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ABSTRACT. We give presentations of braid groups and pure braid groups on
orientable surfaces and we show some properties of surface pure braid groups.

1. INTRODUCTION

1.1. Braids on surfaces. Let F’ be an orientable surface and let P = {Py,..., P, }
be a set of n distinct points of F'. A geometric braid on F based at P is an n-tuple
¥ = (¢1,...,1%y) of paths ¢; : [0,1] = F such that

e Y(l)eP,i=1...,n;

e Yy (t),...,%,(t) are distinct points of F for all ¢ € [0, 1].
The usual product of paths defines a group structure on the set of braids up to
homotopies among braids. This group, denoted B(n, F'), does not depend on the
choice of P and it is called the braid group on n strings on F'. On the other hand, let
be F,F = F™\ A, where A is the big diagonal, i.e. the n-tuples x = (21, ...z,) for
which z; = x; for some ¢ # j. There is a natural action of ¥,, on F}, F' by permuting
coordinates. We call the orbit space E.F = F,F/%, configuration space. Then
the braid group B(n, F) is isomorphic to m (F,F). We recall that the pure braid
group P(n, F') on n strings on F is the kernel of the natural projection of B(n, F’)
in the permutation group ¥,. This group is isomorphic to m (F,, F).

The first aim of this article is to give (new) presentations for braid groups on
orientable surfaces.

A p-punctured surface of genus g > 1 is the surface obtained by deleting p points
on a closed surface of genus g > 1.

Theorem 1.1. Let F be an orientable p-punctured surface of genus g > 1. The
group B(n, F) admits the following presentation (see also section 2.2):
o Generators: 01,...,0p_1,81,.-.,08g,b1,...,bg,21,...,2p_1.
o Relations:
— Braid relations, i.e.

0i0i410; = Oi410i0i1;
005 = 004 fOT |Z —jl Z 2.
— Mized relations:
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(R1) apo;=o0sa, (1<r<g;i#1l);
broi = 0iby (1<r<g;i#1);
(R2) =zjoi=o052; (i#n—-1,j=1,...,p—1);
(R3) oy'zi010, = ar0o; 200 (1<r<g;i=1,....,p—1;n>1);
o1 ' ziorb, = broy tzior (1<r<g;i=1,...,p—1; n>1);
(R4) oy'zjonz =zoytzjor (G=1,...,p—1, j <I);
(R5) oy 'zjo; 2 =zjo;tzjort (G=1,...,p—1);
(R6) oy ‘tayo;ta, = a0 a0t (1< <g);
o1 'bro7 by = broy thop !t (1< 7 < g);
(R7) oyltasoia, = a,o7tazor (s <71);
aflbsalbr = braflbsal (s<r);
aflasale = braflasal (s<r);
UflbsalaT = araflbsal (s<r);
(R8) oy tayo; b, =broyta,e; (1<r<g).
Theorem 1.2. Let F' be a closed orientable surface of genus g > 1. The group
B(n, F) admits the following presentation:

e Generators: 01,...,0p_1,01,...,8gb1,...,b,.
e Relations:

— Braid relations as in Theorem 1.1.

— Mixed relations:

(R1) aroi=0sa, (1<r<g;i#1);
broi =0ibr (1<r<g;i#1);

(R2) o7ltarorta, = aroitaort (1< <g);
o1 'bro7 by = bo7 thror !t (1< T < g);

(R3) o7laso1a, = aro7taor (s <71);
aflbsalbr = braflbsal (s<r);
aflasale = braflasal (s<r);
aflbsalar = aral_lbsal (s<r);

(R4)  o7laro7'b, =bo7tarer (1<r<yg);

(TR) [a1,b7']---[a,, b;l] =0109--- 02

2 . og01,
where [a,b] :== aba=1b~1.

We may assume that Theorem 1.1 provides also a presentation for B(n, F'), when
F' an orientable surface with p boundary components. We recall that a subsurface
E of a surface F is the closure of an open set of F. In order to avoid pathology,
we assume that F is connected and that every boundary component of E either is
a boundary component of F' or lies in the interior of F. We suppose also that E
contains P. It is known [16] that the natural map v, : B(n, E) — B(n, F) induced
by the inclusion E C F is injective if and only if F'\ E does not contain a disk. We
may provide an analogous characterisation about surjection.
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Proposition 1.1. Let F be an orientable surface of genus g > 1 with p boundary
components, and let E be a subsurface of F. The natural map ¢y, : B(n,E) —
B(n, F) induced by the inclusion E C F is surjective if and only if F\ E = I1D?.
Proof: Remark that the natural morphism
Y1 :7(E, Pr) = w(F, P1)

is a surjection if and only if F'\ E = IID?. Now consider a pure braid p € P(n, F)
as a n-tuple of paths (p1,...,p,) and let x : P(n,F) — 7(F)™ be the map defined
by x(p) = (p1,-..,pn). We have the following commutative diagram

P(n, E) m(E)"
wn wl X oo X ¢1
P(n, F) ()"

Since x is surjective we deduce that 1), is not surjective on P(n,F') and thus on
B(n,F). The last part of the Proposition follows from previous Theorem and
considerations on corresponding geometric braids. O

When F is a closed orientable surface, our presentations are equivalent to Gonzalez-
Meneses’ presentations. We recall also that the first presentations of braid groups
on closed surfaces were found by Scott ([17]), afterwards revised by Kulikov and
Shimada ([13]). At our knowledge, the case of punctured surfaces is new in the
literature. Our proof is inspired by Morita’s combinatorial proof for the classical
presentation of Artin’s braid group ([14]). This proof holds also for Sergiescu’s
presentations (see [18]). We will explain this approach while proving Theorem 1.1.
After that we will show how to make this technique fit for obtaining Theorem 1.2.

