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To Yuri Ivanovich Manin for his sixty-fifth birthday

Let p be a prime number. The purpose of this paper is to give a newmethod of con-

structing p-adic measures associated with modular forms using distributions with values

in spaces of modular forms (holomorphic or nearly holomorphic). At the same time we

present a conseptual explanation for the formulas of Yu.I.Manin [Man73, Man76, Maz-

SwD] giving p-adic distributions attached to modular forms (in both the ordinary case

(Theorems 3 and 5) and the supersingular case, see [Vi76] (Theorems 4 and 6)). For this

purpose we use the canonical projector onto the primary (characteristic) subspace associ-

ated to a non-zero eigenvalueα of the Atkin-Lehner operatorU . This operator acts similar

to the trace operator lowering the level of modular forms. On the other hand, U is invert-

ible on its finite dimensional α-primary subspace so that one can glue its action on forms

of various levels. In this way one obtains the desired distributions with values in a finite di-

mensional vector space starting from naturally defined distributions with values in spaces

of modular forms (like Eisenstein distributions, theta distributions etc.).

Next, in order to obtain from them numerically valued distributions interpolating

L-values attached to modular forms one applies a suitable linear form coming from the

Rankin-Selberg method. The inversion of U on the α-primary subspace corresponds to

the factorα f n in the formulas for p-adic distributions byManin-Mazur-Swinnerton-Dyer,
see Proposition 11.1 d).

The paper is an extended version of the talk “A new way of constructing p-adic L

functions” on July 4, 2001 in the Oberseminar of the Mathematical Institute in Heidelberg

(and of talks in Luminy on September 26, 2001, and inCaen onOctober 5, 2001); it develops

Key-words : Modular forms, p-adic L-functions, special values.
Math. classification math. : 11F33, 11F67, 11F30.
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some techniques of [PaIAS] found during a visit of the author to the Institute for Advanced

Study in Princeton in 1999-2000. Let these institutions be thanked for their kind hospitality.

It is a great pleasure for me to thank S.Böcherer, E.Freitag, R.Weissauer and G.Robert for

valuable discussions and observations.

Let � p � ��
p denote the completion of an algebraic closure of the field

�
p

of p-adic numbers. Fix a positive integer N , a Dirichlet character ψmodN and con-

sider the commutative profinite group Y � YN,p � lim���
m

�	�
/Npm

��
�
and its group X �

Homcont

�
Y , ���p 
 of (continouos) p-adic characters des (this is a � p -analytic Lie group

analogous to Homcont

�	� �� , ��� 
��� � (by s �� �
y �� ys



. The group X is isomorphic to a

finite union of discsU ��� z ��� p ��� z � p < 1 � .
A p-adic L-function L : X ��� p is a certain meromorphis function on X coming

from a p-adic measure on Y .

1. Traditional method of constructing these functions is from the special critical

values of complex L-functions (which are often algebraic, after a suitable normalisation).

Let us fix an embedding ip :
�

↪��� p in order to consider algebraic numbers as p-adic
numbers.

Example. — The Riemann zeta function.

ζ
�
s

 � �

l primes

�
1 � l f s 
 f 1 �! "

n # 1 n f
s
�
Re
�
s



> 1


, ζ
�
1 � k 
 � � Bk

k
,

where Bk are the Bernoulli numbers given by

eBt �  "
n # 0

Bnt
n

n!
� t et

et � 1 .
Put

ζ $ c %$ p %
� � k 
 � � 1 � pk 
&� 1 � ck � 1 
 ζ � � k 


T 1 (Kummer). — For any polynomial h
�
x

 �(' n

i # 0 αi x
i � � p ) x * over�

p such that x � � p �,+ h
�
x

 � pm � p one has

n"
i # 0 αi ζ $ c %$ p %

� � i 
 � pm � p �
1. 1



This property expresses the fact that the numbers ζ $ c %$ p %
� � k 
 depend continuously

on k in the p-adic sense:

C. — Let k1, k2 � N � , k1 - k2 � mod � p � 1 
 pm f 1 
 , then
ζ $ c %$ p %

� � k1 
 - ζ $ c %$ p %
� � k2 
.� modpm 
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Indeed, it suffices to take h
�
x

 � xk1 � xk2 .

