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Abstract

In [1], Attal constructed an approximation of the Fock space by the infinite dimen-
sional toy Fock space. In this article we show that that approximation also leads to a
rigorous approximation of the quantum stochastic calculus. This is achieved in three
steps. First we develop a quantum stochastic calculus on the toy Fock space which
is analogous to the usual one. We then compute the projection of the usual quan-
tum stochastic integral on the toy Fock space and identify them as discrete quantum
stochastic integrals. We finally rigorously show that the discrete Ito formula converges
to the continuous one. !

Introduction

The method defined by Attal in [1] to use the toy Fock space as an approximation of the
regular Fock space opens many new approaches to classical problems; in particular, one can
hope that the representation theorems obtained on toy Fock space in [11] lead to analogues
in the Fock space. This calls for a rigorous treatment of quantum stochastic calculus on toy
Fock space and a proof that it leads to a rigorous discrete approximation of the quantum
stochastic calculus. In section 1 we develop a quantum stochastic calculus on the toy Fock
space. As we prove it, there is an Ito formula for quantum stochastic integrals on toy Fock
space: if we denote by ac(h) the discrete-time integral of a process (h;) with respect to the
noise a¢, it is given by

a®(h)a" (k) = a®(h.a"(k)) + a"(a(h)k.) + a“"(h.k.),

Kédywords: quantum probability, quantum stochastic integrals, Fock spaces, toy Fock space, quantum Ito
formula
AMS classification:81525, 60H05



2 QSC on toy Fock space

where a®" is defined by the table

r — ) + X
— 0 a” a*—a® a”
o 0 a® at a®
+ a® 0 at
X a” a® at a*

which we call the discrete Ito table. It is shown that on the Fock space, and under some
analytical conditions, (see [2],[5], [6]) there is also an Ito formula, of similar form

AY(H)AY(K) = A(H.AT(K)) + A"(AS(H)K ) + A“/(HK),

for the continuous time integrals, but here A¢" is given by

r — o + X
— 0 A~ AX 0
o 0 A° AT 0

0 0 0 0
X 0 0 0 0

which we call the continuous Ito table.

In section 2 we show that the projections of the quantum stochastic integrals of the
regular Fock space are discrete quantum stochastic integrals on the toy Fock space (with
some rather surprising results). Finally, in section 3 we show that the continuous Ito table
can be obtained as a limit of the discrete one. This last point is achieved in the following
way: taking two quantum stochastic integrals on the Fock space, we project them on the
toy Fock space. We compute the product of these projections with the discrete Ito table,
and then, passing to the limit, show that one recovers the Ito formula as computed using
the regular Ito table.

1 Stochastic calculus on toy Fock space

1.1 Definitions

The most natural ways to introduce the infinite dimensional toy Fock space T®, are the
following:

- as L2({0,1}", u) where p is a probability measure turning the coordinate maps into
i.i.d. Bernoulli random variables,

- as the antisymmetric Fock space over 12 (N),

but as in the regular Fock space, Guichardet’s interpretation allows one to identify T®
with the easier to handle [? (P), that is, the space of all maps f : P — C, such that
D oacp |f(A)|2 < +00, where P is the set of finite subsets of N.

When T® is seen as 2 (P), a natural basis arises, that of the indicators 14 of elements
A of P; we will denote by X 4 these vectors, and by 1 the vector Xy, called the vacuum
vector. Every vector f € T® thus admits an orthogonal decomposition of the form

f= Z f(A)Xa.

ACN
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The toy Fock space has the following important property of tensor product decomposi-
tion: for any partition UN; of N, one has

o = Q) Ty,
%

where T®y, = I2(Py;,) for Pn, the set of finite subsets of N;. Each of these T®y, can be
identified with the subset {f € T®s.t. f = >, . f(A)Xa}. The isomorphism above
comes from the identification X4 = ®l Xann,, and we shall forget the ® and write
X4 = II; Xann;. The notation T®y, will be simplified to T®(;, T®(;, etc. in the cases
where, respectively N; = {i,i + 1,..}, {i + 1, ..}, etc.

One of the essential differences with the case of Fock space over L2 (Ry ) is, of course,
the atomicity of the measure. This will allow many simplifications; the only problem it
raises concerns exponential vectors. In our framework, they should be defined for every
u € I2(N) by

e(u)(4) = H u(i) for A € P.
icA
This defines a vector e(u) in T®, as can be seen by the inequality

n

a0 T6] < [ SR

|A|=n icA i>0

but this yields only |le(u)|* < elul* and no (simple) formula for < e(u),e(v) >. Moreover,
contrarily to the classical result in Fock space, a finite set of exponential vectors over distinct
functions u can be linearly dependent, as can be seen with u; equal to the null sequence,
uz = (1,0,..) and ug = (2,0,..), in which case the associated exponential vectors satisfy
e(u1) — 2e(u2) + e(ug) = 0. Linear independence of n exponential vectors e(u;) could be
obtained if, for example, there were a set of n — 1 points separating the family of linear
combinations of the u;’s (for the original proof in the continuous case, see [10]); this is
always the case in continuous time, where the fact that (equivalence classes of) functions
in L? (Ry) are distinct means much more than their being different on a finite, or even
countable number of points of R, .

Fundamental operators on T® one defines for all i € N three operators by their action
on the basis {X4}:

Xaom ifigA
+ _ Au{i}
a; Xa= { 0 otherwise

ar X4 = {XAS{,} ifieA

i otherwise
Xa ifieA
(o) _
a; X4 = { 0 otherwise.

And the more general operators a},, ay;, a$; for M € P by

ayr = [] afs e € {+,— 0}
ieEM
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Their action is therefore given by

X fMNA=0
+ _ AUM
ayXa = { 0 otherwise

e Xam #MCA
ayXa = { 0 otherwise .
° _ Xa ifMcCA
ayXa = { 0 otherwise

We will simplify notations to aLX A= Xaym, ay; X4 = Xa_y, using the convention
that M + A= M U A (respectively M — A= M\ A) if M N A = { (respectively M C A)
and that the associated quantity is null otherwise . This practically means that we restrict
summations over subsets to the indices where the underlying assumptions hold true, and this
shall lead to no ambiguity. One more word of notation is needed here for such manipulations
on sets: an inequality of type A < B means that all points of i < j for all 7 in A, all j in
B. Besides, we won’t make a difference, in the writing of such quantities, between the set
{i} and the point 4.

The above operators are closable, of bounded closures (with norm 1), and we will keep
the same notations for their closures, which we call operators of creation (a*), annihilation
(a™) and conservation (a®). One should remark that the operator of creation we just defined
is not the usual operator of creation on an antisymmetric Fock space, but differs only up
to a sign factor.

1.2 Tto calculus on T®

The main difference between Ito calculus on Toy Fock space and on regular Fock space
is that previsibility should replace adaptability for a simpler transcription of the classical
results. Therefore we define the (everywhere defined) previsible projection and gradient at
time 1 € N, of a f € T® by

pif(A) = Ma<; f(A)
dif (A) = laci f(AU)

where 1 4; is equal to one if A < i, and zero otherwise.

