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Abstract

In this paper we study the d-equation with zero Cauchy data along
a hypersurface with constant signature. Applications to the solvability
of the tangential Cauchy-Riemann equations for smooth forms with
compact support and currents on the hypersurface are given. We also
prove that the Hartogs phenomenon holds in weakly 2-convex-concave
hypersurfaces with constant signature of Stein manifolds.

1 Introduction

It is well-known that if X is a Stein manifold of complex dimension n > 2
and K a compact subset of X with X'\ K connected, then every holomorphic
function on X \ K extends holomorphically to X. In fact it is sufficient that
X satisfies H>"! (X) = 0, which holds for example under the assumption that
X is completely 1-convex in the sense of definition 5.1 in [He/Le]. This ex-
tension property of holomorphic functions is called the Hartogs phenomenon.

The Hartogs phenomenon has also been studied in so-called g-convex-
concave hypersurfaces. These are hypersurfaces, whose Levi form has at
least ¢ positive and g negative eigenvalues at each point.

Indeed, it is known that the Hartogs phenomenon holds if M is a 2-
convex-concave hypersurface in a Stein manifold or if M is 1-convex-concave
and K sufficiently small (see [He] and [L-T]).
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On the other hand, the following example given in [Hi/Na2] shows that
the Hartogs phenomenon fails to hold globally for 1-convex-concave hyper-
surfaces:

Set M = {ze€ C||zn]?+|2?—|xn?=1}and K = {z € M | 23 = 0}.
Then the CR function f(z) = % defined on M \ K has no CR extension to
M.

Here we will prove the following result on the Hartogs phenomenon in
hypersurfaces:

Theorem 1.1

Let X be a Stein manifold and M a smooth, closed, connected hypersurface
in X. Suppose that the signature of M is the same at each point and that
M is weakly 2-convez-concave. Let K be a compact subset of M such that
M\ K is connected and globally minimal. Then every smooth CR function
on M \ K extends to a smooth CR function on M.

M being weakly 2-convex-concave signifies that the Levi form of M has
at least 2 nonnegative and 2 nonpositive eigenvalues at each point. In par-
ticular, this class of hypersurfaces contains all Levi flat hypersurfaces of real
dimension at least 5. Another interesting case is the one of signature (1,1, 1).

We remark that the assumption of global minimality is needed in order
to assure that the weak analytic continuation principle holds for CR func-
tions. However, this assumption is always satisfied as long as the Levi form
is not identically zero (or if M is of finite bracket type).

Theorem 1.1 will be proved by showing that HC ’l(M ) = 0. More pre-
cisely, if M has signature (p~, p%, p™) at each point, we show that HYY(M) =
0 for ¢ < min(p~,p*) +p° — 1.

To show the vanishing of these tangential Cauchy-Riemann cohomology
groups with compact support, we study the d-equation with exact support
in a domain D = QN{p < 0} where Q is a completely strictly pseudoconvex
domain and p is a smooth function such that the Levi form of ¢ has exactly

_ . 0 + oy . 1,0 _
p~ negative, p” zero and p* positive eigenvalues on Ty {¢ = 0} for every
z € {0 =0}, ¢ <p’+ p*. We prove that, under these conditions, for every
0-closed (p, ¢)-form f on X with supp f C D, the equation

ou=f
supp u C D
can be solved as long as ¢ < p° + p™.

This will be done by means of basic L2-estimates on D with powers of
the inverse of the boundary distance as weight functions. The regularity



of the minimal L?-solutions follow from the Sobolev-estimates for elliptic
operators whose coefficients can be controlled by some powers of the inverse
of the boundary distance obtained in [Br].

By duality, we can then solve the J-equation for extensible currents on
D for bidegrees (p,q), ¢ > p~— + 1. We then obtain the solvability of the J-
equation for currents of bidegree (p, q), on {0 = 0}NQ, ¢ > max(p~,p")+1.

2 Construction of a family of metrics

Let 2 CC X be a nonempty domain. We say that € is completely strictly
pseudoconvex if there exists a function p of class C? in a neighborhood Ug
of Q such that Q = {z € Uy | o(2) < 0} and such that L(p,z) is positive
definite for all z € Ug.

The remainder of this paper is dedicated to the study of the 0-equation
with exact support in a certain domain which is a transversal intersection
of a completely strictly pseudoconvex domain with smooth boundary and a
weakly g-convex domain with smooth boundary. In particular such a domain
is piecewise smooth and is a g-convex manifold, i.e. it admits a (g+1)-convex
exhaustion function.

Let © be a smooth bounded completely strictly pseudoconvex domain
in a complex n-dimensional manifold X and M a real hypersurface of class
C® intersecting 0f) transversally such that 2\ M has exactly two connected
components. We suppose that M = {p = 0} where p is a C* function
whose Levi form has exactly pt positive, p zero and p~ negative eigenval-
ues on Ty M for each z € M, p~+p°+pt =n—1. We put D = QN{o < 0}.

As ) is completely strictly pseudoconvex, there exists a neighborhood
Ug of Q in X and a strictly pseudoconvex smooth function 9 on Ug such
that Q = {z € Ug | 9(2) < 0}. We define w, = i00%. wy is then a hermitian
metric on Ug.

We can find a weakly (p® + p*)-convex domain Q@ CC X with smooth
boundary such that M N Q C Q. Then by [Ma, Proposition7.1], there
exists ¢ > 0 and a smooth defining function §y; for M, defined on a neigh-
borhood V' of M NQ such that for every z € VN {o < 0}, L(—log dar, ) has
p~ negative eigenvalues less than or equal to ﬁ("’w), p° positive eigenvalues
greater or equal to ¢ and p* + 1 positive eigenvalues greater than or equal
to Vc(c) with respect to wy. For later convenience, we set V™ =V N{p < 0}.