Proof of Theorem 1 is implied by the well-known formula:

Sk
�
N

 � N f 1"

n # 1 n
k � 1

k � 1 ) Bk � 1 � N 
 � Bk � 1 * �
1. 2



in which Bk
�
x

 � � x � B 
 k � ' k

i # 0 � ki � Bixk f i is the Bernoulli polynomial.
D 1.1.

a) Let A be a normed topological ring containing
�
p as a closed subring and let h be

a positive integer. Consider the A-submodule � h � Y , A 
 of all locally polynomial functions
of degre < h on Y (of the variable yp : Y � � �

p, the canonical projection); in particular,

the A-submodule � 1 � Y , A 
 consists of locally constant functions on Y with values in A. If
A � � p then�

h > 1 � h � Y , A 
�� � loc f an � Y , A 
 � � ϕ : Y � A � ϕ locally analytic � � � � Y , A 
 ,
where � � Y , A 
 � � ϕ : Y � A � ϕ continuous � .

b) A distribution Φ on Y with values in a normed A-module V is an A-linear map

Φ : � 1 � Y , A 
 � V ,ϕ ����
Y

ϕ dµ.

c) A measure Φ : � 1 � Y , A 
 � V is a bounded distribution: �Φ � ϕ 
 � p < C �ϕ � p where
C does not depend onφ.

d) Let h � N � . An h-admissible measure on Y with values in V is an A-linear map
Φ̃ : � h � Y , A 
 � V with the following growth condition: for all t � 0, 1, . . . , h � 1,					 
 a � $ pm % � yp � ap 
 tdΦ̃

					
p

� o � pm $ h f t %� .
form ��� .

If A � � p then according to [AV] and [Vi76], such a map Φ̃ can be uniquely ex-
tended to the A-module � loc f an � Y , A 
 of locally analytic functions onY of the parameter
yp : Y � � �p .

T 2 (Mazur). — There exists a unique (bounded)measure µ $ c % on � �p with
values in

�
p such that 
����

p

xkdµ $ c % � ζ $ c %$ p %
� � k 
 , k � 0

Remark. — Theorem 1 is equivalent to Theorem 2 (by integration of h against

µ $ c % 
 .
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In the present paper we construct p-adic distributions on Y with values in � p start-
ing from distributions with values in spaces of modular forms.

The p-adic L-function of Kubota-Leopoldt is the meromorphic function Lp : X ����p given by

Lp
�
x


: � � Y xdµ $ c %

1 � x � c 
 c , x � X
�
1. 3



(with a single simple pole at x � y f 1p ), and the function (1.3) is independente of a choice

of c: for all Dirichlet characters χ mod pm , χ :
� �p � � � ↪� ���p one has

Lp
�
χykp

 � � 1 � χ

�
p


pk


L
� � k, χ 
 � ip � � ab 
 .

In general every distribution on Y with values in
�
p defines a p-adic L-function (the non-

Archimedian Mellin transform of µ):

Lµ : X � � p , µ
�
x

 �



Y

x
�
y


dµ.

If � � s, χ 
 � ' n � 1 χ
�
n


cnn f s is an arithmeticaly defined complex L-function twistedwith

a Dirichlet character χ with the property � � � � k, χ 
 � � for an infinite set of couples k, χ
(anwith a normalization � � � s, χ 
 obtained bymultiplying � � s, χ 
 with certain elementary
factors), one constructs usually the corresponding p-adic L-function L � Lµ � starting
from the algebraic special values � � � � k, χ 
 in such a way that

Lµ � � χykp 
 �


Y

χykp dµ � � ip � � � � � k, χ 
 
 ,
and the existence of such a measure is equivalent to generalized Kummer congruences

for the special values � � � � k, χ 
 . Formulas for these values could be quite complicated
and one uses various methods in order to obtain such congruences (like the formulas of

type (1.2) in the proof of the Theorem 1). For modular forms one uses geometric tools like

modular symboles, continuous fractions, the Rankin-Selberg method etc., (voir [Man73],

[Ra52], [Man-Pa], [PLNM]).

We propose a new method which produces a family of p-adic measures starting

from a distribution Φ on Y with values in a suitable vector space � ��� m � 0 � � Npm 
 of
modular forms; this family of p-adic measures µα,Φ,f is parametrized by non-zero eigen-

values α � � p �� 0, of the operator U of Atkin-Lehner on � , and by a primitive cusp

eigenform f with an associated eigenvalue α �� 0 (on an easy modification f0 of f as

an eigenfunction). One says that a primitive cusp eigenform f � ' n � 1 a
�
n, f



e
�
nz

 ��

k

�
Γ0
�
N


,ψ

 � � (where

�
e
�
nz

 � exp

�
2πinz


 

) is associated to an eigenvalue α if

there exists a cusp form f0 � f0,α � ' n � 1 a
�
n, f0



e
�
nz


such that f0 � U � αf0 and

f0 � T � ` 
 � a � ` 
 f0 for all prime numbers ` 	 Np)
In the ordinary case �α � p � 1 a construction of such measures could be obtained

from Hida’s idempotent e � limr 
  
U
�
p


r ! (see Hida [Hi93]) acting on p-adic modular
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forms; the image of e is contained in a subspace � ord
� � of finite dimension (“the

ordinary part of � ”) which is known to be generated by certain classical modular forms.

One obtains µα,Φ,f � `f
�
eΦ


for a suitable linear form `f � � ord

�
. In a more general

case when α �� 0 one could imitate this method using instead of � ord the primary (char-

acteristic) subspace � α
� � ofU (which is also of finite dimension).