These operators are called previsible because for any f € T®, both (p f) and (d.f)
are previsible processes, that is, are sequences of vectors such that the i-th vector belongs
to T®;). In contrast with the continuous time case, there is no definition problem for
the d;’s as individual operators. We will write, to simplify notations, da = d;, ...d;, if
A={i1 <---<ip}, and dy = Id.

The other essential tool for quantum Ito calculus is the abstract Ito integral:

Definition 1.1 A previsible process of vectors (f;)i>o0 is said to be Ito-integrable if
Sfill? < 400. One then defines its Ito integral as

I(f) = Zf,- X;.
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Let us stress the fact that, in f; X; the product is just a tensor product in T®; ® T®;
thanks to the previsiblity of the process: f; belongs to T®;), X; belongs to T®;. The Ito
integral of a process can also be defined equivalently in a simpler, more algebraic way by

I(f)(A) = fsupa(A — sup A) and I(£)(0) =0,

where sup A denotes the largest element in the n-uple A. The condition for such a function
on P to belong to T® is easily seen to be the above Ito-integrability condition.

Substituting the equality d;f = >~ 4; f(A +i)X4 in the chaotic decomposition of a f
yields the following results:

Proposition 1.2 Any f € T® admits a unique decomposition of the form

F=101+) dif Xi = f0)1+I(d.f)

i>0

and one has the associated isometry formula:

IF17 = £ @F + Z i f11%.

This decomposition is called the previsible representation of f.

The isometry formula polarizes to the following adjoint relation:

(I(f).9) = Z(fi;dig>

i>0

for all g € T® and all Ito-integrable process (f.) of vectors of T®.

We also define (time) summation of vectors, which will appear many times in the sequel, as
follows: a process (f;) of vectors is said to be summable if for all A € P, > |fi(A)| < +o0
and A — Y. fi(A) is square integrable. We then denote by ). f; the corresponding element
of Td.

1.3 Previsible operators and conditional expectations

We have defined previsibility of vectors of T®. Previsibility of operators can be seen in a
purely algebraic way if one does not worry about domain conditions: i-previsibility of an
operator h is simply the fact that h acts only on T®; and leaves T®[; unchanged, that is,
for example that

hX4 € T®; for A <i and
hX4 = (hXAi)) ®XA[1.

Domain considerations make a more technical definition necessary; following Attal and
Lindsay in [5], we put the following:
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Definition 1.3 A subspace of T® is said to be i-previsible if it is stable by p; and all d;,
J >

An operator h is said to be i-previsible if one of the following equivalent conditions 1.
or 2. holds true:

1. - Dom h is i-previsible
hp; = pih
- { hd, = d;h V) > i on Dom h.

2. - Dom h is i-previsible
- hf(A) = (hpida, f)(Asy) for all f € Dom h and for all A € P.

In particular, if a X4 is in the domain of a i-previsible operator h, then d4, X4 = X4,
is, and

hXa(M) = pidu, [hXal(My)) = [hpidar, Xa] (M)
= ]lM[i:A[i [hXAz)](MZ)) = [(hXAi)) ® XA[i](M)7

hence hX4 = (hX A,-))X A - One easily checks that the set of i-previsible operators is stable
under addition of operators and multiplication by a scalar. It fails to be a ring only for the
same reasons that prevent the set of operators on T® to be a ring, for example that 0 times
an operator is not the null operator, but a restriction of it.

The preceding definition provides us with a natural way to turn an operator into an i-
previsible one. First of all, one has to make the domain i-previsible; let us define the
i-previsible conditional expectation of a subspace V as

D,V ={feT® st. pidaf €V VA>i}.
Lemma 1.4 The conditional expectation of subspaces has the following properties:
- IV is j-previsible for all j > 1.
-, T = T® for alli.
-D,(VNnV) =D,V nD V.

- V is i-previsible if and only if V C D; V.

fOT all i S j, ]D),(]D)JV) = D](]D%V) = ]D),V
|

One then defines the i-previsible conditional expectation of an operator h as the operator
E; h with domain

Dom Eih = ]D)i (Dom h),
and for f € DomE;h, A € P

E;hf(A) = hpida, f(Ay),
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which defines a element of T®, that is, a square-integrable function of A. Indeed,
2
Z h|” pida, f(Ay) = Z |pihpidag, f(As))|
A A
= > lpihpidaf®

A>i

Ipibpill* > IpidafI?

A>i

IN

and doing the same manipulations backwards shows that 3_ , . . [|pida f I is 3 R |d A, f(4y) |2 =
1117

Lemma 1.5 The conditional expectation of operators has the following properties:

- E;h is a j-previsible operator for all j > 4

- an operator h is i-previsible if and only if h C E;h

-EioEjh=E; ocE;h =E;h for alli < j

- for all operators h,k on T®, all A\, p € C, E;(Ah + pk) = AE; (h) + pE; (k)

- E;h = E; (hp;) = E; (pih) = E;(pihp;)

- pi(Eih) = (E;h)p; = pihp; .

|

Remark in strong contrast with the regular Fock space case, if T®;) C Domh, and in
particular as soon as {Xy; M < i} C Dom h, then DomE;h is equal to the whole of T®
and, what’s more, E; h is a bounded operator with norm dominated by ||p;hp;||, as we have

showm above. This is an example of the power of “stopping the time” and of previsibility
in our discrete time framework.

1.4 Quantum stochastic integration on T

The easiest way to define quantum stochastic integrals with respect to the three quantum
noises is as follows. For a mazimally previsible process of operators, that is, a process (h;);i>o
of operators such that for every i, h; is equal to E;h, we define the integral a®(h) as the
operator ) .a$h;, i.e., the operator with domain

{f € T® such that (ajh;f); is a summable process}

and equal to ) .a$h;f on that domain. For the definition of a summable process, see the
end of section 1.2. This definition is meaningful for € = 4+, —, 0; we extend it to the case
e = x with a equal to the identity operator, in order to include time integrals in this
notation.

This definition requires an explanation: it would seem, indeed, more natural to define
integrals as ) _.h;a$; but one shows, using the i-previsible maximality of an h;, that

f € Domh; & af f,a; f and af f are in Dom h;
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and that, when one of the sides holds, h;a{f = a$h;f. Therefore, the operators ) h;a$
would be extensions of the operators ) _.a$h;, that is, of the integrals we defined. But with
such pathological cases as Dom h; = {0}, where Dom h;a} = Kera}, the domain of the
sum ) h;a$ would contain vectors which are intuitively unwanted in the domain of the
integral. Such pathologies will not appear with our definition and, on the domain of the
integrals, integrand and integrator do commute.