1.2. Residual properties of surface pure braids. The last part of the article
concerns the study of surface pure braids groups. When F is a closed surface of
genus g > 0, we provide in Theorem 5.1 a homogeneous presentation for P(n, F)
with 2gn generators. Let K, (F') be the normal closure of classical pure braid group
P, in P(n, F'). This group has been introduced in [2] and it has been used in [10] in
order to define Vassiliev invariants for surface braid groups. We show that K, (F’)
is isomorphic to [P(n, F), P(n, F)] if and only if F = T?. Otherwise we have the
strict inclusion K,(F) C [P(n,F),P(n,F)]. Let F be a surface of genus g > 0
with p > 0 boundary components. Consider the sub-surface E obtained removing
g handles. Let Y,,(F') be the normal closure of P(n, E) in P(n,F). We extend to
Y, (F) some results shown in [10] on K, (F), i.e.

e Nalo IYa(F))* = {0}

o I(Y,(F))?/(Yn(F))¥*! is a free Z-module for all d > 0,

where I* means the k-th power of the augmentation ideal of the group ring of
Yo (F).
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Stefan Papadima and Vlad Sergiescu for useful discussions and suggestions. Part
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support and hospitality are gratefully acknowledged.



2. PRELIMINARIES

2.1. Fadell-Neuwirth fibrations. The main tool one uses is the Fadell-Neuwirth
fibration, with its generalisation and the corresponding exact sequences. As ob-
served in [4], if F' is a surface (closed or punctured, orientable or not), the map
0:F,F — F,_1F defined by

O(z1,y...,2n) = (21, Tn—1)

is a fibration with fiber F'\ {z1,...,2,—1}. The exact homotopy sequence of the
fibration gives us the exact sequence

.. ﬂg(FnF) — WQ(Fn_lF) — 7T1(F\{.CL'1,. ..,wn_l})
- P(n,F) - P(n—1,F) - 1.

Since a punctured surface (with at least one puncture) has the homotopy type of a
one dimensional complex, we deduce

Wk(FnF)gﬂk(anlF)g"'gﬂk(F), k23

and

WQ(FHF) g 7T2(Fn_1F) g e g 7T2(F) .
If F is an orientable surface and F # S2, all higher homotopy groups are trivial.
Thus, if F is an orientable surface different from the sphere we can conclude that
there is an exact sequence

(PBS) 1——» m(F\{z1,...,2n1}) — P(n,F) ——+ P(n—1,F) -1,

where 6 is the map that “forgets” the last path pointed at z,.

The problem of the existence of a section for (PBS) has been completely solved
n [11]. It is possible to show that § admits a section, when p > 0. On the other
hand, when F is a closed orientable surface of genus g > 2, (PBS) splits if and only
if n = 2. An explicit section is shown in [2] in the case of the torus.

2.2. Geometric interpretations of generators and relations. Let F' be an
orientable surface. Let g(n, F) be the group with the presentation given in Theorem
1.1 or Theorem 1.2 respectively. The geometric interpretation for generators of
B(n, F), when F is a closed surface of genus g > 1 is the same as in [8], except that
we represent F' as a polygon L of 4¢g sides with the standard identification of edges
(see also section 6.2). We can consider braids as paths on L, which we draw with
the usual “over and under” information at the crossing points. Figure 1 presents

the generators of B(n, F) realized as braids on L.

Bi aj
aj \\gii Bi Bi .
! a \ / bj . , \
X \
/ \ ’ K P P \
! LI } Y 1 \
B P, P P \ ~
\ 1 n v 1 noo \ /
. \ / \ /
\ \ / /
a b. GI

FIGURE 1. Generators as braids (for F' an orientable closed surface).
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Note that in the braid a; (respectively b;) the only non trivial string is the first
one, which goes through the «a;-th wall ( 8;-th wall). Remark also that o1 ...,0n-1
are the classical braid generators on the disk.

FIGURE 2. Geometric interpretation for relation (R4) in Theorem
1.1; homotopy between o; 'a,o; 'b, (on the left) and b,o; ‘a,01
(on the right).

o

By

- ‘
B, “

FIGURE 4. Braid [a1, b7 ']+ - [ag, b5 ).

It is easy to check that the relations above hold in B(n,F'). The non trivial
strings of a, (b,) and o; when i # 1, may be considered to be disjoint and then
(R1) holds in B(n, F). On the other hand, oy 'a,07 " is the braid whose the only
non trivial string is the second one, which goes through the r-th wall and disjoint
from the corresponding non trivial string of a,. Then o, 1araf ! and a, commute.
Similarly we have that o7 'b,07 " and b, commute and (R2) is verified. The case of
(R3) is similar. Figure 2 presents a sketch of a homotopy between with o laral_ b,
and b,o; *a,0,. Thus, (R4) holds in B(n, F).

Let s, (t.) be the first string of a, (b,), for r = 1,...,2g, and consider all the
paths s1,%1,...,5,,t,. We cut L along them and we glue the pieces along the edges
of L. We obtain a new fundamental domain (see Figure 3, for the case of a surface
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of genus 2), called L;, with vertex P;. On L; it is clear that [as, 1_1] -[ag,bgl]
is equivalent to the braid of Figure 4, equivalent to the braid oy02 .
and then (TR) is verified in B(n, F).

2
Op—1---0201

FIGURE 5. Generators as braids (for F' an orientable surface with
p boundary components).