2. Distributions with values in modular forms. — Let A be an algebraic exten-

sion K of
�
p or its ring of integers

�
K . Let us fix an embedding ip :

�
↪� � p and

let � k

�
Γ1
�
N


; A


, � k

�
Γ0
�
N


ψ; A



be the submodules of A ) ) q * * generated by the q-

expansions f � ' n � 0 an
�
f


qn � � k

�
Γ1
�
Npm



,
� 


of classical modular forms with

algebraic Fourier coefficients an
�
f

 � � in i f 1p

�
A


. One puts � ��� m � 0 � � Npm 
 ,

where � � Npm 
 � � k

�
Γ1
�
Npm



; A


, and

� ��� m � 0 � � Npm 
 the A-submodule of cusp
forms.

Examples of distributions with values in � .

Let Φ : � 1 � Y , � p 
 � � be a distribution on Y with values in � .

a) Eisenstein distributions. For a complex number s � � and a, bmodN put (by

analytic continuation):

E`,N

�
z, s; a, b


 � " �
cz � d 
 f ` � cz � d � f 2s �

0 �� � c, d 
 - � a, b 
 modN 
 .
Starting from this series , one obtains the following Eisenstein distributions: put s � � r ,
0 � r � ` � 1,

Er,`,N
�
a, b


: � N` f 2r f 1Γ � ` � r 
� � 2πi 
 ` f 2r � � 4πy 
 r

"
amodN

e
� � ax/N



E`,N

�
Nz, � r ; x, b 


� εr,`,N
�
a, b

 � � 4πy 
 f r "

0<dd � ,d � a,d ��� bmodN sgn d 		 d` f 2r f 1W � 4πdd 
 y, ` � r, � r 
 	 e � dd 
 z 
 � � r � ,` � N 
 ,
where r 
 � max � r, ` � r � 1 
 ,

W
�
y, ` � r, � r 
 � r"

j # 0
� � 1 
 j

�
r

j � Γ
�
` � r 


Γ
�
` � r � j 
 yr f j , ζ

�
s; a, N


 � "
n  1

n � a � mod N � n f s ,
εr,`,N

�
a, b

 �

� � 4πy 
 sΓ � ` � s 

Γ
�
` � 2s 
 δ � b

N

� ζ
�
1 � ` � 2s; a, N 
 			

s # f r� Γ
�
` � 2s � 1 
�

4πy


`
�
s f 1Γ

�
s

 δ � a

N
��� ζ � ` � 2s � 1; b, N 


� � � 1 
 ` � 2sζ � ` � 2s � 1; � b, N 
�� 			
s # f r

These series are nearly holomorphic modular forms (see Section 7) in spaces � r � ,` � N 2


,

where r 
 � max � r, ` � r � 1 
 but in certain cases they are holomorphic, e.g. ` � 3, r � 0
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where r � l � 1) and these series produce distributions on Y � Y with values in � :

Er,`
� �
a � � Npm 
 �

�
b � � Npm 
 
 : � Er,`,Npm � a, b 
 � � l

�
N 2p2m



.

b) Partial modular forms. For any f � ' n � 0 an
�
f


qn � � k

�
Γ1
�
Npm



one puts

Φf
�
a � � Npm 
 
 : � "

n  0
n � a � mod pm � an

�
f


qn � � k

�
Np2m




c) Partial theta series (also with a spherical polynomial), see [Hi85].

Remarks. i) For any Dirichlet character χ mod pm viewed as a function on Y with

values in ip
� �

ab


, the integral


Y

χ
�
y


dΦf � Φf

�
χ

 � "

n � 0
an
�
f


qn � � k

�
Np2m


 � � k

�
N 2p2m




coincides then with the twisted modular form fχ.

ii) The distributions a), b), c) are bounded (after a regularisation of the constant

term in a)) with respect to the p-adic norm on � � � pm � k

�
Γ1
�
Npm



, A

 �

A ) ) q * * given
by � g � p � supn � a � n, g 
 � p for g � ' n � 0 a

�
n, g


gn � � k

�
Γ1
�
N


, A


).

iii) Starting from distributions a), b), c) one can construct many other distributions,

for example, using the operation of convolution on Y (as in [Hi85], where the case of the

convolution of a theta distribution with an Eisenstein distribution was considered).

However we need distributions µ with scalar values (in
�
p or in � p ) which we con-

struct starting from distributions Φ with values in � . This will be done in two steps:

The first step is the passage from � to a certain finite-dimensional part � � � � ;

one uses a suitable projector π : � � � �
such that one can keep track of denominators

when the level of modular forms grows.

The second step is to apply a suitable linear form to the distributionπ
�
Φ


in order to

obtain the special values of the L-functions as certain p-adic integrals against themeasure

π
�
Φ


.

3. First step: projectors on finite dimensional subspaces. — The first idea would

be to use the trace operator

Tr
Npm

N f � "
γ � Γ0 $ Npm %�� Γ0 $ N %

f � k γ.