One can wonder if this definition coincides with natural transcriptions in discrete time
of the Fock space integration theories. Indeed, if one remarks that

- the Skorohod integral of a process (f;), defined as A+ ., fi(A\ 1) is just the sum
> a;L fi, even from the point of view of summability conditions,

- the gradient operator d; is just p;a; ,

it is straightforward that our definitions are the transcriptions of Attal-Lindsay’s maximal

definitions of the integrals; we can therefore do the same formal computations as are made in

[5], to show that our integrals satisfy Attal-Meyer type equations. We give without proof a

formulary of equations satisfied by our integrals, as all proofs are similar tbeir counterparts
in continuous time (see [5], [6], [10]).

Hudson-Parthasarathy formulas : for all u,v € 2 (N) such that e(u),e(v) are in the
domain of a¢(h), one has

(e(u), a“(h)e(v)) = Y ¢(i) (e(u's), hie(v's)) (1.1)
where L
u(%) ife=+
N v(1) ife=—
90 =9 wwl) ife=o
1 if e = x
and u'; = u if e = —, x, v/; = ully,, i.e. the sequence equal to u, except for the i-th

term which is zero, if € = 4, 0.

Attal-Meyer equations : for all f such that all quantities are defined, we have

a“(h)f = as(h)dif Xi + > higif i (1.2)
i>0 i>0
where
R d, ife= -, 0
% = Di ife= +, X
o X; ife= +,0
"= 1 ife=—,x

and a(h) is the integral of the process (ho,h1,- -+ ,hi—1,0,---).
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Attal-Lindsay formulas : for all f in the domain of the integral a®(h), one has for
all AeP

S]
o
~~
>
N
~~
~~
b
S—r

I

Z hiqidA(i f(Az)) ife= +a o (13)

i€EA

S
m
—~
>
N
~
~~
s
N

Il

D higida, f(Ay) ife=—,x, (1.4)

i>0
where g¢; is as above.

With our definitions of integrals it is easy to prove the following Ito formula for quantum
integrals, which gives an identity between an expression for a*(h)a”(k) on a subdomain.

Theorem 1.6 Let (h;) and (k;) be two maximally previsible processes of operators on T®.
Let € and n belong to {+,0,—, x}. Then

a‘(h)a"(k) — a*(h.a’(k)) — a"(a*(h)k.) — a“"(h.k.),

is a restriction of the zero process, where a®" is given by the following table:

r — o + X
- 0 a” a*—a® a”
o 0 a® at a®
+ a® 0 0 at
X a” a® at a*

We turn now to results which are no transcriptions of continuous time theory; despite their
extremely simple proofs, these results are crucial for the following section, and may be useful
for other applications.

Integral representations of operators In [11], we obtained results giving the repre-
sentability of operators on T® as kernel operators. The main result was the following:

Theorem 1.7 Let h be an operator such that all vectors Xpr belong to Dom h N Dom h*.
Then h is the restriction of a kernel operator ) k(A, B, C)ajaj’gaa.

A,B,C
|

One also has explicit formulas for the scalar coefficients k(A, B, C) which we do not give
here. The series ZA)B’C k(A, B, C’)aj(fBan is to be seen as a series of operators, that is, an
operator with domain the set of all f such that:

-forall M € P, Y, . . |k(4, B,C)akaRags f(M)| < +oo,

- MY k(A, B,C)a}ajag f(M) defines a square-integrable function.

A,B,C

It is therefore straightforward that any operator h defined as a series obtained by group-
ing the terms of such a kernel operator extends that operator. Therefore any operator
satisfying the assumptions of the above theorem is a restriction of

k(A+1i,B,C)ataRa-a + k(A, B +i,C)ataRasal + k(A, B,C +i)alasasa;
A cYi A c™i A Cc™i

i A,B,C<i
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which we can write in the form
> (hfaf +hgag +h;a;). (1.5)

Such an operator is itself an extension of the integral operator
S ohfaf +> hiag+> hia; (1.6)

but it is straightforward that both operators coincide on their common domain. Besides,
since any X is in the domain of h, it is also in the domain of the integral operator: indeed,
since the a and a; vanish on X, for large enough 1, it is equivalent for a X s to be in the
domain of (1.5) or in the domain of (1.6).

Besides, we have kernel decompositions of the integrands h;r, h?, h; : for example h;r =
Yuso< K(A+1i,B,C)akagag. Using the formulas in [11] giving the kernel of an operator
we obtain more accessible expressions of the integrands. These results are summarized in
the following;:

Theorem 1.8 Let h be an operator on T® such that all vectors Xa belong to Domh N
Dom h*. Then if we defined the integral operator

h=x+ > > hia
e=4,0,— i>0

where the h ’s are i-previsible and given by:

ht pi = dihp;

h; pi = pihap; (1.7)

ke pi = dihafp; — pihp;.
then h, h coincide whenever they are both defined, and {Xp, M € P} C DomhnN Dom h.

|

This theorem is not quite enough if we want to consider previsible processes of operators,
that is, sequences (h;); of operators such that h; is i-previsible, and represent such a process

by
e X
e=4,0,—,X j<i
The presence of an integral with respect to a* is unavoidable if we want the hj ’s to be
independent of ¢. Minor adaptations of the above result lead to the same representability
result for processes with the slighly different formulas:

hi pi = dihiyipi = di(hit1 — hi)p;

hi pi = pihiqaipi = pi(hiq — hi)aipi

o + — + (18)
h{ pi = dihiyrap;i = di(hiz1 — hi)a] p;

hi p; = pi(hiz1 — hi)pi.

It is a particular feature of the toy Fock space as opposed to the Fock space that one can
isolate terms in a sum or in an Ito integral using the fundamental Ito calculus operators.
In continous time, one could a priori obtain nothing but averages of the desired quantities,
and would need unaffordable regularity properties to “pass to the limit”.
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2 Approximations of continuous-time integrals

2.1 A reminder on quantum stochastic calculus

We shall here recall briefly some necessary definitions and results from quantum stochastic
calculus on regular Fock space, which will seem very analogous to the discrete time theory
developed above. First of all, the Fock space is defined as ® = L? (P), i.e. the set of
functions on the set P of finite subsets of Ry when P is equipped with the measure such
that the empty set is the only atom, of mass one, and the measure is equal to Lebesgue
measure of order n on sets of cardinality n. The canonical variable will be denoted by o,
and the infinitesimal volume element by do. We keep the same kind of conventions for the
notations on sets as in the discrete case. Informally, the elements of ® are the functions
defined on all increasing simplexes ¥, = {t; < --- < t,} of Ry such that

Z/ F(br, - )P db - - by < 400, (2.1)
Xn

It is clear from this chaotic representation that ® is isomorphic to the chaos space of any
normal martingale (e.g. the brownian motion, the compensated Poisson process, the Azéma
martingales, etc.). We shall label ®; the analogous set of functions defined on simplexes of
[0,¢]; ®; will be canonically included in ®.

