
Algebras with finitely generated invariant

subalgebras

Ivan Arzhantsev ∗
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Abstract

We classify all finitely generated integral algebras with a ratio-

nal action of a reductive group such that any invariant subalgebra is

finitely generated. Some results on affine embeddings of homogeneous

spaces are also given.

1. Introduction. LetA be an associative commutative finitely generated
integral algebra with unit over an algebraically closed field K and let G be
a connected reductive algebraic group over K acting rationally on A. The
latter condition means that there is a homomorphism G → Aut(A) such
that the orbit Ga of any element a ∈ A is contained in a finite-dimensional
subspace in A where G acts rationally. We say in this case that A is a
G-algebra. Let us introduce three special types of G-algebras.

Type C. Here A is a finitely generated domain of Krull dimension
KdimA = 1 (i.e. the transcendence degree of the quotient field QA equals
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one) with any (for example, trivial) G-action. Such algebras may be consid-
ered as the algebras of regular functions on irreducible affine curves.

Type HV. Let H be a closed subgroup of G and

A(H) = K[G]H = K[G/H] = {f ∈ K[G] | f(gh) = f(g) for any g ∈ G, h ∈ H}.

The left G-action (l(g′)f)(g) := f(g′−1g) is rational.
Further we follow notation of the book [Gr]. Let B = TU be a Borel

subgroup of G with the unipotent radical U and a maximal torus T . Here
T normalizes U and there is a G-equivariant T -action on K[G]U defined by
right translation (r(t)f)(g) := f(gt). For a character ω ∈ X(T ) consider the
G-invariant subspace

E(ω∗) = {f ∈ K[G]U | r(t)f = ω(t)f for all t ∈ T }.

The G-module E(ω∗) is {0} unless ω is dominant. Denote by X+(T ) the
set of dominant weights. For every ω ∈ X+(T ) E(ω∗) contains the simple
submodule of G having highest weight denoted by ω∗ and in zero character-
istic E(ω∗) is simple. The map ω → ω∗ is an involution on X+(T ). Since
each element in K[G]U is a direct sum of T -weight vectors (where T acts
by right translation), we see that K[G]U is the direct sum of the E(ω),
ω ∈ X+(T ). From the definition, it is obvious that if ω, ω′ ∈ X+(T ), then
E(ω)E(ω′) ⊆ E(ω + ω′).

Consider the G-algebra

A(λ) = ⊕m≥0E(mλ) ⊂ K[G]U ,

where λ is a dominant weight. (More geometrically, the algebra A(λ) may
be realized as

A(λ) = ⊕m≥0H
0(G/B,Lmλ∗),

where Lmλ∗ = G ∗B K(−mλ∗) is the G-line bundle on the flag variety G/B
corresponding to the character mλ∗.)

We say that a G-algebra A is an algebra of type HV if it is G-isomorphic
to an invariant subalgebra of A(λ) for some λ ∈ X+(T ). Any G-algebra of
type HV is finitely generated, see Lemma 2 below.

Suppose for a moment that charK = 0. The algebra A(λ) may be con-
sidered as the algebra of regular functions on the closure of a highest weight
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vector in the simple G-module with highest weight λ∗. Clearly, any invariant
subalgebra in A(λ) has the form

A(P, λ) = ⊕p∈PE(pλ),

where P is a subsemigroup in the additive semigroup Z+ of non-negative
integers, cf. [PV1].

Example 1. Let G be SLn(K) and ω1, . . . , ωn−1 be its fundamental
weights. The natural linear action G : Kn induces an action on regular
functions

G : A = K[x1, . . . , xn], (g ∗ f)(v) := f(g−1v).

The homogeneous polynomials K[x1, . . . , xn]m of degree m form an (ir-
reducible) isotypic component corresponding to the weight mωn−1. Hence
A = A(ωn−1) and any invariant subalgebra in A is composed of homoge-
neous components indexed by the elements of a subsemigroup P ⊆ Z+.

In positive characteristic the situation is more complicated.