There is an analogous geometric interpretation of generators of E(n, F), for F
an orientable p-punctured surface. The definition of generators ;, a;, b; is the same
as above. We only have to add generators z; which represent a loop of the first
string around the i-th boundary component (Figure 5), except the p-th one. As
above, relations can be easily checked on corresponding paths. Remark that a loop
of the first string around the p-th boundary component can be represented by the
geometric braid corresponding to the element

[a1,0, 1]+ fag, by oy - roply oy ey ey
Therefore, one has natural morphisms ¢, : B(n,F) — B(n,F). One further
shows that ¢n are actually isomorphisms. From now on we replace the set of
generators {ai,...,a4,b1,...,b,} with the set {c1,...,co4}, where cop_1 := at and
Cog ‘= bk-

3. OUTLINE OF THE PROOF OF THEOREM 1.1

3.1. The inductive assertion. We outline the ideas of the proof for F' a surface
of genus g with one puncture. One applies an induction on the number n of strands.
For n =1, B(1,F) = m (F) = B(1, F), then ¢, is an isomorphism.

Consider the subgroup B°(n, F) = 7=1(¥,_1) and the map

6:B°n,F) = B(n—1,F)

which “forgets” the last string. Now, let B%(n, F) be the subgroup of B(n, F)
generated by c¢i1,...,C29,01,-..,0n-2, T1, .., Tn—1,W1,...,Wsq, Where

— 2 -1 _ 2
TP = 0—"*1'“0—]' 0 (T” 1=0p_ )
| —1 gt
Wp = o—nfl---o—l CrO1-"-Op_

r< 50
— -1 -1 g+1
Wy — o'n_l...a'lcro'l o0 2 [ >



We construct the following diagram:

B(n, F) 4 B(n—1,F)

¢n|§0 (n,F) Pn—1

B%n,F) —0> B(n—1,F)

The map 6 is defined as qﬁ;ilﬁqbn‘ Bo(n,F)- It is well defined, since ¢, ; is an
isomorphism by the inductive assumption, and it is onto. In fact, 8(¢;) = ¢;, é(a]-) =
ojforj=1,...,n—-2.

3.2. The existence of a section. The morphism 6 has got a natural section
s:B(n—1,F) - B%n, F) defined as: s(o;) = 0j,5(¢c;) =¢i, for j=1,...,n—2
and:=1,...,2g.

Definition 3.1. Given a group G and a subset G of elements of G we set (G) for
the subgroup of G generated by G and {{G)) for the subgroup of G normally generated
by G.

Lemma 3.1. Let G ={m,...,Th—1,w1,...,w2g}. Then Ker(d) = (G).

Proof: Weset 8 =71 ---Th—1 andyzrgll---n---rn_l :a;il---af---an_l.

By construction we have (G) C Ker(0). )
The existence of a section s implies that Ker(d) = ((G)). In fact, suppose

that there is such x € Ker(d) that = ¢ ((G)). Thus, there is a word z' # 1 on
generators Ci,...,C2,01,...,0p—2, Of Eo(n,F) such that 8(z') = 1, because all
other generators of B%(n, F) are in (G). This is false, since ' = s(6(z')). To
prove that (G) is normal, we need to show that h9,9h € (G) for all generators g of

B(n, F) and for all h € G.

i) Let g be one of the classical braid generators o;, j = 1,...,n — 2. It is clear
that 7,7 and %7; (i = 1,...,n — 1) belong to (r1,...,7Tn—1), since it is already
true in classical braid groups ([14], [18]). On the other hand, w;’ = %iw; = w;
(i=1,...,29).

ii) Let g = ¢, (r = 1,...,2g). Commutativity relations imply 7, = “7; = 7;
(r=1,...,29,5=2,...n—1). Note that

-1 -1
CTTI :’Bwr Y and Tlc’" =T1 Bwr’y fOI‘ T S [_g—;—l] H
-1
=7 and T ="t “m for r> [g;—l] +1.

We show only the first equation (the other ones are similar). By iterated application
of [¢r,01¢, 1] = 1 we obtain:

1 1 —1

Crm = an_l---chTolc;lcTalc;lalal_ oy -0 =

_ -1 -1 -1 _-1 _
= 0p—1'""02Cr01C. 01C, 01Cp0y Og -0, 1 =

_ -1 -1 _—1 -1 _ Buw?
=0p—1°""0201C, "0101Cr01 Oy "'Un_l—'B Y.



Set cos = o7 'csoq for s < [%] and ¢y 4 = g1cs07 " for s > [%] + 1. In the
same way as above we find that:

(1) = @r(o}) (L<r<[5H]);
") = (DT (<r<[H);
"o} = (@D (B +1<r<2);
(@) = eed) ([(FH]+1<r<29).

Now, remark that relations (R7) and (R8) imply the following relations:
(R9) cralcsafl = UlcsaflcT ([’Zil] +1<5<29);

(R10) cpo7 cr101 = o7 er_r07 e, (evenr);

Previous relations combined with relations (R6), ... (R10) give:
“Tea,s = Cas
(ISTS[%i],s:l,...,[TQ—I] [ ]+1,...,2g;
[ +1<r<2g, s=1,...,[2] ) [=H] +1
<[4

1)

—2
Cr Cc2,7r0
Cylyp = ey, (1<r<

ey, =1y, (1<r<[£HL])

—2
CTCQ’T — cg’lr co,r ([g+1:| + 1 < r < 29)

;
ey =1 (e00) (s = [22] + 1,0, [552))s
21 = C;,:'U%CZ,TCZ r41 (roddandr > gz_l] +1);
C5Tpgr = 01 “Cop41 (rodd andr > [ZHE] +1);
Corpp1 = (C2,r07 26 T)CZ riaor? e0] (rodd and r < [£51]);

el = 0102,T+1[C2,r701] (rodd and r < [ngr_l]) )

a1 = [Co 0 O1)C2,r—1(C5 007 2C2r)  (r even and r > [Z12]);
¢y =[07% carlear 10} (revenandr > [£2] +1);

ey po1 = Cop_107 > (reven and r < [£E1]);

CYp1 = Cz,r—102,rafc2j}, (reven and r < [£H1]).