One obtains after a normalisation a projectorπ
�
f

 � ) Γ0 � N 
 : Γ0 � Npm 
 *Tf 1TrNpmN f which

is well defined but which introduces inacceptable denominators.
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The second idea is to use the operator U � Up of Atkin-Lehner which acts on �
and on

�
by g � U � ' n � 0 a

�
pn, g



qn , where g � ' n � 0 a

�
n, g


qn ��� �

A ) ) q * * ,
a
�
n, g

 � A.
Let α � � p be a non-zero eigenvalue of U � Up on � , associated to a primitive

cusp eigenform f � ' n � 1 a
�
n, f


e
�
nz

 � � k � Γ0 � N 
 ,ψ 
 � � .

In the ordinary case �α � p � 1 there exists a p-adic construction of a projector π

given by Hida’s idempotent e � limr 
  
U
�
p


r ! acting on p-adic modular forms, whoses

image is in the finite dimensional subspace � ord
� � (“the ordinary part of � ”). Then

one gets µα,Φ,f � `f
�
eΦ


with a suitable p-adic linear form `f � � ord

�
.

4. A new construction. — It provides a rather simple method which attaches to a

distribution Φ on Y with values in a suitable vector space

� � �
m � 0 �

�
Npm



of modular forms, a family µα,Φ,f of p-adic measures on Y parametrized by non-zero

eigenvalues α associated with primitive cusp eigenforms f . This construction does not

use any p-adic limit procedure and in fact it uses only standard linear algebra considera-

tions in the finite dimensional primary (characteristic) subspace of the eigenvalueα.

D 4.1.

a) For anα � A put � $ α % � Ker � U � αI


the A-submodule of � of eigenfunctions

of the A-linear operatorU (of the eigenvalueα).

b) Put � α � � n � 1 Ker � U � αI


n the α-primary (characteristic ) A-submodule

of � .

c) Put � α
�
Npm


 � � α � � � Npm 
 , � $ α % � Npm 
 � � $ α %�� � � Npm 
 .
P 4.2. — Let A � �

p . Define N0 � Np, then Um
� � � N0pm 
 
 �

� � N0 
 .
Proof follows from a known formula [Se73],

Um � pm $ k/2 f 1 % WN0pm Tr
N0p

m

N0
WN0 ,

where g � kWN

�
z

 � ��� Nz 
 f kg � � 1/Nz 
 : � � N 
 � � � N 
 the main involution of level

N (over the complex numbers).

P 4.3. — Let A � � p and let α be a non-zero element of A; hence

a)
�
Uα


m : � α

�
N0p

m

 ���� � α

�
N0p

m


is an invertible

�
p-linear operator.

b) The
�
p-vector subspace � α

�
N0p

m

 � � α

�
N0


is independent ofm.
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c) Let πα,m : � � N0pm 
 � � α
�
N0p

m


the canonical projector onto the α-

primary subspace ofU (of the kernelKerπα,m ��� n � 1 Im � U � αI


n ��� β �# α � β

�
N0p

m


),

then the following diagram is commutative

� � N0pm 
 � �
πα,m

� α
�
N0p

m



Um ��� ����� �
Uα


m

� � N0 
 � �
πα,0

� α
�
N0



Proof. Due to the reduction theory of endomorphisms in a finite dimensional sub-

space over a field K , the projector πα,m onto theα-primary subspace � n � 1 Ker
�
U � αI



n

has the kernel � n � 1 Im � U � αI


n and it can be expressed as a polynomial ofU with coef-

ficients in K , henceπα,m commutes withU . On the other hand, the restriction of πα,m on

� � N0 
 coincides with πα,0 : � � N0 
 � � α
�
N0


because its image is�

n � 1
Ker
�
U � αI



n � � � N0 
 � �

n � 1
Ker
�
U � 	 $ N0 % � αI



n ,

and the kernel is 

n � 1

Im
�
U � αI



n � � � N0 
 �



n � 1

Im
�
U � 	 $ N0 % � αI



n .

5. Distributions with values in p-adic modular forms. — Let

g � "
n � 0

a
�
n, g


gn � � k

�
Γ1
�
N


, A



then � g � p � supn � a � n, g 
 � p is a well-defined p-adic norm on

� � � m � 0 � k

�
Γ1
�
Npm



, A

��

A ) ) q * * .
Let us denote by � the completion of � in A ) ) q * * with respect to this norm. Let V be a

normed A-module.