Example 2. Suppose that charK = 2, G = SL2(K) and G acts on
A = K[x1, x2] as in Example 1. Then the invariant subalgebras K[x2

1, x
2
2], or

K[x2
1, x

2
2, x

3
1x2, x1x

3
2], are not of the form A(P, λ).

The author does not know a “constructive” description of G-algebras of
type HV in the case charK > 0.

Type N. Let H be a reductive subgroup of G. The algebraA(H) is finitely
generated. We say that a G-algebra A is of type N if there exists a reductive
subgroup H ⊂ G such that the index of H in its normalizer NG(H) is finite
and A is G-isomorphic to an invariant subalgebra of A(H). Any G-algebra
of type N is finitely generated (Lemma 1).

Example 3. Suppose that charK 6= 2. Let G = SLn and H = SOn.
The group G acts on the space of symmetric n×n-matrices by (g, s)→ gTsg.
The stabilizer of the identity matrix E is the subgroup H and the orbit GE
is the set X of symmetric matrices with determinant 1. This yields that
the algebra A = K[X] with the G-action (g ∗ f)(s) := f((g−1)T sg−1) is an
algebra of type N.

In zero characteristic a G-algebra A is a G-algebra of type N if and only
if
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(*) A contains no proper G-invariant ideals and the group of G-equiva-
riant automorphisms of A is finite

(see Remark 2 in Section 4). Moreover, any G-algebra of type N is G-
isomorphic to A(H ′) for a reductive subgroup H ′ ⊂ G such that the group
NG(H ′)/H ′ is finite. In positive characteristic this is no longer the case.

It is natural to expect that property (*) characterizes G-algebras of type
N in arbitrary characteristic. At this moment the author has only a proof
that for any G-algebra of type N property (*) holds (Section 4).

Now we are able to formulate the main result.

Theorem 1. Let A be an associative commutative finitely generated
integral K-algebra with a rational G-action. Then any G-invariant subalgebra
of A is finitely generated if and only if A is an algebra of one of the types C,
HV or N.

The proof of Theorem 1 is given in Section 4. Now we begin with some
auxiliary results.

2. Non-finitely generated subalgebras. Let X be an irreducible affine
algebraic variety and Y be a proper closed irreducible subvariety. Consider
the subalgebra

A(X, Y ) = {f ∈ K[X] | f(y1) = f(y2) for any y1, y2 ∈ Y } ⊂ A = K[X].

Proposition 1. The subalgebra A(X, Y ) is finitely generated if and only
if Y is a point.

Proof. If Y is a point, then A(X, Y ) = K[X]. Suppose that Y has
positive dimension. Consider the ideal I = I(Y ) = {f ∈ K[X] | f(y) =
0 for any y ∈ Y }. Then A/I is an infinite-dimensional vector space. By the
Nakayama lemma, we can find i ∈ I such that in the local ring of Y the
element i is not in I2. For any a ∈ k|X] \ I the element ia ∈ I \ I2. Hence
the space I/I2 has infinite dimension.

On the other hand, suppose that f1, . . . , fn are generators of A(X, Y ).
Subtracting constants, one may suppose that all fi are in I. Then
dimA(X, Y )/I2 ≤ n + 1, a contradiction. ♦

Proposition 2. Let A be a finitely generated domain. Then any subal-
gebra in A is finitely generated if and only if KdimA ≤ 1.
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Proof. If KdimA ≥ 2, then the statement follows from the previous
proposition. The case KdimA = 0 is obvious. It remains to prove that if
KdimA = 1, then any subalgebra is finitely generated. By taking the integral
closure, one may suppose that A is the algebra of regular functions on a
smooth affine curve C1. Let C be the smooth projective curve such that C1

