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Abstract

The invariant eigendistributions on a reductive Lie algebra are solutions of a holonomic
D-module which has been proved to be regular by Kashiwara-Hotta. We solve here a
conjecture of Sekiguchi saying that in the more general case of symmetric pairs, the cor-
responding module are still regular.

Introduction

Let G be a semi-simple Lie group. An irreducible representation of G has a character which
is an invariant eigendistribution, that is a distribution on G which is invariant under the
adjoint action of G and which is an eigenvalue of every biinvariant differential operator on
G. A celebrated theorem of Harish-Chandra [2] says that all invariant eigendistributions
are locally integrable functions on G.

After transfer to the Lie algebra g of G by the inverse of the exponential map, an
invariant eigendistribution is a solution of a Dg-module MF

λ for some λ ∈ g∗. Kashiwara
and Hotta studied in [4] these Dg-modules MF

λ , in particular they proved that they are
holonomic and, using a modified version of the result of Harish-Chandra, proved that
they are regular holonomic. This shows in particular that any hyperfunction solution of a
module MF

λ is a distribution, hence that any invariant eigenhyperfunction is a distribution.

In [15], Sekiguchi extended the definition of the modules MF
λ to a symmetric pair. A

symmetric pair is a decomposition of a reductive Lie algebra into a direct sum of an even
and an odd part, and the group associated to the even part has an action on the odd part
(see section 2.1 for the details). In the diagonal case where even and odd part are identical,
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it is the action of a group on its Lie algebra. Sekiguchi defined a subclass of symmetric
pairs (”nice pairs”), for which he proved a kind of Harish-Chandra theorem, that is that
there is no hyperfunction solution of a module MF

λ supported by a hypersurface. He also
conjectured that these modules are regular holonomic.

In [11] and [12], Levasseur and Stafford give new proofs of the Harish-Chandra theorem
in the original case (the ”diagonal” case) and in the Sekiguchi case (”nice pairs”). In [1],
we show that the Harish-Chandra theorem (in the diagonal case) may be deduced from
results on the roots of the b-functions associated to MF

λ and we find the regularity of MF
λ

as an easy consequence of this result.
The aim of this paper is to prove Sekiguchi’s conjecture, that is the regularity of MF

λ ,
in the general case of symmetric pairs. Our proof do not use Harish-Chandra’s theorem
or its generalization, so we do not need to ask here the pairs to be ”nice”.

In the first section of the paper we study the regularity of holonomic D-modules. In
the definition of Kashiwara-Kawäı[6], a holonomic D-module is regular if it is microlocally
regular along each irreducible component of its characteristic variety. We had proven in
[9], that the microlocal regularity may be connected to some microcharacteristic variety.
We show here that an analogous result is still true if homogeneity is replaced by some
quasi-homogeneity.

In the second section, we prove Sekiguchi’s conjecture in theorem 2.2.1. First by
standard arguments, we show that outside of the nilpotent cone, the result may be proved
by reduction to a Lie algebra of lower dimension. Then on the nilpotent cone we use
the results of the first section to show that the module is microlocally regular along the
conormals to the nilpotent orbits.

1 Bifiltrations of D-modules

1.1 V -filtration and microcharacteristic varieties

In this section, we recall briefly the definitions of the V -filtration and microcharacteristic
varieties. Details may be found in [10] (see also [5],[8],[13]).

Let X be a complex manifold, OX be the sheaf of holomorphic functions on X and DX

be the sheaf of differential operators with coefficients in OX . Let Y be a submanifold of
X. The ideal IY of holomorphic functions vanishing on Y defines a filtration of the sheaf
OX |Y of functions on X defined on a neighborhood of Y by F k

Y OX = Ik
Y . The associate

graduate, grY OX =
⊕

Ik
Y /I

k+1
Y is isomorphic to the sheaf λ∗O[TYX] where λ : TYX → Y

is the normal bundle to Y in X and O[TYX] the sheaf of holomorphic functions on TYX
which are polynomial in the fibers of λ. For f a function of OX |Y we will denote by σY (f)
its image in grY OX .

If I is the ideal of definition of an analytic subvariety Z of X, then σY (I) = {σY (f) |
f ∈ I } is an ideal of O[TYX] which defines the tangent cone to Z along Y [17].

In local coordinates (x, t) such that Y = {t = 0}, Ik
Y is, for k ≥ 0, the sheaf of functions

f(x, t) =
∑

|α|=k

fα(x, t)tα

and if k is maximal with f ∈ Ik
Y , we have σY (f)(x, t̃) =

∑
|α|=k fα(x, 0)t̃α.
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Consider now the conormal bundle to Y denoted by Λ = T ∗YX as a submanifold of
T ∗X . If f is a function on T ∗X , σΛ(f) is a function on the normal bundle TΛ(T ∗X). The
hamiltonian isomorphism TT ∗X ' T ∗T ∗X associated to the symplectic structure of T ∗X
identifies TΛ(T ∗X) with the the cotangent bundle T ∗Λ and thus considered σΛ(f) may be
considered as a function on T ∗Λ.