D 5.1. — Let α �� 0 be a non-zero eigenvalue of the operator U on the

A-module � . The α-primary part Φα of a distribution on Y with values in � is given by�
Y

ϕΦα : � � Uα

 f mπα,0 � � � Y ϕ dΦ � � Um � � � α for all ϕ � � 1 � Y , A 
 and for all pm

sufficiently large so that �
Y

ϕ dΦ is a finite linear combination in � � N0pm 
 ).
Put Φ

�
a � � Npm 
 
 � � Y χa

� $ Npm % dΦ where χa
� $ Npm % denotes the characteristic

function of an open subset a � � Npm 
�� Y ; hence there existsm 
 � N such that
Φ
�
a � � Npm 
 
 � Φ

�
χ $ a � $ Npm %


 
 � � � Npm � � 1 
 ,
and theα-primary part Φα of Φ is defined by

Φα
�
a � � Npm 
 
 � � Uα


 f m � � πα,0

�
Φ
�
a � � Npm 
 
 � Um � � . �

5. 1
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6. Main theorems. — Let Φ be a bounded distribution with values in � and α an

eigenvalue ofU on � .

T 3. — If �α � p � 1 then Φα is a bounded distribution on Y with values in

� α (an A-module of finite rank).

T 4. — Suppose that for allm � N � and for t � 0, 1, . . . , h � � 1

a
� $ N0pm %

y tp dΦ � � � N0p � m 
 (with h � ) ordp α * � 1) �
6. 1



for a suitable non-negative integer � (the condition of the modularity of a suitable level).
Then there exists an h � -admissible distribution Φ̃α on Y with values in � α such that for

allm 
 sufficiently large (withm 
 ��� m) and for all t � 0, 1, . . . , h � � 1 one has

a
� $ N0pm %

y tpdΦ̃α � � Uα

 f m � πα,0

��� 

a
� $ N0pm %

y tpdΦ � � Um � � .
Remark. — If A � �

p then the condition of the theorem 4 is equivalent to�
Y

χy tpdΦ � � � N0pm � 
 for all Dirichlet characters χmodN0p
m (with values in A) be-

cause 

a
� $ N0pm %

y t dΦ � 1

ϕ
�
N0pm


 "
χmodN0p

m

χ f 1 � a 
 

Y

χy tp dΦ.

Proof of Theorem 3. It suffices to show that for a constant C > 0 and for all the open

subsets of type a � � Npm 
 � Y one has �Φα
�
a � � Npm 
 
 � p � C . By our assumption there

existsm 
 � N such that
Φ
�
a � � Npm 
 
 � Φ

�
χ $ a � $ Npm %


 
 � � � Npm � � 1 
 ,
then theα-primary part Φα of Φ is given by (5.1):

Φα
�
a � � Npm 
 
 � � Uα


 f m � � πα,0

�
Φ
�
a � � Npm 
 
 � Um � � .

On the α-primary subspace � α
� � one has Uα


 � αI � Z for a nilpotent p-integral
operator Z : for all g � ' n � 0 a

�
n, g


qn � � , g � U � ' n � 0 a

�
pn, g



qn , � g � U � p � � g � p

and � g � Z � p � � g � p .
Next all the functions

Φα
�
a � � Npm 
 
 � α f m � α � Uα


 f 1 
 m )πα,0

�
Φ
�
a � � Npm 
 
 � Um *

are bounded because �α f 1 � p � 1 and
�
α
�
Uα

 f 1 
 m � � α f 1Uα


 f m � � I � α f 1Z 
 f m � n f 1"
j # 0

� � m
j � α f jZ j . �

6. 2
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Proof of Theorem 4. Let ordp α > 0 and let h � ) ordp α * � 1. Hence one has to

bound

a
� $ N0pm %

�
yp � ap 
 t dΦ̃α � α f m � � α � Uα


 f 1 
 m ��� πα,0 � 

a
� $ N0pm %

�
yp � ap 
 t dΦ � � Uα � .

The norms of the operators
�
α
�
Uα

 f 1 
 m � ' n f 1

j # 0 � f mj � α f jZ j are uniformly bounded by
C1 > 0 as n � dim � α does not depend onm. Hence for all t � 0, 1, . . . , h � � 1 one has			 


a
� $ N0pm %

�
yp � ap 
 t dΦ̃α

			
p
� C1 	 �α � f m �p 	 Maxy � a � $ N0pm % � yp � ap � t 	 � Φ � p� C1 	 C2 � pm � t f ordp α � � � o � pm $ h � f t % 
 , h > ordp α

asm ��� (because �Φ � p � C2 and �α � f mp � pm ordp α).

7. Nearly holomorphic p-adic modular forms of type r � 0. — Let us specialize

us now to the case when A is either an algebraic extension K of
�
p or the ring

�
K of in-

tegers of K . Fix an embedding ip :
�

↪� ��
p � � p . Let r be a non-negative integer and

q,ω two variabls (over the complex numbers q � e
�
z

 � e2πiz , ω � 4πy � 4π Im

�
z


,

z � � ). In the ring A ) ) q * * )ω f 1 * let us consider the A ) ) q * * -submodules Pr � A 
 ��� g �
' r

j # 0 ω f jgj with g j � ' n � 0 a
�
j, n, g



qn � A ) ) q * *�� . Consider also for any positive in-

teger a the complex vector spaces of nearly holomorphic functions (see [Hi85]) Qr,a �� ' r
j # 0 Im � 4πz 
 f jgj � z 
 with g j � ' n � 0 a