A particular set of elements in ® is relevant, that is the exponential domain: an expo-
nential over a function u € L? (R;.) is defined by

E(u)(o) = H u(s). (2.2)

seo

It is an element of ®, as one can see that [|€(u)||* < ellul’.

Abstract Ito calculus Let us consider for all ¢ the element x; of ® defined as follows:

]15<t if o = {S}
0 otherwise.

() = {

The isomorphism from ® to any chaos space sends x; to the brownian motion at time ¢
when onto the chaos space of brownian motion, to the Poisson process at time ¢ when onto
the chaos space of Poisson process, etc. One can define an integral of adapted processes
(fe)t>0 of elements of & (that is, such that f; € ®; for almost all t), with respect to the
curve (X¢)t>o0 (see [4]), denoted

1) = [ fidx
and satisfying

me=Anmmt (2.3)

as soon as the latter real-valued integral is finite; the complete construction uses the isometry
property (2.3) for step processes. This integral is called the (abstract) Ito integral.
There is an alternate construction for this integral:

I(f)(U) = fsupa(ff—) (2-4)
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where sup o is the largest element in o and o— = o \ (sup o). The natural conditions for
this to be well defined can be seen to be the same as above, namely the square-integrability
of the process (|| f|,)e>o0-

Let us define the two fundamental operators of abstract Ito calculus on ®:

e the adapted projection P; for all ¢, as the orthogonal projection onto ®;. Explicitly,
fora f € @,

Fif(0) = 1o<i f(0), (2:5)

e the adapted gradient by
Dif(0) = 1yt f(oU). (2.6)

Substituting (2.6) in (2.4) yields immediately

F=1M+ / Dy f dx: (2.7)

and

117 =17 @) +/||th||2dt- (2.8)

That is, all elements of ® have a previsible representation (2.7) together with the associated
isometry formula (2.8).

Quantum stochastic integrals We shall here define integrals

/ Hda
0

with respect to the three quantum noises dat, da®, da~ and to time, which corresponds to
the noise da*.

The heuristics of the Attal-Meyer quantum stochastic calculus, which we present in a
simplified way, derives from the fact that the noises, which will turn out to be differentials
of continuous-time fundamental operators, should act just like the fundamental operators
of toy Fock space, that is:

e any da; acts only on @ 4 4, which from (2.7) can be seen as “generated” by 1 and
dx: and

e the da§ are given by the following table:
da} 1 = dy; and da;fdx; =0
da; 1 =0 and da; dx; = dtl
da;1 =0 and da;dx: = dx:

da;* 1 = dt1 and da; dx; = 0.
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These heuristics allow us to define integrals [ Hyda for adapted processes (Hy)s>0, that
is, processes of operators such that for almost all s, all f € Dom Hg,

P,f € DomH,, D,f € Dom H; for a.a. u > s and

H,P,f = PsH,f and H;D,f = D, H,f for a.a. u > s.

In that case, a formal computation leads us to give the following definition: an adapted
operator process (Iy)¢,cq0 is said to be the integral process ( f(f Hgda$)>o if the following
equality holds for almost all ¢ > 0:

[y H,P,fdx, ife=+
fPtHstfds if e = —
o HsDsfdxs ife=o
[y H,P,fds ife=x,

T,f = / TonoDs fdxs + (2.9)
0

that is, f is in the common domain of the integrals if and only if the right-hand side is well
defined and equality holds, an integral f: Hda is then simply an integral of the process
equal to Hy for s € [a,b] and zero otherwise.
The fundamental operators ai are recovered as the integrals fcf da$ in the above sense.
We give here as a corollary the formulas of Hudson and Parthasarathy, which originally
were the cornerstone of the first theory of quantum stochastic integration on Fock space

Hudson-Parthasarathy formula Let us consider a quantum stochastic integral process
(Tt)¢>0 defined on the exponential domain (see (2.2)). Then the following equality holds
for all u,v € L2 (R, ), almost all t € R :

(E(u), TiE(v)) = /0 ¢(s) (€(u) , Hi&(v)) ds (2.10)
where
u(s) ife=+
v(s) ife=—
9(5) =9\ a(s)u(s) ife=o
1 if e = x.

2.2 Explicit formulas for the projections of integrals

We use here the embedding of toy Fock space in regular toy Fock space defined by Attal in
[1] and the formulas (1.7) to obtain the projection of an integral operator in discrete time.
Let us first recall the definitions of [1]: for any partition S = {0 =ty < #; < ---} of Ry,
one defines the following on ®:

Xz' — Xtivw — Xti

tiv1—1;
o = a‘t:-u —ay,
1 t _t
i+1 i
+ +
a —a
+ _ p(1) Tty ti
aj = P,

tiy1—1;
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o __ o _ .0
a; =a;,_, —ag,

where Pi(l) is the projection on the chaoses of order zero and one restricted to the Fock
space on [t;,t;11], that is, denoting by P the projection on the chaoses of order zero and
one, Pz.(l) is Id ® P(Y) @ Id in the decomposition & = D, @ Py, 4:01] ® Ppy,,,- The space
T®(S) C P is defined as the closed subspace spanned by the vectors X4 = Hie 4 X; for
A € P; it is isomorphic to the toy Fock space, and the restrictions of the above operators a$
coincide with the operators defined in the previous section. We denote by Es the projection
on the subspace T®(S).
The main relations for our computations are given in the following lemma:

Lemma 2.1 Let us fiz a given partition S = {0 =ty < t1 < --- <ty < ---}. One has for
al fed,

1 tit1
———F P, D, fdt
e ), ¢f

[e%e) 1 tiy1
dxt = —— / Py, fy dt X;.
]Es/o frdxi mglﬂs 5 i ft

piEsf =EsP,f and d;Esf =

Proof.
We shall prove the first two equalities only, the third one being a consequence of the pre-
visible representation property on toy Fock space and of the second equality.

For all A= {i; <--- <ip}in P, one has

]ESPtif(A) = <XA7Ptif>

1 iy 41 tin+1
N Pifsl"' Sp)dsy - --dsp,.
V8 =ty Vi — 1, /til /t b f (51,775 8n) n

The right-hand side is null if one of the ¢;,’s is larger than ¢;, that is, if one of the i;’s is
larger than 4; it is otherwise equal to the same integral without P;,, i.e. to Esf(A). We
have proved p;Es f(4) = Es P, (A).

Since d; = p;a; , one has:

in

_ 1 _ _
dZESf = p’taz IESf = \/ﬁﬂgsptz ((at,’+1 - a’t,')f)'
But
[eS) tig1
(ag,,, —a,)f = (agntiny — ag)Difdxe + D, fdt
t; t;
by the Attal-Meyer formulas, so
1 tit1
diEsf = ——————pilis( D, fdt)
tir1—t; t
1 tit1
= ———Fs(| P.Dfdt).
tiv1—t; t
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Since we wish to compute approximations Es HEg of operators on @, and therefore to
compose H and Eg, and need the operators on T® to have large enough domains to apply
our representation theorems, we need to make the following assumptions on the considered
operator H:

1. £(L? (R}.)) is contained in Dom H N Dom H*
(HD)
2. Dom H and Dom H* are stable by all Eg,

where all domains are meant in the sense of Attal-Meyer integrals.
In particular, the projections Es HEs are defined on all finite linear combinations of
X 4’s. Indeed, by Lemma 3.1
Es&() =1
Es& (N, ,401) = (i1 —t:) Xi + 1
Es& (Mg, tiy1ulty tjen]) = Eivr —t) (Eir1 —15) Xij + tiv1 =i Xi + 41—, X; + 1
and so on.

