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A. — We study the general properties of quantum stopping times on
Hilbert spaces equipped with a filtration. We define and investigate notions such as the
spaces of anterior events, the spaces of strictly anterior events, the property S < T for two
stopping times, predictable stopping times,... . When applied to the particular case of the
symmetric Fock space Φ over L2(Z +) (the natural space for quantum stochastic calculus)
we show an intrinsic quasi-left continuity property shared by all the probabilistic interpre-
tations of Φ. We finally apply these definitions to the case of a non commutative stochastic
base ([B\ ,Φ, ([ t )t ] 0, (Mt )t ] 0) where [B\ is a von Neumann algebra, generated by an
increasing family of sub-von Neumann algebras ([ t )t ] 0, Φ is a normal, faithfull state and
(Mt )t ] 0 is a family of conditional expectations on ([ t )t ] 0. We show, in this context, that

the fermionic Fock space over L2(Z +), the quasi-free boson and fermion spaces are also
quasi-left continuous.

I. Introduction

The fundamental importance of stopping times in the classical theory of stochastic

processes does not need to be demonstrated anymore. That is a reasonwhy the difficulties

to define a serious and efficient theory of stopping times in the framework of quantum

processes can be felt as an obstacle to important developments.

The theory of quantumprocesses and quantumnoises has had an impressive devel-

opment since the last 25 years and has foundmany deep applications in quantum physics.

For example, the quantum statistical description of the dilation of the dynamic of a quan-

tum open system, with the help of quantum noises, is one of themost remarkable applica-

tion of quantum probability theory ([H-P]).

Keywords : quantum stopping times, Fock space, quantum stochastic calculus, non commutative stochastic
base.
Math. classification : 46L53, 60G40, 81S25.
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The theory of quantum statistical mechanics is now having a very quick develop-

ment and follows in parallel the tracks of the older (classical) statistical mechanics theory:

Gibbs states become K.M.S. states, generators of Feller processes become Lindblad gener-

ators of quantum dynamical semigroups,. . .. The important open problems in quantum

statistical mechanics are those of return to equilibrium, recurrence, existence of invariant

states, spectral gaps,. . .. It is well-known that the most remarkable answers to the corre-

sponding problems in the classical theorywere obtainedwith the help ofMarkov processes

and stopping time theory.

But why are stopping times so difficult to handle in quantum theory? The first ob-

stacle is physical and philosophical. It is very delicate (and sometime taboo) to associate

an observable with the time when something happens in a quantum system. The main

reason is that in order to observe such a time one should be continuously monitoring the

system. This is of course very delicate in quantummechanics as the system is definitely af-

fected by the observation. The brutal continuous observation of a quantum system leads

to surprising consequences such as freezing the system in the initial state (quantum Zeno

effect). But on the other hand it is also true that the theory of continuous observation of

quantum systems has made impressive progresses recently, both theoretically and experi-

mentally (non-demolition measurement).

It is even more remarkable that, forgetting the physical constraints, it is very easy

to mathematically associate an observable to the time when some even occurs in a quan-

tum system. For example, when studying the quantum stochastic differential equations

describing the dynamics of some quantum open systems (such as in quantum optics for

example), one can exhibit abelian subalgebras of observables which are invariant under

the dynamic. This thus gives rise to commutative processes which can be realised (diag-

onalised) on some probability space. As a consequence, any classical stopping time asso-

ciated to this process (exit times, hitting times,. . .) gives rise to a quantum stopping time

when pulled back in the general setup.

The theory of quantum stopping times has been initiated by R. L. Hudson ([Hud])

in the framework of Fock space. The basic idea is to say that a classical stopping time is

a positive random variable (with value ��� admitted) which satisfies some adaptedness

property with respect to a given filtration of σ-fields. Thus a quantum stopping time is a

quantum randomvariable (a self-adjoint operator on a spectralmeasure)which is positive,

which admits the value ��� and which satisfies some adaptedness property on the Fock

space. This theory has been developed by several authors in the same framework: [App],

[P-S], [A-S], [Att], but also in the framework of filtered families of σ-finite and finite von

Neumann algebras: [BN1], [BN2], [B-L],. . ..

In this article, a stopping time is an increasing family of projections on a filtered
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Hilbert space, adapted to an increasing family of algebras. This approach thus covers all

the preceding cases.

In the five first parts we study stopping times onfilteredHilbert spaces ��� , ��� t � t � 0 � ,
without really mentioning algebras and we define for a stopping time T , the spaces � T ,
� T � , the property S < T for two stopping times and the notion of previsible stopping

time.

In the last two parts, we apply the preceding definitions and results to the cases

of the symmetric Fock space, the antisymmetric Fock space over L2 ���	� � and the quasi-
free representations of the CCR and CAR. We prove that in all these cases the quasi-left

continuity property is verified.

II. Quantum stopping times

A filteredHilbert space is a complex separable Hilbert space � together with a fam-
ily of orthogonal projections � Et � t 
���
 with range ��� t � t 
���
 satisfying

i) � 0 ��� and s � lim
t � ���

Et � I (i.e. �
t 
���

� t � � ).

ii) EsEt � EtEs � Es for all s � t (i.e. � s � � t for s � t ).
iii) s � lim

u � t
u>t

Eu � Et (i.e. �
u>t

� u � � t ).

We write � t ��� �
s<t

� s and Et � is the orthogonal projection onto � t � , t !"�	� (with the
convention � 0 � � � 0).

An operator X on � is said to be adapted at time t if
i) Eu � Dom X � � Dom X , for all u # t ,

and

ii) EuX � XEu on Dom T , for all u # t .
A stopping time (or quantum stopping time)T on a filteredHilbert space ��� , � Et � t 
�� 
 �

is a (right-continuous) spectral measure on �$�&%&' ���)( with values in the set of orthog-
onal projectors on � , such that, for all t !��*� , the operator T �,+ 0, t - � is adapted at time
t .