The proof of the following lemma basically follows from the proof of



Proposition 2.3 in [Mi]. However, since we have made some adjustments
and precisions, we include the complete proof.

Lemma 2.1

Fiz ©o € M N Q. Then there exists a neighborhood U of o in X and a
smooth orthonormal basis (C1(z),...,Cn(z)) of (Te*X)* with respect to wy
on U such that on U N D we have

L(z) :== —i00log ()

P B p~+p° 3
= Y a,@G@ALE@ + Y @)@ Al ()
=1 w,v=p-+1
n—1

+ Y ah@)u(@) A (@) + an(@)ia(@) AL, (@)
psv=p~+pO+1
= L (z) 0 Lz) ® LT (z) @ L ()
such that L (z) has p~ eigenvalues smaller than the p° eigenvalues of

L0(x), which in turn are smaller than the pT eigenvalues of L1 (z), and
an(z) is the biggest eigenvalue of L(x).

Moreover, if (L1(x),...,Ly(z)) is the dual basis of (C1(z), ..., n(x)), we
can arrange that
(i) [La, Lg)(z) € Span(Ly-41(x),...,Ly-po(x)) for z € M and o, €
{p~+1,....p7 +p%

(it) [La, Lg](z) € Span(Li(z),...,Ly—1(z)) for o, € {1,...,n — 1} and
reM

(iii) [Lq,Lg)(x) € Span(Ly-41(2), - .., Ly 4po(2), Ly 41 (), -, Ly yp0(2))
forz e M and o, B € {p~ +1,...,p~ +p°}

(ZU) [La,fﬂ](.’L‘) € Span(Ll(x)a---7Ln71(x)afl($)7"'7Zn71($)) fO’I‘ a €
{1,....n -1}, 8 {p +1,....p  +p°Y andz € M

Proof: The Levi form of M at the point z is the bilinear map L, :
(T2’ M & Ty M} x {Ty°M & Ty ° M} — {T,M @ C}/{Te"° M & T;° M}
defined by £,(X,,Y;) = %iww[Xw, Y]z, where 75 is the projection
{T,M @ C} — {TxM @ C}/{T»° M & T;° M}. Since, by hypothesis on M,
the Levi form of M has exactly p° zero eigenvalues everywhere, NH0M =
1,0
Uzem Nz M, where

NOM ={Ly € T,°M | L(Ly,Yy) =0V Y, € T, M}
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is the Levi null set at z, forms a subbundle of TYOM of rank p°. Moreover,
it is easy to see (use the Jacobi identity, cf [Fr]) that N'°M @ NOM is
involutive.

Now fix g € M. We may then choose a subbundle N = U;N, of rank
p° of THYX on a neighborhood V of zg in X such that N, = Na®M for
z € M NV. Moreover, we may assume that N is itself a subbundle of
T = Kerddpy NTHX. Note that T is a subbundle of 7% X of rank (n — 1)
on V such that T, = Txl’OM forre MNV.

Let Af < ... < XZ_; be the eigenvalues of M(z) := i000y ()7, Tt
is well known that the functions z — AZ are continuous on V. Using the
assumptions on M, we have

z —_ \Z — _\Z x
A <O=X = = A0 <Aoo

for every x € M NV. For a small € > 0, we therefore get a neighborhood
W of zy in X such that for z € W

x x
/\p_ < —¢, ’\p—+p0+1 > ¢,

A7 € (—¢,¢) fori=p +1,....,p" +p°

Moreover, we can find R > 0 such that all the A are of absolute value
smaller than R for each z € W.

Intersecting the cercle of radius R centered at 0 with the lines [—¢ + iR
and [e + iR], we obtain three closed paths I'", I'0 and T't such that for
x € W, none of the eigenvalues of M(z) lies on '™, T? or T'T.

We may assume that W is small enough such that there exists a smooth
orthonormal basis X1,...,X;, 1 of T'on W such that X, ;,..., X, 0 is
a smooth basis of N on W.

We denote by M (z) the matrix of M(z) in the basis X1,...,X,_1 and
by (e1,-.-,en_1) the standard basis of C*~!. We then have KerM(z) =
Span(e,-41,---,€p—4p0) for every z € M NW.

For x € W, we may set

M (z) = % F_(M(w)—zld)_ldz,
m(z) = % PO(M(;c)—zlol)—ldz,
M (z) = % [ (0r(@) - 1)z
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Then I1~, TI° and IT* are C° mappings in a neighborhood of g (e.g. TI~
is the composition of the C** map z + M (z) and the holomorphic mapping
from the space of hermitian (n — 1) x (n — 1) matrices to itself given by

o= Jo- (A= 21d)~1dz). Tt is easy to see that I~ (z), TI°(z) and IT*(z)
are the orthogonal pI‘OJGCtiOHS of C*~! onto

E~(z) = Y Ker(M(z)— AId),
1; +p°

E°x) = Y Ker(M(z)—XId)  and
v=p~+1

Ef(z) = ”z_: Ker(M(z) — AZ1d)
v=p~+p°+1

For every z € MNW we have E°(z) = Span(e,-41,---,€p—10). There-
fore, if W is small enough, the vectors

€p-11(z) = Ho(w)(ep__H), T Ho(x)(ep_+po)

form a basis for E°(z). After a permutation of some indices, we can also
achieve that

span E~ (z) and that

Ey p041(2) 1= T (2) (€ 4011), - B (2) 1= T () (o)

span E1(z). Due to the Gram-Schmidt orthonormalization procedure and
the fact that eigenvectors associated to different eigenvalues are orthogonal,
we may assume that (é1(z),...,ép—1(x)) is an orthonormal basis for the
standard scalar product on C*~!

We define [;;(z) by é(z) = Z;:ll lij(z)e; and set
Li(z) = >70C 1 1;j(2)X;(z). Then (Ly(z),...,L, 1(z)) is an orthonormal

basis of T on W. Moreover, we have Ng° M = span(Ly-1(z),...,Ly-4p0(z))
forre WNM.