In this paragraph, we will reduce our computations to the case where integrals are of
the type H = fti“ledaf with € € {+,0,—}, and such that their domain and the domain
of their adjoint is stable by Es. By the above remark, the approximations Es HEgs are
defined on all vectors X4 of T®(S). Besides, by Theorem 1.8, Es HEs has an integral
representation which is valid anywhere both Eg HEs and the integral are defined, and
in particular on all X 4’s. Since the adjoint operators satisfy the same hypotheses, the
integral has a densely defined adjoint, hence is closable, and can be extended to the whole
of DomEs HEs = T®. Since P, HP;; = 0 and P, HP;, , = H, one has p;Es HEsp; = 0
and p;+1Es HEsp;+1 = Es HEg, so the integral is simply of the form

EsHEs = hfaf + h{a{ + h; a; ,
and we have explicit formulas for the operators hj:

Theorem 2.2 Let H = [ Hfda§ be a quantum stochastic integral on ® that satisfies the
assumptions (HD). Then Es HEs is a discrete quantum stochastic integral on T®(S) such
that the integrands h, h;  hS are given by:

[ A1

- for e =+,
1 tit1
hf = ——Fg Pt,.H{'“dt
tiy1—1i t
h; =0
1 tit1
B = Es [ P, H}(af —af)dt
tit1—t; t !
- fore=—,
hf = 0
1 tit1
h; = —=Fs P, H; dt
tit1—1; t
1 tit1
B = Es [ Pilaj —a;)Hy dt

tit1—1t; &
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- fore=o,
W= 0
hy = 0
tit1
hy = Es P, Hpdt

tit1—1t; i
where the equalities are over T®;) (considering, for the right-hand-side, T®;) as a subspace
of ®;,) and where all operator integrals are in the strong sense.

Proof.
Let us prove for example the case € = +. Let us consider the action of A}, h,hS on a
vector X 4 with A < 4. One has by (1.7) and Lemma 2.1,

hiXa = diEsHX4
1 tit1
= ——TFg P, DiHX 4 dt
tit1—t; t

and by the classical Attal-Meyer equations HX 4 = f:o Hipng; oy DeX 4 dyxy+ fti”'lHtJr P, X o dxy,
but D; X4 =0and PLXg4=Xafort>t; ,s0 DiHX 4 = H;_XA.

hi X4 = piEsHafXa

= EsP,af X4
and P,af X4 = 0.
hiXa = di]EsHanA —pEsHX 4
1 tit1

- s P,DHaf X, —EsP,HX 4

Viir1—ti 4

the second term is null just like above, and

tit1 tit1

HXpp = Hy Dy X aqidx: + HfP X atidx:
t; t;
tit1 X tit1 _ ]
= HtiAdXt + HJXAMdXt
ti tiy1—t; t tit1—1t;

but H; X4 = ftt H} X adxs and P, H; X4 =0, 0 DiHX g4 = — H; X a(xt — xt;) and

i+1—2s
the proof is complete. The other two cases are treated exactly in the same way.

O

The surprising fact is of course that the approximation of integrals with respect to a®
or ¢~ may contain non-zero integrals with respect to a°; it will be contained in the proof
of the next section that, under some analytical conditions, these unwanted terms vanish, at
least in a weak sense.
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Now let us consider the more general case of processes of integrals (Hy = fot Hidal)i>o
and project them considering for a fixed partition S the discrete-time process (h;)i>o =
(Es [," Hedat). We assume that the domain assumptions (HD) hold for each operator H;
of the process; in that case it is straightforward from

tit+1
Es Hy,Es = ZIES/ Hda$Es
tj

i<i

that for € € +, 0, —,
L= + + - - o_o
hi =3 hfaf +3 hya; +) hiaj,
i<i j<i j<i
where the h$ are as in theorem 2.2.
But for € = x, if we consider the same discrete-time process and apply the formulas
(1.8), one also has an a priori surprising feature: the projected process is written

hi =Y hial +> hia; +) hal+ Y h¥,
j<i J<i j<i Jj<i

and the terms ). _ hja$ can be non-zero; we do not give explicit formulas for them since
there is no better way to write the integrands than (1.8). We will show in the next section
that, with additional analytic conditions, the a* integral alone converges to the continuous-
time operator with the mesh size of the partition, hence meaning in particular that the
other terms (at least taken as a whole) do vanish.

In that proof we will use the following straightforward proposition, which shows that an
alternative way to project integrals with respect to to time can seem more relevant than
the one we described.

Proposition 2.3 Let H = f0+°° H/da; be an integral in ® such that each stopped process

fot H }ds satisfies the assumptions (HD). Then Es HEs can be written as the sum )., hx,

where
t;

hX =Es | H}dtEs
ti—1
is i-previsible for each i.
In particular, for a fixed t belonging to all partitions S,

t
> hi*da} :]Eg/ H)dsEs.
0

i<t
|

We should emphasize here on the fact that the last equality above is not a contradiction
to the formulas (1.8): here we allowed the discrete-time to go one step further than in
our canonical choice of representations of processes, and shifted all terms. This is just
another consequence of the fact that in discrete-time also, there is no unicity of integral
representations involving integrals with respect toto time if one considers a single operator;
the representation of processes such that the i-th, ¢ previsible operator of the process involves
summations until time 4 — 1 is unique nevertheless.
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3 Convergence of the Ito table

Here we want to prove that the Ito formula for continuous-time quantum stochastic integrals
is a limit of the one for discrete-time integrals; to achieve this we actually reprove the
quantum Ito formula for regular semimartingales as defined in [2], using nothing but our
approximation scheme and the Ito formula on toy Fock space. For this we define below
our assumptions on the considered quantum stochastic integrals. The proof will be done in
three steps: first, we will show that the unwanted a° integrals that appear when projecting
At or A™ integrals vanish, as well as the terms they create when two projections are
composed. Then we shall prove that, asymptotically, one can compute the composition of
two projections using the continuous Ito table. The third step will be dedicated to showing
that the remaining discrete-time integrals obtained after composition do converge to the
continuous-time integrals we are looking for.

Troughout this section we will make the following assumptions on the operator integrals

o0
H:/ Hida; :
0

1. the integrands Hf are bounded operators such that ¢ — ||Hf|| is square-integrable

if e = +, —, integrable if € = X, essentially bounded if € = o
(HS)
2. H is a bounded operator on ®.