In the following we adopt probabilistic-like notations: for every Borel subset E �
�	�&%"' ���)( we write 11T 
 E instead of T � E � . In the same way 11T . t means T �/+ 0, t - � , 11T 0 t
means T �1' t ( � , . . ..
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Note that in particular

11T . t � s � lim
ε � 0
ε>0

11T . t � ε ,

and

11T<t � s � lim
ε � 0
ε>0

11T . t � ε .

In particular, 11T<t is also adapted at time t , for all t ! �*� .
Let us see briefly how this definition connects to the classical one. If T is a clas-

sical stopping time on a filtered probability space � Ω, � , � � t � t 
�� 
 , P � , then taking � �
L2 � Ω, � , P � , � t � L2 � Ω, � t , P � (if we assume that the filtration verifies the “usual con-
ditions”) and Et ��� +�� / � t - makes up a filtered Hilbert space. The operators � 11T � t of
multiplication by 11 � T . t 	 on � then define a quantum stopping time on � .

Conversely, ifT is a quantum stopping time on a filteredHilbert space ��� , � Et � t 
�� 
 �
then the operators 11T . t , t ! � � %&' ���)( , are two by two commuting. Thus they simul-
taneously diagonalise on a probability space � Ω, � , P � to give rise to operators of multi-
plication by indicator functions of the form 11 � τ . t 	 for some random variable τ valued in

�	� % ' ����( . Taking � t to be the σ-field generated by the image of � t into L2 � Ω, � , P � ,
make τ being a classical stopping time.

Thus when considering one quantum stopping time (on a commuting family of

quantum stopping times) leads to a theory which is exactly equivalent to the classical

one. Of course the difference appears when considering several non-commuting stop-

ping times on � . Each of them can be individually interpreted classically, but not together.
They come from different probabilistic context and they are put together in the same con-

text, exactly like observables in quantum mechanics.

A point t ! �	� is a continuity point for a quantum stopping time T if 11T 0 t � 0.
Note that as � is separable, then any stopping time T admits an at most countable set of
points which are not of continuity for T . Also note that if t is a continuity point for T then

the map s 
� 11T . s is strongly continuous at t .
A stopping time T is discrete if there exists a finite set E � ' 0 � t1 < t2 < ���
� <

tn � ����( in �	� % ' ����( such that 11T 
 E � I .
A sequence of stopping times � Tn � n 
�� is said to converge to a stopping time T if

s � lim
n � ���

11Tn . t � 11T . t for all continuity point t of T .
A stopping time T is finite if 11T 0 ��� � 0.
Two stopping times S, T satisfy S � T if 11S . t # 11T � t for all t !&�*� (in the sense

of comparison of projectors). In particular

11T . t � 11S . t11T . t � 11T . t11S . t
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for all t ! �	� .
Let S and T be two stopping times on � . We define the stopping times S � T and

S � T on � by, for all t ! �	� ,
11S � T . t � orthogonal projection onto Ran 11S . t � Ran 11T . t
11S � T . t � orthogonal projection onto Ran 11S . t � Ran 11T . t .

P 1. — For any two stopping times S, T on � we have
i) S � T � S and S � T � T .
ii) S � T # S and S � T # T .
iii) IfU is any stopping time satisfyingU � S andU � T then one hasU � S � T .
iv) IfU is any stopping time satisfyingU # S andU # T then one hasU # S � T .

Proof.

i) We have Ran 11S � T . t � Ran 11S . t % Ran 11T . t . One concludes easily. The proof
of ii) is identical.

iii) IfU � S andU � T then Ran 11U . t � Ran 11S . t % Ran 11T . t . Thus Ran 11U . t �
Ran 11S . t � Ran 11T . t � Ran 11S � T . t . One concludes easily. The proof of iv) is identical.

Note that the stopping time T given by

11T . s �
�
0 for s < t

I for s # t
is noting but the deterministic time T � t I , denoted t simply.

Finally, for a stopping time T , by a sequence of refining T -partitions of �$� wemean
a sequence � En � n 
�� of finite subsets En � ' 0 � tn0 < tn1 < ���
� < tnk < ����( of �	� such
that:

i) all the tnj are continuity points for T , n !�� , j # 1;
ii) En � En � 1 for all n !�� ;
iii) the diameter δn � sup ' tni � 1 � t

n
i ; i !	� ( of En tends to 0 when n tends to ��� ;

iv) sup En tends to ��� as n tends to ��� .

Note that, for any stopping time T such a sequence always exists.

P 2. — For every stopping time T there exists a sequence � Tn � n 
�� of
discrete stopping times such that T0 # T1 # ���
� # T and � Tn � n 
�� converges to T .
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Proof. — Let E � ' 0 � t0 < t1 < t2 < �
��� < tn < ����( be a partition of �	� .
Define the spectral measure TE by�

TE � ' ti ( �$� T �/+ ti � 1, ti + � for i � 1, . . . , n,
TE � ' ���)( �	� T �/+ tn , ��� - � .

Then TE is clearly a quantum stopping time.

Now let � En � n 
�� be a sequence of refining T -partitions of �*� and put Tn � TEn for
all n ! � . Let us first check that Tn # Tn � 1 # T for all n ! � . For all t ! � � , let t

� n 	
i0

be

given by t
� n 	
i0 � max ' ti ! En ; ti � t ( . As En � En � 1 we have t

� n 	
i0
� t � n � 1 	i0

� t and
11Tn . t � 11T 
�� 0,t � n �

i0
� ,

11Tn 
 1 . t � 11T 
�� 0,t � n 
 1 �
i0

� .
This proves Tn # Tn � 1 # T .

Let us now prove the convergence. Let f ! � and t ! �*� . We have�
11Tn . t f � 11T . t f

�
2 � �

11
T<t � n �

i0

f � 11T . t f � 2
� �

11
T 
�� t � n �

i0
,t � f

�
2 ,

which converges to
�
11T 0 t f � 2 when n tends to ��� . Thus it converges to 0 if t is a conti-

nuity point for T .