∼=
C \{P1, . . . , Pk}. The elements of A are the rational functions on C that may
have poles only at points Pi. Let B be a subalgebra in A. By induction on k,
we may suppose that the subalgebra B′ ⊂ B consisting of functions regular at
P1 is finitely generated, say B′ = K[s1, . . . , sm]. (Functions that are regular
at any point Pi are constants.) Let v(f) be the order of the zero/pole of f ∈ B
at P1. The set V = {v(f) | f ∈ B} is an additive subsemigroup of integers.
Such a subsemigroup is finitely generated. Let f1, . . . , fn be elements of B
such that v(fi) generate V . Then for any f ∈ B there exists a polynomial
P (y1, . . . , yn) with v(f − P (f1, . . . , fn)) ≥ 0, thus f − P (f1, . . . , fn) ∈ B′.
This shows that B is generated by f1, . . . , fn, s1, . . . , sm. ♦

3. Affine embeddings. To go further we need some definitions.

Definition 1. Let H be a closed subgroup of G. We say that an affine
variety X with a regular G-action is an affine embedding of the homogeneous
space G/H if there exists a point x ∈ X such that the orbit Gx is dense in
X and the orbit map G → Gx defines an isomorphism between G/H and
Gx. We denote this as G/H ↪→ X. An embedding is trivial if X = Gx.

Note that a homogeneous space G/H admits an affine embedding if and
only if G/H is quasi-affine (as an algebraic variety), see [PV2, Th.1.6]. In
this situation, the subgroup H is said to be observable in G. For a group-
theoretic description of observable subgroups see [Su] (charK = 0) and [Gr,
Th.7.4] (charK is arbitrary). It is known that G/H is affine if and only if H
is reductive [Rich, Th.A], [Gr, Th.7.2]. In particular, any reductive subgroup
is observable.

Definition 2. A homogeneous space is said to be affinely closed if it
admits only the trivial affine embedding. (In this case G/H is affine.)

The following theorem is a reformulation of a theorem due to
D. Luna [Lu2].

Theorem 2. A homogeneous space G/H is affinely closed if and only if
H is reductive and the group NG(H)/H is finite.
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Remark. Moreover, it is proved in [Lu2] that if G acts on an affine variety
X and the stabilizer of a point x ∈ X contains a reductive subgroup H such
that the group NG(H)/H is finite, then the orbit Gx is closed in X. This
implies that if H ⊆ H ′ ⊆ G and H ′ is observable, then H ′ is reductive and
G/H ′ is affinely closed.

Theorem 2 is proved in [Lu2] under the assumption charK = 0. We
shall give a characteristic-free proof of Theorem 2 and of the above remark
in Section 5 in terms of Kempf’s adapted one-parameter subgroups [Kem].

4. Proof of Theorem 1. Let A be a G-algebra with KdimA ≥ 2 such
that any invariant subalgebra in A is finitely generated. Consider the cor-
responding affine variety X = SpecA. The action G : A induces a regular
algebraic action G : X.

Suppose that there exists a proper irreducible closed invariant subvariety
Y ⊂ X of positive dimension. Then A(X, Y ) is an invariant subalgebra that
is not finitely generated. In particular, this is the case if G acts on X without
a dense orbit. Hence we may suppose that either

(i) the action G : X is transitive or
(ii) X consists of an open orbit O and a G-fixed point o.

In case (i), fix a point x ∈ X and denote by H the (reduced) stabilizer of x
in G. The orbit map g → gx defines a bijective purely inseparable and finite
morphism π : G/H → X [Hum, 4.3, 4.6]. Note that K(G/H)ps

⊆ π∗K(X)
for some s ≥ 0, and K[G/H]p

s

⊆ π∗K[X], where p = charK if charK > 0
and p = 1 otherwise. If G/H is not affinely closed, then there is a nontrivial
affine embedding G/H ↪→ X ′. The algebra B := K[X ′] ∩ π∗K(X) is finite
over K[X ′]p

s

. Hence B is finitely generated, and X̃ := SpecB contains X as
an open subset.