These assumptions are the ones made for all terms of a regular semimartingale process
as defined in [2]. One can regret the apparently too demanding assumption 2., but as it
is shown in [3], there is a one-to-one correspondence between the operators that satisfy 1.
and 2. and those that satisfy only 1.

With such assumptions, it is straightforward from general stochastic integration theory
on ® that H = [ “Hfdas is the strong limit of the fOTH fdag as T goes to infinity, with
uniform norm estimates. As a consequence, H is the strong sum of all [ "I edas and
EsHEs is the strong sum of the hfa} + h; a; + hjaSha computed in the previous

K3
section. We consider here the projections we obtain when considering processes and not
simply operators; this makes no difference for € € {+, circ, —} but justifies the fact that we
consider also continuous-time integrals with respect toto time. Let us fix general notations
as we go on: for such an integral H = [ Hfda§ on the Fock space, we will denote by h its

projection on the toy Fock space; it is represented in the form
h=a"*(h)+a (b)) +a°(h°). + a*(h*) (3.1)

and the different parts af(h¢) will be denoted by he. One shall remark that the above
representation holds on all of T®; indeed, it is a simple consequence from [11] that it holds

on the dense set {X4, A € P}, and h is a bounded operator.
We need a few lemmas to start the technical proofs:

Lemma 3.1 Let u belong to L? (R+) The projection Es&(u) is again an exponential vector
in T® over the function (i) m ft’“ s)ds. When seen as a vector of ®, it is not
necessarily an exponential vector, but one has for all t; <t < tiga,
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Proof.
For all A = {iy,...,in,} € P, we have

: ]
\/(tz‘1+1 —tiy) oo (b1 —tin) Jltay iy o1] oo X [tir tin 41]
1 tit1
= R u(t)dt
g Vitiy1—ti /t
= JJu@6).

i€EA

Es&(u)(A)

E(u)(s1,.-.,8,)ds1 ...dspy

O

Lemma 3.2 For all s < t, the operator (a;|r —a}) Ps is bounded on the exponential domain,

with norm \/t — s.

|
Proof.
On ®,, the operator (aj — a7) is simply the tensor multiplication by x; — xs.
O
Lemma 3.3 Let e = + or —. Then for all u € L? (R, ), we have
1 tit1 ~
o)l < =g [ WHENt etin)] (32)

Tou(i Narei? Jull72
hie(tq)|| < [lull . ; 1Hf "t exp — (3.3)
|
Proof.
The first inequality is trivial from Lemma 3.2. The second one comes from afe(u) =
u(i)e(uy)e(u;) and hy = 3., hiaj3.
O
Lemma 3.4 Let f be an integrable function over Ry. One has
t
e e [ 1f@]du 3,0
|

Proof.
The function z — foz |/ ()| du has arbitrarily small variations outside of a compact set, and
is continuous, hence uniformly continuous, on that compact set.
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O

We shall first simplify the case when € = X, proving the fact that one can choose to
consider the alternative description described at the end of the preceding section.

Lemma 3.5 Let (H; = 0+°° H}Xds)i>o be an operator satisfying (HS). Then for all t €
[0,4+00], Hy is the strong limit of
>

it <t
|

Proof.

First let us observe that, by the strong left-continuity of the process, which is obvious from
(HS), and Proposition 2.3, the result holds if we consider h,* in place of k. Now let us
prove that

> (b = hY)

i
ti tit1

= Z(]Es HXdsEs — Es (p; Hdsp:) ® IdEs)

ti—1 t;

converges strongly to zero on the exponential set. Since thhe considered operators are norm-
bounded (with bound 2 fo ||Hs|| ds), convergence on any vector in ® will follow. We recall

that the ® decomposition appears because the projection h; is the action of fttf“ Hxds
before time ;.
The above operator, when applied to an exponential vector £(u), yields

ti tit1
Z(Eg 5 Hdse(u;) — pis ; H}dse(uy))e(up;)
1 tit1

Z ((I—Pi)]Es H)dse(uy)---

i

tit1 t;
. Hdse(u;) + Es H}dse(uy)- -
t; ti—1
tit1
B [T HRase@) - @) ) ef@)
t;
tit1
Z(pi-i-l - pi)Es H)dse(uy)e(u;) - - -

t;

tit1 ti

—ZES HYdse(ug) +Es | HJ dse(uy))--

ti—1
t1+1

. .Z(}ES Hds (e(t) — e(uy)))-

t;

i

The last sum is smaller in norm than ", |(3)] ft‘+1 [|HX||ds ||e(w)]|, hence smaller than
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the vanishing sequence [ ||H}||ds sup; ||u(i)|| ||€(u)||- The second sum is

tit1 t;

Z]ES( 5 HXdse(u) — H}dse()),

ti—1

hence appears as the sum of increments of a summable sequence; therefore it is either zero
or of the form | tt, H}dse(u) for the largest ¢ s.t. t; < t, in which case it is bounded by

ftt [|HX||ds ||€(w)]| and therefore vanishes by Lemma 3.4. The first term is equal to

t
Es / (Piyr — P)H e(iiy)e(i;) ds
0

where i is actually an i(s), which is defined by #;(;) < s < t;(5)41- The integrand is pointwise
bounded by ||[H)||||€(u)||, which is an integrable function, independently of the partition,
and converges pointwise to zero with the mesh size of the partition. Lebesgue’s dominated
convergence theorem thus applies and the proof is complete.

O

We have shown in particular that the unwanted terms that arise when projecting a
process ( f(f H}ds);>0 as a process on toy Fock space converge strongly to zero.

The following proposition constitutes the first of the three announced steps of our demon-
stration, that is, getting rid of the unwanted a° from the projection, and of the terms they
induce after composition:

Proposition 3.6 Let e,n € {+,—,0,x} and let H, K be two operator integrals satisfying
the assumptions (HS). Then for all u,v € L? (R}),

(€(u),EBs HEs Bs KEsE(v)) — (e(t) , a*(h?)a" (k7)e(v))
tends to zero as the partition’s mesh size tends to zero.
[ |

Proof.

If both € and 7 are o, there is nothing to do but recall that Es HEs and Es KEs converge
strongly on ¢ and are uniformly bounded in norm. If one of €,  is X, the corresponding
projection can be immediately replaced by the integral with respect to a*: if for example
1 = X (the other case being proved by adjonction), then

(e(u) ,Es HEs Es KEse(v)) — (e(u) , Es HEsa” (k7)e(v))

is smaller than || H*|| ||€(w)|| ||(Es KEs — a* (k*))E(v)|| which tends to zero by the previous
proposition. Because of this exceptionally strong feature (strong convergence), we will make
no difference in the sequel between a projection Es [ K*dsEs and the associated a* (k*).