Now we apply the same procedure as above to the hermitian form
82 (z)L(z) = —ipr(x)088ns + i08ps A OSpy on THOX. We observe that this
hermitian form has (n—1) eigenvalues which vanish on M as well as 1 eigen-
value which is positive on M. After possibly shrinking W, we then obtain
a unitary vector L, € T"°X on W, depending smoothly on z, which is
an eigenvector of £(z) and which is orthogonal to Li(z),. .., Ly—1(z) with



respect to wy.

Let (¢i(x),...,¢u(z)) € (TP X)* be the dual basis of (Li(x),.. ., L,(z))
on W. This basis then gives the desired decomposition of £(z) on W. The

assertion (ii) follows because T°M is stable under [ , ]. Moreover, since
NYOM @ NLOM is involutive, we get (i) and (iii). Finally, (iv) follows by
definition of N*0M. O

Let dp 4 be the boundary distance function of D with respect to wy.
dp,g will not be smooth since D is only a Lipschitz domain. However, [St])
provides us with a regularized distance having essentially the same profile
as 0p,g:

There exists a function A € C*®(D,R) satisfying
c16p,g(z) < A(z) < c26p g(x) and

o —|a
5a A < Baldn,y ()1,

where © = (x1,...,Za,) are local coordinates on X. Bq,c1 and co are inde-
pendent of D.

We also need to define a regularized maximum function. For each 8 > 0,
let xs be a fixed non negative real C*°-function on R such that, for all

z € R, xp(z) = xp(—2), |z < xp(z) <[z[+ B, [xj(z)] <1, x3(z) > 0 and
xs(z) = |z| if |z| > g We moreover assume that xj(z) > 0 if z > 0 and
xj(7) < 0if 2 < 0. We set maxg(t,s) = B 4 xp(552) for t,s € R

We omit the proof of the following simple lemma:

Lemma 2.2
Let @, be two real-valued C?-functions on some real C?> manifold X. Then,
for all B >0, and x € X, the following assertions hold:

(1) max(p(z),(x)) < maxg(p(z), () < max(p(z),y(z))+ 5
(ii) maxg(p(z), ¢ (z)) = max(p(z),¥(z)) if lp(z) — ()| 2 B
(iii) There is a number \z(p, ) with 0 < Az(p,v) < 1, namely

Mol ) = 5 + pxp(ED P

2
such that
;C(In/?x((p, ¢)’$) = )‘z((pa ¢)£(<P> J") + (1 - Az(()oa ¢))‘C(¢a .’L‘)
+ D000 - 9) A Ble - 9) (@)



Finally, we write a < b (resp. b 2 a) if there exists an absolute constant
C > 0 such that a < C-b (resp. b > C-a). We writea ~ bifa <banda 2 b.

For some 8 > 0, we define ¢ = maxg(—logdar, —log(—1)) € C*(D).
Then ¢ is an exhaustion function for D and (i) of Lemma 2.2 implies

max(—log dpr, — log(—1)) < ¢ < max(—logdar, — log(—)) + B,
thus
e P min(dy, —9) < €% < min(day, —1)).

Hence e™% ~ A.
We set Dj = {z € D | e=#(@) > %}

The following technical lemma is the key point of our paper. It permits
to obtain L?-vanishing theorems on D with powers of the boundary distance
as weight functions.

Lemma 2.3
There ezxists a hermitian metric wyr on D and a family (w;)jen of complete
hermitian metrics on D with the following properties:

(i) wj = wym on a neighborhood ofﬁj, w; > wy on D.

(i3) Lety1 < ... < 7y, be the eigenvalues of i00¢ with respect to wyr. There
exists o > 0 such that v + ...+, > o forr >n —pt —p°.

11) There are constants a,b > 0 such that a wy, < wpr < b 82w, for all
g MYy
j €N

(iv) There is a constant C > 0 such that |Owprlw,, < C.

(v) Let wpr =13, whidz, A dz, on UN D, where U is a neighborhood
of £ € M and (z1,...,2,) are local holomorphic coordinates on U.
Then, for every multiinder «, there exists a constant C, such that

Sup,, |Dewhy (2)] < Ca 5];[27|a|(z) for every z €e UN D.

Proof: Let Ay € C*°(EndT(?) be the hermitian endomorphism associated
to the hermitian form —i99log dpr with respect to wy and let v{ < ... < ;)
be the eigenvalues of A,.



We have —id0 logdp = ng 006y + 10 log dar A 510g O0ps- Thus there is
a constant ¢ > 0 such that

9 _c 9 _c
71($)S 5M""”yp—(x)g 5M’
75—4_1(‘7") Z Cyevny z—+p0(x) Z ¢,

g ¢ g ¢
’yp—+p0+1($) Z E""? IYnfl(:L‘) Z E’ a‘nd

75 (x) > c |01og bul; (x)

for every x € V~, after possibly shrinking V.

Moreover, we claim that there exists a constant ¢’ > 0 such that

’Yz—.}_l(x) S cla Tt ,Yg—+p0 (‘T) S CI

This can be seen as follows:
Fix g € M. As in the proof of Lemma 2.1, there exists a neighborhood U
of 2o in X and a smooth extension T' of T1°M on U, such that for every
zeU
M(z) := i006p 1, = M~ (z) & M°(z) ® M* ()

in a smooth orthonormal basis with respect to wy on U, such that the eigen-
values of M~ (z) are the p~ smallest eigenvalues of M(z) and those of
M™(z) are the pT biggest. Since M has exactly p° zero eigenvalues ev-
erywhere, this implies that for z € M NU, M%) = 0. Therefore the
eigenvalues of M%(z) are of absolute value smaller than ¢'d;/(z) for some
¢/, which proves the claim.