The sheaf DX is provided with the filtration by the usual order of operators denoted
by (DX,m)m≥0 and that we will call the “usual filtration”. The graduate associated to
this filtration is grDX ' π∗O[T ∗X] where π : T ∗X → X is the cotangent bundle and
O[T ∗X] is the sheaf of holomorphic functions polynomial in the fibers of π. We have also
grmDX ' π∗O[T ∗X][m] where O[T ∗X][m] is the sheaf of holomorphic functions polynomial
homogeneous of degree m in the fibers of π. If P is a differential operator of DX |Y , its
principal symbol is a function σ(P ) on T ∗X defined in a neighborhood of Λ = T ∗YX and
σΛ(σ(P )) is a function on T ∗Λ (denoted by σΛ{1}(P ) in the notations of [10]).

The sheaf DX |Y of differential operators on a neighborhood of Y is also provided with
the the V -filtration of Kashiwara [5] :

VkDX = {P ∈ DX/∀j ∈ Z, PIj
Y ⊂ Ij−k

Y }

where Ij
Y = OX if j ≤ 0.

In local coordinates (x, t), the operators xi and Dxi
:= ∂

∂xi
have order 0 for the V -

filtration while the operators ti have order −1 and Dti := ∂
∂ti

order +1.
Remark that the V -filtration induces a filtration on grDX ' π∗O[T ∗X] which is nothing

but the filtration FΛ associated the conormal bundle Λ = T ∗YX . In coordinates, Λ =
{ (x, t, ξ, τ) ∈ T ∗X | t = 0, ξ = 0 }, a function of O[T ∗X][m]∩Im−k

Λ is a function f(x, t, ξ, τ)
which is polynomial homogeneous of degree m in (ξ, τ) and vanishes at order at least m−k
on {t = 0, ξ = 0}.

The two filtrations of DX define a bifiltration FkjDX = DX,j ∩ VkDX . The associated

bigraduate is defined by grFDX = ⊕grkj
F DX with

grkj
F DX = FkjDX /(Fk−1,jDX + Fk,j−1DX)

and is isomorphic to grΛgrDX that is to the sheaf π∗O[T ∗Λ] of holomorphic functions on
T ∗Λ polynomial in the fibers of π : T ∗Λ → Y . The image of a differential operator P in
this bigraduate will be denoted by σΛ(∞,1)(P ) and may be defined as follows:

If the order of P for the V -filtration is equal to the order of its principal symbol σ(P )
for the induced V -filtration then σΛ(∞,1)(P ) = σΛ(σ(P )) and if the order of σ(P ) is strictly
lower then σΛ(∞,1)(P ) = 0.

Let M be a coherent DX -module. A good filtration of M is a filtration which is locally
finitely generated that is locally of the form :

Mm =
∑

j=1,...,N

DX,m+mj
uj

where u1, . . . , uN are (local) sections of M and m1, . . . ,mN integers.
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It is well known that if (Mm) is a good filtration of M, the associated graduate grM is
a coherent grDX -module and defines the characteristic variety of M which is a subvariety
of T ∗X. This subvariety is involutive for the canonical symplectic structure of T ∗X and
a DX -module is said to be holonomic if its characteristic variety is lagrangian that is of
minimal dimension.

In the same way, a good bifiltration of M is a bifiltration which is locally finitely
generated. Then the associated bigraduate is a coherent grFDX -module which defines a
subvariety ChΛ(∞,1)(M) of T ∗Λ. It is a homogeneous involutive subvariety of T ∗Λ but it
is not necessarily lagrangian even if M is holonomic.

If I is a coherent ideal of DX then:

Ch(M) = { ξ ∈ T ∗X | ∀P ∈ I, σ(P )(ξ) = 0 }

ChΛ(∞,1)(M) = { ζ ∈ T ∗Λ | ∀P ∈ I, σΛ(∞,1)(P )(ζ) = 0 }

Regular holonomic DX -modules have been defined by Kashiwara and Kawäı in [6,
Definition 1.1.16.]. A holonomic DX -module M is regular if it has regular singularities
along the smooth part of each irreducible component of its characteristic variety. It is
proved in [6] that the property of regular singularities is generic, that is it suffices to
prove it on a dense open subset of Λ, in particular we may assume that Λ is the conormal
bundle to a smooth subvariety of X. The definition of regular singularities along a smooth
lagrangian variety is given in [6, Definition 1.1.11.] but in this paper, we will use the
following characterization which we proved in [9, Theorem 3.1.7.]:

Proposition 1.1.1. A coherent DX-module has regular singularities along a lagrangian
manifold Λ if and only if ChΛ(∞,1)(M) is contained in the zero section of T ∗Λ.

1.2 Weighted V -filtration

The V -filtration is associated to the Euler vector field of the normal bundle TYX which in
coordinates is equal to

∑
t̃iDt̃j

. We want to define a new filtration associated to a vector

field
∑
mit̃iDt̃j

. As this is not invariant under coordinate transform, we have first to give
an invariant definition.

Let us consider the fiber bundle p : TYX → Y . The sheaf D[TYX/Y ] of relative differen-
tial operators is the subsheaf of the sheaf DTYX of differential operators on TYX commuting
with all functions of p−1OY . A differential operator P on TYX is homogeneous of degree
0 if for any function f homogeneous of degree k in the fibers of p, Pf is homogeneous of
degree k.

In particular, a vector field η̃ on TYX which is a relative differential operator homoge-
neous of degree 0 defines a morphism from the set of homogeneous functions of degree 1
into itself which commutes with the action of p−1OY , that is a section of

Homp−1OY
(OTYX [1],OTYX [1]) .