G/H ↪→ X ′

↓ π ↓ π′

X ↪→ X̃

On the other hand, the morphism π′ : X ′ → X̃ defined by the inclusion
B ⊂ K[X ′] is finite. This shows that X 6= X̃. The complement in X̃ of
the open affine subset X is a union of irreducible divisors. Let Y be one
of these divisors. The algebra A(X̃, Y ) is a non-finitely generated invariant
subalgebra in K[X̃] and the inclusion X ⊂ X̃ defines an embedding K[X̃] ⊂
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K[X] = A. We conclude that G/H should be affinely closed. In this case A
is of type N by Theorem 2.

Lemma 1. If X = G/H is affinely closed, then any invariant subalgebra
in A(H) is finitely generated.

Proof. Suppose that there exists an invariant subalgebra B ⊂ A(H)
that is not finitely generated. Let f1, f2, . . . be a system of generators of
B. Consider the finitely generated subalgebras Bi = K[< Gf1, . . . , Gfi >].
Infinitely many of them are pairwise different. For the corresponding varieties
Xi := SpecBi one has natural dominant G-morphisms

X1 ←− X2 ←− X3 ←− . . .

We claim that the action G : Xi is transitive for any i. In fact, let Oi be
the open orbit in Xi and πi : G/H i → Oi be the bijective purely inseparable
finite morphism from a quasi-affine homogeneous space G/H i. Consider the
integral closure C of π∗

iK[Xi] in K(G/H i). The algebra C is finitely generated
and, if Xi contains more than one orbit, then the G-variety Spec C defines
a nontrivial affine embedding of G/H i. But H ⊆ H i, and the remark after
Theorem 2 concludes the arguments.

One may consider any Xi as a homogeneous variety G/Hi, where Hi is a
(non-reduced) group subscheme of G containing H i as its reduced part. The
infinite sequence of group subschemes

H1 ⊃ H2 ⊃ H3 ⊃ . . .

leads to a contradiction. ♦

Remarks. 1) In the case K = C, Lemma 1 follows also from [Lat]. In fact,
the paper [Lat] was the starting point for the present note.

2) A G-algebra A contains no proper invariant ideals if and only if the
actionG : X = SpecA is transitive. The group of equivariant automorphisms
of the homogeneous space G/H (and of the algebra A(H)) is isomorphic to
the group NG(H)/H. Suppose that charK = 0, H is reductive and the group
NG(H)/H is finite. As is obvious from what has been said any invariant
subalgebra in A(H) has the form A(H ′), where H ⊆ H ′ ⊆ G, H ′ is reductive
and NG(H ′)/H ′ is finite. Hence G-algebras of type N are characterized by
property (*) (see Introduction).

Now consider case (ii). We are going to prove that here A = K[X] is
an algebra of type HV following the proof of [Br, Lemme 1.2] (in the case
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charK = 0 see also [Po, Th.4], [Akh, Th.1]). Without loss of generality it
can be assumed that X is contained as a closed G-invariant subvariety in a
finite-dimensional G-module V with o at the origin. Let P(V ⊕ K) be the
projective space of V ⊕ K, where G acts trivially on K. Denote by X the
closure of X in P(V ⊕K), then X intersects the hyperplane at infinity P(V ).
This shows that U contains at least two fixed points in X. But the set of
points fixed by a connected unipotent group on a connected complete variety
is connected [Hor, Th.4.1]. This proves that for the open orbit O ⊂ X one
has OU 6= ∅. Let v be a U -fixed vector in O. The vector v has the form
v =

∑
vi, where tvi = χi(t)vi with χi ∈ X+(T ) for any i and any t ∈ T .

Find a one-parameter subgroup θ : K∗ → T such that
(1) < θ, χi >≥ 0 for any i;
(2) there exists a non-zero χk (denote it by λ∗) such that < θ, χi >= 0

if and only if χi is a multiple of λ∗.
Then v1 = limt→0 θ(t)v =

∑
vj, where the corresponding χj are multiples

of λ∗. By assumption on X, v1 ∈ X. Let H be the stabilizer of v1 in G.
The bijective morphism G/H → O defines an inclusion K[O] ⊆ K[G/H].
Moreover, the subgroup H contains U and K[G/H] = ⊕ωE(ω), where
ω∗ | T1 = 1 for T1 = H ∩ T [Gr, p.98]. This shows that K[G/H] ⊆ A(λ)
and A = K[X] ⊆ K[O] is a G-algebra of type HV.