A consequence of these identities and relation (R1) is that w;", w; € (G) (i,r =
1,...,29). O

Lemma 3.2. Set also {w1,...,w2g,T1,...Tn—1} in BO(n, F) for {pn(w1),- .., dn(way),
On(m1)s. .. In(Tn-1)}. Then Ker(8) is freely generated by {wi,...,waq, T1,...,

Tn—l}-



Proof: The diagram

P(n,F) —0> Pn—1,F)

B°(n,F) —0> B(n—-1,F)
is commutative and the kernels of horizontal maps are the same. As stated in
section 2.1, Ker(0) = m(F \ {P1,...,Pn_1}, Py). If the fundamental domain is
changed as in Figure 6 and w;, 7; are considered as loops of the fundamental group
of F\ {Pi,...,P,_1} based on P,, it is clear that m (F \ {P1,...,Po_1}, Pp) =
<wl,...,w2g,Tl,...Tn,]_|@). O

FIGURE 6. Interpretation of w;, 7; as loops of the fundamental group.

Lemma 3.3. ¢n‘§0 (n,F) is an isomorphism.

Proof: From the previous Lemmas it follows that the map from Ker(6) to Ker(6)
is an isomorphism. The Five Lemma and the inductive assumption conclude the
proof. O

3.3. End of the proof. In order to show that ¢, is an isomorphism, let us re-
mark first that it is onto. In fact, from the previous Lemma the image of B(n, F)
contains P, and on the other hand E(n,F) surjects on X,. Since the index of
B%(n,F) in B(n,F) is n, it is sufficient to show that [B(n,F) : B°(n,F)] = n.
Consider the elements p; = ¢ ---op—1 (We set p, = 1) in B(n, F). We claim that
U; piB%(n, F) = B(n, F). We only have to show that for any (positive or negative)
generator g of g(n,F) andi=1,...,n there exists j =1,...,n and z € Eo(n,F)
such that
9pi = pjx .

If g is a classical braid, this result is well-known ([3]). Other cases come almost
directly from the definition of w;. Thus every element of B(n, F) can be written in
the form p; B (n, F). Since p;p; ¢ B%(n, F) for i # j we are done. O
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The previous proof holds also for p > 1. This time éo(n, F) is the subgroup of
B(n,F) generatedby Cly+++3C29,015.4.,0n-2,T1y.+.,Tn—1,W1,... ,(JJQg,Cl, Ce. ,Cp_l
where 7;, w, are defined as above and (; = 0,1, -0y *2j01,"+ ,On_1. O

4. PROOF OF THEOREM 1.2

4.1. About the section. The steps of the proof are the same. We set again
B%(n,F) = 7 1(2,_1). This time B%(n, F) is the subgroup of B(n, F) generated
by ci,...,€29,01,.+.,0n—2, T1,-+.,Tn—1, Wi,...,Wsq, Where 7;, w, are defined as
above. Remark that 7, € (G) since from (TR) relation, the following relation

-1 —1
7'1:")/1*‘)/27'"_1...7-2 ,

holds in B°(n, F), where v, = [w[&]ﬂ,w[;%l]w]---[wgg_l,w{;] and 7, =

]] When F is a closed surface the corresponding

2

-1 1
[w17w2 ]“'[w[g—gl]_lawlig_Fl
2

6 has no section (see section 2.1). Nevertheless, we are able to prove the analogous
of Lemma 3.1 (see section 4.2).

Lemma 4.1. Let F be a closed surface. Then Ker(0~) is generated by {wi,...,way,
T2y .« -Tn—l}-

The following Lemma is analogous to Lemma 3.2.

Lemma 4.2. Let F' be a closed surface and set also {wy,...,wag, T2,...Th_1} in

BO(TL,F) fOT {¢n(w1)7 Tt ¢n(w2g)7¢n(7—2)7 s ¢n(7—n71)}- KGT(H) isfreely genera'ted
by {wl, sy, W29, T2, - .Tn,]_}.

Let pj = 0j---0pn—1 (where p, = 1). We may conclude by checking that for any

generator g of B(n, F') (or its inverse) and ¢ = 1,...,n there exists j = 1,...,n and
x € B%(n, F) such that

9pi = p;x ,

which is a sub-case of previous situation. O

4.2. Proof of Lemma 4.1. To conclude the proof of Theorem 1.2, we give the
demonstration of Lemma 4.1. Let us begin with the following Lemma.