III. The space � T

Let ��� , ��� t � t 
���
 � be a filtered Hilbert space and T be a stopping time on � . The
space � t classically interprets as the space of events occurring before time t (see the dis-
cussion in section II about the connections with classical theory). Thus mimicking the

classical definition of
�
T , the σ-field of events anterior to T , that is

�
T � ' A ! � ; � T � t � � A ! � t for all t ! � � ( ,

we define in our quantum context: the space of events anterior to a stopping time T is the

space

� T � ' f ! � ; 11T . t f ! � t for all t ! � � ( .
We denote by ET the orthogonal projection onto � T which is clearly a closed subspace of
� .

P 3.

6



1) If S � T then � S � � T .
2) If � Tn � n 
�� is a decreasing sequence of stopping times converging to T then

� T ���
n 
��
� Tn

and � ETn � n 
�� decreases and converges to ET .
3) � T � ' f ! � ; 11T<t f ! � t for all t ! � � ( .

Proof.

1) If f ! � S then 11T . t f � 11T . t11S . t f . By hypothesis 11S . t f belongs to � t and
thus so does 11T . t11S . t f (by adaptedness). Thus f ! � T .

2) We have T � Tn and thus � T � �
n 
�� � Tn . Now if f belongs to �n 
�� � Tn and t

is a continuity point for T , then 11T . t f � lim
n � �

11Tn . t f and thus 11T . t f belongs to � t .
Now, if t is not a continuity point for T we can find a sequence � tn � n 
�� of continuity points
for T which decreases and converges to t . Thus 11T . tn f belongs to � tn and 11T . t f �
lim
n � �

11T . tn f belongs to �
n 
�� � tn � � t .

3) As 11T<t � 11T<t11T . t and 11T<t is adapted at time t , we clearly have � T �
' f ! � ; 11T<t f ! � t for all t ! �	� ( . Now, if 11T<t f ! � t for all t , then 11T . t f �
lim

n � ���
11T<t � 1n f which belongs to �n 
�� � t � 1n � � t .

T 4. — Let T be a discrete stopping time with
n�
i 0 1 11T 0 ti � I . We then have

ET �
n�
i 0 1

11T 0 tiEti �
n�
i 0 1

Eti11T 0 ti ,

with the convention E � � I .

Proof. — If T is a discrete stopping time with values ' 0 � t1 < ���
� < tn � ���)(
then the operator

P �
n�
i 0 1

11T 0 tiEti (with E � � I )

is easily seen to be an orthogonal projector. If f belongs to Ran P , if t ! �$� then

11T . t f �
n�
i � 1
ti � t

11T 0 tiEti f � Et
n�
i � 1
ti � t

11T 0 tiEti f

� Et11T . t f
7



Thus f belongs to � T . That is, Ran P � � T . Now if f belongs to � T then

P f �
n�
i 0 1

11T 0 tiEti f �
n�
i 0 1

Eti11T 0 ti f

�
n�
i 0 1

11T 0 ti f (for 11T 0 ti f ! � ti by hypothesis)

� f .
Thus Ran P � � T and P � ET .

T 5. — Let T be a quantum stopping time on � . Let � Tn � n 
�� be a se-
quence of discrete stopping times converging to T , such as in Proposition 2, then the se-

quence � ETn � n 
�� strongly converges to ET . In other words

ET � s � lim
n � ���

Nn�
i 0 1

11T 
�� ti � 1,ti � Eti � 11T � tNn
where the diameter of the partition ' 0 � t0 < t1 < �
��� < tNn ( tends to 0 and tNn tends to
��� .

Proof. — This is now an easy consequence of Proposition 2, Proposition 3, part 2)

and Theorem 4.
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P 6.

1) If S and T are two discrete stopping times then

ES � T � ES � ET .
2) If S and T are two stopping times then

ES � T � ES � ET .

Proof.

1) We always have � S � � T � � S � T . Now let S and T be discrete and � be the
union of their support. Suppose

� � �*� � ' 0 � t1 < �
��� < tN ( . Let f ! ���S � ���T . We
have ES f � 0 but

ES f � 11S 0 ��� f �
N�
i 0 0

11S 0 tiEti f

� 11S 0 ��� f � 11S . tN EtN �
N � 1�
i 0 0

11S . ti � Eti 
 1 � Eti � f

� f �
N�
i 0 0

11S . ti � Eti 
 1 � Eti � f
with the convention tN � 1 � ��� .

In the same way

ES � T f � f �
N�
i 0 0

11S � T . ti � Eti 
 1 � Eti � f .
But

11S � T . ti � s � lim
n � ���

1

n

n � 1�
k 0 0

�
11S . ti11T . ti � k

thus

ES � T f � f � lim
n � ���

1

n

n � 1�
k 0 0

N�
i 0 0
�
11S . ti 11T . ti � k � Eti 
 1 � Eti � f .

Note that
N�
i 0 0

11S . ti � Eti 
 1 � Eti �
N�
i 0 0

11T . tj � Etj 
 1 � Etj �$�
N�
i 0 0

11S . ti11T . ti � Eti 
 1 � Eti � .
In the same way

N�
i 0 0
�
11S . ti 11T . ti � k � Eti 
 1 � Eti �$� � N�

i 0 0
11S . ti � Eti 
 1 � Eti �

N�
j 0 0

11T . tj � Etj 
 1 � Etj ��� k
�
	 � I � ES � � I � ET ��� k .
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This gives

ES � T f � f � lim
n � ���

1

n

n � 1�
k 0 0

	 � I � ES � � I � ET � � k f
� f �)� E �S � E �T � f
� 0 .

This proves 1).

2)We always have � S � � T � � S � T . Now let f belong to � S � � T . For all t ! �	�
we have

11S � T . t f � f � 11S � T>t f

� f � lim
n � ���

1

n

n � 1�
k 0 0
� 11S>t11T>t � k f .