Lemma 2. Any invariant subalgebra of the algebra A(λ) is finitely
generated.

Proof. Let B be an invariant subalgebra of A(λ). It is known that B
is finitely generated if and only if the algebra BU of U -invariants is finitely
generated [Gr, Th.16.2]. But KdimA(λ)U = 1, and, by Proposition 2, BU ⊆
A(λ)U is finitely generated. ♦

The proof of Theorem 1 is completed. ♦

5. Some results on affine embeddings. The next proposition is a
modification of a construction due to G. Kempf [Kem].

Proposition 3. Let G/H be a quasi-affine non affinely closed homoge-
neous space. Then G/H admits an affine embedding with a G-fixed point.

Proof. LetG/H ↪→ X be a nontrivial embedding and Y ⊂ X be a proper
closed irreducible invariant subvariety. Denote by f1, . . . , fk generators of
K[X] and by g1, . . . , gs generators of the ideal I(Y ). One may suppose
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that the fi form a basis of < Gf1, . . . , Gfk > and the gi form a basis of
< Gg1, . . . , Ggs >. Consider the G-equivariant morphism

ψ : X → Ks(k+1),

x→ (g1(x), .., gs(x), g1(x)f1(x), .., gs(x)f1(s), .., g1(x)fk(x), .., gs(x)fk(x)).

Let Z be the closure of ψ(X). It is clear that Z is birationally isomorphic to
X and is an affine embedding of G/H. But ψ(Y ) = {0} is a G-fixed point
on Z. ♦

Proof of Theorem 2. Suppose that for a reductive subgroup H the
group NG(H)/H is infinite. Since NG(H)/H is reductive there exists a one-
parameter subgroup θ : K∗ → NG(H) such that H∩θ(K∗) is finite. Consider
the subgroup H1 = θ(K∗)H. The homogeneous fiber space G∗H1

K, where H
acts on K trivially and H1/(H ∩ θ(K

∗)) acts on K by dilation, is a two-orbit
embedding of G/H.

Conversely, suppose that X is an affine G-variety and x ∈ X is an H-
fixed point. As in the proof of Theorem 1, one may reduce the general case
to the case where the orbit Gx is isomorphic to a quasi-affine homogeneous
space G/H1. We need to prove that if G/H1 is a quasi-affine homogeneous
space that is not affinely closed and H is a reductive subgroup contained
in H1, then NG(H)/H is infinite. By Proposition 3, there exists an affine
embedding G/H1 ↪→ X with a G-fixed point o. Fix a point x0 in the open
orbit on X. Let γ : K∗ → G be an adapted (to x0) one-parameter subgroup.
Consider the parabolic subgroup

P (γ) = {g ∈ G | lim
t→0

γ(t)gγ(t)−1 exists in G }.

Then P (γ) = L(γ)U(γ), where L(γ) is a Levi subgroup that is the centralizer
of γ(K∗) in G, and U(γ) is the unipotent radical of P (γ). By [Kir], [Nes]
(see also [PV2, Th.5.5]), the stabilizer Gx0

is contained in P (γ). There is an
element u ∈ U(γ) such that H ′ = uHu−1 ⊂ L(γ).