Lemma 4.3. Let F be a closed surface and G = {72,...,Th—1,w1,...,Wwag}. The
subgroup (G) is normal in B°(n, F)

Proof: Tt suffices to consider relations in Lemma 3.1. Remark that from relations
shown in Lemma 3.1, it follows also that the set

{yriv"i =1,...n = 1, y word over {wi™,..., w5 }},

is a system of generators for {(71,...,7Th—1)) = ({Tn-1))- O
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In order to prove Lemma 4.1, let us consider the following diagram

b B(n —1,F)

Kerf —— B°(n, F)
i

1]
tn dn 0

Ker6' ;Zr B°(n, F)/((Tn-1))

In this diagram ¢, is the natural projection, 6" is defined by 6’ o g, = 6 and t,, is
defined by i'ot,, = ¢, 0i. Since t,, is well defined and onto we deduce that Ker(t,) =
({Tn—1)). Now, 8’ does have a natural section s : B(n — 1, F) — B%(n, F)/{{Tn_1))
defined as s(¢;) = [¢;] and s(0;) = [0;], where [z] is a representative of z € B(n, F)
in B(n, F)/{{tn—1)). Thus, using the same argument as in Lemma 3.1, we derive
that Ker(d') = ((K)), where K = {[wi], -, [w2g],[72], - - - [Tn_1]}- From Lemma 4.3
it follows that () = ({(K)). Moreover, since 7; € ((Tp—1)) for i = 1,...,n — 2,
Ker(0') = ([wi],-- ., [wag])-

From the exact sequence

1= ((Tn_1)) = Ker() —» Ker(§') — 1

it follows that a system of generators for ((7,-1)) and wy,...,ws, form a system
of generators for Ker(f). From the remark in Lemma 4.3 it follows that Ker(f) =
(7'2,...,Tn_l,wl,...,w2g). Oa

5. SURFACE PURE BRAID GROUPS
5.1. Presentations for surface pure braid groups.
Theorem 5.1. Let F' be a closed, orientable surface of genus g > 1. P(n,F)

admits the following presentation (see also [11] for a similar result):

e Generators: {b; ;1 <i<n,1<r <2g}.
e Relations:

n i—1
(PRY)  TI D =binbig---bizg—1bi g (11 Dei) ™0 1bia -~y gy _1biszg
k=i+1 k=1
(1<i<n);

(PR2) ’ebj,=bj, (1<i<j<ml<s<2g)
PR3) Yisb, =U;ibj, (1<i<j<mnl<s<r<2g);
.77 ’J J7
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(PR4) bl = (% (D )bj, (1<i<j<ml<s<r<2g);
(PR5) by = b (U )%*) (1<i<j<n1<r<s<2g);
(PR6) by =b;,Di; (1<i<j<ml<r<s<2g);

it1 .
(PRT) D, =i Uy,

i1 p
(PR8) U= Dil,_]["“m“ o

(PR9) I”“’SDm-:Di’j 1<k<i<j<nand 1<i<j<k<n;1<s<2g);
(PR10) YD, ; =U'* (1<i<j<ml<s<2g);

li.?
(PR11) D% =Dy¥ (1<i<k<j<ml<s<2g).

Proof: Let f’(n, F)) be the group defined by the presentation. A closed orientable
surface F' of genus g > 1 may be represented as a polygon L of 4¢g sides, where
opposite edges are identified. A geometric interpretation of generators b; s and
braids D; ;,U;; on this fundamental domain is provided in Figure 7. Drawing

FIGURE 7. Geometric interpretation of b; ,, D; ; and U; ;.

corresponding braids one can verify that relations (PRi) hold in P(n, F'). As shown
in [12], given an exact sequence

1-A—-B—>C-—>1,

and presentations (G4, R4) and (G¢, Rc), we can derive a presentation (Gp, Rp)
for B with generators G4 and the coset representatives of C'4. The relations Rp
are given by the union of three set. The first corresponds to relations R4, and the
second one to writing each relation in C in terms of corresponding coset representa-
tives as an element of A. The last set corresponds to the fact that the action under
conjugation of each coset representative of generators of C' (and their inverses)
on each generator of A is an element of A. We can apply this result on (PBS) se-
quence. The presentation is correct for n = 1. By induction, suppose that for n—1,
P(n—1,F) = P(n—1,F). As shown in Figure 6 (here 7; = D; ,, and w; = b, ;) the
set of elements D; ,,, b, ; (i =2,...,n—1,j=1,...,2g) is a system of generators
for m (F \ {Py,..., Pn_1},P,). From the induction hypothesis and the fact that
(PR4) holds for corresponding pure braids, the set {b; ;1 < i <n,1 <r < 2¢9}
is a system of generators for P(n,F'). Thus the natural morphism from P(n, F)
to P(n, F) is well defined and onto. To show that (PRi) is a complete system of
relations for P(n, F') it suffices to prove that relations Rp(y,r) are a consequence
of relations (PRi). Since 7y (F \ {P1,...,Py_1},Py) is a free group on the given
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generators, we just have to check the second and the third set of relations. Con-
sider as coset representative for the generator b; j in P(n — 1, F') the generator b; ;
in P(n,F). Except relation (PR1), relations lift directly to relations in P(n, F).
Relation (PR1) in P(n — 1, F) lifts to the following element:

n—1

—1 —1
(TI Dir)bisybizg—1---bisbia HD;“ 129055 1+ Di2bi]
k=i+1

that is equal to D; , from (PR1) in P(n F).
Now, remark that (PR8),(PR9) and (PR10) imply the following relations:

i b
(PR12) DY =l Postiop, o (1 <ic j<ni1 <5< 29);
(PR13) YeeDj;="iUkibiip, . (1<i<k<j<ml<s<2g);
Then, (PR2), ..., (PR13) imply that %wb,,,bn7, % Dj, and D}y belong to

T (F\{P1,...,Po_1},Pp),for1<i<n—-1,2<j<n-1landl Sr s < 2g.
Thus, also the third set of relations of Rp is a consequence of (PRi). O

Corollary 5.1. Let F be a closed, orientable surface of genus g > 1. P(n, F) has
the following presentation:

o Generators: {b; ;1 <i<n,1<r<2g}.