�
j, n, g



e
�
nz/a


 � and put Qr � � a � 1Qr,a .
D 7.1.

a) The A-module � r,k

�
Γ1
�
N


, A

 �

A ) ) q1 * * )ω f 1 * of modular forms of type r � 0

and of weight k � 1 for Γ1
�
N


is generated by the series g � � r,k with algebraic coeffi-

cients a
�
j, n, g


 � ip � � 
 such that the correspondent complex series (denoted also g )
g � i f 1p �

g

 � r"

j # 0 Im
�
4πz


 f j "
n � 0

i f 1p
�
a
�
j, n, g


 

e
�
nz

 � Qr,1

satisfy to two conditions:
�

γ � Γ1
�
N


, g � kγ � g and � γ � SL2 � ��
 , g � kγ � Qr .

b) Put

� r,k � � r,k

�
N, p


 � � m � 0 � r,k

�
Npm



,

where � r,k

�
Npm


 � � r,k

�
Γ1
�
Npm



, A


.

8. Example: real analytic Eisenstein series of weight ` > 0 (see [Ka76]). — For

s � � and a, bmodN define (by analytic continuation):
E`,N

�
z, s; a, b


 � " �
cz � d 
 f ` � cz � d � f 2s �

0 �� � c, d 
 - � a, b 
 modN 
 .
10



Starting from this series one obtains the following Eisenstein distribution: put s � � r ,
0 � r � ` � 1,

Er,`,N
�
a, b


: � N` f 2r f 1Γ � ` � r 
� � 2πi 
 ` f 2r � � 4πy 
 r

"
a modN

e
� � ax/N



E`,N

�
Nz, � r ; x, b 


� εr,`,N
�
a, b

 � � 4πy 
 f r "

0<dd � ,d � a
d � � b mod N sgn d 	 d` f 2r f 1W � 4πdd 
 y, ` � r, � r 


	 e � dd 
 z 
 � � r � ,` � N 2


,

�
8. 1



where r 
 � max � r, ` � r � 1 
 ,
W
�
y, ` � r, � r 
 � r"

j # 0
� � 1 
 j

�
r

j � Γ
�
` � r 


Γ
�
` � r � j 
 yr f j , ζ

�
s; a, N


 � "
n  1

n � a � modN � n f s ,
εr,`,N

�
a, b

 �

� � 4πy 
 sΓ � ` � s 

Γ
�
` � 2s 
 δ � b

N
� ζ
�
1 � ` � 2s; a, N 
 			

s # f r� Γ
�
` � 2s � 1 
�

4πy


`
�
s f 1Γ

�
s

 δ � a

N
��� ζ � ` � 2s � 1; b, N 


� � � 1 
 ` � 2sζ � ` � 2s � 1; � b, N 
 � 			
s # f r

9. Distributions with values in nearly holomorphic p-adic modular forms of type

r � 0. — Let g � ' r
j # 0 ω f j ' n � 0 a

�
j, n, g



qn � � r,k

�
A ) ) q * * )ω f 1 * . Put � g � p �

supn,j � a � j, n, g 
 � p . One has a p-adic norm on � r,k .

Letα be an eigenvalue ofU on � r,k ,

g �Um � pm $ k/2 f 1 % "
u mod pm

g �
�
1 u

0 pm �
� p f m "

umod pm

g � z � u
pm

� ,
Im � z � u

pm
� � Im z

pm

�,+ g �Um � k"
j # 0 ω f jpmj

"
n � 0

a
�
j, pmn, g



qn

(un opérateur entier sur � r,k ).

D 9.1.

a) � $ α %r,k � Ker � U � αI


,

b) � α
r,k � � n � 1 Ker � U � αI



n ,

11



c) � α
r,k

�
Npm


 � � r,k

�
Npm


 � � α
r,k .

P 9.2.

a) � α
r,k

�
N0p

m

 � � α

r,k

�
N0


is of finite rank over A.

b) The following diagram is commutative (for A � � p)
� r,k

�
N0p

m

 ���

πα,m

� α
r,k

�
N0p

m



Um ��� ��� � �
Uα


m

� r,k

�
N0

 ���

πα,0

� α
r,k

�
N0



(πα,m is the projector onto the α-primary subspace with the kernel � n � 1 Im � U � αI


n �

� � N0 
 (equal to the direct sum of all the other primary subspaces;πα,m � Rα,m

�
U


with

a suitable polynomial Rα,m � A ) x * see Proposition 4.3).
D 9.3. — Letα � A be a non-zero eigenvalue of the operatorU on � r,k

and Φ : � 1 � Y , A 
 � � r,k a distribution. The α-primary part Φα : � 1 � Y , A 
 � � α
r,k of Φ

is given by

Φα
�
ϕ

 � U f m �

πα,0U
m
�
Φ
�
ϕ

�� � � α

r,k

for allm sufficiently large (avec Φ
�
ϕ

 � � r,k

�
N0p

m


).