We claim that γ(K∗) is not contained in H ′. In fact, assume the converse:
γ(t)ux0 = ux0 for any t ∈ K∗. Denote γ(t)uγ(t)−1 by ut. Then utγ(t)x0 =
ux0, so that γ(t)x0 ∈ U(γ)x0. By assumption, limt→0 γ(t)x0 = o /∈ Gx0. On
the other hand, the orbit U(γ)x0 is contained in Gx0 and is closed as an
orbit of a unipotent group on an affine variety [PV2, p.151]. (The proof of
the latter statement is based only on the Lie-Kolchin theorem, which holds in
arbitrary characteristic [Hum, 17.5].) This contradiction shows that γ(K∗) is
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not contained in H ′ and γ(K∗) centralizes H ′. Hence the group NG(H ′)/H ′

(and NG(H)/H) is infinite. ♦

Let us recall that a subgroupQ ⊂ G is said to be quasi-parabolic ifQ is the
stabilizer of a highest weight vector v in some finite-dimensional irreducible
G-module, say Vλ∗. If Pλ∗ is the parabolic subgroup fixing the line < v >,
then Q = Qλ∗ = {g ∈ Pλ∗ | λ∗(g) = 1}.

Proposition 4. A homogeneous space G/H admits an affine embedding
G/H ↪→ X such that X = G/H ∪ {o}, where o is a G-fixed point if and only
if H is a quasi-parabolic subgroup of G.

Proof. If H is quasi-parabolic, then consider X ′ = Gv ⊂ Vλ∗. Let
π : G/H → Gv be the orbit map and B be the integral closure of π∗K[X ′]
in K[G/H]. We have obtained the desired embedding G/H ↪→ SpecB.

Conversely, as was shown in the proof of Theorem 1, the subgroup H
(up to conjugation) is the stabilizer of a sum of highest weight vectors with
proportional weights. This shows that H is a quasi-parabolic subgroup. ♦

Remarks. 1) Proposition 4 was proved by V. L. Popov [Po, Th.4 and
Cor.5] in zero characteristic. For a description of complete embeddings with
an isolated fixed point over the field C see [Akh, Th.2].

2) The assumption that G is reductive is not essential in Proposition 4,
see [Po, Th.3].

Proposition 5. Let H be an observable subgroup of G.
(1) If either G/H is affinely closed or H is a quasi-parabolic subgroup

of G, then G/H admits only one normal affine embedding (up to G-isomor-
phisms);

(2) if G = K∗ and H is finite, then there exist only two normal affine
embeddings, namely K∗/H and K/H;

(3) in all other cases there exists an infinite sequence

X1
φ1

←− X2
φ2

←− X3
φ3

←− . . .

of pairwise nonisomorphic normal affine embeddings Xi of G/H and equiv-
ariant dominant morphisms φi.

Proof. (1) The statement is obvious for affinely closed spaces. If H is
quasi-parabolic, then consider the subalegra B inA = K[G/H] corresponding
to a normal affine embedding of G/H. We claim that AU = BU . Indeed,
AU ∼= K[x] is isomorphic to the polynomial algebra in one variable and BU
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is a graded integrally closed subalgebra. Hence BU = K[xd]. But QA = QB
implies QAU = QBU and d = 1.

Any element of A is contained in QB. On the other hand, the algebra A
is integral over GAU [Gr, Th.14.3] and GAU = GBU ⊆ B. But B is integrally
closed and finally A = B.

(2) is obvious.
(3) In this case K[G/H] contains a non-finitely generated subalgebra

of type A(X, Y ). One may suppose that X is normal. Then A(X, Y ) is an
integrally closed subalgebra in K[G/H]. Fix an element g ∈ I(Y ) and gener-
ators f1, . . . , fn of K[X]. Extend the sequence g0 = g, g1 = gf1, . . . , gn = gfn

to an (infinite) generating set g0, g1, . . . , gn, gn+1 . . . of A(X, Y ). Let Ak be
the integral closure of K[< Gg0, . . . , Ggn+k >] in A(X, Y ). The varieties
Xi = SpecAi are birationally isomorphic to X and G/H ↪→ Xi. Infinitely
many of Xi are pairwise nonisomorphic. Renumbering, one may suppose
that all Xi are pairwise nonisomorphic. The chain

A1 ⊂ A2 ⊂ A3 ⊂ . . .

corresponds to the desired chain

X1
φ1

←− X2
φ2

←− X3
φ3

←− . . . ♦

6. The canonical embedding. Let us recall that an observable sub-
group H of G is said to be a Grosshans subgroup if the algebra K[G/H] is
finitely generated. The famous Nagata counter-example to Hilbert’s four-
teenth problem provides an example of a unipotent subgroup in SL32, which
is not a Grosshans subgroup, see [Gr].