o Relations:

n i—1

(PR1) ] [beisbis] = bibis - -bing—1bs oy ([T it bps)) ™ bitbiz -~ biag 1bi2g

k=i+1 k=1

(1<i<n);
(PR2) [bis,bjs]=1 (1<i<j<n;1<s<2g);
(PR3)  [bi,s,bj,r] = [biy1,bj2] (1<i<j<ml<s<r<2g);
(PR4) [bj;,bjr) =" big,b51] (1<i<j<ml<s<r<2g);
(PR5)  [bis; b5,] = [bi1,bjp]" (1 <i<j<ml<r<s<2g);
(PR6) [b;;,b;,]=1bis,b51] (1<i<j<ml<r<s<2g);
i+1 i+1
(PRT) [b;,llab;gl] H [br,1,b52] = H [bk,15b5,2][bi,1,b52] 5
k=j—1 k=j—1

(PRS) H [b]_%abkz [bz 1, 172] b]_llabw] H b]_llvbk 2]7
k=i+1 k=i+1

(PR9)  [br,s, [b71,b72]1 =1 (1< k<i<j<n);
i+1
(PR10)  [bis 051,050 = 50 [T iz 0500 51,0321 (1 <i<j<nm);
k=j—1
(PR11)  [b 3,651,650 = [0 5, 051), 051, 05511 (1<i<k<j<n).
A similar result holds for pure braid groups of a p punctured orientable surface.
Relations may be expressed as commutators. We stress that these presentations
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have only “local” relations, i.e. there are no relations like as (PR1) in Corollary
5.1.

5.2. The normal closure of P, in P(n, F). We recall that x : P(n, F) = «n(F)"
is the map defined by x(p) = (p1,---,pn). Let K, (F) be the normal closure of
P, in P(n, F). As corollary of previous presentations we give an easy proof of the
well-known fact [7] that Ker(x) = K,(F).

Lemma 5.1. Let F be a closed orientable surface of genus g > 1. Let K, (F) be
the normal closure of P, in P(n,F). Then
Ker(x) = K,.(F).
Proof: Remark that
T(F)* = (c1,15- -5 Cn,2g][Ci,s5 Chr] = Ci1 - "Cz',zgci_,ll . "Ci_,zlg =1),

where 1 <i# j<mand1<rs<2g. Wehave x(b;s) = ¢;s when s is odd and
x(bis) = cz_s1 when s is even. Recall that P, is generated by D;; (1 <i# j <n)
and it embeds in P(n, F) (see [16]). It follows that K, (F) = ({(D;;)). Since D; ; =
[bj_j, b;;], we deduce Ker(x) D K,(F). On the other hand, if z € Ker(x), then z
is equivalent to a word pir1p; L., pqrqpq_l, where r; are commutators [bﬁ, bf;] or
bi’lbi_’zl - 'bi,2gflbi_’21gbi_’11bz’,2 - 'bi_’zlgflbz'ﬂg; for some 1 S ) # ] S n and 1 S r,s S
2g. Remark that from relation (PR1) in Theorem 5.1 one derives

i—1 n
bi,1b] 3-+bi2g—1b7 4 ) o -1 ) —1 317 -1 )
(k) 5172020 ’ZQ(H D) H Dig = biab; o - - -bing-1b; 55b; 1bi2 - -b; g 1bi2g
k=1 k=i+1

The inclusion Ker(x) C K,(F) follows from relations (PRi) and (*). O

We remark that Lemma 5.1 may be generalised to F' orientable surface with
boundary.

Proposition 5.1. Let F be a orientable surface of genus g > 1, possibly with
boundary. Let N, (F) be the normal closure of the braid group on the disk B,. The
quotient B(n, F)[N,(F) is isomorphic to Hy(F), the first homology group of the
surface F'.

Proof: It suffices to replace all o; with 1 in relations in Theorems 1.1 and 1.2.
O

Proposition 5.2. Let F' be a closed orientable surface of genus g > 1. For g =1
[P(n, F),P(n,F)] = K,(F).

Otherwise, for g > 1, the strict inclusion holds:
[P(n,F),P(n,F)] D K,(F).

Proof: The inclusion K, (F) C [P(n,F),P(n, F)] is clear.

Suppose that [P(n, F), P(n,F)] = K,(F) = Ker(x) for g > 1. It follows that
P(n,F)/Ker(x) is abelian. This is false since 71 (F))" is not abelian for g > 1.

When F = T2, from (x) in Lemma 5.1 it follows that

[bi1,b;a] € Kn(T?) (1<i<m),
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and thus
(**) [bi,lybi,2] € Kn(T2) (]. <1< TL) .
Thus from relations (PRi) in Corollary 5.1 and (xx) we derive that [a

K, (F) for any pair of generators of P(n,T?). By well-known Witt-Hall identities
we conclude that

:%:17 b:l:l] €

[P(n,T?), P(n,T?)] = K,.(T?).
O

Remark 5.1. When g > 1 we can state that K, (F') is the normal closure of the
subgroup generated by elements [b;r,b;;], for 1 <i # j <nandl <r,s < 2g.
This is a straightforward consequence of Corollary 5.1. Remark also that when F
is with boundary the inclusion K,(F) C [P(n,F), P(n,F)] is proper.

5.3. Residual properties of subgroups of P(n, F).

Theorem 5.2. Let F' be a surface of genus g > 0 with p > 0 boundary components.
Consider the sub-surface E obtained removing g handles. Let Y, (F) be the normal
closure of P(n,E) in P(n, F).

o Nalo IYn(F))* = {0};
o I(Y,(F)/I(Y,(F))! is a free Z-module for all d > 0.