Let (x, t) be coordinates of X such that Y = { (x, t) ∈ X | t = 0 }. Let (x, t̃) be the
corresponding coordinates of TYX. Then η̃ is written as :

η̃ =
∑

aij(x)t̃iDt̃j
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and the matrix A = (aij(x)) is the matrix of the associated endomorphism of OTYX [1]
which is a locally free p−1OY -module of rank d = codimXY . Its conjugation class is thus
independent of the choice of coordinates (x, t). When the morphism is the identity, η̃ is
by definition the Euler vector field of TYX .

Definition 1.2.1. A vector field η̃ on TYX is definite positive if it is a relative differential
operator homogeneous of degree 0 whose eigenvalues are strictly positive rational numbers
and which is locally diagonalizable as an endomorphism of OTYX [1].

A structure of local fiber bundle of X over Y is an analytic isomorphism between a
neighborhood of Y in X and a neighborhood of Y in TYX. For example a local system of
coordinates defines such an isomorphism.

Definition 1.2.2. A vector field η on X is definite positive with respect to Y if:
(i) η is of degree 0 for the V -filtration associated to Y and the image σY (η) of η in

gr0V DX is definite positive as a vector field on TYX.
(ii) There is a structure of local fiber bundle of X over Y which identifies η and σY (η).

It is proved in [10, proposition 5.2.2] that if σY (η) is the Euler vector field of TYX the
condition (ii) is always satisfied and the local fiber bundle structure of X over Y is unique
for a given η, but this is not true in general.

We will now assume that X is provided with such a vector field η. Let β = a/b the
rational number with minimum positive integers a and b such that the eigenvalues of β−1η
are positive relatively prime integers. Let DX [k] be the sheaf of differential operators Q
satisfying the equation [Q, η] = βkQ and let V η

k DX be the sheaf of differential operators
Q which are equal to a series Q =

∑
l≤kQl with Ql in DX [l] for each l ∈ Z.

By definition of a definite positive vector field, we may find local coordinates (x, t)
such that η =

∑
mitiDti and we may assume that the mi are relatively prime integers

after multiplication of η by β−1. In this situation, the operators xj and Dxj
have order 0

while the operators ti have order −mi and Dti order +mi. This shows in particular that
any monomial xαtβDγ

xDδ
t is in some DX [k] and thus that DX is the union of all V η

k DX .
This defines a filtration V η of the sheaf of rings DX .

The principal symbol of [Q, η] is the Poisson bracket {σ(P ), σ(η)} which is equal to
Hη(σ(P )) where Hη is a vector field on T ∗X, the Hamiltonian of η. The V η-filtration on
DX induces a filtration on the graduate of DX that is on O[T ∗X]. A function f of O[T ∗X]

will be in V η
k O[T ∗X] if it is a series of functions fl for l ≥ k with Hηf = −lf . In this case

we set ση
k(f) = fk.

We are now in a situation analog to that of section 1.1 with two filtrations on DX , the
usual filtration and the V η-filtration. The sheaf DX is thus provided with a bifiltration
by F η

kjDX = DX,j ∩ V
η
k DX and this defines a symbol ση(∞,1)(P ) which is a function on

T ∗X . By definition, ση(∞,1)(P ) is equal to ση
k(σ(P )) where k is the order of P for the

V η-filtration. This symbol is thus equal to 0 if the order of σ(P ) is strictly less than k.
If M is a coherent DX -module, we define a good bifiltration and a microcharacteristic

variety Chη(∞,1)(M). If M = DX/I we will have:

Chη
(∞,1)(M) = { ζ ∈ T ∗X | ∀P ∈ I, ση

(∞,1)(P )(ζ) = 0 }
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The difference with the previous situation is the local identification of TYX with X
which defines isomorphisms T ∗T ∗YX ' T ∗TYX ' T ∗X and make ση(σ(P )) a function on
T ∗X. Especially, if η̃ is the Euler vector field of TYX and η a vector field on X with
σV (η) = η̃, the definitions of this section coincide with the definitions of the previous one
except for this identification.

1.3 Direct image of V -filtration

Let ϕ : Y → X be a morphism of complex analytic manifolds. A vector field u on Y is
said to be tangent to the fibers of ϕ if u(f ◦ϕ) = 0 for all f in OX . A differential operator
P is said to be invariant under ϕ if there exists a C-endomorphism A of OX such that
P (f ◦ ϕ) = A(f) ◦ ϕ for all f in OX . If we assume from now that ϕ has a dense range in
X, A is uniquely determined by P and is a differential operator on X. We will denote by
A = ϕ∗(P ) the image of P in DX under this ring homomorphism.

Let Z be a submanifold of Y and T a submanifold of X. Let η be a vector field on
Y invariant under ϕ. We assume that η is definite positive with respect to Z and that
η′ = ϕ∗(η) is definite positive with respect to T . We also multiply η by an integer so that
its eigenvalues and those of η′ are integers.

Example 1.3.1. Let Y be a complex vector space and ϕ : Y → X = C
d given by ϕ =

(ϕ1, . . . , ϕd) where ϕ1, . . . , ϕd are holomorphic functions on Y homogeneous of degree
m1, . . . ,md. Let Z = {0} and η be the Euler vector field of Y , so that the V η-filtration
is the V -filtration along {0}. Then η ′ = ϕ∗(η) is equal to

∑
mitiDti on X and is definite

positive with respect to {0}. Remark that we do not assume that ϕ is defined in a
neighborhood of Z.