The definition is independent of the choice of m (assumed sufficiently large) by

Prop. 9.2, b).

T 5. — Let �α � p � 1 and Φ a bounded distribution. Then the distribution
Φα is also bounded.

Proof. It is identical to that of Theorem 3.

10. h-admissible distributions.. — Let Φ j : � 1 � Y , A 
 � � r,k be a family of

distributions (non necessarily bounded, j � 0, 1, . . . , r
�
, r
� � 1



. For any open subset

a � � Npm 
 � Y put Φj � a � � Npm 
 
 � Φj
�
χa
� $ Npm %



.

T 6 . — Let 0 < �α � p < 1 and h � ) ordp α * � 1. Suppose that there exists� � N � such that for all j � 0, 1, . . . , h � 1 and for allm � 1 one has Φ j
�
a � � N0pm 
 
 �

� r,k

�
N0p

m � 
 . Suppose next that for t � 0, 1, . . . , h � 1 and for all a � � Npm 
 � Y one

has

�U � m t"
j # 0

�
r

j � � � ap 
 t f jΦj � a � � Npm 
 
 � p � C � pm � tp �
10. 1




with a suitable constant C > 0. Then there exists an h � -admissible measure Φ̃α :� h � � Y , A 
 � � α
r,k � � r,k such that � a � $ N0pm % y jpdΦ̃α � Φα

j

�
a � �

N0p
m

 

(for

j � 0, 1, . . . , h � � 1).
12



Proof. It suffices to verify the condition of growth (1.1 d)) for Φα
j

�
a � � N0pm 
 
 �

� r,k

�
N0p

m � 
 . One has U � αI � Z , Zn � 0 on � α
r,k

�
N0


, n � rkA , � α

r,k

�
N0p

m ; A

 �

� α
r,k

�
N0p

m ; A


.

On the other hand by the conditions of the theorem we have

a
� $ N0pm %

�
yp � ap 
 tdΦ̃α � t"

j # 0
�
t

j � � � ap 
 t f jΦα
j

�
a � � N0pm 
 


� α f m � αm
� �
Uα

 f m ���� πα,0U

m ���� t"
j # 0

�
t

j � � � ap 
 t f jΦj � a � � N0pm 
 
���
	� .
The operators

�
α f 1 � Uα


 f m � � ' n f 1
i # 0 � f m �i � � α f 1Z 
 i are uniformly bounded by a con-

stant C1 > 0 hence the condition (10.1) implies					 
 a � $ N0pm % � yp � ap 
 tdΦ̃α

					
p

� C 	 C1 �α � f m �p � pm � tp � o � pm $ h � f t % 

whenm ��� because �α � p � � p � ordp α, ordp α < h, � pm � f � ordp α

p � o � pm � h 
 .
11. The second step: application of a suitable linear form. — Let α � � � �

be a non-zero eigenvalue of U on � r,k

� � 
 associated with a primitive cusp eigenform
f � � k � Γ0 � N 
 ,ψ 
 and let f0 � f0,α be a corresponding eigenfunction

�
f0 �U � αf0



, let

us define f 0 � f
ρ
0 �WN0 , f

ρ
0 � ' n � 1 an

�
f0


qn ,WN0 � � 0 f 1N0 0 � .

P 11.1.

a)U
� � W f 1N0

UWN0 in the hermitian vector space
�
r,k

�
Γ1
�
N0


, � 
 , the adjoint op-

erator with respect to the Petersson scalar product.

b) One has f 0 �U � � ᾱf 0, and for all "good" prime numbers l 	 Np one has Tl f 0 �
al
�
f


f 0.

c) The linear form Φ ��� f 0,Φ � on � r,k

�
Γ1
�
N0


, � 
 vanishes on Kerπα,0, where

πα,0 : � r,k

�
Γ1
�
N0


, � 
 � � α

r,k

�
Γ1
�
N0


, � 
 (the projector onto the α-primary subspace

with the kernel Kerπα,0 � Im � U � αI


n


hence

� f 0,Φ � � � f 0,πα,0

�
Φ

 � .

d) If Φ � � � Npm � 1, � 
 � � � N0pm , � 
 etα �� 0, one has� f 0,Φα � � α f m � f 0,Φ � Um �
where

Φα � � Uα

 f mπα,0

�
Φ � Um


 � � α
�
Np



is theα-primary part of Φ.
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e) One puts �
f ,α

�
Φ

 � � f 0,α f mΦ �Um � N0� f 0, f0 � N0 ,

hence

�
f ,α : � � Npm � 1; � 
 � �

(the linear form

�
f ,α sur � r,k

�
Γ1
�
Np


, � 
 is defined

over
�
) and there exists a unique A-linear form ` f ,α � � α

r,k

�
N0

 �
such that

i f 1p
�
`α,f

�
Φα

 
 � � f 0,α f mUm

�
Φ

 � N0� f 0, f0 � N0

(
�
Φwith coefficients in i f 1p

�
A


).