Proof: To show the claim we have just to verify that hypotheses of following
Theorem (see [10] or [15] ) are fulfilled.

Theorem 5.3. Let A,C be two groups. If C acts on A and the induced action on
the abelianization of A is trivial,

I(AxC)™ ZI C)™*  for allm > 0.

We say that A x C is the quasi-direct product of A and C. Let B be a finitely
iterated quasi-direct product of free groups, then

e Nazo I(B)? = {0};
I(B)?/1(B)*+! is a free Z-module for all d > 0.

In order to simplify notations and computations we outline the proof for F
orientable surface of genus g > 1 with one boundary component. Consider B(n, F')

with the presentation give in Theorem 1.1. For all j = 2,...,n, we set aJ, =
o7l 01 asor 051 for s <[] and @, = ojoq - alasall-- o; ! for
s > [ZEL]. Respectively we deﬁne bjs = 0; o tbsor -0y for s < [2E]
and bj s = 0j 1---01bsay ' - j—l for s > [%] This set of braids generates

i—1

= giq g2t P ke=i+1
P(n,F). As above, let D;; = oj-1---07---0;_; and U;; = D;;
-1 2

Uj—l S 07 OG-

k,j

Lemma 5.2. The group Y,(F) is the group normally generated by the following
set:

{Dijn<i<j<n}U{air|l<i<n, 1<k<g}
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Proof: Consider the (injective) map 1, : P(n,E) — P(n,F) induced by the
inclusion E C F. Thus, we may consider the following set of braids in P(n, F),

{Dijl1 <i<j<n}U{airll <i<n, 1<k <ghulb pa; bikll <i<n, 1<k<g}

2y
as braids in P(n, E) (see figure 8). This set generates P(n, E) and the claim follows.
Remark that this Lemma implies that the inclusion K, (F) C Y, (F') is proper. O

From now on, let F,, the free group on n generators. Let {e; ;|1 =1,...,n, j =
1,...,m} be the generators of @, F,. Let u: ®,F>; - ®,F, be the map defined
by p(ei2r) = eir and p(e;2k+1) = 1. One can proceed as in Lemma 5.1 for showing
that Ker(uox) = Y,(F). Thus the following commutative diagram holds

1 1 1
1 > F2g > @nF2g _— @n—lFZg 1
pox pox
0
| — Ker(6) — P(n,F) - P(n—1,F) 1
0
1 . G . Yo(F) — e Yy (F) 1
1 1 1

where G,, =Y, (F) N Ker(9) is a free group.
Lemma 5.3. The following set is a system of generators for G .
{(1Djmy 1 < <npU{vaniy 1<k < g}
where 7y is a word over {af; U bilj|1 <j<g}
Proof: Consider the vertical sequence
1 - G, ~ Ker(9) > Py > 1.

Recall that Ker(0) = mi(F\ {P1,...,Pn_1},Py). A set of free generators for this
group is given by

{Djall <j<n}U{an;|1<j<gU{bn;|1<j<g}.

The map po x sends Dy, ; in 1, an in 1 and by, 1 in ey . It follows that G, is the
sub-group of Ker(f) normally generated by the set

{Djnll <i<j<n}pU{ani|l <k<g}

and the claim follows. O
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FIGURE 8. Braids of P(n, F) as braids of P(n, E)

Recall that the existence of a section for 6 implies that Y, _1(F') acts by conju-
gation on G, and thus on the abelianization G, /[Gr,Gr).

Lemma 5.4. The action of Y,_1(F) on Gy, /|Gr, Gy] is trivial.

Proof: Let t € {D; ;1 <i<j<n—1}U{a;x]1 <i<n—-11<k<g}and
f€{D;nll <j<n}U{ani|l <k < g} Toshow the Theorem it suffices to verify
that each t acts trivially on G,,/[Gp,Gr]. It is evident that

Di’jan,k:an,k (]:2aan_lrlsksg)7
and from classical pure braid relations it follows that

D;,; Dl,n = Dl,n (IIlOd [Gn,Gn]) )

for j = 2,...,n — 1. On the other hand, one can verify (drawing corresponding
braids) that

(% %) ai,kfai_’; =f (mod[Gn,Gr]),

a”"ij,n = Dj,n (1 < i< .7)7

n—1 -
ai,le.,n — Hs:i Ds’"a"sl’cDi,n = Dz’,n (1 < k < [%])7
WDy = DI =Dy ([H]<k<g);
“rDin = Dijn (1<j<i;1<k<[22]);

-1
“*Djn = [D"’wa"’k]Dj,n =Djn (1<j<i [%] <k<9));
Ukgn, = ans (s <k <[]

k<[5 <s;
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5] <k <n
s < [5H] < k);
ai’kan,k = Ui’"an,k = Qnk (]- < k < [‘q—;_l]) 5
, D; an,
al’k(ln’k = an,k): , =Ank ([%] <k< 29) 3
ai,kan’s — [a"’k’Uhn](an,s) = Gn,s ([%il] <s< k)7
) -1
Ytans = {Dl’ma"’k](an,S) Sans (k<s< [g;_l]) :
Now consider the action of each ¢t on b, ,, for s =1,...,g9. As above it is evident

that Piib, s = by s for s=1,...,g. One can verify that
(x5 %%)  @igbn,sa;, =hbnpy (1<s5<g,1<k<yg),
where h € G,.
(1) “*bpe=bns (s <k <[4
k<[5 <s
[%] <k<s;
s < [57] <k);
(2) kb, =Py = hb,, ([H] <s<
(8)  rbpy =i = Wby (k<5 < [#])
(4) bk = Dinbnilay > Din] = B'bn i
(k < [5H]);
(5)  kbyy = a;lkUi,nan,kbn,k = h"by,
(5] <h),

where h,h',h",h" € G,. Let v be a word over {aiﬁ Ubiﬂl < j < g}. From (***)
and (***¥) it follows that, for each t € {D; ;|1 <i < j <n—1}U{a;x|l <4