But

� 11S>t 11T>t � k � 	 � I � 11S . t � � I � 11T . t � � k
� I � Lt

where Lt satisfies Lt f ! � t .
Thus

1

n

n � 1�
k 0 0
� 11S>t11T>t � k f � f � g

with g ! � t . This shows 11S � T . t f ! � t and proves 1).

IV. The space � T �

As our definition of � T in our setup seems to fit very well, we pursue the analogy
with classical probability theory and define the space of event strictly anterior to a stopping

time T as the space � T � which is the closure of the subspace of � generated by � 0 and
' 11T>t f ; f ! � t , t ! �	� ( .

P 7. — For every stopping time T we have � T � � � T .

Proof. — First of all, if f !&� 0 then 11T . t f � 11T . tE0 f � 11T . tEt f � Et11T . t f
and thus 11T . t f belongs to � t , that is � 0 � � T .
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Now if f ! � t let us consider g � 11T>t f . We then have

11T . sg �
�
0 if s � t
11T 
 � t ,s � f if s > t .

In particular 11T . sg belongs to � s for all s. Thus g belongs to � T .
We have proved that all the generators of � T � are elements of � T , which is closed.

Thus � T � � � T .

P 8. — If the filtration is continuous (i.e. � t � � � t for all t ) then
� T � � � T for every discrete stopping time T .

Proof. — Let g ! ��� T � � � . We thus have, for all t ! �*� , all f ! � ,�
11T>tEt f , g � � 0, i.e. � f , 11T>tEt g � � 0 .

This means 11T>tEtg � 0 for all t ! �	� .
Now suppose that T is discrete with

n�
i 0 1 11T 0 ti � I . If t < t1 then 11T>t � I and

Et g � 0 thus by the continuity hypothesis Et1g � 0.

If ti � t < ti � 1 then Etg � 11T . tEt g �
i�
j 0 0 11T 0 tjEtg . Now let t tend to ti � 1, this

gives Eti 
 1g �
i�
j 0 0 11T 0 tjEti 
 1g . Thus in particular 11T 0 ti 
 1Eti 
 1g � 0.

All together we have proved that ET g � �
i

11T 0 tiEti g � 0 and thus g !&��� T � � .
P 9. — If S and T are two stopping times such that S � T , then � S � �

� T � .

Proof. — The space � S � is generated by � 0 and the 11S>tEt f , f ! � , t ! �	� . But
11S>t � 11S>t11T>t and thus 11S>tEt f � 11S>t11T>tEt f � 11T>tEt11S>t f ! � T � . This proves
� S � � � T � .

P 10. — If � Tn � n 
�� is an increasing sequence of stopping times con-
verging to T then

� T � ���
n

� Tn � .

Proof. — By Proposition 9, each space � Tn � is a subspace of � T � , thus
� n � Tn � � � T � . Conversely, if f belongs to � and if t is a continuity point for T ,
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then 11T>tEt f � lim
n � ���

11Tn>tEt f which belongs to � n � Tn � . If t is not a continuity point
for T , then choose a decreasing sequence � tn � n 
�� of continuity points for T , converging to
t . We conclude by the identity

11T>tEt f � lim
n � ���

11T>tnEt f . �

Let T be a finite stopping time (i.e. 11T 0 ��� � 0). Then the spectral integral
�
��
 t11T 
 dt defines a self-adjoint operator on � , which we denote by T again.

P 11. — If T is any finite stopping time then the operator T maps

Dom T � � T to � T .
If moreover T is bounded, it maps � T � to � T � .

Proof. — If f belongs to Dom T � � T then
T f � lim

�
i

ti11T 
�� ti ,ti 
 1 � f
(where the limits is taken as usual under a sequence of partitions whose diameter tends

to 0) and thus, as 11T . s � �
i

ti11T 
�� ti ,ti 
 1 � f � belongs to � s , we have 11T . sT f !&� s and thus
T f ! � T . This proves the first part.

If T is bounded, we have

T11T>tEt f � lim
�
i

ti11T 
�� ti ,ti 
 1 � 11T>tEt f

where each term in the sum is an element of � T � . Thus T11T>tEt f belongs to � T � . This
proves T � T � � � T � .

V. Strictly smaller stopping times

We wish to give a correct meaning to the relation S < T for two quantum stopping

times, S and T on � . If S is a discrete stopping time with
n�
i 0 1 11S 0 si � I and if T is any

stopping time, it is then natural to say that S < T if and only if

11S 0 si � 11T>si11S 0 si for all i .

Note that this in particular implies S � T and we have S < T if and only if

n�
i 0 1

11T>si 11S 0 si � I

12



or else if and only if
n�
i 0 1

11S 0 si11T>si � I .

This motivates the general definition.

Two stopping times S and T on � are said to satisfy S < T if and only if one has that

the expression
Nn�
i 0 1

11T>ti 11S 
�� ti � 1,ti �
weakly converges to I when ' ti , i � 1, . . . , Nn ( follows a sequence of refining S-partitions
of �	� .

Note that S < T implies S � T for if S < T then

11T . t
Nn�
i 0 1

11T>ti 11S 
�� ti � 1 ,ti � 11S . t � 1 �
converges weakly to 11T . t11S . t , but (1) also equals

11T . t
Nn�
i 0 1

11T>ti 11S 
�� ti � 1,ti �
which weakly converges to 11T . t .

Note that if S and T commute, that is if for all s and t in � � , 11S . s11T . t � 11T . t11S . s ,
then for all sequence of refining partitions of �*� , Rn �

Nn�
i 0 1 11T>ti 11S 
�� ti � 1,ti � converges

strongly. In fact, in this case, � Rn � n � 0 is an increasing sequence of projections.

P 12. — Let S and T be two stopping times. Then the following asser-

tions are equivalent.

i) S < T .

ii)
Nn�
i 0 1 11S 
�� ti � 1,ti � 11T>ti converges weakly to I .

iii)
Nn�
i 0 1 11T . ti11S 
�� ti � 1,ti � converges weakly to 0 and 11S 0 ��� � 0.

iv)
Nn�
i 0 1 11S 
�� ti � 1,ti � 11T . ti converges weakly to 0 and 11S 0 ��� � 0.