Choose a strictly positive function 8 € C*° (R, R) such that

—nt fort< —c¢
0(t) =14 ¢ for0<t<(d
t fort >c +1

We use the following notation:
Let ¢ € C®(R,R). If A is a hermitian n X n matrix with eigenvalues
A1 < ... < )\, and corresponding eigenvectors vy, ..., v,, we define ¢[A] as
the hermitian matrix with eigenvalues ¢();) and eigenvectors vj, 1 < j < n.

We let wps be the hermitian metric defined by the hermitian endomor-
phism A(z) = §[A4(x)]. was is then a smooth metric. By construction, the
eigenvalues of A(z) are o,(z) = 6(vJ(x)) and we have

oi(z) =n Y (@)],..., op-(z) = n |y)_(2)],
Op-41(x) = ¢,y 0p—1po(z) = ¢,
Up—+p0+1(37) = 'Yp—+p0+1($)> ooy Op(T) =75 ()



for every x € V—, after possibly shrinking V.

The eigenvalues of —i00logdys with respect to wys are oy () = %.
Thus we have for every z € V™ ay(z) = —% and a,_p+_po(x) > 1, hence

1 1
g F...dop>1——n-—pt—p"—1)>—forr>n—p"—p° (2.1)
n

3

Let us now estimate |0wnay|w,, -

Fix g € M N Q. Using Lemma 2.1, there exists a neighborhood U of z
in X such that we have on U N Q2

P~ p~+p°
—i00logom(z) = Y a, @)@ A @+ D ap,@)(e) AL ()
uv=1 y=p~+1
n—1
+ Y ah @@ Al (@) + an(@)in(@) AL, (2)
mr=p~ +pO+1
where (¢1(z), ..., (a(2)) is an orthonormal basis of T3 X with respect to Wy

onU.

By construction of wjs, we have

p~+p°
pr,u /\Cu +C Z Cl/ /\CV )
pr=1 v=p—+1
n—1
+ > L) Q) A() + an(@) (alx) A,(x)
wv=p~+pO+1

+ +

where (buy)u,y = 0[(auv)u,]- In order to get more condensed formulae, we
+

extend by, to all pairs (u,v) € {1,...,n} x {1,...,n} by setting it equal to

zero whenever it is not defined for such a pair.

Let (Li(z),...,Ly(x)) be the dual basis of ((1(z),...,(u(z)). The well
known Cartan formula for d implies that

BCIL(LaaL/J’) = La(Clt(L/J’)) - L,B(CN(La)) - Cu([LaaLﬂD = _Qt([LaaLﬁDa

9C,(La, Lg) = La(C,(Lp)) — Lp(Cy(La)) — Cy([Las L)) = —C,([La, Lg))-
Thus

aCu = chgCa A C,Ba
a,p
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- Z d;ﬂ(a A Zﬂa
a,B

where the ¢y 5 and d 5 are determined by the conditions

[La, Lg)(z) = = chs(@)Ly(2) mod(Li(2),. .., In())
v=1
[La, Lgl(w) = Y dag(@)Ly(x) mod(Ln(x),. .., In())
v=1

(i)-(iv) of Lemma 2.1 therefore yield

for (o, B, ) suchthat u ¢ {p~ +1,...,p +p°}, a0, B € {p~+1,...

p°} and
Cgﬂ ~ (5M, dg//j ~ (5M

for (o, 8) such that « € {1,...,n =1}, 8€{p  +1,...,p  +p°}.

Moreover, by definition of c/,; and d},;, we have

8wM—ZZ Y La(t)(@) Ca ACGu A,

a=1 p,v= 156{ 4}

+Z Z > b, z) Ca Ag A G,

5/3 1“5” 156{ ,+}

FY Y Y B GAnl

a,f=1p,rv=1ee{—,+}

n  p~+p°

e Yo Y dp@) Al AL,
5/3 11/*]1 +1
n  p +p°

te D D daple) G AL
,/3’ lv=p=+1

+ Z an(2)cap(2) Ca A (s ALy
+ D an(@)des(®) G Ao A

11

(2.9)

(2.10)

(2.11)



As Ay is the hermitian endomorphism associated to —i00logépyr =

o _ + +
ﬁa&sM +10log dar A Olog dnr, it is easy to see that we have by, = ibuy,

~*
where by, is defined and positive definite on U. Moreover, we see that
anp = 6%&"’ where a,, is also defined and positive on U. From this we

conclude that
|C,,\ZJM ~dyforve{l,....,p~,p" +p° +1,...,n =1}, (2.12)

G2, ~1forve {p~+1,...,p~ +p"} and |¢,[2,, ~ 3. (2.13)

By construction of wps, we clearly have wys 2 dlogdpr A 510g O ,S0

|8log 6ul2,, S 1. (2.14)
We have
> La(b,) (@) Calw) = (06,)(x) = (3($Efw))($)
a=1
— b (@)010g 041 () + 5 > La(Fu)(0) Cala),
a=1
Z Lo(an)(z)Ca(z) = —2an(z)0log dnr () + (5% Z Lo(an)(2)Ca(z),
a=1 M g=1

therefore (2.4) and (2.9) are bounded with respect to wys by (2.14), (2.12)
and (2.13).

(2.7) and (2.8) are bounded with respect to wys by (2.12) and (2.13).
Finally, (2.2), (2.3), (2.12) and (2.13) imply that (2.5), (2.6), (2.10) and
(2.11) are bounded with respect to wpy.

It is also clear that (iii) and (v) of Lemma 2.3 are satisfied.

Let us now prove (ii). We assume p~ > 1 (the weakly pseudoconvex case
p~ = 0 was settled in [Br]). We then have r > 2.