In the general case, we can choose local coordinates (y, t) onX so that η ′ =
∑
mjtjDtj ,

then the map ϕ is given by yi = ϕi(x) and tj = ψj(x) where the functions ϕi(x) is
homogeneous of degee 0 for η while the function ψj(x) is homogeneous of degee mj for η.

The sheaf DY→X = OY ⊗ϕ−1OX
ϕ−1DX is a (DY ,ϕ−1DX)-bimodule with a canonical

section 1⊗1 denoted by 1Y→X . If we choose coordinates (x1, . . . , xn) of X and coordinates
(y1, . . . , yp) of Y and if ϕ = (ϕ1, . . . , ϕp), then the sections of DY→X are represented by
finite sums

∑
fα(y) ⊗Dα

x and the left action of DY is given by

Dyi

(
∑

α

fα(y) ⊗Dα
x

)
=
∑

α

∂fα

∂yi
(y) ⊗Dα

x +
∑

α,j

fα(y)
∂ϕj

∂yi
(y) ⊗Dxj

Dα
x

If N is a coherent DX -module, its inverse image under ϕ is the DY -module ϕ∗N =
DY→X ⊗ϕ−1DX

ϕ−1N . In general, ϕ∗N is not coherent but if N is holonomic, ϕ∗N is
holonomic (hence coherent).

Let DY→X [k] be the set of sections satisfying η.u − u.ϕ∗η = −ββ′ku where β (resp.
β′) is the g.c.d. of the eigenvalues of η (resp. ϕ∗η). (We may assume that β = 1 or β ′ = 1
but not both in general). We define VkDY→X as the subsheaf of DY→X of the sections
which may be written as series

∑
l≥k ul with ul in DY→X [l]. Remark that 1Y→X satisfies

η.1Y→X = 1Y→X .ϕ∗η hence is of order 0.
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If N is a coherent DX -module provided with a V η′

-filtration we define a filtration on
its inverse image by:

V η
k ϕ
∗N =

∑

k=β′i+βj

ViDY→X ⊗
ϕ−1V η′

0
DX

ϕ−1V η′

j N

The sheaf DY→X is also provided with a filtration (DY→X)j induced by the usual
filtration of DX hence of a bifiltration F ηDY→X . If N is bi-filtrated, we define in the same
way a bifiltration on ϕ∗N .

Proposition 1.3.2. Let I be an ideal of DY which is generated by all the vector fields
tangent to the fibers of ϕ and by a finite set (P1, . . . , Pl) of differential operators invariant
under ϕ. Let J be the ideal of DX generated by (ϕ∗(P1), . . . , ϕ∗(Pl)). Let M = DY /I and
N = DX/J and put on M and N the bifiltrations induced by F ηDY and F η′

DX

Then, there exists a canonical morphism of DY -modules M → ϕ∗N which is a mor-
phism of bi-filtrated F ηDY -modules and an isomorphism at the points where ϕ is a sub-
mersion.

Proof. There is a canonical morphism DY → DY→X given by P 7→ P.1Y→X . The vector
fields tangent to the fibers cancel DY→X and a differential operator invariant under ϕ
satisfy P.1Y→X = 1Y→X .ϕ∗(P ) hence this morphism defines a morphism M → ϕ∗N
which is a morphism of left V ηDY -modules by the definitions.

In a neighborhood of a point where ϕ is a submersion, we may choose local coordinates
(x1, . . . , xp, y1, . . . , yn−p) such that ϕ(x, y) = x. Then DY→X is the sheaf of operators
P (x, y,Dx), the vector fields tangent to the fibers are generated by Dy1

, . . . , Dyn−p
and

the differential operators invariant under ϕ are of the form P (x,Dx) modulo (Dyi
), so

M → ϕ∗N is an isomorphism.

Let S = ϕ−1(T ) and x be a point of S where ϕ is a submersion. In a neighborhood of
x, Y is isomorphic to X × S and if we fix such an isomorphism, η ′ which is a vector field
on X may be considered as a vector field on Y , definite positive relatively to S. Remark
that η′ differ from η by a vector field tangent to ϕ. Then proposition 1.3.2 gives:

Corollary 1.3.3. In a neighborhood of x, the microcharacteristic variety Chη(∞,1)(M) is
equal to Chη′

(∞,1)(M).

1.4 Weighted V -filtration and regularity

Definition 1.4.1. Let Z be a submanifold of X and η be a vector field which is definite
positive with respect to Z. A coherent DX -module has η-weighted regular singularities

along the lagrangian manifold Λ = T ∗ZX if there is a dense open subset Ω of Λ such that
Chη(∞,1)(M) ⊂ Λ in a neighborhood of Ω.

If σZ(η) is the Euler vector field of TZX, proposition 1.1.1 shows that this definition
coincide with the definition of Kashiwara-Kawäı.

Let X = C
n with coordinates (x1, . . . , xn−p, t1, . . . , tp) and Z = {t = 0}, let Y = C

n

with coordinates (x1, . . . , xn−p, y1, . . . , yp) and Z ′ = {y = 0}. Let m1, . . . ,mp be strictly
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positive integers , we define the map ϕ : Y → X by ϕ(x, y) = (x, ym1

1 , . . . , y
mp
p ) and the

vector field η =
∑

i=1...pmitiDti .