Proof. — Assumption i) implies that

Nn�
i 0 1

11S 
�� ti 
 1,ti � �
Nn�
i 0 1

11T . ti11S 
�� ti � 1,ti � converges weakly to I .

13



That is
Nn�
i 0 1

11T . ti11S 
�� ti � 1,ti � converges weakly to � 11S 0 ���
thus

Nn�
i 0 1

11T . ti11S 
�� ti � 1,ti � 11S 0 ��� converges weakly to � 11S 0 ���
thus 11S 0 ��� � 0. All the others parts of the proof are obvious.

P 13. — If S and T are two stopping times on � such that S < T then

� S � � T � .

Proof. — For all f ! � , the quantity
Nn�
i 0 1

11T>ti 11S 
�� ti � 1,ti � Eti f
belongs to � T � , but it is also equal to

Nn�
i 0 1

11T>ti11S 
�� ti � 1,ti � ESE f ,
where E � ' ti , i � 1, . . . , Nn ( , (with the notation SE of the proof of Proposition 2) which
converges weakly to ES f . Thus ES f belongs to � T � .

P 14.

i) If � Tn � n 
�� is an increasing sequence of stopping times converging to T and with
Tn < T for all n, then � T �"� � n 
�� � Tn .

ii) If � Tn � n 
�� is a decreasing sequence of stopping times converging to T and with
Tn > T for all n, then � T � �

n 
�� � Tn � .

Proof.

i) We have � Tn � � T � for all n ! � , thus � n 
�� � Tn � � T � . But by Proposition
10 we have � T � � � n � Tn � � � � Tn .

ii) We have � T � � Tn � for all n ! � , thus � T � �
n 
�� � Tn � . But �n 
�� � Tn �

is included in �
n

� Tn which is equal to � T by Proposition 3, part. 2). This proves ii).
Let us study a rather pathological example. Consider a filtered Hilbert spaces

��� , � Et � t 
���
 � . Then the spectral measure � Et � t 
���
 itself defines a quantum stopping

time T by putting

11T . t � Et , t ! � � .

14



Let us then compute � T and � T � . We have
� T ��� f ! � ; 11T . t f ! � t for all t �
��� f ! � ; Et f ! � t for all t �

and thus � T � � .
We have 11T>tEt f � � I � Et � Et f � 0 for all t ! �	� . Thus � T �"� � 0.
Now let Tn be defined by 11Tn . t � Et � 1/n , t ! �	� . Then Tn is a stopping time again

and the sequence � Tn � n 
�� is increasing and converging to T . We obviously have Tn < T

for all n. Thus � Tn � � Tn � � � 0.
We end this section with two definitions, which follow from the classical corre-

sponding definitions.

A stopping time T is previsible if there exists an increasing sequence of stopping

times � Tn � n 
�� which converges to T and such that Tn < T for all n ! � .
A filtered Hilbert space ��� , � Et � t 
�� 
 � is quasi-left continuous if � T � � T � for

every previsible stopping time T .

The pathological example above shows that a filtered Hilbert space is never quasi-

left continuous. We actually have to enlarge our definitions.

Let ��� , � Et � t 
�� 
 � be a filtered Hilbert space. Let � be a closed subalgebra of � ��� �
and ��� t � t 
�� 
 an increasing family of closed subalgebras of � such that �

t 
�� � t generated� , and which satisfies
XEu � EuX

for all X !�� t , all u # t .
We define a ��� t � t 
���
 -stopping time T to be a spectral measure on � � % ' ����( ,

valued in � and such that 11T . t belongs to � t for all t . Then note that all what has been
proved before remains valid for any ��� t � t 
���
 -stopping times.

Examples.

1) If � t � ' X !	� ��� � ; 
 u # t , EuX � XEu ( then we recover the case studied in
the previous sections.

2) If � is a von Neumann algebra acting on an Hilbert space � and ��� t � t 
�� 
 is an
increasing family of von Neumann subalgebras which generates � . Assume there exists a
unit vector Ω ! � which is cyclic and separating for � and a family � Mt � t 
���
 of normal
ω-invariant conditional expectationsMt : � ��� t , whereω � � � � � Ω, �Ω � . We denote by
� t the closure of � tΩ in � and by Et the orthogonal projection onto � t . We then have

Et � XΩ � � Mt � X � Ω

15



and thus for all u # t , all X ! � t , we have EuX � XEu (indeed EuXAΩ � Mu � XA � Ω �
XMu � A � Ω � XEuAΩ).

Thus our definitions covers the case of stopping times in von Neumann algebras

such as studied in [BW1] or [BSW].

3) Let Φ be the symmetric Fock space on L2 ���	� ; �*� : Φ � Γs � L2 ���	� ; �*�,� . If we
define Φt � � Γs � L2 �/+ 0, t - ; �*�/� and Φ � t � Γs � L2 �/+ t , ��� + ; �$�/� , we then have the well-known
“continuous tensor product” property of Fock spaces:

Φ � Φt � � Φ � t
and we can consider Φt � as a subspace of Φ.

In the framework of quantum stochastic calculus ([H-P]) a bounded operator H on

Φ is said to be adapted at time t if it is of the formH � K �
I for some K : Φt � � Φt � .

By considering the algebras � t of t-adapted bounded operators, t ! �*� , our set up
covers all the theory of quantum stopping times on the Fock space Φ.

We extend our definitions into:�
A ��� t � t 
�� 
 -stopping time T is previsible if there exists a sequence � Tn � n 
�� of

��� t � t 
���
 -stopping times such that � Tn � n 
�� converges to T and Tn < T for all n !	� .�
A filteredHilbert space ��� , � Et � t 
�� 
 � together with a family ��� t � t 
�� 
 is quasi-left

continous if for all previsible ��� t � t 
�� 
 -stopping time T we have � T �"� � T .

