily the change in the self-
intersection.

So, we start with C' whose self-intersection is d2, since C' is in P2?. For
all 1 < i < k, the n; blow-ups of the singular point [d,,] yield a decreasing
of the self-intersection by n; - d?, since the multiplicity of the curve at the
singular point is d. The n; + --- + ni + 1 blow-ups of the singular point
of the type [d(ny + - - - + ng), dny+...4n, ] yield an additional decreasing of the
self-intersection by (d(ni+- - -+ng))*+ (ny+- - -+ng)d?, since the multiplicity
of the curve at the singular point in the first blow up is d(ny + - - - + ny) and
in the other blow ups it is again d. After all these blow-ups, we reach the
original curve C' in P? and hence its self-intersection is d?. Therefore, we
have the following equation:

k
& =Y (i d®) = ((d(ng + -+ ) + (g + -+ ) d?) = d

i=1

and hence d* = d*(ny + - - -+ ng+1)2, which gives us d= d(ni+---+np+1)
as needed. O
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One can perform the same computations also for the curves obtained
by the constructions presented in Corollary 3.9 and Proposition 3.10 (see
Propositions 5.5 and 5.4 respectively for the descriptions of the additional
singularities). Hence, Proposition 5.6 holds for those curves too.

5.3 Families of curves obtained by starting with smooth
irreducible curves

In this subsection we describe the families of curves which are obtained by
Uludag’s original construction and its generalizations if we apply them to a
smooth irreducible curve C' of degree d (and therefore m (P* — C') = Z/dZ,
see Zariski [32]).

Proposition 5.7. Let C' be a smooth irreducible curve of degree d. Let
n € N. Let C be the curve obtained by Uludag’s construction in such a way
that its fundamental group is a central extension of G = w,(P? — C) = Z/dZ
by Z/(n + 1)Z.

Then for n = 1, C has an intersection point of d smooth branches and
one d-tacnode (i.e., the curve has the singularities: [d] and [ds]).

Forn > 2, C has a d-tacnode of order n — 1, and another singular point
which is a blow down of a d-tacnode of order n — 1 (i.e., the curve has the
following singularities: [d,]| and [dn,d,]).

The degree of the resulting curve is d(n + 1).

Proof. Since a smooth curve has no singularities, then the only singularities
of the resulting curve are those which were created by Uludag’s construction
(see Proposition 5.2). Therefore the curve has only the singularities described
in Proposition 5.2.

The degree of the curve is computed directly by Proposition 5.6. U

For the particular case d = 2 and n = 1, we indeed get a quadric with a
node and a tacnode, and its equation can be found in [14, p. 147, case 2|:
(22 4+ y? — 32)? = 42%(2 — ).

Using Proposition 4.2, we have that

m(P?—C) = Z/(d(n+1))Z.

Now, we describe the family of curves which are obtained by the general
construction (Subsection 3.4).
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Proposition 5.8. Let C' be a smooth irreducible curve. Let (ny,---,n;) € N¥
be a k-tuple. Let C' = Tiy ...y (C) (see Theorem 3.8).

For every 1 < 1 < [k, C has a d-tacnode of order n; — 1, and another
singular point which is a blow down of a d-tacnode of order ny +---+n; —1
(i.e., the curve has the following singularities: [dn,],---,[dy,] and [d(n, +

e nk)v dn1+~~~+mc])'
The degree of the resulting curve is d(nq + -+ ng + 1).

Proof. Similar to the proof of the previous proposition, but here we use the
results of Proposition 5.3. O

Using Proposition 4.2 again, we have that

(P2 —C) = Z/(d(ny + - +ny + 1))Z.

5.4 Families of curves obtained by starting with line
arrangements

In this subsection we describe the families of curves and their groups which
are obtained by Uludag’s original construction and its generalizations if we
apply them to some types of line arrangements.

Proposition 5.9. Let L be a line arrangement consists of m lines inter-
secting 1n one point. Let n € N. Let L be the curve obtained by Uludag’s
construction in such a way that its fundamental group is a central extension
of G=m(P*—L)=F,, 1 by Z/(n+ 1)Z.

Then forn =1, L has two intersection points of m smooth branches and
one m-tacnode (i.e., the curve has the following singularities: [m|,[m] and
[ma)). )

Forn > 2, L has one intersection points of m smooth branches, one m-
tacnode of order n — 1, and another singular point which is a blow down of
a m-tacnode of order n — 1 (i.e., the curve has the following singularities:
[m],[m,] and [mn,m,]).

The degree of the resulting curve is m(n + 1).

Proof. Since L has one intersection point of m smooth branches, then the
singularities of the resulting curve are those which were created by Uludag’s
construction (see Proposition 5.2) and an additional singularity which was
in L.

The degree of the curve is computed directly by Proposition 5.6. O
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Since H?(F,,_1,Z/(n + 1)Z) is trivial, then we get that:
mP? = L) =T, ®Z/(n+1)Z.

Now, we describe the family of curves which are obtained by the general
construction (Subsection 3.4).

Proposition 5.10. Let £ be a line arrangement consists of m lines inter-
secting in one point. Let (ny,---,ny) € N* be a k-tuple. Let £ = Tiny ..y (L)
(see Theorem 3.8).

Then: in addition to the original intersection point of L, for every1 < i <
k, £ has a m-tacnode of order n; — 1, and another singular point which is a
blow down of a m-tacnode of order ny+---+ni—1 (i.e., the curve has the fol-
lowing singularities: [m], [mp,], -+, [mn,] and [m(ng+ -+ +ng), My, 4oin, |)-

The degree of the resulting curve is m(ny + -+ +ng + 1).