Lemma 1.4.2. Let M be a holonomic DX -module with η-weighted regular singularities
along T ∗ZX, then ϕ∗M is a holonomic DY -module with regular singularities along T ∗Z′Y .

Proof. We may assume that M is equal to DX/I for some coherent ideal I of M. The
inverse image of M by ϕ is, by definition:

ϕ∗M = DY→X ⊗ϕ−1DX
ϕ−1M = DY→X/DY→XI

The sections of DY→X are represented by P (x, y,Dx, Dt) =
∑
aαβ(x, y)Dα

xD
β
t and

we define the filtration V ηDY→X in the same way than in the previous section. For this
filtration xγyδDα

xD
β
t is of order < m,β >−|δ|. We also define the usual filtration on

DY→X , that is the filtration by the order in (Dx, Dt). In this way, DY→X is provided
with a bifiltration F ηDY→X which is compatible with the bifiltration F ηDX , that is an
operator P of F η

klDX sends F η
ijDY→X into F η

i+k,j+lDY→X .

Let DY→X [N ] be the sub-DY -module of DY→X generated by Dβ
t for |β| ≤ N . If M is

holonomic, ϕ∗M is holonomic hence coherent. The images of the morphisms DY→X [N ] →
ϕ∗M make an increasing sequence of coherent submodules of ϕ∗M which is therefore
stationary, so there exists some N0 such that DY→X [N ] → ϕ∗M is surjective for all
N ≥ N0. The bifiltration induced by F ηDY→X on DY→X [N ] is a good FDY -filtration
which induces a good filtration on ϕ∗M if N ≥ N0, we will denote it by F [N ]ϕ∗M.

The associate graduate is denoted by gr[N ]ϕ∗M and, as F [N ] is a good bifiltration,
the analytic cycle of T ∗Y associated to gr[N ]ϕ∗M is independent of N [10, Prop 3.2.3.].
For N ≥ N0, the canonical morphism gr[N0]ϕ

∗M → gr[N ]ϕ∗M induces an isomorphism
on the associated cycles hence gr[N0]ϕ

∗M and gr[N ]ϕ∗M have the same support and the
kernel and cokernel of the morphism have a support of dimension strictly lower.

An operator P of F η
klDX sends F η

ijDY→X [N0] into F η
i+k,j+lDY→X [N0 + l]. If P an-

nihilates a section u of Fij [N0]ϕ
∗M, its class in grklDX that is the function ση(∞,1)(P )

annihilates the image of u in gr[N + l]ϕ∗M. Let ζ be a point of Λ = T ∗ZX such that
Chη(∞,1)(M) ⊂ T ∗ZX in a neighborhood of ζ. By the hypothesis, there is a dense open
subset Ω of such points in Λ. There is a differential operator P which annihilates u and
such that ση(∞,1)(P ) = tM1 µ where µ is a function invertible at ζ. Hence there exists
some l such that the image of u in gr[N + l]ϕ∗M is annihilated by tM1 = yMm1

1 hence is
supported by y1 = 0. As gr[N0]ϕ

∗M is finitely generated, there exists some N1 ≥ N0 such
that the image of gr[N0]ϕ

∗M in gr[N1]ϕ
∗M is contained in y1 = 0.

We can do the same for the other equations of T ∗Z′Y and show that there exists some
N2 ≥ N0 such that the image of gr[N0]ϕ

∗M in gr[N2]ϕ
∗M is contained in T ∗Z′Y . This

shows that gr[N0]ϕ
∗M is supported by the union of T ∗Z′Y and of a set W of dimension

strictly lower than the dimension of T ∗Z′Y . But we know that this support is involu-
tive hence all its component have a dimension at least that dimension, so gr[N0]ϕ

∗M is
supported in T ∗Z′Y in a neighborhood of ϕ−1(ζ). By definition gr[N0]ϕ

∗M is equal to
ChT ∗

Z′
Y (∞,1)(ϕ∗M), hence ϕ∗M has regular singularities along T ∗Z′Y .
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Theorem 1.4.3. Let X be a complex manifold, π : T ∗X → X the projection, Z a sub-
manifold of X and η a vector field on X which is definite positive with respect to Z. Let
M be a holonomic DX -module. We assume that:

1. M is a regular holonomic DX -module on X − Z,

2. M has η-weighted regular singularities along T ∗ZX,

3. The dimension of Ch(M) ∩ T ∗ZX is equal to the dimension of X.

Then M is a regular holonomic DX -module.

Proof. We fix local coordinates (x1, . . . , xn−p, t1, . . . , tp) of X so that Z = {t = 0} and
η =

∑
i=1...pmitiDti . We define a map ϕ : Y → X by ϕ(x, y) = (x, ym1

1 , . . . , y
mp
p ) where Y

is a neighborhood of 0 in C
n. If Z ′ is the set {y = 0}, lemma 1.4.2 shows that ϕ∗M has

regular singularities along T ∗Z′Y .
The third condition means that the characteristic variety of M has no irreducible

component contained in π−1(Z) except T ∗ZX. The same is true for ϕ∗M on Z ′. This
may be proved as in lemma 1.4.2 but with the usual filtration replacing the bifiltration.
This may also be proved easily with the definition of the characteristic variety in terms of
microdifferential operators.

By hypothesis, M is regular on X − Z hence by [6, Cor 5.4.8.] ϕ∗M is regular
holonomic on Y −Z ′. So, ϕ∗M has regular singularities along each irreducible component
of its characteristic variety, hence by definition, it is a regular holonomic DY -module.