VI. The Fock space case

We here just recall few facts about the symmetric Fock space. Details can be found

in [Att] or [Mey].

The Fock spaceΦ is the symmetric Fock space over L2 � � � ; �	� : Φ � Γs � L2 ���*� ; �$�,� .
This space can be advantageously understood as the space L2 ��� � where � is the set of fi-

nite subsets of � � equipped with the Guichardet symmetric measure. That is, an element
f of Φ � L2 ��� � is a function f : � � � such that

�
f
�
2 �

���	�
f � σ �

�
2 dσ

�
�
f ��
 � � 2 � ��

n 0 1

�
0<s1< �
�
� <sn

�
f � ' s1, . . . , sn ( �

�
2ds1 ���
� dsn < � .

We then have the following properties:

16



i) If wewriteΦt � (resp. Φ � t ) for the subspace ofΦmade of those f such that f � σ � � 0
unless σ � + 0, t - (resp. σ � + t , ��� + ), then the mapping

Φt � � Φ � t � � Φ

f
�
g 
 � � h ,

with h � σ � � f � σ � + 0, t - � g � σ � + t , ��� + � , extends to a unitary operator. We thus identify
Φ to Φt � � Φ � t for all t ! �	� .

ii) For all f ! Φ, if we defineDt f by

+Dt f - � σ �$� f � σ % ' t ( � 11σ � � 0,t �
we then have that Dt f belongs to Φ for a.a.t and

�
f
�
2 �

�
f ��
 � � 2 � � �

0

�
Dt f

�
2 dt .

iii) If � gt � t 
���
 is a family of elements of Φ such that
a) gt ! Φt � for all t
b) t 
� gt is measurable

c)
� �
0

�
gt
�
2 dt < �

then � gt � t 
���
 is said to be Ito-integrable. In this case we write� �
0

gt dχt

for the element h of Φ given by

h � σ � �
�
0 if σ � 

gtn � ' t1, . . . , tn � 1 ( � if σ � ' t1 < t2 < ���
� < tn ( .

This element h of Φ is called the Ito integral of � gt � t 
���
 and we have
�
h
�
2 �

� �
0

�
gt
�
2 dt .

If we denote by 11 the vacuum of Φ, that is the element of Φ given by

11 � σ � �
�
1 if σ � 

0 otherwise,

and by Et the orthogonal projection from Φ onto Φt � , t ! �	����' 0 ( , we then easily have
the following theorem, cf. [Att] for details.

T 15. — For every f ! Φ, the family � Dt f � t 
�� 
 is Ito integrable and we
have

f � f ��
 � 11 � � �
0

Dt f dχt . � 2 �

17



For all t ! �	� � ' 0 ( we have
Et f � f � 
 � 11 � � t

0

Ds f dχs � 3 �
(in the sense

� �
0
11 � 0,t � � s � Ds f dχs).

We have the isometry formula

�
f
�
2 �

�
f ��
 � � 2 � � �

0

�
Ds f

�
2 ds . � 4 �

We put � to be the algebra � � Φ � of bounded operators on Φ and, for all t ! �$� , � t
is the algebra of t-adapted bounded operators on Φ in the sense of Hudson-Parthasarathy,

that is the algebra of bounded operatorsH on Φ of the form

H � k �
I

on Φt � � Φ � t , for some bounded operator k on Φt � . Note that, for all t !"�	� , all u # t and
all H ! � t we have EuH � HEu .

Clearly, � Φ, � Et � t 
�� 
 � is a filteredHilbert space and fromnowonwedefine stopping
times on Φ as being affiliated to the family ��� t � t 
���
 .

In particular � Et � t 
�� 
 is not a stopping time on Φ.

The following theorem is proved in [A-S], Proposition 6.

T 16. — Let T be a stopping time on Φ. Then for all f ! Φwe have

ET f � f � 
 � 11 � � �
0

11T>sDs f dχs .

C 17. — Let � Tn � n 
�� be any sequence of stopping times onΦ converging

to T . Then � ETn � n 
�� converges strongly to ET .

Proof. — Indeed, we have by Theorem 16 and Theorem 15 (4),

�
ET f � ETn f

�
2 �

� �
0

� � 11T>s � 11Tn>s � Ds f � 2 ds
which converges to 0.

P 18. — Let S and T be any two stopping times on Φ. We then have

ET � S � ET � ES .

Proof. — We know that ET � ES � ET � S . Let f ! � ΦT � ΦS � � � Φ �T � Φ �S . We
have ET f � ES f � 0 and thus for a.a. s ! �	�

11T>sDs f � 11S>sDs f � 0
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and f ��
 �$� 0.
As a consequence, Ds f belongs to Ran 11T . s � Ran 11S . s for a.a. s !&�	� , that is to

Ran 11T � S . s . This says that 11T � S>sDs f � 0 for a.a. s ! �	� and finally ES � T f � 0.
The Fock space Φ admits several probabilistic interpretations (cf. [Att] or [Mey]) in

terms of the Brownian motion, the compensated Poisson process or the Azema martin-

gales. All these classical martingales have in common that their canonical space and filtra-

tion is quasi-left continuous.

The theorem to come proves that this property is actually intrinsic to the Fock space

structure, and does not depend on any classical probabilistic interpretation of it.

T 19. — The filtered Fock space � Φ, � Et � t 
���
 , ��� t � t 
���
 � is quasi-left con-
tinuous.

Proof. — Let T be a previsible stopping time on Φ and � Tn � n 
�� an increasing se-
quence of stopping times converging to T with Tn < T for all n !	� .

By Proposition 14 we know that ΦT � � � n 
�� ΦTn . But if f ! ΦT we have f �
ET f � lim

n � ���
ETn f (by Corollary 17) and thus f ! � n 
�� ΦTn . This proves that ΦT �

� n 
�� ΦTn . Thus ΦT � � ΦT .

We are now going to discuss some interesting examples of stopping times on Φ:

1) Projection on chaoses. — For every n ! � , we denote by Cn the space of f ! Φ

such that f � σ �$� 0 unless #σ � n. It is a closed subspace of Φ and we have
Φ �

�

n 
��
Cn .