From Lemma 2.2, we get
i00p > —Xi00log dpr — (1 — N)id0logep

where A = 1 + %xg(W). On the set where A\ > I, the as-
sertion (ii) is clear by (2.1). On the other hand, on {\ < 3}, we have

—1p < 0 (see the definition of xg), and thus by construction of wys we

12



get wy S iwg < }wwg < —i001log(—) on Kerddy N THO X, which is a
subbundle of rank (n—1) of T19X. If 0 < B; < ... < B, are the eigenvalues
of —i801og(—1) with respect to wys, we thus have 83 > 20 on {\ < %} for
some o > 0. Since a; + ...+ o, > 0 for r > n —p* — p’ > 2, we then have
Y+ ..+ > 5B +...+ Br) >0 on {\ <3} This establishes (ii).

We define w; = wy + 000 A O¢ where 0; € C*®(D) vanishes on a
neighborhood of D; and equals one on D \ D;;1. Then |0¢p|,; is bounded
(4 is fixed!), thus w; is complete and has all the desired properties. O

3 The L? estimates

From now on, D will be equipped with the metric wys given by Lemma
2.3. Properties (i) and (iv) will be used to obtain L2-solutions of some
O-equation. Property (v) will yield regularity results for these solutions.

Let (E, h) be a hermitian vector bundle on X, and let N € Z. We denote
by Lf)’q(D, E, N) the Hilbert space of (p,q)-forms u on D with values in F
which satisfy

lul3 = /D 2, hAN AV, < +oo.

Here dV,,,, is the canonical volume element associated to the metric wyy,
and | |,,,» is the norm of (p, g)-forms induced by was and h.

Proposition 3.1 B
Let N > 1. Suppose f € L%,T(D,E, N)NKerd, r > n—pT —p". Then there
ezists u € L2 ._ (D, E,N) such that Ou = f and ||ul|n < ||f]|n-

n,r—1

Proof: We have already seen that A ~ e %. Also AN ~ e N¢ for N € N,
Thus it suffices to prove the statement with AN replaced by e V% in the
definition of the spaces L2 (D, E, N).

For j € N, let us denote by le,,q(D,E, N, ) the Hilbert space of (p, q)-
forms 4 on D with values in E which satisfy

fulfy = [ Tl pe 0V, < +oc.

J

where x; € C*®(R,R) with x;(t) =t ift <logj, x;(t) >t for allt € R
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Let 5;7,9' be the Hilbert adjoint of & with respect to the canonical scalar
product  , )n,; of (p,q)-forms with values in E induced by || ||n,;.

Nakano’s inequality (see [De2], [Oh]) yields

3 5 =% :
5 (10ullfy+19njull ) > (EO(EN,;), Ajlu, u s

(3.1)

1 _ _
=5 Ulmgullzeg + I ulli + I75ulli, + 175 ully,)

where ©(Ey;) is the curvature of the bundle Ey ;j = (E,e”MXi(¥)p), A, is
the adjoint of multiplication by w; and 7; = [A;, Ow;]. w; is the metric given
by Lemma 2.3.

As i©O(Ey,;) = iN99x,(¢) ® Idg + iO(E), a standard calculation (cf
[De2]) yields

[(O(En;), Al = N [100x;(¢) ® Idg, Aj] + [1O(E), A;]
> Nxj(@) (vl + ...+ 7)) @ Idg + [ic(E), Aj]

when this curvature tensor acts on (n,r)-forms. Here %j are the eigenvalues
of 100y with respect to w;.

For r >n —pt —p° we have 7y + ...+, > 0 on Dj. Since |Owns|w,,
is bounded on D by (iv) of Lemma 2.3 and w; = wp on Dj, the point-
wise norms |7julw;, [Tjulw,, |7} ulw; and [T}uly, are uniformly bounded with
respect to j by some constant times |u|,,, on D;. Thus, choosing N big
enough and x; sufficiently rapidly increasing on {t > log j}, the right hand
side of (3.1) can be made > %||u||?\,’]

Let f € L2 (D, E,N)NKerd, r > n—p*—p°. Since f is of bidegree (n,r)
and x;(¢) > ¢, a standard calculation (see [Del]) yields || f||n; < || f||~- By
standard L?-theory we then get u; € L%’T_I(D,E, N, j) satisfying du; = f
and ||uj|ln; < ||fllv; < ||fll~v. Therefore the solutions u; are uniformly
bounded in L? norm on every compact subset of D. Since the unit ball
of a Hilbert space is weakly compact, we can extract a subsequence up, —
U € L12OC converging weakly in L? on any compact subset K C D, for some
£; — +oo. By the weak continuity of differentiation, we get again in the

limit Qu = f. Also, since x;(¢) = ¢ on D;, we have
[ e v, <timint [l e 00dn, <171k,
D D; i’

; j— +oo

hence [|ul% < [ f[%- =

14



Proposition 3.2 B
Let N > 1. Suppose f € L%’T(D,E, —N)NKerd, r < pt + p°. Then there
exists u € L§, (D, E,—N +2) such that Ou=f and ||ul|_Ni2 < ||fl|-N-

Moreover, Im(0 : L3p++p0(D,E‘, -N+2) - L§p++p0+1(D,E, —N)) is
closed in L(Q),p++p0+1(D, E,—N).

Proof. Suppose r < p* +p® and let f € L§ (D, E, —N) NKerd, N > 1.
We define the linear operator

Ly: o2, .(D,E*f,N-2) — C

n,n—r
dg /f/\g
D

Note that the integral on the right hand side is finite, since

| /D Fagl<( /D P ANV, ) - ( /D 92 ANAV,,) < 1712w lgl3rs.

Let us first show that L is well defined.