Then by [6, theorem 6.2.1.], the direct image ϕ∗ϕ
∗M is a regular holonomic DX -

module. By definition

ϕ∗ϕ
∗M = Rϕ∗(DX←Y ⊗L

DY
DY→X ⊗L

ϕ−1DY
ϕ−1M)

and the morphism DX → DX←Y ⊗DY
DY→X is injective henceM is a submodule of ϕ∗ϕ

∗M
hence a regular holonomic DX -module.

The following corollary is the generalization of the definition of regular holonomic D-
modules and of proposition 1.1.1. It is proved from the previous theorem by descending
induction on the dimension of the strata.

Corollary 1.4.4. Let M be a holonomic DX-module. Assume that there is a stratification
X =

⋃
Xα such that Ch(M) ⊂

⋃
T ∗Xα

X and for each α there is a vector field ηα positive
definite along Xα such that M has ηα-weighted regular singularities along T ∗Xα

X.
Then M is a regular holonomic DX -module.

2 Symmetric pairs

2.1 Definitions

Let us briefly recall what is a symmetric pair. For the details we refer to [15] and [12].
Let G be a connected complex reductive algebraic group with Lie algebra g. Fix a non-
degenerate, G-invariant symmetric bilinear form κ on the reductive Lie algebra g such that
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κ is the Killing form on the semi-simple Lie algebra [g, g]. Fix an involutive automorphism
ϑ of g preserving κ and set k = Ker(ϑ− I), p = Ker(ϑ+ I). Then g = k ⊕ p and the pair
(g, k) or (g, ϑ) is called a symmetric pair. Recall that k and p are orthogonal with respect
to κ and that k is a reductive Lie subalgebra of g. Denote by K the connected reductive
subgroup of G with Lie algebra k. The group K acts on p via the adjoint action.

Let p∗ be the dual of p, O(p) = S(p∗) the ring of regular functions on p (S(p∗) is
the symmetric algebra), O(p∗) = S(p) the ring of regular functions on p∗ and D(p) the
ring of differential operators on p with coefficients in O(p). The ring of functions O(p) is
naturally embedded in D(p) and we embed O(p∗) = S(p) in D(p) as differential operators
with constant coefficients. That is we associate to an element u of the vector space g the
derivation in the direction of u

Du(f)(x) =
d

dt
f(x+ tu)|t=0

and we extend to the symmetric algebra S(p). Remark that this embedding is compatible
with the filtration by the degree in S(p) and the filtration by the order in D(p).

Notice that K has an induced action on S(p), S(p∗) and D(p) and we have natural
embeddings of the invariant subrings S(p)K ⊂ D(p)K and S(p∗)K ⊂ D(p)K . The ring
S(p)K is equal to the ring of polynomials C[p1, . . . , pr] for some p1, . . . , pr in S(p)K and
in the same way S(p∗)K is equal to a ring of polynomials C[q1, . . . , qr] [7].

The differential of the action of K on p induces a Lie algebra homomorphism τ : k →
Der S(p∗) hence an embedding τ : k → D(p) defined by

(τ(a).f)(v) =
d

dt
f(e−ta.v)|t=0, for a ∈ k, f ∈ O(p), v ∈ p

As a section of the tangent bundle, τ(A) is the map p → Tp = p × p given by
τ(A)(X) = (X, [X,A]).

We denote by N(p) the nilpotent cone of p, that is the set of nilpotent elements of g

which lie in p, it is also the subvariety of p defined by the set of K-invariant functions
S(p∗)K . In the same way we consider the nilpotent cone N(p∗) which is the subvariety of
p∗ defined by S(p)K . An important result is that the nilpotent cone N(p) is a finite union
of K-orbits [7, theorem 2].

The cotangent bundle T ∗p is equal to p× p∗. The non-degenerate form κ on g defines
a non-degenerate symmetric bilinear form on p and an isomorphism p ' p∗. We identify
T ∗p = p × p∗ ' p × p. Let C(p) = { (x, y) ∈ p × p | [x, y] = 0 }, then the dimension of
(p ×N(p)) ∩ C(p) is equal to the dimension of p [12, lemma 2.2.].

The characteristic variety of Dp/Dpτ(k) is equal to C(p). Let F be an ideal of finite
codimension of S(p)K , its graduate is a power of S(p)K hence the characteristic variety of
the Dp-module Dp/DpF is p × N(p). Finally, if I be the left ideal of Dp generated by F
and τ(k), the characteristic variety of MF = Dp/I is contained in (p×N(p))∩C(p) hence
MF is a holonomic Dp-module.

As a special case, we have the diagonal case where G = G1 ×G1 with ϑ(x, y) = (y, x)
for some reductive group G1. Thus (g, k) = (g1 ⊕ g1, g1) and K = G1 with its adjoint
action on p = g1. Let λ ∈ p∗ and Fλ = {P − P (λ) | P ∈ S(p)K }, then the corresponding
module MF

λ = Dp/Dpτ(k) + DpFλ is the module of Kashiwara-Hotta [4].
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2.2 The conjecture of Sekiguchi

Theorem 2.2.1. Let F be an ideal of finite codimension of S(p)K and MF = Dp/I where
I is the left ideal of Dp generated by F and τ(k).

Then MF is a regular holonomic Dp-module.