The space Cn is called the n-th chaos of Φ. We denote by Qn the orthogonal projection

from Φ onto
n�
i 0 0Ci , that is

+Qn f - � σ �$� f � σ � 11#σ . n
and byQn,t the operator

+Qn,t , f - � σ �$� f � σ � 11# � σ � � 0,t � 	�. n .
The operator Qn,t is t-adapted and equal to

Qn � Φt �
�
I � Φ � t .

It is an orthogonal projection also and Qn,t � Qn,s if s � t . We define a stopping time Tn
by putting �

11Tn>t � Qn,t
11Tn 0 ��� � Qn .
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We clearly have Tn � Tn � 1 for all n !	� . Note that for all s, t ! �*� we have
11Tn . s11Tn 
 1 . t � 11Tn 
 1 . t11Tn . s .

We also have

ETn f � f ��
 � 11 � � �
0

11Tn>tDt f dχt

� f ��
 � 11 � � �
0

QnDt f dχt

� f ��
 � 11 � Qn � 1 � �
0

Dt f dχt

� Qn � 1 f .

Thus ΦTn �
n � 1�
i 0 0 Ci . But note that 11Tn>tEt f � QnEt f and thus ΦTn �"�

n�
i 0 0Ci .

In particular the Tn ’s are not previsible.

2) Jumping times of the Poisson process. — For this example only we refer to

quantum stochastic integration on Φ (cf. [Att] or [Mey] for details) and we consider the

reader very familiar with it.

Let � a �t � t 
�� 
 , � a �t � t 
�� 
 and � a0t � t 
�� 
 be the usual creation, annihilation and con-
servation processes on Φ. Let Nt � a �t � a �t � a0t � t I be the Poisson process on Φ. We

define a family of stopping times � Tn � n 
�� by�
T0 � 0
11Tn>t � I �

� t

0
� 11Tn>s � 11Tn � 1>s � dNs , n # 1 .

Indeed, straightforward applications of the quantum Ito formula show that the fam-

ily � 11Tn>t � t 
���
 is a decreasing family of projectors, adapted at time t . Thus they define a
stopping time Tn .

More straightforward applications of the quantum Ito formula show that, for all

s, t ! �	� , all n,m ! �
11Tn . s11Tm . t � 11Tm . t11Tn . s ,

and that Tn � Tm for n � m.
One can even bemore precise.

P 20. — For all t ! �	� , the self-adjoint operatorNt admits a spectrum
equal to � and the spectral projection onto the eigenspace associated to n ! � is

11Tn . t11Tn 
 1>t .
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Proof. — Consider, for t ! �*� , n !	��� , the operators
X nt � 11Tn . t11Tn 
 1>t .

The family � X nt � n 
�� � is family of two by two orthogonal projections whose sum is equal

to I (for 11Tn>t converges strongly to I when n tends to ��� ). Thus � X nt � n 
�� is a spectral
measure.

Furthermore,

X nt � 11Tn 
 1>t � 11Tn>t

�
� t

0

�/� 11Tn 
 1>s � 11Tn>s � 11Tn>s � 11Tn � 1>s � dNs

�
� t

0

� X n � 1s � X ns � dNs .
Thus ��

n 0 1
nX nt �

� t

0

��
n 0 0

X ns dNs

�
� t

0

I dNs

� Nt .
Details are left to the reader.

P 21. — For all n # 1, we have Tn < Tn � 1.

Proof. — Let

R �
N � 1�
i 0 0

11Tn 
�� ti ,ti 
 1 � 11Tn 
 1 
�� ti ,ti 
 1 �

�
N � 1�
i 0 0

11Tn 
 1 
�� ti ,ti 
 1 � 11Tn 
�� ti ,ti 
 1 � .
From the identity

�
ε � f � , 11Tn>t ε � g � � �

n � 1�
j 0 0
� � t

0
f � s � ds � j
j!

e
� � t

0
f � s 	 ds �

ε � f � , ε � g � � ,
where ε � h � � σ � � �

s 
 σ h � s � for all σ ! � , all h ! L2 ���	� ; �*� , we can prove that R converges
strongly to 0 when the partition refines and that 11Tn 0 ��� � 0.

P 22. — We have ΦTn � ΦTn � for all n ! ��� , but Tn is not previsible,
whatever is n ! ��� .
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Proof. — Let f ! Φ �Tn � , we have 11Tn>tEt f � 0 for all t !"� � . But also (see [Att])
we have

11Tn>tEt f � f ��
 � 11 � � t

0

�
11Tn � 1>sDs f ��� 11Tn>s � 11Tn � 1>s � Es f dχs �

�
� t

0

� 11Tn>s � 11Tn � 1>s � � Ds f � Es f � ds .
Thus, for a.a.t

11Tn � 1>tDt f � � 11Tn>t � 11Tn � 1>t � Et f
and

�
11Tn>t � 11Tn � 1>t � � Dt f � Et f �$� 0.
In particular, 11Tn>tDt f � 0 for a.a.t. and thus ETn f � 0 (Theorem 16). This proves

ΦTn � ΦTn � .
It is proved in [A-S] that if, for all t ! �*�

xt �
� t

0

ms dχs �
� t

0

as ds

with, for all s !)�	� , ms and as belong to Φs � , � �
0

�
ms

�
2 ds < � and

� �
0

�
as
�
ds < � ,

then for every stopping time T , the limit (over refining partitions as usual)

xT � lim
�
i

11T 
�� ti ,ti 
 1 � xti 
 1
exists and is equal to

xT �
� �
0

11T>sms dχs �
� �
0

11T>sas ds .

Suppose Tn is previsible and let � Sp � p 
�� be a sequence of stopping times converging to Tn
and with Sp < Tn for all p.