To work out the other cases, let us consider first a term in which no Ito bracket is
involved, for example when € and 7 are both —. Then

EsHEs EsKEs = (a”(h7)+a°(h?))(a” (k™) + a°(k°))Es
= (a (h)a (k) + hk° + h°k+)Es
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and since h°k+ is h° (% - %°), one only has to show that h°k, hk° and h°k° tend to zero
in our weak sense. Performing the same scheme for other cases, and using adjoint relations
shows that all one needs to prove is

h°k tends to zero for € = —, + and any 7 (3.4)
and
h°k° tends to zero when € and 7 are both + or — (3.5)

where convergence is meant “asymptotically on the exponential domain” in the same sense
as in the proposition.
For the first assumption (3.4), let us observe that

<e(m ,E°Ee(m> - <’E<?*e(a),7ée(5)>

and that, since k = Es KEs is bounded and (h°)*e(@) is uniformly bounded by Lemma 3.3,
one can replace e(v) by anything which tends to it in norm with the mesh size |S|. But one
can approximate K& (v) by a linear combination of exponential vectors; let us suppose for
simplicity that K& (v) is approximated by a single vector £(w). Then, since

|Es & (w) — Es KEsE(v)]

|Es & (w) — Es KEW)|| + [[Bs KE(v) — Bs KEs E(v)]
IKE () — EW)| + [IK[[[E(v) —EsEW)],

H%e(m - e(ﬁ)H

IA A

and both terms on the right-hand side can be made arbitrarily small if the partition is
refined enough, one can replace ke(v) by e(@). Now our assumption reduces to showing

that < (@) , hoe(® )> tends to zero with |S|. But it is equal to

Z Wﬂ(i) <€(ﬂi)) ’ h?e(@i) > <€(’L~L(z’)a e(ﬁ(i»

i

- ZM/t+< (@) , Puay — ay ) Hy e(i@y)) dt (e(iig), e())

tit1—t;

i

if for example € = — (the case € = + is just the same). Using Lemma 3.2, one has

(e oe@)| < 5 TOHL [y ot e e et
< Swoaol [ IH e @)@l
tit1
< ||u||||w||exp||u||exp||w||\/sup,- / e e

and the last term converges to zero by Lemma 3.4.
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To prove (3.5) let us write
Rk = hekfa + Y hekSa + > hikfal
using the discrete time Ito formula. Hence

(@) hF°e(@)) = D T0HG6) (el@n), bk + kS + hgk)e(@y) ) (i), e()

i

and using Lemma 3.3 and the fact that ﬁ;’, Ef are bounded with norms < ||H||, || K]|, one
has a majoration of ‘<e(ﬂ) ,l~1°E°e(m>‘ by three terms of the kind

tiy1
3 [a@)s0)| / K2t x Cus

and since the series > u(7)v(i) is convergent, one concludes again using Lemma, 3.4.

Proposition 3.7 With the assumptions of proposition 3.6, one has
(€(u) ,Es HEs KEsE(v)) — (e(w) , (a*(hfal (k7)) + a"(aS(h)kT) 4 a7 (h.k.))e(?))

tends to zero as the partition’s mesh size tends to zero, where €.1 is computed using formally
the continuous Ito formula.

|
Proof.
All that is left to prove is that
for (e,n) = (+,—), one has ;h;k;ra;’ |S\_—>>0 0 (3.6)
and
f = (- h h;kfa? — 0. 3.7
or (e1) = (= +), one has 3k kfaf o (37)

plus the convergence to zero in all cases involving an integral with respect to x.
The proofs of (3.6) (3.7) are the same; let us prove for example (3.6):

<e(ﬂ>,2h;k?a$e<%)>

and since
tit1
I el </ [l P e
~ tit1 2 ~
el < o) [ at e

< QB! [|27e@)]| [k @) e@a) | [[e@

and
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one concludes as before.
Now in the case where ¢, for example, is X, one writes the usual equalities

(e(@),a"(h*kMe(@®) = Y (e@y),hikie(@y)) (e(dy), e(@y))

i>0
somui > 0intyy, 4,2 (e(ty)) , H KJe(0y)) (e(ug), e(ty;))
(keep in mind that x.n =7 in all cases), and this is dominated by the following quantities:

o S de [ R d i =

b Ez \% ti+1_ti ftii-'-lHHtx || dt V j.tiz+1||KZ7||2dt lf n= +7 )
o X (ti—ta) [T HF dt |1 KCl, if n = o

where all majorations are up to constant factors. In all three cases the summed term in the
majorant is a summable one multiplied by a vanishing one.

O
We now apply these results to prove the final result:

Theorem 3.8 (Ito formula in continous time) Let H = A¢(H®) and K = A"(K") be
two continuous-time integrals satisfying the assumptions (HS). Then the following equality
holds on the exponential domain:

AS(H)AN(K") = A“(H AT(K") + AT(AS(H)KT) + A“"(H KT))
where €. is computed using the continuous Ito table.

Remark we insist on the fact that this reproves the Ito formula on regular Fock space
knowing nothing but its counterpart on the toy Fock space.

Proof.
We will prove that for any u,v € L? (R, ) one has

(E(u), A(H)AN(K)E () = (E(u) , (ACHATK™) + ANAH)K?) + ANHKT))EW))
By Proposition 3.7, it suffices to show that
(e(@),a(hR)e@®) — (E(u), A (HK)EW))
(e(@,a (hkMe®) — (E(w), ANHKEW))
(e(@),a“"(hkNe(@®)) = (Eu), A HK)EW))
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but by the previous propositions, one also has that
(e(@),a(HK )e®) — (), A(HEK)EW))
(e(@),a”(HE)e() — (E(u), ANHKME(®))

——€.7]

(e(@),a“"(HE ")e®)) — (@), A" (HKED))

where H¢ K " denotes the integrand with respect to a® in the projection of HK"; it is indeed
obvious that the considered integrals satisfy our assumptions (HS) (in the case where e.n
is x, all we use is Proposition 2.3 where we have shifted the discrete-times integrands so
that they are adapted and not previsible). It suffices then to prove that

<e(m,af(h€%—ﬁ?fce)e(a)> - 0 (3.8)
<e(a),aﬂ(ﬁkﬂ—ffﬁv")e(a)> - 0 (3.9)
<e(a),af~"(hfk"—E%?c/ne'")e(m - 0 (3.10)

(3.8) and (3.9) derive one from another by adjointness. Let us prove different cases one
by one.

(3.8) in the case e = — or +: let us take for example € = +.