The proof of this theorem will be made in several steps. First we will reduce to the
semi-simple case (lemma 2.2.3), then prove by induction on the dimension of the Lie
algebra, that the result is true outside of the nilpotent cone (lemma 2.2.4) and the key
point of the proof is the case of a nilpotent orbit (lemma 2.2.6).

Lemma 2.2.2. Let Y be a complex manifold and X = Y ×C. Let P (t,Dt) be a differential
operator on C with principal symbol independent of t and I be a coherent ideal of DX which
contains P .

Let MY be the inverse image of M = DX/I on Y by the immersion Y → X, then M
is isomorphic to the inverse image of MY by the projection q : X → Y , that is

M = DX→Y ⊗q−1DY
q−1MY = MY ⊗̂OC

In particular, M is regular holonomic if and only if MY is regular holonomic.

Proof. This lemma is a (very) special case of [14, theorem 5.3.1. ch II]. The first step is
to prove that DC/DCP is isomorphic to (DC/DCDt)

N . The proof is the same than that of
[14, theorem 5.2.1. ch II], but as there is only one variable, the proof is very simple and
use only functions instead of differential operators of infinite order. Then we can follow
the proof of [14] but with finite order operators instead of infinite order operators.

Remark that if P were a differential operator in several variables, for example, P =
D2

t +Dx, this result would be true only with the sheaf D∞X of differential operators with
infinite order.

As X = Y × C, the inverse image of MY by q is isomorphic to the external product
of D-modules MY ⊗̂OC.

Assume that p = p0 ⊕ p1, the action of K on p0 being trivial. Then S(p)K = S(p0) ⊗
S(p1)

K , this defines a morphism δ : S(p)K → S(p1)
K by restriction and F1 = δ(F ) is an

ideal of finite codimension of S(p1)
K . Let MF1

= Dp1
/I1 where I1 is the ideal of Dp1

generated by τp1
(k) and F1.

Lemma 2.2.3. (1) The module MF is isomorphic to Op0
⊗̂(MF )p1

where (MF )p1
is the

restriction of MF to p1.
(2) (MF )p1

(hence MF ) is regular if MF1
is regular.

Proof. By induction on the dimension of p0, we may assume that p0 = C and choose linear
coordinates (x, t) of p such that p0 = { (x, t) ∈ p | x = 0 }. The action of K is trivial
on p0 hence S(p)K contains S(p0) and as F is finite codimensional in S(p)K it contains a
polynomial in Dt. Lemma 2.2.2 shows the first part of the lemma.

We assume now that MF1
is regular. Recall that (MF )p1

= MF/tMF is a holonomic
Dp1

-module generated by the classes of 1, . . . , Dm−1
t . Let M′ be the submodule of (MF )p1

generated by the class u of Dm−1
t . The vector fields of τ(k) are independent of (t,Dt)
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hence u is annihilated by τ(k). If P is an element of F , as an operator of Dp it is equal to
δ(P ) +ADt hence δ(P ) annihilates u. So u is annihilated by τ(k) and by F1 and M′ is a
quotient of MF1

. So M′ is regular.
Consider now M′′ which is the submodule of M generated by the classes Dm−1

t and
Dm−2

t . The quotient M′′/M′ is generated by the class v of Dm−2
t which is annihilated

by τ(k) and by F1, so it is regular. We have an exact sequence 0 −→ M′ −→ M′′ −→
M′′/M′ −→ 0 where two terms are regular hence M′′ is regular. Continuing the same
argument, we get that (MF )p1

is regular.

Let b be a semisimple element of p. Then p = pb ⊕ [k, b] and gb = kb ⊕ pb defines a

symmetric pair. Let δ be the restriction map δ : S(p)K → S(pb)K
b
, this map is injective

and if F is an ideal of finite codimension of S(p)K then δ(F ) is an ideal of finite codimension

of S(pb)K
b

[3, lemma 19]. Let Ib be the left ideal of Dpb generated by δ(F ) and τ(kb) and
Mb = Dpb/Ib.

Lemma 2.2.4. In a neighborhood of b, MF is isomorphic to the external product of the
holomorphic functions on the orbit of b by a quotient of Mb. In particular, MF is regular
if Mb is regular.

Proof. Let V be a linear subspace of k such that k = V ⊕ kb. The map f : V ×pb → p given
by f(y, Z) = exp(y).Z is a local isomorphism. If (x1, . . . , xn−r) are linear coordinates
of V and (t1, . . . , tr) are linear coordinates of pb, the map f defines local coordinates
(x1, . . . , xn−r, t1, . . . , tr) of p in a neighborhood of b. Lemma 3.7 of [15] shows that in these
coordinates, the orbit Kb is { (x, t) | t = 0 }, pb = { (x, t) | x = 0 } and the differential
operators Dx1

, . . . , Dxn−r
belong to τ(k). Hence M is the product of OKb by a module N .

If Z is an element of kb, τp(Z) is by definition the vector field on p with value [Z,A]
at a point A of p. The value of τpb(Z) at a point A of pb is the projection of [Z,A] on pb,

hence τpb(kb) is equal to τp(k) modulo Dx1
, . . . , Dxn−r

. On the other hand, let P ∈ F , as

the coordinates (t1, . . . , tr) are linear coordinates of pb, the value of P on a function of t

is the restriction of P to S(pb)K
b
. Hence N is a quotient of Mb.