Proof of Proposition 11.1 a) See [Miy], Th. 4.5.5.

b) By definition, f 0 �U � � f
ρ
0 � WNpW f 1NpUWNp � ᾱf

ρ
0 � WNp � ᾱf 0.

c) For any function

Ψ � � U � αI


ng � Kerπα,0 � Im � U � αI



n

one has � f 0,Ψ � � � f 0, � U � αI


ng � � � � U � � ᾱI



f 0,
�
U � αI



n f 1g � � 0

hence for Ψ � Φ � πα,0

�
Φ


we get� f 0,Φ � � � f 0,πα,0

�
Φ

 � � Φ � Φα


 � � � f 0,πα,0

�
Φ

 ��� � f 0,Ψ � � � f 0,πα,0

�
Φ

 �

d) Let us use directly the equality
�
U
� 

m f 0 � ᾱm f 0 of b):

α
m 	 � f 0,Φα � � � � U � 
 m f 0, U f mπα,0

�
Φ � Um


 � � � f 0,πα,0

�
Φ � Um


 � � � f 0,Φ � Um �
by c) because Φ � Um � � � Np 
 .

e) Note that

�
f ,α

�
f0

 � 1, f0 � � � Np; � 
 ; consider the complex vector space

Ker

�
f ,α � � f 0 ��� � � g � � � Np; � 
 � � f 0, g � � 0 �

which admits a
�
-rational basis because it is stable by the action of all "good" Hecke oper-

ators Tl (l 	 Np): � f 0, g � � 0 �,+ � f 0, Tlg � � � T �l f 0, g � � 0
and one obtains such a basis by the diagonalisation of the action of all the Tl (a commuta-

tive family of normal operators) and e) follows.

12. Relations to the L-functions: convolutions of the Eisenstein distributions.

Let ξmodN be an auxiliary Dirichlet character ξ : Y � A
�
, Y

yp� � � �
p, Y � lim� YNpm ,

YNpm � � � /Npm
��
 �

. Consider two Eisenstein distributions

E0,`,Npm
�
ξ, b

 � "

a � YNpm
ξ
�
a


E0,`
�
a, b;Npm


 �
� � 0,` si ξ �� 1
� 1,` si ξ � 1, ` � 1, 2

Er,`,Npm
�
a

 � "

b � YNpm
Er,`,Npm

�
a, b

 � � r � ,`, r 
 � max � r, ` � r � 1 
 .
14



P 12.1. — Let χ,ψ : Y � A � be two Dirichlet characters modNpm ,
a) Let f � � k � N,ψ 
 , k � 2, Φj � y 
 Npm � ' y � YNpm ψξ

�
a


E0,k f 1 f j

�
ξ, ya



E j,1 f j

�
a



a twisted convolution, j � 0, . . . , k � 2. Hence
Φj
�
χ

 � E0,k f 1 f j � ξ, χ 
 E j,1 f j � ψξχ



.

b) The special values of the function L f
�
s, χ

 � ' n � 1 χ

�
n


an
�
f


n f s satisfy the

following

� f 0,Φj � χ 
 � N0 � Lf
�
k � 1, ξ 
 L f � 1 � j, χ 
� � 2πi 
 j � k 	 t ,

(where t � � � is an explicit elementary factor) which produces an h-admissible measure
(compare with [Vi76]).

13. Application to triple products. — Consider the vector space

� : � �
m � 0
� k

�
Γ1
�
Npm


��
3

and let L
�
f � g � h, s



be the triple L-function attached to f � g � h � � k � Γ1 � N 
 � 3

associated with an ordinary eigenvalueαβγ, hence

f0 � g0 � h0 � � k � Γ1 � Np 
�� 3
is an eigenfunction ofU on � . Let use the restriction on the diagonal Φ � E 3k � z1, z2, z3 
 �
� of the Siegel-Eisenstein distribution (see [PIsr]) viewed as a formal Fourier series. One

obtains a distribution on Y 3 with values in � .

Put

lf � g � h,αβγ

�
Φ


: � ip

� � f0 � g0 � h0,Φαβγ �� f0, f0 � � g0, g0 � � h0, h0 � � .
T 7 (a work in progress with Siegfried Böcherer). — The distribution

lf � g � h,αβγ

�
Φ


on Y 3 with values in � is bounded and the integrals l f � g ��� h,αβγ

�
Φ

&�

χ1 �
χ2 � χ3



on the characters χ1 � χ2 � χ3 coincide with the special values L

� �
fχ1 � gχ2 �

hχ3 , s0


, where the normalisation of L

�
involves Gauss sums, Petersson scalar products ,

powers of π, αβγ.

Proof. The existence of l f � g � h,αβγ

�
Φ


follows from the existence of Φ using Theo-

rem 3, and the equality is implied by the integral formula of Garrett-Harris [GaHa], see also

[LBP], [PTr].
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