(e(@) ,a“(hk - HK )e(8)) = 3 7G) <e(a,~>) (ki - ﬁf?)e(%)> (e(@q), e(@a)) -

i

The last bracket on the right is uniformly bounded and we will forget it and its avatars in
the sequel for the sake of lisibility. The above quantities are equal to

tit1

ZW<6@')) ; %

— P, (H; k; —H;th)e(@))dt>
i+1 = ti

i

it
- Y= m / (B e(iiy), (R — Ki)e(dy) ) de

So the norm of the left-hand side is smaller than

5 g [N = e

< S \/ / ;"+1||Ht+*||2)|<7c; ~ Koe(iy) | ar
< il \/ [ s - Ko a (3.11)
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by repeated use of the Cauchy-Schwarz formula and convenient erasing of constant terms.
The index i in the last line is actually a i(t).
But, since k; = Es K, Eg,

| ks = Ke@y)| < [ Kue@)] + [ Kee(@y)].
If n = 4,0, —, then (K}) is an operator martingale, so, since ¢; <t with e(7;)) € ®y,,
|k — Koe@y)]| < 2 [ Ke(@)] < 201K lle@II- (312)
A majoration of the same kind is immediately obtained in the case n = x since ||K¢|| < [ [|[K}]| ds.

One can then apply Lebesgue’s dominated convergence theorem to the integral in (3.11).
Besides,

| & = Koe@)]| < 1Es K, — Ke)e@ I+ (e, = K PuEsEwro)-

And both terms on the right-hand side tend to zero a.e.; the proof of (3.8) with e = +
or — is now complete.

(3.8) in the case € = o:
we now consider the quantity

S F@) (eliy) , (ki — HK)e(@y))

i

where we forget once again the last factor. It is equal to

> BN T i) 1 - Kt

tit1—1;
> u(i)o(0)
= H? (k; — K, i) ) dt.
|2 (et R~ Koe(r)
The bracket is uniformly bounded, and ¢ — uli) U6 _ where i = i(t) tend to u,v in

Vigi—ti? Vi
L? (R;) by the martingale convergence theorem. One can therefore consider, instead of the
above, the quantity

[ w@e) (o) (s~ Kije(a))at

and one can now apply Lebesgue’s theorem in the same way as in the previous case.

(3.8) in the case € = x: we consider

> <e(a,-)) (WX k; — ﬁi)xe(%D

i
ti

Z uz) (]ESKt,- — Kt)e(@)» dt.

tzl
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Its norm is smaller than
t;
S [ de | Es K~ Ke(@ |
i i—1

and a majoration was established in (3.12), that is sufficient to conclude here.

Let us now prove (3.10). First let us settle the problem when one of € or 7 is x; we take
for example € = x. In this case we have to show that

<e<a) S h; k;'a?e<5>>

vanishes when the mesh size of the partition tends to zero. But that quantity is smaller in
norm than

31 e@)|| Ik ale(@)|]

which in turn is smaller than a constant times

tit1
somui / B+ | dt |[k7ale(@y)])
t

Now

o if ) = +, then ka]e(?;)) = k}'e(v1;)X;, and

tit1
[kate@nl < [ WiPae.

e if ) = —, then ka]e(v;)) = v(i)k;'e(v1y;) and

tit1
||k} aie(@y)]| < /t K|t [5)| (1€ (w)]] -

e if ) = o, then kjaje(v;) = 0(i)k}e(v14;) X; and
[k ale@y)|| < IK°llo @] IE@)I-
o if n = x, then k}ae(vy)) = (k) e(v;))) (1 +0(i)X;) and

[rate@l| < [ decr + o).

In all cases, (3) is a sum of which the general term is the summable tt,"“”Htx* || times

a term that vanishes uniformly in ¢ with the mesh size of the partition.
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There are four non trivial cases left: (e,1) equal to (—,+), (0,0), (o,+) and (—,0). The
last two cases have similar proofs; let us prove them first.

) or (o, +):

(3.10) in the case (¢,1) = (—,0) or
+). What we want to prove is that

we take for example (e,7) = (o

<e<a),2(h:ki—H°H++)a:e<m> + 0.

|S|—0

This quantity is equal to
1 tit1

ZW<6(%) gk -

=/ P, Hth dt U,) ><€ ,) (U,-))>

—/ 1 o
= S0 (ell) T [ H e K — el ) (e, e)

i

hence the norm of the left-hand side is, up to a factor term depending only on u,v, smaller
than:

tit1 1 _
Z\/H—_ | Hy (ﬁk;r—lff)e(vi))‘dt

2
dt.

K — KP)e()

k3

Viit1—t;

< suan:uZm(m\/ A

Substituting e(v;)) with e(v;)), since e(v;)) — e(v;)) = v(i)e(v;)) X, creates an error term
which is smaller than
2 1/2
dt>

(Z/S tiv1—t; t;
+ (| K1) [3(3)] dt)

(Z / i ([ imas)

up to a constant factor; but that is smaller by the Cauchy-Schwarz inequality than

tit1 1 tit1 .
(2 [ [ IR ) |v(z)|2dt)
P ti 17 b Ji¢;

tiy1 tiy1 2
<Z|5(73)|2 (/t ||Ks||2ds+/t ||Kt||2dt)>

2
up to constant factors again. This tends to zero by Lemma 3.4.
Using the adaptation of operators, one sees easily that, one e(?;)) has been substituted to
e(vy)), it can be in turn substituted with e(?); the usual majorations allow one to substitute
it then with £(v). The convergence to zero of

/ti+1
i ti

i

tit1

K ds — K[)u(i)e(ty)) X;)

2 3

1

2

1 tit1 2

K} Ew)ds — K;FE(v)

tiy1—1; Jy,
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is then a simple consequence of the L? martingale convergence theorem.

(3.10) in the case (¢,n) = (—,+): what we must show vanishes is

Z <€(ﬂz’)) (b K — H/_\K/Jr:)e@i))> (e(up:), e(@)) »

i

thanks to Lemma, 3.5.
We show that

) <e<m~>) [(h7kf — s

i

tit1
H;K?dt>e<m>)> (el (@)

i

vanishes. Its norm is easily shown to be smaller than

2/ | H t+1_ K —Kj)e(ﬁi))‘dt
< z\/ / A dt\/ / S K~ K )eli) Lt
< |E Wz/ t+1— L ke a

and one concludes using the final result in the proof of the previous case.

(3.10) in the case (e,n) = (o, 0):
the last step to freedom is the proof that

<e(ﬂ),2(h§’k§ —1?5?{1°)a;?e(m> L

i

But it is equal to
> T@H0) (eliiy) , (h3k; — HK® (@)
up to the usual last factor in the sum. The above line is equal to:
tit1

SO0 (o) gy [ TR — HE et

i

= Z@/tt+l<ﬂt (i), ;/:Hl(K;—Kf)e(@))ds>dt

tz+1 _tz z+1 _tz

OOT/\/ . 1 t1+1
- M<Hf*e<m>), / (K;—K:)e<'ﬁ,~>)ds>dt
o tiy1—ti tivi—ti Jy,

i

i

As in the proof of 3.4 we can replace 7 u(z)v(z) by w(t)v(t). The norm of the integrated function
is then smaller than

lu(®)o(t)] 2sup [|[H[ [[E2[[ € ()€ ()]
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which is integrable. By Lebesgue’s theorem, the considered quantity tends to zero with the
mesh size of the partition.

O
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