Lemma 2.2.5. Let Λ be the conormal to 0 in p. The microcharacteristic variety ChΛ(∞,1)(MF )
is contained in (p ×N(p)) ∩ C(p).

Proof. Let E be the Euler vector field of the vector space p. It is clear on the definition,
that the vector fields of τ(k) preserve the homogeneity of functions hence that they com-
mute with E. So they are homogeneous of degree 0 for the V -filtration at 0. On the other
hand, they are homogeneous of degree 1 for the usual filtration as any vector field. So if
u ∈ τ(k), σΛ(∞,1)(u) = σ(u).

On differential operators with constant coefficients, the V -filtration at {0} and the
usual filtration coincide, hence we have also σE(∞,1)(P ) = σ(P ) for these operators.

So, ChΛ(∞,1)(MF ) is contained in the set of points where the symbols of the operators
of τ(k) and of F vanish that is in (p ×N(p)) ∩ C(p).

Lemma 2.2.6. For each nilpotent orbit S of N(p), there is a vector field η which is
positive definite with respect to S and such that MF has η-weighted regular singularities
along T ∗Sp.
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Proof. Let S be one of these orbits, r the codimension of S and X ∈ S. As in [12, §3] (see
also [16, Part I, §5.6]) we can choose a normal sl2-triple (H,X, Y ) in p which generates
a Lie algebra isomorphic to sl2 and acting on p by the adjoint representation. Then p

splits into a direct sum of irreducible submodules of dimensions λi + 1 for i = 1 . . . r.
Moreover p = pY ⊕ [X, k], dim pY = r and we can select a basis (Y1, . . . , Yr) of pY such
that [H,Yi] = −λiYi. Let V be a linear subspace of k such that k = V ⊕kX . If (b1, . . . , bn−r)
is a basis of V , the map F : C

n → p given by

F (x1, . . . , xn−r, t1, . . . , tr) = exp(x1b1) . . . exp(xn−rbn−r).(X +
∑

tiYi)

is a local isomorphism hence defines local coordinates (x, t) of p in a neighborhood of X.
In these coordinates, S = { (x, t) | t = 0 }, pY = { (x, t) | x = 0 }, and the differential
operators Dx1

, . . . , Dxn−r
are in the ideal generated by τ(k) [15, lemma 3.7].

Let E be the Euler vector field of the vector space p. A standard calculation [16, Part
I,§5.6] shows that E(ti)|x=0 = miti withmi = 1

2λi+1 and if bn−r = H we have E(ti) = miti
[1]. Hence E is equal to η + w where η =

∑r
j=1mjtjDtj and w is a vector field which

vanishes on functions independent of t, that is w =
∑
ai(x, t)Dxi

. By definition, η is
positive definite with respect to S.

Define a map ϕ : p → V = C
r by ϕ(x, t) = t. Let η′ =

∑
mjtjDtj on V . The functions

t1, . . . , tr satisfy E(ti) = η′(ti) = miti hence they are homogeneous and the map ϕ is
defined in a conic neighborhood of X. This also shows that E is invariant under ϕ and
that η′ = ϕ∗(E).

The module MF is equal to Dp/I where I is a coherent ideal of Dp which contains
the derivations Dx1

, . . . , Dxn−r
hence I is generated by Dx1

, . . . , Dxn−r
and a finite set

of differential operators Q1(t,Dt), . . . , QN (t,Dt) depending only of (t,Dt). (This result is
standard and also a special case of lemma 2.2.2).

The module MF satisfies the hypothesis of corollary 1.3.3 hence ChE(∞,1)(MF ) is
equal to Chη(∞,1)(MF ) and by lemma 2.2.5 it is contained in (p ×N(p)) ∩ C(p).

Assume now that T ∗Sp is an irreducible component of the characteristic variety Ch(MF )
and let x∗ be a generic point of T ∗Sp, that is a point which does not belong to other
irreducible components of Ch(MF ). We have T ∗Sp ⊂ Ch(MF ) ⊂ (p × N(p)) ∩ C(p) and
as they have the same dimension, they are equal generically. So Chη(∞,1)(MF ) = T ∗Sp

generically on T ∗Sp and we are done.

Proof of theorem 2.2.1. We will argue by induction on the dimension of g and first, we
reduce to the semi-simple case. Set g1 = [g, g], k1 = k ∩ g1, p1 = p ∩ g1, z the center of g

and p0 = z ∩ p. We have p = p0 ⊕ p1 and by lemma 2.2.3, it suffices to prove the theorem
for p1. As z ∩ k acts trivially we may assume that g is semisimple.

Let x be a non-nilpotent element of p. It decomposes as x = b + n where b is non
zero and semisimple, n is nilpotent and [b, n] = 0. As g is semisimple, pb is of dimension
strictly less than p, hence we may assume by the induction hypothesis that the theorem
is true for pb. Lemma 2.2.4 shows that MF is regular in a neighborhood of b. As MF is
constant on the orbits, it is regular on the orbits whose closure contains b, in particular
at x.

We proved that MF is regular outside of the nilpotent cone. As the nilpotent cone
is a finite union of orbits, we will now argue by descending induction on the dimension
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of these orbits. So let x be a nilpotent point of p, Kx its orbit and assume that MF is
regular on p −Kx in a neighborhood of x. Lemma 2.2.6 shows that MF has η-weighted
regular singularities along T ∗Kxp hence theorem 1.4.3 shows that MF is regular at x.
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