We know that �
i

11Sp 
�� ti ,ti 
 1 � 11Tn>ti 
 111

converges to 11. But x
� n 	
t � 11Tn>t11 � 11 �

� t

0
� x � n 	s � x � n � 1 	s � � dχs � ds � thus

x
� n 	
Sp � 11 �

� ���
0

11Sp>s � x � n 	s � x � n � 1 	s � � dχs � ds � � 11 .
But 11Sp>s � x � n 	s � x � n � 1 	s � � 11Sp>s11 � 11Sp>s11Tn � 1>s11. This quantity converges to 11Tn>s11 �
11Tn � 1>s11 when p tends to ��� .

Finally,

11 � 11 �
� �
0

� 11Tn>s11 � 11Tn � 1>s11 � � dχs � ds � .
As

lim
t � ���

11Tn>t11 � 0 � 11 �
� ���
0

� 11Tn>s11 � 11Tn � 1>s11 � � dχs � ds �
we have a contradiction.
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VII. Applications to (strictly non-Fock) quasifree boson

or fermion quantum stochastic theories

In the case of quasifree boson and fermion quantum stochastic theories, we have

a family ��� t � t 
���
 of von Neumann algebras acting on a Hilbert space � and such that

� s � � t for all s � t . We put � � � � t 
���
 � t . We also suppose that there exists a
cyclic and separating unit vector Ω for � � in � , and that there exists a family � Mt � t 
���

of normal, ω-invariant, conditional expectations Mt : � � � � t where ω is the vector

state associated to Ω. We denote by � t the closure of � tΩ in � and by Et the orthogonal
projection from � to � t . We have EtXΩ � Mt � X � Ω for all X ! � � . Furthermore since� t is invariant under � t , it follows that Et belongs to ���t .

This setup includes the Ito-Clifford (fermion) theory and the quasi-free CAR and

CCR theories. In the former case,ω is a tracial state.

In all these three cases we have a representation theorem for the elements of � ,
see [H-L], [BSW], [Lin], [BW1], [B-L]. This representation implies that if � Tn � n is a se-
quence of ��� t � t 
�� 
 -stopping times converging to T , then ETn converges strongly to ET
(Corollary 3.4 of [BW1], Theorem 3.7 of [B-L]). Thus, as in Theorem 19 the filtered space

��� , � Et � t 
�� 
 , ��� t � t 
�� 
 � is quasi-left continuous.
In fact, in [B-L], [BW1], [BW2] and others, one defines MT as the strong limit of�

i

11T 
�� ti � 1,ti �Mti and one proves thatMT is an orthogonal projection on L
2 ��� � � . It is easy

to see that, forX ! L2 ��� � � , we haveMT � X � Ω � ETXΩ. Thus, using the isometry between

L2 ��� � � and � (given by X 
� XΩ) makes the study of ET orMT equivalent.

Actually, in [B-L] and [BW1],MT is the limit of
�
i

Mti 11T 
�� ti � 1,ti � , but if one denotes
by
�
MT this limit, then clearlyMT � X � �

�
MT � X � � � .

The case of tracial state.

Let us suppose now thatω is tracial. This is for example the case of the Ito-Clifford

theory and of the CAR algebra over L2 ��� � � whereω is the gauge-invariant quasi-free state

given by

ω � b � � f � b � g �/� � 1

2

� ���
0

f̄ � s � g � s � ds .

P 23. — Let S, T be two ��� t � t � 0-stopping times such that S � T .

Let � � n � n 
�� be an increasing family of partitions of �*� and R � n be defined by R � n ��
ti 
 � n

11T 
�� ti � 1,ti � 11S 
�� ti � 1,ti � .
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Then the sequence � R � n � n 
�� is always strongly convergent.

Proof. — We have

ω

�
� R � n � R � m � � � R � n � R � m � �
� � Ω, � R � n � R � m � � � R � n � R � m � Ω �
� ω � R �� nR � n � � ω � R �� mR � m � �

�
Ω, R �� nR � mΩ �*� � Ω, � R � m � � R � nΩ � .

We claim that if
� � � � then � R � Ω, R ��� Ω � � � Ω, R ��� Ω � . Indeed,

R ��� �
�
ti 
 � �

11T 
�� ti � 1,ti � 11S 
�� ti � 1,ti �
and

R �� R ��� �
�
sj 
 �
�
ti 
 � �

11S 
�� sj � 1,sj � 11T 
�� sj � 1,sj � 11T 
�� ti � 1,ti � 11S 
�� ti � 1,ti �
�
�
sj 
 �

�
ti ;sj � 1 . ti � 1<ti<sj

11S 
�� sj � 1,sj � 11T 
�� ti � 1,ti � 11S 
�� ti � 1 ,ti �
thus, by traciality

ω � R �� R ��� �$�
�
sj 
 �

�
ti ;sj � 1 . ti � 1<ti<sj

ω
�
11T 
�� ti � 1 ,ti � 11S 
�� ti � 1,ti � �

� ω � R ��� � .
This gives

ω

�
� R � n � R � m � � � R � n � R � m � � � ω � R �� nR � n � � ω � R �� mR � n �

and � R � n � n 
�� is converging in L2 ��� � � . Let R be the limit. We have R � n ! � � and�
R � n

� � 1 for all n. Therefore R � n converges to R strongly and R belongs to � � .
In this context we are thus always able to say if two stopping times such that S � T

are such that S < T or not. Indeed, this is the case if and only if R � 0 and 11S 0 ��� � 0.

Remark. — If we want the following property to be satisfied:

S < T and T � R � � S < R

we need to define S < T by a strong convergence of
�
i

11T>ti 11S 
�� ti � 1 ,ti � to I .
Indeed, in this case�
i

11R 
�� ti � 1,ti � 11S 
�� ti � 1,ti � �
�
i

11R 
�� ti � 1,ti � 11T 
�� ti � 1,ti �
�
i

11T 
�� ti � 1,ti � 11S 
�� ti � 1,ti � .
But the second sum in the right hand side converges strongly to 0 and the first one is

bounded by 1. This gives the claim.
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