Definition 3. Let H be a Grosshans subgroup of G. Let us call
G/H ↪→ X = SpecK[G/H] the canonical embedding of G/H and denote
it as CE(G/H).

It is well-known that the codimension of the complement of the open orbit
in CE(G/H) is ≥ 2 and CE(G/H) is the only normal affine embedding of
G/H with this property [Gr, Th.4.2]. If H is reductive, then CE(G/H) is the
trivial embedding. For non-reductive subgroups CE(G/H) is an interesting
object canonically associated to the pair (G,H).

In the rest of this section, we shall assume that charK = 0. Fix some
notation. There exists a canonical decomposition K[G/H] = K⊕K[G/H]G,
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where the first term corresponds to the constant functions and K[G/H]G is
the sum of all nontrivial irreducible submodules in K[G/H].

Proposition 6. The following conditions are equivalent:
(1) CE(G/H) contains a G-fixed point;
(2) any affine embedding of G/H contains a G-fixed point;
(3) K[G/H]G is an ideal in K[G/H];
(4) H is not contained in a proper reductive subgroup of G.

Proof. (2) ⇒ (1) and (3) ⇒ (1) are obvious.
(1) ⇒ (2). If G/H ↪→ X, then K[X] ⊆ K[G/H] and the image of a G-

fixed point in CE(G/H) under the corresponding morphism CE(G/H)→ X
is a G-fixed point in X.

To prove (1) ⇒ (3) we note that K[G/H]G is the only candidate for a
maximal G-invariant ideal in K[G/H].

(1) ⇒ (4). Suppose that H ⊆ L ⊂ G, L is reductive. Then K[G/L] ⊆
K[G/H] and CE(G/H) → G/L. Hence G/L contains a G-fixed point, a
contradiction.

(4) ⇒ (1). Suppose that the closed G-orbit in CE(G/H) is isomorphic
to G/L. By the slice theorem [Lu1] H is contained in a subgroup conjugated
to L. ♦

Let G be a connected semisimple group and P ⊂ G be a parabolic sub-
group containing no simple component of G. Denote by UP the unipotent
radical of P .

Proposition 7. The homogeneous space G/UP satisfies conditions (1)-
(4) of Proposition 6.

Proof. It is known that UP is a Grosshans subgroup of G [Gr, Th.16.4].
We shall check that K[G/UP ]G is an ideal in K[G/UP ]. For this it is sufficient
to find a nonnegative grading on K[G/UP ] with K[G/UP ]G as the positive
part.

Let B = TU be a Borel subgroup in G with B ⊆ P and let P = LUP ,
where L is a Levi subgroup such that T ⊆ L and U = (U ∩ L)UP . Denote
by TL ⊂ T the center of L. Then TL = {t ∈ T | αi(t) = 1 ∀ i }, where {αi}
is the set of simple roots corresponding to P . Let π : X(T )→ X(TL) be the
restriction homomorphism of the groups of characters, and X+(T ) ⊂ X(T )
be the set of dominant weights (with respect to B). It is easy to check that
the restriction of π to X+(T ) is injective and π(X+(T )) generates a strictly

12



convex cone in X(TL) ⊗ Q. Fix a one-parameter subgroup θ : K∗ → TL so
that < θ, χ > is positive for any χ ∈ π(X+(T )).

Note that L acts on K[G/UP ] as (l ∗ f)(gUP ) := f(glUP ) and this action
commutes with the G-action. The L-module K[G/UP ]G contains no trivial
L-submodules because of K[G/UP ]L = K[G/P ] = K. On any nontrivial
irreducible L-submodule TL acts by multiplication by χ(t), t ∈ TL, for some
non-zero χ ∈ π(X+(T )). The restriction of the TL-action to θ(K∗) defines
the desired grading. ♦

Definition 4. Let H be a Grosshans subgroup of G. We say that a
reductive subgroup L is a reductive hull of H if L is a minimal (with respect
to inclusions) reductive subgroup of G containing H.