Indeed, let g1, go € L2, .(D,E*,N — 2) such that dg; = 0go. Then

n,n—r
(g1 — g2) = 0 and by Proposition 3.1, since n —r > n —pt —p°, there exists
a€l? (D, E*,N —2) such that 0o = gi — g2. But then

nn—r—1
/Df/\(gl—gz) = /Df/\ga

= lim(-1)" fAa
e—0 8D5

= —lim f A O
e—0 D\DE

= —lim f/\(gl—gg)
e—0 D\DE

with (D.). an exhaustion of D by smooth open sets such that D, D {z €

D | A(z) > €}. Here we have used Stoke’s theorem several times. The third

equality is obtained as follows: Fix ¢ < 0 and choose for each large 7 > %

a C* function x; such that x; = 1 on D2, x; = 0on D1, 0 < x; < 1,
J J

|Dx;| < Cj, and set aj = xja € D"~ 771(D). Then we have

/ f/\éaj:/ Xjf/\EaJr/ fAOX AN
D\D. D\D. D\D.

and

| / f ABx; Aol
D\D.

IA

c / P ANV, - / Plaf2, AVav,,,
D\D. D\D

J

VAN

CIFIZ pllellz -
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Hence the dominated convergence theorem gives

/ fAOGa = lim f Adaj =(—1)7lim a(f A aj)
D\D. J JD\D. 7 JD\De
= —(-1)¢lim fAaj= —(-1)¢ fAa.
J JoD,. 8D,
Moreover,
[ tn@mwl<(f A g - g, AN
D\D. D\D. D\D.

—e—0 0.

(note that (fp, . lo1 = 9212, AM)Y? S e [\ p, o1 — g2l2,, AN )12 <
ellg1 — g2ll-n—2 — 0 as € — 0 since g1, 9o € L2 ,,_(D, E*, N — 2)).

Thus Lf(g1) = Lg(g2)-

Now let
g € DOm(a : L%,n—r(D,E*aN - 2) - L727.,n—r+1(D7E*aN - 2)) Applying
Proposition 3.1, there exists § € Ly, (D, E*, N — 2) satisfying 9 = 0g

and ||g]|n—2 < ||0g||y—2. This yields
IL(3g)] = |L;(33)| = | /D £ AG < I = 1F ]

< fll-wlglin—2 < IIfll-~110gl n—2.

Thus Ly is a continuous linear operator of norm < ||f||-n and therefore,
using the Hahn-Banach theorem, Ly extends to a continuous linear operator
with norm < ||f||_n on the Hilbert space L2 (D,E*,N — 2). By the

n,n—r+1

theorem of Riesz, there exists u € L§, (D, E,—N + 2) with |lu|| _y42 <
| fll—=n such that for every g € L2 . (D, E*, N — 2) we have

—1) Og =1 =
(-1) /Du/\ag 7(9) /Df/\g,
ie Ou=f.

To prove the last assertion, we show that

Im(G: L§ 1, o(D,E,—~N +2) — L§ o (D, E,—N)) =
(g€ L2, 0r(D,E,~N) | /D g\ =0Vh € I2, o . (D,E*,N-2)}.
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Suppose f € Im(0 : L? (D,E,~N+2) — L? (D,E,—N)).

0,pt+p0 0,pT+p0+1
Then there exists o € L7 10 (D5 B, —N +2) such that 0o = f. Thus we
get for every h € L? nepo_pt_1(Ds E*, N —2)

/Df/\h = /Déa/\h

= lim alh
e—0 3D5

= —lim daAh
e—0 D\DE

= —lim f Ah
e—0 D\DE

with (D,). an exhaustion of D by smooth open sets such that
D.>{z€ D|A(z) > ¢} and

[ ran < </ 2, A2 (/ 12, AN/
D\D. D\De

D\D:

N

< ellfll-nlPlln—2 —e=0 0,

which shows the inclusion C (the justification of the third equality is as
above).

Conversely, we show that for every f €
{g € Lg,p0+p++1(D,E, —N)| [, gAh=0Vh € Li,n_po_p+_1(D,E*,N—2)},

there exists u € Lg,p+ 1+p0(Ds B, —N +2) satisfying Ou = f. Again, we define

the linear operator

Lf : ngL,n—p‘}'—pO—l(D’E*’N - 2) — C
g +— / fng
D
Here we write gLi et —po_1 (D, E*, N — 2) for
= m—pT—p-—1
(@ : L2, 4 o (D,E*,N-2) 12 . (D,E*N~-2). Ly is well

defined because of the moment conditions imposed on f. We then show the
existence of the desired u as in the first part of the proof. O

Let U C X be an open set and E a holomorphic vector bundle on X.
For k € NU {400}, we define

ch (X,U,E)={f eCk (X,E) |supp f CU}
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From [Br] we get a regularity theorem for [0_x (cf also Theorem 4.1 in
[Br)). . .
Here O_y = 00_y + 0_yO where 0_y is the Von Neumann adjoint of
8:12,D,E,~N +2) - L2 (D, E,~N).

Theorem 3.3

Ifu € Liq(D,E, —N) satisfies Ou = f and 0 yu = 0 with f € C},\fq(X, D,E)N
Coo(D,E), then u € C;,(,jv) (X,D,E)NC3(D, E) where s(N) ~ VN for all
N> 1.

4 The 0-equation with exact support

Let Q be a smooth bounded completely strictly pseudoconvex domain in a
complex n-dimensional manifold X and M a real hypersurface of class C*®
intersecting 0S) transversally such that 2\ M has exactly two connected
components. We suppose that M = {p = 0} where p is a C* function
whose Levi form has exactly pt positive, p® zero and p~ negative eigenval-
ues on Ty’ M for each z € M, p~ +p°+p+ = n—1. We put D = Qn{p < 0}.

In this section, we will show some vanishing and separation theorems
for the 9-cohomology groups with values in a holomorphic vector bundle £
supported in D:

HP(X,D,E) = Cy%(X,D,E) NKerd/d(Cy, (X, D, E))

Theorem 4.1
Let E be a holomorphic vector bundle on X. Then we have
HP4(X,D,E) =0 for1<qg<p’+pt
and
Hp’p0+p++1(X, D, E) is separated for the usual C*®-topology.

Proof: Replacing the vector bundle E by AP(T™°X)* ® E, it is no loss
of generality to assume p = 0.