<
n—1, 1<k<g}htyfy 't =yfy" . O

Relations in Lemma 5.4 provide an other proof for Lemma 5.3. In fact, let
Jn = ({¥Djny 1 < § < n}U{yaney7'| 1 < k < g}), 7 word over {a;} U
bilj|1 < j < g}. Relations in Lemma 5.4 imply that for any h € J,, we have that
%.kh € J,. Similar computations for b; ; show that J,, is normal in P(n,F). On
the other hand the existence of a section for # implies that G,, = (({D;,|1 < j <
n} U {ank| 1 < k < g})) and thus we obtain G,, = J,, since J,, is normal and
In 2 ({Djnll <j <n}U{ani|1 <k < g}

It seems that previous arguments hold also for the commutator subgroup of
P(n, F), but computations are very involved. A consequence of this result would
be that P(n, F) is residually solvable. We notice that classical techniques do not
apply to the whole group P(n, F'). The main obstruction is that it seems that the
action of P(n — 1, F') on the abelianisation of w1 (F \ {z1,...,Zn—1}) is not trivial
(see for instance relations (4) and (5) in Theorem 5.2).

Remark 5.2. As P(n,F) is a (normal) subgroup of the mapping class group of a
pointed surface, it follows that P(n, F) is residually finite.
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6. APPENDIX

6.1. Braids on p-punctured spheres. We recall that the exact sequence
1 —— m(F\{Pi,...,Pu1},P)) —> P(n,F) —+» P(n—1,F) > 1

holds also when F = S? ([5]). Thus, previous arguments may be repeated in the
case of the sphere, to obtain a new proof for the well-known presentation of braid
groups on the sphere as quotients of classical braid groups. On the other hand,
when F' is p-punctured sphere we have the following result.

Theorem 6.1. Let F be an orientable p-punctured sphere. The group B(n,F)
admits the following presentation:

e Generators: 01,...,0n-1,21,---,%p—1-
o Relations:
— Braid relations, i.e.

0i0i+103 = 0i4+10i0i+1;
005 = 050 f0T|Z—]|22

— Mized relations:

(R1) zjoi=o0iz; (i#Lj=1,...,p—1);
(R2) o7'zjorz =zo7 zj010 (G=1,...,p—1, j <1);

(R3) oy'zjor 'z = zjoy ot (G=1,...,p—1);

6.2. Gonzalez-Meneses’ presentations. Let F be a closed orientable surface of
genus g > 1. Using the same arguments outlined in sections 3 and 4 we may provide
an other presentation for B(n, F')

Theorem 6.2. Let F be a closed orientable surface of genus g > 1. The group
B(n, F) admits the following presentation:
o Generators: 01,...,0n—1,b1,...,b2g.
o Relations:
— Braid relations as in Theorem 1.1.
— Mized relations:

(R1) broj=oiby (1<r<2g;i#1);

(R2) bsaflbraflzalbraflbs 1<s<r<2g);
3 r01 broy =01 bro; b, (1<r<29);
R byoy tbopt oo th

(TR) b1b2_1 PN bzgflb;glbl_lbg ... bgglilbgg = 0109 " '(J'2

10207 -

A closed orientable surface F' of genus g > 1 is represented as a polygon L of 4g
sides, where opposite edges are identified. Figure 7 gives a geometric interpretation
of generators. Relations can be easily verified on corresponding braids.

The presentation in Theorem 6.2 is equivalent to Gonzalez-Meneses’ presenta-
tion. More precisely, Gonzalez-Meneses [8] found the following presentation for
B(n, F), when F is a closed, orientable surface of genus g > 1.

o Generators: gi,...,0n—1,01,...,02 .
e Relations:
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FIGURE 9. Generators as braids (for F' an orientable closed surface).

1
2) o005 =0j0; forl|i—j|>2,

(1)
(2)
(3) [ar,A2s]=1 (1<r,s<2g;r#s),
(4)
(5)
(6)

0i0i+10; = 0i4+10i0i+1 ,

4) [ar,0:]=1 (1<r<2g50#1),

5 lar...ar, A2, ] =07 (1<r<2g),

6 al...aggafl...az_gl:alag---ai_l---@al,
where Ay, =07 (a1 ... ap 10, ... a3, oy !

Consider the morphism 1), from the presentation of Theorem 6.2 to Gonzalez-
Meneses’ presentation, defined as ¢(oy) = oy for all k =1,...,n — 1, ¢(b;) = a;,
when j is odd and ¥(b;) = aj_l, when j is even. Tedious but simple computations
show that this (surjective) morphism is well defined. On the other hand, we remark
that

ar = (A2,  Ays - 'Az,k—zA;,i_l)(AQ,kHA;,}cH Ay 1Azzg) if ks odd,

ap = (Ag,lAz_’é s Aik—2A2,k*1)(A2,k+1A2_,k+2 s A2,29*1A2_,§g) if k is even,
Explicit calculations can prove that the relations in Theorem 6.2 are a consequence
of Gonzalez-Meneses’ relations. We remark that our presentations in Theorems 1.2

and 6.2 have less relations than Gonzalez-Meneses’ones.
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