It follows from the proof of Proposition 6 that the closed orbit in CE(G/H)
is isomorphic to G/L. Therefore for any two reductive hulls L1 and L2 of H
there is an element g ∈ G such that L2 = g−1L1g. In fact, a reductive hull is
not unique.

Example 4. Let G = SLn, L = SOn, and H be a maximal unipotent
subgroup of L. It is clear that L is a reductive hull of H. One has H ⊂ U
for some maximal unipotent subgroup U in G. There exists a subgroup H1

such that H ⊂ H1 ⊆ U , dimH1 = dimH + 1 and H is a normal subgroup
of H1. Consider an element h1 ∈ H1 \H. Then h−1

1 Lh1 is another reductive
hull of H.

7. Problems. In this section we collect some problems that follow natu-
rally from the discussion above.

Problem 1. Suppose that charK > 0, a G-algebra A contains no proper
G-invariant ideals, and the group of equivariant automorphisms of A is finite.
Is it true that A is a G-algebra of type N ?

Problem 2. Let G be a linear algebraic group. Characterize all finitely
generated integral G-algebras A such that any invariant subalgebra in A is
finitely generated.

This class of algebras seems to be much wider than in the reductive case.

Proposition 8. Let G be a reductive group, S be a unipotent group,
H ⊂ G be a reductive subgroup with a finite index in NG(H), and F ⊂ S be
any closed subgroup. Then any G × S-invariant subalgebra in A = K[(G ×
S)/(H × F )] is finitely generated.
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Proof. Fix the notation: A1 = K[G/H], A2 = K[S/F ], B is a subalgebra
in A = A1 ⊗A2. It is clear that AS = A1 ⊗K = A1.

It is sufficient to prove that B contains no proper invariant ideals. (After
this we complete the proof following the proof of Lemma 1.)

Let I ⊂ B be an invariant ideal. By the Lie-Kolchin theorem, IS 6= 0.
Hence IS is a non-zero ideal in B ∩ A1. But any invariant subalgebra in A1

contains no proper invariant ideals. We have IS = B ∩ A1 and IS contains
constants, thus I = B. ♦

This proof shows that (G×S)/(H×F ) is an affinely closed homogeneous
space.

Problem 3. Characterize all affinely closed homogeneous spaces of a li-
near algebraic group G.

The last problem concerns canonical embeddings. Let us recall that the
modality of a G-variety X is the maximal number of parameters in a contin-
uous family of G-orbits on X, or, more formally,

modG(X) = maxY ⊆X tr.degK(Y )G,

where Y runs through all closed irreducible invariant subvarieties in X.

Problem 4. Let H be a Grosshans subgroup of a reductive group G. Find
the modality of CE(G/H).

One may suppose that a reductive hull of H is G. Indeed, if a reductive
hull of H is L, then, by the slice theorem, CE(G/H) = G ∗L CE(L/H) and
modG(CE(G/H)) = modL(CE(L/H)).

Example 5. Let G = SLn and H be the unipotent radical of the
maximal parabolic subgroup in G corresponding to the first (n − 2) simple
roots. It is clear that CE(G/H) ∼= Kn × . . . × Kn ((n − 1) copies) with
the diagonal G-action. This space is covered by finitely many locally closed
G-invariant subset Si1,...,ik, where Si1,...,ik is the set of (n× (n− 1))-matrices
of rank k with linearly independent columns i1 . . . , ik. An orbit in Si1,...,ik

depends on k(n − 1 − k) parameters, which are the coefficients of linear
expressions of the remaining (n − 1− k) columns by the columns i1, . . . , ik.
The maximal number of parameters is

modG(CE(G/H)) = s2 for n = 2s+ 1
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and
modG(CE(G/H)) = s2 − s for n = 2s.
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