We will begin by proving the following claim:
Let f € C§,(X,D,E)NC&(D,E)NKerd, 1 < ¢ < p’+pT, k> 1.

Then there exists u € C(S)’(;zl(X, D,E)NC§,_1(D, E) such that du = f with
s(k) ~ VEk.

Proof of the claim: Let f € C(’f’q(X, D,E)NKerd, 1 <qg<p’ +pt, k>
1. General results on Lipschitz domains (see e.g. [Gr, Theorem 1.4.4.4])
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show that f € L%yq(D,E, —2k) if we keep in mind property (iii) of Lemma
2.3. Proposition 3.2 implies that there exists u € L§, (D, E, =2k + 2)

such that du = f in D and ||lu|_ok+2 < ||fl|—2k- Moreover, choosing the
minimal solution, we may assume 8i2ku = 0. From Theorem 3.3 we get

that u € C3uT' (X, D, E) with s(k) ~ VE.
Let us now prove the theorem.

H%'(X,D, E) = 0 follows immediately from the above claim and the
hypoellipticity of 0 in bidegree (0,1) if 1 < p® + p*.

Now assume 1 < ¢ < p® +pt and let f € C(‘f;(X,E, E) N Kerd. By
i_nduction, we will construct uy € C(’)“,q_l(X, D,E)n C55-1(D, E) such that
Oug, = f and |ug 1 — uglsry—1 < 27k, Tt is then clear that (uy)gen converges
to u € C§5_1 (X, D, E) such that du = f.

Suppose that we have constructed uq,...,u;. By the above claim, there
exists ax41 € C(’)“;;EI(X,E, E) N C§5-1(D, E) such that f = Oapy1. We
have a1 — ug € C(’)“’q_l(X,E, E) N C§5_1(D, E) NKerd. Once again by
the above claim, there exists g € CSF;EQ(X, D,E)n C5%, 2(D, E) satisfying
Qg1 — ug = 0g.

Since C§5_o(X, D, E) is dense in Cgf:lQ(X, D, E), there exists gy,1 €

Coo—2(X, D, E) such that |g — Ir+1lsk) < 27k,

Define ug1 = apq1 — Oger € CEvL1(X,D,BE) NCES, 1(D,E). Then

Oupy1 = f and |upi1 — uglsry-1 = 109 — Ogrt1lsk)-1 < 19— Grrilsry < 275
Thus ug41 has the desired properties.

The last assertion is proved similarly, using the ”moreover” statement in
Proposition 3.2 and the fact that the C* topology is stronger that the L2
topologies. O

The results of this section will allow us to solve the d-equation for ex-
tensible currents by duality.

We recall the notations. A current T' defined on D is said to be eztensi-
ble, if T' is the restriction to D of a current defined on X.

o

It was shown in [Ma] that, since D satisfies D, the vector space D"3?(X)
of extensible_ currents on D of bidegree (p,q) is the topological dual of
Ce (X, D).

n—p,n—q
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Theorem 4.2

Let T € D'HIX) be an extensible current on D of bidegree (13, q), q >
n —p® — p* such that 9T = 0 in D. Then there exists S € DI (X))
satisfying 0S =T in D.

Proof: Let T € D'I(X) be an extensible current on D of bidegree
(p,q), ¢ >n—p® —p*, such that 9T = 0 in D.

Cousider the operator

Lr: X X, D) — C

Op — <T,p>

We first notice that Ly is well-defined. Indeed, let ¢ € C3°,, (X, D)
be such that d¢ = 0.
If ¢ = n, the analytic continuation principle for holomorphic functions yields
p=0,850<T,p>=0.
Ifn—1>qg>n—p®—p", onehas p =da witha € €, . (X,D) by
Theorem 4.1. As D"~P"=4=1(D) is dense in C3°, . . (X, D), there exists
(aj)jen € D"P"=4~1(D) such that da; — Oa in CL (X, D).

j—+o00 nopn—q
Hence < T, >=<T, Oa >= lim; 4o < T, gaj >= 0, because 0T = 0.

By Theorem 4.1, 9C2° »n—q(X, D) is a closed subspace of
Colpn—g (X, D), thus a Fréchet space. Using Banach’s open mapping the-
orem, Ly is in fact continuous, so by the Hahn-Banach theorem, we can
extend L7 to a continuous linear operator Ly : Co2 . .1(X, D) — C, ie.

Ly is an extensible current on D satisfying
<ALy, >= (-1’ 1 < Lp,dp >= (-1)P 1 < T,p >

for every ¢ € C°,,,_o(X, D). Therefore T = (—1)P+99Ly. O

Remark. Analogous results have been obtained in [Sal] for completely
strictly g-convex domains with smooth boundary. These are domains of the
form Q = {z € Uy | ¥(z) < 0} where 9 is a smooth function defined on an
open neighborhood Uy of €2 whose Levi form has at least ¢+ 1 positive eigen-
values everywhere. Sambou shows that for such a domain the d-equation is
solvable for extensible currents of bidegree (p,r), r > n — ¢. In [Sa2], also
the strictly g-concave case is discussed.
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5 Applications to hypersurfaces with constant sig-
nature

If M is a CR manifold, then we denote by H?Y(M) the 0js-cohomology
groups for smooth forms with compact support in M. We have the follow-
ing result:

Theorem 5.1

Let X be a Stein manifold of complex dimension n > 2 and M a smooth,
closed, connected hypersurface in X. Suppose that M has signature (p—,p°,pT)
at each point. Then HEY(M) =0 for 0 < p < n, 0 < g < min(p~,p") +
p0 — 1.

Proof: Let f € Cpo (M) N Kerdys such that supp f C K, where K is a
compact subset of M. Since X is Stein, there exists a smooth bounded com-
pletely strictly pseudoconvex domain €2 such that K C 2, 2\ M has exactly
two connected components DT and D, and M intersects 02 transversally.