Proof. Similar to the proof of the previous proposition, but here we use the
results of Proposition 5.3. O

As before, since H*(F,,_1,Z/(ny + -+ -+ ng + 1)Z) is trivial, then we get
that: )
7T1(]P)2 - E) = mel @Z/(nl + o4 ng + 1)Z

Now we deal with another important type of line arrangements: lines in
a general position, which means that there is no intersection of more than
two lines in a point. We describe the family of curves which are obtained by
the general construction (Subsection 3.4).

Proposition 5.11. Let L be a line arrangement consists of m lines in a
general position. Let (ny,---,ng) € N¥ be a k-tuple. Let L = Tiny ..y (L)
(see Theorem 3.8).

Then: in addition to (’;) nodal points of L, for every 1 < i < k, L
has a m-tacnode of order n; — 1, and another singular point which is a blow
down of a m-tacnode of order ny + --- 4+ ny — 1 (i.e., the curve has the
following singularities: [muy,|,- -, [Mn,], [Mm(ng + - + ng), My 4ogon, ] and
() singularities of the type [2]).

The degree of the resulting curve is m(ny + -+« 4+ ng + 1).

Proof. Since L has (’;L) nodal points, then the singularities of the resulting
curve are those which were created by the general construction (see Propo-
sition 5.3) and (') nodal points.

The degree of the curve is computed directly by Proposition 5.6. O
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Since a central extension of Z™ ! by Z/(ni+- - -+ng+1)Z is not unique, it
is interesting to know which group is indeed obtained in this case. For this, we
perform a direct computation for finding a presentation for the fundamental
group of the complement of £, to get that

mP?—L)2Z" @ Z/(ny + -+ ny +1)Z

This result is mainly achieved due to the commutative relations induced by
the (’;L) nodal points.

6 An application to Zariski pairs

As already mentioned, we call a Zariski pair to a pair of plane curves which
have the same singularities, but their complements have non-isomorphic fun-
damental groups. In the same manner, we call a Zariski triple or Zariski
k-tuple to a triple of curves or to a k-tuple of curves respectively, which have
the same singularities, but their complements have pairwise non-isomorphic
fundamental groups.

In this short section, we want to use the above constructions to produce
new Zariski pairs.

Not every Zariski pair (C,C5) can produce a family of Zariski pairs by
our construction, since even if G; = 7 (P? — C}) and Gy = 7 (P?* — C5) are
different, it is not guaranteed that Gy = m (P? — Cl) and Gy = m; (P? — 02)
will be still different, as there are several ways to construct the same group
by central extensions. Therefore, we have to characterize Zariski pairs which
induce such families.

A possible characterization is the following;:

Proposition 6.1. Let (Cy,Cy) be a Zariski pair of two irreducible curves.
If m (~IP)2 — () is a cyclic group and m (P? — Cy) is not a cyclic group, then
(C1, Cs) is a Zariski pair.

Proof. Since (C7,Cs) is a Zariski pair, then by definition C; and Cy have
the same degree and the same singularities. Therefore, using the results of
Section 5, C; and C, have the same degree and the same singularities too.
Since 71 (P2 — () is cyclic and C] is irreducible, then 7 (P? — C’l) is cyclic
too (by Proposition 4.2). On the other hand, a central extension of non-cyclic
group can never be cyclic and hence m; (P? — CQ) is not cyclic. Therefore,
(Cy, () is a Zariski pair too. O
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The examples of Zariski ([32],[33]), Oka [17] and Shimada [23] satisfy the
conditions of Proposition 6.1, and hence produce families of new examples of
Zariski pairs.

7 Another generalization of Uludag’s method

In this section we generalize Uludag’s method in a different way. Now, we are
not starting with lines that are transversally intersected with the curve, and
we permit also tangent lines or lines which are intersected with the curve in
its singular points. The rest of the construction is the same as in the previous
constructions.

As in the previous constructions, we start with a curve C' and k + [
lines (which are not transversal anymore to the curve) and a (k -+ [)-tuple
(n1, -, ng,my, - ,my) € N¥ such that > n; = Y m;, and perform a sim-
ilar construction to the one described in Subsection 3.5. We denote the
resulting curve by C' = T, . npmy ) (C)-

In this situation, we get a weaker result, but even though we loose only
few of the properties of groups which were preserved by the previous con-
structions.

Theorem 7.1. Let C be a plane projective curve and G = 7 (P*—C). Then
for any (k+1)-tuple (ny, -+ -, ng,my, -, my) € N¥ such that > n; = m;,
the curve C = T(m,---,nk;ml,---,mz)(C) is birational to C' and its fundamental
group G = 7, (P?> — C) is an extension of G by Z)((32F_, n;) + 1)Z:

1= Z/((O )+ 1)Z—G—G—1

i=1
Moreover, if C is irreducible so is C.

Proof. 1f we go through the proofs of the previous constructions (Theorem
3.8 and Corollary 3.9), we can see that the transversality of the lines to the
curve is actually needed only for proving that the extension is central, but all
the rest of the proof does not need it (the quotient equations hold even for
non-transversal lines, see Section 3.2). So, although we lose the centrality of
the extension, but the extension itself is still proved, and hence we have the
result. O

36



Despite the weaker version of the result, most of the properties of groups
which are preserved by the previous constructions (as was indicated in Section
4) hold also for this construction. The properties which are not preserved
anymore are cyclicity, nilpotency, virtually-nilpotency and Remark 4.5. For
all the other properties, there is no use of the extension’s centrality in the
proofs of Section 4.

The results of Section 5 do not hold in this case, since their proofs
are based very much on the assumption that the lines intersect the curve
transversally. Also, the singularities depend very much on the way the lines
intersect the curve.
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