Next, we can find f € Cp5,(X) such that ﬂM = f,suppf CC Q and 8f
vanishes to infinite order on M.

_+
Applying Theorem 4.1, we conclude that HP4t1{(X, D" ) =0 for ¢+1 <

p° +min(p~,pT). Therefore there exists a solution u € (3 (X) to the equa-

tion 5_u = 9f in such a way that u vanishes on M U(_X \Q). F= f—uis
then O-closed in X and we have F;; = f, supp F' C Q.

If ¢ = 0, the analytic continuation principle yields F' = 0, thus f = 0,
proving H?*(M) = 0.

Now let ¢ > 1. Q being completely strictly pseudoconvex, there exists
an open set Q O Q which is also completely strictly pseudoconvex. Then
the d-cohomology groups with compact support in Q, H? ’q(Q), vanish for
g > 1. Thus we can find U € C;5,_;(X), supp U CC Q satisfying OU = F.
We then have 8x(Ujps) = f, which proves the theorem. O

It is clear that Theorem 1.1 is an immediate consequence of Theorem
5.1, if we keep in mind that global minimality assures the validity of the
weak analytic continuation principle for CR function. Let us just remind
that M \ K is globally minimal if any two points p,q € M \ K can be joined
by a piecewise smooth curve v =y U...U"~,, v : [0,1] — M \ K, such
that v{(t) € T,y M N JT,, ;)M for all ¢ € (0,1); here J denotes the complex
structure on X.
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Using the results of the previous section we can also prove a result on the
solvability of the djs-equation for currents on hypersurfaces with constant
signature.

Theorem 5.2
Let X be a complexr manifold of dimension n and M a smooth, closed, con-
nected hypersurface in X. Suppose that M has signature (p~,p°, p*) at each
point. Let Q CC X be a smooth bounded completely strictly pseudoconvex
domain in X such that Q\ M has ezactly two connected components and
M intersects O transversally. Then HEI(M N Q) = 0 for 0 < p < n,
g >n—min(p~,pt) —p® +1.
Moreover, let Q' be any open set which is relatively compact in Q. Then for
g=mn—min(p~,pT) — p°, the restriction mapping

HPI(MNQ) — HEL(MNQ')

cur cur

is the zero mapping.

Proof: We denote by DT and D~ the connected components of Q\ M.

Let HP4(D),, () (resp. HP4(D),_(Q))) the d-cohomology groups of
currents on D™ (resp. D™) which are extendable to Q. Moreover, we con-
sider the d-cohomology groups HPY(M N Q,D',) of currents on Q with
support on M N €.

We then have the following long exact sequence (cf [Hi/Nal], [Na/Val))

.= HPA(Q) — HPYD,, () @ HP(D)_ () — HP (M N Q, Dlyng)

cur

— HPOYH(Q) — ...

cur

Since (2 is completely strictly pseudoconvex, we have H%Z%(2) = 0 for all
g > 1. Moreover, it follows from [Hi/Na2] and [Na/Va] that we have
a natural isomorphism HLI(M N Q) — HPYTY(M N Q,Dynq). Hence
HEL(M N Q) ~ HPY(D),, () & HP4(D),_(Q)). The theorem is now a
consequence of the following lemma (for the case ¢ = n — min(p~,p*t) — p°,
note that all diagrams induced by the restriction mapping are commuta-

tive). O

Lemma 5.3

For 0 <p<mn and g >n—min(p ,p*) —p° + 1 we have HP4(D', (Q)) =
HPA(D,_(Q)) = 0.

Moreover, let Q' be any relatively compact domain in Q. Then for q =
n — min(p~, p*) — p°, the restriction mappings

HP(Dp () — HP(Dp g (),
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HPA(D,_ () — HPY(D,_ 0y ()

are the zero mappings.

Proof. Let (£2;)jen be an exhaustion of Q by smooth bounded strictly
pseudoconvex domains such that M intersects 0€); transversally.

Let T € @'%ZOQ(Q) satisfy 0T = 0 in DT NQ, ¢ > n— min(p~, pT) — p°.
Tt follows from Theorem 4.2 that there exists S; € D'%% (Q) satisfying
8S; =T in D™ N Q;. The same holds true of course with DT replaced by

D~. This proves the assertion of the lemma for ¢ = n — min(p~,p*) — p°.

Now let ¢ > n — min(p~,pT™) — p® + 1. We have 9(Sj+1 — S;) = 0 in
Dt N Q;. Hence, again by Theorem 4.2, there exists H € 25’%?:2(9) sat-
isfying 8H = S;11 — S; in DT N Q. Setting S;11 = Sj11 — OH, we have
dSj41 = T in DY N Q4 and §j4; = S in DT N Q. Thus we can find
a sequence (Gj)jen, Gj € T)"BTI(Q) satisfying G; = T in D* N Q; and
Gjt1 =G, in DT NQ;. Hence (G;) converges to G € T)’%TI(Q) satisfying
0G =T in Dt N Q. Since the same holds true also for D™, we have proved
the lemma. O

We remark that Theorem 5.2 gives a Poincaré lemma for currents on a
certain type of hypersurfaces. Combining this with the results of [Na/Va],
[An/Hi], [Mi] and [Hi/Na3], we obtain the following corollary:

Corollary 5.4

Let X be a smooth hypersurface in C* and suppose that M has signature
(p~,p% pt) at each point in a neighborhood of xo € M. Then the Poincaré
lemma holds for smooth forms and for currents of bidegree (p,q) at the point
zo if 1< q#p ,pT,i.e. each smooth form (resp. current) of bidegree (p,q),
1< gq#p ,pT, which is 0-closed on some open neighborhood of x is O-
exact on some open neighborhood of x.

The Poincaré lemma fails to hold at xy for smooth forms and currents of

bidegree (p,p~) and (p,p™).
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